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Abstract

In this paper we consider the stochastic joint-replenishment problem in an en-

vironment where transportation costs are dominant and full truckloads or full con-

tainer loads are required. One replenishment policy, taking into account capacity

restrictions of the total order volume, is the so-called QS policy, where replenish-

ment orders are placed to raise the individual inventory positions of all items to

their order-up-to levels, whenever the aggregate inventory position drops below the

reorder level. We first provide a method to compute the policy parameters of an

QS policy such that item target service levels can be met, under the assumption

that demand can be modeled as a compound renewal process. The approximate for-

mulas are based on renewal theoretic results and are tested in a simulation study,

revealing a good performance. Second, we compare the QS policy with a simple

allocation policy, where replenishment orders are triggered by the individual inven-

tory positions of the items. At the moment when an individual inventory position

drops below its item reorder level a replenishment order is triggered and the total

vehicle capacity is allocated among all items such that the expected elapsed time

before the next replenishment order is maximized. In an extensive simulation study

it is illustrated that the QS policy outperforms this allocation policy, standing for

lower inventory levels to obtain the same service level. While for identical items the

difference between the performance of both policies is negligible, differences can be

large for different item characteristics.

keywords: inventory, stochastic modelling, coordinated replenishments
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1 Introduction

Many of the stochastic inventory control models which have been studied in the literature

are single item models or assume that multiple items are ordered independently of each

other, resulting in a large number of small orders. But in real-life situations coordination

of orders and joint replenishments often take place in order to achieve economies of scale.

Joint replenishment policies are cost effective when there is a fixed major cost for each

order and only a minor ordering cost for each item included in the order. However, the

body of literature studying the stochastic joint replenishment problem (see for an overview

Aksoy and Erenguc (1987) or Goyal and Satir (1989)) is much less than for independent

replenishments.

One reason for this may be the fact that the optimal coordinated control policy for

the stochastic case is in general unknown and is expected to have a difficult structure (see

Ignall (1969)). Therefore, reasonable policies are studied and formulas and algorithms are

provided to determine optimal and near-optimal policy parameters. We can distinguish,

as in the single item case, between continuous and periodic review policies.

Probably the best known continuous joint replenishment policy is the can-order-policy,

defined by three different parameters (S, c, s) for each item, the order-up-to level S, the

can-order level c and the must order level s. Whenever the inventory position of an indi-

vidual item is dropping to or below the must-order level a replenishment order is triggered

to raise the item inventory position up to the corresponding order-up-to level S. All items

with an inventory position below the can-order level are also included in the replenishment

order and their inventory position is also raised to their order-up-to level. This policy

is first proposed by Balintfy (1964) and the computation of near optimal parameters is

discussed in a series of papers for different demand and leadtime assumptions (see Silver

(1974), Silver (1981), Thompson and Silver (1975) and Federgruen et al. (1984)). All the

methods use the idea to decompose the N item problem in N independent single item

problems by assuming that discounted replenishment opportunities for an item (replenish-

ment moments which are triggered by another item) follow a Poisson process. However,

van Eijs (1994) has shown that especially for large major ordering costs the proposed

procedures can perform quite bad and do not provide the cost optimal policy parameters.
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Improved computational procedures are presented in Melchior (2002) and Schultz and

Johansen (1999).

Another sub-class of policies reviews the inventory level periodically. How to compute

policy parameters for order-up-to policies when demand follows a Poisson process can

be found in Atkins and Iyogun (1988) and for compound Poisson demand in Fung and

Lau (2001). A periodic (s, S) policy is discussed in Viswanathan (1997) and a periodic

can-order policy in Johanson and Melchior (2003).

All ordering policies mentioned above have in common that the total order volume is

variable and full truckloads or containersizes cannot be guaranteed. However, transporta-

tion managers of companies owning a private fleet, aim to get a high utilization of their

equipment and try to create full truckloads. Further, carrier freight rates are often a func-

tion of the order volume and often the cheapest prices are offered for full truckloads (see

also Swenseth and Godfrey (2002) for a discussion of freight rates in practice). Moreover,

shippers sometimes have so-called transportation capacity reservation contracts with lo-

gistics service providers where a fixed transportation capacity is reserved for a guaranteed

price. Then ordering policies have to take into account the capacity constraint on the

total order volume, but up to now stochastic inventory models including this capacity

constraint are rare and results are also very limited.

In this paper we study and compare two inventory control policies where the total order

volume is fixed, in the following always mentioned as policies where goods are shipped as

full truckloads. We first show how to compute the policy parameters for the so-called QS

policy (Renberg and Planche (1967)), which works as follows. The aggregate inventory

position of all items is continuously reviewed and when it is equal to the reorder level,

orders are triggered for each item to raise all individual inventory positions up to their

order-up-to level. In case the difference between the sum of all order-up-to levels minus

the reorder level is equal to the capacity of a vehicle, full truckloads are guaranteed. Under

the assumption that demand follows a Poisson process Pantumsinchai (1992) shows how

to compute the policy parameters such that total costs, composed of major and minor

ordering costs, shortage and penalty costs for backorders and inventory holding costs,

are minimized. Further, it is shown by means of numerical examples that the policy
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outperforms other policies in case of high major ordering costs and low shortage costs,

but it has a tendency to incur high shortages since an item can run out of stock while the

aggregate inventory position is still above the reorder level. This conclusion is in line with

the conclusions of Viswanathan (1997) who additional states that the QS-policy performs

well when items have identical cost and demand parameters.

In contrast to the paper of Pantumsinchai (1992) we model the demand process as a

compound renewal process, which enables us to model demand sizes as well as interarrival

times of orders with random variables. Moreover, the squared coefficient of variation

of these random variables does not have to be equal to one. We provide approximate

formulas, based on renewal theoretic results, in order to determine the policy parameters

and we test the performance of the approximations. Further, instead of using a cost

approach as in Pantumsinchai (1992) and in most of the literature in this field, we use a

service level approach, which means that we assume that for each item a target service

level, in this case the fill rate, has to be met. This should prevent the tendency towards

high shortages for individual items, but then the question arises if high inventory levels

occur as a side effect.

Therefore, we compare in the second part of the paper the QS policy with a policy

where replenishment orders are triggered based on the individual inventory position of an

item. At the moment when an arbitrary item inventory position drops below the item

reorder level, a replenishment order is triggered, and the total order volume is allocated

to all items in order to guarantee a full truckload. The allocation decision is based on the

idea to maximize the time until the next order is triggered, similar to Miltenburg (1985),

who studies allocation under the assumption that inventory positions can be modeled as

a Wiener Process. We compare this allocation policy with the QS policy in a numerical

simulation study and we illustrate that less inventory is needed under a QS policy to obtain

the same service level, compared to the allocation policy. The performance difference is

dependent on the item characteristics and differences are negligible for identical items.

The structure of the paper is as follows. In section 2 we provide formulas in order to

compute the policy parameters of an QS policy under compound renewal demand and we

present the results of a simulation study testing the performance of the approximations.
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In section 3 we describe a replenishment policy where replenishment orders are triggered

by an individual inventory position and we compare this policy with the QS policy. Then,

in section 4 we summarize our results and draw conclusions.

2 Aggregate order triggering

2.1 The QS policy

In this paper we assume that full truckloads are always profitable and in order to profit

from these economies of scale, inventory control policies should generate replenishment

orders guaranteeing full truckloads, resulting in low costs. In this paper two replenishment

policies, satisfying this requirement, are considered. We start our discussion with the QS

policy (Renberg and Planche (1967)).

The QS policy is an aggregate continuous review order policy where the aggregate

inventory position (the sum of all individual inventory positions defined as stock on hand

plus stock on order minus backorder) triggers an order whenever it drops below a reorder

level s. Then the individual inventory positions of each item are reviewed and an order-

up-to policy is applied, which means an order for item i is placed equal to the difference

between the order-up-to level Si and the actual inventory position of item i. If Q denotes

the capacity of a vehicle and N the number of different items, full truckloads are obtained

under unit demand sizes and the following condition:

N
∑

i=1

Si − s = Q (1)

Since we allow non-unit demand sizes the actual aggregate inventory position can be

less than the reorder level at the moment when an order is triggered. We rely on approx-

imations to compute the policy parameters and therefore, we also neglect the undershoot

in the formulas. However, in the simulations we assume that for the item, causing the

undershoot, the order is split and the remaining part has to wait until the next truck is

leaving. We further assume a single location where all items are kept on stock and one sup-
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plier location, resulting in a common replenishment leadtime L for all items. Additional,

no routing decisions have to be made.

The demand process of each item is modeled as a compound renewal process which

means that demand sizes Di as well as interarrival times of demand Ai are stochastic.

We assume that interarrival times as well as demand sizes are distributed according to a

mixture of two Erlang distributions Ek1,k2((µ1, µ2), (p1, p2)) and that the first two moments

are known. The density of an Ek1,k2((µ1, µ2), (p1, p2)) distribution is given by

fX(x) :=
2

∑

i=1

piµ
ki

i

xki−1

(k1 − 1)!
e−µix x > 0 (2)

Unsatisfied demand is backordered and for each item a target service level β
target
i is

given. Here we consider the fill rate, defined as the percentage of demand which can be

directly satisfied from stock. In the following we will show how to compute the N + 1

policy parameters (s, S1, S2, . . . , SN−1, SN) such that the target fill rates can be met.

Below we summarize the definition of the parameters and variables and the used

notation:

N : Number of different items

Ai: Time between two subsequent arrivals of demand of item i

Di: Demand size of item i

A∗: Time between two subsequent arbitrary arrivals of demand

D∗: Demand size of an arbitrary demand

Di(T ): Demand of item i during an interval with length T

β
target
i : Target service level of item i

Q : Capacity of the vehicle

Si: Order-up-to level for item i

S0: Total order-up-to level (S0 :=
∑N

i=1 Si)

s: Reorder level

L: Replenishment leadtime

σ: Length of a replenishment cycle

V AR[X]: Variance of a random variable X

c2
X : Squared coefficient of variation of a random variable X

(c2
X = V AR[X]

E[X]
) .
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2.2 Replenishment cycle

The length of a replenishment cycle σ is random and determined by the aggregate demand

process (A∗, D∗) which is the superposition of the individual demand processes (Ai, Di).

Assuming that the aggregate demand process can also be modeled as a compound re-

newal process, approximations for the first two moments of the inter-arrival time A∗ can

be computed using the stationary interval method developed by Whitt (1982) to super-

pose renewal processes. Instead of superposing hyper-exponential and shifted exponential

distributions, we superpose mixtures of Erlang distributions (for a detailed algorithm see

Appendix I). The first two moments of the aggregated demand sizes can be computed as

weighted sum of the individual demand sizes as follows:

E[D∗] = E[A∗]
N

∑

i=1

E[Di]

E[Ai]
(3)

E[(D∗)2] = E[A∗]
N

∑

i=1

E[(Di)
2]

E[Ai]
(4)

The length of a replenishment cycle σ is given by

σ =

N(S0−s)
∑

j=1

A∗

j (5)

where A∗

j denotes the interarrival time between arrival j − 1 and j and N(S0 − s) denotes

the number of arrivals of arbitrary demands between two replenishments. It is well known

that the first two moments of the length of the replenishment cycle as given in (5) can be

computed as follows:

E[σ] = E[N(S0 − s)]E[A∗] (6)

E[σ2] = E[N(S0 − s)]V AR[A∗] + E[N2(S0 − s)]E2[A∗] (7)

Note that the moments for the aggregate interarrival-time are approximated and there-

fore, the numerical values of E[σ] and E[σ2] will also be approximations although (6) and

(7) are exact formulas. Moreover, we also approximate the moments for the number of

arrivals of arbitrary demands between two replenishments, because especially an exact
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expression for the second moment of N(S0 − s) is in general intractable. First, we as-

sume that the undershoot is small compared to the truck capacity and can therefore be

neglected. This leads to the following relation:

S0 − s ≈

N(S0−s)
∑

j=1

D∗

j (8)

where D∗

j denotes the arbitrary demand size of the j-th arrival. We obtain for the first

moment:

E[N(S0 − s)] ≈
S0 − s

E[D∗]
(9)

For the second moment we additionally rely on approximations based on renewal

theory (Cox (1962)).

E[N2(S0 − s)] ≈
(S0 − s)2

E2[D∗]
+ (S0 − s)

c2
D∗

E[D∗]
+

E2[(D∗)2]

2E4[D∗]
−

E[(D∗)3]

3E3[D∗]
(10)

In order to get reasonable results the vehicle capacity Q must be large enough com-

pared to the aggregate demand size (cf. Tijms (1994)), which means Q > Cond(D∗)

with

Cond(D∗) :=











3
2
c2
D∗E[D∗] : c2

D∗ > 1

E[D∗] : 0.2 < c2
D∗ ≤ 1

1
2cD∗

E[D∗] : 0 < c2
D∗ ≤ 0.2

(11)

2.3 The service level

The fill rate for a specific item i, (i = 1, 2, . . . , N) is given by the following formula (cf.

Tijms Tijms (1994))

β
target
i = 1 −

E[(Di(L + σ) − Si)
+] − E[(Di(L) − Si)

+]

E[Di(σ)]
(12)

Under the assumption that a random variable X is distributed according to a mixture

of two Erlang distributions Ek1,k2((µ1, µ2), (p1, p2)) the following formula holds.

E[(X − z)+] =

∞
∫

z

(x − z)dFX(x) (13)

=
1

∑

j=0

(−z)j

(

2
∑

i=1

pi

µki

i

(ki − 1)!

ki−j
∑

l=0

zl(ki − j)!

l!µ
kj−l−j+1
i

e−µiz

)
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Therefore, the fill rate (12) can easily be computed under the assumption that the

demand during an interval with length T is mixed Erlang distributed. We compute the

first two moments of the demands during the intervals with length σ, L, and L + σ, fit a

mixed-Erlang distribution on these moments and use (12) as an approximation for the fill

rate. How to fit a mixed Erlang distribution on the the first two moments of a random

variable is described in Appendix III.

In order to obtain the first two moments of the demand during an interval with length

T we use

E[Di(T )] = E[Ni(T )]E[Di] (14)

E[D2
i (T )] = E[Ni(T )]V AR[Di] + E[N2

i (T )]E2[Di] (15)

and we again rely on approximations of renewal theory as follows:

E[Ni(T )] ≈
E[T ]

E[Ai]
(16)

E[N2
i (T )] ≈

E[T 2]

E2[Ai]
+ E[T ]

( E[A2
i ]

E3[Ai]
−

1

E[Ai]

)

+
E2[A2

i ]

2E4[Ai]
−

E[A3
i ]

3E3[Ai]
(17)

The formulas (16) and (17) lead to reasonable results if P (T < Cond(Ai)) ≤ ǫ for a

small value of ǫ. Otherwise, when the length of the interval is small compared to the inter-

arrival times, the number of arrivals during this interval is small and we can compute the

distribution function of N(T ) numerically. Using the distribution function the moments

are computed according to their definitions (see Appendix II).

2.4 Computation of the policy parameters

Based on the formulas obtained above the policy parameters (s, S1, S2, . . . , SN) for the

QS-policy can be computed such that a required service level is obtained. As input for

the following algorithms numerical values for the vehicle capacity Q, the leadtime L, the

target service levels β
target
i , and the first two moments of the demand sizes Di and the

interarrival times Ai are needed. A sketch of the algorithm is given in the following.
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1. Compute the moments of the aggregate demand process (A∗, D∗) using equation (3)

and (4) and the algorithm presented in Appendix I.

2. Set Q = S0 − s

3. Compute E[N(S0 − s)] and E[N2(S0 − s)] according to (9) and (10)

4. Compute the moments of the replenishment cycle E[σ] and E[σ2] using (6) and (7)

5. Set T = σ in (14) and (16) and compute E[Di(σ)] for all i = 1, 2, . . . , N

6. For T = L and T = L + σ compute the first two moments of Di(T ) for all i =

1, 2, . . . , N using (14) - (17)

7. For each i = 1, 2, . . . , N fit a mixed Erlang distribution and compute the parameters

p and k as described in Appendix III

8. Use a bisection method and (12) combined with (13) in order to compute the policy

parameters Si for each i = 1, 2, . . . , N .

9. Set s =
N
∑

i=1

Si − Q

2.5 Quality of the approximations

Since most of the formulas obtained above are approximations we have to test the quality

of them. In order to get detailed insights an extensive simulation study is performed.

For given target service levels the policy parameters are computed using our provided

approximations and afterwards the system is simulated and the difference between the

target service level and the actual service level is measured. Since we allow non-unit

demand sizes the actual aggregate inventory position can be less than the reorder level at

the moment when an order is triggered. In the simulation we assume that for the item,

causing the undershoot, the order is split and the remaining part has to wait until the

next truck is leaving.

For each parameter set 10 simulation runs with different seeds are performed yielding

accurate point estimates for the measured performance characteristics. For each run the
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actual service level and the absolute deviation from the target service level is computed

for all items and afterwards the average over all runs and items is computed as follows:

∆av :=
1

10N

10
∑

j=1

N
∑

i=1

| βsim
i,j − β

target
i | (18)

where βsim
i,j denotes the actual service level of item i in simulation run j.

Additionally, we compute the maximum positive and negative deviation between target

and simulated service level over all items and runs:

∆max := max
i,j

{(βsim
i,j − β

target
i )+}, ∆min := max

i,j
{(βtarget

i − βsim
i,j )+} (19)

where (x)+ is defined as max{0, x}.

To test the approximations we have chosen the following parameter values as a base

case:

N = 32, Q = 5000, L = 2, β
target
i = 0.95 ∀i = 1, 2, . . . , N (20)

Further, the average demand size is uniformly drawn from the interval (10,60) and the

average interarrival time of orders is uniformly drawn from the interval (0.1,1.1). Ad-

ditionally, we consider 9 different examples related to the coefficient of variation of the

demand sizes and the interarrival times c2
A, c2

D ∈ {0.4, 1.0, 1.6}.

We tested the impact of the parameters on the performance of the approximation,

varying one parameter while keeping the others fixed as in the base case.

We could not observe any impact of the replenishment leadtime on the performance

of the approximations (L ∈ {2, 4, 6, 8, 10}). Therefore, the leadtime is fixed to L =

2 in the study below. We further investigated five different target values (βtarget ∈

{0.75, 0.85, 0.9.0.95, 0.99}. For larger target service levels smaller deviations can be ob-

served than for smaller target levels (see Figure 1 where the average absolute deviation is

illustrated for different values of (c2
A, c2

D) and identical as well as non identical items).

We can further observe that for small squared coefficient of variation of the interarrival

times the fill rate is underestimated by (12) while for a large variability the fillrate is over-

estimated. This is illustrated in Table 1 where the maximum positive and the maximum

negative deviation of the service level are given for a capacity Q = 500 and βtarget = 0.95

.
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Figure 1: Impact of the target service level on the approximations

(c2
A, c2

D) ∆max ∆min (c2
A, c2

D) ∆max ∆min (c2
A, c2

D) ∆max ∆min

(0.4,0.4) 0.04 0.00 (1.0,0.4) 0.01 0.00 (1.6,0.4) 0.00 0.02

(0.4,1.0) 0.04 0.00 (1.0,1.0) 0.01 0.00 (1.6,1.0) 0.00 0.01

(0.4,1.6) 0.04 0.00 (1.0,1.6) 0.01 0.00 (1.6,1.6) 0.00 0.01

Table 1: Maximum positive and maximum negative deviation of the service level

However, the number of items and the capacity of the vehicle have the largest impact

on the quality of the approximations. The following section is devoted to a study of this

effect.

2.5.1 The impact of the number of items

For our approximations we determine the aggregate demand process by superposing the

individual demand processes. It is well known that the number of superposed processes

has an impact on the accuracy of the moments, especially on the second moment of the

superposed process. Therefore, we report below on the impact of the number of items on

the approximations for the nine different examples related to (c2
A, c2

D). The left side of

Figure 2 illustrates the results for items with identical parameter values and on the right

side the results for non-identical parameters are illustrated. For the Figure the target

service level is chosen βtarget = 0.95 for all items, and results are depicted for different

combinations of (c2
A, c2

D).

It can be seen that the deviations from the target service level are in general quite small

and that the quality of the approximation is improving with increasing number of items.
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Figure 2: Impact of the number of items

Further, there is not a significant difference between the identical and non-identical case.

Moreover, the impact of the coefficient of variation of the demand size and the interarrival

time is limited. The target service level is always underestimated by (12), since ∆min = 0.

2.5.2 The impact of the vehicle capacity

It is already mentioned that for getting reasonable results with relation (10) it is necessary

that the vehicle capacity is large enough compared to the average aggregate demand size.

The impact of the vehicle capacity is illustrated in Figure 3 for different values of (c2
A, c2

D).
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Figure 3: Impact of the vehicle capacity

It can be seen that the capacity of the vehicle has not much impact on the quality

of the approximations when the demand arrivals follow a Poisson process. For the other

examples the performance is improving with increasing vehicle capacity. Based on our

simulation study we can conclude that the approximations work well as long as the number
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of items and the vehicle capacity are large enough. In the following we will use the

approximations and we will compare the QS policy with a policy where replenishment

orders are triggered by individual items.

3 Individual order triggering

Since under the control of a QS policy replenishment orders are only triggered when the

aggregate inventory drops below the reorder level, the replenishment opportunity for an

item is dependent from the demand process of all other items. Therefore, there is a

chance that an item is running out of stock and no order is placed or, in order to avoid

such a situation, high safety stocks are needed. Therefore, we compare in the following

the performance of the QS policy with a policy where replenishment orders are triggered

by the inventory position of an individual item. Whenever the inventory position of

an individual item drops below the item specific reorder level a replenishment order is

triggered. Then the total order quantity, which is assumed to be equal to a full truckload,

has to be allocated among all items. A reasonable criteria for the allocation procedure

is the expected elapsed time until the next replenishment order is triggered (Miltenburg

(1985)), in the sequel also called the runout-time. In order to determine the allocation

which maximizes the expected time until the next replenishment order is triggered, the

following optimization problem has to be solved

max
q1,...,qN

α

s.t. (IPi − si + qi) ·
E[Ai]
E[Di]

≥ α ∀i = 1, 2, . . . N
N
∑

i=1

qi = Q

where IPi denotes the actual inventory position of item i. In order to solve this problem

we rely on the following method. In the first step the runout time E[τi] is computed for

all items i = 1, 2, . . . , N by:

E[τi] = E[Ai] ·
(IPi − si)

E[Di]
(21)

In the second step the items are ordered according to their runout times. Without

loss of generality we assume that item one has the shortest runout time and that item N
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has the largest.

E[τ1] ≤ E[τ2] ≤ . . . ≤ E[τN ] (22)

The third step is composed of several loops.

1) Set imax := 1

2) Increase all ordersizes qi for i ≤ imax until the runout times are equal for all i ≤

imax + 1 or a full truckload is achieved.

3) If imax < N then set imax := imax + 1 and repeat step 2 and 3.

This process stops when the total order quantity is allocated or the runout times of

all items are equal. In the latter case allocation is continued and order sizes are enlarged

simultaneously while keeping the runout times equal until the total order quantity is

allocated. As a result of the allocation algorithm all replenishment orders can be shipped

as full truckloads and the expected time until the next order is placed is maximized.

3.1 Numerical comparison of the policies

In order to compare the QS policy (aggregate order triggering) with the allocation policy

(individual order triggering) a simulation study is done. Since no easy formulas for the

allocation policy are available to compute the reorder levels (s1, . . . , sN) such that a given

target service level can be met, we first simulate the allocation policy and then used the

measured service level for each item as the target service levels for the QS policy. Due

to the simulation and the used approximations the actual service level of the QS policy

can differ form the target service level. Therefore, we measure differences of the average

inventory as a function of the deviation from the service level.

3.1.1 Identical items

We have measured the difference between the service levels of both policies for item i:

∆i :=
1

10

10
∑

j=1

β
QS
ij −

1

10

10
∑

j=1

βallo
ij (23)
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with β
QS
i,j denoting the service level for item i in simulation run j for the corresponding

QS policy and with βallo
i,j denoting the service level for item i in simulation run j for the

allocation policy. Additionally we measure the relative difference of the average inventory

of item i defined as

δi :=
I

QS
i − Iallo

i

I
QS
i

· 100% (24)

where

I
QS
i :=

1

10

10
∑

j=1

E[IQS
i,j ] (25)

and E[IQS
i,j ] is defined as the average inventory of item i in simulation run j for the QS

policy. Although the average number of orders is the same, the average number of items

included in an order may be different for both policies. We additionally measure MQS

(Mallo), the average number of items included in an order under the QS (allocation) policy.

Below we report on the results of 117 different examples with 16 identical items with

respect to the stochastic parameters. For the coefficients of variations we have chosen

c2
A, c2

D ∈ {0.4, 1.0, 1.6}. For Figure 4 we have fixed E[A] = 0.1 and E[D] = 50 (E[D] = 20)

and we varied the service level (βtarget
i ∈ {0.82, 0.89, 0.93, 0.98}). In another series of

examples we fixed β
target
i = 0.93 and we varied the average interarrival time (E[A] ∈

{0.1, 0.5, 1.0, 2.0, 5.0}).

For each item we depict in Figure 4 the relative deviation of the inventory as a function

of the deviation of the service level for different target service levels.
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Figure 4: Comparison of the policies (identical items)

For different average interarrival times the results are illustrated in Figure 5.
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Figure 5: Comparison of the policies (identical items)

It can be seen that deviations are different for different target service levels as well

as for different interarrival times. The different coefficient of variations do not seem to

have much impact on the relation between servicelevel deviation and inventory deviation.

Based on our numerical experiments we build up regression models in order to estimate

the relative difference in inventory for the case of equal service levels. The results are

summarized in Table 2.

E[A] E[D] βtarget δ E[A] E[D] βtarget δ E[A] E[D] βtarget δ

0.1 50 0.82 -2.30 0.1 20 0.82 -3.74 0.1 50 0.93 -1.47

0.1 50 0.89 -1.85 0.1 20 0.89 -3.14 0.5 50 0.93 -4.05

0.1 50 0.93 -1.47 0.1 20 0.93 -2.47 1.0 50 0.93 -5.71

0.1 50 0.98 -0.65 0.1 20 0.98 -0.64 2.0 50 0.93 -6.69

Table 2: Comparison of the policies (identical items)

It can be seen that in all cases more inventory is needed for the allocation policy to

get the same service level as with the QS policy although the differences are sometimes

small. Especially for slow moving items with large average interarrival time and small

ordersizes the QS policy outperforms the allocation policy. However, we have to mention

that the average number of items included in an order is less in case of the allocation

policy (see Figure 6). But as long as the variability of the demand size is not too large,

these differences are negligible.
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Figure 6: Average number of different items per order

3.1.2 Non-identical items

In case of non-identical items the parameters are uniformly drawn from different intervals

as follows:

Examples 1: E[A] ∼ (0.1, 1.0) E[D] ∼ (20, 40)

Examples 2: E[A] ∼ (0.1, 1.0) E[D] ∼ (50, 100)

Examples 3: E[A] ∼ (0.1, 2.0) E[D] ∼ (20, 40)

Examples 4: E[A] ∼ (0.1, 2.0) E[D] ∼ (50, 100)

Examples 5: E[A] ∼ (1.0, 3.0) E[D] ∼ (20, 40)

For each example we consider 16 items and nine different combinations for the coef-

ficient of variations (c2
A, c2

D ∈ {0.4, 1.0, 1.6}). We further set the parameter values such

that reorder levels for the allocation policy result in fill rates between 90% - 98% where

fast movers in general have larger service levels than slow movers.

Since in all examples almost all items have a larger service level in case of the QS

policy compared to the allocation policy we only illustrate the relative deviation of the

inventory levels. We observe a large impact of the average interarrival time of orders

on changes in inventory levels. This is also illustrated in Figure 7 where we depict the
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results of all 16 items for different demand characteristics. On the left-hand side demand

variability is low (c2
A, c2

D) = (0.4, 0.4) while on the right-hand side the demand variability

is large (c2
A, c2

D) = (1.6, 1.6).
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Figure 7: Comparison of the policies (non-identical items)

It can be seen that especially fast moving items need much less inventory to satisfy

a required service level under a QS policy compared with the allocation policy. If the

variability of the demand process is not too large all items benefit from the QS policy,

while for large demand variability some slow moving items will need more inventory.

Note that part of the increase of the inventory level may also be induced by an increased

service level and that the fast moving items also have larger average inventory levels. For

example, the item with a relative deviation of the inventory level of 19% leads to 218,58

units less on stock while the item with an increase of 7% leads to 12.52 units more on

stock (Example 5, right side Figure 7). In general the reduction of inventory levels for

fast moving items is much larger than for slow moving items, resulting in a reduced total

inventory level in case of the QS policy. Moreover, the differences between total inventory

levels for both policies is dependent on the ration between fast and slow movers. We

illustrate this effect by means of an example where the average interarrival times of slow

movers are set equal to 2.0 and the average interarrival time of fast movers is set equal

to 0.2. For a fixed number of items (16) we vary the ratio between fast and slow movers

and measure the relative difference of the total average inventory levels for the group of

the fast and the slow movers separately. The results are depicted in Figure 8 for different

coefficient of variations.
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Figure 8: The impact of ratio between fast and slow movers

The impact of the ratio between fast and slow movers and the different behavior of

them is obvious. The slightly increase of the inventory levels of the slow movers cannot

overrule the strong decrease of the inventory levels of the fast movers, resulting in lower

total inventory under the QS policy. Moreover, effects are larger under more variability

of the item demand.

For an explanation of the effects we have to consider the replenishment process. While

the average length of an replenishment cycle is the same for both policies, the variance of

the replenishment cycle is different. In case of individual order triggering we can observe

much more variability in the replenishment moments which requires more safety stock,

compared to aggregate order triggering, to achieve the same service level.

However, we have to mention that we have only compared inventory levels and not

inventory holding costs. If slow and fast movers differ substantially in holding costs

(keeping a slow moving item on stock must be 50 times more expensive than keeping

a fast moving item on stock), then it may happen that the total inventory costs may

not decrease. Similar, total cost may not decrease, when line item costs are not small

compared to fixed order costs.
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4 Summary and conclusions

In this paper we have provided approximated formulas to compute the parameters of an

QS policy under compound renewal demand such that given target service levels can be

met. We have tested the performance of the approximations and based on a numerical

simulation study we can conclude that the approximations are accurate as long as the

number of items and the vehicle capacity is not too small.

Additionally, we have illustrated that under a service level approach the QS policy

has smaller average inventory levels than the allocation policy, since the allocation policy

creates much more variability in the replenishment process and therefore, higher safety

stocks are needed. However, the difference is influenced by the demand characteristics of

the items. While for identical items the difference between both policies is negligible, large

differences can be observed under different item characteristics. The impact on total cost

is dependent on the costs parameters, but as long as fixed order costs are dominant and

holding costs of items do not differ substantially, the QS policy outperforms the allocation

policy.

22



References

Atkins, D.R., Iyogun, P.O., 1988. Periodic versus can-order policies for coordinated multi-

item inventory systems, Management Science 34 (6) 791–796.

Aksoy, Y., Selcuk Erenguc, S., 1987. Multi-Item Inventory Models with Co-ordinated

Replenishments: A Survey, International Journal of Operations Management 8 (1) 63–

73.

Balintfy, J.L., 1964. On a Basic Class of Multi-Item Inventory Problems, Management

Science 10 (2) 287–297.

Carlson, M.L., Miltenburg, G.J., 1988. Using the Service Point Model to Control Large

Group of Items, Omega 16 (5) 481–489.

Cox, D.R., 1962. Renewal theory, Methuen, London.

Federgruen, A., Groenevelt, H., Tijms, H.C., 1984. Coordinated replenishments in a multi-

item inventory system with compound Poisson demands, Management Science 30 (3)

344–357.

Fung, R.Y.K., Ma, X., Lau H.C.W., 2001. (T,S) policy for coordinated inventory replen-

ishment systems under compound Poisson demands, Production Planning and Control

12 (6) 575–583.

Goyal, S.K., Satir, A.T., 1989. Joint replenishment inventory control: Deterministic and

Stochastic models, European Journal of Operational Research 38 2–13.

Ignall, E., 1969. Optimal continuous review policies for two product inventory systems

with joint setup costs, Management Science 15 (5) 278–283.

Johansen, S.G., Melchior P., 2003. Can-order policy for the periodic-review joint replen-

ishment problem, Journal of the Operational Research Society 54 283–290.

Melchior, P., 2002. Calculating can-order policies for the joint replenishment problem by

the compensation approach, European Journal of Operational Research 141 587 – 595.

23



Miltenburg, G.J., 1985. Allocating a Replenishment Order Among a Family of Items, IIE

Transactions 17 (3) 261 – 267.

Pantumsinchai, P., 1992. A comparison of three joint ordering inventory policies, Inter-

national Journal of Decision Science 23 (1) 111–127.

Renberg, B., Planche, R., 1967. Un Modele Pour La Gestion Simultanee Des n Articles

D’un Stock, Revue Francaise d’Informatique et de Recherche Operationelle 6 47–59.

Schultz, H., Johansen, S.G., 1999. Can-order policies for coordinated inventory replenish-

ment with Erlang distributed times between ordering, European Journal of Operational

Research 13 30–41.

Silver, E.A., 1974. A control system for coordinated inventory replenishment, Interna-

tional Journal of Production Research 12 (6) 647–671.

Silver, E.A., 1981. Establishing reorder points in the (S,c,s) coordinated control system

under compound Poisson demand, International Journal of Production Research 19 (6)

743–750.

Swenseth, S.R., Godfrey, M.R., 2002. Incorporating transportation costs into inventory

replenishment decisions, International Journal of Production Economis 77 113–130.

Thompstone, R., Silver, E.A., 1975. A coordinated inventory control system for compound

Poisson demand and zero leadtime, International Journal of Production Research 13

(6) 581–602.

Tijms, H.C., 1994. Stochastic models: an algorithmic approach, John Wiley & Sons.

Van Eijs, M.J.G., 1994. On the determination of the Control Parameters of the Optimal

Can-Order Policy, Zeitschrift für Operations Research 39 289–304.

Viswanathan, S., 1997. Note, Periodic Review (s,S) Policies for Joint Replenishment In-

ventory Systems, Management Science 43 (10) 1447–1454.

Whitt, W., 1982. Approximating a point process by a renewal process I: Two basic meth-

ods, Operations Research 30 125–147.

24



Appendix I: Algorithm to compute the first two moments of a superposed

compound renewal process

The inter-arrival time of the single processes is denoted with Xi and of the superposed

process it is denoted with X0. The following iterative algorithm can be used to compute

the first two moments of X0.

1. Order the N inter-arrival processes from the largest to the smallest first moment.

2. Compute

E[X
(1)
0 ] :=

1
2

∑

i=1

1
E[Xi]

(26)

E[(X
(1)
0 )2] := 2E[X

(1)
0 ]

∞
∫

0

(

2
∏

i=1

1

E[Xi]

)





2
∏

i=1

∞
∫

x

(1 − FXi
(y))dy



 dx (27)

3. Fit a mixed-Erlang distribution to the first two moments of X
(1)
0 .

4. Initially set n:=2 and i:=3.

5. Compute

E[X
(n)
0 ] :=

1
1

E[X
(n−1)
0 ]

+ 1
E[Xi]

(28)

E[(X
(n)
0 )2] :=

2E[X
(n)
0 ]

∞
∫

0

1

E[X
(n−1)
0 ]E[Xi]





∞
∫

x

(1 − F
X

(n−1)
0

(y))dy

∞
∫

x

(1 − FXi
(y))dy



 dx (29)

Fit a mixed-Erlang distribution to the first two moments of X
(n)
0

6. If n < N then n := n + 1, i := i + 1 and go to step 5 else E[X0] := E[X
(N)
0 ] and

E[X2
0 ] := E[(X

(N)
0 )2]

Appendix II: Number of arrivals during an interval with length T

The following relation holds for the probability function of N(T ) :

P (N(T ) = k) = P (N(T ) ≥ k) − P (N(T ) ≥ k + 1) (30)
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We obtain

P (N(T ) = k) :=

{

P (A1 ≥ T ) : k = 0

P (
∑k

j=1 Aj ≤ T ) − P (
∑k+1

j=1 Aj ≤ T ) : k = 1, 2, . . . , kmax

(31)

where Aj denotes the interarrival time between arrival j − 1 and j and kmax is chosen

such that
kmax
∑

j=1

P (N(T ) = j) ≥ 0.9999 (32)

For the computation of P (
∑k

j=1 Aj ≤ T ) we rely on a two moment fit of a mixed

Erlang distribution.
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Appendix III: How to fit a mixed-Erlang distribution

The density of an Ek1,k2((µ1, µ2), (p1, p2)) distribution is given by

fX(x) :=
2

∑

i=1

piµ
ki

i

xki−1

(k1 − 1)!
e−µix x > 0 (33)

Assume the first two moments of X to be given. The parameters pi, ki and µi (i = 1, 2)

can be found from the first two moments of X as follows:

- If c2
X < 1 then a mixture of two Erlang distributions with the same scale parameter

is used. Hence,

k1 = ⌊ 1
c2
X

⌋

k2 = k1 + 1

p1 = 1
1+c2

X

(

k2c
2
X −

√

k2(1 + c2
X) − k2

2c
2
X

)

p2 = 1 − p1

µ1 = k2−p1

E[X]

µ2 = µ1

- If c2
X ≥ 1 then a mixture of two exponential distributions used.

k1 = 1

k2 = 1

µ1 = 2
E[X]

(

1 +

√

c2
X
−

1
2

c2
X

+1

)

µ2 = 4
E[X]

− µ1

p1 = µ1(µ2E[X]−1)
µ2−µ1

p2 = 1 − p1
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