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Importance Sampling for determining SRAM
yield and optimization with statistical constraint

E.J.W. ter Maten, O. Wittich, A. Di Bucchianico, T.S. Doorn, and T.G.J. Beelen

Abstract Importance Sampling allows for efficient Monte Carlo sampling that also
properly covers tails of distributions. From Large Deviation Theory we derive an
optimal upper bound for the number of samples to efficiently sample for an accurate
fail probability Pfail ≤ 10−10. We apply this to accurately and efficiently minimize
the access time of Static Random Access Memory (SRAM), while guaranteeing a
statistical constraint on the yield target.

1 Introduction

As transistor dimensions of Static Random Access Memory (SRAM) become
smaller with each new technology generation, they become increasingly susceptible
to statistical variations in their parameters. These statistical variations may result
in failing memory. An SRAM is used as a building block for the construction of
large Integrated Circuits (ICs). To ensure that a digital bit cell in SRAM does not
degrade the yield (fraction of functional devices) of ICs with Megabits of memory,
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very small failure probabilities Pfail ≤ 10−10 are necessary. To simulate this, regu-
lar Monte-Carlo (MC) simulations require too much computing time. Importance
Sampling (IS) [1] is a more advanced technique that provides sufficiently accurate
results and is relatively easy to implement. A speed up of several orders can be
achieved when compared to regular Monte Carlo methods.

2 Regular Monte Carlo

Let Y be a real-valued random variable with probability density function f . We
assume that N independent random observations Yi (i = 1, . . . ,N) of Y are taken.
We define Xi = IA(Yi) for a given set A = (−∞,x) where IA(Yi) = 1 if Yi ∈ A and
0 otherwise. Then pMC

f (A) = 1
N ∑

N
i=1 Xi estimates p =

∫ x
−∞

f (z)dz = P(Y ∈ A). The
Xi are Bernoulli distributed, hence N pMC

f ∼ Bin(N, p), E(pMC
f ) = 1

N N p = p, and

σ2(pMC
f ) = p(1−p)

N . Let Φ(x) =
∫ x
−∞

e−z2/2dz and define zα by Φ(−zα) = α . From
the Central Limit Theorem (CLT) we derive

P(|pMC
f − p|> ε) = P(

|pMC
f − p|

σ(pMC
f )

> z)
NMC→∞−→ 2Φ(−z)≤ 2Φ(−zα/2) = α,

where z = ε/
√

p(1− p)/NMC and NMC = N. Hence, if z≥ zα/2 we deduce

NMC ≥ p(1− p)
( zα/2

ε

)2
=

1− p
p

( zα/2

ν

)2
, (1)

for ε = ν p. We take ν = 0.1 and p = 10−10. Now let α = 0.02, then zα/2 ≈ 2.
Then NMC ≥ 4 1012. If we do not know p, we can use p(1− p) ≥ 1/4 yielding

NMC ≥ 1
4

(
zα/2

ε

)2
= 1022. And if NMC is not large enough to apply the CLT, Cheby-

shev’s inequality even results to NMC ≥ 1024. These general bounds are much too
pessimistic. Large Deviations Theory (LDT) [1,4] results in a sharp upper bound [6]

P(|pMC
f − p|> ν p) ≤ exp

(
−NMC

2
p

1− p
ν

2
)
. (2)

For ν = 0.1, p = 10−10 and α = 0.02, as above, we find: NMC ≥ 8 1012 (which is a
sharp result - see at the end of the next proof). Note that an extra k-th decimal in ν

increases NMC with a factor k2.

Proof of (2) [6]. The sequence of the Monte Carlo results PN(A) := pMC
f satisfies

a Large-Deviation Principle [1, 4, 5], meaning that there is some ‘rate function’
I : R→ R∪{−∞,+∞} such that

(i) limsupN→∞
1
N lnPN(C)≤− infx∈C I(x) for all closed subsets C ⊂ R,

(ii) liminfN→∞
1
N lnPN(G)≥− infx∈G I(x) for all open subsets G⊂ R.
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Let X be a Bernoulli variable with success probability p. The logarithmic moment
generating function for X is given by ln

(
E
[
eλX
])

= ln
(
q+ eλ p

)
, where as usual

q = 1− p. We define the following function [5]

J(x,λ ) = λx− ln
(

E
[
eλX
])

= λx− ln(q+ eλ p), (3)

where x,λ ∈ R. We note that an optimum value λ ∗ must satisfy

∂J
∂λ

= x− peλ ∗

q+ peλ ∗
= 0, hence

λ
∗ = ln(

qx
p(1− x)

), and peλ ∗ =
qx

1− x
, and q+ peλ ∗ =

q
1− x

. (4)

In our case, the rate function can be shown to be equal to

I(x) = sup
λ∈R

J(x,λ ) = J(x,λ ∗) = x ln
(

qx
p(1− x)

)
− ln

(
q

1− x

)
, (5)

a function which is continuous on the interval (0,1). With C = [p−ν p, p+ν p] ⊂
(0,1) and G = R\C, the Large-Deviation Principle above implies

lim
N→∞

1
N

lnP

(∣∣∣∣∣ 1
N

N

∑
k=1

Xk− p

∣∣∣∣∣≥ ν p

)
=− inf

|x−p|≥ν p
I(x).

From (5) we can calculate I′(x) and I′′(x) explicitly. For x∈ (0,1) we have I′′(x)> 0,
which implies that I′ is increasing and that I is convex. Also I(0+) = − ln(q) > 0
and I(1−) = ln(q/p) ∈R. Clearly I can be extended continuously at both x = 0 and
x = 1. Furthermore I(p) = 0 and I′(p) = 0. Hence I(p) = 0 is a global minimum.
This implies that actually the infimum of I on {x : |x− p| > ν p} is assumed at
x = p± ν p. This can be analyzed further using Taylor expansion [6]. Thus from
part (i) of the Large Deviation Principle, we obtain (2) for all N with a possible
exception of finitely many. Part (ii) implies that the exponential bound in (2) is also
valid from below and thus is sharp. �

3 Importance Sampling

With Importance Sampling we sample the Yi according to a different distribu-
tion function g and observe that p f (A) =

∫ x
−∞

f (z)dz =
∫ x
−∞

f (z)
g(z)g(z)dz. Define

Vi = IA(Yi) f (Yi)/g(Yi) and V = V (A) = IA(Y ) f (Y )/g(Y ). Let pIS
f (A) =

1
N ∑

N
i=1 Vi.

Then Eg

(
pIS

f

)
= 1

N ∑
N
i=1 Eg (Vi)= p f (A). When f (z)

g(z) ≤ 1 on A we have Varg

(
pIS

f

)
≤

Var f

(
pMC

f

)
(variance reduction, using the same number of samples). This does not

yet imply more efficiency. However, similar to (2), we derive (in which NIS = N) [6]
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P
(∣∣pIS

f − p
∣∣> ν p

)
≤ exp

(
− NIS p2

2Varg(V )
ν

2
)
. (6)

Assuming the same upper bounds, comparing (2) and (6) gives NIS
NMC

=
Varg(V )
p(1−p) =

Eg(V 2)−p2

p(1−p) . Suppose f (z)
g(z) ≤ κ < 1 on A and p≤ κ , then, with q = 1− p,

NIS

NMC
=

Eg(V 2)

pq
− p

q
≤ κ

q
− p

q
≤ κ(1+ζ ) (7)

for |(1− 1
κ
)p+O(p2)| ≤ ζ , which for κ = 0.1 and p = 10−10 means that ζ ≤ 10−9.

Hence for κ = 0.1 we can take an order less samples with Importance Sampling to
get the same accuracy as with Monte Carlo. This even becomes better with smaller
κ . Efficiency is the main message. Indeed the asymptotic accuracy also improves,
but less: Varg

(
pIS

f

)
≤ κ Var f

(
pMC

f

)
− 1−κ

N p2 and thus σg

(
pIS

f

)
≤
√

κ σ f

(
pMC

f

)
,

which for κ = 0.1 means that here not an order is gained, but a factor
√

κ ≈ 0.316.

Proof of (6) [6]. Let Y be distributed according to g, V = I(−∞,x)(Y ) f (Y )/g(Y ) and
v(y) = I(−∞,x)(y) f (y)/g(y). Then

Eg

[
eλV
]
=
∫

∞

−∞

g(y)eλ I(−∞,x) f (y)/g(y) dy =
∫ x

−∞

g(y)eλ f (y)/g(y) dy+1−G(x),

where G(x) =
∫ t
−∞

g(y)dy. We will restrict ourselves to simple sufficient conditions
and we will not strive for full generality. We assume:

1. There is no y ∈ R such that P(Y = y) = 1 (Y is not supported by a single point),
2. 0 < Eg

[
eλV
]
< ∞ for all λ ∈ R,

3. Introduce the density function ρλ (y)

ρλ (y) =
eλv(y)g(y)
Eg
[
eλV
] (thus

∫
ρλ (y)dy = 1)

(which is well-defined for all λ ∈ R) and let Yλ be a random variable distributed
according to ρλ . We assume that for all λ ∈ R

Eρλ
(Yλ ) =

∫
yλ ρλ (yλ )dyλ =

∫
y

eλv(y)g(y)
Eg
[
eλV
] dy < ∞

and
Varρλ

(Yλ ) = E
[
Y 2

λ

]
−E2

ρλ
(Yλ )< ∞.

Now let ϕ(λ ) = lnEg
[
eλV
]
. Then, ϕ(λ ) is a well-defined, two times differentiable,

real function with derivatives

ϕ ′(λ ) =
Eg[V eλV ]
Eg[eλV ]

= Eρλ
(Yλ ), ϕ ′′(λ ) =

Eg[V 2 eλV ]
Eg[eλV ]

− E2
g[V eλV ]
E2

g[eλV ]
= Varρλ

(Yλ ).
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Clearly, Var(Yλ )> 0 and ϕ is therefore strictly convex. Let J(x,λ ) = λx−ϕ(λ ). As
in Section 2 we again consider the function I(x) = supλ∈R J(x,λ ) [5]. Clearly I(x)≥
J(x,0) =−ϕ(0) =− ln e0 = 0. To compute the supremum in I(x), we consider

d
dλ

J(x,λ ) = x− d
dλ

ϕ(λ ) = x−
Eg
[
VeλV

]
Eg
[
eλV
] . (8)

We observe that

d
dλ

J(x,λ ) = 0 =⇒ x =Ψ(λ ), where Ψ(λ ) =

∫
yeλ v(y)g(y)dy∫
eλ v(y)g(y)dy

. (9)

Here we note that

Ψ
′(λ ) =

∫
eλ v(y)g(y)dy

∫
y2eλ v(y)g(y)dy − [

∫
yeλ v(y)g(y)dy]2

[
∫

eλ v(y)g(y)dy]2
. (10)

At the right-handside we can recognize a weighted inner-product (using weight
function eλ v(y)): < 1,y >≡

∫
1 · yeλv(y)g(y)dy. By the Cauchy-Schwarz inequality,

< 1,y >≤
√
< 1,1 >)

√
< y,y > we obtain Ψ ′(λ )> 0 because y 6= 1. This implies

that Ψ is invertible and hence (9) defines λ = λ (x) =Ψ−1(x). Hence

I(x) = J(x,λ (x)) (11)

and we can write x = Ψ(λ ) = Eρλ
[Y ]. Clearly ρλ=0(y) = g(y). Further, to calcu-

late the first (total) derivative of I(x), we differentiate (11) with respect to x and
substitute (9) to obtain I′(x) = λ (x) and I′′(x) = λ ′(x) = 1/ ∂x

∂λ
= 1/Varρλ

(V ) [6].
By [5, Lemma I.4, p. 8], I(x) is strictly (proper) convex which means that the mini-
mizer of I is unique. Now let p be as in Section 2. Then I(p) = 0, since the Strong
Law of Large Numbers implies that the empirical measure of every neighbourhood
of p tends to one. Hence, p is the unique minimizer of I and I′(p) = 0. Since p is
also an internal point, we obtain that 0 = I′(p) = λ (p). Hence,

I′′(p) =
1

Varρλ (p)(V )
=

1
Varρλ=0(V )

=
1

Varg (V )
. (12)

Finally, by Taylor expansion, I(p±ν p)= 1
2 ν2 p2I′′(p)+O(ν3 p3)= 1

2
ν2 p2

Varg (V ) . Thus,
after applying the Large-Deviation Principle [1, 4, 5], as in Section 2,

P

(∣∣∣∣∣ 1
N

N

∑
k=1

Vk− p

∣∣∣∣∣> ν p

)
≤ exp

(
−N inf

|x−p|>ν p
I(x)

)
≈ exp

(
− N p2

2Varg(V )
ν

2
)
,

(13)
for all sufficiently large N. This implies (6), which completes the proof.
We finally note that, if g(x)≡ 1, as in Section 2, we have Varg (V ) = 1

pq , see (2). �
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4 Accurate estimation of SRAM yield

The threshold voltages Vt of the six transistors in an SRAM cell are the most im-
portant parameters causing variations of the characteristic quantities of an SRAM
cell [2] like Static Noise Margin (SNM) and Read Current (Iread). In [2, 6] Impor-
tance Sampling (IS) was used to accurately and efficiently estimate low failure prob-
abilities for SNM and Iread. SNM=min(SNMh,SNMl) is a measure for the read sta-
bility of the cell. SNMh and SNMl are identically Gaussian distributed. The min()
function is a non-linear operation by which the distribution of SNM is no longer
Gaussian. Figure 1-left, shows the cumulative distribution function (CDF) of the
SNM, using 50k trials, both for regular MC (solid) and IS (dotted). Regular MC
can only simulate down to Pfail ≤ 10−5. Statistical noise becomes apparent below
Pfail ≤ 10−4. With IS (using a broad uniform distribution g), Pfail ≤ 10−10 is easily
simulated (we checked this with more samples). The correspondence between reg-
ular MC and IS is very good down to Pfail ≤ 10−5. Figure 1-left clearly shows that
using extrapolated MC leads to overestimating the SNM at Pfail = 10−10. The Read
Current Iread is a measure for the speed of the memory cell. It has a non-Gaussian
distribution. Figure 1-right shows that extrapolated MC (dashed) can result in seri-
ous underestimation of Iread. This can lead to over-design of the memory cell. Also
here IS is essentially needed for sampling Iread appropriately.

Fig. 1 SNM (left) and Iread (right) cumulative distribution function for extrapolated MC (dashed),
regular MC (solid) and IS (dotted). Extrapolation assumes a normal distribution.

5 Optimization of SRAM block

The block in Fig. 2 (rotated 90◦) contains a Sense Amplifier (SA), a selector, and
a number of SRAM cells. The selector chooses one ”column” of cells. Then the
voltage difference is ∆Vcell = ∆Vk. A block B works if mink(∆Vk)≥ ∆VSA. With m
blocks B and n cells per block we define Yield Loss by Y L = P(#B≥ 1)≤ mP(B),
where the fail probability P(B) = Pfail(B) of one block is (accurately) approximated
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by the lower bound P(B) ≈ Y L
m = nY L

N , where N = nm. For Y L = 10−3, m = 104

blocks, n = 1000 we find P(B)≤ 10−7.
For X = mink(∆Vk), and Y = ∆VSA we have

P(B) = P(X < Y ) =
∫ ∫

−∞≤x<y≤∞

fX ,Y (x,y)dxdy =
∫

∞

−∞

fY (y)FX (y)dy.

Thus we need the pdf fY (y) and the cdf FX (y) (probability and cumulative density

Fig. 2 Block of SRAMs
(rotated 90◦).

functions of Y and X). Note that

FX (y) = P(X < y) = P(min
k

∆Vk < y) = 1− [1−P(∆Vk < y)]n ≤ nP(∆Vk < y).

For each simulation of the block we can determine the access times ∆ tcell and ∆ tSA.
We come down to an optimization problem with a statistical constraint:

Minimize ∆ tcell +∆ tSA such that P(B)≤ 10−7.

This has led to the following algorithm. We only give a sketch; for details see [3].

• By Importance Sampling sample ∆Vk. Collect ∆Vk at same ∆ tcell.
• By Monte Carlo sample ∆VSA. Collect ∆VSA at same ∆ tSA.
• For given ∆ tcell:

– Estimate pdf f∆Vk and cdf P(∆Vk < y).
– From this calculate FX (y) = FX (y;∆ tcell). Note that ∂FX (y;∆ tcell)

∂∆ tcell
≤ 0.

• For given ∆ tSA:

– Estimate pdf of ∆VSA: fY (y).

• Calculate (numerical integration)

– P(B) =
∫

∞

−∞
fY (y)FX (y)dy.

Hence P(B)=G(∆ tcell,∆ tSA) for some function G. For given ∆ tSA G1(∆ tcell;∆ tSA)=
G(∆ tcell,∆ tSA) is monotonically decreasing in ∆ tcell, see Fig. 3. Hence we Minimize
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G−1
1 (10−k;∆ tSA)+∆ tSA. The optimization with the statistical constraint on P(B)

led to a reduction of 6% of the access time of an already optimized SA while simul-
taneously reducing the silicon area [3].

Fig. 3 Left: P(B) as function of ∆ tcell and ∆ tSA. Right: Delay time t as function of ∆ tSA.

6 Conclusions

Large Deviation Theory allows to derive sharp lower and upper bounds for estimat-
ing accuracy of tail probabilities of quantities that have a non-Gaussian distribution.
For Monte Carlo this leads to a realistic number of samples that should be taken.
We extended this to Importance Sampling (IS). IS was applied to estimate fail prob-
abilities Pfail ≤ 10−10 of SRAM characteristics like Static Noise Margin (SNM) and
Read Current (Iread). We also applied IS to minimise the access time of an SRAM
block while guaranteeing that the fail probability of one block is small enough.
In our experiments we used a fixed distribution g in the parameter space. In [6] ideas
with an adaptively determined distribution g can be found.
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