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Mathematically Reduced Reaction Mechanisms Applied to 
Adiabatic Flat Hydrogen/Air Flames 

R. L. G. M. EGGELS and L. P. H. de GOEY* 
Eindhoven University of Technology, Faculty of Mechanical Engineering (WOC), PO Box 513, 5600 MB Eindhoven, 

The Netherlands 

Several hydrogen/air reaction systems are reduced mathematically to one-step schemes, using the method 
introduced by Maas and Pope [l]. The reduction is obtained by assuming fast reaction groups of the reaction 
system to be in steady state. We developed a method to apply the reduced schemes to adiabatic flat flames. 
The results are compared with those of detailed chemistry calculations. The accuracy of the results of 
reduction of the most simple reaction system, (which does not include the species HO, and H,O,) is quite 
well. The other reaction systems, however, give appreciable errors in burning velocity. This is mainly caused 
by large deviations in HO, mole fractions between reduced and full scheme calculations, while the reaction 
rate and the burning velocity are sensitive to variations in the mole fraction of HO*. Considering the time 
scales of the reaction system and the time scales of convection and diffusion it is shown that at low 
temperatures, where the mole fraction of HO, reaches its maximum, the basic assumptions applied to reduce 
the mechanisms are not justified. It is concluded that the hydrogen/air system can only be reduced to an 
accurate one-step reduced scheme, if reaction schemes without HO, and H,O, are used. This reduction 
technique also indicates, in accordance with conclusions of Peters et al. [3], that a two-step reduced scheme 
has to be used if more realistic hydrogen/air schemes, including HO, and H,O,, are considered. 

1. INTRODUCTION 

Numerical calculations of multidimensional 
combustion processes, including detailed kinet- 
ics, require excessive computing power, mainly 
caused by the large number of species in- 
volved. For better understanding of combus- 
tion processes as well as for engineering pur- 
poses, reduction of the computing effort is 
required. To reduce the complexity of the sys- 
tem and, therefore, also the demanded com- 
puting effort, it is highly desirable to reduce 
the number of differential equations, without 
losing too much accuracy. As a result many 
combustion researchers work [l-6] on the re- 
duction of chemical reactions schemes, nowa- 
days. Conventional reduction methods 12-41 
are based on steady-state and partial-equi- 
librium assumptions. Knowledge of reaction 
systems is required to decide which species and 
reactions may be assumed in steady state or in 
partial equilibrium. Furthermore, each specific 
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combustion problem needs its own reduced 
mechanism. 

An alternative method to simplify chemical 
kinetics is CSP (Computational Singular Per- 
turbation), introduced by Lam and Goussis 
[5-61. This method is based on the separation 
of the reaction system into slow and fast reac- 
tion groups. The decoupling of fast reaction 
groups makes it possible to solve the stiff set of 
differential equations, that describe the com- 
plex reaction system, fast and efficiently. More- 
over, the information on the fast and slow 
reaction groups, can be used to find out which 
set of reactions is in partial equilibrium and 
which species are in steady state, locally. This 
can be used to develop convential reduced 
schemes, as described above. An advantage of 
the method is this can be done automatically. 
Therefore, less insight in chemical kinetics is 
required. 

The method of Intrinsic Low-Dimensional 
Manifolds in Composition Space, presented by 
Maas and Pope [l] is based on the same basic 
ideas as CSP. This method also separates the 
full reaction scheme into reaction groups of 
large and small time scales automatically. The 
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reduction of the system is obtained by intro- 
ducing steady-state approximations for the re- 
action groups corresponding with the smallest 
time scales. The main difference of this reduc- 
tion technique and the CSP method is that the 
manifold, defined by the steady-state assump- 
tions, is parametrized. Moreover, the steady- 
state equations are calculated beforehand and 
the solution is stored, making fast flame calcu- 
lations possible. The difference with conven- 
tional reduced schemes is that the steady-state 
assumptions are neither partial-equilibrium as- 
sumptions for elementary reactions nor 
steady-state assumptions for intermediate 
species. Furthermore, the steady-state rela- 
tions for the mathematically reduced scheme 
are not fixed throughout the combustion pro- 
cess. The dimension (number of differential 
equations) of the reduced scheme may be cho- 
sen appropriately. Note that it is not possible 
to determine the most appropriate dimension 
of the reduced mechanism beforehand. The 
same problem arises if conventional reduction 
methods are used. However, examination of 
the eigenvalues on the manifold and compar- 
ing these with the time scales of convection 
and diffusion gives an estimate whether the 
reduced scheme will be appropriate. 

In this article, we study the use of the math- 
ematical reduction technique in the modeling 
of adiabatic flat premixed hydrogen/air flames. 
We will restrict ourselves to one-dimensional 
reduced schemes. The principle of the mathe- 
matical reduction technique is explained briefly 
in Section 2, where we focus on the basic 
assumptions of the method. In Section 3 we 
present the method we use to apply the low-di- 
mensional manifold to flat-flames. The results 
are compared with those of full scheme calcu- 
lations in Section 4. It appears that differences 
with full scheme calculations increase when 
more complex reaction schemes are used. To 
investigate the source of the differences, we 
introduce a time scale analysis of the system 
(Section 5). This analysis indicates that the 
approximations applied to reduce the reaction 
scheme are not justified when more complex 
reaction schemes are used. Higher-order re- 
duction methods have to be used for these 
reaction mechanisms. 

2. MATHEMATICALLY REDUCED 
SCHEMES 

The method followed to reduce complex reac- 
tion schemes is presented here briefly. Basi- 
cally we follow the approach of Maas and Pope 
[l], who explained the method in more detail. 

Consider the conservation equations of the 
species, given by 

p$ + pv * v+j - v * (pD,V<b,) = p&, (1) 

where & denotes the specific mole number, 
defined by y/Mj, with y the mass fraction 
and Mi the molar mass of species i. The 
density of the mixture is given by p, v is the 
flow velocity vector, Di the diffusion coeffi- 
cient, and B$ the chemical source term of 
species i. Additional to the conservation equa- 
tions for the species we have to solve the 
conservation equations for mass, momentum 
and enthalpy. 

To study the chemical nature of the reaction 
system we consider a homogeneous system first: 

(2) 

The system is described in the n-dimensional 
composition space where 4, = (&, . . . , &JT 
indicates the composition vector, containing 
the specific mole numbers 4i of the II species. 
Because reaction processes obey the conserva- 
tion equations of elements, displacements in 
composition space are restricted to a (n - n,) 
subspace, where n2, denotes the number of 
elements. For the reduced scheme movements 
in composition space are even more restricted. 
Only evolution on a low-dimensional manifold, 
defined by steady-state assumptions for the 
fastest reaction groups, is allowed. The number 
of steady-state assumptions is (n - n, - II,), 
for a n,-dimensional reduced scheme. Fast and 
slow reaction groups can be separated by use 
of an eigenvector analyses of the source term 
w = (W,, . . .) WnjT, linearized around a refer- 
ence composition 4’: 

w = W(r#JO> + 
aW+O> 

a+ cd! - +O>. 



MATHEMATICALLY REDUCED MECHANISMS 561 

The absolute values of the real parts of the 
eigenvalues of the Jacobian matrix aw(+‘)/ 
a+ are the reciprocal values of the typical 
time scales of the linearized system. This can 
be seen by considering an instationary homo- 
geneous system in the basis of eigenvectors of 
G’If’($‘)/@. In this basis, the eigenvalues are 
ordered in descending order of real part: 
Re(h,) 2 ... 2 Re(h,), where Re( A,) denotes 
the real part of eigenvalue i. Then, we may 
write: 

a+’ - = W’(t$O> + A(+’ - +‘a>, 
dt 

where A = diag(A,, . . . , A,), with Ai the eigen- 
values of the Jacobian matrix. The accents 
denote the variables in the basis of eigenvec- 
tors. As a result of the diagonalization, the 
differential equations in Eq. 4 are decoupled 
and the solutions are exponentials with typical 
time scales given by 

Ti = l/IRe(h,)l. (5) 

If the eigenvalues are complex, the real and 
imaginary parts of the complex eigenvectors 
are used in a modified basis. We now return to 
the general system (Eq. 1). As the reduction 
only affects the chemical part and it is assumed 
that the convective and diffusive parts have 
larger time scales than the time scales of the 
reduced scheme, we conclude that the time 
scales of Eq. 5 are also the time scales of the 
full reaction system. The steady-state assump- 
tions for the fastest reaction groups are formu- 
lated slightly differently than those used by 
Maas and Pope [ll. This, however, does not 
affect the results. We use the left eigenvectors 
(SF, i = I, n> of the Jacobian matrix to formu- 
late the steady-state assumptions. These left 
eigenvectors are defined by 

(6) 

As the eigenvalues are ordered in descending 
order of real part on the diagonal of matrix A, 

the steady-state assumptions are given by 

s;w = 0, i = n, + n, + 1,. . . , n. (7) 

In this paper we only consider the case of 
adiabatic flames with unit Lewis numbers Le, 
= h/c, pD, = 1. This approximation is not es- 
sential for the method but is introduced for 
simplicity: it reduces the dimension of the 
manifold. When this assumption is relaxed the 
specific element mole numbers and enthalpy as 
additional degrees of freedom. 

As we consider unit Lewis numbers and adi- 
abatic flames, the specific element mole num- 
bers ,yj and the enthalpy h are constant 
throughout the domain and are fixed by the 
stoichiometry and the temperature of the un- 
burned mixture. Thus, additional to the 
steady-state equations we also may formulate 
n, conservation equations for the elements. 
These may be written as 

(Pj3 +I = Xj, j=1,2,. n .., E, (8) 

where pi denotes the element composition 
vector for element j (j.~ is the number of 
atoms of element j in species i> and xj de- 
notes the constant value of the specific ele- 
ment mole number of element j. 

Finally, we have to solve n, differential 
equations corresponding to the largest time 
scales together with the steady-state relations 
(Eq. 7) and the conservation equations for the 
elements (Eq. 8), instead of the full complex 
set of Eqs. 1. The solution procedure is sepa- 
rated in two parts. Firstly, the manifold defined 
by Eqs. 7 and 8 is parametrized by n, parame- 
ters, the so-called controlling variables. Then 
Eqs. 7 and 8 are solved for all physically rea- 
sonable values of the controlling variables and 
stored in a file. As controlling variable we may 
choose any linear combination of specific mole 
numbers as long as there exists only one point 
on the manifold for given controlling variables. 
Secondly, ~1, differential equations for the con- 
trolling variables are solved during the applica- 
tion of the reduced scheme. Knowing the spa- 
tial dependence of the controlling variables the 
mixture composition is found at every position 
by using the manifold map. In the remaining 
part of this section we present the method 
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used to calculate the manifold, in Section 3 the 
differential equations for the controlling vari- 
ables are derived. 

In this paper we consider one-dimensional 
reduced schemes (n, = 1) of several hydro- 
gen/air systems. There are two elements 0 
and H-present in the systems, thus IZ, = 2. 
Nitrogen is not considered here, since N, is 
treated as an inert species. As controlling vari- 
able, denoted as cy the specific mole number 
of H,O is used. Using the definition of the 
manifold (Eq. 7) and the conservation equa- 
tions for elements (Eq. 8) we have to solve 

g = 0, 

with 

(9) 

g, = &,O - ff = 0, 

g, = (PO, $1 - xo = 0, 

g, = (I+,, 4) - Xu = O, 

g, = s;w = 0, i=4 ,***, 12. 

The temperature of a point on the manifold 
follows from the enthalpy equation: 

which is fixed for unit Lewis numbers. Here, hy 
denotes the heat of formation per unit mass, at 
some reference temperature T,,, c,,, the spe- 
cific heat of species i per unit mass at constant 
pressure and href the constant value of the 
enthalpy, given by the condition of the un- 
burned mixture. 

Newton’s method is applied to solve Eq. 9. 
For initial compositions 4’ outside the conver- 
gence area of Newton’s method, Eq. 9 is solved 
by using a time-stepping method, which in- 
creases the convergence area of the method. 
Then, the steady-state equations of Eq. 10 are 
replaced by 

gi=S” W- 9) =0 
( 

fori=4,...,n, 

(12) 
where At denotes a (small) time step. The 
other equations of Eq. 10 are not modified. 
This set of equations is also solved with New- 

ton’s method for every time step. The equation 
set 10 or 12 together with Eq. 11 is solved for 
all physically reasonable values of the control- 
ling variable. As we use +n_+ as controlling 
variable, the initial composrtron is given by 
ti H,O = 0 and manifold compositions are cal- 
culated for increasing H,O-specific mole num- 
bers at least until the H,O equilibrium level is 
reached. 

3. APPLICATION OF ONE-DIMENSIONAL 
MANIFOLDS TO FLAT FLAMES 

In this section we describe how the reduced 
scheme is applied to stationary flat flames. The 
differential equations for the species of the full 
system follow from Eq. (1): 

for i = l,...,n, (13) 

where ti = pu is the constant mass flow rate. 
To apply the reduction method to the flat 
flame we have to transform the differential 
equations for the species to one differential 
equation for the controlling variable (Y. For 
the reduced scheme calculations, compositions 
are restricted to manifold compositions. There- 
fore, variations in the specific mole numbers of 
the different species cannot be of arbitrary 
magnitude; changes of the vector 4 are re- 
stricted to movements along the manifold. To 
restrict the movements along the manifold, we 
project the differential equations of the species 
in the direction of the tangential direction 
vector of the manifold d+/d a. This gives us 

n d+i d4i n d4i d( PDi) d4i n;ic---c--- 
i=l da: ~ i=l da dx dx 

- ig gpDi$ - igl $pw, = 0. 

(14) 

A projection method based on the eigenvectors 
can be used instead of Eq. 14. We have chosen 
to use this projection Eq. 14 because then we 
don’t have to store the eigenvectors. This dif- 
ferential .equation contains derivatives of c#+ of 
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all species. As the mixture compositions are 
always part of the manifold, we rewrite the 
differential equation in terms of (Y only, by 
using: 

+ = (b(Q). (15) 

Differentiating + with respect to the spatial 
coordinate x gives: 

d+ d+ da -=-- 
65 da dx 

(16) 

For the second-order derivative of 4 we find 

Substitution of Eqs. 16 and 17 into the differ- 
ential equation for the controlling variable CY, 
Eq. 14 finally gives 

d*a n d+i 
PDis - C ZPU: = O* 

i=l 

(18) 

This is the differential equation solved numeri- 
cally for the controlling variable (Y for station- 
ary flat flames. The nonlinear term (da/&l2 
of the differential equation 18 is linearized by 
writing it as Cd a/dx)j_ *Cd ct/dx>j, where j de- 
notes the iteration index. The remaining equa- 
tion is discretized using a finite difference 
scheme [7]. A special gridding procedure is 
used to avoid interpolations on the manifold. 
This is done by regridding in such a way, that 
the values of the controlling variables in the 
grid points coincide with manifold (grid) points, 
so that no interpolation errors are made. 
Moreover, the regridding procedure is less ex- 
pensive than the interpolation procedure: no 
interpolations of species and chemical source 
terms have to be made. The coefficients 
de/da are functions of (Y only, and are con- 
stant if the values of the controlling variables 

remain the same in the grid points. Note that 
this regridding procedure becomes compli- 
cated if more-dimensional geometries are used. 
Note that it can be used only in case of one-di- 
mensional manifolds. For more-dimensional 
manifolds a similar procedure can be used to 
minimize the interpolation errors. 

4. RESULTS 

We consider the three hydrogen/air reaction 
systems given in Appendix A. They differ in 
number of species and reactions. The most 
simple System (I) includes species H,, 0,) H, 
0, OH, and H,O and is not physically realistic. 
The second System (II) also takes into account 
HO,. The third System (III) additionally in- 
cludes H,O,. It has to be stressed that it is our 
primaIy aim to test the reduction method and 
that the accuracy of the reaction systems itself 
is therefore of minor interest. For all calcula- 
tions simplified transport and thermodynamic 
properties are used (unit Lewis numbers Le, = 
1, constant and for all species equal specific 
heat cP, = CJ These approximations are not 
essential for the reduction method and are 
introduced for simplicity. In order to investi- 
gate the accuracy of the one-step reduced 
schemes, we compare the results with full 
scheme calculations, using the same approxi- 
mations. 

4.1 Manifold calculations 

Scaled specific mole numbers & of the one-di- 
mensional manifold maps are given by the 
solid lines in Figs. l-3 as function of the scaled 
H,O specific mole numbers. The differences 
between System I and II are small for the 
species H, and 0,. For the radicals H, 0, and 
OH, however, we see that the region where the 
radical levels are high is smaller for System II. 
The influence of adding-HO, to the system is 
large, especially for low &o values. Since the 
differences between System I and II are larger 
than the differences between System II and 
III, we focus on differences between Systems I 
and II mainly. 

The reduction method assumes reaction 
groups corresponding to the largest eigenval- 
ues in steady state. The accuracy of the reduc- 
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tion increases, if the difference between the 
time scales of the reaction groups that are 
supposed to be in steady state and the time 
scale of the remaining slowest process in- 
crease. Therefore, it is interesting to consider 
the magnitude of the real part of the eigenval- 
ues along the manifold. Although some eigen- 
values were complex during the evaluation of 
the manifold, they were found to be real after 
convergence was reached. Absolute values of 
the eigenvalues along the manifold are given in 
the Figures 4-6 for schemes I, II, and III, 
respectively. Since reaction system I contains 
six active species (and seven and eight for 
Systems II and III, respectively) it contains six 
time scales. Due to conservation of elements 
(0 and H) two of the eigenvalues are equal to 
zero. The other eigenvalues are ordered in 
descending order of real part, i.e., eigenvalue 1 
has the largest real part. Most eigenvalue: are 
negative, only eigenvalue 1 is positive for +nZO 
,< 0.7 (this is also the case for $nZO ,< 0.65 for 
Systems II and III). The first eigenvalue goes 
to zero _ (log(lRe( A, )I) --f - W> at the point 
where 4nz0 = 0.7 (or d;uZO = 0.65). The 
species profiles are smooth here because the 
transtion of the first eigenvalue from positive 

1 

0.6 
e 

0.4 

Fig. 1. Scaled specific mole numbers and 
temperature as function of the controlling 
variable $nzo; comparison of reduced 
(continuous lines) and full flat-flame cal- 
culations (dashed lines), for System I. The 
maximum mole fractions are: 02, 1.5 X 

10-l; H, 9.7 x lo-‘; OH, 2.7 x lo-‘; 0, 
1.7 x lo-‘; H,, 3.0 x 10-l; H,O, 2.7 x 
lo-‘, and T: 2750 K. 

values to negative values is smooth. Consider- 
ing the full system (see next section) it is seen 
that the chemical source term of species H,O 
reaches a maximum at thts point (dW’uzo/ 
%I*0 = 0). Note that at +nZO = 0.55 etgen- 
values 1 and 2 are not equal; eigenvalue 1 is 
positive and eigenvalue 2 is negative. 

Comparing the specific mole numbers and 
eigenvalues of Systems I and II we see that, 
except from the fact that System II has one 
more eigenvalue, the specific mole numbers 
and the eigenvalues are not changed much for 
values of &i20 > 0.5. One major difference is 
that the first eigenvalue is equal to the second 
one for System II near $nZo = 0.8 and for 
# uZO ,< 0.22. The reduction method is not ap- 
propriate here and the profiles of the species 
are therefore not smooth at (PHZO = 0.8. 

4.2. Flat flame calculations 

Reduced and complex flat-flame calculations 
are performed with the three mentioned 
schemes. The results of the complex _calcula- 
tions are presented as function of 4nz0 in 
Figures l-3 by the dotted lines. The profiles of 
the species are also shown in Figs. 7 and 8 as 

1 

0.6 
t-5 

0.4 

Fig. 2. Scaled specific mole numbers and 
temperature as function of the controlling 
variable $uzO; comparison of reduced 
(continuous lines) and full flat-flame cal- 
culations (dashed lines), for System II. 
The maximum mole fractions are: Oa, 
1.5 x lo-‘; H, 8.9 x lo-‘; OH, 2.7 X 
10-r; 0, 1.7 x 1O-2; H,, 3.0 x 10-l; 
H,O, 2.7 x 10-l; HOr, 2.4 x 10S4; and 
T, 2740 K. 
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0.8 

Fig. 3. Scaled specific mole numbers and 
temperature as function of the controlling 
variable 4, o; comparison of reduced 
(continuous &es) and full flat-flame calcu- 
lations (dashed lines), for System III. The 
maximum mole fractions are O,, 1.5 X 
10-l; H, 9.8 x lo-‘; OH, 2.7 x lo-‘; 0, 
1.7 x lo-‘; H,, 2.9 x 10-l; H,O, 2.7 x 
IO-‘; HO,, 2.4 x 10-4; HzO,, 9.8 x 
10-j; and T, 2750 K. Note that the specific 

0.6 08 1 mole number of H,Oz for the full scheme 
is not visible in the figure because it is 

e, 0 much smaller than for the reduced scheme. 

function of x for Systems I and II. It appears HO, to the reaction system on the mass burn- 
that only the H-radical specific mole number is ing rate is large. Reduced scheme calculations 
overestimated for System I. The specific mole with schemes II (and III) predict overly low 
numbers of the other species are predicted HO, concentrations and, therefore, underesti- 
well. The differences are hardly visible in the mate the mass burning rates considerably. The 
spatial domain (Fig. 7). For System II (and III> influence of variations in &Oz on the burning 
it is seen that the difference between reduced velocity is considered in more detail by consid- 
and full scheme is large for HO, (and H,O,). ering the sensitivity of the net chemical source 
Differences between other radical profiles are term (Wred = (IV, a+/&>/la+,/&~l~> of the 
large around &20 = 0.8, where the first two reduced scheme. The sensitivity is defined as 
eigenvalues are equal. Note that overestimates aw,,,/a~,oi~HOz/WTed) and is shown in Fig. 
of radicals are sometimes also observed in 9 for Systems II and III. It is seen that the net 
conventional reduced schemes. Comparing the source term of the one-step reduced scheme 
mass burning rates of the complex and the strongly depends on the specific mole numbers 
reduced calculations of System I and II (Table 
l>, we see that the influence of adding species 

of HO, for low values of &nzO. This explains 
deviations between profiles and mass burning 

I” 

0 0.2 0.4 0.6 0.8 1 

Q, HP 
Fig. 4. Eigenvalues of the reduced hydrogen/air reaction 
System I. 

0.6 0.8 1 

Fig. 5. Eigenvalues of the reduced hydrogen/air reaction 
system II. Note that eigenvalues 1 and 2 approach zero for 
&,o 5 0.22. 
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Fig. 6. Eigenvalues of the reduced hydrogen/air reaction 
System III. Note that eigenvalues 1 and 2 approach zero 
for &;,,, < 0.18. 

rates of reduced and full scheme calculations 
for System II and III. 

5. ‘TIME SCALE ANALYSIS OF THE FULL 
SYSTEM 

The approximations introduced to reduce the 
reaction system are only appropriate if all 
steady-state reaction groups are faster than the 
remaining time scales (including convective and 
diffusive time scales) in the system. On the 
other hand, the chemical source term needs to 
be predicted accurately only if the time scales 
of the reaction system are faster than the 
convective and diffusive time scales. 

In order to check whether this is true, we 
study the behavior of time scales of convection 
and diffusion for all species of the full reaction 
scheme. Therefore, we consider the conserva- 

TABLE 1 

Mass Burning Rates in g/(cm*s) of Adiabatic Flames 
Using Full and Reduced Reaction Schemes 

Scheme 

I 
II 

III 

nicomplex kd 

0.115 0.116 
0.195 0.155 
0.193 0.160 

tion equation 13 of the complex system of 
species i. This equation contains convective 
(Ci = pu(&#+/dx)), diffusive (4 = -(a/&x) 
pD,(d&/dx)) and chemical reaction ( pq) 
contributions. To find the typical local time 
scales of these terms we linearize them as 
follows: 

(19) 

In analogy with the time scales defined by Eq. 
5, the typical convective, diffusive and reaction 
time scales TV”, T/‘, and ail are given by 

1 
pic = p aCi/a4i ’ I I 

Note that this timescale analysis is not very 
accurate. However, it is useful to study the 

Xlncm XIncm 

Fig. 7. Scaled specific mole numbers as 
functions of x; comparison of reduced 
(continuous lines) and full flat-flame cal- 
culations (dashed lines), for System I. 
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Xincm 

uo.1 0 0.1 0.2 0.3 0.4 0.5 

Xincm 

contributions of the different terms in the dif- 
ferential equation. These time scales are calcu- 
lated by using the solution of the full system. 
The typical time scales of H,O are shown in 
Fig. 10 as function of $nzO for reaction Sys- 
tem I and II. The order of magnitude of time 
scales of the other species is comparable. The 
source term Wnzo is also shown in Fig. 10. 
Note that the time scale of the source term 
rEzo is infinite at the position where the source 
term reaches its maximum value. The time 
scales of convection and diffusion can also be 
infinite for similar reasons, e.g., the term 
(G*oP&r*o) = 0 at the position where 
~~(d&~~/dx) reaches a maximum, so that 
rc -+ CC and log(l/rrro) --) --co. The time 
scale of diffusion is infinite when (J/ax) 

0 0.2 0.4 0.6 0.8 1 

Fig. 9. Sensitivity of the net source term for the one-step 
reduced scheme for variations in specific mole numbers of 
HO,. The continuous line denotes results for System II, 
the dashed line for System III. 

Fig. 8. Scaled specific mole numbers as 
function of x; comparison of reduced 
(continuous lines) and full flat-flame cal- 
culations (dashed lines), for System II. 

(@n20(&$u,0/d~)) has a maximum or a 
minimum. These points are visible in Fig. 10 by 
the dips in the time-scale profiles. C_onsidering 
System I in Fig. 10 we see that for &rzO < 0.1 
convective and diffusive terms (and time scales) 
are of the same order of magnitude while for 
&,O > 0.9 convective and source terms are of 
the same magnitude. Note that at least two 
time scales must be of same order of magni- 
tude, in order to obey Eq. 13. Also note that 
the behavior of the time scale of the source 
term in Fig. 10 resembles that of the slowest 
time scales of the chemical source terms of the 
reduced scheme (Figs. 4 and 5). This is an 
indication of the accuracy of the reduction 
technique. 

Comparing Figs. 5 and 10 we see that the 
time scale of the slowest reaction group that is 
supposed to be in steady state is larger than 
convective and diffusive time scales for &10 
< 0.22. For $nZO < 0.1 the source term is 
small (the time scale of the source term is 
larger than convective and diffusive time 
scales), and accurate prediction of the source 
term is not necessary. There is, however, a 
region (0.1 5 fjHzO < 0.22) where the source 
term may not be neglected and where the 
reduction method is not appropriate. This 
causes that the HO, profile, which reaches its 
maximum within this region, is not predicted 
accurately. We have already seen that varia- 
tions in &oZ have a large influence on the 
reaction rate and adiabatic mass burning rate. 
This brings us to the conclusion that System II 
(and III) cannot be reduced to an accurate 
one-step reduced scheme, within this region. 
The main reason that the one-step reduced 
scheme of System II and III fails is that for 
4u20 < 0.22 the second eigenvalue ap- 
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proaches zero. It is likely that a two-step re- 
duced scheme would give better results. 

Now we have seen the reason of failure of 
one-step reduced schemes for Systems II and 
III, it is interesting to investigate why the one- 
step reduced scheme of System I gives accu- 
rate results. For this scheme the time scale of 
the slowest reaction group that is supposed to 
be in steady state is larger than convective and 
diffusive time scales for &,O < 0.2. Here, 
however, the source term is already small and 
needn’t to be predicted accurately. Although 
the assumptions for the reduction are not valid 
for this region where the source term is much 
smaller than convective and diffusive terms, 
manifold composition still may be used: radical 
specific mole numbers are very low at these 
low temperatures and as the manifold compo- 
sitions satisfy the conservation equations for 
the elements so that 2&, + 40, - 24H20 = 0 
within this region. As we use unit Lewis num- 
bers this is also valid for the full reaction 
scheme, as long as the radical specific mole 
numbers are small enough. 

6. CONCLUSIONS 

A method is presented to apply mathematically 
reduced reaction schemes to flat-flame calcula- 
tions. It is shown that a one-step reduced 
scheme of the hydrogen/air reaction system 
gives only appropriate flat-flame results if a 
reaction scheme without HO, and H,O, (Sys- 
tern I) is used. This is caused by the fact that 
the steady-state assumptions are not appropri- 
ate at low temperatures where the specific 
mole number of species HO, reaches its maxi- 
mum. It is found that the specific mole number 

Fig. 10. Time scales of H,O as function of 

&zO, Systems I (a) and II (b). 

of this species has a large impact on the mass 
burning rate. Therefore, hydrogen/air reac- 
tion systems, including species HO, must be 
reduced to more-step reduced schemes for ob- 
taining accurate flat-flame predictions. 
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APPENDIX: USED REACTION SCHEMES 

The reaction rates of reaction i are given by 
the Arrhenius expression: AiTfii exp(-E,/ 
RT), where Ai and pi are reaction constants, 
Ei the activation energy, R the universal gas 
constant, and T the temperatures. The coef- 
ficients Ai, pi, and Ei are successively given 
after the reactions (Ai in cm/mol/s; Ei in 
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KJ/mol). Used collision efficiencies are: fHz = 
1.00, fo, = 0.35, fHzO = 6.50, fN, = 0.50, fco 
= 1.50, fco, = 1.50. 

A.1 System I 

ELEMENTS 
HON 
END 
SPECIES 
02 H OH 0 H2 H20 N2 
END 
REACTIONS KJ/MOLE 
H+02=OH+O 
REV/1.46E13 0.0 2.08/ 
O+H2=OH+H 
REV/2.24E04 2.67 18.4/ 
H2 + OH = H20 + H 
REV/4.45e08 1.6 77.13/ 
OH+OH=O+H20 
REV/l.SlElO 1.14 71.64/ 
H+H+M=H2+M 
H20/6.5/H2/l.O/N2/0.5/02/0.35/ 
REV/6.99E18 - 1.00 436.08/ 
OH+H+M=H20+M 
H20/6.5/H2/l.O/N2/0.5/02/035/ 
REV/3.80E23 - 2.00 499.41/ 
O+O+M=02+M 
H20/6.5/H2/1.O/N2/0.5/02/0.35/ 
REV,‘6.81E18 - 1.00 496.41/ 
END 

2.000E14 0.0 70.3 

5.06E04 2.67 26.3 

1 .OOEOS 1.6 13.8 

1.50E09 1.14 0.42 

1.80E18 - 1.00 0.0 

2.2OOE22 - 2.00 0.0 

2.90E17 - 1.00 0.0 

A.2 System II 

Reactions and species of System I, extended with species HO, and the following reactions. 

H+02+M=H02+M 2.30E18 - 0.80 0.0 
H20/6.5/H2/l.O/N2/0.5/02/0.35/ 
REV/2.26E18 - 0.80 195.88/ 
H02+H=OH+OH 1.50E14 0.00 4.2 
REV/1.33E13 0.00 168.3/ 
HO2 + H = H2 + 02 2.50E13 0.00 2.9 
REV/6.84E13 0.00 243.10/ 
HO2 + H = H20 + 0 3.00E13 0.00 7.2 
REV/2.67E13 0.00 242.52/ 
H02+O=OH+02 1.80E13 0.00 - 1.7 
REV/2.18E13 0.00 230.61/ 
HO2 f OH = H20 + 02 6.00E13 0.00 0.0 
REV/7.31E14 0.00 303.53/ 
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A.3 System III 

Reactions and species of System II, extended with species H,O, and the following reactions. 

HO2 + HO2 > H202 + 02 2SOEll 0.00 - 5.20 
OH+OH+M=H202+M 3.25E22 - 2.00 0.00 
REV/2.10E24 - 2.00 206.80/ 
H202 + H + H2 + HO2 1.70E12 0.00 15.70 
REV/l.l5E12 0.00 80.88/ 
H202 + H = H20 + OH l.OOE13 0.00 15.00 
REV/2.67E12 0.00 307.51/ 
H202 + 0 = OH + HO2 2.80E13 0.00 26.80 
REV/8.40E12 0.00 84.09/ 
H202 + OH = H20 + HO2 5.4E12 0.00 4.2 
REV/1.63E13 0.00 132.17/ 


