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Stress response and structural transitions in sheared gyroidal and lamellar amphiphilic
mesophases: Lattice-Boltzmann simulations
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We report on the stress response of gyroidal and lamellar amphiphilic mesophases to steady shear simulated
using a bottom-up lattice-Boltzmann model for amphiphilic fluids and sliding periodic (Lees-Edwards) bound-
ary conditions. We study the gyroid per se (above the sponge-gyroid transition, of high crystallinity) and the
molten gyroid (within such a transition, of shorter-range order). We find that both mesophases exhibit shear
thinning, more pronounced and at lower strain rates for the molten gyroid. At late times after the onset of shear,
the skeleton of the crystalline gyroid becomes a structure of interconnected irregular tubes and toroidal rings,
mostly oriented along the velocity ramp imposed by the shear, in contradistinction with free-energy Langevin-
diffusion studies which yield a much simpler structure of disentangled tubes. We also compare the shear stress
and deformation of lamellar mesophases with and without amphiphile when subjected to the same shear flow
applied normal to the lamellae. We find that the presence of amphiphile allows (a) the shear stress at late times
to be higher than in the case without amphiphile, and (b) the formation of rich patterns on the sheared interface,
characterized by alternating regions of high and low curvature.

DOI: 10.1103/PhysRevE.73.031503

I. INTRODUCTION

The study of the response to shear in amphiphilic me-
sophases has been the subject of attention for numerical
modelers only in recent years. The interest in the subject is
sustained not only by the wide range of applications in ma-
terials science and chemical engineering, but also by the
need to gain a fundamental understanding of the universal
laws governing the self-assembly processes and competing
mechanisms present.

Hitherto, studies have focused mainly on the structural
changes induced by steady and oscillatory shear, near and far
from critical points, in polymer systems [1-6]. The mor-
phologies studied include cubic- and wormlike-micellar,
lamellar, and hexagonally-packed-tubular mesophases; more
complex structures are the so-called bicontinuous me-
sophases, of which those liquid-crystalline of cubic symme-
try have thus far been considered in far less detail.

The amphiphilic gyroid [14,15] is a bicontinuous cubic
liquid crystal consisting of multi-or monolayer sheets of self-
assembled amphiphile dividing two regions, each containing
phases which are mutually immisicible, e.g., aqueous and
hydrocarbon species. These sheets or labyrinths form a triply
periodic minimal surface (TPMS) whose unit cell is of cubic
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symmetry, has zero mean curvature, with no two points on it
connected by a straight segment, and has no reflection sym-
metries. Their skeletons, i.e., the locus bounded by the
TPMS, for each immiscible phase, form double (interweav-
ing), chirally symmetric threefold coordinated lattices. There
are lyotropic [14,15] and thermotropic transitions between
the gyroid and the microemulsion mesophase, the latter be-
ing a bicontinuous mesophase of short-range order. The mor-
phologies in the crossover regions of these transitions show
shorter-range order than the gyroid’s and longer-range order
than the microemulsion’s, for which reasons they are termed
“molten gyroids.”

Bicontinuous cubic mesophases of monoglycerides and
the lipid extract from the archebacterium Sulfolobus solfa-
taricus have been found at physiological conditions in cell
organelles and physiological transient processes such as
membrane budding, cell permeation, and the digestion of fats
[7]. They can also be synthesized for important applications
in membrane protein crystallization, controlled drug release,
and biosensors [8,9].

The purpose of this paper is to report on the response to
shear of gyroid (G), molten-gyroid (MG), and lamellar (L,)
amphiphilic mesophases simulated using a bottom-up
kinetic-theoretic model for fluid flow. The model is based on
a lattice-Boltzmann (LB) method, which has proved to be a
modeling tool alternative to and more efficient and robust
than sophisticated methods based on continuum equations.
This LB method adheres to a bottom-up complexity para-
digm [13] in the sense that it is simple and fully particulate
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and no hypotheses of desirable macroscopic behavior are im-
posed on the microdynamics—yet we have shown in the past
its ability to simulate correct segregation kinetics for immis-
cible fluids [20] and nonequilibrium self-assembly into am-
phiphilic mesophases [14,15]. Knowing that such a simple
model is capable of simulating these kinetic processes from a
purely bottom-up dynamics, in this paper we investigate how
hydrodynamic interactions couple with self-assembly and
modify the stability and morphology of the mesophases. The
model also has the capability to reproduce morphological
transitions without having to assume a macroscopic, free-
energy model, used in other LB methods [3,10] to compute
the diffusive currents substantiating self-assembly.

In addition, since our method models amphiphilic mol-
ecules as point dipoles—the simplest possible particulate
model for an amphiphile—the rheological features emergent
from it are expected to be universal for a broad range of
amphiphilic systems. Finally, most of the numerical studies
measuring the stress response of complex fluids to shear re-
ported in the literature deal with phase-segregating fluids on
one side [10], and the more complicated polymeric [11] and
glassy systems on the other [12]. In this respect, the present
paper stands somewhere in between these two.

Our paper is structured as follows. In the next section we
briefly introduce the model and describe the boundary con-
ditions for the imposition of shear. In Sec. III we report on
simulation data and conclude that shear thinning occurs for
both G and MG mesophases leading to a transition to a me-
sophase consisting of tubular and ringlike structures as the
strain increases. In Sec. IV we reveal how the presence of an
amphiphile in lamellar mesophases induces the formation of
rich interfacial patterns surviving shear and allows higher
values of stress than in lamellar mesophases without am-
phiphile. Finally we provide our conclusions in Sec. V.

II. THE MODEL AND THE LEES-EDWARDS BOUNDARY
CONDITIONS

We utilized an existing bottom-up lattice-Boltzmann
model for amphiphilic fluids [14,15], extended to simulate
shear flow by means of Lees-Edwards boundary conditions
[16]. The model is in turn based on an extension made to the
Shan-Chen bottom-up LB model for immiscible fluids to
model amphiphilic-fluid flow, and employs 25 microscopic
velocities, of speeds 0, 1, and 2, in three dimensions
(D3Q25 lattice) [17,18]. The model uses a BGK (Bhatnagar-
Gross-Krook, or relaxation-time) approximation to the colli-
sion term of the Boltzmann equation for fluid transport,
which allows us to simulate, for large enough lattices [19],
the Navier-Stokes (NS) momentum-balance equation in the
bulk of each immiscible fluid species, namely, “oil” [or “red”
(r)] and “water” [or “blue” (b)]. The model allows the simu-
lation of correct phase-segregation kinetics in the absence
[20] and presence [15] of a third, amphiphilic [surfactantlike
(s)] dipolar species. The model controls the interparticle
forces between r, b, and s species via coupling parameters
(gbr»&ps>8ss)» and transients are controlled via relaxation
times for densities (7°,7",7) with an additional relaxation
time for the orientation of the amphiphile dipoles (7). In
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addition, the model simulates the nonequilibrium self-
assembly and relaxation dynamics of sponge (L) and gyroid
mesophases [14,15]. The gyroids that it simulates show ri-
gidity, arising from their crystalline ordering, which de-
creases as the concentration of amphiphile is reduced; in-
deed, a lyotropic transition causes the correlation length to
decrease toward that of a sponge mesophase through a
molten-gyroid state. This idea is central to the work we
present here: we shall see that the mesophase’s crystalline
ordering enhances its stress response; indeed, we find shear
thinning to occur at higher strain rates for gyroids than for
sponges.

The Lees-Edwards boundary conditions (LEBCs) were
originally proposed by Lees and Edwards in the context of
molecular dynamics simulations [16]. They showed that
these boundary conditions would give rise to a desired linear,
wedged velocity profile while avoiding the troublesome spa-
tial inhomogeneities appearing when solid walls are used to
induce the shear flow [21]. A particular realization of the
LEBCs on a Cartesian simulation box [0,N,]X[0,N,]
X [0,N,] is established by letting the periodic images, at
N,<x=<2N, and —-N,<x=<0, move parallel to unit vectors
+7, respectively, both with speed U. The LEBCs, in their
original, molecular dynamics form, are expressed as a Gal-
ilean transformation on the position (x,y,z) and velocity
(&.&,&,) coordinates of a molecule, as follows:

x" =xmodN,,
y' =ymodN,,

(z+A)modN,, x>N,,
7’ =yzmodN_, 0<x<N,, (1)
(Z_Az)mOsza X<O’

& =&
§=4¢.
&E+U, x>N,,
gz, = gy 0 gngx’ (2)
&E-U, x<0,

where A= UAt is the image’s shift at time Az after the onset
of shear.

An implementation of the LEBCs on our LB dynamics
(LB LEBCs) differs from that used in molecular dynamics
(MD LEBCs) in that the shift A_ is not in general a multiple
of the lattice unit, as Wagner and Pagonabarraga have
pointed out [21], and hence an interpolation scheme is
needed. This interpolation scheme streams the amphiphile
dipoles d(x) and mass densities n;(x) located at position x
on the shearing wall, where ¢, is the relevant discrete mo-
lecular velocity, k=1,..., 25, for each (fluid and amphiphilic)
species a.

In our LB LEBCs, while the spatial displacement follows
Eqgs. (1), the velocity shift cannot be enforced by replacing
the continuum velocity component &, in Egs. (2) with the
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discrete microscopic speeds ¢;-Z, since the velocities ¢, are
constant vectors. Instead, this acceleration is enforced on the
macroscopic fluid velocity around which the local Maxwell-
ian distributes molecules at equilibrium and toward which
the BGK scheme relaxes, similarly to how immiscibility
forces are implemented [15,20]. This procedure guarantees
that all accelerations in the fluid are ruled by the same BGK
process, controllable via the shape of the distribution func-
tion and the relaxation-time parameter, including the accel-
eration due to the shearing walls.

The MD LEBCs give rise, at steady state (late times), to a
shear state which is Galilean invariant, i.e., no particular
plane in the system is favored over another. This is a sine
qua non for any shearing method, and our method satisfies it
too. As regards the unsteady, transient initial states, the MD
LEBCs are unphysical since they cannot provide the molecu-
lar specificity (e.g., wall roughness) required in an atomistic
approach to boundary effects, such as density layering and
slip at wall. However, mesoscopic methods—the LB method
is one of them—in general only describe low wave numbers
and frequencies, which means that, with respect to MD, (a)
the atomistic detail of the shearing walls is largely coarse
grained and (b) the fluid structure and dynamics are much
less sensitive to the atomistic detail of the walls. Since most
boundary effects present in MD are absent in the LB method,
the fact that the LE boundary conditions eliminate them does
not pose a problem. This should be taken with a caveat: our
gyroidal mesophases melt when placed in a solid box, which
means that the approach to equilibrium is sensitive to mo-
mentum transfer with the walls, and therefore the LE bound-
ary conditions do not mimic shearing a mesophase in con-
finement. (To our knowledge, no bottom-up simulations have
ever reported mesophase self-assembly in confinement.)
Rather, the LB LEBCs mimic walls located far enough from
where observables are probed that microscopic boundary ef-
fects are absent.

Our LEBC implementation is embedded within an effi-
cient parallel LB algorithm [22] which allows us to employ
large lattices and hence reach the small Knudsen number
limit where (a) regions away from interfaces satisfy the in-
compressible NS equation in the limit of low Mach numbers
(Ma) [20], and (b) observables vary by less than 10% when
the lateral lattice dimension is doubled. We have previously
found that the lattice size guaranteeing condition (b) is 128°
for the parameters generating the mesophases investigated
here [14,15].

II1. SHEARING GYROIDAL MESOPHASES

We sheared two gyroidal mesophases differing in the
amount of amphiphile present and the value of the interam-
phiphile interaction coupling parameter. Each of these struc-
tures was allowed to self-assemble from homogeneous mix-
tures of oil, water, and amphiphile using periodic boundary
conditions. They have been appropriately characterized by
probing direct and Fourier-space late-time snapshots of the
density order parameter ¢= p°!'—p"*°"; more precisely, they
correspond to gyroid [cf. Fig. 5(a)] and molten gyroid me-
sophases, as previously reported by us [14,15].

PHYSICAL REVIEW E 73, 031503 (2006)

The common parameters used for both gyroids were oil
and water densities flatly distributed in the range 0<n®®
=n"r<0.7, coupling strengths g;,=0.08, g,s=—0.006, relax-
ation times =7=7=7'=1, and, for the amphiphile’s di-
poles, B=10 and dy=1.

Their differing parameters were surfactant densities, flatly
distributed in the initial homogeneous mixture, in the ranges
0<n95<0.9 for the gyroid and 0<n?*<0.6 for the mol-
ten gyroid, with coupling strengths g,=-0.0045 for the gy-
roid and g,=—0.003 for the molten gyroid. These values for
the gyroid are 50% higher than those for the molten gyroid.

While the gyroid relaxes to a highly crystalline structure
[23], the molten gyroid shows both shorter-range order and
stronger temporal fluctuations than the former [15]. In order
to obtain a sufficiently relaxed molten gyroid as an initial
condition for the shear, we took the structure as evolved up
to time step 32 500; regarding the gyroid, the time slice cho-
sen was time step 15 000. For practical reasons, instead of
letting the molten gyroid self-assemble starting from a ho-
mogeneous initial mixture, we upscaled a smaller molten gy-
roid, previously self-assembled using the same parameters
on a 64° lattice [15], to a 1283 lattice. Upscaling consisted in
replicating identical copies of the system: the periodic
boundary conditions used to generate the 64° system (a)
guarantee that the density field is smooth across the replica
boundaries, yet, for this same reason, (b) produce a molten
gyroid with an additional, undesirable long-wavelength fluc-
tuation whose periodicity is half the lattice size. The ampli-
tude of this undesired long-wavelength fluctuation relaxes in
time to a vanishingly small value, a fact which provides us
with the 128 mesophase we seek. We observed, however,
that this relaxation takes place in fewer than 1000 time steps
[23], i.e., it is a fast transient which, therefore, does not af-
fect the shear response at the late times that we are interested
in. In other words, the late-time shear response is insensitive
to a small perturbation in the initial condition. This allowed
us to take the upscaled, unrelaxed structure as the initial
condition for the molten gyroid.

It is worth noting that we did not require an elongated
aspect ratio for the lattices along the direction parallel to the
translation of the shearing walls since spatial density fluctua-
tions were much smaller than the lattice size. This is not the
case when shearing phase-segregating fluids without an am-
phiphilic, growth-arresting species, as has been previously
reported using LB lattices of up to 128:128:512 sizes and
aspect ratio [24].

A. Stress response and transients

Shear thinning is said to occur when the shear viscosity
drops as the strain rate increases. For structured fluids
such as those we study in this paper, the dynamic shear vis-
cosity 7 is not expected to be a constant of the strain rate

y= %(axuz+ d.u,) as is true of Newtonian fluids, for which

n# (7). 3)

Here P, is one off-diagonal component of the pressure (or
stress) tensor, and the sign, by convention, indicates that the
pressure is exerted by the fluid element on the surroundings

Py = x27y,
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FIG. 1. Shear stress response of a gyroid mesophase along the direction of the velocity gradient. As initial condition, we have taken
a gyroid on an NXNVNZ=1283 cubic lattice at time step r=15000 of self-assembly [14,15]. The Lees-Edwards walls move with speed
U=0.10(Ma=0.17). For each x coordinate, the original field has been averaged on the plane [1,N,]X[16,N,-16], where the excluded
interval on the z axis accounts for wrapped-round densities. Standard errors of the averages are about 6 X 1078 throughout, and are not
shown. Each line represents the response at Ar time steps after the start of steady shear: Ar=0 (dotted line), 100 (dashed-dotted), 800
(dashed), and 9000 (solid), where the last is ca. the time at which the core (i.e., the plane x=64) fully responds. From the figure we can see
that momentum transfer decreases as it reaches the core from the walls. Also, note that the stress inverts its sign at late times adjacent to the

boundaries, |x—xo| <2 (xy=0, 128). All quantities reported are in lattice units.

(+) or from the latter on the former (-), respectively. We
adhere in this paper to the second case. In our simulations,
we apply the steady shear described in Sec. I, i.e., the shear
is generated by the two image cells of the LB lattice located
along the x axis moving in opposite directions. As a conse-
quence, du, becomes the only nonvanishing component
of the velocity gradient, which is also true for the P, com-
ponent of the stress tensor (and P_,, since the physical re-
quirement that the vorticity W= %(&xuz—&zux) remains upper
bounded requires the stress tensor to be symmetric).

As we have likewise done previously while computing
diagonal components of the pressure tensor [14,15,20], here
we measured P, from its definition as the sum of a kinetic
term plus a virial mean-field term accounting for interactions
and giving rise to nonideal gas behavior, namely,

P(x) = 2 2 pi(x)[e;—u(®)][e; - u(x)]
a k

+72 80a 2 W) + )]

X(x-x")(x-x'), (4)

where ¢ has the form = 1-exp[-n(x)], which saturates at
high density values in order to avoid unbounded interparticle
forces while reproducing a meaningful equation of state [15].
Since the interaction matrix {g,z} is symmetric with all di-
agonal elements identically zero, and only nearest neighbor
interactions are being considered, the virial term reduces to

> Gaa P RPEX + e )eie;. (5)

1
20(#:& k

In the incompressible, low-Mach-number limit, our LB
model reproduces the NS equation away from interfaces
[17,19], which describes a Newtonian fluid with a viscosity
being a well-known function of the relaxation time. The
presence of an interface, characterized by an interfacial ten-
sion and a bending rigidity, however, introduces anisotropies
in the fluid’s stress tensor which can be accounted for by a
tensorial effective viscosity. Since the interface may move, at
a speed growing with the strain rate, these anisotropies can
become unsteady. Our aim is then to measure how this vis-
cosity evolves with the strain and the strain rate.

In order to probe the function %=7(y) for both gyroidal
mesophases, we measured P, for a number of different
applied shear rates. The chosen values for U were such that
they remained within the incompressibility limit, i.e., small
compared to the speed of sound on the D3Q25 lattice,
c,=3"12=0.58. Values chosen were U=0.05, 0.10, 0.15,
0.20, corresponding to Mach numbers Ma= U/c,=0.086,
0.17, 0.26, 0.34, respectively. All observables we report in
this paper are spatial averages, at least on x=const. planes
where a simple fluid under the same shear would show trans-
lational symmetry for the velocity field, i.e., perpendicular to
the velocity gradient. Since, for reasons of computational
cost, we do not perform averages over the seed used to gen-
erate the pseudorandom initial configuration mimicking a ho-
mogeneous ternary mixture, we do not provide error bars
around averages.

Figure 1 shows the profile of the stress, for the sheared

031503-4



STRESS RESPONSE AND STRUCTURAL TRANSITIONS...

LA AN B A S A N S NN S SN AN Sk Sy NN AR NN R (M ML N S B S B B S

0.1

0.09

0.08

0.07

0.06

<u,>

0.05

0.04

0.03

0.02

0.01

T T rrrrrrTrTrToT T T

PO U SO SAVYOU ST U SR T TV Y

] ARV W AT WP U B G U T R

64 72 80 88 96 104 112 120
X

128

FIG. 2. Spatially averaged velocity component u, for the molten
gyroid and the gyroid mesophases sheared with U=0.10, at late
times and over the x=64 half of the system. The dashed thin and
thick curves correspond to the molten gyroid at time steps Atz
=9000 and 13 000, respectively. The solid thin and thick curves
correspond to the gyroid at time steps Ar=9000 and 13 000, respec-
tively. The average is over the same two-dimensional domain as
described in Fig. 1, for each x, and its standard error is shown as
negligible error bars. Note that the velocity shows a maximum lo-
cated from two to four sites away from the boundary, unlike a
simple fluid which would display it exactly at the boundary. The
value of this maximum coincides with the actual velocity at which
the BGK relaxation process of our LB model is forcing the fluid to
move, which need not coincide with the input parameter U=0.10.
Note that the inversion in the sign of the stress that we reported in
Fig. 1 occurs precisely for [x—xy| <2,x,=0, 128 and at (late) times
close to and after Ar=9000. The behavior at the other boundary
region is similar and symmetric to that displayed here. All quanti-
ties reported are in lattice units.

gyroid, along the applied velocity gradient direction. Several
curves therein depict the transport of momentum toward the
core (i.e., the plane x=64) as the strain grows as a function
of time. Distinctively, the profiles have spatial fluctuations, a
consequence of the gyroid’s convoluted structure whose in-
terfacial tension locally modifies the viscosity expected for a

PHYSICAL REVIEW E 73, 031503 (2006)

simple fluid. The u, component of the velocity field, shown
in Fig. 2 and averaged in the same way as stated for (-P,.) in
the caption of Fig. 1, is, however, not inhomogeneous but
follows a transient similar to that expected for a simple fluid:
we observe the setting up of a steady, smooth, and wedge-
shaped profile, except at the borders. Figure 2 also includes
the behavior of the averaged velocity profile for the molten
gyroid MG at late times, and is seen to match that of the
gyroid G.

Remaining with the G mesophase, we show in Fig. 3 the
temporal evolution of the stress displayed in Fig. 1; the val-
ues plotted are averages of the latter on the 8<x<N,—8
=120 interval, which amounts to averaging over the whole
lattice except for thin slabs adjacent to the boundaries. In
addition to Fig. 1, we include higher and lower shear veloci-
ties, namely, U=0.05, 0.15, 0.20. Note that the time evolu-
tion of the averaged stress is a succession of peaks and
troughs, denoting successive intervals of yield and recoil,
which is a canonical feature of viscoelastic behavior. Were
the strain rate at which the gyroid deforms coincident with
the applied shear rate, these curves would imply shear thin-
ning. In fact, while the increments in applied shear rate be-
tween these curves are kept constant, the increments in the
(absolute) values of the stress at late times do not remain so
but decrease. In Fig. 4 we show the stress averaged over time
steps 24 000 to 28 000, plotted against the true strain rate,
where the latter was measured from the linear velocity pro-
file generated at Ar=9000(r= 24 000), as displayed in Fig.
2. Figure 4 clearly shows shear thinning: the slope, i.e., the
effective viscosity 7°'=dP,./dy, decreases with increasing
strain rate. Figure 4 also contains the analogous curve for the
molten gyroid, which shows shear thinning for the latter at
lower strain rates than those at which the gyroid does, and at
higher intensity, i.e.,

(9 neff

Iy Iy
No bottom-up kinetic-theoretic model for fluid flow other

than ours has hitherto reported an indication of shear thin-
ning.

& eff
< 7 <0.

gyroid

(6)
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FIG. 3. Temporal evolution of the average
— shear stress of the gyroid for different values of
] steady shear. The initial condition is the same as
that mentioned in Fig. 1. The curves, as seen,
e.g., at Ar=4000 from bottom to top, correspond
to Lees-Edwards walls moving with speeds
- U=0.05, 0.10, 0.15, 0.20 (shear rates S/1073
=0.39, 0.78, 1.17, 1.56), respectively. The dotted
curves are the responses after a sudden termina-
tion of shear; they are also referred to as the
1 system’s relaxation functions for the relevant
- shear speeds. The average here is in the
three-dimensional domain [8,N,—8]X[1,N,]
X [16,N_-16], where N,=N,=N,=128 and error
bars are the standard error of the average. All
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B. Morphological transitions

Figure 5 shows the configuration of the gyroid in the 40
<y=>52 slab of the 128:128:128 lattice, before and at late
times after applying a shear of U=0.20. The volume-
rendering graphical representation employed [25] makes re-
gions where ¢»=0.37 opaque to the lighting rays, assumed to
shine normal to the plane of the text and inward; since
-0.79=< $=<0.79 over the entire system, these regions are the
high-density locus of one of the species (say, oil). Before
shear, the structure contains highly ordered subvolumes of
gyroid symmetry and diagonal length from about 32 to 64
lattice sites [cf. Fig. 5(a)]. This gyroid is hence a collection
of subvolumes with a regular tubular structure making up
two threefold coordinated, interweaving chiral lattices of
which we depict only one. Since the size of the G unit cell is
approximately 5-6 lattice units, the depth (y dimension) of
the slabs shown in Fig. 5 is of about two gyroid unit cells. As
can be seen in Fig. 5(a), the interfaces between these gyroid
subvolumes are defective regions where long-range order
and symmetry appear to be drastically reduced [14,15]. Two
features characterizing them are the spatial variation in coor-
dination number and chirality, seen by the presence of elon-
gated tubules and toroidal rings (cf. Fig. 6).

At Ar=21 000, which is a late time after the onset of shear
and we take as steady state, the structure has lost any resem-
blance to the initial gyroid, except for the persistence of the
toroidal rings [see Fig. 5(c)], which are defects in G. Also,
the structure at Ar=21 000 is essentially the same as that at
time step Ar=5000—it is a nonequilibrium steady state for at
least the previous 16 000 time steps, a time longer than that
required for the initial configuration to self-assemble from a
homogeneous mixture of oil, water, and amphiphile. The
structure at Ar=21000 consists of an irregular network of
mainly the same structural elements characterizing the defec-
tive regions before the onset of shear, namely, (a) elongated
tubules, with a tendency to align along a direction that is a
linear combination of directions (1, 0, 0) and (0, 0, 1), and
(b) toroidal, ringlike structures. This description is, by visual
inspection, similar for every subvolume of the lattice visual-
ized.

We also looked into the structure of the sheared molten
gyroid at late times. In contradistinction to the gyroid’s state
at high strain, showing tubules of shape similar to that de-
picted in Fig. 6 and at an angle with the x=const planes, the
highly strained molten gyroid displays tubes which are more
stretched and aligned along the Z direction. The toroidal
rings, also present for the molten gyroid before shear, repre-
sent a much smaller volume fraction for the sheared molten
gyroid than for the sheared gyroid.

Figure 7 shows the summed structure function EkVS(k,t),
or “scattering pattern”, of the sheared gyroid mesophase,
showing stages of its plastic deformation. Here, S(k,7) is the
structure function, computed according to [15,20]

S(k.1) = %ld)l;(z)ﬁ (7)

Here, Kk is the discrete wave vector, V is the lattice volume, s
is the unit cell volume for the D3Q25 lattice, and ¢, () is the
Fourier transform of the fluctuations of ¢. S(k,) is the Fou-
rier transform of the autocorrelation function for the order
parameter,

Cyg(r,1) = (H(X,0) p(x +1,1)) (8)

where r is a vector lag and the angular brackets indicate an
average over the spatial coordinate x. Figures 7(a), 7(b), and
7(d) are the xz “scattering patterns” of the structures in Fig.
5, produced by summing up the structure function along the
x direction. At Ar=1000 (not shown), the maximum intensity
is reduced to 29% of its value at Ar=0, while there appear
horizontal “smeared out filaments” of very weak intensity,
intrinsically related to the shearing process, as we shall con-
clude from Fig. 8. At Ar=5000 a clear cardioid shape has
developed; the fact that it persists for the rest of the simula-
tion confirms our observation that the system reaches a
steady state at time step Ar=5000. In addition, there is no
trace of gyroidal patterns along the x direction.

In order to investigate the origin of the cardioid shape, we
computed the scattering pattern for a “synthetic gyroid”
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(c) At =21000

FIG. 5. High-density locus of one species (say, oil) in the gyroid mesophase, before shearing (a), and at an early (b) and late time slice
(c), after the onset of shear. The shear speed is U=0.20. The complementary immiscible fluid (water) fills the voids with a similar,
interweaving structure. The system is on a 128 X 128 X 128 lattice, and all figures show the subvolume 40 =<y =52 and the reference system
in use (the y axis is perpendicular to the plane of the page). The initial configuration (a) is a gyroid at 15 000 time steps of self-assembly
under periodic boundary conditions. These images are volume renderings of the density order parameter ¢= p°l—p“4; the regions visible
to the reader are those for which ¢=0.36 while over the entire fluid —0.79 < ¢»<0.79; the regions for which ¢=<-0.36 (water, not shown)
display a similar structure which is complementary (interweaving) to the one shown here. All quantities reported are in lattice units.

G(x) = sin gx cos gy + sin gy cos[gz — 8(x)] used to obtain a linear strain on the morphology (its maxi-
mum value &,,, is reached at the lattice boundaries), and
g=const is a wave number controlling the size of the sur-
where 8(x)=(x—N,/2)8,.x is a spatially varying dephase  face’s unit cell. It is known that G(x)=0 for &,,,=0 is a

+sin[gz — 8(x)]cos gx, 9)
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ring

tubule
gyroid

FIG. 6. Schematic representation of the skeleton (locus of high-
est density) of the gyroid mesophase we employ, and two of its
structural features before and at late times after the onset of steady
shear. The thickness provides a sense of perspective, and represents
how close each segment is to the reader; note that the figures on the
right are planar. The skeleton denoted by “gyroid” depicts a portion
of one of the two chiral lattices making up the long-range order
regions of the gyroid before shear [cf. Fig. 5(a)]—the coordination
number is three at each node. In the regions of the gyroid contain-
ing defects, as well as in most of the sheared mesophase at late
times, the coordination number can be reduced to 2, describing a
“tubule.” We also show the skeleton of the “ring” structure ubiqui-
tous in the sheared gyroid at late times, also present in smaller
proportion as a defect in the mesophase before the onset of shear. At
lower values of density, this ring appears to be toroidal.

good approximation to the Schoen “G” triply periodic mini-

mal surface of Ia3d cubic symmetry, referred to as “the ideal
gyroid” hereafter [26]. Figure 8 shows the scattering patterns
for the unstrained morphology and for dephases J,,,=8, 16.

Comparing structure function maps in Figs. 7 and 8, at the
same value of the strain rate, proves useful. For the synthetic
gyroid, the strain is controlled by the number of unit cells
that the dephase causes the structure to shift at the lattice
boundary, following a linear profile as we approach the other
boundary going through zero strain at the lattice core. For
our simulated amphiphilic gyroid, however, the strain does
not follow a linear profile at early times; instead, the strain at
time ¢ would need to be computed from the integral
(1/N)J4 o' dx dyu(x,t"), where ¢' is the time parameter.
For the purposes of this paper, however, such an analysis
would be superfluous; in fact, Fig. 8 already provides us with
enough information to understand the origin of the cardioid
shape. For all panels (a), (b), and (c) therein, the positions of
the peaks at k=0 [k,/(27/N)=—14, 15, where N=128] are
invariant under the strain (dephase); not so with the peaks at
k,# 0, which shift leftward. (The shift would be rightward
were dyu.<0 or &) The shape of the maps in Figs. 7(c)
and 7(d) is that of a transformed scattering pattern shifted
leftward. This transformation occurs early, between Ar=0
and 3000, and is characterized by two (strong, S=700)
peaks similar to those of the gyroid at k,=0, and two
(weaker, 200=<S<700) peaks at k,=0.

PHYSICAL REVIEW E 73, 031503 (2006)

IV. A SIMPLER CASE: SHEARING THE LAMELLAR
MESOPHASE

In the last section we reported on the gyroid displaying
higher shear stress than the molten gyroid. Since the struc-
tural transition between these two mesophases can be driven
by both the amphiphile density and the interamphiphile cou-
pling parameter, as we have reported in the past [15], our aim
in this section is to elucidate the role of the amphiphile den-
sity alone on the stress response to shear; we choose the
lamellar mesophase as the subject of study, since this is the
mesophase with the simplest possible internal interface.

The initial configuration employed was a cubic 128° lat-
tice with 16 lamellae, stacked perpendicularly to unit vector
Z. The lamellae were of alternating oil-water compositions,
separated by a thin monolayer of amphiphile; the thicknesses
of the immiscible and amphiphilic lamellae were 7 and 1
lattice sites, respectively. We populated each lattice site with
a value of density kept constant over the region correspond-
ing to a given species; each microscopic velocity is assigned
the same fraction of this value. We gave amphiphilic regions
the densities n(0)5=0, 0.80, 0.95, and oil and water regions
the densities n(¥"=n"*=0.7. Shear was applied perpendicu-
lar to the lamellae with the same LEBCs employed in the last
section, with speed U=0.10.

Before the onset of shear, the case without amphiphile for
the lamellar initial condition just described is, a priori, a
metastable state in our LB model. In fact, the structure has a
stationary morphology since short-range oil-water forces and
the absence of fluctuations maintain immiscibility, i.e., a
value for the interface steepness |V¢|; however, a large
enough perturbation in ¢ may allow a fluctuation in surface
tension which drives the entire interface to a radically differ-
ent shape. Another factor disrupting this lamellar morphol-
ogy is shear, which may work against the interfacial tension
by reducing |V ¢|; this can lead to miscibility (¢»=0) for high
enough strain rates. Despite these arguments, we observed
stability for the sheared lamellar mesophase without am-
phiphile, as we report next.

Figure 9 shows the stress as measured in the same fashion
performed on the data plotted in Fig. 3, for several am-
phiphile densities. The behavior observed is diverse. For zero
amphiphile concentration (solid curve), the stress reaches a
peak at early times before it proceeds to a second, lower
maximum at late times, going through a trough at intermedi-
ate times due to the fact that |V¢| experiences a transient
decrease.

The high-density regions of one of the immiscible species
(say, oil) is shown in Fig. 10(a) at late times, Ar=8000; these
are representative of the shape of the oil-water interface.
Away from the boundaries (x=0,128), there is a large inter-
facial area with zero curvature, where we define the curva-
ture as H= &fzxqj(z) ,X4(z) being the curve resulting from pro-
jecting the ¢=0.18 surface onto the xz plane. Curiously,
we observe three changes of curvature as we follow the
curve x¢(z) for y=const, namely, H<0,H>0,H<0,H>0;
instead, we would have expected the steady, late-time con-
figuration for the sheared lamellar mesophase to rather mini-
mize the interfacial area, leaving only one inflection point.
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For fluid regimes under conditions of local thermodynamic
equilibrium, we can think of H” as an interfacial free-energy
density associated with the curvature [27]; in this case, we
would have expected the steady, late-time configuration to
also minimize the interfacial free energ?/.

The stress curve corresponding to n(?*=0.80 (cf. Fig. 9)
shows the absence of large troughs, as occurs for the n(®®
=0 case, despite the fact that interfacial tension is drastically
reduced by the presence of the amphiphile. In addition, the
stress grows at late times to higher values than those
achieved by the n(?=0 case. The late-time order-parameter
configuration is displayed in Fig. 10(b), showing a rich in-
terfacial pattern. Using the same arguments as those of the
last paragraph, this structure could be characterized by a
higher curvature energy [d’x H?, where d’x is a measure on
the oil-water interface, and H is now defined as the inverse
radius of curvature, parametrized on the arclength s. Figure
10(b) shows similar regions of high curvature at an equal
distance from the shearing walls, where u,=const, which we
shall call nodal planes. Also note that the interface, as ap-
proximately depicted by the boundary of the ¢=0.22 vol-
ume, joins the lattice boundary at an angle close to 90°.

The stress curve for the n(95=0.95 case shows a dramati-
cally different situation for the first 5000 time steps: the pres-
ence of a trough, deeper than that present for the n?5=0

density. After that, there appears a shoot-off whereby the
stress rapidly grows and equals the late-time value achieved
in the n(95=0.80 case, while the order parameter displays a
configuration analogous to the n(®*=0.80 case [cf. Fig.
10(c)]. By looking at the amphiphile density field p%(x) for
the case n(0°=0.95, we observed that the high-curvature re-
gions arise close to the boundaries first (Az<<1000), and then

rapidly move away from them as the strain progresses.

V. CONCLUSIONS

In this paper we have reported on the shear stress re-
sponse of two gyroidal cubic amphiphilic mesophases previ-
ously self-assembled using the same bottom-up LB model
we employ here, namely, the gyroid per se, G, which shows
high crystallinity at late self-assembly times, and the molten
gyroid MG, endowed with shorter-range order and located
within the sponge-gyroid lyotropic structural transition [15].
Shear was imposed via sliding periodic (Lees-Edwards)
boundary conditions, and we investigated the response to
several values of the strain rate. In addition, in order to in-
vestigate the dependence of the shear stress on the am-
phiphile density, we also sheared a lamellar mesophase, of
much simpler morphology than the gyroidal mesophases.
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FIG. 8. Structure function, S, of the synthetic gyroid, as calculated using Eq. (7) on the field G(x), the expression of the latter being Eq.
(9). Parameter &, is the maximum value of the dephase 8(x)=(x—N,/2) 8., Which serves to mimic a uniform strain across the structure.
The case 8,,,,=0 gives an approximation to the Schoen G (or ideal gyroid) structure. Darkness in the grayscale grows with the scattering
intensity, and the filled isocurves shown correspond to S=1, 80, 200, 700. For k,# 0, the strain shifts the pattern leftward and smears the
peaks, while leaving the k,=0 peaks intact. The smearing not being in direct relation to the strain—(b) shows more smearing than
(c)—suggests a similar behavior for the spikes shown in Fig. 7(c). The cardioid shape reported in Fig. 7 originates from the fact that the
structure undergoes a structural transition (weaking and/or relocation of some of its k, # 0,k, # 0 peaks) while being sheared with a velocity
profile of positive slope (cf. Fig. 2), which orients the atria leftward. All quantities reported are in lattice units, and N=N,=N..

We found that the gyroidal mesophases exhibit shear thin-
ning, more pronounced and at lower strain rates for the MG
mesophase than for the G mesophase. In other words, mo-
mentum introduced into the system due to shear is trans-
ported more easily for the mesophase containing more am-
phiphile, with longer-range ordering, i.e., the effective
viscosity is higher for the G mesophase.

We also found a shear-induced transition from an initial
gyroidal morphology (G and MG) to a mesophase character-
ized by coexisting elongated tubules and toroidal, ringlike
structures. The features of this mesophase are in contrast to
those of the mesophase reported by Zvelindovsky et al. using
free-energy Langevin-diffusion methods by shearing a bicon-
tinuous structure reminiscent of a molten gyroid [3]. The

structure they found is of a shorter-range ordering than that
of the MG mesophase described here, and the high-strain
structure consists of coexisting lamellae and hexagonally
packed tubes elongated along the direction of the imposed
shear velocity. Our sheared mesophases also show enlon-
gated tubes along this direction, but the structure is far more
complicated than that found by Zvelindovsky e al. in that it
exhibits remnant toroidal rings and “hard shoulders” reminis-
cent of gyroidal skeletons; hexagonal packing and coexisting
lamellae are, on the other hand, absent.

The shear performs a plastic deformation which effec-
tively breaks the links of the gyroidal skeleton; this happens
as these links interpose an (oil-water) interface whose normal
n is parallel or antiparallel to the flow streamlines u. In other

1x10™ -
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8x10°
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FIG. 9. Temporal evolution of
the average shear stress response
of a lamellar mesophase at a shear
speed of U=0.10, for different ini-
tial amphiphile densities n(¥%. The
solid, dashed, and dashed-dotted
curves correspond, respectively, to
n(0)5=0, 0.80, 0.95. The average is

computed over the three-
dimensional domain [8,N,—8]
X[1,N,]X[16,N,~16],  where

N,=N,=N_=128 and error bars
are not included since they are
negligible. All quantities reported
are in lattice units.
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(b) n(®s =0.80

SN

(c) n®s =0.95

FIG. 10. Slabs 0=y =8 of the order parameter ¢ for sheared lamellar mesophases corresponding to increasing amphiphile density n

0)s

as indicated below each relevant panel, at time step Ar=8000 after the onset of shear and for shear velocity U=0.10. The coordinate system
is the same as that in Fig. 5. In (a), the regions opaque to incident (volume rendering) light are those for which ¢=0.18, where |¢|
=<0.36 across the system. In (b), the opaque regions are those for which ¢=0.22, where || =<0.45 across the system. In (c), the opaque
regions are those for which ¢=0.24, where || <0.48 across the system. It is worth noting that the surfactantless case (a) exhibits a curved
interface. The amphiphilic cases (b) and (c) display the formation of irregularities in the interface and nodal planes, as a result of the
interamphiphile interaction. All configurations have translational symmetry along the y axis. All quantities reported are in lattice units.

words, shear effectively applies a “mixing” force which is in
competition with the interparticle forces keeping the me-
sophase in place, namely, those controlled by coupling pa-
rameters gy, &y, and gi. Our hypothesis is that adsorbed
dipoles on interfacial regions at an angle 6=/ (u,n) other
than 6=0, 7 require more work from the shear forces to be
drawn away from the interface than those regions on which

the streamline impinges normally, since the mixing force
goes as cos 6. In particular, since the mixing force vanishes
for 6=/2, considerably longer interfaces can survive the
flow—shear induces a preferential direction along which the
long-range order present before the onset of shear is not re-
duced. This explains not only the formation of the elongated
tubules but also their reconnection (increase in coordination
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number). In fact, the toroidal, ringlike structures are not only
vestigial gyroid defects which have survived the gradient
Vu, but are also created anew as a result of reconnections. It
is relevant to point out that Padding and Boek, using a
coarse-grained molecular dynamics model for wormlike mi-
celles, reported on the formation of rings when applying
steady shear to a wormlike micellar mesophase [6]—this is
an “amphiphile-in-water” binary mesophase, in contrast to
the “oil-amphiphile-water” ternary mesophases we study in
this paper.

By applying shear to a lamellar mesophase we found that
the presence of amphiphile on the oil-water interface of the
mesophase causes the interface to fold into a wealth of struc-
tures with a (discrete) translational symmetry on planes equi-
distant from the shearing walls and along the direction of the
shear velocity. In other words, the interamphiphile force
couples the adsorbed amphiphilic dipoles so that the inter-
face locally increases its curvature energy density. It is worth
investigating whether this local increase is due to the am-
phiphile being incapable of sustaining interfacial regions of
low curvature under shear, i.e., whether the “breaking”
mechanism induced by shear is counteracted by regions of
high curvature energy density. Regarding the shear stress,
our amphiphile-containing lamellae responded with higher

PHYSICAL REVIEW E 73, 031503 (2006)

stress at late times than those without amphiphile. This con-
trasts with the results found for the gyroidal mesophases, and
lets us conclude that it is the gyroid’s cubic morphology that
allows this structure to be stiffer. Understanding the behavior
of the lamellar mesophase under shear requires the study of
amphiphile self-assembly under shear, including in- and out-
of-plane amphiphilic and associated Marangoni currents, and
their coupling to the imposed flow.
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