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SECOND ORDER TAIL EFFECTS

1 Introduction

1

Financial asset data sets nowadays cover millions of high frequency price
quotes. These data sets are well suited for studying the market risk on
very large losses. Regulators of the financial industry currently require that
commercial banks be able to report, on a daily basis, a loss estimate over
a ten-day trading horizon for their entire trading portfolio given a certain
preassigned low risk level. The loss estimate is called the Value-at-Risk
(VaR). For internal risk management purposes the larger investment banks
also back out a VaR estimate for a one-day trading horizon. Non-financial
corporations nowadays do include long horizon VaR forecasts in their yearly
statements. Out of convenience the continuously compounded asset returns
are often presumed to be normally distributed, see J.P.Morgan (1995), Jorion
(1997), and Dowd (1998). As it happens, however, asset returns are heavy
tailed distributed. If we work from this assumption, the VaR can be well
estimated by employing extreme value techniques, see e.g. Dacorogna et
al. (1995), Longin (1997), Danielsson and De Vries (1997, 1998) and Dowd
(1998). The approach is a go between the traditional finance based normal
approach and the historical simulation based non-parametric approach.

In the paper we first briefly review the motivation behind the by now
standard estimation procedures by means of a first order expansion to the
tail probabilities of heavy tail distributed random variables. We discuss how
the first order approach implies a particular relationship between the VaR
over short and longer investment horizons. Subsequently we present some
new results that are based on using a second order expansion of the tail risk.
In particular we discuss the issue of efficiency in estimation using high and
low frequency data; and we investigate the relation between the VaR over a
short and a long investment horizon.

2 The First Order Approach to Heavy Tails and VaR

Suppose that the returns are LLd. and have tails which vary regularly at
infinity. In that case

F( -x) = ax-a [l + 0(1)] as x -+ 00, and a > O. (1)

These distributions are said to exhibit heavy tails since the m-th moment
E[Xm

] is unbounded when a < m, whereas in case of e.g. the normal dJ. for
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any finite m the E[xm] is bounded. Given parameter estimates for the scale
coefficient a and tail index a, the VaR x can be calculated upon inverting
ax-a: for a given small risk level p: xp ~ (ajp)l/a:. We first discuss how the
parameters can be estimated, and subsequently discuss the VaR application
in more detail.

2.1 estimation

The standard estimation procedures can be motivated as follows. Suppose
the Pareto law G(-x) = ax-a: holds exact below a certain threshold -s,
where s > O. The conditional distribution reads GXlx::;-s(-x) = (xjs)-a:.
One can go from this to the associated conditional density with tail index
a + 1: gXlx::;-s(-x) = a(xjs)-a:-l (ljs). Take logarithms to get

x
log9Xlx<-s( -x) = log a - (a + 1) log - -log s.- s

Substitute in this expression the random variable -Xi for the x, whenever
Xi < -so Differentiate with respect to a, sum the result over the observations
Xi which fall below -s, and equate to 0 in order to obtain the Maximum
Likelihood estimator of the tail index:

~ M
1 1 -X·
- = - L log --~, Xi < -s,
a M i=l S

(2)

and where M is the random number of extreme observations Xi that fall
below the threshold -so For a large enough s, the conditional Pareto den
sity gXlx::;-s( -x) may also be a good approximation to the true conditional
density !xlx::;-s( -x), when the conditional distribution is not exactly Pareto
but rather satisfies (1). The estimator (2) applied to the extreme observa
tions from a heavy tailed distribution that adheres to (1) is known as the
Hill (1975) estimator. We note that the estimator (2) is conditional on the
appropriate choice of the threshold Sj but how this choice has to be made
cannot be discussed without going into the second order expansion. The
assumption of independence is also crucialj although the estimator can be
shown to be consistent for important classes of stochastic processes.

Likewise we can motivate the estimator for the extreme quantiles or VaR.
Let xp and Xt be two extreme quantiles with associated probabilities p and
t respectively, that adhere to the law Gx1x::;-s(-x) = (xjs)-a:. Then tjp =

(xt/xp)-a:, and hence xp = Xt (tjp)l/a.. Suppose p < 1jn < t, where n is the
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sample size; moreover let t be such that M, M < n, is the closest integer
equal to nt. Then we can estimate the VaR xp by

__ (M/n) I/O!
xp-Xt --

P
(3)

Since the ~tistical properties of X; are dominated by the properties of the

exponent 1/0'., we can limit the discussion towards discussing the properties
of the tail index estimator.

2.2 value at risk at different horizons

Suppose a bank has estimated its one-day VaR from past daily return ob
servations. It also has to calculate the VaR for a ten-day investment horizon
to fulfill its regulatory requirements. The industry often works from the
assumption of normality and calculates the ten-day VaR by sizing up the
one-day estimate with a factor ViO, since this is the well known convolution
rule for summing i.i.d. normal random variables. The square-root proce
dure reduces the burden of estimation on risk managers. If the observations
are heavy tailed distributed, this simple convolution rule no longer applies.
Nevertheless for the tail risk, aggregation is still simple under the i.i.d. as
sumption.

Let the returns Xi have a distribution as in (1). For the sum I;~Xi
(holding k fixed), we have by Feller's theorem (1971, VIlI.8)

(4)

and where the scale factor 'a' is as in (1). We pointed out that banks for
internal purposes often calculate the VaR over a one day investment horizon,
but that regulators require a longer horizon. Corporations for their yearly
reports need an even longer horizon, see the recently launched Corporate
Metrics (1999) product by the RiskMetrics group. The question therefore is
how to go from the high frequency estimate to the low frequency estimate
without having to reestimate the parameters on a reduced sample size, and
thus possibly losing efficiency. In Dacorogna et al. (1995, 1998) the following
rule was presented:

Proposition 1 (The a-root rule) Suppose X has finite variance, so that
a > 2. At a constant risk level p, increasing the time horizon k increases the
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(6)

VaR for the normal model percentagewise by more, i. e. by yIk, than for the
fat tailed model, where the increase is a factor k1/

a.
Proof. Rescale x on the left hand side in (4) by k1

/
a, this gives ax-a on

the right hand side and hence equals the first order term in (1). •

The opposite holds if the distribution is so heavy tailed that the second
moment is unbounded, i.e. if 0: < 2 then k 1

/
a > Yk. In the related economics

literature on diversification it has been noted that the effect of diversification
is less pronounced in comparison with the normal distribution, if the returns
are sum-stable distributed with 0: < 2, see Fama and Miller (1972, p. 270).
They note that for 0: < 1 diversification actually increases the dispersion.
We are not aware of a discussion in the finance literature of the case 0: > 2
but finite, for either the issue of diversification nor for the issue of tail risk
(VaR) aggregation over time

3 The Second Order Approach to Heavy Tails

Throughout this section we assume that the following second order expansion
applies:

F( -x) = ax-a [l + bx- fJ + 0(1)]' as x --+ 00, and a > O. (5)

Fl'eely floating foreign exchange rate returns are often more or less symmetri
cally distributed about a zero mean. Therefore, in what follows we will often
assume that the lower and upper side tails are similar up to and including
the second order term

P{X < -x} = ax-a(1 + bx-fJ + o(x-fJ )),

P{X > x} = ax-a(1 + bx-fJ + o(x-fJ )).

The differences may come from the o-terms. Note that the second order term
is assumed to be of the same type as the first order term. Some motivation
for this choice can be found in the following observations. If the second order
term were of the form log x, some of the results below would not apply due to
the slower rate of convergence; for other functional forms like exp(-x) con
vergence is so rapid that the second order term plays no role of importance.
The expansion (5) applies for symmetric heavy tailed distributions like the
Student-t, which is often used to model the unconditional distribution of
asset returns, and it applies to the stationary distribution of the ARCH(l)
process, which is used for modelling the conditional asset returns.
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3.1 statistical properties

On basis of the expansion (5) one can derive the first two moments of the
Hill estimator (2) by elementary calculus. The conditional k-th order log
empirical moment from a sample XI, ... , X n of n Li.d. draws from F (x) is
defined as follows:

1 M -X.
Uk (Sn) Mt;X(Xi<-sn)(log Snt)k, (7)

where Sn is a threshold that depends on n, M is the random number of left
tail excesses, and where X(.) is the indicator function. Note that Uk (sn) is
a function of the highest realizations only. We will sometimes suppress the
reference to n in Sn when this does not create confusion. The theoretical
properties of the Hill estimator Ul (sn) are well documented by e.g. Hall
(1982) and Goldie and Smith (1987).

The properties of the Hill estimator derive from the following Lemma

Lemma 2 Given the model (5), fOT k ~ 1, and as n, Sn ---+ 00, while sn/n ---+

0,

(
1 bs- (3

)
E [Uk (s)] = r(k + 1) ak + (a + f3)k + 0 (s-f3) . (8)

as-a100

(logy)ky-a-ldy

[00 () -a-las-a Jo tk et etdt

a-ks-a loo xke-Xdx

r (k + 1) -a
k S •

a

Hence, the conditional expectation in (8) follows from the assumption (5)
and the calculus result

Proof. From calculus after two transformations of variables we have the
following result:

1
00 x

a (log - )kx -a-1dx
s S

E [Uk (S)] = 1 _ ~ (s) 100

(log~)k f (x) dx

r(k + 1) [~+ bs-
f3

] + 0 (s-f3) .
1 + bs- f3 a k (a + f3)k



(9)
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•
It immediately follows that for k = 1:

Corollary 3 The asymptotic bias of the Hill estimator 71,1 (sn) from (2) is

[ 1] _ bf3 -f3 ( -(3)
E 71,1 (sn) - ex - ex (ex + (3) sn + 0 sn .

6

(10)

(11)

After some manipulation and application of the Lemma (2) for k = 1,2,
one obtains the asymptotic variance of the Hill estimator.

Corollary 4 For the threshold Sn ---+ 00, but s~/n ---+ 0,

[ 1] sa 1 (sa)Var 71,1 (Sn) - - = ----!!..- + 0 --!!. .
ex anex2 n

These two results can be readily combined to obtain the asymptotic mean
squared error (AMSE) of 71,1 (sn)

(
1 s~ b2f32 -2f3

AMSE 71,1 (Sn)) ~ -2- + 2 S n •
aex n ex2 (ex + (3)

From this expression it is easy to see that for n ---+ 00, the rate by which
Sn ---+ 00 determines which of the two terms in (1 J.) asymptotically dominates
the other, or that they just balance.

Rewrite (11) in shorthand notation as AMSE = An-1sa + Ds-2f3. From
the first order condition exAn-1sa-l - 2f3Ds-2f3- 1 = 0, the unique AMSE
minimizing threshold level s is found as

_ (2 f3D) 2,6~0 _1
Sn = -- n 2,6+0exA .

To summarize, we have the following result:

Proposition 5 As n ---+ 00 the AMSE minimizing asymptotic threshold level
sn is

1

[
2ab2 f33 ] (0+2,6) 1

Sn (71,1) = 2 n(o+2f3).

ex (ex + (3)
And the associated asymptotically minimal MSE of 71,1 (sn) is

1 [1 1 ] [ 2ab2f33 ] 2f3~0 _~AMSE [udsn)] = - - + - n 2,6+0
aex ex 2f3 ex(ex+f3)2

+0 (n -2%!0 ) .

(12)

(13)
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(14)

From (11-13) it is straightforward to show that if Sn tends to infinity at
a rate below n 1/(2.B+a ), the bias part in the MSE dominates, while conversely
the variance part dominates if Sn tends to infinity more rapidly than n 1/(2.B+a ).

It is also easy to see that the number of excedances M is such that

-2f3 [ 2ab2{33 ] - o;2f3 •
n a+2f3 M (Ul (sn)) ----t a 2 III pas n ----t 00.

a (a + (3) .

Further asymptotic properties of the Hill estimator, like asymptotic nor
mality given that sn is used in (2), are shown in e.g. Goldie and Smith
(1987). Danielsson et al. (1997) discuss how a bootstrap of the AMSE can
be used to back out the optimal threshold sn in practice, such that the Hill
estimator retains its asymptotic normality property. In this bootstrap proce
dure the empirical minimum of the bootstrapped MSE is used to estimate sn
consistently, and the procedure guarantees that the rate conditions assumed
in the above results are automatically satisfied. By doing so one balances
the two vices of bias squared and variance such that these disappear at the
same rate. For dependent data it is sometimes known how the variance is
affected, see e.g. the recent work by Drees (1999) and Starica (1999) for the
ARCH(l) process, but other aspects, like the choice of the threshold Sn, are
still open issues.

3.2 time aggregation and efficiency

The log-returns are time additive, i.e. the two week return is the sum of
the one week returns. Nowadays financial data sets can be obtained at even
the finest time grid around, which is the trading time scale. The question
is which data should be used for estimation purposes. In particular we ask
ourselves the following question, if one needs results for a long investment
horizon, should one nevertheless use the high frequency data for estimation,
and then use a rule like the a-root rule to extrapolate to the low frequency
level? We give an answer in terms of the asymptotic mean squared error
efficiency.

Assume that a > 2, because this is the relevant case for most financial
data. In that case both the mean and the variance are bounded. We first
obtain a generallernrna on second order convolution behavior. This result is
needed because, as was shown above, the AMS E of the tail index estimator
is a function of the first and second order parameters. The existing literature
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only gives a result on second order convolution behavior for positive random
variables, see Geluk, De Haan, Resnick and Starica (1997). But since the
log-asset returns can be positive and negative, we need to analyze this case
afresh. To restrict the number of different combinations that will arise, we
assume that the tails are similar. We find that because the distribution of
asset returns is two-sided, a new factor depending on E[X2

] enters.

Lemma 6 (Second order convolution) Suppose that the tails are second
order similar, i. e. as x --+ 00

P{X < -x} = ax-a (1 + bx-13 + o(x-13 )),

P{X > x} = ax-a (1 + bx-13 + o(x-13 )),

(15)

(17)

and a > 0, b #- o. Moreover, assume that a > 2 and f3 > 0 so that E[X] and
E[X2] are bounded. Suppose Xl and X 2 are i.i.d. and satisfy (15). Then for
the 2-convolution

P{XI + X 2 > s} = P{XI + X 2 ::s; -s} (16)

2as-a(1 + bs-13 + aE[X]s-1 + a(a + 1) E[X2]s-2)
2

+0(s-a-2) + o(s-a-13 )

as s --+ 00.

The Lemma (6) was obtained in Dacorogna et al. (1998) by elaborate
calcullh"> arguments. We develop some intuition for the result by a novel
argument. The probability P{Xl + X 2 > s} can be split into just two parts:

P{X1 +X2 > S}~P{Xl+X2>S,X2::S;~}+

P{X1 + X 2 > S,Xl::S;~}

The remaining other part P{XI > ~,X2 > n = P{X1 > n2 = 0(s-2a) is
of smaller order and can be ignored since it is assumed that a > 2.

To determine P{XI + X 2 > S, X 2 ::s; U, we first compute the conditional
probability P{XI +X2 > s I X 2 = c} = P{X1 +c > s}, say. This conditional
probability is obtained from the marginal by translation. Consider the law
P{X > x} = ax-a (1 + bx-13 + o(x-13 )) as x --+ 00, and suppose we shift
X by adding the constant c. This changes the probability into P{X + c >
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x} = a(x - c)-a(1 +b(x - c)-.8 +o(x-.8)). Use the Taylor expansion to write,
assuming that x > C, l

x-'Y (1 _ 2: )-'Y
X

x-'Y{I + ,2: + ,(,+ 1) (2:)2 + 0((2: )3)}.
X 2 x x

Use this twice to rewrite P{X + c > x} as:

P{X +c > (18)

The following conditional probability can be split into three parts .

P{X1 + X 2

-8/2

- 100 P{X +c

s s 100

> s, -2 ~ X 2 ~ 2} = -00 P{X + c > s}dF(c)

> s}dF(c) -100
P{X + c > s}dF(c).

8/2

In all three integrals substitute the right hand side form of (18) for P{X+c >
s}. The second andthird integral are of small order 0(s-2a). For example,
since for s -+ 00

100 P{X + c > s}dF(c) =
8/2

100 as-a (1 + 0(1)){ax-a- 1 (1 + o(I))}dx =
8/2

0(S-2a).

The first probability can be found by using the translation result

i: P{X1 + c > s}dF(c) = Ec[P{X1 + c > s}]

= Ec[as-a{1 + acs-1 + a(a + 1) C2S-2+ bs-.8 + o(s-.8) + 0(S-2)}]
2

lSee also Dacorogna et al.(1995) where this expansion is used to show that the Hill
estimator is not location invariant.
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The last expression gives P{XI + X2 > S, -~ ::; X 2 ::; H, but we need
P{XI + X 2 > s,X2 ::; H, see (17). However, as before, the probability
P{XI +X2 > s,X2 ::; -H is of small order and can be ignored. Bysymmetry
the same result is obtained for P{XI + X 2 > S, Xl ::; H. Putting these two
probabilities together yields the claim.

From this second order convolution result we can infer how the AMS E
will be affected by the choice of the return frequency in the estimation, see
Dacorogna et al. (1995,1998):

Proposition 7 Suppose the Xi are i.i.d. with a distribution F(x) that is
symmetric around zero, E[X] = 0, and varies regularly at infinity as in (5)
with a > 2. Then a w-convolution affects the leading term in the AMS E [UI (sn)]
from (13) as follows:

(i) {3 < 2. There is no effect;
(ii) (3 = 2. The AMSE changes by a factor

[

1 2] aj(2f3+a)(1 + 2a(a + l)(w -1)E[X2Jjb) ;

(iii) (3 > 2. The AMSE changes by a factor

[1 ]4:;a (1) aj(2f3+a)
C 2a (a + l)(w - 1)E[X2

] b2 '

and where

2a ~ 4 ~

C = 4+a(_2)4+a (a + f3) 213+a (~) 4+0 (2f3an) 213+a

2f3 + a a + 2 f3 4an a

The upshot of Proposition 7 is that either time aggregation has no effect,
Le. when f3 < 2, or that the AMSE deteriorates, possibly only after the
first few convolutions when b < 0 and {3 = 2. If f3 > 2 the AMSE always
deteriorates after the first convolution. While it can thus not be ruled out
that higher frequencies deteriorate the AMS E properties of a for the first
few convolutions, the majority of the cases goes into the other direction. For
this reason it may be advisable to use the highest frequency data available
for estimation, and subsequently to extrapolate to obtain the lower frequency
result by means of a rule like the a-root rule from Proposition 1.
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3.3 second order VaR

11

Suppose one follows the advice from the previous subsection and estimates
the low frequency VaR from the high frequency VaR. By doing this one ex
ploits the efficiency that the high frequency data deliver. On the negative
side however, one may loose from the fact that the a-root rule from Proposi
tion 1 is based on a first order approximation We investigate the possible loss
in precision that may arise from neglecting the second order terms. Assume
the mean is E[X] = 0. Consider the convolution result (16), but inflate the
VaR s by a factor 21/ a • This gives

P{X1 +X2 ::; _21/
as}=

as-a{1 + b2-f1!as-f3 + a(a + 1) E[X2]2-2/as-2}
2

+0(s-a-2) + o(s-a-f3 ).

Let P{X ::; -s} = as-a(l + bs-f3 + o(s-f3)) = p, say, and use this to rewrite
the above

P{X1 + X 2 < _21/ as} =

p + as-a{ -b(l - 2-f3/a)s-f3 + a(a2+ 1) E[X2]2-2/as-2} +

0(s-a-2) + o(s-a-f3 ).

If b > °and (J < 2, then for sufficiently large s the a-root rule is overly
conservative, since the second order term -b(l - 2-f1!a)s-f3 is negative. If,
however, b < 0, or if (J > 2, then the second order term is positive, and the a

root rule is not prudent enough. To circumvent the bias in the low frequency
VaR estimates that stems from the a-root rule, one could redo the quantile
estimation on the low frequency data by means of (3), while retaining the
tail index estimate from the high frequency data. Which procedure is better
is an issue for further research.

4 Conclusion

The paper first reviews the standard estimation procedures and VaR implica
tions on the basis of a first order expansion for the tail probabilities of heavy
tail distributed random variables. Subsequently, it was argued why second
order results are needed for determining the properties of the estimators.
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We developed a new intuitive derivation of the second order convolution
result. This second order convolution result is useful for the discussion of
the efficiency in estimation. While for most cases using the high frequency
data is mean-square efficient, we showed that there are some exceptions. The
second order convolution result also enables one to determine the precision
of the rule by which the VaR over a short investment horizon is related to
the VaR over a long investment horizon.
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