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Introduction

Most real processes that require automatic control are
nonlinear in nature. That is, the system matrices (mass, damp-
ings and stiffness matrix) vary as the operating point changes.
A linear controller can only be tuned to give good performance
at one particular operating point or for a limited period of time.
The controller needs to be retuned if the operating point
changes, or retuned periodically if the process is time-varying.
This necessity to retune has increased the need for adaptive
controtlers that can automatically retune themselves to match
the current process characteristics.

Despite this, the majority of industrial processes now-
adays are still regulated by conventional PID conirollers mainly
because of their simplicity. For example in the case of a robot
arm that has to move objects with different masses along a
predefined path, good and exact models are available so it is
not too big a probiem to create a conventional weli-tuned PID
controller. However, substantial changes in the system matri-
ces due to non-linearities, or major external disturbances, lead
to a sharp decrease in performance. In the presence of such
disturbances, PID systems are usually faced with a trade-off
between fast reactions with significant overshoot or smooth but
slow reactions.

In order to improve the performance of such systems a
fuzzy self-tuning PID controller was introduced. The central
idea of this controller was first introduced in [1]. The main con-
tribution of this paper involves the extension of the control
scheme in [1] for application in nonlinear mechanical systems
such as a robot arm. This extension required several changes,
such as the adaptation of the rule-base for mechanical sys-
tems; however, the basic idea of [1] remains unaltered.

In [1] the controller evaluates the trend of the control-
led process output at every timestep, to detect a possible
deviation from the prescribed course. If a deviation is found, an
appropriate control action according to the nature of the devia-
tion will be generated instantaneously by the fuzzy mechanism
to adapt the PID parameters, if necessary.

There are two basic ideas. Firstly : the three controller
gains are subjected to a single parameter «. These dependen-
cies are arranged so that an increase(decrease) in o will lead
to a decrease(increase) in the differential term and an in-
crease(decrease) in both the proportional and integral terms.
Secondly: in order to use the qualitative relationship between
the controller gains and the resulting process output, the para-
meter o is updated on-line by a simple tuning formula driven
by a fuzzy inference mechanism. This fuzzy mechanism up-
dates o taking into account the current process state. This
adjustment of a will in turn lead to a change in the controller
gains resulting in a faster convergence of the process output
to a set-point, and a siower divergence away from the set-
point. As stated before, this article is concerned with the imple-
mentation of this basic idea in the control of a robot arm.

One of the differences between this implementation and
the one proposed in {1] is that in [1] the form of the parameter-
isations is inspired by the Ziegler-Nichols tuning formula, whe-
reas in this simulation the chosen parameterisations of the
controller gains are derived empirically. This has the following
reason : in the case of the robot arm the set-point responses
keep improving if larger control actions are allowed, in other
words if a larger P-parameter is used associated with a larger
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necessary damping parameter D. So it is impossible to specify
one optimal combination of the three controller gains because
it depends on the maximum allowed control action.

The combination of the three PID parameters must be
such that the maximum performed control action does not
exceed this maximum allowed control action. The advantage of
the fuzzy self-tuning controller over the standard PID controller
is the ability to alter the three PID parameters on-line with the
maximum allowed contro! action as only restriction.

The controller and the fuzzy adaption mechanism
Basic Design

To understand the basic structure of the fuzzy self-tun-
ing PID controller which has been developed with the help of
[11, the block diagram is drawn in Figure 1. As we can see in
fig. 1 the fuzzy self-tuning PID controller consists of a fuzzy
self-tuning mechanism that computes the parameter
depending on the error and error derivative, which in turn will
be the input of the adaptive part of the controller.

ity can be negatively affected by a computed torque feedback
term.

Adaptive Part
A conventional PID controller generates a control action

u(k), based on the error e(k) = X4 - X(k} in the following stand-
ard form:

k) = Kee(k K k) — e(k—1 sz'
ulk) = pe()+At [ek) —ek—-1)] + K }e(l)],

te=tork At (1)

Where K, Kp and, K, are the proportional, derivative and inte-
gral gain respectively and At is the discrete sampling time.

In the case of the fuzzy self-tuning PID controller these
gains are all parameterised by a single parameter a. With this
parameterisation we want to achieve a faster convergence to

the set-point in cases of large
deviations and a slower convergence

d/dt Fuzzy

when approaching the set-point in
order to prevent or minimise a pos-
sible overshoot. So in the first case

| we need a larger P-action and a smal-

o
Inference] l
Xd(t) + e(t) Adaptive] &+

PID

process

X ler D-action whereas in the second
» | case we need a larger D-action and a
smaller P-action. The basic form of

the parameterisation is chosen in

Xd(t) .
steering part

i such a way that an increasing
(decreasing) value of o causes an
increase (decrease) in both Kp and K|
and a decrease (increase) in Kp. So in

Fig. 1: Scheme of the fuzzy self-tuning PID controlier.

the first case o must be increased
and in the second case decreased.

. Crisp Process-State
e(k), [e(k)-e(k-1)}/At

An appropriate parameterisa-
tion could be the following :

o <

l .| updating formula

Kp=(x2Kpo ,0<(x<1 (2)

KD=1/(1 +G)KDO (3)

Normalisation

+

Fuzzification =%

Inference

Engine

Defuzzification

=K 4
Crisp Output K 0 “
h(k) In these formulas the constants Kpy,
Kpo and Ky, are used to adjust the
average level of the PID parameters
{Ke, Ky and Kj) during a simulation. So
they can be used to influence the
average level of the control action.

Fig. 2: The structure of the fuzzy inference mechanism.

The inverse-dynamics based steering part compen-
sates for inertia and non-linear effects in the system. Although
a real computed torque feedback term could yield betier per-
formances, the proposed scheme provided sufficient control
for the non-linear 2DOF robot arm in our case. Morever stabil-

Their values are set at the beginning
of the process or simulation. The
parameterisation of the proportional
gain is quadratic in a because various
simulations have shown that this improved the performance as
compared to a linear relationship. It must be stressed here that
the precise form of the above parameterisations is not unique.
So many other parameterisations can be used as long as the
basic forms correspond with the basic form stated above.
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Fuzzy Part

Because the knowledge of the relationship between the
proportions of the PID feedbacks and the profiles of the
process outputs is mostly qualitative, fuzzy logic provides an
opportunity to use this linguistic information in a controller.

As we can see in figure 2 the fuzzy scheme consists of
four modules and an additional module for the updating of a.
In the normalisation module the crisp input values are norma-
lised to a standardised domain by linear scaling. The fuzzifica-
tion module is concerned with transforming the normalised
crisp inputs to membership values corresponding to linguistic
states. An inference module working with predetermined rules
calculates membership values for the linguistic output state H.
These rules determine the behaviour of the controller in the
closed loop system.

The transformation from the linguistic state (H) to the
crip output parameter (h(t)) is done by the defuzzification
module. Finally, this parameter is used for updating « in the
updating module. Each of the modules will now be looked at
more closely in order to explain the fuzzy part of the fuzzy self-
tuning controller in detail.

The normalisation module maps the actual physical
domain of the input variables on a domain of real numbers
between -6 and 6. This domain is a frequently used standard
domain in literature [2]. In this way the same domain can be
used for all fuzzy variables. As we can see in fig. 2 the input
variables are e(k) and [e(k)-e(k-1)]/AtL

The fuzzification module then fransforms the measured
variabies to linguistic states. In order to do this each linguistic
state is defined by a membership function. With a membership
function the connection between a physical state and a linguis-
tic state is specified. The normalised domain consists of seven
different fuzzy sets (linguistic states) as shown below,

X ={NL, NM, NS, ZO, PS, PM, PL} (5)

in which, as usual, NL stands for negative large, NM stands for
negative medium etc. The membership functions ;(x) used to
represent these sets are all bell-shaped and have the following
mathematical formula:

error derivative
NL NM NS ZO PS PM PL
H
€
I NL NL NL NM PL PM PS ZO
. NM NL NM NS PM PM ZO NS
r NS NM NM NS PS ZO NS NS
70 NM NS NS ZO NS NS NM
PS NS NS ZO PS NS NM NM
PM NS ZO PM PM NS NM NL
PL ZO PS PM PL NM NL NL

Fig. 4: Fuzzy map showing the fuzzy rules.

All seven fuzzy states with the corresponding membership
functions are shown in Figure 3.

derived from linguistic knowledge are applied, thus transform-
ing the linguistic input states to an appropriate linguistic out-
put. The Mamdani implication is used to represent the meaning
of the if-then rule, as is usually done in fuzzy control. The type
of rule firing is Individual-rule based inference. A possible set
of rules which would be used is shown in figure 4. The rules
are of the following form:

NM NS Z0

Explanation of rulebase :

speed up convergence in case of large deviations from the

_ X-Xi) 2
wx)=e °°

with : x the crisp input value
x; a constant that determines the centre of
membership function i
o a constant that determines the width of
the membership functions

The inference engine is the place where the fuzzy rules,

if error is PL and error rate is ZO then H is PL

if error is PM and error rate is NS then His PM
if error is PS and error rate is NL then H is NS
etc.

As stated before the purpose of the new scheme is to
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Fig. 5: One scaled fuzzy set (PS).
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set-point and to slow down the response when approaching
the set-point, by adapting the PID parameters on-line. So keep-
ing in mind the global forms of the chosen parameterisations in
the adaptive part, & should be increased in the first case and .
decreased in the second case. it will become clear in the addi-
tional updating module on the next page that the output H (and
its corresponding crisp value h(t)) determine the increase in a.
So considering the three aforementioned rules we can con-
clude that these rules indeed force a to a higher level in the
first situation and a lower level in the second.

Note that the general rulebase shown above can be
slightly adjusted to each specific application which is also
done in this case.

The rules include two propositions in the if part and
one in the then part. The and operator which combines the two
propositions in the antecedent (if part) is calculated as the pro-
duct. In this way, computing the truth values of the antecedent
parts of all forty-nine rules is reduced to a simple outer vector
product.

The transformation of linguistic input to linguistic output
is done by scaling (multiplying) [2] all seven membership func-
tions defining the linguistic output states with the related mem-
bership of the antecedent part. Finally, the overall output H is
obtained as the union of the scaled fuzzy sets.

In the defuzzification module the Center-of-Sums defuz-
zification method [2] is used to transform these scaled fuzzy
sets into a crisp output h(t) in order to reduce computation
time in comparison with the Centre-of-Area method which is
mostly used in literature.

Additional updating module

Following the researchers in [1] we use the formula
below fo update the parameter a.

a(k+1) =ak +yhk) (1 —a(k), forak) > 0.5 0<a<i (7)
a(k+1) = a (k) +y h(k) o (k), for a(k) < 05

in which v is a positive constant used to modify the converg-
ence rate of the updating formula.

By using this kind of formula we obtain a smooth and
bounded variation of o« <0; 1 > and therefore a smooth and
bounded variation of the PID parameters.

Note that this fuzzy mechanism has no denormalisation
module because this is in fact done by the parameter y, which
turns out to be of great importance to the controllers perfor-
mance.

After having explained the new control scheme, in par-
ticular the a-updating formula, we are able to discuss stability
properties. By linearising the differential equations which des-
cribe the closed-loop behaviour around a constant set-point
(ro, ©o) we can derive the following linear differential equation:

e+C,e+Ce=0 (8)
inwhich:e=ry-rore=0y-9
For a conventional PD controller C, and C, only

depend on the controller parameters Ky and Ky and some sys-
tem constants (appendix A).

C1 = CKD (9)
02 =cKp

in which-the positive constant¢c depends on the system con-
stants.

In order to prove stability we try the following candidate
Lyapunov function:

V=182 +5Cpe (10)
With eq. 8 we can derive:

V=-C, é? (11)
Note that in order to be a Lyapunov function, V must satisfy:

V>0ife#0oré#0 (12)
V<0ife#0 (13)

Therefore V is a Lyapunov function when the control parame-
ters are positive and constant resulting in an assymptotically
stable closed-loop response.

In case of the fuzzy self-tuning PD controller the coeffi-
cients C; and C, depend on the time-varying parameter o (see
eq. 2 and eq. 3):

C

~(1+a() (4

1

C, = col(t)

Note that because « is bounded (a () € <0,1>), C, and C,
are positive and bounded as well. Because a = a (f) the linear
differential equation (8) becomes time-varying:

€+ Cilad) e+ Colaft)e=0 (15)
Using the same Lyapunov function (10) now vields:

V=—0C,é*+ 1 G, ¢ (16)
with :

Gy =2ca(t) &(t) (17)

Because C, can be positive, condition (13) may no longer be
met, so candidate Lyapunov function (10) cannot be used in
this case.

Although simulations show assymptotically stable pro-
cess responses, all efforts to prove stability when &(t) # 0 have
been unsuccessful up to now. Therefore further investigation
will be necessary to prove stability of the time-varying system.
As a starting point for further research on stability the use of
Lyapunov exponents [10] can be investigated.

Simufation and results

The fuzzy self-tuning PID controller is simulated on a
robot arm with two degrees of freedom, moving objects in a
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horizontal plane. These two degrees of freedom are the radial
displacement (r), controlled by a radial force and the angle of
the robot arm (o) controlled by a torque. Each degree is con-
trolled separately, so we need two fuzzy self-tuning PID con-
trollers. The geometry and details of this robot arm are des-
cribed in appendix A.

In order to evaluate the performance of the new con-
troller, we compare its set-point as well as path-tracking and
load disturbance responses with conventional well-tuned PID
controllers. Due to the nature of the system, the responses
improve as the maximum possible control action increases.
This means that in order to get a realistic comparison an equal
maximum cosntrol action for both the new and the conven-
tional PID controlier must be set. There are two control actions,
the radial force and the torque of which the maximum values
are set at 800N and 800Nm respecitively.

Set-point and load disturbance responses

In this case we can suffice with a PD action because
the l-action could not improve the responses. The tuning of the
conventional P()D controller starts with finding the maximum
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parameter 0.

value for K in such a way that the above mentioned control
action limits are not exceeded. Then the damping parameter K
can be increased to achieve the desired response character-
istics in terms of overshoot, rise-time etc.

The tuning of the parameters Kgy and Kpg is done in a
similar way. After that the convergence parameter y and the
rulebase can be adjusted to the specific system to improve the
performance without exceeding the control action limits. This
concept is compared with two differently tuned PD controllers:
the first one having a comparable overshoot from the set-point
response with shorter rise-time but more overshoot.

As we can see in figure 6 and figure 7, both set-point
and load disturbance (at t = 1s) responses improve consider-
ably. The fuzzy self-tuning PD controller is either much faster
or has less overshoot. In figure 8 we can see that both the
conirol actions of the fuzzy self-tuning controiler and the first
conventional PD controller stay within the limits that are set
above.

The responses and control action for the angle of the
robot arm are not displayed here because they show similar
results as the radial displacement of the robot arm.

o[
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Fig. 10: The path-tracking responses of the fuzzy self-tuning PD controller and
the conventional PD controller.

In figure 9 the course of a together with the sei-point
response of the fuzzy self-tuning controlier are shown, so we
can check if the fuzzy rules are applied correctly. We can see
that o indeed increases till the set-point is approached (thus in
case of a large deviation from the set-point) after which o
keeps decreasing till the response approaches the set-point
again. The divergence at t = 1s caused by the load disturb-
ance is slowed down by the decreasing a.

Path-tracking responses

In this case the robot arm has to follow a predefined
path hih will b a circular course. As we can see in figure 10
both the fuzzy self-tuning PD and the conventional PD control-
ler discussed above can not provide adequate control because
they keep a steady state deviation from the desired radius of
the circular course. The reason is as follows ; when the robot
arm approaches the desired radius the convergence is slow,
s0 the radial control force mainly consists of the proportional
action. At a certain moment when the robot arm further
approaches the desired radius, the radial control force (= pro-
portional control action) equals the centrifugal force so there is
no resulting radial force left to eliminate this steady state
deviation.

We can see in figure 10, however, that this steady state
deviation of the fuzzy self-tuning PID controller is much smal-
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Fig. 11: Path-tracking responses with Integral action and feedforward term.

ler, which is caused by the fact that during the simulation the
fuzzy adaptive mechanism has put o at a higher level resulting
in a larger proportional parameter.

This steady state deviation can be eliminated by intro-
ducing an'integral action. S6 in this case there is a need for all
three controller gains. The control is also aided by an inverse-
dynamics based feedforward term (see fig. 1) which computes
an input based on the desired output and the differential equa-
tions of the system. As we can see in figure 11 the steady state
deviation is indeed eliminated. However, the I-action has
resulted in a much larger overshoot. The fuzzy self-tuning PID
controller is faster in eliminating the steady state deviation than
a standard PID controller, with the same rise-time and over-
shoot, because after the maximum overshoot has occurred, o
remains high resulting in a small D-action and large P- and I-
actions. In this case the maximum aliowed force in radial direc-
tion is set at about 1700N and both the controllers are tuned in
a way which leads to a compromise between maximum over-
shoot and the time needed to eliminate the steady state devia-
tion.

Conclusions

From the preceding results we can draw the following
conclusions.

In figure 9 we see that the course of the updating para-
meter o follows the fuzzy rules that are set in the rule-base in
figure 4 very smoothly and correctly, so we can conclude that
the fuzzy logic implemented in this controller works well.

Secondly, the simulations and comparisons with con-
ventional P(I)D controllers fead to the conclusion that this para-
meter a together with the chosen parameterisations of the con-
troller gains indeed lead to a better performance of the new
controller. On the basis of these simulations we expect the
proposed scheme to yield better responses in the control of
other mechanical systems as well; however, future research is
required to verify this.

On the other hand it must be emphasized here that the _|
forms of those parameterisations along with the chosen con-
stants and parameters are not unique. So in order fo get a fine
response one should know the influences of all these aspects;
which brings us to the main disadvantage of this fuzzy self-tun-
ing P()D controller: the adjustment of the constants and para-
meters, the formation of the precise form of the rule-base and
the parameterisations, in other words the tuning of the fuzzy
self-tuning P(I)D controller, is more complicated than tuning a
common P(l)D controller. So the question whether or not the
extra tuning effort of the fuzzy self-tuning P()D is worthwhile,
strongly depends on the required process reponses.
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kwaliteitscriteria voor projekten, richtlijnen voor hoogkwalitatief kursusmateriaal,
didaktische aspekten, risico-analyse, enz. Tenslotte volgt nog een uitgebreide bijlage
waarin dieper wordt ingegaan op de problematiek van kwaliteit en kwaliteitszorg in de
vormingssektor (0.a. toepasbaarheid, implementatie van 1Kz, kwaliteitsbewaking,
relevantie van ISO 9000).

Hoewel het boek initieel opgevat werd voor managers van diverse soorten
opleidingsprojekten, blijkt uit entoesiaste respons dat het werk ook zeer bruikbaar is
voor andere doelgroepen zoals managers van opleidingsafdelingen in bedrijven,
trainers, kwaliteitsmanagers, kursusontwikkelaars, projektverantwoordelijken in
onderwijsinstellingen, en medewerkers van private opleidingscentra...

Het voorwoord is van Tom O’Dwyer, Direkteur-Generaal van DG XXl van de Europese
Kommissie, het Direktoraat-Generaal dat verantwoordelijk is voor de Europese
onderwijs- en opleidingsprogramma’s.
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