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Abstract

Fixed-Priority Scheduling with Deferred Preemption
(FPDS) is a middle ground between Fixed-Priority Pre-
emptive Scheduling and Fixed-Priority Non-preemptive
Scheduling, and offers advantages with respect to con-
text switch overhead and resource access control. In
this paper we present our work on extending the real-
time operating system RTAI/Linux with support for
FPDS. We give an overview of possible alternatives,
describe our design choices and implementation, and
verify through a series of measurements that indicate
that a FPDS implementation in a real-world RTOS is
feasible with minimal overhead.

1 Introduction

Fixed-Priority Scheduling with Deferred Preemp-
tion (FPDS) [4–7, 9] has been proposed in the liter-
ature as an alternative to Fixed-Priority Nonpreemp-
tive Scheduling (FPNS) and Fixed-Priority Preemptive
Scheduling (FPPS) [11]. Input to FPPS and FPNS
is a set of tasks of which instances (jobs) need to be
scheduled. FPDS is similar to FPNS but now tasks
have additional structure and consist of (ordered) sub-
tasks. Hence, in FPDS each job consists of a sequence
of subjobs; preemption is possible only between sub-
jobs. The benefits of FPDS, derived from FPNS are (i)
less context-switch overhead thanks to fewer preemp-
tions (ii) the ability to avoid explicit resource alloca-
tion and subsequent complex resource-access protocols.
The fact that subjobs are small leads to FPDS having
a better response time for higher priority tasks.

FPDS was selected as a desirable scheduling mech-
anism for a surveillance system designed with one of
our industry partners. [10] With response times found
to be too long under FPNS, FPDS was considered to

have the same benefits of lower context switch overhead
compared to FPPS with its arbitrary preemptions.

In this paper our goal is to extend a real-time Linux
version with support for FPDS. For this purpose we
selected the Real-Time Application Interface (RTAI)
extension to Linux [1]. RTAI is a free-software commu-
nity project that extends the Linux kernel with hard
real-time functionality. We aim to keep our extensions
efficient with respect to overhead, and as small and
non-intrusive as possible in order to facilitate future
maintainability of these changes. Our contributions
are the discussion of the RTAI extensions, the imple-
mentation1 and the corresponding measurements to in-
vestigate the performance of the resulting system and
the introduced overhead.

The work is further presented as follows. We start
with an overview of related work and recapitulation
of FPDS, followed by a summary of the design and
features of RTAI. Then we analyze how FPDS should
be dealt with in the context of RTAI. We present our
investigation, design and proof of concept implementa-
tion of FPDS in RTAI. This result is analyzed through
a series of measurements. We conclude with a sum-
mary and future work.

2 Related work

As a recapitulation [4–7,9], in FPDS a periodic task
τi with computation time Ci is split into a number of
non-preemptive sub tasks τi,j with individual compu-
tation times Ci,j . The structure of all subtasks defin-
ing an FPDS task is defined by either the programmer
through the use of explicit preemption points in the
source, or by automated tools at compile time, and
can have the form of a simple ordered sequence, or a
directed acyclic graph (DAG) of subtasks. See Figure 1

1This work is freely available at
http://wiki.wikked.net/wiki/FPDS
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Figure 1. FPDS task with a DAG structure

for an example of the latter.
[9] presents a rate-monotonic with delayed preemp-

tion (RMDP) scheduling scheme. Compared to tradi-
tional rate-monotonic scheduling, RMDP reduces the
number of context switches (due to strict preemption)
and system calls (for locking shared data). One of the
two preemption policies proposed for RMDP is delayed
preemption, in which the computation time Ci for a
task is divided into fixed size quanta ci, with preemp-
tion of the running task delayed until the end of its
current quanta. [9] provide the accompanying utiliza-
tion based analysis and simulation results, and show
an increased utilization of up to 8% compared to tradi-
tional rate-monotonic scheduling with context switch
overheads.

Unlike [9], which introduces preemption points at
fixed intervals corresponding to the quanta ci, our ap-
proach allows to insert preemption points at arbitrary
intervals, convenient for the tasks.

[3, 4] correct the existing worst-case response time
analysis for FPDS, under arbitrary phasing and dead-
lines smaller or equal to periods. They observe that the
critical instance is not limited to the first job, but that
the worst case response time of task τi may occur for
an arbitrary job within an i-level active period. They
provide an exact analysis, which is not uniform (i.e.
the analysis for the lowest priority task differs from
the analysis for other tasks) and a pessimistic analysis,
which is uniform.

The need for FPDS in industrial real-time systems
is emphasized in [10], which aims at combining FPDS
with reservations for exploiting the network bandwidth
in a multimedia processing system from the surveil-
lance domain, in spite of fluctuating network avail-
ability. It describes a system of one of our industry
partners, monitoring a bank office. A camera moni-
toring the scene is equipped with an embedded pro-
cessing platform running two tasks: a video task pro-
cessing the raw video frames from the camera, and a

network task transmitting the encoded frames over the
network. The video task encodes the raw frames and
analyses the content with the aim of detecting a rob-
bery. When a robbery is detected the network task
transmits the encoded frames over the network (e.g.
to the PDA of a police officer). In data intensive ap-
plications, such as video processing, a context switch
can be expensive: e.g. an interrupted DMA transfer
may need to retransmit the data when the transfer is
resumed. Currently, in order to avoid the switching
overhead due to arbitrary preemption, the video task
is non-preemptive. Consequently, the network task is
activated only after a complete frame was processed.
Often the network task cannot transmit packets at an
arbitrary moment in time (e.g. due to network con-
gestion). Employing FPDS and inserting preemption
points in the video task in convenient places will acti-
vate the network task more frequently than is the case
with FPNS, thus limiting the switching overhead com-
pared to FPPS and still allowing exploitation of the
available network bandwidth.

[10] also propose the notion of optional preemption
points, allowing a task to check if a higher priority task
is pending, which will preempt the current task upon
the next preemption point. At an optional preemp-
tion point a task cannot know if a higher priority task
will not arrive later, however if a higher priority task
is already pending, then the running task may decide
to adapt its execution path, and e.g. refrain from ini-
tiating a data transfer on a exclusive resource that is
expensive to interrupt or restart. Optional preemption
points rely on being able to check for pending tasks
with low overhead, e.g. without invoking the sched-
uler.

3 RTAI

RTAI2 is an extension to the Linux kernel, which
enhances it with hard real-time scheduling capabilities
and primitives for applications to use this. RTAI pro-
vides hard real-time guarantees alongside the standard
Linux operating system by taking full control of ex-
ternal events generated by the hardware. It acts as a
hypervisor between the hardware and Linux, and inter-
cepts all hardware interrupt handling. Using the timer
interrupts RTAI does its own scheduling of real-time
tasks and is able to provide hard timeliness guaran-
tees.

Although RTAI has support for multiple CPUs, we
choose to ignore this capability in the remainder of this

2The code base used for this work is version 3.6-cv of RTAI
[1].
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document, and assume that our FPDS implementation
is running on single-CPU platforms.

3.1 The scheduler

RTAI Linux system follows a co-scheduling model:
hard real-time tasks are scheduled by the RTAI sched-
uler, and the remaining idle time is assigned to the
normal Linux scheduler for running all other Linux
tasks. The RTAI scheduler supports the standard
Linux schedulables such as (user) process threads and
kernel threads, and can additionally schedule RTAI
kernel threads. These have low overhead but they can-
not use regular OS functions.

The scheduler implementation supports preemption,
and ensures that always the highest priority runnable
real-time task is executing.

Primitives offered by the RTAI scheduler API in-
clude periodic and non-periodic task support, multi-
plexing of the hardware timer over tasks, suspension of
tasks and timed sleeps. Multiple tasks with equal prior-
ity are supported but need to use cooperative schedul-
ing techniques (such as the yield() function that gives
control back to the scheduler) to ensure fair scheduling.

3.2 Tasks in RTAI

RTAI supports the notion of tasks along with asso-
ciated priorities. Tasks are instantiated by creating a
schedulable object (typically a thread) using the reg-
ular Linux API, which can then initialize itself as an
RTAI task using the RTAI specific API. Priorities are
16 bit integers with 0 being the highest priority.

Although the terminology of jobs is not used in
RTAI, all necessary primitives to support periodic
tasks with deadlines less than or equal to periods
are available. Repetitive tasks are typically repre-
sented by a thread executing a repetition, each it-
eration representing a job. An invocation of the
rt_task_wait_period() scheduling primitive sepa-
rates successive jobs. Through a special return value of
this function, a task will be informed if it has already
missed the time of activation of the next job, i.e. the
deadline equal to the period.

In each task control block (TCB) various properties
and state variables are maintained, including a 16 bit
integer variable representing the running state of the
task. Three of these bits are used to represent mutu-
ally exclusive running states (ready, running, blocked),
whereas the remaining bits are used as boolean flags
that are not necessarily mutually exclusive, such as the
flag delayed (waiting for the next task period), which

Figure 2. RTAI task states and flags

can be set at the same time as ready in the RTAI im-
plementation. This implies that testing the ready state
is not sufficient for determining the readiness of a task.
See Figure 2 for an overview of the task states relevant
for our work, including a new bit flag FPDS Yielding
which we will introduce for our FPDS implementation
in Section 5.4.

3.3 Scheduler implementation

In order to provide some context for the design deci-
sions and implementation considerations that will fol-
low, we briefly describe the implementation of the ex-
isting RTAI scheduler.

RTAI maintains a ready queue per CPU, as a prior-
ity queue of tasks that are ready to run (i.e., released),
sorted by task priority. Periodic tasks are maintained
with release times of their next job in a separate data
structure, the so-called timed tasks. This data struc-
ture can be an ordered linked list or a red-black tree. If
at any moment the current time passes the release time
of the head element of the timed tasks list, the sched-
uler migrates this task to the ready queue of the cur-
rent CPU. In practice this does not happen instantly
but only upon the first subsequent invocation of the
scheduler, e.g. through the timer interrupt, and there-
fore having a maximum latency equal to the period of
the timer. The scheduler then selects the head element
from the ready priority queue for execution, which is
the highest priority task ready to run. The currently
running task will be preempted by the newly selected
task if it is different. The scheduler ensures that at
any given time, the processor executes the highest pri-
ority task of all those tasks that are currently ready to
execute, and therefore it is a FPPS scheduler.

The implementation of the scheduler is split over
two main scheduler functions, which are invoked from
different contexts, but follow a more or less simi-
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lar structure. The function rt_timer_handler() is
called from within the timer interrupt service rou-
tine, and is therefore time-triggered. The other func-
tions, rt_schedule() is event-triggered, and performs
scheduling when this is requested from within a sys-
tem call. Each of the scheduler functions performs the
following main steps:

1. Determination of the current time

2. Migration of runnable tasks from the timed tasks
queue to the ready queue

3. Selection of the highest priority task from the
ready queue

4. Context switch to the newly selected task if it is
different from the currently running task

After a new task is selected, the scheduler decides on
a context switch function to use, depending on the type
of tasks (kernel or user space) being switched in and
out. The context switch is then performed immediately
by a call to this function.

4 Mapping FPDS tasksets

For the case of FPDS we need a different formulation
of the taskset. This is because we now must indicate
additional subtask structure within each task. There
are several ways to approach this.

First, in the task specification we can mark subtask
completion by an API call. Many operating systems
already implement a primitive that can be used for
this, viz., a yield() function. In fact, in a cooperative
scheduling environment this would be exactly the way
to implement FPDS. When a currently running task
calls yield(), it signals the kernel that it voluntarily
releases control of the CPU, such that the scheduler
can choose to activate other tasks before it decides to
return control to the original task, according to the
scheduler algorithm. For the current case of RTAI we
would need to modify yield() since it currently per-
forms just cooperative scheduling among tasks of the
same priority and we would need to ensure that tasks
cannot be preempted outside yield() functions when
in ready state.

Second, we can simply use the regular task model
for the subtasks. However, this would imply signifi-
cant overhead in the form of subtask to subtask com-
munication, because the subtasks need to cooperate to
maintain the precedence constraints while scheduling
these subtasks, which are otherwise implied within the
execution of a single task.

Finally, we can develop special notation for this pur-
pose by special data structures and interaction points
to be filled in by the user. This, however, would prob-
ably not differ a lot from the first case. The advantage
would be that, unlike in the first two approaches, the
kernel would be aware of the details about the subtask
structure which is important for internal analysis by
the system, for monitoring or for optimization.

In the first case the API calls play the role of explicit
preemption points. These can be programmed directly,
but also automated tools could generate preemption
points transparently to the programmer guided by
other primitives and cues in the source code such as
critical sections. Moreover, the yield() approach in-
curs low overhead and limits the modifications to the
kernel. We therefore decide for the first approach.

5 Design and implementation

While designing the implementation of our chosen
FPDS task model, we have a number of aspects that
lead our design choices. First of all, we want our imple-
mentation to remain compatible; our extensions should
be conservative and have no effect on the existing func-
tionality. Any FPDS tasks will need to explicitly in-
dicate desired FPDS scheduling behaviour. Efficiency
is important because overhead should be kept minimal
in order to maximize the schedulability of task sets.
Therefore we aim for an FPDS design which introduces
as little run-time and memory overhead as possible.
Due to the need of keeping time, we do not disable
interrupts during FPDS tasks, so the overhead of in-
terrupt handling should be considered carefully as well.
Because we want to be able to integrate our extensions
with future versions of the platform, our extensions
should be maintainable, and written in an extendable
way, with flexibility for future extensions in mind.

We aim for a FPDS implementation that is non-
preemptive only with respect to other tasks; i.e. a task
will not be preempted by another task, but can be in-
terrupted by an interrupt handler such as the timer
ISR.

The process of implementing FPDS in RTAI/Linux
was done in several stages. Because the existing sched-
uler in RTAI is an FPPS implementation with no direct
support for non-preemptive tasks, the first stage con-
sisted of a proof of concept attempt at implementing
FPNS in RTAI. The following stages then built upon
this result to achieve FPDS scheduling in RTAI in ac-
cordance with the task model and important design
aspects described above.
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5.1 FPNS design

The existing scheduler implementation in RTAI is
FPPS: it makes sure that at every moment in time, the
highest priority task that is in ready state has control
of the CPU. In contrast, FPNS only ensures that the
highest priority ready task is started upon a job finish-
ing, or upon the arrival of a task whenever the CPU is
idle. For extending the FPPS scheduler in RTAI with
support for FPNS, the following extensions need to be
made:

• Tasks, or individual jobs, need a method to in-
dicate to the scheduler that they need to be run
non-preemptively, as opposed to other tasks which
may want to maintain the default behaviour.

• The scheduler needs to be modified such that any
scheduling and context switch activity is deferred
until a non-preemptive job finishes.

Alternatively, arrangements can be made such that at
no moment in time a ready task exists that can pre-
empt the currently running FPNS task, resulting in
a schedule that displays FPNS behaviour, despite the
scheduler being an FPPS implementation. Both strate-
gies will be explored.

5.1.1 Using existing primitives

Usage of the existing RTAI primitives for influencing
scheduling behaviour to achieve FPNS would naturally
be beneficial for the maintainability of our implemen-
tation.

When investigating the RTAI scheduler primitives
exported by the API [12], we find several that can be
used to implement FPNS behaviour. These strategies
range from the blocking of any (higher priority) tasks
during the execution of a FPNS job, e.g. through sus-
pension or mutual exclusion blocking of these tasks, to
influencing the scheduler decisions by temporary modi-
fications of task priorities. What they have in common
however is that at least 2 invocations of these primitives
are required per job execution, resulting in RTAI in ad-
ditional overhead of at least two system calls per job.
Some of these methods, such as explicit suspension of
all other tasks, also have the unattractive property of
requiring complete knowledge and cooperation of the
entire task set.

5.1.2 RTAI kernel modifications

As an alternative to using existing RTAI primitives
which are not explicitly designed to support FPNS, the
notion of a non-preemptible task can be moved into the

RTAI kernel proper, allowing for modified scheduling
behaviour according to FPNS, without introducing ex-
tra overhead during the running of a task as induced by
the mentioned API primitives. Looking ahead to our
goal of implementing FPDS, this also allows more fine
grained modifications to the scheduler itself, such that
optional preemption points become possible in an effi-
cient manner: rather than trying to disable the sched-
uler during an FPNS job, or influencing its decisions by
modifying essential task parameters such as priorities,
the scheduler would become aware of non-preemptible
or deferred preemptible tasks and support such a sched-
ule with intelligent decisions and primitives. It does
however come at the cost of implementation and main-
tenance complexity. Without availability of documen-
tation of the design and implementation of the RTAI
scheduler, creating these extensions is more difficult
and time consuming than using the well documented
API. And because the RTAI scheduler design and im-
plementation is not stable, as opposed to the API,
continuous effort will need to be spent on maintain-
ing these extensions with updated RTAI source code,
unless these extensions can be integrated into the RTAI
distribution. Therefore we aim for a patch with a small
number of changes to few places in the existing source
code.

An important observation is that with respect to
FPPS, scheduling decisions are only made differently
during the execution of a non-preemptive task. Pre-
emption of any task must be initiated by one of the
scheduling functions, which means that one possible
implementation of FPNS would be to alter the deci-
sions made by the scheduler if and only if a FPNS task
is currently executing. This implies that our modifica-
tions will be conservative if they change scheduling be-
haviour during the execution of non-preemptive tasks
only.

During the execution of a (FPNS) task, interference
from other, higher priority tasks is only possible if the
scheduler is invoked through one of the following ways:

• The scheduler is invoked from within the timer
ISR

• The scheduler is invoked from, or as a result of a
system call by the current task

The first case is mainly used for the release of jobs
- after the timer expires, either periodically or one-
shot, the scheduler should check whether any (periodic)
tasks should be set ready, and then select the highest
priority one for execution. The second case applies
when a task does a system call which alters the state
of the system in such a way that the schedule may be
affected, and thus the scheduler should be called to
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determine this. With pure FPNS, all scheduling work
can be deferred until the currently running task finishes
execution. Lacking any optional preemption points,
under no circumstances should the current FPNS task
be preempted. Therefore, the condition of a currently
running, ready FPNS task should be detected as early
on in the scheduler as possible, such that the remaining
scheduling work can be deferred until later, and the
task can resume execution as soon as possible, keeping
the overhead of the execution interruption small.

In accordance with our chosen task model in Sec-
tion 4, we decide to modify the kernel with explicit non-
preemptive task support, as described in section 5.1.2.

5.2 FPNS implementation

Towards an FPNS aware RTAI scheduler, we
extend the API with a new primitive named
rt_set_preemptive(), consistent with other primi-
tives that can alter parameters of tasks, that accepts a
boolean parameter indicating whether the calling task
should be preemptible, or not. This value will then
be saved inside the task’s control block (TCB) where
it can be referenced by the scheduler when making
scheduling decisions. This preemptible flag inside the
TCB only needs to be set once, e.g. during the cre-
ation of the task and not at every job execution, such
that there is no additional overhead introduced by this
solution.

Execution of the scheduler should be skipped at the
beginning, if the following conditions hold for the cur-
rently running task:

• The (newly added) preemptible boolean variable is
unset, indicating this is a non-preemptive task;

• The delayed task state flag is not set, indicating
that the job has not finished;

• The ready task state flag is set, indicating that the
job is ready to execute and in the ready queue.

We have added these tests to the start of both scheduler
functions rt_schedule() and rt_timer_handler(),
which resulted in the desired FPNS scheduling for non-
preemptible tasks. For preemptive tasks, which have
the default value of 1 in the preemptible variable of
the TCB, the scheduling behaviour is not modified,
such that the existing FPPS functionality remains un-
affected.

5.3 FPDS design

Following the description of FPNS in the previous
section, we move forward to the realisation of a FPDS

scheduler, by building upon these concepts. An FPDS
implementation as outlined in Section 4, where sub-
tasks are modeled as non-preemptive tasks with pre-
emption points in between, has the following important
differences compared to FPNS:

• A job is not entirely non-preemptive anymore;
it may be preempted at predefined preemption
points, for which a scheduler primitive needs to
exist.

• The scheduling of newly arrived jobs can no longer
be postponed until the end of a non-preemptive
job execution, as during a (optional) preemption
point in the currently running job information is
required about the availability of higher priority
ready jobs.

There are several ways to approach handling inter-
rupts which occur during the execution of nonpreemp-
tive subjob. First, the interrupt may be recorded with
all scheduling postponed until the scheduler invocation
from yield() at the next preemption point, similar to
our FPNS implementation, but at much finer granular-
ity.

Alternatively, all tasks which have arrived can be
moved from the pending queue to the ready queue di-
rectly (as is the case under FPPS), with only the con-
text switch postponed until the next preemption point.
This has the advantage that there is opportunity for
optional preemption points to be implemented, if the
information about the availability of a higher prior-
ity, waiting task can be communicated in an efficient
manner to the currently running FPDS task for use at
the next optional preemption point. These two alter-
natives can be described as pull versus push models
respectively. They represent a tradeoff, and the most
efficient model will most likely depend on both the task
sets used, and the period of the timer.

On our platform we could not measure the differ-
ence between these two alternatives; any difference in
efficiency between the two approaches was lost in the
noise of our experiment. Therefore we opted to go with
the last alternative, as this would not require exten-
sive rewriting of the existing scheduler logic in RTAI,
and thereby fit our requirements of maintainability and
our extensions being conservative. The efficiency dif-
ferences between these approaches may however be rel-
evant on other platforms, as described in [10], based
on [8].

5.4 FPDS implementation

It would appear that using a standard yield() type
function, as present within RTAI and many other op-
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erating systems, would suffice for implementing a pre-
emption point. Upon investigation of RTAI’s yield
function (rt_task_yield()) it turned out however
that it could not be used for this purpose unmodified.
This function is only intended for use with round-robin
scheduling between tasks having equal priority, because
under the default FPPS scheduler of RTAI there is no
reason why a higher priority, ready task would not al-
ready have preempted the current, lower priority task.
However with the non-preemptive tasks in FPDS, a
higher priority job may have arrived but not been con-
text switched in, so checking the ready queue for equal
priority processes is not sufficient. An unconditional
call to scheduler function rt_schedule() should have
the desired effect, as it can move newly arrived tasks
to the ready queue, and invoke a preemption if neces-
sary. However, the modified scheduler will evaluate the
currently running task as non-preemptive, and avoid a
context switch. To indicate that the scheduler is being
called from a preemption point and a higher priority
task is allowed to preempt, we introduce a new bit flag
RT_FPDS_YIELDING to the task state variable in the
TCB, that is set before the invocation of the scheduler
to inform it about this condition. The flag is then reset
again after the scheduler execution finishes.

Due to the different aim of our FPDS yield func-
tion in comparison to the original yield function in
RTAI we decided not to modify the existing function,
but create a new one specific for FPDS use instead:
rt_fpds_yield(). The FPDS yield function is sim-
pler and more efficient than the regular yield function,
consisting of just an invocation of the scheduler func-
tion wrapped between the modification of task state
flags. This also removed the need to modify the exist-
ing code which could introduce unexpected regressions
with existing programs, and have a bigger dependency
on the existing code base, implying greater overhead in
maintaining these modifications in the future.

5.4.1 Scheduler modifications

Working from the FPNS implementation of Section 5.1,
the needed modifications to the scheduling functions
rt_schedule() and rt_timer_handler() for FPDS
behaviour are small. Unlike the FPNS case, the ex-
ecution of the scheduler cannot be deferred until the
completion of a FPDS (sub)task if we want to use the
push mechanisms described in Section 5.3, as the sched-
uler needs to finish its run to acquire this information.
Instead of avoiding the execution of the scheduler com-
pletely, for FPDS we only defer the invocation of a con-
text switch to a new task, if the currently running task
is not at a preemption point.

The existing if clause introduced at the start of the
scheduler functions for FPNS is therefore moved to a
section in the scheduler code between parts 3 and 4
as described in Section 3.3, i.e. at which point the
scheduler has decided a new task should be running,
but has not started the context switch yet. At this
point we set a newly introduced TCB integer variable
should_yield to true, indicating that the current task
should allow itself to be preempted at the next pre-
emption point. This variable is reset to false whenever
the task is next context switched back in.

With these modifications, during a timer interrupt
or explicit scheduler invocation amidst a running FPDS
task, the scheduler will be executed and wake up any
timed tasks. If a higher priority task is waiting at
the head of the ready queue, a corresponding noti-
fication will be delivered and the scheduler function
will exit without performing a context switch. To al-
low an FPDS task to learn about the presence of a
higher priority task waiting to preempt it, indicated
by the should yield variable in its TCB in kernel space
which it however does not have permissions for to
read directly, we introduced a new RTAI primitive
rt_should_yield() to be called by the real-time task,
which returns the value of this variable. In the current
implementation this does however come at the cost of
performing a system call at every preemption point.

In a later version of our FPDS implementation in
RTAI, not yet reflected in the measurements in this
paper, we improved the efficiency of preemption points
by removing the need for this system call. The location
of the should yield variable was moved from the TCB
in kernel space to user space in the application’s ad-
dress space, where it can be read efficiently by the task.
Upon initialization, the FPDS task registers this vari-
able with the kernel, and makes sure the corresponding
memory page is locked into memory. The contents of
this variable are then updated exclusively by the ker-
nel, which makes use of the fact that updates are only
necessary during the execution of the corresponding
FPDS task, when its address space is already active
and loaded in physical memory. This design is simi-
lar to the one described in [2] for implementing non-
preemptive sections.

5.5 Abstraction

For simplicity of usage of our FPDS implementa-
tion, we created a dynamic library called libfpds which
can be linked to a real-time application that wants to
use FPDS. A preemption point can then be inserted
into the code by inserting an invocation of fpds_pp(),
which internally performs rt_should_yield() and
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fpds_yield() system calls as necessary. Alternatively,
the programmer can pass a parameter to indicate that
the task should not automatically be preempted if a
higher task is waiting, but should merely be informed
of this fact.

6 Key performance indicators

Our implementation should be checked for the fol-
lowing elements, which relate to the design aspects
mentioned in Section 5:

• The interrupt latency for FPDS. This is intrinsic
to FPDS, i.e. there is additional blocking due to
lower priority tasks. It has been dealt with in the
analysis in [3, 4];

• The additional run-time overhead due to addi-
tional code to be executed. This will be measured
in Section 7;

• The additional space requirements due to addi-
tional data structures and flags. Our current im-
plementation introduces only two integer variables
to the TCB, so the space overhead is minimal;

• The number of added, changed, and deleted lines of
code (excluding comments) compared to the orig-
inal RTAI version. Our extension adds only 106
lines and modifies 3 lines of code, with no lines
being removed;

• The compatibility of our implementation. Because
our extensions are conservative, i.e. they don’t
change any behaviour when there are no non-
preemptive tasks present, compatibility is pre-
served. This is also verified by our measurements
in Section 7.1.

7 Measurements

We performed a number of experiments to measure
the additional overhead of our extensions compared
to the existing FPPS scheduler implementation. The
hardware used for these tests was an Intel Pentium 4
PC, with 3 Ghz CPU, running Linux 2.6.24 with (mod-
ified) RTAI 3.6-cv.

7.1 Scheduling overhead

The goal of our first experiment is to measure the
overhead of our implementation extensions for existing
real-time task sets, which are scheduled by the stan-
dard RTAI scheduler, i.e. following FPPS. For non-
FPDS task sets, scheduling behaviour has not been

Figure 3. Overhead of the modified kernel for
FPPS task sets

changed by our conservative implementation, but our
modifications may have introduced additional execu-
tion overhead.

As our example task set we created a program with
one non-periodic, low priority, long running FPPS task
τl, and one high priority periodic FPPS task τh. τl
consists of a for loop with a parameterized number
of iterations m, to emulate a task with computation
time Cl. The computation time of the high priority
task, Ch, was 0; the only purpose of this empty task
is to allow for measurement of overhead of scheduling
by presenting an alternative, higher priority task to the
scheduler. Th was kept equal to the period of the timer,
such that a new high priority job is released at every
scheduler invocation from the timer event handler.

Since, from the perspective of an FPPS task, the
only modified code that is executed is in the scheduler
functions, we measured the response time of task τl un-
der both the original and the modified FPDS real-time
RTAI kernel, varying the period of the timer interrupt,
and thereby the frequency of scheduler invocations en-
capsulated by the timer event handler. The results are
shown in Figure 3.

As expected, there is no visible difference in the over-
head of the scheduler in the modified code compared
to the original, unmodified RTAI kernel. For an FPPS
task set the added overhead is restricted to a single if
statement in the scheduler, which references 3 variables
and evaluates to false. This overhead is unsubstantial
and lost in the noise of our measurements. We con-
clude that there is no significant overhead for FPPS
task sets introduced by our FPDS extensions.
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7.2 Preemption point overhead

With an important aspect of FPDS being the place-
ment of preemption points in task code between sub-
tasks, the overhead introduced by these preemption
points is potentially significant. Depending on the fre-
quency of preemption points, this could add a sub-
stantial amount of additional computation time to the
FPDS task. In the tested implementation, the domi-
nating overhead term is expected to be the overhead of
a system call (Csys) performed during every preemp-
tion point, to check whether the task should yield for a
higher priority task. The system call returns the value
of a field in the TCB, and performs no additional work.

We measured the overhead of preemption points by
creating a long-running, non-periodic task τl with fixed
computation time Cl implemented by a for loop with
m = 100M iterations, and scheduled it under both
FPPS and FPDS. The division into subtasks of task τl
has been implemented by invoking a preemption point
every n iterations, which is varied during the course of
this experiment, resulting in dm/ne preemption point
invocations.

For the FPPS test the same task was used, except
that every n iteration interval only a counter variable
was increased, instead of the invocation of a preemp-
tion point. This was done to emulate the same low
priority task as closely as possible in the context of
FPPS.

The response time Rl was measured under varying
intervals of n for both FPPS and FPDS task sets. The
results are plotted in Figure 4.

Clearly the preemption points introduced in the
lower priority task introduce overhead which does not
exist in a FPPS system. The extra overhead amounts
to about 440 µs per preemption point invocation,
which corresponds well with a measured value Csys of
434 µs per general RTAI system call overhead which
we obtained in separate testing. This suggests that the
overhead of a preemption point is primary induced by
the rt_should_yield() system call in the preemption
point implementation, which is invoked uncondition-
ally.

7.3 An example FPDS task set

Whereas the previous experiments focussed on mea-
suring the overhead of the individual extensions and
primitives added for our FPDS implementation, we
performed an experiment to compare the worst case
response time of a task set under FPPS and FPDS as
well. The task set of the previous experiment was ex-
tended with a high priority task τh with a non-zero

Figure 4. Overhead of preemption points

computation time Ch. For this experiment we varied
the period of the high priority task. To keep the work-
load of the low priority task constant, we fixed the in-
terval n of preemption points to a value (5000) frequent
enough to allow preemption by τh without it missing
any deadlines under all values of Th ≥ 1.2ms under
test. The response time of the low priority task Rl is
plotted in Figure 5.

The relative overhead appears to depend on the fre-
quency of high priority task releases and the resulting
preemptions in preemption points, as the number of
preemption points invoked in the duration of the test
is constant. The results show an increase in the re-
sponse time of τl for FPDS of at most 17% with a
mean around 3%. The large discrepancy of the results
can probably be attributed to the unpredictable inter-
ference from interrupts and the resulting invalidation
of caches. Considering the relatively low mean over-
head of FPDS, we would like to identify the factors
which contribute to the high variation of the task re-
sponse time, and investigate how these factors can be
eliminated (see Section 8).

8 Conclusions and future work

In this paper we have presented our work on the im-
plementation of FPDS in the real-time operating sys-
tem, RTAI/Linux. We have shown that such an imple-
mentation in a real-world operating system is feasible,
with only a small amount of modifications to the exist-
ing code base in the interest of future maintainability.
Furthermore, a set of experiments indicated that our
modifications introduced no measurable overhead for

9

13



Figure 5. A task set scheduled by FPPS and
FPDS

FPPS task sets, and only small mean overhead intro-
duced by converting a FPPS task set into FPDS.

As a follow up to this work, we would like to further
investigate the tradeoffs between regular preemption
points and optional preemption points. In particular
we would like to gain quantitive results exposing the
tradeoffs in moving tasks to the ready queue during
the execution of a non-preemptive subjob, with respect
to saved system calls, invalidation of caches and other
overheads.

Finally, we would like to research how additional in-
formation about FPDS task structures in the form of a
DAG can benefit the scheduling decisions. A DAG will
specify the worst-case computation times of subtasks
and thus form a sort of contract between the tasks and
the scheduler, allowing to combine FPDS with reser-
vations. Methods for monitoring and enforcing these
contracts need to be investigated.
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