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Abstract

By using coupling method, a Bismut type derivative formula is established for
the Markov semigroup associated to a class of hyperdissipative stochastic Navier-
Stokes/Burgers equations. As applications, gradient estimates, dimension-free Har-
nack inequality, strong Feller property, heat kernel estimates and some properties
of the invariant probability measure are derived.

AMS subject Classification: 60J75, 60J45.
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1 Introduction

Let H be the divergence free sub-space of L?(T?% R?), where T¢ := (R/[0,2n])? is the
d-dimensional torus. The d-dimensional Navier-Stokes equation (for d > 2) reads

dXt = {VAXt — B(Xt, Xt)}dt,

*Supported in part by WIMCS and NNSFC(10721091).



where v > 0 is the viscosity constant and B(u,v) := P(u-V)v for P : L?(T% R?Y) — H
the orthogonal projection (see e.g. [13]). When d = 1 and H = L?*(T%; R?), this equation
reduces to the Burgers equation. In recent years, the stochastic Navier-Stokes equations
have been investigated intensively, see e.g. [6] for the ergodicity of 2D Navier-Stokes
equations with degenerate noise, and see [3, 5, 12] for the study of 3D stochastic Navier-
Stokes equations. The main purpose of this paper is to establish the Bismut type derivative
formula for the Markov semigroup associated to stochastic Navier-Stokes type equations,
and as applications, to derive gradient estimates, Harnack inequality, and strong Feller
property for the semigroup.

We shall work with a more general framework as in [8], which will be reduced to a
class of hyperdissipative (i.e. the Laplacian has a power larger than 1) stochastic Navier-
Stokes/Burgers equations in Section 2.

Let (H,(-,-),|| - |lz) be a separable real Hilbert space, and (L, Z(L)) a positively
definite self-adjoint operator on H with g := info(L) > 0, where o(L) is the spectrum
of L. Let V = 92(L'?), which is a Banach space with norm || - ||y := |[L'/? - ||. Let Q be
a Hilbert-Schmidt linear operator on H with Ker Q = {0}. Then 2(Q') := Q(H) is a
Banach space with norm ||z||g := ||Q x| 5. In general, for § > 0, let Vy = 2(LY?) with
norm ||L%?2 . ||;;. We assume that there exist two constants § € (0,1] and K; > 0 such
that Vp € 2(Q~') and

(A0) [[ullg < Killullf,, € Ve
Moreover, let

B:VxV—-H

be a bilinear map such that

(A1) (v,B(v,v)) =0, velV,

(A2) There exists a constant C' > 0 such that ||B(u,v)||3; < Cllul|%|v]3, u,v € V;
(A3) There exists a constant Ky > 0 such that || B(u,v)||3, < Ks|ullf, |[v|},, wveV.

Finally, let W, be the cylindrical Brownian motion on H. We consider the following
stochastic differential equation on H:

(1.1) dX, = QdW, — {LX, + B(X,)}dt,

where B(X;) := B(X¢, X;). According to [8], for any initial value X, € H the equation
(1.1) has a unique strong solution, which gives rise to a Markov process on H (see Ap-
pendix for details). For any x € H, let X be the solution starting at x. Let %,(H) be
the set of all bounded measurable functions on H. Then



Pf(z) :=Ef(X7), =€ H,t>0,f € By(H)

defines a Markov semigroup (F;):>o.

We shall adopt a coupling argument to establish a Bismut type derivative formula for
P,, which will imply explicit gradient estimates and the dimension-free Harnack inequality
in the sense of [14]. This type of Harnack inequality has been applied to the study of
several models of SDEs and SPDEs, see e.g. [4, 7, 9, 11, 10, 15] and references within.

For f € B,(H),h € Vy,x € H and t > 0, let

1
DpFbif(z) = lim E{Ptf(x +¢ch) — Pf(z)}
provided the limit in the right-hand side exists. Let B(u,v) = B(u,v) + B(v, u).

Theorem 1.1. Assume that (A0)-(A3) hold for some constants 6 € (0,1], Ky, K2,C > 0.
Then for anyt > 0,h € Vy and f € By(H), Dy P, f exists on H and satisfies

12) Do) = 2{x) [ (@t (Letn-

t t

t— s ~

B(X;,e—sLh)),dWs>}, e H.

Let Vj be the dual space of Vjy. According to Theorem 1.1, under assumptions (AO0)-
(A3) we may define the gradient DP,f : H — V; by letting

V9*<DPtf($)7h>V9 - DhPtf('r)a WS Hah S ‘/9
We shall estimate

|IDPf(2)]

vii= sup |DPf(n)], we H.

Ihllv, <1

To this end, let ||Q]| and ||@||#s be the operator norm and the Hilbert-Schmidt norm of
@ : H — H respectively.

Corollary 1.2. Under assumptions of Theorem 1.1.

(1) Foranyt >0,z € H and f € %,(H),

2K, 4K,

IDPf(x) Lt

< (BP@)] (el + I QIst) }

(2) Let f € By(H) be positive. For any x € H,t >0 and § > 4/ K, HQH)\(()a*S)/Q,

vy <O{Pi(flog f) — (Pif)log P.f } ()

21K, 2K,

(T o (el + Q1D @)

IDPf()|




(3) Let a« > 1,t >0 and f > 0. The Harnack inequality

2oflz —yll§, (K1 2K
(Pt < (e [T LB B8 ol v o + 100}

holds for x,y € H such that
o — 1AB0/2
e —ylhy < G-
40| QIV K,

In particular, P, is Vp-strong Feller, i.e. limy, .y, —o Prf(y)
fe%(H),t>0xcH.
As applications of the Harnack inequality derived above, we have the following result.
P, has an invariant probability

= P,f(x) holds for

Corollary 1.3. Under assumptions of Theorem 1.1.
measure ji such that u(V') =1 and hence, u(Vy) = 1. If moreover 6 € (0, 1), then:

(1) P, has a unique invariant probability measure u, and the measure has full support

on Vy.
(3-6)/2
(2) P, has a density p(z,y) on Vy w.r.t. p. Moreover, let ry = % and
By(z,r0) ={y : |y — z|lv, <o},
( / pi(m, y) "‘u(dy))
Ve
1
= 2allo—yl < 00
Vi
ooy ©P [ = 72 {5 + a5 (25 V Iyl + Q1) } 1(dy)

holds for any t > 0, > 1 and x € Vj.

Note that the Harnack inequality presented in Corollary 1.2 is local in the sense that
|z — y||v, has to be bounded above by a constant. To derive a global Harnack inequality,

we need to extend the gradient-entropy inequality in Corollary 1.2 (2) to all 6 > 0. In
this spirit, we have the following result.

Theorem 1.4. Under assumptions of Theorem 1.1.

(1) For any 6 > 0 and any positive f € By(H),

i <O{PA Vo8 )~ (P.f) log P.f}(v)
{4 R el +1QUst) A (@), € Bt >0

SUtnts AP

IDPf(2)]

N &0V
holds fO'I” t(; = W.



(2) Let a>1,t >0 and f > 0. Then

2oz — yll, {K (1 y 22Q) eKs||z — y||§>
a—1 av (a —1)2A37°
2K2€

1-0
)‘0

<Rf@»as<af«wwmp[

wmzvmmﬁ4@ﬁﬂﬁ}

holds for all x,y € H.

The remainder of the paper is organized as follows. We first consider in Section 2 a
class of stochastic Navier-Stokes type equations to illustrate our results, then prove these
results in Section 3.

2 Stochastic hyperdissipative Navier-Stokes/Burgers
equations

Let T¢ = (R/[0,27])¢ for d > 1. Let A be the Laplace operator on T?. To formulate A
using spectral representation, we first consider the complex L? space gQ(T‘l; C9). Recall
that for a = (a1, -+ ,aq),b = (b1, -+ ,bg) € C?, we have a - b = Zle a;b;. Let

er(r) = (2m) Y2 F) L e 7 ¢ e T
Then {e, : k € Z} is an ONB of L?(T%; C). Obviously, for a sequence {uy}peze C C4,
= Z uper € L*(T4 RY)
kezd

if and only if @, = u_y, holds for any k € Z% and ", ;4 |ux|* < 0. By spectral represen-
tation, we may characterize (A, 2(A)) on L?(T4 RY) as follows:

Au = — Z k[Puger, u:i= Z uger € Z(A),

kezd kezd
P2(A) = { D uper s up € CLay = u_y, Y |upl?|k[* < oo}.
kezd kezd

To formulate the Navier-Stokes/Burgers type equation, when d > 2 we consider the
sub-space divergence free elements of L2(T? R?). It is easy to see that a smooth vector

field

is divergence free if and only if u; - £ = 0 holds for all k& € Z?. Moreover, to make the
spectrum of —A strictly positive, we shall not consider non-zero constant vector fields.
Therefore, the Hilbert space we are working on becomes

5



H = { Z uger : up € C(d— 1) (ug, - k) = 0,0 = u_y, Z lug|? < oo},

kGZd kezd

where Z4¢ = 74\ {0}. Since when d = 1 the condition (d — 1)(uy - k) = 0 is trivial, the
divergence free restriction does not apply for the one-dimensional case.

Let (A, 2(A)) = (—A,2(A))|u, the restriction of (A, Z(A)) on H, and let P :
L?(T4; R%) — H be the orthogonal projection. Let

I = )\OA5+1

for some constants \g,d > 0. As in Section 1, define V = 2(L'?) and V, = 2(L%?).
Then

B:V xV — H; B(u,v)=P(u-V)v

is a continuous bilinear (see the (b) in the proof of Theorem 2.1 below). Let Q = A~ for
some o > 0, and let W; be the cylindrical Brownian motion on H. Obviously, |Q] < 1
and when ¢ > %,

1QIITs < Y Ikl < co.

kezd
We consider the stochastic differential equation

where B(u) := B(u,u) for u € V. Thus, we are working on the stochastic hyperdissipative
Navier-Stokes (for d > 2) and Burgers (for d = 1) equations.

Theorem 2.1. Let § > 4,0 € (4,2] and 0 € [22L,1]. Then all assertions in Section 1
hold for Ky = /\i@ and
0

4269+1

K, Z |k|_2(6+1)0 < 0.

= Ty20
>\0 N
kezd

Proof. Since o > %, Q@ : H — H is Hilbert-Schmidt. By Theorem 1.1 and its consequences,
it suffices to verify assumptions (A0)-(A3). Since (A1) is trivial for d = 1 and follows
from the divergence free property for d > 2, we only have to prove (A0), (A2) and (A3).
Let

u = E UE€r, UV = E ViCr

kezd kezd



be two elements in Vj.

(a) Since 6 € [22H,1] implies 40 < 20(6 4 1), we have

Jully = 3 P < 55 32 MhuePIE0 = Gl

kezd 0 kezd
Thus, (A0) holds for K; = 55
(b) It is easy to see that

(2.2) B(u,v) =P Z H(Ug—pm - M)Ume.

1,meZd m#l

By Holder inequality,

1B(uv)|F <) ( Y lwwl - lml- \vml>2

leZd ~ meZd\{i}

< Z( Z |ul_m|2|m|—2§) Z |Um|2|m|2(6+1)

lezd " meZd\{l} meZd

1 _
< (X ol ) nellolk.

mezd

Since § > 4, we have Y 5, |m|™? < co. Thus, (A2) holds for some constant C.
(c) By (2.2), we have

2
1B, o)) = 47 Blu, o)}y < 3 Wf’( S el - I - rvm\)

lezd mezd
2
ey 2L (X bl ol
lezd im|> 1 mz1
2
+2) ‘”40( Do lwml-Iml- \Um|> =20 + 21,
lezd \m\S%,mEZd

By the Schwartz inequality,

11§Z|l|4a( Z |2y |1~ m\2(5+1 |2~ 25+1)> Z |0 |2 |m|25+1 - m|_2(§+1)9.

lezd im|> 4 ml Im|> Ll ma

Since 6 > 25";“11 implies that 40 —2(d +1)0 + 2 <0, if |m| > % and |l| > 1 we have

7



]l|4”|m|_2(5+1)9+2 < 4(6+1)6‘—1|l|4o—2(5+1)0+2 < 4(6—}-1)«9—1

Therefore,

I 4(6+1 )6— 1||u||2 Z Z |Um|2|m’2(6+1)9|l . m|—2(6+1)0

1€24 |m|> Ll m1

Tl O DR [T S

meZd

(2.4)

Similarly, when |m| < % we have |l —m| > g—' and thus, due to 40 —2(6 +1)8 <0,
|l‘4a‘l o m‘—2(6+1)9 < 4(54—1)9’”40—2(6-&—1)9 < 4(6+1)9’m‘40_2(6+1)9.

Therefore,

I < Z 1" Z |1 |21 — 2O |y 272616 Z (0| 2| OO — |20+ 1)0

lezd 1<|m|<l] 1<|m|< !l
4(6+1)0 B 4(6+1)0
< S (X Imi o Yl ol < S (3 6 )l ol
0 mezd mezd

where the last step is due to 40 — 2(6 + 1)0 + 2 < 0 mentioned above. Combining this

with (2.3) and (2.4), we prove (A3) for the desired K, which is finite since § > 22 :11 and

o > % imply that 2(6 + 1)0 > 40 + 1 > d. O

3 Proofs of Theorem 1.1 and consequences

We first present an exponential estimate of the solution, which will be used in the proof
of Theorem 1.1.

Lemma 3.1. In the situation of Theorem 1.1, we have

t N )\2
/ HXsu?Vds] Sexp[ °2<||x||%1+||@uzst>] cEH >0

AS
2||Q[1? 2/l

Moreover, for anyt >0 and x € H,

2 t 2
Eexp{—/ X§2ds]§exp[— xz—i—ta}.
e J, 151 o el + Q0 s)

E exp [



Proof. (a) Since (B(u,v),v) = 0, by the It6 formula we have

(3.1) A X717 < =2/ X7Idt + |QNFsdE + 2(X7, QAW;).
Let

Tp = 1nf{t > 0 : || X/||lg > n}.

By Theorem 4.1 below we have 7,, — 0o as n — oo. So, for any A > 0 and n > 1,

tATh )\ tATh
E exp [A / ||X:||2vds} < Eexp b(nxnz Q0+ [ <X5,des>}
0 0

)\ 2 2 2 2 tATn 2 1/2
< exp [l + 1t (Bexo (22001 [ Ix10s] ) <o
0

Since || - |7 < 5| - ¥/, this implies that
tATn 2/\2 2 tATn 1/2
E exp [A / ||X;”H%,ds} < e2(lleli Q% st (]Eexp {ﬁ / \|X§||2Vds]> .
0 0 0
Letting A = 2“’5)”2, we obtain
B e | 57 / xR ds] < exp [0 (el + I@lst)
X s X :
ST T B P ER

This proves the first inequality by letting n — oo.
(b) Next, due to the first inequality and the Jensen inequality, we only have to prove
the second one for ¢t < Ay 2 In this case, let

B(s) = e s e 0,1

By the It6 formula, we have

dIXTIE(s) = { = 21 XTIV8(s) + B/ ($)IXT N7 + B() Qs fds + 28(s) (X7, QAW).
Thus, for any A > 0,

tATh
Eexp [% [ X as - Ael, - AHQH%ISt]
0
tATh

< Eexp [2)\/ " B(s)(Xy, QAWs) + X ﬁ/(3>||X§||§{d3}
0

0

(32) - (Eexp [QA /OW" ||X§|y2vﬁ(s)dsD1/2 (Eexp lzu /Omm Bs)(X7, QAW)

~o1 [T I 08500 - B9 "

9



Note that the first inequality in the above display implies that

tATh
E exp {2)\/ 1 XZ)12.8(s)ds| < oo, n>1.
0

Let
1

A= —.
tQl
By our choice of 3(s) and noting that ¢ < A\;? so that 8(s) < 1, we have

SEANZBPIQIP < 2025(5) QI < 22 (N5(s) - 7(5)).

Therefore,

tATh

Bow |13 [ a0z @aw) 2 [T I 08506) - B0 < 1

0
Combining this with (3.2) for A = (¢|Q|*) ™", we obtain

2 tATh 2
Eexp[—/ ngds}gexp{— z||% + ||Q|? t}.
10Tzt J, XS ||Q||2t(|| I + 1 QN zst)

This completes the proof by letting n — oo. O]

Proof of Theorem 1.1. Simply denote X, = XZ, which solves (2.1) for Xy = . For given

S

h € Vy and € > 0, by Theorem 4.1 below the equation

(3.3) dv, = Qdw, — {LYS 4 B(X,) + %-Lsh}ds, Yy = 2+ ch
has a unique solution. So,

d(X, —Y,) = —L(X, - Y,)ds + %e_LShds.

This implies that

X, =Y, =e Xy - Yy) + %/ e Lo~y
(3.4) (t— s 0
= gTSe_Lsh =:Zs, s€0,t].

Let
€ —Ls
ns = B(Xs + Zs) — B(X,) — Ee h,

10



which is well-defined since according to Lemmagd.1, X € V holds P x ds-a.e. Then, by
(3.4) the equation (3.3) reduces to

(3.5)  dY, = QdW, — {LY, + B(Y;)}ds + nids = QdW, — {LY; + B(Y,)}ds,

where

W, =W, +/ Q 'n.dr, s€l0,].
0

By (A0) and (A3) we have

2e2K?

(3.6) 1Q7 nallf < =Rl + 21 B(Xs, Z0) + Blzs, 2)llg
< 2 C W) (IR, + *lIAllv, + [1RIT, 1 X]15,)-

Since 6 < 1 so that || - ||y, < ¢ - ||v holds for some constant ¢ > 0, combining (3.6) with
Lemma 3.1 we concluded that

Eelo Inslgds ~ o
holds for small enough € > 0. By the Girsanov theorem, in this case
s n 1 S 9
R, := exp {—/ (Q ., dW,) — 5/ ||77T||Qd7’], s € [0,t]
0 0
is a martingale and {VVS}SG[M is the cylindrical Brrownian motion on H under the prob-

ability measure R,P. Combining this with (3.5) and the fact that Y; = X, due to (3.4),
for small € > 0 we have

Ptf(x + 5h> = E[Rtf(Yt)] = E[Rtf(Xt)]'

Therefore, by the dominated convergence theorem due to Lemma 3.1 and (3.6), we con-
clude that

DyP,f(x) = lim Pif(z+ d;) ~ Pf(x)
:}:iir(l)E[Rt— 1f(Xt)i| = _E{f(Xt)lii% 0 <Q‘1%,dWS>}
— {700 [ (@ (5B hx) — o). aw) |

where the last step is due to the bilinear property of B, which implies that

11



ns 1~ 1 1
— = -B(X,,2,) + -B(Z:) — —e °h
- = o B(Xs %)+ 2B(Z:) = Je

P 1 _
! —B(Xe e h) = e P+ —dtt )

[]

Proof of Corollary 1.2. (1) By (1.2) and the Schwartz inequality, for any h with || Ay, < 1,
we have

2
DL P.f(2)]? < (Pif( QE/ Ht o bsh — h)Hst

SOTLONE: /nB ||st}

where the last step is due to the fact that (A0) implies

(3.7)

(3.8) le™*nlG < Kille™™R[[Y, < Ki|lhlly,.

Next, by (A3) and 0 < 1 we have

B x x 4K2 x
(3.9) 1BXZ, h)llg < 4K|IRIIT, I XTI, < Ve = I X310V
Combining this with (3.1) we obtain
2K,
B [ IBOXE R < 253 (1ol + Q1)
0

The proof of (1) is completed by this and (3.7).
(2) Let f > 0 and h be such that [|A|y, < 1. Let

M, = /Ot <Q—1 (t - ®BleLh, X,) — %e_L8h> , dWS>.

By (1.2) and the Young inequality (see e.g. [2, Lemma 2.4]),

(3.10) |DpP.f(x)] < 8{Bi(flog f) — (P.f)log Pif }(z) + {log Bes M} P, f(x), &> 0.

Since by (3.8) and (3.9) we have

12



2

1
ds
Q

t
Ll
o= [ e
4K
i / 2[R ds,

Tt ,\59

B(X7,h)

it follows from Lemma 3.1 that for any § > g := 4v/K, ||QH>\89—3)/2

1 2 1/2 63/(25%)
E exp [th] < (]Eexp {—2<M>t]> (E exp { })

2K1 8K2 z
<o [ 3] (Bew [ 205 [ 1 HvdSD

(E QQ[QHQIP/ ”XszdsD J(e5%)
< {2;(1 o 2 }

2 (Ki 2K,
= exn{ 5 (5 + 2 lelf+ 100 |-

Combining this with (3.10) we prove (2).

(3) According to e.g. [4, proof of Proposition 4.1]), the Vjp-strong Feller property of P,
follows from the claimed Harnack inequality, which we prove below by using an argument
in [2, Proof of Theorem 1.2]. Let x # y be such that

a—1 _ AIQIVE,
(3.11) |z —yllv, < “ade for 9o = W-
Let
Bs=1+s(a—1), vs=x+s(y—=x), sel0,1].
We have

di log (P, f2())0/8(3) (+,)

S

_ala=1) R log ") (B log f1D D, B
~ T B(s) P, f56) Vs ()P, fAG)

oz||$—y||V9 { a—1 A(s) Bl 8(s) 8
2 GBI BTl (18 7 = (R log P70 o)

()

- ||Dptfﬂ<s><%>r|*vg}.

13



Therefore, applying (2) to

1
P
B(s)llz = yllv,

which is larger than ¢y according to (3.11), we obtain

d 2a|lx —ylly, [ K1 = 2K,

— log(P, fBeN/B) (4 ) > — 0 12 2 4
35 BB )0 ) 2 S S Sl + 1@l
> _2a||x - ?JH%/G {K1 2K,

toNT

- (el v ol + 1QUEss1) .

Integrating over [0, 1] w.r.t. ds, we derive the desired Harnack inequality. O

Proof of Corollary 1.5. Since u — ||ul|?, is a compact function on H, i.e. for any r > 0
the set {u € H : |lu]ly < r} is relatively compact in H, (3.1) implies the existence of the
invariant probability measure satisfying (1) by a standard argument (see e.g. [15, Proof
of Theorem 1.2]). Moreover, any invariant probability measure p satisfies u(|| - ||3) < oo,
hence, p(V') = 1. Below, we assume 6 € (0, 1) and prove (1) and (2) repsectively.

(1) Let u be an invariant probability measure, we first prove it has full support on pu.

/\(3—9)/2
AL '
8l QllvE,

By Corollary 1.2(3) for a = 2, for any fixed ¢t > 0 there exists a constant C'(¢) > 0 such
that

To

(Pof(2))? < (Pof?(y))eCOUelzslvlz) 1y — yllv, < ro.
Applying this inequality n times, we may find a constant ¢(¢,n) > 0 such that

(3.12) (Pof (@)™ < (Pf*" (y))e@Cm Il i) |z — |y, < nr.

Since V is dense in Vj, to prove that p has full support on Vp, it suffices to show that

(3.13) w(Bo(z,e)) >0, z€V,e>0

holds for By(z,e) :== {y : ||ly — z||v, < €}. Since u(Vy) = 1, there exists n > 1 such that
p(Bo(x,nro)) > 0. Applying (3.12) to f = 1p,(z,) We obtain

x n - n x 2 2
P(||X* — z|ly, < ¢)? / e~ Cm U=l Iyl 1y (dy) < p(By(z,e)).
By (x,nro)
So, if u(By(x,e)) = 0 then
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(3.14) P(|| X} — x|y, >e)=1, t>0.

To see that this is impossible, let us observe that for any m > 1 there exists a constant
c(m) > 0 such that

1

2 2 2
(3.15) -1y, < c(m)] - ||H+W“ v

holds. Moreover, using (-, -) to denote the duality w.r.t H, we have

XY — 2, LX7) = 2||X7 — all§y +2(X} — =, L)
> 2| X7 —=lly - 21X7 —zllvizlly = 1X7 -2l — ll=Ii

and due to (A1) and (A2),
x €T x €T x 1 x xX
2X7 —w, B(X])) = =2{w, BIX])) < 20|z u| XTI IXT Nl < 511X —2llb+ertel XE Il

holds for some constants c;, co depending on x. Combining theses with the [to6 formula
for [| X — z||%, we arrive at

1
AIXT —2llfy < = I1X7 = wlvdt + (e + ol X7 |7)dt + 2(X7 — 2, QAWS)

for some constant c3 > 0. Since E||X;||% is bounded for ¢ € [0, 1], this implies that

t
IE/ |1 X7 — z||3ds < cot, t€10,1]
0

holds for some constant ¢y > 0. Combining this with (3.15) and noting that ¢t — X7 is
continuous in H, we conclude that

1 t
limsup;/ E[| X7 — z||f,ds < ( Co m > 1.
0

A"
t—0 )\om)l 0

Letting m — oo we obtain

t
lim E||X? — 2|2 ds = 0.
t—0 ¢ 0 o

this is contractive to (3.14).

Next, if the invariant probability measure is not unique, we may take two different
extreme elements i1, po of the set of all invariant probability measures. It is well-known
that py and po are singular with each other. Let D be a pi-null set, since p; has full
support on Vp and Pi1p is continuous and uy(Pilp) = pi(D) = 0, we have P,1p = 0.

15



Thus, po(D) = p2(P1p) = 0. This means that ps has to be absolutely continuous w.r.t.
41, which is contradictive to the singularity of py and po.

(2) As observe above that P1p = 0 for any p-null set D. So, P, has a transition
density pi(x,y) w.rt. pon V. Next, let f > 0 such that u(f*) < 1. By the Harnack
inequality in Corollary 1.2(3), we have

20z —yllY, (K1 2K
ey [ e |2 B 2 (el ol +1Q0st) ) < 1

a—1 Y

Then the desired estimate on [ p;(x, 2)(@*V/2e;(dz) follows by taking
fC)=p(z,).

Proof of Theorem 1.4. (1) Let M, be in the proof of Corollary 1.2 (2). By (??), for § > 0
we have

s [4] = (e [2401])

2K 8Ky [t .. 12
<o [ 2] (e [ﬁ [ixzias)

8K, 272
< :
A0 T [|Q et

so that by the Jensen inequality and the second inequality in Lemma 3.1,

If t <tz then

2K2HQH et

o [ 5] <o [ ] (o [t [ 1cttas] ) ™

2K1 4K2€ ]

Sexp[ﬁ—l—(p)\—é_@ t<ts

Combining this with (3.10) we prove the desired gradient estimate for ¢ < ts. By the
gradient estimate for t = t5 and the semigroup property, when ¢ > t5; we have

IDPf(z)|

Vg — | DP; (P f) ()] vy S 5{Pt§((Pt—t§f)10g-Pt—t5f)

~ (R tog P} o) + £ { Gt S (lely + 1QUst)  f o)

This implies the desired gradient estimate for ¢ > ¢5 since due to the Jensen inequality
Py ((Pr—ts f)log Pr_y; f) < Piflog f.
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(2) Repeating the proof of Corollary 1.3 (3) using the inequality in Theorem 1.4 (1)
instead of Corollary 1.2 (2) for 6 = ﬁ(s)o‘—_l, we obtain

llz—yllv,

(f‘ (IOg Ptfﬁ(s))a/ﬁ(s) >

S -

_2a||x—y||2ve{ K,  2Kje

2 2 2
e+ 20 (el v Wl + QW) |

a—1

This completes the proof by integrating over [0, 1] w.r.t. ds and noting that

R TR ) 2\ I

ls = >
4| Qe iy — 4a?(|Q|? Kzellx — ylIF,

since

a—1 a—1
0= > )
Bz —yllv, — allz—ylly,

4 Appendix

We aim to verify the existence and uniqueness of the solution to (1.1) by using the main
result of [8].

Theorem 4.1. Assume (A1) and (A2). For any Xy € H the equation (1.1) has a unique
solution Xy, which is a continuous Markov process on H such that

T
E( sup} HXJ\%%—/ ||Xt|]%/dt> <0
0

tel0,T
holds for any p > 1 and P-a.s.
¢
Xy =X — / (LXs+ B(Xy))ds+QWy, t>0
0
holds on H.
Proof. Let V* be the dual space of V w.r.t. H. Then for any v € V,

A(v) == —(Lv+ B(v)) € V*.

It suffices to verify assumptions (H1)-(H4) in [8, Theorem 1.1] for the functional A. The
hemicontinuity assumption H1) follows immediately form the bilinear property of B.
Next, by (A2) and the bilinear property of B, we have

ve(A(vi) = A(vz),v1 — va)v = —[lvr — va[§; + | B(v2 = v1,01), 01 — v9)

< —lvr = val¥ 4 Cllvy — vol F w3
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So, the assumption (H2) in [8] holds for p(v) := c|jv||?. Moreover, by (A1) we have

v-(A(v),v)y < =[]}

Thus, the coercivity assumption (H3) in [8] holds for # = 1, = 2, K = 0 and f =constant.
Finally, (A2) implies that

_ 2c
JA@)[[}- < 20ll} + 2L~ Bw)|1% < 2|0} + )\_OHUH%{”UH%/'

Therefore, the growth condition (H4) in [8] holds for some constant f, X' > 0 and o =

6 =2. O
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