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Nomenclature

General

a physical vector a · b dot product of vectors
a mathematical vector a× b cross product of vectors
a mathematical block vector |a| absolute value of scalar
A mathematical matrix

q
a

y
jump of vector

A mathematical block matrix

Re[ ] real part x, y, z Cartesian coordinates
Im[ ] imaginary part j imaginary unit
〈·, ·〉w weighed inner product of

functions

Operators

∇ gradient operator ∇× curl operator
∇· divergence operator ∇2 Laplace operator
∇S· surface divergence operator ∂

∂a partial derivative to a

Subscripts

I superstrate material index i layer index
II substrate material index m harmonic/diffraction order
B Bloch method index
R RCWA method s, p s-,p-polarised part
S surface x, y, z x-,y-,z-component



vi Nomenclature

Superscripts

am mth block row of vector e electric
Am: mth block row of matrix h magnetic
A:n nth block column of matrix i incident
Amn mth block row and nth block r reflected

column of matrix t transmitted
hom homogeneous ⊥ perpendicular
part particular + positive z-direction
r relative − negative z-direction
T transposed ′ derivative
H complex conjugate transposed

Overscripts

conjugate ̂ periodic eigenvalue problem˜ conical diffraction
̂

semi-periodic eigenvalue
problem

Greek symbols

∆κ2 difference Bloch wave vector µ permeability
components µ0 permeability of vacuum

ε permittivity ν auxiliary refraction index
ε0 permittivity of vacuum variable
ζ asymptote increasing transcen- ξ asymptote decreasing transcen-

dental eigenvalue function dental eigenvalue function
η diffraction efficiency ρ charge density phasor
θ polar angle of incidence % charge density
κ Bloch wave vector component σ electric conductivity
λ0 vacuum wavelength φ azimuthal angle of incidence
Λ grating pitch ψ polarisation angle

ω angular frequency



Nomenclature vii

Roman symbols

a even basis solution Bloch mode M total number of harmonics
A expansion coefficient of n refraction index

even basis solution Bloch mode n‘ real part refraction index
b odd basis solution Bloch mode n“ imaginary part refraction index
B expansion coefficient of n normal unit vector

odd basis solution Bloch mode p auxiliary unit vector
B magnetic flux phasor in plane of incidence
B magnetic flux P time-averaged energy flow
D total grating height r distance to the origin
D electric flux phasor r radial unit vector
D electric flux R expansion coefficient of
ex, ey, ez Cartesian unit vectors reflected Rayleigh mode
E electric field phasor s auxiliary unit vector
E electric field normal to plane of incidence
f scalar field S Poynting vector
F electromagnetic field phasor t time variable
F electromagnetic field T expansion coefficient of
h layer thickness transmitted Rayleigh mode
H magnetic field phasor u eigenfunction x-direction
H magnetic field v eigenfunction z-direction
J electric current phasor w weight function
J electric current W Wronskian
k0 wavenumber of vacuum x position vector
k wave vector X layer offset
K total number of layers Y admittance
L total number of offsets Z layer height

Mathematical vectors and matrices

A matrix to be diagonalised TE
A auxiliary matching matrix grating layers

B part of matrix to be diagonalised TM
C c c expansion coefficient basis solution z-direction

C part of matrix to be diagonalised TM
δ d d expansion coefficient incident field

D auxiliary matrix TM polarisation
ε E fourier coefficient relative permittivity

F F auxiliary matrix Riccati recursion or fundamental solution
G G auxiliary matrix Riccati recursion or fundamental solution
H auxiliary matrix fundamental solution at bottom interface
I I identity matrix



viii Nomenclature

J auxiliary anti-diagonal unit matrix
k K K wave vector component
λ L L auxiliary eigenvalue variable
µ M M square root of eigenvalue
π P fourier coefficient reciprocal relative permittivity
q Q Q RCWA eigenvector component or Bloch coupling coefficient
R r expansion coefficient reflected field

R R Riccati transformation matrix one- and two-stage approach
S S Riccati transformation matrix two-stage approach

T t expansion coefficient transmitted field
U U upper triangular matrix one- and two-stage approach
v solution component z-direction
V V upper triangular matrix two-stage approach

ω W W fourier coefficient weight function
x X X auxiliary coefficient exponentially decaying wave

Table 1: The first column gives the notation for the coefficient, the second column for the vector
or matrix and the third column for the block vector or block matrix.

Abbreviations

a-diag anti-diagonal IVP Initial Value Problem
ASR Adaptive Spatial Resolution NA Numerical Aperture
BARC Backward Anti-Reflective ODE Ordinary Differential Equation

Coating PDE Partial Differential Equation
BVP Boundary Value Problem RCWA Rigorous Coupled-Wave
CD Critical Dimension Analysis
diag diagonal SEM Scanning Electron Microscope
FD Finite Differences TE Transverse Electric
FDTD Finite Difference Time Domain TM Transverse Magnetic
FFT Fast Fourier Transform
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Chapter 1

Introduction

First a brief overview of the electronic industry is given in Section 1.1. Then in Section
1.2 the fabrication process of a chip is discussed. This process faces many challenges of
which one in particular is explained in Section 1.3. A more detailed outline of this thesis
is given in Section 1.4.

1.1 The electronics industry

Today’s world of electronics is so large that over 1000 billion US dollars a year is spent on
electronic applications. Electronic devices like computers, tv’s, mobile phones and cam-
eras are all examples of this multi-billion dollar business. Almost all electronic equip-
ment these days contains chips and its market is valued in the order of 200 to 300 billion
dollars. For the production of these chips many different production systems are used.
One of these systems are so-called lithography systems which are sold by companies
like ASML. These systems which are indicated at the bottom of Figure 1.1 perform the
most critical step in the fabrication process of chips.

The advances in chip technology over the past years has been captured by the famous
Moore’s law. This law states that approximately every 1.5 to 2 years the number of tran-
sistors on a chip doubles. This law is named after Intel’s co-founder Gordon E. Moore,
who described this in a paper back in 1965. Moore’s law also implies that every 1.5 to
2 years the computing power per chip doubles at roughly equivalent power consump-
tions for half the price. In order to keep following this trend, the lithography systems
have become very complex systems over the years. Figure 1.2 shows a close-up of a
chip revealing its complex layered structure. The next section briefly explains how these
lithography systems are used in the fabricating process of today’s chips.
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Figure 1.1: Overview of some electronic devices containing chips fabricated with lithography
systems

1.2 Fabrication of a chip using lithography

Building integrated circuits (ICs) to form a chip is a very complex process containing
many different steps that require a high level of precision. The whole process starts
with silicon, the basic constituent of sand. Silicon is what is called a semiconductor, under
certain conditions it conducts electricity while under other conditions it does not. This
allows the material to act as a switch and the basic component that makes use of this
property is a transistor. By combining millions of these transistors using interconnects
complex ICs can be fabricated.

The first step in this fabrication process is purifying the silicon since impurities at this
stage could render the final chips useless. Then the purified silicon is melted and grown
into cylinders typically 300mm in diameter. By slicing the cylinder into circular disks
and polishing them to create an ultra-smooth surface, a silicon wafer is created which
acts as a substrate. Then a photolithographic printing process is used to build several
chips layer by layer onto this wafer. Figure 1.3 shows the process of adding one such
layer, in this case a patterned oxide layer. The starting point (1) is the silicon substrate
(or partially processed chip). Then a thin oxide layer is deposited (2) which acts as an
insulator. This oxide layer is typically grown in a furnace at high temperature in the
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Figure 1.2: Close-up of a chip revealing its complex layered structure

presence of oxygen. In the next step (3) the oxide film is coated with a light-sensitive
material called photoresist. This coating will be used in subsequent steps to remove cer-
tain sections of the underlying oxide thereby creating a specific oxide pattern. Photore-
sist is sensitive to ultraviolet light, yet resistant to certain etching chemicals required at
a later stage. The important printing process (4) uses mask-pieces made of glass with
both transparent and opaque areas. This mask essentially contains part of the circuit de-
sign of that specific layer. By shining ultraviolet light onto the mask which only passes
through the transparent areas, the circuit design is transferred onto the photoresist. The
parts of the photoresist that are exposed to the ultraviolet light become soluble and are
removed using a solvent (5) revealing part of the oxide layer underneath. A chemical
etching process (6) removes the exposed oxide while the remaining photoresist protects
the unexposed areas and underlying oxide pattern. Finally the remaining protective
photoresist is removed (7), leaving the desired oxide pattern on the silicon layer.

Figure 1.3: Process of adding a single patterned oxide layer
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The finished oxide layer is just one part of the fabrication process. In order to arrive at
a working chip many other steps are required, including

• Adding more layers. Other materials like for example polysilicon, which unlike
oxide actually conducts electricity, are deposited on the wafer. Also now the steps
of further film depositions, printing using masks and etching are required to trans-
fer part of the circuit to these other layers. The total number of layers depends on
the component being manufactured but typically lies in the order of 20-40.

• Doping. The doping process bombards the exposed areas of the silicon wafer with
various chemical impurities, altering the way silicon conducts electricity in these
areas. Doping is what turns silicon into silicon transistors, enabling the switching
between two states, 1 for on and 0 for off.

• Metallisation. Layers of metal are applied to form the connections between the
transistors. Typically copper is used because of its low resistance and cost effective
integration into the fabrication process. The specific patterns in these metal layers
can be formed using the photolithographic printing process described earlier. Also
the bonding points to connect the chip to the outside world are made of metals.

Finally the whole wafer (if necessary) is planarised by chemical mechanical polishing,
given a protective layer and tested to ensure the circuits are working as intended. If suc-
cessful, the wafer containing the working ICs is cut and the individual ICs are mounted
on supports before being packaged.

1.3 Problem description

In the previous section the fabrication process of a chip revealed that a chip consist of
around 20-40 different layers containing all kinds of complex patterns. Moreover these
layers which are stacked on top of each other are not processed at the same time but
one after the other. This means that every time the photolithographic process prints a
pattern in a new layer, this needs to be done very precisely in order to obtain a working
IC in the end. Not only should the new pattern itself be printed within tight specifi-
cations, it should also be aligned properly with the patterns in the underlying layer.
Typically a lot of information on the lithography process can be obtained by measuring
test structures or gratings which are scattered over the wafer. These gratings are tiny
periodic structures much smaller than ICs. With today’s tight requirements a dedicated
metrology tool is used for measuring these extremely small features. First the gratings
are illuminated and its response (a scattered intensity) is measured. For certain appli-
cations like overlay metrology the asymmetry in this measured signal (due to an offset
between two gratings in different layers) can be used to align the lithographic process.
For other applications like critical dimension (CD) metrology one is interested in the shape
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of the grating lines that produced the measured signal. Since this information is not
directly available but encrypted in the measurement, a reconstruction algorithm is used
to extract it. The reconstructed values like height, width and sidewall angle can then be
related to machine settings like dose and focus which control the lithographic process.

Figure 1.4 shows an example of a grating produced at different focus levels of the ma-
chine. These images were taken with a scanning electron microscope (SEM) which is
able to visualise the shape of these (trapezoidal looking) grating lines directly. The im-

Figure 1.4: Scanning electron microscope images of a grating through focus. The image in the
middle corresponds to a grating that was produced while in focus (Source: ASML).

age in the middle corresponds to a grating that was produced while in focus and shows
straight lines without too much rounding at the top and bottom. The other out of fo-
cus images typically correspond to a process that falls outside of the specifications. It
is therefore crucial to know the shape of these test structures so that proper action can
be taken like for example rework or scraping of the current wafer, adjusting the ma-
chine settings for the next batch of wafers, etc...Note that the images in Figure 1.4 are
here for illustrative purposes only since a SEM typically is a destructive, expensive and
time-consuming measurement. However the metrology tool described in this thesis
is non-destructive and fast but does not have direct access to this shape information.
In particular this CD metrology application therefore requires rigorous mathematical
models that solve optical diffraction problems for periodic gratings in combination with
advanced reconstruction algorithms.

The research described in this thesis mainly focusses on the forward modelling part. A
mathematical model describing the optical diffraction problem is derived and solved us-
ing several mode expansion techniques. Also the integration of this forward model into
the CD metrology application is discussed. The second step of combining the forward
model with a reconstruction algorithm has been addressed in [1]. There the inverse
modelling part and corresponding sensitivity analysis revealed that the main computa-
tional burden is still taken up by solving many forward problems. Since the CD metrol-
ogy application has very strict throughput requirements, the main goal of this thesis is
therefore to develop algorithms that solve the forward problem as fast as possible while
remaining both accurate and stable.
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1.4 Outline of the thesis

In Chapter 2 the basic framework of (electromagnetic) diffraction theory is introduced.
After explaining some general concepts of diffraction theory, the governing equations
are established together with the constitutive relations and boundary conditions. For
the specific diffraction problem that is considered in this thesis a reduced model is de-
rived which is partly solved in closed form in the last subsection. The following two
chapters discuss two mode expansion methods used to further discretise the reduced
model. First the Bloch mode method is studied in Chapter 3 which is based on comput-
ing the exact eigenfunctions of the underlying reduced problem. This involves solving
a complicated transcendental equation which for certain geometries can be solved ef-
ficiently. Finally a large linear system is derived by applying the matching boundary
conditions. In Chapter 4 an alternative mode expansion method is studied, the Rigor-
ous Coupled-Wave Analysis, which uses Fourier based expansion functions. Although
these expansions functions only approximate the exact eigenfunctions of Bloch, RCWA
is much more flexible and easier to generalise to more complicated geometries. A simi-
lar linear system is obtained from the matching boundary conditions.

Chapter 5 focusses on solving the large linear system, derived with both mode expan-
sion methods, stably and efficiently. It is shown that standard techniques that do not
take special care of the exponentially growing and decaying solution components are
unstable. Therefore a stable algorithm is derived that not only decouples these solution
components but also uses a two-stage approach for maximum efficiency. The link to
other published algorithms and other standard techniques used for solving boundary
value problems is discussed in the latter part of this chapter. Two modifications for
the RCWA mode expansion method are the topic of Chapter 6. These modifications
are aimed at improving the convergence of RCWA while maintaining its flexibility and
relatively simple implementation. The first modification applies a coordinate transfor-
mation before using the regular Fourier discretisation whereas the second modification
completely replaces the Fourier discretisation by a finite difference approximation. Both
modifications try to get closer to the exact eigenfunctions of Bloch by properly taking
care of material transitions in the underlying geometry (which is typically not done in
standard RCWA).

The accuracy of both mode expansion methods and their modifications is evaluated
in Chapter 7. For several representative diffraction configurations numerical results
are presented. The integration of these forward diffraction models into a CD recon-
struction application is addressed in the second part of this chapter. Finally Chapter 8
summarises the main results and discusses some future research topics.



Chapter 2

Model for a diffraction problem

To model the effect of an electromagnetic field on objects, we need a mathematical
framework that describes the scattering of this field. In this thesis we consider objects
with a characteristic length scale similar to that of the incident electromagnetic field. In
that case the behaviour of the electromagnetic field is described by the theory of diffrac-
tion, which may be considered a special case of scattering. In Section 2.1 some general
concepts of diffraction theory are explained in a short historical overview. Section 2.2
summarises the governing equations as well as the constitutive relations and boundary
conditions. In Section 2.3 we introduce some simplifications to the model and derive
a reduced model. This reduced model will be the basis for the different discretisations
in the subsequent chapters. A part of the solution of the reduced model that is com-
mon to these different discretisations is derived in the final Section 2.4. Here also some
quantities related to energy are introduced. These quantities are typically measured in
a real life application and can also be used to check the quality and performance of an
algorithm.

2.1 Short historic overview of optics and electromagnetism

An overview of important discoveries related to the development of our understanding
of optical phenomena and electromagnetism can be found in [6]. Here we will briefly
mention a few names and their important contributions to the field of optics and electro-
magnetism that form the basis of diffraction theory. This also gives us the opportunity
to introduce some concepts frequently used in these fields and in this thesis.

The history of optics can be traced back to the Greek philosopher and mathematician
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Figure 2.1: Law of reflection and refraction and the concept of interference

Euclid (c. 325-265 BC). He was one of the first to write down systematically his ideas
on the propagation of light. The law of (specular) reflection was already known to the
ancient Greeks. This law states that the direction of incoming light and the direction
of reflected outgoing light make the same angle with respect to the surface normal.
It was not until 1621 that Willebrord Snell (1580-1626) experimentally found the law
of refraction. This law describes the relationship between the angles of incidence and
refraction when light passes through a boundary between two different media. The
first phenomenon of interference, the colours exhibited by thin films (Newton’s rings),
was discovered independently by Robert Boyle (1627-1691) and Robert Hooke (1635-
1703). Around that time the wave theory of light was greatly improved by Christiaan
Huygens (1629-1695) who was able to derive the laws of reflection and refraction with
the Huygens’ principle. This principle states that the wavefront of a propagating wave
of light at any instant conforms to the envelope of spherical wavelets emanating from
every point on the wavefront at the prior instant. This principle is also closely related
to another aspect of interference, the addition (superposition) of two or more waves
resulting in a new wave pattern. The wave theory by then was not able to describe the
concept of polarisation, a property of transverse waves which describes the orientation
of the oscillations in the plane perpendicular to the wave’s direction of travel. Therefore
the wave theory was rejected by Isaac Newton (1642-1727), which brought research on
this topic to a stand still for nearly a century.

It was not until the beginning of the nineteenth century that important discoveries led
to the acceptance of the revived wave theory. Although not generally accepted by the
community, Thomas Young (1773-1829) supported and contributed to the wave theory
explaining the principle of interference and the colours of thin films by new experi-
ments. The breakthrough came in 1818 from Jean Fresnel (1788-1827) who combined
the work of Huygens and Young into a general wave theory that could explain not only
the rectilinear propagation of light but also the minute deviations from it, i.e. diffraction
phenomena. Around that same time the phenomenon of polarisation, which had been
observed by others before but not well understood, was put in the same general frame-
work. Meanwhile the field of electricity and magnetism was developing into a leading
science almost independently of optics, one of the exponents being Michael Faraday
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(1791-1867). It was James Clerk Maxwell (1831-1879) who managed to summarise all
previous experiences in this field in a system of equations, the famous Maxwell’s equa-
tions. These equations describe the behaviour of electromagnetic waves propagating
with a velocity which could be calculated from electrical measurements only. This ve-
locity turned out to be equal to the speed of light verified by experiments in 1888 done
by Heinrich Hertz (1857-1894). This led Maxwell to believe that light waves are electro-
magnetic waves, and thereby creating the link between the fields of optics and electro-
magnetism.

2.2 Mathematical model

2.2.1 Maxwell’s equations

The behaviour of electromagnetic fields in diffraction theory is governed by Maxwell’s
equations. These equations in differential form give rise to a system of first-order par-
tial differential equations (PDEs) that hold at every point in whose neighbourhood the
physical properties of the medium are continuous

∇× E(x, t) = − ∂

∂t
B(x, t), (2.1a)

∇×H(x, t) =
∂

∂t
D(x, t) +J (x, t), (2.1b)

where E is the electric field, B is the magnetic induction, H is the magnetic field, D is the
electric displacement, J is the electric current density, x contains the space variables and t
is the time variable. The terminology is taken from [6] and will be used throughout this
thesis. However, B is also called the magnetic flux density and D is also called the electric
flux density. Equation (2.1a), also known as Faraday’s law, shows how a time change
in the magnetic induction gives a contribution to the electric field. Similarly, equation
(2.1b) also known as Ampère’s law shows how an electric current and a time change in
the electric displacement give a contribution to the magnetic field. Maxwell’s equations
are supplemented with the law of conservation of charge or continuity equation

∇ ·J (x, t) +
∂

∂t
%(x, t) = 0, (2.2)

where % is the electric charge density. Equation (2.2) shows that a time change in the
electric charge density contributes to an electric current density. These three equations
are supplemented with two scalar relations

∇ ·B(x, t) = 0, (2.3a)

∇ ·D(x, t) = %(x, t). (2.3b)
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Equation (2.3a) also known as Gauss’ law for the magnetic field implies that no free mag-
netic poles exist. Equation (2.3b) also known as Gauss’ law for the electric field shows the
relation between the electric displacement and charge density.

The electromagnetic quantities are functions of the spatial variable x and time variable
t. In the application described in Section 7.2 the light source is typically a laser or a
white light source in combination with a colour filter. Both sources can be adequately
modelled by a time-harmonic field or monochromatic field with a fixed angular frequencyω

F (x, t) = Re
[

F(x)e jωt
]
, (2.4)

where F is any of the previously introduced electromagnetic quantities and Re means
the real part. This thesis will only consider time-harmonic fields and under this assump-
tion Maxwell’s equations become

∇× E = − jωB, (2.5a)

∇× H = jωD + J, (2.5b)

supplemented with the continuity equation

∇ · J + jωρ = 0, (2.6)

and the two scalar relations

∇ · B = 0, (2.7a)

∇ · D = ρ. (2.7b)

For time-harmonic fields the two scalar relations (2.7) are just auxiliary relations and
can be derived from Maxwell’s equations and the continuity equation. Taking the di-
vergence of (2.5a) and using the vector identity ∇ · (∇× F) = 0 gives (2.7a). Similarly
taking the divergence of (2.5b), using the same vector identity and combining with the
continuity equation gives (2.7b). The electromagnetic quantities are summarised in Ta-
ble 2.1 with their units.

2.2.2 Constitutive relations and boundary conditions

Maxwell’s equations and the continuity equation do not form a complete set of equa-
tions for the electromagnetic quantities. We need a set of constitutive relations that com-
plement equations (2.5) and (2.6). The constitutive relations incorporate the influence of
matter on the electromagnetic fields and typically have the dependencies

D = D(E), B = B(H) and J = J(E). (2.8)
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Symbol Name SI units

E electric field Volt per meter V
m = kg·m

A·s3

H magnetic field Ampere per meter A
m

D electric displacement Coulomb per square meter C
m2 = A·s

m2

B magnetic induction Tesla T = kg
A·s2

J electric current density Ampere per square meter A
m2

ρ electric charge density Coulomb per cubic meter C
m3 = A·s

m3

Table 2.1: The electromagnetic quantities from Maxwell’s equations

We will restrict ourselves to linearly reacting media and time-invariant reactions. This
means that (2.8) is linear in the electric and magnetic field and does not depend on
time. Moreover all media are assumed dispersion free and isotropic. This means that the
material responds instantaneously and has physical properties that at each point are
independent of direction. Finally only source free media are considered so no external
sources are present. Under these assumptions the constitutive relations have the well-
known form

D = εE, B = µH and J = σE. (2.9)

Here ε is called the permittivity (or dielectric constant), µ is known as the permeability and
σ is called the conductivity. Materials for which σ is negligibly small (e.g. air, glass)
are called insulators or dielectrics. Their electric and magnetic properties are then com-
pletely determined by ε and µ. In this thesis we will only consider non-magnetic media
resulting in a permeability for all media which is equal to the free space permeability µ0.
Contrary to the permeability, the permittivity can change from material to material and
is different from the free space permittivity ε0. Materials for which σ 6= 0 or is not negli-
gibly small (e.g. metals) are called conductors. We will encounter some examples later
on for which the conductivity is indeed non-zero. However, we will exclude the per-
fectly electric conductor from our analysis for which the conductivity goes to infinity. The
material parameters are summarised in Table 2.2 with their units. Substituting the con-
stitutive relations (2.9) into Maxwell’s equations (2.5) results in

∇× E = − jωµ0 H , (2.10a)

∇× H = jωε0ε
rE, (2.10b)

where we have introduced the complex-valued relative permittivity

εr =
ε

ε0
− j

σ

ωε0
. (2.11)
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Symbol Name SI units

ε permittivity Farad per meter F
m = A2 ·s4

kg·m3

µ permeability Henry per meter H
m = kg·m

A2 ·s2

σ conductivity Siemens per meter S
m = kg·m3

A2 ·s3

Table 2.2: The material parameters from the constitutive equations

The refraction index n is related to the relative permittivity through the relation

n =
√
εr = n‘− jn“ (2.12)

where n‘ and n“ are both non-negative and real-valued. In optics it is usually this
refraction index and not the permittivity that is used to characterise a material. If the
relative permittivity is constant and does not depend on the spatial coordinates, the
Helmholtz equation can be derived for the electromagnetic fields

∇2E + k2
0ε

rE = 0, (2.13a)

∇2 H + k2
0ε

r H = 0, (2.13b)

where we have used the vector identity ∇× (∇× F) = ∇(∇ · F) −∇2F and where
k0 =ω

√
ε0µ0 is the vacuum wavenumber.

While there are many functions that satisfy the differential equations (2.10), only one of
them is the real solution to the problem. To determine this solution, one must know the
boundary conditions associated with the domain. We will introduce two types of bound-
ary conditions that describe the behaviour of the electromagnetic quantities in a domain.
Interface boundary conditions describe the behaviour at the interface between two media
with different material properties, radiation boundary conditions describe the behaviour
at infinity. The interface boundary conditions can formally be derived from the integral
representations of Maxwell’s equations, see for example [20]. For a smooth interface be-
tween two media, say a surface S, the time-harmonic electromagnetic quantities must
satisfy the following four equations

q
n× E

y
S = 0, (2.14a)

q
n× H

y
S = JS, (2.14b)

q
n · B

y
S = 0, (2.14c)

q
n · D

y
S = ρS, (2.14d)

where n is the unit vector normal to the interface pointing from medium 1 into medium
2, JS is the electric surface current density and ρS is the electric surface charge density. Addi-
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tionally we have the law of conservation of surface charge derived in [3]

∇S · JS +
q

n · J
y

S = − jωρS, (2.15)

where ∇S · is the surface divergence. Because we excluded the perfectly electric con-
ductor from our analysis, actually no surface currents can exist. Substituting the consti-
tutive relations (2.9) into the interface boundary conditions and combining (2.14d) with
(2.15) results in

q
n× E

y
S = 0, (2.16a)

q
n× H

y
S = 0, (2.16b)

q
n · H

y
S = 0, (2.16c)

q
n · (εrE)

y
S = 0. (2.16d)

Among these four equations only two are independent [19,21]: (2.16c) and (2.16d) can be
derived from (2.16a) and (2.16b) respectively. Therefore the two independent interface
boundary conditions we will use are given by the continuity of the tangential fields

q
n× E

y
S = 0, (2.17a)

q
n× H

y
S = 0. (2.17b)

The radiation boundary condition describes the behaviour of the electromagnetic quan-
tities at infinity. The standard Sommerfeld radiation condition typically looks like

lim
r→∞ r

n−1
2

(
∂ f
∂r

+ jk0 f
)
= 0. (2.18)

Here f is a scalar field, r is the distance to the origin and n is the spatial dimension of
the problem. For electromagnetic problems the radiation boundary condition is given
by [13]

lim
r→∞ r

(√
µ0/ε0 r× H + E

)
= 0, (2.19a)

lim
r→∞ r

(
r× E−

√
µ0/ε0 H

)
= 0, (2.19b)

where r is the unit vector in the radial direction. The physical interpretation of this
boundary condition states that the scattered quantities are not incoming at infinity.
Moreover the radial component of the scattered quantities show a decay faster than
r−1 for an increasing distance to the origin. In this thesis we will look at unbounded
(periodic) scatterers where certain components of the scattered quantities do not show
any decay. Thus the electromagnetic counterpart of the Sommerfeld radiation condition
does not apply here and is replaced by the Rayleigh radiation condition. The Rayleigh ra-
diation condition states that the reflected field has, at some height above the surface of
the scatterer, an expansion in plane waves propagating upwards and evanescent waves
decaying exponentially with distance from the surface. A similar statement can be made
for the transmitted field below the surface of the scatterer.
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2.3 Basic assumptions and reduced model

This thesis will focus on unbounded scatterers; more specifically we will only look at in-
finitely periodic gratings. Although in real life gratings are never perfectly periodic nor
are they infinite, often they can be approximated and modelled by an infinitely periodic
grating. Before writing down the reduced equations and boundary conditions some
notation is introduced. Figure 2.2 gives a schematic overview of an infinitely periodic

Figure 2.2: Infinitely periodic grating with a linearly polarised incident plane wave

grating. The periodicity of the grating is along the x-direction, the lines of the grat-
ing are along the y-direction and the z-direction is pointing downwards to complete
the orthogonal coordinate system (ex, ey, ez) of the 3-dimensional Euclidean space. Be-
cause the grating lines are infinitely long, the diffraction problem is invariant in the
y-direction. This also means that the relative permittivity in (2.20) does not depend on
the y-coordinate. The period or pitch of the grating is equal to Λ and the total height of
the grating is equal to D. The origin of the 3-dimensional Euclidean space is chosen at

Figure 2.3: Unit cell of an infinitely periodic grating with its layered approximation
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the top of the grating. Above the grating for z < 0 and below the grating for z > D
there are two infinite half-spaces called the superstrate and substrate respectively. For the
moment assume a two medium problem where the grating consists of the same mate-
rial as the substrate with refraction index nII and a superstrate with refraction index nI.
The superstrate is assumed to be a dielectric and therefore has a purely real-valued re-
fraction index nI = n‘I according to (2.12). On the other hand the substrate and grating
can be either a dielectric or a conductor and therefore in general have a complex-valued
refraction index nII = n‘II − jn“II.

Because of the assumption of an infinitely periodic grating we can restrict the analysis
and computations to one unit cell. More importantly the grating in this unit cell is
approximated by layers in which the relative permittivity no longer depends on the
vertical coordinate z but only on the horizontal periodic coordinate x. In Figure 2.3 such
a layered approximation of the grating is given where the layers are numbered from 0
to K + 1. Layer 0 corresponds to the superstrate, the layers 1 to K make up the actual
grating and will be called the grating layers and layer K + 1 corresponds to the substrate.
Throughout this thesis the subscript i and its values from 0 to K + 1 is used in variables
to indicate that they belong to layer i only. The offsets in each grating layer are denoted
by Xi,l for l = 0, . . . , Li where Xi,0 = −Λ/2 and Xi,Li

= Λ/2. The height of each grating
layer is given by Zi and moreover Z0 = 0. The thickness of each grating layer is then
hi = Zi − Zi−1. For the layered grating in Figure 2.3 the relative permittivity in the
grating layers is given by

εr
i (x) =

{
n2

II, Xi,1 ≤ x ≤ Xi,2,

n2
I , otherwise.

(2.20)

A monochromatic linearly polarised plane wave with unit amplitude and vacuum wave-
length λ0 = 2π/k0 is incident on the grating in layer 0 with polar angle θ, azimuthal angle
φ and polarisation angleψ. The positive direction of all three angels is depicted in Figure
2.2. The direction of the incident electric field with wave vector k is defined by the first
two angles, while the linear polarisation state or orientation of the incident electric field
is defined by the third angle. The plane of incidence is the plane spanned by the incident
wave vector k and ez. In the case of normal incidence whereθ = 0 the plane of incidence
is defined by the xz-plane. We will distinguish between three different diffraction cases

• The planar diffraction case corresponds to an azimuthal angle φ = 0 so that the
plane of incidence coincides with the xz-plane. In this case we can consider two
basic linear polarisations from which all other polarisations can be derived through
the superposition principle.
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– TE polarisation or transverse electric polarisation corresponds toψ = π
2 which

means that the incident electric field is perpendicular to the plane of inci-
dence and parallel to the grating lines in the y-direction.

– TM polarisation or transverse magnetic polarisation corresponds to ψ = 0
which means that the incident electric field lies in the plane of incidence. In
this case the corresponding incident magnetic field is perpendicular to the
plane of incidence and parallel to the grating lines in the y-direction.

• The conical diffraction case corresponds to an azimuthal angle φ 6= 0 and can be
considered the generalisation of the planar diffraction case. Contrary to the planar
diffraction case we will see that now the electric and magnetic field components
remain coupled through the boundary condition and cannot be separated into two
basic polarisations. For this reason the planar diffraction case is still considered
separately.

With this notation the incident electric field and corresponding magnetic field in layer 0
are given by

E i
0 = e− jk·x(sinψ s + cosψ p), (2.21a)

H i
0 = YI e− jk·x(cosψ s− sinψ p), (2.21b)

k = k0nI(sinθ cosφ, sinθ sinφ, cosθ)T, (2.21c)

s = (− sinφ, cosφ, 0)T, (2.21d)

p = (cosθ cosφ, cosθ sinφ,− sinθ)T, (2.21e)

where Y =
√
ε0/µ0 is simply the free space admittance and YI = nIY the admittance cor-

responding to medium 1, s is an auxiliary unit vector normal to the plane of incidence
and p is an auxiliary unit vector in the plane of incidence so that p = s× k/(k0nI). Now
that the direction of the incident field is known, we can properly define the invariance
and the periodic boundary conditions of the electromagnetic quantities in a unit cell.
Because Maxwell’s equations are linear and the incident field is a plane wave it can be
shown that the electromagnetic quantities are actually pseudo-periodic [31]

F(x) = e− jk·ey y F̃(x, z) = e− jky y F̃(x, z), (2.22a)

F(x +Λex) = e− jk·exΛF(x) = e− jkxΛF(x). (2.22b)

In the subsequent section we will drop the tilde in (2.22a) when substituting the electric
or magnetic fields. From the context it will become clear whether we need to add the y-
dependence explicitly. All these assumptions also greatly simplify Maxwell’s equations
(2.10) and the interface boundary conditions (2.16) for the three different diffraction
cases.
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2.3.1 Planar diffraction TE polarisation

For planar diffraction with TE polarisation (φ = 0,ψ = π
2 ) the incident electric field in

(2.21a) simplifies to

E i
0 = E i

0,y(x, z) ey = e− jk0nI(x sinθ+z cosθ) ey. (2.23)

The incident electric field only has a non-zero y-component and it only depends on the
x- and z-coordinate. Because of this the electric field in all layers also have this property,
in accordance with (2.22a) where ky = 0. Maxwell’s equations (2.10) with the layered
approximation for i = 0, . . . , K + 1 simplify to

∂

∂z
Ei,y = jωµ0 Hi,x, (2.24a)

∂

∂x
Ei,y = − jωµ0 Hi,z, (2.24b)

∂

∂z
Hi,x = jωε0ε

r
i Ei,y +

∂

∂x
Hi,z. (2.24c)

The equations above can be rewritten into one second-order differential equation for the
electric field component Ei,y. Eliminating the magnetic field components by substituting
(2.24a) and (2.24b) into (2.24c) and dividing by k2

0 gives

1
k2

0

(
∂

2

∂x2 +
∂

2

∂z2 + k2
0ε

r
i

)
Ei,y = 0. (2.25)

For the layers 0 and K + 1, where the relative permittivity is constant, (2.25) reduces to
the standard Helmholtz equation as was already derived in (2.13a). For the interface
boundary condition (2.17) between two adjacent layers for i = 0, . . . , K where n = ez
and z = Zi we get

Ei,y = Ei+1,y, (2.26a)

Hi,x = Hi+1,x. (2.26b)

Also here the magnetic field component can be eliminated by using (2.24a) which gives

Ei,y = Ei+1,y, (2.27a)

1
k0

∂

∂z
Ei,y =

1
k0

∂

∂z
Ei+1,y. (2.27b)

From this interface boundary condition we can see that the electric field is continuous
across a layer interface and that also its partial derivative with respect to z is continuous.
Of course the electromagnetic fields also have to satisfy the pseudo-periodic boundary
condition (2.22b) in all layers and the Rayleigh radiation condition in the superstrate
and substrate.
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2.3.2 Planar diffraction TM polarisation

For planar diffraction with TM polarisation (φ = 0,ψ = 0) the incident magnetic field
in (2.21b) simplifies to

H i
0 = H i

0,y(x, z) ey = YI e− jk0nI(x sinθ+z cosθ) ey. (2.28)

So now it is the incident magnetic field that only has a non-zero y-component and only
depends on the x- and z-coordinate. Because of this the magnetic field in all layers also
have this property, in accordance with (2.22a) where ky = 0. Maxwell’s equations (2.10)
with the layered approximation for i = 0, . . . , K + 1 simplify to

∂

∂z
Ei,x = − jωµ0 Hi,y +

∂

∂x
Ei,z, (2.29a)

∂

∂z
Hi,y = − jωε0ε

r
i Ei,x, (2.29b)

∂

∂x
Hi,y = jωε0ε

r
i Ei,z. (2.29c)

The equations above can be rewritten into one second-order differential equation for the
magnetic field component Hi,y. Eliminating the electric field components by substitut-
ing (2.29b) and (2.29c) into (2.29a) and dividing by k2

0 results in

1
k2

0

(
εr

i
∂

∂x
1
εr

i

∂

∂x
+

∂
2

∂z2 + k2
0ε

r
i

)
Hi,y = 0. (2.30)

Also now for the layers 0 and K + 1, where the relative permittivity is constant, (2.30)
reduces to the standard Helmholtz equation as was already derived in (2.13b). For the
interface boundary condition (2.17) between two adjacent layers for i = 0, . . . , K where
n = ez and z = Zi we get

Hi,y = Hi+1,y, (2.31a)

Ei,x = Ei+1,x. (2.31b)

Again we can eliminate the electric field component by using (2.29b)

Hi,y = Hi+1,y, (2.32a)

1
k0

1
εr

i

∂

∂z
Hi,y =

1
k0

1
εr

i+1

∂

∂z
Hi+1,y. (2.32b)

From this interface boundary condition we can see that the magnetic field is continuous
across a layer interface but contrary to TE polarisation the partial derivative with respect
to z of the magnetic field is not. Also here the electromagnetic fields still need to satisfy
the pseudo-periodic boundary condition (2.22b) in all layers and the Rayleigh radiation
condition in the superstrate and substrate.
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2.3.3 Conical diffraction

For conical diffraction (φ 6= 0) the incident field in (2.21a) does not simplify any further.
In general the electric and magnetic field both have three non-zero components that
depend on all three spatial coordinates. However, because the grating is still invariant
in the y-direction and is approximated by layers, Maxwell’s equations (2.10) for i =
0, . . . , K + 1 simplify to

− jkyEi,z −
∂

∂z
Ei,y = − jωµ0 Hi,x, (2.33a)

∂

∂z
Ei,x −

∂

∂x
Ei,z = − jωµ0 Hi,y, (2.33b)

∂

∂x
Ei,y + jkyEi,x = − jωµ0 Hi,z, (2.33c)

− jky Hi,z −
∂

∂z
Hi,y = jωε0ε

r
i Ei,x, (2.33d)

∂

∂z
Hi,x −

∂

∂x
Hi,z = jωε0ε

r
i Ei,y, (2.33e)

∂

∂x
Hi,y + jky Hi,x = jωε0ε

r
i Ei,z, (2.33f)

where we have dropped the term e− jky y from all equations coming from (2.22a) now that
ky 6= 0. The z-component of the electric and magnetic field can be eliminated with help
of equations (2.33c) and (2.33f)

∂

∂z
Ei,y = jωµ0 Hi,x +

1
jωε0

1
εr

i

(
− jky

∂

∂x
Hi,y + k2

y Hi,x

)
, (2.34a)

∂

∂z
Ei,x = − jωµ0 Hi,y +

1
jωε0

∂

∂x

( 1
εr

i

∂

∂x
Hi,y + jky

1
εr

i
Hi,x

)
, (2.34b)

∂

∂z
Hi,y = − jωε0ε

r
i Ei,x +

1
jωµ0

(
− k2

yEi,x + jky
∂

∂x
Ei,y

)
, (2.34c)

∂

∂z
Hi,x = jωε0ε

r
i Ei,y +

1
jωµ0

(
− jky

∂

∂x
Ei,x −

∂
2

∂x2 Ei,y

)
. (2.34d)

After some straightforward algebra it is possible to derive two uncoupled second-order
differential equation for the electric and magnetic field components Ei,x and Hi,x

1
k2

0

(
∂

∂x
1
εr

i

∂

∂x
εr

i +
∂

2

∂z2 + k2
0ε

r
i − k2

y

)
Ei,x = 0, (2.35a)

1
k2

0

(
∂

2

∂x2 +
∂

2

∂z2 + k2
0ε

r
i − k2

y

)
Hi,x = 0. (2.35b)
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Similar to the planar diffraction case for the layers 0 and K + 1, where the relative per-
mittivity is constant, (2.35) reduces to the standard Helmholtz equation as was already
derived in (2.13). For the interface boundary conditions (2.17) between two adjacent
layers for i = 0, . . . , K where n = ez and z = Zi we get

Ei,x = Ei+1,x, Hi,x = Hi+1,x, (2.36a)

Ei,y = Ei+1,y, Hi,y = Hi+1,y. (2.36b)

Contrary to the planar diffraction case it is not possible to eliminate the y-components
of the electric and magnetic field and subsequently simplify the interface boundary con-
ditions. Therefore after solving for the x-components of the electric and magnetic field
through (2.35), one still needs to compute the y-components of the electric and mag-
netic field with the help of (2.34b) and (2.34d) when applying the interface boundary
conditions (2.36b). The pseudo-periodic boundary condition (2.22b) still applies to the
electromagnetic fields in all layers together with the Rayleigh radiation condition in the
superstrate and substrate.

2.4 Derivation Rayleigh modes outside grating layers

In the superstrate and substrate the relative permittivity is constant and thus Maxwell’s
equations reduce to the standard Helmholtz equation. The eigenfunctions of this equa-
tion with pseudo-periodic boundary conditions can be computed exactly and turn out
to be plane waves. The fields in the superstrate and substrate are linear combinations of
these eigenfunctions while taking care of the Rayleigh radiation condition. This expan-
sion is also known as the Rayleigh expansion. We provide a derivation of the Rayleigh
expansion in the superstrate and substrate for the general conical diffraction case. We
show its various straightforward steps which reoccur in the next chapter when we dis-
cuss one of the discretisations.

Using the invariance in the y-direction the Helmholtz equation (2.13a) for the electric
field for i = 0, K + 1 after dividing by k2

0 reduces to

1
k2

0

(
∂

2

∂x2 +
∂

2

∂z2 + k2
0ε

r
i − k2

y

)
Ei(x, z)e− jky y = 0, (2.37)

where εr
i is now constant and equal to either n2

I in the superstrate or n2
II in the substrate.

Recall that for planar diffraction with TE polarisation only the y-component of the elec-
tric field is non-zero and ky = 0. For planar diffraction with TM polarisation the x-
and z-components of the electric field are non-zero and again ky = 0. For the conical
diffraction case all components of the electric field are non-zero in general and ky 6= 0.
Focussing on one componentα = x, y, z in the superstrate, this partial differential equa-
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tion is easily solved by the method of separation of variables

E0,α(x, z) = uα(x)vα(z). (2.38)

Substituting in (2.37), rearranging the terms and adding the proper boundary conditions
gives 

1
k2

0
u′′α = −µ2uα , |x| < Λ

2 ,

uα(Λ2 ) = e− jkxΛuα(−Λ
2 ),

u′α(Λ2 ) = e− jkxΛu′α(−Λ
2 ),

(2.39a)

and 
1
k2

0
v′′α + (n2

I −
k2

y

k2
0
)vα = µ2vα , z < 0,

Rayleigh radiation condition,

Interface boundary condition,

(2.39b)

where µ2 is the separation constant or eigenvalue of the problem. Because the pseudo-
periodic boundary conditions are identical in both the superstrate, substrate and for all
values ofα only one constant µ is needed. It is easy to see that the differential operator
corresponding to the problem for uα is self-adjoint. This means that the eigenvalues are
real-valued and the eigenfunctions corresponding to distinct eigenvalues are orthogo-
nal. Naturally we first need to define an inner product for the previous statement to
make sense. Therefore we define the weighed inner product between two functions g and
h as

〈g, h〉w :=
1
Λ

∫ Λ
2

− Λ
2

w(x)g(x)h(x)dx, (2.40)

where the bar is used to denote complex conjugation. The eigenfunctions are then or-
thogonal with respect to the inner product 〈g, h〉 := 〈g, h〉1. The solution for uα is now
readily obtained and is given by

uα = Aα cos(k0µx) + Bα sin(k0µx). (2.41)

In order to get a relation for the unknown expansion coefficients Aα and Bα we apply
the pseudo-periodic boundary conditions. Thus,

Aα cos( k0µΛ
2 ) + Bα sin( k0µΛ

2 ) =

e− jkxΛ
(

Aα cos(− k0µΛ
2 ) + Bα sin(− k0µΛ

2 )
)
, (2.42a)

−k0µ
(

Aα sin( k0µΛ
2 )− Bα cos( k0µΛ

2 )
)
=

− k0µe− jkxΛ
(

Aα sin(− k0µΛ
2 )− Bα cos(− k0µΛ

2 )
)
. (2.42b)

For this homogeneous set of linear equations to have a non-trivial solution we require
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that

k0µ
((

1− e− jkxΛ
)2 cos2( k0µΛ

2 ) +
(
1 + e− jkxΛ

)2 sin2( k0µΛ
2 )
)
=

k0µ
(

1− 2e− jkxΛ cos(k0µΛ) + e−2 jkxΛ
)
= 0. (2.43)

The term within the outer pair of brackets simplifies to the relation cos(k0µΛ) = cos(kxΛ)
which has a countably infinite set of solutions for m ∈ Z

kxm := k0µm = kx −
2πm
Λ

. (2.44)

We can neglect the solution corresponding to µ = 0 since this gives either the trivial
or the constant solution in the case of real periodic boundary conditions. The former is
not interesting at all while the latter is already captured by (2.44). Now we still need
to determine the expansion coefficients Aα and Bα . One relation directly follows from
the linear dependence of (2.42) while the other relation follows from normalising the
eigenfunctions

Bαm = −
(1− e− jkxΛ) cos(kxm

Λ
2 )

(1 + e− jkxΛ) sin(kxm
Λ
2 )

Aαm = − jAαm, (2.45a)

1 = 〈uαm, uαm〉. (2.45b)

Combining these results gives a complete set of orthonormal eigenfunctions

uαm = e− jkxm x. (2.46)

This set of eigenfunctions is sometimes called the pseudo-periodic Fourier series which is
easily explained by looking at (2.44). There we see that because kx is just a constant it
introduces an extra phase-factor in front of the standard Fourier series. Finally, looking
at the equation for vα we have infinitely many solutions of the form

vαm = Rαme jkI,zm z + Tαme− jkI,zm z, (2.47a)

kI,zm =
√

k2
0n2

I − k2
xm − k2

y, Im[kI,zm] ≤ 0. (2.47b)

With the Rayleigh radiation condition we can now determine half of the unknown ex-
pansion coefficients. This can be seen when writing down the total solution of the elec-
tric field including the y-dependency of this field

E0,αe− jky y =
∞
∑

m=−∞ uαmvαme− jky y

=
∞
∑

m=−∞ Rαme− j(kxm x+ky y−kI,zm z) +
∞
∑

m=−∞ Tαme− j(kxm x+ky y+kI,zm z). (2.48)

From this expression we see that the solution consists of two parts: plane waves moving
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towards the grating with expansion coefficients Tαm and plane waves moving away
from the grating with expansion coefficients Rαm. The Rayleigh radiation condition now
requires the former to match with the known incident field of (2.21). This means that
Tα0 = sinψsα+ cosψpα and Tαm = 0 for m 6= 0. The second part describes the scattered
field in the superstrate and these plane waves indeed satisfy the Rayleigh radiation
condition. This can be seen from the fact that when kI,zm is real we have a propagating
wave and when kI,zm is imaginary we have an evanescent wave decaying exponentially
with distance from the grating surface. The mth plane wave in the Rayleigh expansion is
also called the mth diffraction order which can be either propagating or evanescent. The
interface boundary condition will be used later to determine the unknown expansion
coefficients Rαm for which we also need the solution in the other layers. Analogously
the Rayleigh expansion in the substrate can be derived where the only difference is the
relative permittivity and the absence of an incident field. Note that because of a different
relative permittivity we define kII,zm like in (2.47b) but with nI replaced by nII.

Summarising, the Rayleigh expansions for the electric field in the superstrate and sub-
strate are

E0e− jky y = E r
0 + E i

0 =
∞
∑

m=−∞ R e
me− jkr

m ·x + E i
0, (2.49a)

EK+1e− jky y = E t
K+1 =

∞
∑

m=−∞ T e
me− jkt

m ·(x−ZKez), (2.49b)

kr
m = (kxm, ky,−kI,zm)

T, (2.49c)

kt
m = (kxm, ky, kII,zm)

T. (2.49d)

Note that in the substrate we have normalised the solution in the vertical direction by
subtracting the total height of the grating. This is done so that the expansion coef-
ficients of the evanescent transmitted waves remain of the same order of magnitude
as the propagating transmitted waves. Because the magnetic field satisfies exactly the
same Helmholtz equation in the superstrate and substrate, these Rayleigh expansions
are given by

H0e− jky y = H r
0 + H i

0 = YI

∞
∑

m=−∞ Rh
me− jkr

m ·x + H i
0, (2.50a)

HK+1e− jky y = H t
K+1 = YII

∞
∑

m=−∞ T h
me− jkt

m ·(x−ZKez). (2.50b)

Here we have scaled the reflected magnetic field like the incident magnetic field with
the admittance of medium 1 so that again all expansion coefficients are of the same order
of magnitude. The transmitted magnetic field is scaled with the admittance of medium
2, i.e. YII = nII

√
ε0/µ0. Contrary to what we stated about the electric field, now for

planar diffraction with TE polarisation the x- and z-components of the magnetic field are
non-zero. Similarly for planar diffraction with TM polarisation only the y-component
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of the magnetic field is non-zero. For the conical diffraction case all components of
the magnetic field are non-zero in general. Finally note that an extra superscript is
used in the expansion coefficients to distinguish between the electric and magnetic field.
From Maxwell’s equations it can be seen that the following relations hold between these
expansion coefficients

kr
m × R e

m = k0nIR
h
m , kr

m × Rh
m = −k0nIR

e
m, (2.51a)

kt
m × T e

m = k0nIIT
h
m , kt

m × T h
m = −k0nIIT

e
m. (2.51b)

Although for the general conical diffraction case the electric and magnetic field compo-
nents remain coupled through the boundary condition it is still common to split up the
field into two basic parts. The s-polarised part represents that part of the electric field
normal to the diffraction plane and the p-polarised part represents that part of the elec-
tric field in the diffraction plane. Here the diffraction plane is defined for each diffraction
order separately and is given by the xz-plane rotated by an angleφm about the z-axis so
that

φm = arg(kxm + jky). (2.52)

For the sake of uniqueness we shall define arg(0) = 0 so that we can also speak about a
diffraction plane when a diffraction order moves in the positive or negative z-direction
(for example in the case of normal incidence we have now also defined a diffraction
plane for the 0th diffraction order). Now the s-polarised and p-polarised parts are given
by

Rsm = R e
m · sm = −Rh

m · p r
m, Rpm = R e

m · p r
m = Rh

m · sm, (2.53a)

Tsm = T e
m · sm = −T h

m · p t
m, Tpm = T e

m · p t
m = T h

m · sm. (2.53b)

Here sm = (− sinφm, cosφm, 0)T is an auxiliary unit vector normal to the diffraction
plane and is defined for each diffraction order separately. The auxiliary unit vectors in
the diffraction plane are then given by p r

m = sm × kr
m/(k0nI) and p t

m = sm × kt
m/(k0nII)

in the superstrate and substrate respectively. Using (2.51) we also related the magnetic
field to these s-polarised and p-polarised parts. When applying the interface boundary
conditions later on we are typically interested in the tangential x- and y-components of
the fields. This means that in (2.53) the relations including sm are very useful since they
relate these tangential components of the fields to the s-polarised and p-polarised parts.
Additional equations for these tangential components can be derived by looking in the
direction perpendicular to sm (a derivation can be found in Appendix A.1)

R e
m · s⊥m = −

kI,zm

k0nI
Rpm, Rh

m · s⊥m =
kI,zm

k0nI
Rsm, (2.54a)

T e
m · s⊥m =

kII,zm

k0nII
Tpm, T h

m · s⊥m = −
kII,zm

k0nII
Tsm, (2.54b)

where s⊥m = sm × ez = (cosφm, sinφm, 0)T.
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2.4.1 Energy flow and the Poynting vector

In our analysis of time-harmonic fields the quantity of interest related to energy is the
complex-valued time-averaged Poynting vector

S = 1
2 E× H . (2.55)

The Poynting vector represents the flow of energy or power flux per unit of area. Be-
cause we introduced the phasor notation in equation (2.4), taking the real part of the
Poynting vector gives the real energy flow density or power flux density. For the incident
field the Poynting vector becomes

S i
0 = 1

2 E i
0 × H i

0

= 1
2 YI

1
k0nI

k, (2.56)

where we have used (2.21) and the fact that by definition s, p and k are orthogonal to
each other. The time-averaged energy flow through an area A(x, y) parallel to the plane
of the grating (the xy-plane) is then given by

P =
∫

A(x,y)
S · ez dA. (2.57)

For an infinitely periodic grating that is invariant in the y-direction, this area is defined
by 0 ≤ x ≤ Λ, 0 ≤ y ≤ 1. For the incident field the corresponding incoming energy in
the direction of ez then becomes

P i
0 =

∫ 1

0

∫ Λ
2

− Λ
2

S i
0 · ez dxdy

= 1
2 YI Λ cosθ. (2.58)

Similarly for the scattered field we can look at the energy for each diffraction order. The
Poynting vector corresponding to a reflected or transmitted diffraction order is given
by

S r
0,m = 1

2 E r
0,m × H r

0,m

= 1
2 YI e−2Im[kI,zm ]zR e

m × Rh
m , (2.59a)

S t
K+1,m = 1

2 E t
K+1,m × H t

K+1,m

= 1
2 YII e2Im[kII,zm ](z−ZK)T e

m × T h
m . (2.59b)

From these expressions we can see that the propagating orders in the superstrate have
a Poynting vector that remains constant while the evanescent orders have a Poynting
vector that decays exponentially fast with increasing distance to the grating. A simi-
lar remark can be made for the substrate if it is lossless and has a purely real-valued
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refraction index. If on the other hand the substrate is lossy and has a complex-valued
refraction index then all diffraction orders have a Poynting vector that decays expo-
nentially fast with increasing distance to the grating. From the Poynting vector we can
compute the time-averaged energy flow for a reflected or transmitted diffraction order
(a derivation can be found in Appendix A.2)

P r
0,m = 1

2 YI Λe−2Im[kI,zm ]z
( kI,zm

k0nI
|Rsm|2 +

kI,zm

k0nI
|Rpm|2

)
, (2.60a)

P t
K+1,m = 1

2 YII Λe2Im[kII,zm ](z−ZK)
(( kII,zm

k0nII

)
|Tsm|2 +

kII,zm

k0nII
|Tpm|2

)
. (2.60b)

The diffraction efficiency is a quantity derived from the power density in the superstrate
and substrate and it is this quantity that is frequently used in numerical tests. The
diffraction efficiency corresponding to a diffraction order is the real part of the ratio of
the reflected or transmitted power density and the incoming power density. Moreover
this ratio is evaluated at the top and bottom of the grating structure. For the general
conical diffraction case this means that for a lossless medium

η r
m = Re

[P r
0,m(0)

P i
0

]
= |Rsm|2Re

[ kI,zm

k0nI cosθ

]
+ |Rpm|2Re

[ kI,zm

k0nI cosθ

]
, (2.61a)

η t
m = Re

[P t
K+1,m(ZK)

P i
0

]
= |Tsm|2Re

[ kII,zm

k0nI cosθ

]
+ |Tpm|2Re

[ kII,zm

k0nI cosθ

]
. (2.61b)

Now that the energy and, more specifically, the diffraction efficiency are known for
the general conical diffraction case, we can easily derive these quantities for the planar
diffraction case. This is because for planar diffraction with TE polarisation we have the
relations

Rsm = sign(kxm)R e
ym, Rpm = 0, (2.62a)

Tsm = sign(kxm)T
e
ym, Tpm = 0, (2.62b)

and for TM polarisation

Rsm = 0, Rpm = sign(kxm)Rh
ym, (2.62c)

Tsm = 0, Tpm = sign(kxm)T
h
ym. (2.62d)

Here we used the standard sign-function with the exception that sign(0) = 1.



Chapter 3

Discretisation with Bloch modes

Maxwell’s equations with the interface, pseudo-periodic and radiation boundary condi-
tions for the three diffraction cases can be discretised in many ways. In this chapter we
will focus on a discretisation strategy based on a mode expansion method. The mode
expansion method that we discuss here is also known as the Bloch mode method. Essen-
tially the electromagnetic fields in each layer are expanded into a set of eigenfunctions of
Maxwell’s equations in that layer. In section 2.4 we already derived the eigenfunctions
in the superstrate and substrate where the solution was given by the Rayleigh expan-
sion. By following the same steps in Section 3.1 the eigenfunctions of Maxwell’s equa-
tions inside the grating layers are derived. These eigenfunctions are actually special
linear combinations of sines and cosines and the corresponding expansion is known as
the Bloch mode expansion. Although, in principle, these Bloch modes are known in closed
form, the arguments of the sines and cosines are related to the roots of a transcendental
equation. This transcendental equation and its properties will be the topic of Section
3.2. Finally the layers are connected through the interface boundary condition. In Sec-
tion 3.3 we will discuss how this results in a linear system of equations where the layer
specific expansions introduce a coupling matrix. Solving this system stably will be the
topic of Chapter 5. We conclude this chapter with some generalisations and limitations
of the Bloch mode method in Section 3.4.

3.1 Derivation Bloch modes inside grating layers

In the grating layers the relative permittivity is no longer constant but a periodic piece-
wise constant function of x. This means that Maxwell’s equations no longer reduce
to the Helmholtz equation and that the plane waves are no longer the eigenfunctions.
We will derive these eigenfunctions for the structure in Figure 2.3 with a permittivity
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function given by (2.20). We will restrict ourselves to a symmetric lossless dielectric
grating with Xi,2 = −Xi,1 =: Xi and real-valued refraction indices. The eigenfunctions
of Maxwell’s equations in the grating layers are now determined using the method from
Section 2.4, that is using separation of variables.

3.1.1 Planar diffraction

We start by applying the method of separation of variables to the planar diffraction case.
Moreover, we will solve the problem in the layers i = 1, . . . , K for both polarisations
simultaneously by introducing a field FB i which represents the y-component of either
the electric or magnetic field for TE and TM polarisation respectively

FB i(x, z) = f uB i(x)vB i(z), (3.1)

where f = 1 for TE polarisation and f = − jY for TM polarisation. Substituting into
(2.25) or (2.30), rearranging the terms and adding the proper boundary conditions gives



1
k2

0
u′′B i + n2

IIuB i = −µ2
B iuB i , |x| < Xi ,

1
k2

0
u′′B i + n2

I uB i = −µ2
B iuB i , Xi < |x| < Λ

2 ,

uB i(±X−i ) = uB i(±X+
i ), uB i(

Λ
2 ) = e− jkxΛuB i(−Λ

2 ),

wIIu
′
B i(±X∓i ) = wIu

′
B i(±X±i ), u′B i(

Λ
2 ) = e− jkxΛu′B i(−Λ

2 ),

(3.2a)

and {
1
k2

0
v′′B i = µ2

B ivB i , Zi−1 < z < Zi ,

Interface boundary conditions,
(3.2b)

where µ2
B i is the separation constant or eigenvalue of the problem and where wI = wII =

1 for TE polarisation and wI = 1/n2
I , wII = 1/n2

II for TM polarisation. It is important to
note that we have added inner layer interface boundary conditions at x = ±Xi for the
problem in the periodic x-direction. These can be derived in a similar way as the inter-
face boundary conditions between two adjacent layers for the problem in the vertical
z-direction. Both require the continuity of the tangential electromagnetic fields. For the
inner layer interface boundary conditions this means that from (2.17) and by eliminat-
ing the tangential z-component of the electromagnetic field using (2.24b) and (2.29c) we
obtain

q
FB i

y
x=±Xi

= 0, (3.3a)

q
wi

∂

∂x
FB i

y
x=±Xi

= 0, (3.3b)
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where wi = 1 for TE polarisation and wi = 1/εr
i for TM polarisation. It can be shown

that the differential operator corresponding to the problem for uB i is self-adjoint [9, 10].
This means that the eigenvalues are real-valued and the eigenfunctions corresponding
to distinct eigenvalues are orthogonal with respect to the weighed inner product 〈g, h〉wi

as defined in (2.40). Let ai, bi be two linearly independent basis solutions of equation
(3.2a) which satisfy the inner layer interface boundary conditions at x = ±Xi (not nec-
essarily satisfying the pseudo-periodic boundary condition) and{

ai(0) = 1, bi(0) = 0,

a′i(0) = 0, b′i(0) = 1.
(3.4)

Then

ai(x) =


cos(κIIix), |x| ≤ Xi ,

cos(κIIiXi) cos
(
κIi(|x| − Xi)

)
−

wII

wI

κIIi

κIi
sin(κIIiXi) sin

(
κIi(|x| − Xi)

)
, Xi ≤ |x| ≤ Λ

2 ,
(3.5a)

and

bi(x) =



1
κIIi

sin(κIIix), |x| ≤ Xi ,

1
κIIi

sign(x)
(

sin(κIIiXi) cos
(
κIi(|x| − Xi)

)
+

wII

wI

κIIi

κIi
cos(κIIiXi) sin

(
κIi(|x| − Xi)

))
, Xi ≤ |x| ≤ Λ

2 ,

(3.5b)

where

κ2
IIi = k2

0n2
II + k2

0µ
2
B i , κ2

Ii = κ
2
IIi + ∆κ2, ∆κ2 = k2

0

(
n2

I − n2
II

)
. (3.5c)

Indeed, one can easily show that ai and bi are two linearly independent basis solutions
by looking at the scaled Wronskian wiW(ai , bi) which is constant and equal to wII ac-
cording to (3.4). Moreover we see that ai is an even function and bi is an odd function
which is very similar to the cosine and sine in the derivation of the Rayleigh modes. We
now set

uB i = Aiai + Bibi , (3.6)

and apply the pseudo-periodic boundary condition in order to get a relation for the
unknown expansion coefficients Ai and Bi. Thus,

Aiai(
Λ
2 ) + Bibi(

Λ
2 ) = e− jkxΛ

(
Aiai(−Λ

2 ) + Bibi(−Λ
2 )
)
, (3.7a)

Aia
′
i(

Λ
2 ) + Bib

′
i(

Λ
2 ) = e− jkxΛ

(
Aia

′
i(−Λ

2 ) + Bib
′
i(−Λ

2 )
)
. (3.7b)
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For this homogeneous set of linear equations to have a non-trivial solution we require
that (

1− e− jkxΛ
)2ai(

Λ
2 )b

′
i(

Λ
2 )−

(
1 + e− jkxΛ

)2a′i(Λ2 )bi(
Λ
2 ) = 0, (3.8)

where we have used the fact that both ai and b′i are even and a′i and bi are odd. Ex-
panding this equation and using that ai(

Λ
2 )b

′
i(

Λ
2 )− a′i(Λ2 )bi(

Λ
2 ) = wII/wI results in the

following transcendental eigenvalue equation

Ti(κ
2
IIi) := cos(2κIIiXi) cos

(
κIi(Λ− 2Xi)

)
−

1
2

( wI

wII

κIIi

κIi
+

wII

wI

κIi

κIIi

)
sin(2κIIiXi) sin

(
κIi(Λ− 2Xi)

)
= cos(kxΛ), (3.9)

which has a countably infinite set of real-valued solutions κ2
IIi,m for m ∈ N0. Now we

still need to determine the expansion coefficients Ai and Bi. One relation directly follows
from the linear dependence of (3.7) while the other relation follows from normalising
the eigenfunctions

Bi,m = −
(1− e− jkxΛ)ai,m(

Λ
2 )

(1 + e− jkxΛ)bi,m(
Λ
2 )

Ai,m = −
(1 + e− jkxΛ)a′i,m(Λ2 )

(1− e− jkxΛ)b′i,m(Λ2 )
Ai,m, (3.10a)

1 = 〈uB i,m, uB i,m〉wi
. (3.10b)

Finally, looking at the equation for vB i we have infinitely many solutions of the form

vB i,m = C−B i,mek0µB i,m(z−Zi) + C+
B i,me−k0µB i,m(z−Zi−1). (3.11)

It can be shown that the countably infinite set of eigenfunctions {uB i,m}∞m=0 forms a
complete set [12]. Therefore the total solution of the field in a grating layer is given by

FB i = f
∞
∑

m=0
uB i,mvB i,m. (3.12)

By looking at the z-dependent part in this expression we see that again the solution
consists of two parts: waves moving in the positive z-direction with expansion coeffi-
cients C+

B i,m and waves moving in the negative z-direction with expansion coefficients
C−B i,m. Because of (3.5c) and the properties of the transcendental equation which are ex-
plained in the next section, these waves consist of a finite number of propagating waves
and an infinite number of evanescent waves. The interface boundary condition will be
used later to determine the unknown expansion coefficients. In [9] another derivation
of the Bloch modes can be found for a slightly different unit cell. However with the
derivation in this section it is much easier to explain some important properties of the
transcendental equation.
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3.1.2 Conical diffraction

Since the conical diffraction case looks very similar to the planar diffraction case we
will pay special attention to the differences. Although the conical diffraction case does
not have two different polarisations anymore, it does consist of two separate problems
resembling the two polarisations in the planar diffraction case. Again the method of
separation of variables is used. In the layers i = 1, . . . , K a field F̃B i is introduced which
represents the x-component of either the magnetic or electric field respectively

F̃B i(x, z) = f̃ ũB i(x)ṽB i(z), (3.13)

where f̃ = − jY for the magnetic field and f̃ = 1 for the electric field. We purposely
swapped the order of the magnetic and electric field in order to retain some symmetry
later on. Substituting into (2.35), rearranging the terms and adding the proper boundary
conditions gives



1
k2

0
ũ′′B i + (n2

II −
k2

y

k2
0
)ũB i = −µ̃2

B iũB i , |x| < Xi ,

1
k2

0
ũ′′B i + (n2

I −
k2

y

k2
0
)ũB i = −µ̃2

B iũB i , Xi < |x| < Λ
2 ,

1
w̃II

ũB i(±X−i ) =
1

w̃I
ũB i(±X+

i ), ũB i(
Λ
2 ) = e− jkxΛũB i(−Λ

2 ),

ũ′B i(±X∓i ), = ũ′B i(±X±i ), ũ′B i(
Λ
2 ) = e− jkxΛũ′B i(−Λ

2 ),

(3.14a)

and {
1
k2

0
ṽ′′B i = µ̃2

B i ṽB i , Zi−1 < z < Zi ,

Interface boundary conditions,
(3.14b)

where µ̃2
B i is the separation constant or eigenvalue of the problem and where w̃I = w̃II =

1 for the magnetic field and w̃I = 1/n2
I , w̃II = 1/n2

II for the electric field. Also here the
inner layer interface boundary conditions at x = ±Xi can be derived from (2.33) by using
the continuity of the tangential electromagnetic fields in (2.17)

q 1
w̃i

F̃B i
y

x=±Xi
= 0, (3.15a)

q
w̃i

∂

∂x
( 1

w̃i
F̃B i
) y

x=±Xi
= 0, (3.15b)

where w̃i = 1 for the magnetic field and w̃i = 1/εr
i for the electric field. In the con-

ical diffraction case the equation for the x-component of the magnetic (electric) field
resembles the equation for the y-component of the electric (magnetic) field in the planar
diffraction case with TE (TM) polarisation. Moreover note that there is a small difference
in the inner layer interface boundary conditions where the reciprocal weight function
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now also appears in front of the field. The differential operator corresponding to the
problem for ũB i is again self-adjoint and therefore all eigenvalues are real-valued and
the eigenfunctions corresponding to distinct eigenvalues are orthogonal with respect to
the inner product 〈g, h〉1/w̃i

. From the remainder of this section it will become clear why
we have the reciprocal weight function in this inner product. Let ãi, b̃i be two linearly
independent basis solutions of equation (3.14a) which satisfy the inner layer interface
boundary conditions at x = ±Xi (not necessarily satisfying the pseudo-periodic bound-
ary condition) and {

ãi(0) = w̃II, b̃i(0) = 0,

ã′i(0) = 0, b̃′i(0) = w̃II.
(3.16)

Then

ãi(x) =


w̃II cos(κ̃IIix), |x| ≤ Xi ,

w̃I

(
cos(κ̃IIiXi) cos

(
κ̃Ii(|x| − Xi)

)
−

w̃II

w̃I

κ̃IIi

κ̃Ii
sin(κ̃IIiXi) sin

(
κ̃Ii(|x| − Xi)

))
, Xi ≤ |x| ≤ Λ

2 ,

(3.17a)

and

b̃i(x) =



w̃II

κ̃IIi
sin(κ̃IIix), |x| ≤ Xi ,

w̃I

κ̃IIi
sign(x)

(
sin(κ̃IIiXi) cos

(
κ̃Ii(|x| − Xi)

)
+

w̃II

w̃I

κ̃IIi

κ̃Ii
cos(κ̃IIiXi) sin

(
κ̃Ii(|x| − Xi)

))
, Xi ≤ |x| ≤ Λ

2 ,

(3.17b)

where

κ̃2
IIi = k2

0n2
II + k2

0µ̃
2
B i − k2

y, κ̃2
Ii = κ̃

2
IIi + ∆κ2. (3.17c)

Comparing the basis solutions of the conical diffraction case (3.17) with the basis solu-
tions of the planar diffraction case (3.5), it is clear that when κIIi = κ̃IIi these solutions
are related through ãi = wiai and b̃i = wibi. In this relation one should realise that
the weight function wi in the planar TE (or TM) case is actually identical to the weight
function w̃i in the conical case for the magnetic (or electric) field. Since the solutions in
the planar diffraction case were linearly independent, so are the solutions in the conical
diffraction case. Here the scaled Wronskian (1/w̃i)W(ãi , b̃i) is constant and equal to w̃II

according to (3.16). Moreover ãi is again an even function and b̃i is an odd function. We
now set

ũB i = Ãi ãi + B̃i b̃i , (3.18)
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and apply the pseudo-periodic boundary condition in order to get a relation for the
unknown expansion coefficients Ãi and B̃i. Exactly the same relations as in (3.7) hold but
now with a tilde above the expansion coefficients and basis solutions. Consequently the
same transcendental eigenvalue equation as in (3.9) can be derived except that we have
to replace κIIi with κ̃IIi. This means that for all conical angles of incidence with the same
kx we only need to solve one transcendental eigenvalue equation: the corresponding
planar diffraction case! Because the factor ky is still different for each conical angle of
incidence with fixed kx we do get different eigenvalues µ̃B i,m although κIIi,m = κ̃IIi,m for
m ∈ N0. Now we still need to determine the expansion coefficients Ãi and B̃i. One
relation directly follows from the linear dependence of (3.7) while the other relation
follows from normalising the eigenfunctions

B̃i,m = −
(1− e− jkxΛ)ai,m(

Λ
2 )

(1 + e− jkxΛ)bi,m(
Λ
2 )

Ãi,m = −
(1 + e− jkxΛ)a′i,m(Λ2 )

(1− e− jkxΛ)b′i,m(Λ2 )
Ãi,m, (3.19a)

1 = 〈ũB i,m, ũB i,m〉1/w̃i
. (3.19b)

Note that in (3.19a) we already replaced the conical basis solutions with planar basis so-
lutions. These planar basis solution obviously correspond to the planar diffraction case
with the same kx. Then the conical basis solutions are related to these planar basis so-
lutions through the weight function as mentioned before which in turn drops out of the
fraction. Moreover, because the solutions of the planar diffraction case were orthogonal
with respect to the inner product in (3.10b), now we have orthogonality and normalise
with respect to the inner product in (3.19b). Combining these relations gives Ãi,m = Ai,m

and therefore also B̃i,m = Bi,m. Summarising, for a conical diffraction case with a certain
value of kx the solution for the problem in the periodic x-direction is given in terms of
the solution of the corresponding planar diffraction case by ũB i,m = wiuB i,m. Finally,
looking at the equation for ṽB i we have infinitely many solutions of the form

ṽB i,m = C̃−B i,mek0µ̃B i,m(z−Zi) + C̃+
B i,me−k0µ̃B i,m(z−Zi−1). (3.20)

The total solution of the field in a grating layer is then given by

F̃B i = f̃
∞
∑

m=0
ũB i,mṽB i,m = f̃ wi

∞
∑

m=0
uB i,mṽB i,m. (3.21)

Naturally the same remarks hold about the propagating and evanescent waves as in
the planar diffraction case. Also now the interface boundary conditions will be used
later to determine the unknown expansion coefficients. In [24] a different derivation
of the conical diffraction case can be found. There a special decomposition of the field
is introduced whereas here we solve directly for the uncoupled field components that
come out of Maxwell’s equations. This seems more natural and allows us to compare
the results better with the second discretisation strategy that we will discuss in the next
chapter.
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3.2 Properties transcendental equation

One of the main challenges with the Bloch mode method is finding the eigenvalues
µ2

B i,m, which are related to the roots κ2
IIi,m of the transcendental equation (3.9) through

(3.5c) for the planar diffraction case. Since the root-finding in the conical diffraction case
reduces to a planar diffraction case problem (and a similar remark can be made about
the eigenfunctions) we only need to focus on the planar diffraction case in this section.
Before zooming in to the numerical computation of these roots, we first discuss some
general properties of the transcendental equation.

The first property deals with special angles of incidence and the corresponding simpli-
fication of the transcendental equation. As can be seen from (3.8) we can consider two
special cases where the term between one of the pair of brackets enclosing the exponen-
tial becomes equal to zero. This happens when either e− jkxΛ = 1, the periodic eigenvalue
problem, or when e− jkxΛ = −1, the semi-periodic eigenvalue problem. Both cases correspond
to a so called Littrow mount where the angle of incidence is such that the diffracted light
of one of the diffraction orders follows the same path as the incident one. The former
corresponds to a Littrow mount where an even diffraction order goes back in the direc-
tion of the incident light whereas the latter corresponds to a Littrow mount where an
odd diffraction order goes back in the direction of the incident light. For the periodic
eigenvalue problem the roots of the transcendental equation can be found by solving
for those κ2

IIi that satisfy the two separate problems{
a′i(Λ2 ) = 0,

ui = Aiai ,
and

{
bi(

Λ
2 ) = 0,

ui = Bibi ,
(3.22)

where the second line gives the corresponding eigenfunction. The coefficients in the
eigenfunctions are again found by normalising the solution according to (3.10b). More-
over the functions ai and bi defined in (3.5) simplify dramatically and are given by

ai(x) =


cos(κIIix), |x| ≤ Xi ,

cos(κIIiXi)

cos
(
κIi(

Λ
2 − Xi)

) cos
(
κIi(

Λ
2 − |x|)

)
, Xi ≤ |x| ≤ Λ

2 ,
(3.23a)

and

bi(x) =


1
κIIi

sin(κIIix), |x| ≤ Xi ,

1
κIIi

sin(κIIiXi)

sin
(
κIi(

Λ
2 − Xi)

) sign(x) sin
(
κIi(

Λ
2 − |x|)

)
, Xi ≤ |x| ≤ Λ

2 ,
(3.23b)

Here we used the relations a′i(Λ2 ) = 0 and bi(
Λ
2 ) = 0 to rewrite the constant in front

of the sin
(
κIi(|x| − Xi)

)
appearing in (3.5) and applied the angle sum and difference
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identities for the sine and cosine. Similarly for the semi-periodic eigenvalue problem
we can write the two separate problems{

ai(
Λ
2 ) = 0,

ui = Aiai ,
and

{
b′i(Λ2 ) = 0,

ui = Bibi .
(3.24)

Also now the functions ai and bi simplify dramatically and by following the same steps
as for the periodic eigenvalue problem we arrive at

ai(x) =


cos(κIIix), |x| ≤ Xi ,

cos(κIIiXi)

sin
(
κIi(

Λ
2 − Xi)

) sin
(
κIi(

Λ
2 − |x|)

)
, Xi ≤ |x| ≤ Λ

2 ,
(3.25a)

and

bi(x) =


1
κIIi

sin(κIIix), |x| ≤ Xi ,

1
κIIi

sin(κIIiXi)

cos
(
κIi(

Λ
2 − Xi)

) sign(x) cos
(
κIi(

Λ
2 − |x|)

)
, Xi ≤ |x| ≤ Λ

2 .
(3.25b)

The second property is formulated in a theorem that describes the general behaviour of
the function Ti in the transcendental equation. The proof of this theorem can be found
in [15]. If we denote the roots of the periodic eigenvalue problem by κ̂2

IIi,m and of the
semi-periodic eigenvalue problem by κ̂2

IIi,m then

Theorem 3.1 (i). The roots of the periodic and semi-periodic eigenvalue problem occur in the
order

κ̂2
IIi,0 < κ̂

2
IIi,0 ≤ κ̂

2
IIi,1 < κ̂2

IIi,1 ≤ κ̂2
IIi,2 < κ̂

2
IIi,2 ≤ κ̂

2
IIi,3 < · · · .

(ii). In the intervals [κ̂2
IIi,2mκ̂

2
IIi,2m], Ti(κ

2
IIi) decreases from 1 to −1.

(iii). In the intervals [κ̂2
IIi,2m+1κ̂

2
IIi,2m+1], Ti(κ

2
IIi) increases from −1 to 1.

(iv). In the intervals (−∞, κ̂2
IIi,0) and (κ̂2

IIi,2m+1, κ̂2
IIi,2m+2), Ti(κ

2
IIi) > 1.

(v). In the intervals (κ̂2
IIi,2m, κ̂2

IIi,2m+1), Ti(κ
2
IIi) < −1.

In Figure 3.1 a plot of a typical function Ti is shown where nI = 1, nII = 3.77, Xi =
0.25, Λ = 1, λ0 = 0.6328. The left picture shows the behaviour on the interval [0, 5000]
while the right picture zooms in on that same interval. Here the outermost dashed lines
correspond to the periodic and semi-periodic eigenvalue problem whereas the middle
dashed line at height 1

2 corresponds to a general eigenvalue problem. The intersections
of the horizontal dashed line at height 1 with the oscillatory solid line are the roots
κ̂2

IIi,m of the periodic eigenvalue problem. Similarly the roots κ̂2
IIi,m of the semi-periodic

eigenvalue problem are given by the intersections of the horizontal dashed line at height
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−1 with the oscillatory solid line. For a general angle of incidence not corresponding to
a Littrow mount the roots of the transcendental equation are given by the intersections
of the oscillatory solid line and a horizontal line at some height −1 < cos(kxΛ) < 1
of which the dashed line at height 1

2 is an example. The behaviour of the function
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Figure 3.1: Typical plot of the function Ti where nI = 1, nII = 3.77, Xi = 0.25, Λ = 1, λ0 =
0.6328. The left picture shows the behaviour on the interval [0, 5000] while the right picture
zooms in on that same interval. The outermost dashed lines correspond to the periodic and semi-
periodic eigenvalue problem whereas the middle dashed line at height 1

2 corresponds to a general
eigenvalue problem.

Ti is in agreement with Theorem 3.1 but is clearly different in the interval [0,−∆κ2]
and [−∆κ2, 5000] with −∆κ2 = 1303. The latter corresponds to the case where κIIi
and κIi are both real-valued and the function Ti is the sum of the product of two sines
and cosines. The former corresponds to the case where κIIi is still real-valued but κIi is
imaginary-valued resulting in a function Ti, which is the sum of the product of a sine
and hyperbolic sine and of a cosine and hyperbolic cosine. For negative values of κ2

IIi
the function Ti is the sum of the product of two hyperbolic sines and hyperbolic cosines
and is therefore always greater than 1. In this case there is no intersection point with
any of the dashed lines for negative values of κ2

IIi. When nI > nII the role of κIIi and κIi
is somewhat reversed. Then the crossover point located at zero is defined for κIIi and Ti
is always greater than one for κ2

IIi = −∆κ2 < 0, effectively translating the graph from
Figure 3.1 to the left over a distance ∆κ2.

Now that we know some general properties of the transcendental equation we can start
discussing the strategy of actually computing the roots of this transcendental equa-
tion [32]. It is important to note that one typically searches for the first M roots of the
transcendental equation and not just any M roots. This is because the first few roots are
related to the dominant behaviour of the electromagnetic field, while the other roots are
related to the higher order effects. We will first discuss the case of a Littrow mounting
with periodic boundary conditions. From Figure 3.1 one might think that finding these
roots is very complicated since they are so close together. It turns out that this is not a
real problem because of the first property that we described at the beginning of this sec-
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Figure 3.2: Typical plot of a′i(Λ2 ) (solid black) and bi(
Λ
2 ) (solid grey) but now as a function of

κ2
IIi where nI = 1, nII = 3.77, Xi = 0.25, Λ = 1, λ0 = 0.6328 for the periodic eigenvalue

problem.

tion. There we explained that the roots of the transcendental equation can be found by
solving two separate problems (3.22). The two separate problems also separate the roots
as can be seen in Figure 3.2. This figure shows a′i(Λ2 ) and bi(

Λ
2 ) but now as a function of

κ2
IIi where we look for the intersections with the dashed line or x-axis. The equation for

a′i(Λ2 ) = 0 reads

−κIi cos(κIIiXi) sin
(
κIi(

Λ
2 − Xi)

)
− wII

wI
κIIi sin(κIIiXi) cos

(
κIi(

Λ
2 − Xi)

)
= 0. (3.26)

Dividing by both cosines and multiplying by −1 gives

κIi tan
(
κIi(

Λ
2 − Xi)

)
+

wII

wI
κIIi tan(κIIiXi) = 0. (3.27)

This expression is very useful because both parts are monotonically increasing func-
tions. The asymptotes of both tangents can be used to define intervals in which there is
exactly one solution to the original equation (3.26). Note that for the interval [0,−∆κ2]
the tangent withκIi becomes a hyperbolic tangent and therefore has no asymptotes any-
more. The collection of asymptotes is given by

ζ̂2
i =


(

π
2 +pπ

Xi

)2
, p = 0, 1, . . . ,(

π
2 +qπ
Λ
2 −Xi

)2
− ∆κ2, q = 0, 1, . . . .

(3.28)

After sorting these asymptotes in increasing order the interval in which (3.26) has ex-
actly one solution is simply given by two subsequent values in the sorted list. Note that
we also have to add 0 to this list since the expression on the left of the equal sign in
(3.27) is negative and therefore has its first root in the interval from 0 to the first asymp-
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tote. For the root-finding algorithm we used the standard routine fzero in Matlab V7.3
(R2006b) which uses a combination of bisection, secant, and inverse quadratic interpo-
lation methods [16]. To speed up computations one can also use a standard Newton
scheme and use fzero as an alternative if Newton fails to find a root in the desired in-
terval. Note that although the original formulation (3.26) did not consist of monotonic
functions, it still has the same roots as (3.27) and therefore the intervals derived for the
tangent formulation can also be used here to guarantee exactly one root. Similarly the
equation for bi(

Λ
2 ) = 0 reads

1
κIIi

sin(κIIiXi) cos
(
κIi(

Λ
2 − Xi)

)
+

wII

wI

1
κIi

cos(κIIiXi) sin
(
κIi(

Λ
2 − Xi)

)
= 0. (3.29)

Dividing by both sines and multiplying by κIiκIIi gives

κIi cot
(
κIi(

Λ
2 − Xi)

)
+

wII

wI
κIIi cot(κIIiXi) = 0. (3.30)

The same procedure can be repeated as before except that now we have monotonically
decreasing functions. The collection of asymptotes is given by

ξ̂2
i =


(

pπ
Xi

)2
, p = 1, 2, . . . ,(

qπ
Λ
2 −Xi

)2
− ∆κ2, q = 0, 1, . . . .

(3.31)

Note that p = 0 is not an asymptote since the limit for κIIi → 0 exists for the expression
on the left of the equal sign in (3.30). If this limit is positive we still need to add zero
to the sorted list of asymptotes because then the first root lies in the interval from 0 to
the first asymptote. The root-finding algorithm remains the same which concludes the
strategy for the periodic eigenvalue problem.

For a Littrow mounting with semi-periodic boundary conditions exactly the same strat-
egy can be used. Also here the roots lie very close together but the transcendental equa-
tion can again be separated. Now we look for the solutions of the problems ai(

Λ
2 ) = 0

and b′i(Λ2 ) = 0. By using the monotonicity and asymptotes of the corresponding tangent
and cotangent formulations we can derive the intervals in which there lies exactly one
root. This root is found with the same root-finding algorithm and thereby completing
the strategy for the semi-periodic eigenvalue problem.

For a general angle of incidence not corresponding to a Littrow mount the roots of the
transcendental are no longer the roots of two separate problems. The strategy we sug-
gest here is to find the roots of the periodic and semi-periodic eigenvalue problem first
and then use the properties of Theorem 3.1. This means that there is exactly one root
in the interval given by (ii) and (iii) of the theorem which can be found by using once
more the root-finding algorithm mentioned before.
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3.3 Matching at the interfaces and the coupling matrix

The electromagnetic fields in the superstrate and substrate are described by the Rayleigh
expansion, whereas the fields in the grating layers are given by the Bloch mode ex-
pansion. In this section the interface boundary conditions are applied in order to get
the necessary relations between the unknown expansion coefficients that still appear in
these expansions. Since these expansions are based on the eigenfunctions of each layer,
they also differ from layer to layer and a coupling operator needs to be computed.

3.3.1 Planar diffraction

For the planar diffraction case the necessary equations for the unknown expansion coef-
ficients follow from the interface boundary conditions (2.27) or (2.32) depending on the
polarisation. From these equations it can be seen that only the y-component of the elec-
tromagnetic fields is required. Recall that the Rayleigh expansions in the superstrate
and substrate were derived for a general conical angle of incidence. This means that
here we only use the y-component of the expansions in (2.49) and (2.50) for TE and TM
polarisation respectively. Additionally the solution inside the grating layers is given
by the Bloch mode expansion in (3.12) for both polarisations. Summarising we get for
z = Z0

νI

∞
∑

m=−∞
(
C−B 0,m + δ0,m

)
e− jkxm x =

∞
∑

m=0
uB 1,mvB 1,m(0), (3.32a)

jw0νI

∞
∑

m=−∞
kI,zm
k0

(
C−B 0,m − δ0,m

)
e− jkxm x = 1

k0

∞
∑

m=0
w1uB 1,mv′B 1,m(0), (3.32b)

for z = Zi and i = 1, . . . , K− 1

∞
∑

m=0
uB i,mvB i,m(Zi) =

∞
∑

m=0
uB i+1,mvB i+1,m(Zi), (3.32c)

1
k0

∞
∑

m=0
wiuB i,mv′B i,m(Zi) =

1
k0

∞
∑

m=0
wi+1uB i+1,mv′B i+1,m(Zi), (3.32d)

and for z = ZK

∞
∑

m=0
uB K,mvB K,m(ZK) = νII

∞
∑

m=−∞ C+
B K+1,me− jkxm x, (3.32e)

1
k0

∞
∑

m=0
wKuB K,mv′B K,m(ZK) = − jwK+1νII

∞
∑

m=−∞
kII,zm

k0
C+

B K+1,me− jkxm x, (3.32f)

with νI = νII = 1 for TE polarisation and νI = jnI,νII = jnII for TM polarisation where
the latter comes from dividing out the the term − jY. Moreover we extended the defi-
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nition of the weight function wi to the superstrate and substrate. The coefficients C−B 0,m

represent either the expansion coefficients R e
ym or Rh

ym depending on the polarisation.
A similar remark can be made for the coefficients C+

B K+1,m in the substrate. Finally the
known expansion coefficients of the incident field are given by δ0,m, the discrete Dirac
delta function which is equal to one for m = 0 and zero otherwise. The system of equa-
tions (3.32) in known expansions functions (the eigenfunctions of Maxwell’s equations
in each layer) and with unknown expansion coefficients can be solved by the method
of moments [18]. This method first defines a set of linearly independent test functions.
Then the inner product of (3.32) with each of these test functions is taken, thereby elim-
inating the x-dependency of the equations. Finally the resulting algebraic linear system
of equations of infinite dimension is truncated and solved for the unknown expansion
coefficients. Choosing these test functions still allows for some freedom and in this the-
sis we will mention two approaches frequently used for the grating diffraction problem.
The first approach is known as the homogeneous method where for each interface the same
set of test functions is used for both interface boundary conditions. Moreover this set of
test functions is chosen equal to the set of eigenfunctions in one of the layers adjacent
to the interface. In this thesis we write down the second approach known as the hybrid
method where for each interface first two different sets of test functions are used for the
two interface boundary conditions. Moreover these two sets of test functions are chosen
equal to the eigenfunctions in the two layers adjacent to the interface. The advantage of
this approach is that the so called energy balance and reciprocity criteria are always sat-
isfied, independent of the truncation order [7,32]. Then we multiply (3.32a,c,e) with the
conjugates of e− jkxp x, wiuB i,q and wKuB K,q respectively and after dividing by the pitch we
integrate over the pitch. Similarly we multiply (3.32b,d,f) with the conjugates of uB 1,q,
uB i+1,q and e− jkxp x respectively and after dividing by the pitch we again integrate over
the pitch. Finally using the orthogonality of the eigenfunctions and substituting the so-
lution for vB i,m, the following set of equations can be derived for p ∈ Z and q ∈ N0

νI
(
C−B 0,p + δ0,p

)
=

∞
∑

m=0

(
C−B 1,mxB 1,m + C+

B 1,m
)
qB 0,mp, (3.33a)

jw0νI

∞
∑

m=−∞
kI,zm
k0

(
C−B 0,m − δ0,m

)
qB 0,qm = µB 1,q

(
C−B 1,qxB 1,q − C+

B 1,q
)
, (3.33b)

for q ∈ N0 and i = 1, . . . , K− 1

C−B i,q + C+
B i,qxB i,q =

∞
∑

m=0

(
C−B i+1,mxB i+1,m + C+

B i+1,m
)
qB i,mq, (3.33c)

∞
∑

m=0
µB i,m

(
C−B i,m − C+

B i,mxB i,m
)
qB i,qm = µB i+1,q

(
C−B i+1,qxB i+1,q − C+

B i+1,q
)
, (3.33d)
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and for p ∈ Z and q ∈ N0

C−B K,q + C+
B K,qxB K,q = νII

∞
∑

m=−∞C+
B K+1,mqB K,mq, (3.33e)

∞
∑

m=0
µB K,m

(
C−B K,m − C+

B K,mxB K,m
)
qB K,pm = − jwK+1νII

kII,zp

k0
C+

B K+1,p, (3.33f)

with the coupling coefficients between two adjacent layers for i = 1, . . . , K− 1

qB 0,qm = 〈e− jkxm x, uB 1,q〉, qB i,qm = 〈uB i,m, uB i+1,q〉wi
, qB K,pm = 〈uB K,m, e− jkxp x〉wK

,
(3.34)

and where xB i,m = e−k0µB i,mhi . In order to solve this algebraic linear system of equations
for the unknown expansion coefficients we truncate the series. This means that the
index p and all sums that run from −∞ to ∞ are truncated from −M to M. Similarly
the index q and all sums that run from 0 to ∞ are truncated from 0 to 2M. Finally
equations (3.33b,d,f) are multiplied with −1 which makes the comparison with other
solution algorithms easier later on. Summarising we get for i = 1, . . . , K− 1

νI

[
I O
O QB 0

] [
I I

jw0KI,z − jw0KI,z

] [
d0
c−B 0

]
= FB 1(Z0)cB 1, (3.35a)

FB i(Zi)cB i = FB i+1(Zi)cB i+1, (3.35b)

FB K(ZK)cB K = νII

[
QH

B K O
O I

] [
I

jwK+1KII,z

]
c+B K+1. (3.35c)

Here I is simply the identity matrix and KI,z and KII,z are diagonal matrices containing
the terms kI,zm/k0 and kII,zm/k0 respectively. The matrices QB 0 and QB K naturally con-
tain the coupling coefficients from (3.34) where the superscript H denotes the complex
conjugate transposed of a matrix. Moreover the terms C−B 0,m, C+

B K+1,m and δ0,m are col-
lected in the vectors c−B 0, c+B K+1 and d0. Finally we introduced some shorthand notation
for the solution in the grating layers evaluated at the different interfaces

FB i(Zi−1) =

[
QH

B i−1 O
O I

] [
I I

MB i −MB i

] [
I O
O XB i

]
, (3.36a)

FB i(Zi) =

[
I O

O QB i

] [
I I

MB i −MB i

] [
XB i O
O I

]
, (3.36b)

cB i =

[
c+B i
c−B i

]
, (3.36c)

where MB i and XB i are diagonal matrices containing the terms µB i,m and xB i,m respec-
tively and QB i naturally contains the other coupling coefficients from (3.34). The solu-
tion in the grating layers FB i is sometimes referred to as the fundamental solution. More-
over the terms C−B i,m and C+

B i,m are collected in the vectors c−B i and c+B i respectively. Elim-
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inating the truncated expansion coefficients c−B 0 and c+B K+1 of the scattered field from
(3.35a) and (3.35c) gives

G1:
B 1FB 1(Z0)cB 1 = d 1

B , (3.37a)

FB i(Zi)cB i = FB i+1(Zi)cB i+1, (3.37b)

G2:
B KFB K(ZK)cB K = d 2

B , (3.37c)

with the auxiliary matrices and vectors

GB 1 =

[
jw0QB 0KI,z I

O O

]
, GB K =

[
O O

jwK+1KII,zQ−H
B K −I

]
, (3.38a)

dB =

[
2 jw0νIQB 0KI,zd0

0

]
. (3.38b)

Here italic superscript numbers to the right of a vector or matrix refer to partitioning.
For a vector this number indicates the block row number which corresponds to a (block)
vector. For a matrix these two numbers indicate the respective block row and block
column number which correspond to a square (block) matrix. If for a matrix the first
or second number is replaced by a colon this indicates the partitioning into the entire
block column or block row respectively which then corresponds to a rectangular (block)
matrix. Note that for a matrix the superscripts referring to partitioning always come in
pairs and therefore cannot be mistaken for taking the matrix to a certain power. Equa-
tion (3.37) can be combined into one system where the coefficient matrix is a sparse
block matrix

FB 1(Z1) −FB 2(Z1)

. . . . . .

FB K−1(ZK−1) −FB K(ZK−1)

GB 1FB 1(Z0) GB KFB K(ZK)





cB 1

...

cB K−1

cB K


=



0

...

0

dB


.

(3.39)

In Chapter 5 we will discuss how to solve this system stably. For now we will only
remark that by eliminating the expansion coefficients c−B 0 and c+B K+1 of the scattered
field we have arrived at this well known structure for the coefficient matrix frequently
encountered in shooting methods. This sparse linear system is sometimes referred to as
a discrete boundary value problem (BVP). The first K − 1 block rows are a direct result of
matching the solution at the interior interfaces while the last block row corresponds to
the top and bottom interface (the endpoints). This last block row is therefore sometimes
referred to as the row containing the boundary conditions of the discrete BVP. If after
solving this system one also wants to compute the scattered field amplitudes, again
special care has to be taken.
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3.3.2 Conical diffraction

For the conical diffraction case the necessary equations for the unknown expansion co-
efficients follow from the interface boundary conditions (2.36). From these equations
it can be seen that both the x- and y-component of the electric and magnetic field are
required. As mentioned before the Rayleigh expansions in the superstrate and substrate
were derived for a general conical angle of incidence. Therefore we can we can simply
use the x- and y-component of the expansions in (2.49) and (2.50). Additionally the so-
lution for the x-component of the electric and magnetic field inside the grating layers is
given by the Bloch mode expansion in (3.23). This means that inside the grating layers
we still need to find an expression for the y-component of these fields before we can
apply the interface boundary conditions. These expressions are derived from (2.34b)
(after multiplying with εr

i ) and (2.34d) which we can rewrite to(
εr

i
∂

∂x
1
εr

i

∂

∂x
+ k2

0ε
r
i

)
Hi,y = − jkyε

r
i

∂

∂x

( 1
εr

i
Hi,x

)
+ jωε0ε

r
i

∂

∂z
Ei,x, (3.40a)

(
∂

2

∂x2 + k2
0ε

r
i

)
Ei,y = − jωµ0

∂

∂z
Hi,x − jky

∂

∂x
Ei,x. (3.40b)

The extra multiplication with the relative permittivity is not necessary but makes it
easier to link the problem to the planar diffraction case later on. In order to write down
the solution of (3.40) both a particular solution as well as a homogeneous solution needs
to be found. First a particular solution is derived in terms of the solution components
ũB i,m and ṽB i,m. This makes sense since these solution components were used to write
down the solution of the x-component of the electromagnetic field which now appears
in the inhomogeneous parts of the equation. By using (3.14) it can be verified that the
particular solution is given by

Hpart
i,y = − jY

(
ky

k0

j
k0

∞
∑

m=0
λ̃h

i,mũh ′
B i,mṽh

B i,m + 1
k0

∞
∑

m=0
λ̃ e

i,mε
r
i ũ

e
B i,mṽ e ′

B i,m

)
, (3.41a)

Epart
i,y = 1

k0

∞
∑

m=0
λ̃h

i,mũh
B i,mṽh ′

B i,m +
ky

k0

j
k0

∞
∑

m=0
λ̃ e

i,m ũ e ′
B i,mṽ e

B i,m, (3.41b)

λ̃i,m =
k2

0

k2
0µ̃

2
B i,m − k2

y
. (3.41c)

Here an extra superscript is introduced to distinguish between the x-component of the
electric and magnetic field. From the expressions above we see that a problem arises
when a conical eigenvalue µ̃B i,m is equal to ky/k0 and thus one of the denominators in
(3.41c) is zero. Given a certain grating it is very unlikely that this will actually happen,
although one should check the transcendental eigenvalue equation before doing any
of the computations. In the remainder of this thesis we will assume not to be in this
special case. Under this assumption we now show that the homogeneous solution of
(3.40) is identical to the trivial solution. To this end first the boundary conditions for the
homogeneous equation are investigated. Since the solution of the total electromagnetic
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field consisting of the homogeneous solution plus the particular solution is pseudo-
periodic, it is clear that having found an expression for the particular solution which is
pseudo-periodic also the homogeneous solution must be pseudo-periodic. Moreover,
the inner layer interface boundary conditions at x = ±Xi for the homogeneous solution
reduce to the ones we already derived for the planar diffraction case in (3.3). This can
be seen from (2.33) by using the continuity of the tangential electromagnetic fields in
(2.17), the inner layer interface boundary conditions in (3.15) and the particular solution
in (3.41). But this suggests that the x-dependent part of the homogeneous solution must
be equal to the non-trivial eigenfunction in the planar diffraction case corresponding to
the planar eigenvalue equal to zero. This in turn corresponds to a conical eigenvalue
equal to ky/k0, which was exactly the special case we would not consider. Thus, the
homogeneous solution is identical to the trivial solution and the total solution of the
y-component of the electromagnetic field is simply given by the particular solutions in
(3.41).

Now that all components are available the interface boundary conditions (2.36) can be
applied which after reordering give for z = Z0

jnI

∞
∑

m=−∞
(

Rh
xm + δ0,m(sx cosψ− px sinψ)

)
e− jkxm x =

∞
∑

m=0
ũh

B 1,mṽh
B 1,m(0), (3.42a)

∞
∑

m=−∞
(

R e
xm + δ0,m(sx sinψ+ px cosψ)

)
e− jkxm x =

∞
∑

m=0
ũ e

B 1,mṽ e
B 1,m(0), (3.42b)

jnI

∞
∑

m=−∞
(

Rh
ym + δ0,m(sy cosψ− py sinψ)

)
e− jkxm x =

ky

k0

j
k0

∞
∑

m=0
λ̃h

1,mũh ′
B 1,mṽh

B 1,m(0) +
1
k0

∞
∑

m=0
λ̃ e

1,mε
r
1ũ e

B 1,mṽ e ′
B 1,m(0), (3.42c)

∞
∑

m=−∞
(

R e
ym + δ0,m(sy sinψ+ py cosψ)

)
e− jkxm x =

1
k0

∞
∑

m=0
λ̃h

1,mũh
B 1,mṽh ′

B 1,m(0) +
ky

k0

j
k0

∞
∑

m=0
λ̃ e

1,m ũ e ′
B 1,mṽ e

B 1,m(0), (3.42d)

for z = Zi and i = 1, . . . , K− 1

∞
∑

m=0
ũh

B i,mṽh
B i,m(Zi) =

∞
∑

m=0
ũh

B i+1,mṽh
B i+1,m(Zi), (3.42e)

∞
∑

m=0
ũ e

B i,mṽ e
B i,m(Zi) =

∞
∑

m=0
ũ e

B i+1,mṽ e
B i+1,m(Zi), (3.42f)
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ky

k0

j
k0

∞
∑

m=0
λ̃h

i,mũh ′
B i,mṽh

B i,m(Zi) +
1
k0

∞
∑

m=0
λ̃ e

i,mε
r
i ũ

e
B i,mṽ e ′

B i,m(Zi) =

ky

k0

j
k0

∞
∑

m=0
λ̃h

i+1,mũh ′
B i+1,mṽh

B i+1,m(Zi) +
1
k0

∞
∑

m=0
λ̃ e

i+1,mε
r
i+1ũ e

B i+1,mṽ e ′
B i+1,m(Zi), (3.42g)

1
k0

∞
∑

m=0
λ̃h

i,mũh
B i,mṽh ′

B i,m(Zi) +
ky

k0

j
k0

∞
∑

m=0
λ̃ e

i,m ũ e ′
B i,mṽ e

B i,m(Zi) =

1
k0

∞
∑

m=0
λ̃h

i+1,mũh
B i+1,mṽh ′

B i+1,m(Zi) +
ky

k0

j
k0

∞
∑

m=0
λ̃ e

i+1,m ũ e ′
B i+1,mṽ e

B i+1,m(Zi), (3.42h)

and for z = ZK

∞
∑

m=0
ũh

B K,mṽh
B K,m(ZK) = jnII

∞
∑

m=−∞ T h
xme− jkxm x, (3.42i)

∞
∑

m=0
ũ e

B K,mṽ e
B K,m(ZK) =

∞
∑

m=−∞ T e
xme− jkxm x, (3.42j)

ky

k0

j
k0

∞
∑

m=0
λ̃h

K,mũh ′
B K,mṽh

B K,m(ZK) +
1
k0

∞
∑

m=0
λ̃ e

K,mε
r
Kũ e

B K,mṽ e ′
B K,m(ZK) =

jnII

∞
∑

m=−∞ T h
yme− jkxm x, (3.42k)

1
k0

∞
∑

m=0
λ̃h

K,mũh
B K,mṽh ′

B K,m(ZK) +
ky

k0

j
k0

∞
∑

m=0
λ̃ e

K,m ũ e ′
B K,mṽ e

B K,m(ZK) =

∞
∑

m=−∞ T e
yme− jkxm x. (3.42l)

Like in the planar diffraction case the known expansion coefficients of the incident field
are given by the discrete Dirac delta function. Note that also here the constant term− jY
appearing in front of all the equations involving the matching of the magnetic field is
divided out. The same holds for the y-dependency of the electromagnetic field since this
term appears in all of the equations and does not depend on the summation index. Now
again the method of moments can be used to solve for the unknown expansion coefficients.
Following the hybrid method for each interface we first define four sets of test functions
equal to the eigenfunctions in the two layers adjacent to the interface. Then we multiply
(3.42a,b,e,f,i,j) with the conjugates of ũh

B 1,q, εr
1ũ e

B 1,q, ũh
B i+1,q, εr

i+1ũ e
B i+1,q, e− jkxp x and e− jkxp x

respectively and after dividing by the pitch we integrate over the pitch. Similarly we
multiply (3.32c,d,g,h,k,l) with the conjugates of e− jkxp x, e− jkxp x, ũ e

B i,q, ũh
B i,q, ũ e

B K,q and ũh
B K,q

respectively and after dividing by the pitch we again integrate over the pitch. Finally
using the orthogonality of the eigenfunctions and substituting the solutions for ṽB i,m
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and ṽ′B i,m, the following set of equations can be derived for p ∈ Z and q ∈ N0

jnI

∞
∑

m=−∞
(

Rh
xm + δ0,m(sx cosψ− px sinψ)

)
q̃h

B 0,qm = C̃ h−
B 1,q x̃h

B 1,q + C̃ h+
B 1,q, (3.43a)

∞
∑

m=−∞
(

R e
xm + δ0,m(sx sinψ+ px cosψ)

)
q̃ e

B 0,qm = C̃ e−
B 1,q x̃ e

B 1,q + C̃ e+
B 1,q, (3.43b)

jnI
(

Rh
yp + δ0,p(sy cosψ− py sinψ)

)
=

ky

k0

∞
∑

m=0
λ̃h

1,m
(
C̃ h−

B 1,m x̃h
B 1,m + C̃ h+

B 1,m
)
q̃h ′

B 1,pm+

∞
∑

m=0
µ̃ e

B 1,mλ̃
e
1,m
(
C̃ e−

B 1,m x̃ e
B 1,m − C̃ e+

B 1,m
)
q̃ e

B 0,mp, (3.43c)

R e
yp + δ0,p(sy sinψ+ py cosψ) =∞

∑
m=0

µ̃ h
B 1,mλ̃

h
1,m
(
C̃ h−

B 1,m x̃h
B 1,m − C̃ h+

B 1,m
)
q̃h

B 0,mp+

ky

k0

∞
∑

m=0
λ̃ e

1,m
(
C̃ e−

B 1,m x̃ e
B 1,m + C̃ e+

B 1,m
)
q̃ e ′

B 1,pm, (3.43d)

for q ∈ N0 and i = 1, . . . , K− 1

∞
∑

m=0

(
C̃ h−

B i,m + C̃ h+
B i,m x̃h

B i,m
)
q̃h

B i,qm = C̃ h−
B i+1,q x̃h

B i+1,q + C̃ h+
B i+1,q, (3.43e)

∞
∑

m=0

(
C̃ e−

B i,m + C̃ e+
B i,m x̃ e

B i,m
)
q̃ e

B i,qm = C̃ e−
B i+1,q x̃ e

B i+1,q + C̃ e+
B i+1,q, (3.43f)

ky

k0

∞
∑

m=0
λ̃h

i,m
(
C̃ h−

B i,m + C̃ h+
B i,m x̃h

B i,m
)
q̃∗B i,qm + µ̃ e

B i,qλ̃
e
i,q
(
C̃ e−

B i,q − C̃ e+
B i,q x̃ e

B i,q
)
=

ky

k0

∞
∑

m=0
λ̃h

i+1,m
(
C̃ h−

B i+1,m x̃h
B i+1,m + C̃ h+

B i+1,m
)
q̃h ′

B i+1,qm+

∞
∑

m=0
µ̃ e

B i+1,mλ̃
e
i+1,m

(
C̃ e−

B i+1,m x̃ e
B i+1,m − C̃ e+

B i+1,m
)
q̃ e

B i,mq, (3.43g)

µ̃ h
B i,qλ̃

h
i,q
(
C̃ h−

B i,q − C̃ h+
B i,q x̃h

B i,q
)
+

ky

k0

∞
∑

m=0
λ̃ e

i,m
(
C̃ e−

B i,m + C̃ e+
B i,m x̃ e

B i,m
)
q̃∗B i,mq =

∞
∑

m=0
µ̃ h

B i+1,mλ̃
h
i+1,m

(
C̃ h−

B i+1,m x̃h
B i+1,m − C̃ h+

B i+1,m
)
q̃h

B i,mq+

ky

k0

∞
∑

m=0
λ̃ e

i+1,m
(
C̃ e−

B i+1,m x̃ e
B i+1,m + C̃ e+

B i+1,m
)
q̃ e ′

B i+1,qm, (3.43h)
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and for p ∈ Z and q ∈ N0

∞
∑

m=0

(
C̃ h−

B K,m + C̃ h+
B K,m x̃h

B K,m
)
q̃h

B K,pm = jnIIT
h
xp, (3.43i)

∞
∑

m=0

(
C̃ e−

B K,m + C̃ e+
B K,m x̃ e

B K,m
)
q̃ e

B K,pm = T e
xp, (3.43j)

ky

k0

∞
∑

m=0
λ̃h

K,m
(
C̃ h−

B K,m + C̃ h+
B K,m x̃h

B K,m
)
q̃∗B K,qm+

µ̃ e
B K,qλ̃

e
K,q
(
C̃ e−

B K,q − C̃ e+
B K,q x̃ e

B K,q
)

= jnII

∞
∑

m=−∞ T h
ym q̃ e

B K,mq, (3.43k)

µ̃ h
B K,qλ̃

h
K,q
(
C̃ h−

B K,q − C̃ h+
B K,q x̃h

B K,q
)
+

ky

k0

∞
∑

m=0
λ̃ e

K,m
(
C̃ e−

B K,m + C̃ e+
B K,m x̃ e

B K,m
)
q̃∗B K,mq =

∞
∑

m=−∞ T e
ym q̃h

B K,mq, (3.43l)

with the coupling coefficients between two adjacent layers for i = 1, . . . , K− 1

q̃B 0,qm = 〈e− jkxm x, ũB 1,q〉1/w̃1
, q̃B i,qm = 〈ũB i,m, ũB i+1,q〉1/w̃i+1

, q̃B K,pm = 〈ũB K,m, e− jkxp x〉,
(3.44a)

q̃h ′
B 1,pm = j

k0
〈ũh ′

B 1,m, e− jkxp x〉, q̃h ′
B i+1,qm = j

k0
〈ũh ′

B i+1,m, ũ e
B i,q〉, (3.44b)

q̃ e ′
B 1,pm = j

k0
〈ũ e ′

B 1,m, e− jkxp x〉, q̃ e ′
B i+1,qm = j

k0
〈ũ e ′

B i+1,m, ũh
B i,q〉, (3.44c)

and inside the grating layers for i = 1, . . . , K

q̃∗B i,qm = j
k0
〈ũh ′

B i,m, ũ e
B i,q〉, (3.44d)

and where x̃B i,m = e−k0µ̃B i,mhi . Note that only one set of coupling coefficients (3.44d)
inside the grating layers is defined. When the superscripts in this inner product are
reversed we can use partial integration and the pseudo-periodic boundary conditions
to rewrite this inner product in terms of the coupling coefficients. In order to solve
this algebraic linear system of equations for the unknown expansion coefficients we
truncate the series. This means that the index p and all sums that run from −∞ to ∞
are truncated from −M to M. Similarly the index q and all sums that run from 0 to ∞
are truncated from 0 to 2M. Summarising we get for i = 1, . . . , K− 1[

Q B 0 O
O I

] [
FI,s FI,c
−FI,c FI,s

] [
J J

1
nI

K I,z − 1
nI

K I,z

] [
d0
c−B 0

]
= F̃B 1(Z0)c̃B 1, (3.45a)

F̃B i(Zi)c̃B i = F̃B i+1(Zi)c̃B i+1, (3.45b)

F̃B K(ZK)c̃B K =

[
I O

O Q H
B K

] [
FII,s FII,c
−FII,c FII,s

] [
J

1
nII

K II,z

]
c+B K+1, (3.45c)
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where the block diagonal and block anti-diagonal matrices are given by

I = diag (I, I), Q B 0 = diag (Q̃h
B 0, Q̃ e

B 0),

J = a-diag (−I,−I), Q B K = diag (Q̃ e
B K , Q̃h

B K), (3.46)

F?,c = diag ( jn?Fc, Fc), K ?,z = diag (−K?,z, K?,z),

F?,s = diag ( jn?Fs, Fs),

and ? = I, II. Here the coupling coefficients from (3.44a) are collected in the matrices
Q̃B 0 and Q̃B K. Additionally two diagonal matrices Fc and Fs are introduced for the con-
ical diffraction case only and contain the terms cosφm and sinφm respectively. More-
over it is important to note that (3.45a) and (3.45c) are not a direct result of truncating
the equations. As an extra step we eliminated the expansion coefficients of the Rayleigh
expansions and replaced them with the s- and p-polarised counterparts using (2.53) and
(2.54). The resulting system of equations now has the same structure as in the planar
diffraction case where the block vectors are given by

c−B 0 =

[
rs
rp

]
, c+B K+1 =

[
ts
tp

]
, d0 =

[
sinψd0
cosψd0

]
. (3.47)

Here the reflected field coefficients Rsm and Rpm are collected in the vectors rs and rp.
The transmitted field vectors are defined in a similar way. Finally we introduced some
shorthand notation for the solution in the grating layers or fundamental solution eval-
uated at the different interfaces

F̃B i(Zi−1) =

[
I O

K yQ ′
B iLi JQ H

B i−1Li

] [
I I

MB i −MB i

] [
I O
O XB i

]
, (3.48a)

F̃B i(Zi) =

[
Q B i O

K yQ ∗
B iLi JLi

] [
I I

MB i −MB i

] [
XB i O
O I

]
, (3.48b)

c̃B i =

[
c+B i
c−B i

]
, c±B i =

[
c̃h±

B i
c̃ e±

B i

]
, (3.48c)

where again some block diagonal matrices are introduced

MB i = diag (M̃h
B i , M̃ e

B i), Q B i = diag (Q̃h
B i , Q̃ e

B i),

XB i = diag (X̃h
B i , X̃ e

B i), Q ′
B i = diag (Q̃h ′

B i , Q̃ e ′
B i), (3.49)

Li = diag (L̃h
i , L̃ e

i ), Q ∗
B i = diag (Q̃∗B i , Q̃∗HB i ),

K y = diag (Ky, Ky).

The matrices M̃B i, X̃B i and L̃i are diagonal matrices containing the eigenvalues µ̃B i,m and
derived quantities x̃B i,m and λ̃i,m respectively. Moreover the matrices Q̃B i, Q̃′B i and Q̃∗B i
simply consist of the coupling coefficients from (3.44). Naturally the diagonal matrix
Ky contains the wave vector components ky/k0. Finally the terms C̃±h

B i,m and C̃± e
B i,m are

collected in the vectors c̃h±
B i and c̃ e±

B i . Eliminating the truncated expansion coefficients
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c−B 0 and c+B K+1 of the scattered field from (3.45a) and (3.45c) gives

G̃1:
B 1F̃B 1(Z0)c̃B 1 = d̃ 1

B , (3.50a)

F̃B i(Zi)c̃B i = F̃B i+1(Zi)c̃B i+1, (3.50b)

G̃2:
B KF̃B K(ZK)c̃B K = d̃ 2

B , (3.50c)

with the auxiliary matrices and vectors

G̃B 1 =

[
I −Q B 0(K

2
y − n2

I I )−1(K xK y − nIK I,zJI)

O O

]
, (3.51a)

G̃B K =

[
O O

−I (K 2
y − n2

III )
−1(K xK y + nIIK II,zJII)Q

−H
B K

]
, (3.51b)

d̃B =

[
−2Q B 0(K

2
y − n2

I I )−1(nIFI,cK I,z + FI,sK
2
I,zJ)d0

0

]
, (3.51c)

and

K x = diag (Kx, Kx), J? = a-diag (− jn?I,− 1
jn?

I), (3.51d)

where ? = I, II. Like Ky the diagonal matrix Kx now contains the wave vector com-
ponents kxm/k0. Equation (3.50) can be combined into one system where the coefficient
matrix is similar to the sparse block matrix in the planar diffraction case (3.38), except
that all matrices and vectors need to be replaced with their conical counterparts pro-
vided with a tilde. As already mentioned we will discuss the stable solution algorithm
of this system in Chapter 5.

3.4 Generalisation of the Bloch mode method

As mentioned before the main challenge with the Bloch mode method is finding the
roots of the transcendental equation. In the previous sections we have shown how to
solve this problem for a lossless symmetric grating with only two transitions (symmet-
rically positioned around the origin) in a planar and conical diffraction mount. For a
general asymmetric grating with lossy materials or with more transitions it is much
more difficult to use the Bloch mode method. For this reason we will have a look at
a different discretisation strategy in the next chapter. However, we first give a short
overview of some attempts to generalise the Bloch mode method for these more com-
plicated situations.

The first generalisation deals with lossy materials for a symmetric grating with only
two transitions in a planar diffraction mount. In [10,11] the general framework is given
which looks very similar to the lossless case. The main differences are that the under-
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lying operator is no longer self-adjoint and that therefore a secondary adjoint problem
is solved before proceeding with the method of moments. Moreover the transcenden-
tal equation no longer has real-valued but complex-valued roots which requires a spe-
cialised root-finding algorithm. More information on two different approaches of such a
root-finding algorithm can be found in [8,34]. The first approach uses Cauchy’s integral
formula to determine the number of roots lying within an annulus in the complex plane.
If this number is sufficiently small, Cauchy’s integral and Newton’s formulae are used
to construct a polynomial having the same zeros as the transcendental equation within
the region. The zeros of the low-order polynomial are evaluated by Müller’s method
and are refined iteratively by the same method. If the transcendental equation has a
large number of zeros within the region, a bisection method is used along the radial
and if necessary in the angular direction. The second approach is based on a continua-
tion principle. This means that you start by computing the roots of a simpler problem
and then gradually change the parameters of the simpler problem to the original more
difficult problem while tracking the roots. A possible starting point could simply be a
homogeneous layer of which the eigenvalues are given by k2

xm/k2
0 in the Rayleigh expan-

sions of Section 2.4. Another possibility is to start with the original symmetric grating
but with only the real part of the refraction indices. We can then use the techniques
of the previous sections to compute the roots and gradually add the imaginary part of
the refraction indices. Finally the extension to the conical diffraction mount with lossy
materials is discussed in [24].

The second generalisation deals with more transitions inside one layer. In order to keep
the notation simple let us assume a one layer grating and therefore drop the index i.
The offsets are then given by X(L+2l−1)/2 = −X(L−2l+1)/2 =: X̃l for l = 1, . . . , L+1

2 and
X̃0 = 0. The real-valued refraction indices in each of the intervals X̃l−1 < x < X̃l are
given by nl with corresponding weight function wl . Under these assumptions the two
linearly independent solutions of the problem in the periodic x-direction are

a(x) =


a1 = cos(κ1x), |x| ≤ X̃1,

al+1 = al(X̃l) cos
(
κl+1(|x| − X̃l)

)
+

wl
wl+1

1
κl+1

a′l(X̃l) sin
(
κl+1(|x| − X̃l)

)
, X̃l ≤ |x| ≤ X̃l+1,

(3.52a)

and

b(x) =


b1 = 1

κ1
sin(κ1x), |x| ≤ X̃1,

bl+1 = sign(x)
(

bl(X̃l) cos
(
κl+1(|x| − X̃l)

)
+

wl
wl+1

1
κl+1

b′l(X̃l) sin
(
κl+1(|x| − X̃l)

))
, X̃l ≤ |x| ≤ X̃l+1,

(3.52b)
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where

κ2
1 = k2

0n2
1 + k0µ

2
i , κ2

l+1 = κ2
1 + ∆κ2

l+1, ∆κ2
l+1 = k2

0n2
l+1 − k2

0n2
1. (3.52c)

Combining these results with ∆X̃l = X̃l − X̃l−1 gives the following relation[
a(Λ2 ) a′(Λ2 )

b(Λ2 ) b′(Λ2 )

]
=

[
a L+1

2
(X̃ L+1

2
) a′L+1

2
(X̃ L+1

2
)

b L+1
2
(X̃ L+1

2
) b′L+1

2
(X̃ L+1

2
)

]
= K1

L+1
2

∏
l=2

WlKl , (3.53a)

Kl =

[
1 0

0 1
κl

] [
cos(κl∆X̃l) − sin(κl∆X̃l)

sin(κl∆X̃l) cos(κl∆X̃l)

] [
1 0

0 κl

]
, (3.53b)

Wl =

[
1 0

0 wl−1
wl

]
. (3.53c)

These relations are necessary when writing out the transcendental equation which is
again given by (3.8). Although we still have the separation of the eigenvalues for a
Littrow mount, it is no longer obvious whether we can derive an interval based on the
asymptotes of a monotonically increasing tangent or decreasing cotangent formulation
that guarantees exactly one root. For a dielectric asymmetric grating it is possible to
derive the Bloch modes in a similar fashion although there we would lose all symmetry
in the transcendental equation. Especially the separation of the eigenvalues as discussed
before is no longer possible. Finding the roots in a Littrow mount might prove very
challenging in this case.





Chapter 4

Discretisation with RCWA

In this chapter we discuss another discretisation strategy for Maxwell’s equations with
the interface, pseudo-periodic and radiation boundary conditions for the three diffrac-
tion cases. This discretisation technique is known as the Rigorous Coupled-Wave Analysis
(RCWA) and is also based on a mode expansion method [29, 30]. Essentially the elec-
tromagnetic fields in all layers are expanded into the same set of basis functions. These
basis functions are identical to the eigenfunctions of the superstrate and substrate as
derived in Section 2.4. Therefore in Section 4.1 the solution of the field in the grating
layers is derived for the various diffraction cases. Then in Section 4.2 the layers are
connected through the interface boundary condition which again results in a linear sys-
tem of equations. Since the structure of this system is very similar to the Bloch mode
method, we again postpone the actual solving part until Chapter 5.

4.1 Derivation RCWA modes inside grating structure

Since RCWA is also a mode expansion method we can write the solution outside the
grating layers in terms of the Rayleigh expansion as was derived in Section 2.4. Con-
trary to the Bloch mode method we do not write the solution inside the grating layers
as a linear combination of eigenfunctions of that layer. Instead RCWA expands the elec-
tromagnetic field inside the grating layers in terms of the complete set of orthonormal
eigenfunctions of the superstrate and substrate layer, the pseudo-periodic Fourier se-
ries (2.46). Moreover the periodic permittivity and reciprocal permittivity function are
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expanded into a standard Fourier series for i = 1, . . . , K

εr
i =

∞
∑

m=−∞εi,me j2πmx/Λ, εi,m = 1
Λ

∫ Λ
2

− Λ
2

εr
i e
− j2πmx/Λdx, (4.1a)

1
εr

i
=

∞
∑

m=−∞ πi,me j2πmx/Λ, πi,m = 1
Λ

∫ Λ
2

− Λ
2

1
εr

i
e− j2πmx/Λdx. (4.1b)

Because all functions in each layer are expanded into the same set of basis function, the
matching at the layer interfaces is much simpler and no projection matrices need to be
computed. Also since no complicated transcendental equation needs to be solved it is
possible to deal with a wider range of geometries without any extra difficulty. In this
chapter we therefore do not restrict ourselves to a symmetric lossless dielectric grat-
ing but look at general multi-layered gratings with multiple transitions inside a layer
and complex-valued refraction indices. However, since we essentially approximate the
Bloch modes with a Fourier series and Fourier discretise the piecewise constant permit-
tivity function we do not expect RCWA to perform as well as the Bloch mode method.
This performance difference and convergence discussion will be postponed until Sec-
tion 7.1.

4.1.1 Planar diffraction

We start by expanding the electromagnetic field in pseudo-periodic Fourier modes. Also
now we will solve the problem in the layers i = 1, . . . , K for both polarisations in parallel
by introducing a field FR i which represents the y-component of either the electric or
magnetic field for TE and TM polarisation respectively

FR i(x, z) = f
∞
∑

m=−∞ uR i,m(x)vR i,m(z) = f
∞
∑

m=−∞ vR i,me− jkxm x, (4.2)

where f = 1 for TE polarisation and f = − jY for TM polarisation. Contrary to the
Bloch mode method where both polarisations could be treated the same way, here we
have to pay some special attention to the TM polarisation case. This means that, when
needed, an extra superscript is introduced to distinguish between the y-component of
the electric and magnetic field. Substituting the (pseudo-periodic) Fourier series into
(2.25) and (2.30) and slightly rearranging the terms gives

∞
∑

m=−∞
( 1

k2
0

v e ′′
R i,m −

k2
xm

k2
0

v e
R i,m +

∞
∑

p=−∞εi,m−pv e
R i,p

)
e− jkxm x = 0, (4.3a)

∞
∑

m=−∞
(

1
k2

0

vh ′′
R i,m −

∞
∑

p=−∞εi,m−p

( kxp

k0

∞
∑

q=−∞ πi,p−q
kxq

k0
vh

R i,q − vh
R i,p

))
e− jkxm x = 0. (4.3b)

In the derivation of (4.3a) we used the relation kxm − 2πq/Λ = kx(m+q) in the product of
the exponentials coming from the electric field and permittivity expansions where in the
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latter the index of summation was changed to q. Moreover, we made the substitution
for the index of summation so that p = m + q before arriving at (4.3a). Similar steps
can be taken in the derivation of (4.3b) for the magnetic field. Since the pseudo-periodic
Fourier series forms a complete orthonormal basis, all the coefficients must be zero for
m ∈ Z resulting in the following two sequences of equations

1
k2

0

v e ′′
R i,m =

k2
xm

k2
0

v e
R i,m −

∞
∑

p=−∞εi,m−pv e
R i,p, (4.4a)

1
k2

0

vh ′′
R i,m =

∞
∑

p=−∞εi,m−p

( kxp

k0

∞
∑

q=−∞ πi,p−q
kxq

k0
vh

R i,q − vh
R i,p

)
. (4.4b)

An approximate solution for the electromagnetic field in the grating layers is derived
by truncating the equations and solving a discrete eigenvalue problem. More specifi-
cally, truncating the two sequences of equations (4.4) and the involved series for −M ≤
m, p, q ≤ M results in two second-order ordinary differential equations (ODEs) for vR i,m
collected in the vector vR i

1
k2

0

v e ′′
R i =

(
K2

x − Ei
)
v e

R i =: Aiv
e
R i , (4.5a)

1
k2

0

vh ′′
R i = Ei

(
KxPiKx − I

)
vh

R i =: EiCiv
h
R i , (4.5b)

where the Fourier coefficients εi,m−p and πi,m−p are collected in the Toeplitz matrices
Ei and Pi. In the derivation of (4.5b) we used Laurent’s multiplication rule throughout.
Unfortunately this rule does not uniformly preserve the continuity of the appropriate
electromagnetic field components across the discontinuities of the permittivity func-
tion. For example, in (4.4b) the product of the permittivity with the term within brack-
ets comes from Fourier transforming (2.29b). Across a discontinuity of the permittivity
function we know from the inner layer interface boundary conditions (3.3) that Hi,y is
continuous and also its derivative with respect to z is continuous. This means that Ei,x
and therefore also the term within the brackets of (4.4b) is discontinuous across this
discontinuity and has a jump complementary to the jump in the permittivity. For these
special cases where the product of two functions with concurrent complementary jumps
is approximated with a finite number of Fourier modes an inverse multiplication rule was
derived in [26, 27]. This rule does indeed uniformly preserve the continuity of the ap-
propriate electromagnetic field components. From an implementation point of view the
rule states that whenever the permittivity function (reciprocal permittivity function) is
encountered in such a product with complementary jumps, the corresponding Toeplitz
matrix is replaced by the inverse of the Toeplitz matrix corresponding to the reciprocal
permittivity function (permittivity function). The easiest way to recognise these special
products is by looking at the coupled PDE system in (2.29) before eliminating any of
the field components. Keeping this in mind the following set of modified second-order
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ODEs can be derived

1
k2

0

v e ′′
R i = Aiv

e
R i , (4.6a)

1
k2

0

vh ′′
R i = P−1

i
(
KxE−1

i Kx − I
)
vh

R i =: P−1
i Biv

h
R i . (4.6b)

We assume the constant matrices in (4.6) to be diagonalisable: Ai = Q e
R iM

e 2
R i Q e−1

R i and
P−1

i Bi = Qh
R iM

h 2
R i Qh−1

R i with QR i a normalised matrix containing the eigenvectors and
MR i a diagonal matrix containing the square root of the eigenvalues where the branch
cut is chosen along the negative real axis (so all values have a non-negative real part).
For dielectric layers where the refraction index is a piecewise constant real-valued func-
tion it can be shown that the matrix Ei and therefore also Ai is Hermitian in the TE
polarisation case. It is well known that a Hermitian and thus normal matrix is unitar-
ily diagonalisable and has real-valued eigenvalues: Ai = Q e

R iM
e 2
R i Q e H

R i . Moreover the
inverse of the two Hermitian Toeplitz matrices Ei and Pi is again Hermitian but in gen-
eral not Toeplitz anymore. Contrary to the planar diffraction case with TE polarisation,
the matrix P−1

i Bi for TM polarisation is no longer Hermitian nor normal. Instead it is
actually the product of two Hermitian matrices and from this one can show that the
eigenvalues are still real-valued. Moreover we would like to point out that the inverse
of the Toeplitz matrices Ei and Pi do exist since the spectrum of both matrices lies in
between the minimum and maximum value of the strictly positive permittivity and re-
ciprocal permittivity function. The general solution of (4.6) in terms of the eigenvalues
and eigenvectors is given by

vR i = QR i

(
ek0MR i(z−Zi)c−R i + e−k0MR i(z−Zi−1)c+R i

)
, (4.7)

where the vectors c−R i and c+R i contain the unknown expansion coefficients C−R i,m and
C+

R i,m respectively. The approximate solution for the electric field in a grating layer is
then given by

FR i = f
M

∑
m=−M

vR i,me− jkxm x

= f
M

∑
m=−M

e− jkxm x
M

∑
s=−M

qR i,ms

(
C−R i,se

k0µR i,s(z−Zi) + C+
R i,se

−k0µR i,s(z−Zi−1)
)

= f
M

∑
s=−M

( M

∑
m=−M

qR i,mse
− jkxm x

)(
C−R i,se

k0µR i,s(z−Zi) + C+
R i,se

−k0µR i,s(z−Zi−1)
)

. (4.8)

When comparing the RCWA solution in (4.8) with the Bloch solution in (3.12) for di-
electric layers the following three observations are important. First we observe that the
Bloch solution in (3.12) gives the exact solution of the electromagnetic field in terms of
the exact eigenvalues and eigenfunctions of the underlying problem. Of course when
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the layers are matched and the linear system of equations is derived we still have to
truncate the expansions. On the other hand the RCWA solution in (4.8) is already an
approximation of the electromagnetic field (since the series is already truncated) even
before matching the layers. The RCWA eigenvalues µ2

R i,m only approximate the real
Bloch eigenvalues µ2

B i,m. Moreover the eigenvectors contain the approximate Fourier
coefficients of the exact eigenfunctions projected on a finite number of pseudo-periodic
Fourier modes. In particular the last line of (4.8) shows the approximate eigenfunction
within the first set of brackets and also the z-dependent part within the second set of
brackets, both can be compared with uB i,m and vB i,m respectively in (3.12). Secondly we
observe that for TE polarisation the approximate eigenfunctions are orthonormal with
respect to the inner product given in (3.10b) where wi = 1. This follows directly from
the fact that the matrix Q e

R i containing the eigenvectors is unitary. Similarly for TM
polarisation the approximate eigenfunctions are orthogonal with respect to the inner
product given in (3.10b) but now with wi = ∑

∞
m=−∞ πi,me j2πmx/Λ. This is because the

matrix Qh
R i containing the eigenvectors is no longer unitary but does satisfy the relation

Qh H
R i PiQ

h
R i = Di a diagonal matrix. So like the real Bloch modes also the approximate

Bloch modes are orthonormal (orthogonal) with respect to the standard (weighed) in-
ner product for TE (TM) polarisation. Thirdly we observe that all remarks at the end of
Section 3.1.1 concerning the solution component in the z-direction representing either
propagating or evanescent waves are also valid here.

4.1.2 Conical diffraction

The conical diffraction case consists of two separate problems resembling the two in-
dependent polarisations of the planar diffraction case. Therefore we will pay special
attention to the differences with the planar diffraction case as well as the similarities
with the conical Bloch mode method. As in Section 4.1.1 we start by expanding the elec-
tromagnetic field in pseudo-periodic Fourier modes. In the layers i = 1, . . . , K a field
F̃R i is introduced which represents the x-component of either the magnetic or electric
field respectively

F̃R i(x, z) = f̃
∞
∑

m=−∞ ũR i,m(x)ṽR i,m(z) = f̃
∞
∑

m=−∞ ṽR i,me− jkxm x, (4.9)

where f̃ = − jY for the magnetic field and f̃ = 1 for the electric field. Like in the Bloch
mode method we purposely swapped the order of the magnetic and electric field in or-
der to retain some symmetry later on. After substituting the (pseudo-periodic) Fourier
series into (2.35) and rearranging the terms, the same techniques as in the planar diffrac-
tion can be applied to simplify the expressions. These techniques include the shift rela-
tion for the wave vector as well as changing the order of summation. In the simplified
expressions again all the coefficients must be zero because the pseudo-periodic Fourier
series forms a complete orthonormal basis. This results in the following two sequences
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of equations for i = 1, . . . , K and m ∈ Z

1
k2

0

ṽh ′′
R i,m =

k2
y

k2
0

ṽh
R i,m +

k2
xm

k2
0

ṽh
R i,m −

∞
∑

p=−∞εi,m−pṽh
R i,p, (4.10a)

1
k2

0

ṽ e ′′
R i,m =

k2
y

k2
0

ṽ e
R i,m +

kxm

k0

∞
∑

p=−∞ πi,m−p
kxp

k0

∞
∑

q=−∞εi,p−qṽ e
R i,q−

∞
∑

p=−∞εi,m−pṽ e
R i,p. (4.10b)

Note that in the conical diffraction case, like in the Bloch mode method, the equation
for the x-component of the magnetic (electric) field resembles the equation for the y-
component of the electric (magnetic) field in the planar diffraction case with TE (TM)
polarisation.

Two second-order ODEs for ṽR i,m are derived by truncating the two sequences of equa-
tions (4.10) and the involved series for −M ≤ m, p, q ≤ M

1
k2

0

ṽh ′′
R i =

(
K2

y + K2
x − Ei

)
ṽh

R i =
(
K2

y + Ai
)
ṽh

R i , (4.11a)

1
k2

0

ṽ e ′′
R i =

(
K2

y +
(
KxE−1

i Kx − I
)
P−1

i

)
ṽ e

R i =
(
K2

y + BiP
−1
i
)
ṽ e

R i , (4.11b)

where the matrices in these expressions have already been introduced in Section 4.1.1
on planar RCWA diffraction and at the end of Section 3.1.2 on conical Bloch diffraction.
Note that in (4.11b) the inverse multiplication rule has been applied instead of Laurent’s
multiplication rule. Similarly as for TM polarisation the resulting equation uniformly
preserves the continuity of the appropriate electromagnetic field components across the
discontinuities of the permittivity function. Again we assume the matrices in (4.11) to
be diagonalisable: K2

y + Ai = Q̃h
R iM̃

h 2
R i Q̃h−1

R i and K2
y + BiP

−1
i = Q̃ e

R iM̃
e 2
R i Q̃ e−1

R i with Q̃R i

normalised matrices containing the eigenvectors and M̃R i diagonal matrices containing
the square root of the eigenvalues. Comparing the two eigenvalue problems of the con-
ical diffraction case with those of the planar diffraction case, it is clear they are related
when the matrices Ai and Bi of both diffraction cases are the same. The Toeplitz matrices
and their inverse only contain the Fourier coefficients of the geometry and therefore do
not change when going from the planar to the conical diffraction case. This means that
the matrix Kx needs to be the same for both cases which happens for all conical angles
of incidence that have the same kx as the corresponding planar angle of incidence. Since
Ky is actually just a scaled identity matrix, the eigenvalues of the conical diffraction case
are simply shifted from the corresponding planar diffraction case. Moreover, the eigen-
vectors are then related through Q̃h

R i = Q e
R i for TE polarisation and Q̃ e

R i = PiQ
h
R i for TM

polarisation. Recall that in Section 3.1.2 on conical Bloch a similar comment was made
on the transcendental eigenvalue problem and corresponding eigenvalues and eigen-
functions. For dielectric gratings the diagonalisation step is again guaranteed using the
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same arguments as in the planar diffraction case. The general solution of (4.11) in terms
of the eigenvalues and eigenvectors is given by

ṽR i = Q̃R i

(
ek0M̃R i(z−Zi) c̃−R i + e−k0M̃R i(z−Zi−1) c̃+R i

)
, (4.12)

where the vectors c̃−R i and c̃+R i contain the unknown expansion coefficients C̃−R i,m and
C̃+

R i,m respectively. The approximate solution for the electromagnetic field in a grating
layer is then given by

F̃R i = f̃
M

∑
m=−M

ṽR i,me− jkxm x

= f̃
M

∑
p=−M

( M

∑
m=−M

q̃R i,mpe− jkxm x
)(

C̃−R i,pek0µ̃R i,p(z−Zi) + C̃+
R i,pe−k0µ̃R i,p(z−Zi−1)

)
. (4.13)

All three observations from the end of Section 4.1.1 on the planar diffraction case carry
over to the above conical diffraction case. However, having found the relations between
the planar and conical eigenvectors after (4.11), the orthogonality relations in the second
observation need to be changed accordingly.

4.2 Matching at the interfaces

The electromagnetic fields in the superstrate and substrate are described by the Rayleigh
expansion, whereas the fields in the grating layers are described by the RCWA mode
expansion. This section applies interface boundary conditions in order to get the nec-
essary relations between the unknown expansion coefficients that still appear in these
expansions. Since these expansions are all based on the pseudo-periodic Fourier series
no projections or coupling matrices are required and the linear combinations can be
matched coefficient-wise.

4.2.1 Planar diffraction

For the planar diffraction case the necessary equations for the unknown expansion co-
efficients follow from the interface boundary conditions (2.27) or (2.32) depending on
the polarisation. From these equations that were also used in the Bloch mode method it
can be seen that only the y-component of the electromagnetic fields is required. The so-
lution in the superstrate and substrate is again given by the y-component of the Raleigh
expansions in (2.49) and (2.50) for TE and TM polarisation respectively. This means
that the left-hand side of (3.32a,b) and right-hand side of (3.32e,f) and all the variables



60 Discretisation with RCWA

appearing there largely remain unchanged. However the subscript in the expansion
coefficients differs and also the sums are already truncated. Additionally the solution
inside the grating layers is now given by the RCWA mode expansion in (4.7) for both
polarisations. Summarising we get for z = Z0

νI

M

∑
m=−M

(
C−R 0,m + δ0,m

)
e− jkxm x =

M

∑
m=−M

vR 1,m(0)e
− jkxm x, (4.14a)

jw0νI

M

∑
m=−M

kI,zm
k0

(
C−R 0,m − δ0,m

)
e− jkxm x =

1
k0

M

∑
m=−M

( M

∑
p=−M

ω1,m−pv′R 1,p(0)
)

e− jkxm x, (4.14b)

for z = Zi and i = 1, . . . , K− 1

M

∑
m=−M

vR i,m(Zi)e
− jkxm x =

M

∑
m=−M

vR i+1,m(Zi)e
− jkxm x, (4.14c)

1
k0

M

∑
m=−M

( M

∑
p=−M

ωi,m−pv′R i,p(Zi)
)

e− jkxm x =

1
k0

M

∑
m=−M

( M

∑
p=−M

ωi+1,m−pv′R i+1,p(Zi)
)

e− jkxm x, (4.14d)

and for z = ZK

M

∑
m=−M

vR K,m(ZK)e
− jkxm x = νII

M

∑
m=−M

C+
R K+1,me− jkxm x, (4.14e)

1
k0

M

∑
m=−M

( M

∑
p=−M

ωK,m−pv′R K,p(ZK)
)

e− jkxm x =

− jwK+1νII

M

∑
m=−M

kII,zm
k0

C+
R K+1,me− jkxm x. (4.14f)

where we also Fourier transformed the weight function for i = 1, . . . , K

wi =
∞
∑

m=−∞ωi,me j2πmx/Λ, ωi,m =
1
Λ

∫ Λ
2

− Λ
2

wie
− j2πmx/Λdx. (4.15)

Note that the relation kxm− 2πq/Λ = kx(m+q) is used once more in the product of the ex-
ponentials coming from the expansions of the electromagnetic field and weight function
before arriving at (4.14). Recall that in the case of TE polarisation the weight function
is equal to one and thus the Fourier coefficients are given by ωi,m = δ0,m. This means
that (4.14b,d,f) simplify dramatically where the term within brackets in the grating lay-
ers then becomes v′R i,m evaluated at the correct height. In the case of TM polarisation
the weight function is equal to the piecewise constant reciprocal permittivity function



4.2 Matching at the interfaces 61

and thus the Fourier components are given by ωi,m = πi,m. Naturally the interface
boundary conditions do not simplify any further now. Similar as with the Bloch mode
method the coefficients C−R 0,m represent either the expansion coefficients R e

ym or Rh
ym de-

pending on the polarisation. A similar remark can be made for the coefficients C+
R K+1,m

in the substrate. The system of equations (4.14) in known expansions functions (the
pseudo-periodic Fourier series) and with unknown expansion coefficients can be solved
by matching the terms in front of these expansion functions which are now the same for
all layers. In the framework of the method of moments we are simply choosing the test
functions equal to the expansion functions. Substituting the solution for vR i,m results in
the following set of equations for −M ≤ m ≤ M

νI
(
C−R 0,m + δ0,m

)
=

M

∑
s=−M

qR 1,ms
(
C−R 1,sxR 1,s + C+

R 1,s
)
, (4.16a)

jw0νI
kI,zm
k0

(
C−R 0,m − δ0,m

)
=

M

∑
p=−M

ω1,m−p

M

∑
s=−M

qR 1,psµR 1,s
(
C−R 1,sxR 1,s − C+

R 1,s
)
, (4.16b)

for i = 1, . . . , K− 1

M

∑
s=−M

qR i,ms
(
C−R i,s + C+

R i,sxR i,s
)
=

M

∑
s=−M

qR i+1,ms
(
C−R i+1,sxR i+1,s + C+

R i+1,s
)
, (4.16c)

M

∑
p=−M

ωi,m−p

M

∑
s=−M

qR i,psµR i,s
(
C−R i,s − C+

R i,sxR i,s
)
=

M

∑
p=−M

ωi+1,m−p

M

∑
s=−M

qR i+1,psµR i+1,s
(
C−R i+1,sxR i+1,s − C+

R i+1,s
)
,

(4.16d)

and

M

∑
s=−M

qR K,ms
(
C−R K,s + C+

R K,sxR K,s
)
= νIIC

+
R K+1,m, (4.16e)

M

∑
p=−M

ωK,m−p

M

∑
s=−M

qR K,psµR K,s
(
C−R K,s − C+

R K,sxR K,s
)
= − jwK+1νII

kII,zm
k0

C+
R K+1,m, (4.16f)

where xR i,m = e−k0µR i,mhi . Compared to the Bloch mode method in (3.33) we see that
here the algebraic linear system of equations for the unknown expansion coefficients
is already truncated. Like in the planar Bloch mode method equations (4.16b,d,f) are
multiplied with −1 which makes the comparison with other solution algorithms easier
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later on. Summarising we get for i = 1, . . . , K− 1

νI

[
I I

jw0KI,z − jw0KI,z

] [
d0
c−R 0

]
= FR 1(Z0)cR 1, (4.17a)

FR i(Zi)cR i = FR i+1(Zi)cR i+1, (4.17b)

FR K(ZK)cR K = νII

[
I

jwK+1KII,z

]
c+R K+1. (4.17c)

Here all matrices corresponding to the superstrate and substrate layers have already
been defined in Section 3.3.1. Also the vectors are defined there with the exception
that the subscript referring to the method needs to be changed. Only the shorthand
notation for the solution in the grating layers evaluated at the different interfaces is
slightly different

FR i(Zi−1) =

[
QR i O
O WiQR i

] [
I I

MR i −MR i

] [
I O
O XR i

]
, (4.18a)

FR i(Zi) =

[
QR i O
O WiQR i

] [
I I

MR i −MR i

] [
XR i O
O I

]
. (4.18b)

Similarly as in the previous chapter the solution in the grating layers FR i is referred to
as the fundamental solution. Again most matrices and vectors are already defined in the
previous chapter after changing the subscript. The matrix Wi on the other hand contains
the Fourier coefficients of the weight function and is equal to I or Pi depending on the
polarisation which is either TE or TM respectively. Eliminating the truncated expansion
coefficients c−R 0 and c+R K+1 of the scattered field from (4.17a) and (4.17c) gives

G1:
R 1FR 1(Z0)cR 1 = d 1

R , (4.19a)

FR i(Zi)cR i = FR i+1(Zi)cR i+1, (4.19b)

G2:
R KFR K(ZK)cR K = d 2

R , (4.19c)

with the auxiliary matrices and vectors

GR 1 =

[
jw0KI,z I

O O

]
, GR K =

[
O O

jwK+1KII,z −I

]
, (4.20a)

dR =

[
2 jw0νIKI,zd0

0

]
. (4.20b)

Like before equation (4.19) can be combined into one system where the coefficient ma-
trix is a sparse block matrix. For the sake of completeness the linear system and coef-
ficient matrix is given below but except for the subscript index referring to the method
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this is essentially the same as in (3.39) for the planar Bloch mode method



FR 1(Z1) −FR 2(Z1)

. . . . . .

FR K−1(ZK−1) −FR K(ZK−1)

GR 1FR 1(Z0) GR KFR K(ZK)





cR 1

...

cR K−1

cR K


=



0

...

0

dR


.

(4.21)

Like with Bloch this sparse linear system is referred to as a discrete boundary value problem
where the last block row is said to contain the boundary conditions of the discrete BVP.
Also now we will postpone the actual solving part of this system until Chapter 5.

4.2.2 Conical diffraction

For the conical diffraction case the necessary equations for the unknown expansion co-
efficients follow from the interface boundary conditions (2.36). From these equations
that were also used in the Bloch mode method it can be seen that both the x- and y-
component of the electric and magnetic field are required. The solution in the super-
strate and substrate is again given by the x- and y-component of the Raleigh expansions
in (2.49) and (2.50). So similar as in the planar diffraction case this means that the left-
hand side of (3.42a-d) and right-hand side of (3.42i-l) and all the variables appearing
there largely remain unchanged. Naturally the subscript in the expansion coefficients
differs and also now the sums are already truncated. Additionally the solution for the
x-component of the electric and magnetic field inside the grating layers is given by the
RCWA mode expansion in (4.12). This means that inside the grating layers we still need
to find an expression for the y-component of these fields before we can apply the inter-
face boundary conditions. Identically as in the Bloch mode method these are derived
from (2.34b) and (2.34d) which simplify to (3.40). However, in the context of RCWA it
is easier to divide out the relative permittivity again from (3.40a) when referring to this
equation. In order to write down the RCWA solution of (3.40) we first need to intro-
duce a pseudo-periodic Fourier expansion for the y-components of the electromagnetic
field. Then, after substituting all (pseudo-periodic) Fourier series into the equation, us-
ing the shift relation that was explained in the planar diffraction case and truncating the
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equations it can be verified that the solution is given by

Hi,y = − jY
M

∑
m=−M

˜̃vh
R i,me− jkxm x, ˜̃vh

R i = B−1
i
(
KyKxE−1

i ṽh
R i +

1
k0

ṽ e ′
R i
)
, (4.22a)

Ei,y =
M

∑
m=−M

˜̃v e
R i,me− jkxm x, ˜̃v e

R i = A−1
i
( 1

k0
ṽh ′

R i + KyKxṽ e
R i
)
, (4.22b)

where in the first equation again the inverse multiplication rule is used instead of Lau-
rent’s multiplication rule as explained in Section 4.1. From these expressions we see that
a problem arises when one of the matrices Ai or Bi is not invertible. This is exactly the
same as saying that an eigenvalue of one of these matrices is equal to zero. But this in
turn means that a conical eigenvalue is equal to ky/k0 and that the corresponding planar
diffraction case has an eigenvalue equal to zero. As already mentioned in the chapter on
Bloch where a denominator could become zero it is very unlikely that this will actually
happen for a certain grating. In the remainder of this thesis we will therefore assume
not to be in this special case.

Now that all components are available the interface boundary conditions (2.36) can be
applied which after reordering give for z = Z0

jnI

M

∑
m=−M

(
Rh

xm + δ0,m(sx cosψ− px sinψ)
)
e− jkxm x =

M

∑
m=−M

ṽh
R 1,m(0)e

− jkxm x, (4.23a)

M

∑
m=−M

(
R e

xm + δ0,m(sx sinψ+ px cosψ)
)
e− jkxm x =

M

∑
m=−M

ṽ e
R 1,m(0)e

− jkxm x, (4.23b)

jnI

M

∑
m=−M

(
Rh

ym + δ0,m(sy cosψ− py sinψ)
)
e− jkxm x =

M

∑
m=−M

( M

∑
p=−M

b̂1,mp

(
ky

k0

kxp

k0

M

∑
q=−M

ê1,pqṽh
R 1,q(0) +

1
k0

ṽ e ′
R 1,p(0)

))
e− jkxm x, (4.23c)

M

∑
m=−M

(
R e

ym + δ0,m(sy sinψ+ py cosψ)
)
e− jkxm x =

M

∑
m=−M

( M

∑
p=−M

â1,mp

(
1
k0

ṽh ′
R 1,p(0) +

ky

k0

kxp

k0
ṽ e

R 1,p(0)
))

e− jkxm x, (4.23d)

for z = Zi and i = 1, . . . , K− 1

M

∑
m=−M

ṽh
R i,m(Zi)e

− jkxm x =
M

∑
m=−M

ṽh
R i+1,m(Zi)e

− jkxm x, (4.23e)

M

∑
m=−M

ṽ e
R i,m(Zi)e

− jkxm x =
M

∑
m=−M

ṽ e
R i+1,m(Zi)e

− jkxm x, (4.23f)
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M

∑
m=−M

( M

∑
p=−M

b̂i,mp

(
ky

k0

kxp

k0

M

∑
q=−M

êi,pqṽh
R i,q(Zi) +

1
k0

ṽ e ′
R i,p(Zi)

))
e− jkxm x =

M

∑
m=−M

( M

∑
p=−M

b̂i+1,mp

(
ky

k0

kxp

k0

M

∑
q=−M

êi+1,pqṽh
R i+1,q(Zi) +

1
k0

ṽ e ′
R i+1,p(Zi)

))
e− jkxm x, (4.23g)

M

∑
m=−M

( M

∑
p=−M

âi,mp

(
1
k0

ṽh ′
R i,p(Zi) +

ky

k0

kxp

k0
ṽ e

R i,p(Zi)
))

e− jkxm x =

M

∑
m=−M

( M

∑
p=−M

âi+1,mp

(
1
k0

ṽh ′
R i+1,p(Zi) +

ky

k0

kxp

k0
ṽ e

R i+1,p(Zi)
))

e− jkxm x, (4.23h)

and for z = ZK

M

∑
m=−M

ṽh
R K,m(ZK)e

− jkxm x = jnII

M

∑
m=−M

T h
xme− jkxm x, (4.23i)

M

∑
m=−M

ṽ e
R K,m(ZK)e

− jkxm x =
M

∑
m=−M

T e
xme− jkxm x, (4.23j)

M

∑
m=−M

( M

∑
p=−M

b̂K,mp

(
ky

k0

kxp

k0

M

∑
q=−M

êK,pqṽh
R K,q(ZK) +

1
k0

ṽ e ′
R K,p(ZK)

))
e− jkxm x =

jnII

M

∑
m=−M

T h
yme− jkxm x, (4.23k)

M

∑
m=−M

( M

∑
p=−M

âK,mp

(
1
k0

ṽh ′
R K,p(ZK) +

ky

k0

kxp

k0
ṽ e

R K,p(ZK)
))

e− jkxm x =

M

∑
m=−M

T e
yme− jkxm x. (4.23l)

Above we simply expanded the relations found in (4.22) in order to show the corre-
spondences and differences with the Bloch mode method in (3.42). Moreover âi,mp, b̂i,mp

and êi,pq are the entries of the matrices A−1
i , B−1

i and E−1
i respectively. Similar as with

the Bloch mode method the constant term − jY appearing in front of all the equations
involving the matching of the magnetic field is divided out. The same holds for the
y-dependency of the electromagnetic field since this term appears in all of the equations
and does not depend on the summation index. Like in the planar RCWA diffraction
case the system of equations (4.23) in known expansions functions (the pseudo-periodic
Fourier series) and with unknown expansion coefficients can be solved by matching the
terms in front of these expansion functions which are the same for all layers. Substitut-
ing the solution for ṽR i,m results in the following set of equations for −M ≤ m ≤ M.
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jnI
(

Rh
xm + δ0,m(sx cosψ− px sinψ)

)
=

M

∑
s=−M

q̃h
R 1,ms

(
C̃ h−

R 1,s x̃h
R 1,s + C̃ h+

R 1,s
)
, (4.24a)

R e
xm + δ0,m(sx sinψ+ px cosψ) =

M

∑
s=−M

q̃ e
R 1,ms

(
C̃ e−

R 1,s x̃ e
R 1,s + C̃ e+

R 1,s
)
, (4.24b)

jnI
(

Rh
ym + δ0,m(sy cosψ− py sinψ)

)
=

M

∑
p=−M

b̂1,mp

(
ky

k0

kxp

k0

M

∑
q=−M

ê1,pq

M

∑
s=−M

q̃h
R 1,qs

(
C̃ h−

R 1,s x̃h
R 1,s + C̃ h+

R 1,s
)
+

M

∑
s=−M

q̃ e
R 1,psµ̃

e
R 1,s
(
C̃ e−

R 1,s x̃ e
R 1,s − C̃ e+

R 1,s
))

, (4.24c)

R e
ym + δ0,m(sy sinψ+ py cosψ) =

M

∑
p=−M

â1,mp

( M

∑
q=−M

q̃h
R 1,pqµ̃

h
R 1,q
(
C̃ h−

R 1,q x̃h
R 1,q − C̃ h+

R 1,q
)
+

ky

k0

kxp

k0

M

∑
q=−M

q̃ e
R 1,pq

(
C̃ e−

R 1,q x̃ e
R 1,q + C̃ e+

R 1,q
))

, (4.24d)

for i = 1, . . . , K− 1

M

∑
s=−M

q̃h
R i,ms

(
C̃ h−

R i,s + C̃ h+
R i,s x̃h

R i,s
)
=

M

∑
s=−M

q̃h
R i+1,ms

(
C̃ h−

R i+1,s x̃h
R i+1,s + C̃ h+

R i+1,s
)
, (4.24e)

M

∑
s=−M

q̃ e
R i,ms

(
C̃ e−

R i,s + C̃ e+
R i,s x̃ e

R i,s
)
=

M

∑
s=−M

q̃ e
R i+1,ms

(
C̃ e−

R i+1,s x̃ e
R i+1,s + C̃ e+

R i+1,s
)
, (4.24f)

M

∑
p=−M

b̂i,mp

(
ky

k0

kxp

k0

M

∑
q=−M

êi,pq

M

∑
s=−M

q̃h
R i,qs

(
C̃ h−

R i,s + C̃ h+
R i,s x̃h

R i,s
)
+

M

∑
s=−M

q̃ e
R i,psµ̃

e
R i,s
(
C̃ e−

R i,s − C̃ e+
R i,s x̃ e

R i,s
))

=

M

∑
p=−M

b̂i+1,mp

(
ky

k0

kxp

k0

M

∑
q=−M

êi+1,pq

M

∑
s=−M

q̃h
R i+1,qs

(
C̃ h−

R i+1,s x̃h
R i+1,s + C̃ h+

R i+1,s
)
+

M

∑
s=−M

q̃ e
R i+1,psµ̃

e
R i+1,s

(
C̃ e−

R i+1,s x̃ e
R i+1,s − C̃ e+

R i+1,s
))

, (4.24g)
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M

∑
p=−M

âi,mp

( M

∑
q=−M

q̃h
R i,pqµ̃

h
R i,q
(
C̃ h−

R i,q − C̃ h+
R i,q x̃h

R i,q
)
+

ky

k0

kxp

k0

M

∑
q=−M

q̃ e
R i,pq

(
C̃ e−

R i,q + C̃ e+
R i,q x̃ e

R i,q
))

=

M

∑
p=−M

âi+1,mp

( M

∑
q=−M

q̃h
R i+1,pqµ̃

h
R i+1,q

(
C̃ h−

R i+1,q x̃h
R i+1,q − C̃ h+

R i+1,q
)
+

ky

k0

kxp

k0

M

∑
q=−M

q̃ e
R i+1,pq

(
C̃ e−

R i+1,q x̃ e
R i+1,q + C̃ e+

R i+1,q
))

, (4.24h)

and

M

∑
s=−M

q̃h
R K,ms

(
C̃ h−

R K,s + C̃ h+
R K,s x̃h

R K,s
)
= jnIIT

h
xm, (4.24i)

M

∑
s=−M

q̃ e
R K,ms

(
C̃ e−

R K,s + C̃ e+
R K,s x̃ e

R K,s
)
= T e

xm, (4.24j)

M

∑
p=−M

b̂K,mp

(
ky

k0

kxp

k0

M

∑
q=−M

êK,pq

M

∑
s=−M

q̃h
R K,qs

(
C̃ h−

R K,s + C̃ h+
R K,s x̃h

R K,s
)
+

M

∑
s=−M

q̃ e
R K,psµ̃

e
R K,s

(
C̃ e−

R K,s − C̃ e+
R K,s x̃ e

R K,s
))

= jnIIT
h
ym, (4.24k)

M

∑
p=−M

âK,mp

( M

∑
q=−M

q̃h
R K,pqµ̃

h
R K,q

(
C̃ h−

R K,q − C̃ h+
R K,q x̃h

R K,q
)
+

ky

k0

kxp

k0

M

∑
q=−M

q̃ e
R K,pq

(
C̃ e−

R K,q + C̃ e+
R K,q x̃ e

R K,q
))

= T e
ym, (4.24l)

where x̃R i,m = e−k0µ̃R i,mhi . Compared to the Bloch mode method in (3.43) we see that
here the algebraic linear system of equations for the unknown expansion coefficients is
already truncated. Summarising we get for i = 1, . . . , K− 1[

FI,s FI,c
−FI,c FI,s

] [
J J

1
nI

K I,z − 1
nI

K I,z

] [
d0
c−R 0

]
= F̃R 1(Z0)c̃R 1, (4.25a)

F̃R i(Zi)c̃R i = F̃R i+1(Zi)c̃R i+1, (4.25b)

F̃R K(ZK)c̃R K =

[
FII,s FII,c
−FII,c FII,s

] [
J

1
nII

K II,z

]
c+R K+1, (4.25c)

Similarly as in the planar diffraction case all matrices corresponding to the superstrate
and substrate layers have already been defined in Section 3.3.2. Moreover all vectors
are defined there as well with the exception that the subscript referring to the method
needs to be changed. Also now (4.25a) and (4.25c) are not a direct result of summarising
the previous set of equations. As an extra step the expansion coefficients of the Rayleigh
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expansions are eliminated and replaced with the s- and p-polarised counterparts result-
ing in a system of equations that has the same structure as the planar diffraction case.
Finally the shorthand notation for the fundamental solution or solution in the grating
layers evaluated at the different interfaces changes to

F̃R i(Zi−1) =

[
Q R i O

AiK yK xWiQ R i AiJQ R i

] [
I I

MR i −MR i

] [
I O
O XR i

]
, (4.26a)

F̃R i(Zi) =

[
Q R i O

AiK yK xWiQ R i AiJQ R i

] [
I I

MR i −MR i

] [
XR i O
O I

]
. (4.26b)

Again most (block diagonal) matrices are defined in the previous chapter after changing
the subscript. The block diagonal matrices that have not yet been defined are

Ai = diag (B−1
i , A−1

i ), Wi = diag (E−1
i , I), Q R i = diag (Q̃h

R i , Q̃ e
R i). (4.27)

Eliminating the truncated expansion coefficients c−R 0 and c+R K+1 of the scattered field
from (4.25a) and (4.25c) gives

G̃1:
R 1F̃R 1(Z0)c̃R 1 = d̃ 1

R , (4.28a)

F̃R i(Zi)c̃R i = F̃R i+1(Zi)c̃R i+1, (4.28b)

G̃2:
R KF̃R K(ZK)c̃R K = d̃ 2

R , (4.28c)

with the auxiliary matrices and vectors

G̃R 1 =

[
I −(K 2

y − n2
I I )−1(K xK y − nIK I,zJI)

O O

]
, (4.29a)

G̃R K =

[
O O

−I (K 2
y − n2

III )
−1(K xK y + nIIK II,zJII)

]
, (4.29b)

d̃R =

[
−2(K 2

y − n2
I I )−1(nIFI,cK I,z + FI,sK

2
I,zJ)d0

0

]
. (4.29c)

Equation (4.28) can be combined into one system where the coefficient matrix is similar
to the sparse block matrix in the planar diffraction case (4.21), except that all matrices
and vectors need to be replaced with their conical counterparts provided with a tilde.
Clearly the structure for all diffraction cases is the same and therefore we will again
postpone the stable solution algorithm of this system until Chapter 5.



Chapter 5

Solution strategies for the
truncated linear system

In the previous chapters on Bloch and RCWA a linear system of equations was derived
when connecting the layers through the interface boundary conditions. This chapter
discusses several solution strategies for the truncated linear system. This system can
be solved using Gaussian elimination with pivoting which is stable but not very effi-
cient. Due to its special sparse block structure one can also solve it using condensation
algorithms and speed up the computation. In Section 5.1 a simple but unstable conden-
sation algorithm known as the transfer matrix or T-matrix algorithm is briefly outlined.
The instability of this algorithm is addressed before continuing with stable condensa-
tion algorithms. Over the past 20 years several stable condensation algorithms have
been suggested. However from the original papers it is not always mathematically
clear where the stability comes from. Therefore in Section 5.2 it is explained how a de-
coupling of waves by applying a Riccati transformation to the original sparse system
introduces the necessary property needed for stability. Finally in Section 5.3 the link to
a multiple shooting approach is discussed, a technique frequently used in mathematics
for stably solving boundary value problems.

5.1 Unstable transfer matrix algorithm

Probably the simplest condensation algorithm and most intuitive way of solving the
truncated linear system in (3.39) or (4.21) is by eliminating all but one unknown. This
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results in what is known as the standard transfer matrix or T-matrix algorithm

(
G1

K−1

∏
i=1

(
Fi(Zi−1)F

−1
i (Zi)

)
FK(ZK−1) + GKFK(ZK)

)
cK = d , (5.1)

where for the moment the subscript B or R referring to the method is dropped. Recall
that for the conical diffraction case the expression is similar except that then all matrices
and vectors are provided with a tilde. Because there is no incoming field at the bottom
interface, the bottom half of the right-hand side vector d is equal to zero and (5.1) can
be reduced further to

d 1 = G1:
1

K−1

∏
i=1

(
Fi(Zi−1)F

−1
i (Zi)

)
FK(ZK−1)

[
I
H

]
c1

K , (5.2a)

H = −
(

G2:
K F :2

K (ZK)
)−1(

G2:
K F :1

K (ZK)
)

. (5.2b)

Having solved the smaller system (5.2a) one could then compute c2
K = Hc1

K followed by
a backward sweep to solve for the other expansion coefficients in the grating layers. For
example, in the RCWA planar diffraction case (4.17b) is used in this backward sweep
and additionally (4.17a) and (4.17c) to compute the expansion coefficients of the scat-
tered field. In some applications where only the expansion coefficients of the scattered
field are of interest, the T-matrix algorithm can be optimised slightly so that only one
system needs to be solved without an additional sweep. For example, in the RCWA
planar diffraction case one would eliminate all the expansion coefficients of the grating
layers from (4.17) and solve the system

(
G∗R 1 +

νII
νI

K

∏
i=1

(
Fi(Zi−1)F

−1
i (Zi)

)
G∗R K

)
c∗R = d ∗R , (5.3a)

where

G∗R 1 =

[
−I O

jw0KI,z O

]
, G∗R K =

[
O I
O jwK+1KII,z

]
, (5.3b)

c∗R =

[
c−R 0

c+R K+1

]
, d ∗R =

[
d0

jw0KI,zd0

]
. (5.3c)

It is known that the standard T-matrix algorithm is numerically unstable for a large
truncation parameter or for thick layers. As an example consider Table 5.1 where one
can see values of the diffraction efficiency computed with the stable Riccati algorithm
still to be discussed and with the unstable T-matrix algorithm. Whereas an increas-
ing number of harmonics should produce more accurate results the T-matrix algorithm
starts to diverge at some point. A similar behaviour can be seen when the grating
height is increased and the T-matrix algorithm again starts to deviate from the Ric-
cati results. As it turns out the reason for this behaviour is the propagation of round-off
errors caused by the finite precision of the PC, in this case double-precision arithmetic.
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M Riccati T-matrix
10 3.78420e-001 3.78420e-001
20 3.78550e-001 3.78550e-001
30 3.78562e-001 3.75624e-001
40 3.78565e-001 8.01873e-001
50 3.78567e-001 1.03869e+000

(a) D = 0.25

D Riccati T-matrix
0.1 5.33485e-001 5.33485e-001
0.2 4.32316e-001 4.32316e-001
0.3 3.31330e-001 3.45350e-001
0.4 2.71950e-001 1.00489e+000
0.5 2.33254e-001 9.60999e-001

(b) M = 25

Table 5.1: Diffraction efficiency of the 0th reflected order for varying (a) harmonics M and (b)
total grating height D. The grating is a silicon (n = 3.77) trapezoid approximated with 5
equally thick layers on a silicon substrate. The top most layer of the trapezoid has width 0.25 and
the bottom most layer of the trapezoid has width 0.75. Moreover Λ = λ0 = 1 and the incident
field is TE polarised in a planar diffraction mount with θ = π/3.

In order to understand in more detail why the T-matrix algorithm is unstable and when
this becomes a problem one first has to analyse the solutions in the grating layers. The
z-dependent part of these solutions is given by (3.11) and (4.6). From the explanation
given there it follows that the solution consists of two parts: waves moving in the pos-
itive z-direction and waves moving in the negative z-direction. Moreover these waves
are either propagating (i.e. solution components with constant amplitude) or evanes-
cent (i.e. exponentially decreasing solution components). This clear distinction of solu-
tion behaviour in the positive and negative z-direction is called dichotomy. When look-
ing at the fundamental solutions in (3.36) and (4.18) the dichotomy is also visible in the
block structure: the left columns represent the non-increasing solutions in the positive
z-direction and the right columns represent the non-increasing solutions in the negative
z-direction (i.e. non-decreasing solutions in the positive z-direction). As can be seen
from (5.2) or (5.3) no effort is made to split the growing and decaying modes. Generally
speaking this causes the coefficient matrix of the condensed linear system to become
very ill-conditioned. This means that even a small error of the order of the machine
precision (typically 10−16 for double precision arithmetic) can grow exponentially large
resulting in completely wrong expansions coefficients as was demonstrated in Table
5.1. Note that this happens long before overflow can possibly cause a problem in the
inverse of the exponential matrices that are required to set up the linear system. As an
indication of when the T-matrix algorithm becomes unstable one can look at the small-
est exponential term per layer. If the product of all these exponential terms is of the
order of the machine precision one should not expect the T-matrix algorithm to be sta-
ble anymore. For the example given above this actually happens when the number of
harmonics is larger than 23 or when the grating height is greater than 0.23.
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5.2 Stable recursion with Riccati transformations

The previous section has shown that simply condensing the block structured sparse
linear system of equations without paying any attention to the individual solution com-
ponents can be disastrous. Therefore in this section a stable condensation algorithm
is derived based on Riccati transformations. In literature several other and sometimes
similar (stable) condensation algorithms have been suggested like the R-matrix algo-
rithm [24], S-matrix algorithm [14, 22] or enhanced transmittance matrix approach [30].
In [25] the connection between the R- and S-matrix algorithm has been thoroughly ex-
amined. Finally in [33] the enhanced transmittance matrix approach has been recog-
nised as a special case of the S-matrix algorithm. All these condensation algorithms
somehow exploit the dichotomy that is present in the solution components by separat-
ing the exponentially growing and decaying modes. This decoupling of waves is the
crucial property needed for stability. Unfortunately a detailed description of the actual
separation starting from (3.39) or (4.21) is missing in the aforementioned papers.

Riccati methods are frequently used to separate solution components [2, 28] although
often they are applied to the original ODE before discretisation (in this case along the
z-direction). However, apart from the expansion coefficients, here the solution in the z-
direction is known in closed form (either by solving a transcendental eigenvalue equa-
tion in the case of Bloch or by solving an eigenvalue problem in the case of RCWA). A
discrete equivalent of the Riccati method for continuous ODEs can be used to get the
desired decoupling and stably condense the system. The key ingredients are constant
Riccati transformation matrices. Both a one-stage and a two-stage Riccati approach is
discussed. Although mathematically equivalent the latter has a slight implementation
advantage as will be explained later. For notational convenience both approaches are
derived using the planar diffraction case as a reference. The conical diffraction case then
simply follows by adding another block structure having shown already that the struc-
ture of the linear system is the same. Finally, also the connection with the enhanced
transmittance matrix approach is given thereby confirming that this frequently used
approach is indeed stable.

5.2.1 One-stage Riccati approach

First the sparse linear system in (3.39) or (4.21) is rewritten into normal form with iden-
tity matrices on the main diagonal by premultiplying by the block diagonal matrix



5.2 Stable recursion with Riccati transformations 73

diag(F −1
1 (Z1), . . . , F −1

K−1(ZK−1), I )

I −F −1
1 (Z1)F2(Z1)

. . . . . .

I −F −1
K−1(ZK−1)FK(ZK−1)

G1F1(Z0) GKFK(ZK)





c1

...

cK−1

cK


=



0

...

0

d


,

(5.4)

where for the moment the subscript B or R referring to the method is dropped again.
Then (5.4) is transformed using a series of Riccati matrices. This is done by premulti-
plying by the block diagonal matrix diag (R −1

1 , . . . , R −1
K−1, I ) and by introducing new

scaled unknowns ci := R −1
i ci

I −U1

. . . . . .

I −UK−1

G1F1(Z0)R 1 GKFK(ZK)R K





c1

...

cK−1

cK


=



0

...

0

d


. (5.5a)

Here the Riccati transformation matrices R i and auxiliary matrices Ui are given by

R i =

[
I O

RiXi I

]
, Ui = R −1

i F −1
i (Zi)Fi+1(Zi)R i+1. (5.5b)

Note that the inverse of a Riccati transformation matrix simply follows from putting a
minus sign in front of the lower left block. Moreover this lower left block is scaled with
the matrix Xi containing the non-increasing exponential terms. Although not essential,
it makes the comparison with the enhanced transmittance matrix approach easier and it
makes the recursion to be derived properly normalised. Recall that the last block row in
the (transformed) sparse linear system was said to contain the boundary conditions of
the discrete BVP. It is important to realise that these boundary conditions are completely
separated. This follows directly from the matrices G1 and GK where the bottom half and
top half respectively contain only zeros. This clear separation of boundary conditions is
a key ingredient in the stable recursion to be derived in this section: half of these sepa-
rated boundary conditions control the non-increasing modes in the positive z-direction
while the other half control the non-increasing modes in the negative z-direction. From
the bottom part of the right-hand side vector it can be seen that the most efficient recur-
sion is derived by starting at the bottom interface. This follows from the fact that there
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is no incident field or source term coming from the substrate and that therefore the bot-
tom half of d is simply zero. So the bottom half of the last block row in the transformed
equation reads

G2:
K FK(ZK)R K cK = 0. (5.6)

From (5.6) and using the notation introduced in (5.2b), the initial Riccati submatrix is
chosen such that c2

K = 0

RKXK = H. (5.7a)

The backward recursion for the other Riccati submatrices Ri is found by introducing
a decoupling. This is accomplished by requiring the auxiliary matrices Ui to be block
upper triangular. Setting the part U21

i equal to zero gives the desired recursion

RiXi =

((
F −1

i (Zi)
)21(

F 1:
i+1(Zi)R

:1
i+1

)
+
(

F −1
i (Zi)

)22(
F 2:

i+1(Zi)R
:1
i+1

))
·((

F −1
i (Zi)

)11(
F 1:

i+1(Zi)R
:1
i+1

)
+
(

F −1
i (Zi)

)12(
F 2:

i+1(Zi)R
:1
i+1

))−1

. (5.7b)

Since the sparse block matrix in (5.5a) now contains all block upper triangular matrices
Ui and the initial condition of the recursion guaranteed that c2

K = 0, it is easy to see that
c2

i = 0 for all i = K − 1, . . . , 1. So only half the number of scaled unknowns needs to
be determined. This also means that only the part U11

i is required. Having found the
final Riccati submatrix R1, the top half of the last block row in the transformed equation
reads

d 1 = G1:
1 F1(Z0)R

:1
1 c1

1. (5.8)

Having solved this equation for c1
1 the other scaled unknowns c1

i for i = 2, . . . , K can be
found with a forward recursion by solving the system

c1
i =U11

i c1
i+1, (5.9a)

where

U11
i =

(
F −1

i (Zi)
)11(

F 1:
i+1(Zi)R

:1
i+1

)
+
(

F −1
i (Zi)

)12(
F 2:

i+1(Zi)R
:1
i+1

)
. (5.9b)

As a final step the original expansion coefficients can be found by transforming the
scaled unknowns back using the relation ci = R ici = R :1

i c1
i . As already indicated in

the beginning the expressions derived thus far are also valid for the conical diffraction
case, except that then the Riccati submatrix Ri is by itself a block matrix. As an example
(and in order to explain the link with the enhanced transmittance matrix approach) the
expressions for the planar RCWA fundamental solutions FR i are substituted into (5.7)-
(5.9) while dropping the subscript R. The stable one-stage condensation algorithm with
Riccati transformations then simplifies to



5.2 Stable recursion with Riccati transformations 75

Algorithm:

(i). Compute backward recursion for Riccati submatrices for i = K− 1, . . . , 1

RK =
(

WKQKMK + jwK+1KII,zQK

)−1(
WKQKMK − jwK+1KII,zQK

)
, (5.10a)

Ri =
(

Q−1
i Fi+1 − (WiQiMi)

−1 Gi+1

) (
Q−1

i Fi+1 + (WiQiMi)
−1 Gi+1

)−1
, (5.10b)

with

Fi+1 = Qi+1 (I + Xi+1Ri+1Xi+1) ,

Gi+1 = Wi+1Qi+1Mi+1 (I− Xi+1Ri+1Xi+1) .

(ii). Solve linear system for scaled unknown

2 jw0νIKI,zd0 =
(
G1 + jw0KI,zF1

)
c1

1. (5.11)

(iii). Compute forward recursion for other scaled unknowns for i = 1, . . . , K− 1

c1
i+1 = 2

(
Q−1

i Fi+1 + (WiQiMi)
−1 Gi+1

)−1
Xic

1
i . (5.12)

(iv). Transform scaled unknowns back to original expansion coefficients for i = 1, . . . , K

c+i = c1
i , (5.13a)

c−i = RiXic
1
i . (5.13b)

5.2.2 Two-stage Riccati approach

The two-stage Riccati approach does not bring the sparse linear system in (3.39) or (4.21)
to a normal form with identity matrices on the main diagonal. Instead the original sys-
tem is transformed directly using two different series of Riccati matrices. This is done by
premultiplying by the block diagonal matrix diag (S−1

1 , . . . , S−1
K−1, I ) and by introducing
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new scaled unknowns ci := R −1
i ci

V1 −U1

. . . . . .

VK−1 −UK−1

G1F1(Z0)R 1 GKFK(ZK)R K





c1

...

cK−1

cK


=



0

...

0

d


. (5.14a)

Here the Riccati transformation matrices Si, R i and auxiliary matrices Ui, Vi are given
by

R i =

[
I O

RiXi I

]
, Ui = S−1

i Fi+1(Zi)R i+1, (5.14b)

Si =

[
I O

Si I

]
, Vi = S−1

i Fi(Zi)R i . (5.14c)

Again the lower left block of one of the Riccati transformation matrices is scaled with the
matrix Xi in order to make an easy comparison later on. Following the same procedure
as before the recursion is started at the bottom interface for efficiency reasons. Because
the bottom half of the last row in the transformed equation has not changed compared
to the one-stage Riccati approach, the initial Riccati submatrix is also given by

RKXK = H. (5.15a)

The backward recursion for the other Riccati submatrices Si and Ri is again found by
introducing a decoupling. This is accomplished by requiring both auxiliary matrices Vi
and Ui to be block upper triangular. Setting the parts V 21

i and U21
i equal to zero gives

the desired two-stage recursion

Si =
(

F 2:
i+1(Zi)R

:1
i+1

)(
F 1:

i+1(Zi)R
:1
i+1

)−1
, (5.15b)

RiXi = −
((

S−1
i
)2:

F :2
i (Zi)

)−1((
S−1

i
)2:

F :1
i (Zi)

)
. (5.15c)

From the resulting block upper triangular structure and the initial condition of the re-
cursion that guaranteed c2

K = 0 it follows that again c2
i = 0 for all i = K, . . . , 1. Therefore

only the parts V 11
i and U11

i need to be computed. Having found the final Riccati sub-
matrix R1, the same equation as for the one-stage Riccati approach needs to be solved

d 1 = G1:
1 F1(Z0)R

:1
1 c1

1. (5.16)
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The other scaled unknowns c1
i for i = 2, . . . , K can be found with a forward recursion

by solving the system

V 11
i c1

i = U11
i c1

i+1, (5.17a)

where

V 11
i = F 1:

i (Zi)R
:1
i , U11

i = F 1:
i+1(Zi)R

:1
i+1. (5.17b)

Finally the original expansion coefficients follow from transforming the scaled unknowns
back using the relation ci = R ici = R :1

i c1
i . For the conical diffraction case all expres-

sions remain valid while taking care of the extra block structure appearing in the Riccati
transformation matrices. In order to see the similarities with the one-stage Riccati ap-
proach the expressions for the planar RCWA fundamental solutions FR i are substituted
into (5.15)-(5.17) while dropping the subscript R. The stable two-stage condensation
algorithm with Riccati transformations then simplifies to

Algorithm:

(i). Compute backward recursion for Riccati submatrices for i = K− 1, . . . , 1

RK =
(

WKQKMK + jwK+1KII,zQK

)−1(
WKQKMK − jwK+1KII,zQK

)
, (5.18a)

Si = Gi+1F−1
i+1, (5.18b)

Ri =
(

WiQiMi + SiQi

)−1(
WiQiMi − SiQi

)
, (5.18c)

with

Fi+1 = Qi+1 (I + Xi+1Ri+1Xi+1) ,

Gi+1 = Wi+1Qi+1Mi+1 (I− Xi+1Ri+1Xi+1) .

(ii). Solve system for scaled unknown

2 jw0νIKI,zd0 =
(
G1 + jw0KI,zF1

)
c1

1. (5.19)

(iii). Compute forward recursion for other scaled unknowns for i = 1, . . . , K− 1

c1
i+1 = F−1

i+1Qi(I + Ri)Xic
1
i . (5.20)

(iv). Transform scaled unknowns back to original expansion coefficients for i = 1, . . . , K
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c+i = c1
i , (5.21a)

c−i = RiXic
1
i . (5.21b)

5.2.3 Riccati versus enhanced transmittance matrix approach

Although the two Riccati approaches look slightly different at first glance, the four steps
described in (5.10)-(5.13) are actually mathematically equivalent to those in (5.18)-(5.21).
In step (i) both approaches initialise the backward recursion identically. Moreover, after
substituting (5.18b) into (5.18c) and slightly rewriting the expressions it follows that the
recursive relations for Ri are also the same. Clearly the linear system in step (ii) and
post-processing in step (iv) are identical. Showing the equivalence of step (iii) is slightly
more challenging. It can be shown that after substituting (5.18c) into (5.20) and with
some basic algebraic manipulation that also both forward recursions are indeed equal.

Having shown the equivalence of both approaches, the most efficient implementation
can now be chosen. To do this one can look at all unique operations in the forward
recursion that are of cubic complexity: LU-factorisations where the inverse of a matrix
is required, solving the subsequent system where the right-hand (or left-hand) side is
a matrix and the product of two full (not diagonal) matrices. The backward recursion
does not contribute significantly in this complexity analysis. This is because it requires
the same LU factorisations already computed in the forward recursion and the subse-
quent solve has quadratic complexity, the right-hand side being a vector. Moreover, the
initialisation of the backward recursion, the solving of the linear system for the scaled
unknown and the post-processing are the same for both approaches. Therefore only
equation (5.10b) needs to be compared with (5.18b) and (5.18c). Adding all operations
and realising that an LU factorisation is more expensive than a product of two full ma-
trices favours the two-stage Riccati approach as can be seen from Table 5.2.

LU Solve Product

One-stage 3 3 1

Two-stage 2 2 2

Table 5.2: Number of unique operations of cubic complexity per layer

As far as we know, the stable condensation algorithms as derived in Sections 5.2.1 and
5.2.2 have not been studied before in literature in combination with RCWA or Bloch.
Instead, people often use the enhanced transmittance matrix approach to stably con-
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dense the linear system. The enhanced transmittance matrix approach was originally
proposed in [30] and a detailed algorithmic description can be found therein. However,
it is not very clear how the decoupling of waves which is the crucial property needed
for stability enters this algorithm. Having shown this for the one-stage and two-stage
Riccati approach we will now explain why the enhanced transmittance matrix approach
is actually identical to our suggested approach so that we can therefore conclude that it
is stable.

In this paragraph both approaches are compared on the algorithmic level and as a result
contain a lot of detail. Without loss of continuity the reader can skip this part. In Section
6 ”Full Solution Approach” of [30] the enhanced transmittance approach is given for
a planar diffraction case. In that section the matrix W contains the eigenvectors and
should therefore be compared with our matrix Q. Similarly the matrix V corresponds to
the product WQM in our notation. In the article the corresponding backward recursion
is started by initialising two matrices fL+1 and gL+1 with the identity matrix and jZII
where the latter corresponds to our matrix jwK+1KII,z. From this one computes two
other matrices aL and bL using the relation below (29). It is exactly these two matrices
that should be compared with how the Riccati recursion is initialised in (5.10a), more
precisely bLa−1

L = RK. The updating of the matrices fl and gl from layer to layer is
given by equation (30) and is the same as how we update the matrices Fi and Gi just
below (5.10b). Similarly the updating of the matrices al and bl just below equation (29)
should be compared with our updating of the Riccati submatrix Ri in (5.10a) through
the relation bla

−1
l = Ri. The scaled unknown T1 is identical to c1

1 and the linear system
that is solved in equation (31) matches our linear system in (5.11) after eliminating the
scattered field amplitude. Finally the forward recursion as given in (32) and thus the

matrix a−1
l Xl corresponds to our forward recursion in (5.13) and the matrix

(
U11

i

)−1
. So

indeed the enhanced transmittance matrix approach is identical to the Riccati approach.

5.3 Connection with multiple shooting and stabilised march

A standard way of solving a linear BVP, by which we mean a linear (system of) first-
order ODE(s) with prescribed boundary conditions, is the single shooting method. Here
the solution of the BVP is given by a linear combination of solutions of associated ini-
tial value problems (IVP). The solutions of these IVPs are typically found by using some
sort of numerical integration scheme. When the underlying ODE contains both rapidly
increasing and decreasing modes, the single shooting method runs into stability issues.
These issues are partly alleviated by using a multiple shooting method. Here the integra-
tion interval is partitioned into several smaller subintervals on which again IVPs are
solved. By matching the solution at the boundary points of these subintervals (i.e. the
shooting points) the solution of the original BVP can be found. The linear system that
comes from such a multiple shooting method typically looks like the linear system in
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(4.21). If the unstable condensation algorithm or T-matrix algorithm would have been
used to condense the coefficient matrix coming from such a multiple shooting method,
again the same instability would have been observed as for the single shooting method.
However, since the IVPs are solved on smaller intervals the instability would not have
been as severe as for single shooting, but nevertheless still too large as Table 5.1 already
indicated. Therefore the linear system of a multiple shooting method also requires a
stable condensation algorithm as derived in Section 5.2 for example. A more detailed
overview of shooting methods for BVPs can be found in [2].

In order to put RCWA into the framework of this classical multiple shooting method the
underlying ODE per layer should simply be integrated numerically instead of writing
down the solution in terms of eigenvalues and eigenvectors. Thus the shooting points
simply coincide with the layer interfaces. Since most numerical integration schemes
solve a first-order ODE one can not directly start from (4.6) or (4.11). In case of planar
diffraction the starting point is (2.24) or (2.29) which after eliminating the z-component
of the field result in the desired coupled first-order system for the tangential fields. In
case of conical diffraction the coupled first-order system is given by (2.34). Naturally the
fields and permittivity function are again expanded in (pseudo-) periodic Fourier series,
substituted in these first-order systems and truncated. Suppose the truncated system
is of order 2M, then also 2M IVPs need to solved per layer. The initial conditions of
these IVPs usually correspond to unit vectors (i.e. columns of the identity matrix of the
same order). The resulting linear system is then given by (4.21) where FR i(Zi) = I and
where FR i(Zi−1) contains the numerically integrated solutions. The overall complexity
of this multiple shooting approach is still cubic since the stable condensation algorithm
involves LU factorisations. However, the eigenvalue computation per layer which also
has cubic complexity is now replaced by numerically solving 2M IVPs. For a typical
grating as described in Table 5.1 it turns out that solving these IVPs is actually (much)
more expensive than computing a full eigendecomposition. Here we should mention
that we have not extensively investigated different numerical integration schemes and
mainly focused on some of Matlab’s built-in ODE solvers (e.g. Runge-Kutta). Three ob-
servations are worth mentioning after having tested these solvers for several cases. First
we observed that sometimes extra shooting points inside a layer are needed for stabil-
ity reasons making the subsequent linear system larger and thus even more expensive.
Secondly this suggests that the multiple shooting approach might prove advantageous
when the grating is approximated with a lot of (thin) layers. For standard RCWA the
workload is pretty much constant per layer whereas with shooting the workload per
layer becomes less when the height of a layer is reduced (i.e. typically when more lay-
ers are used to approximate the grating). Although in our application space we have
not encountered many of these smooth profiles that require many layers, it might prove
useful for others. Thirdly we have not made any attempt to exploit the special structure
that is present in the coefficient matrix of the first-order ODE. Some of the blocks are
simply zero, others are diagonal and many of the full blocks have some sort of under-
lying Toeplitz structure. By exploiting this structure one could define a matrix-vector
product, which usually forms the basis of many of these numerical integrators, that is
very efficient.
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The classical multiple shooting method can also be modified using a stabilised march
in combination with reduced superposition. A stabilised march is an alternative for the
stable condensation algorithm based on Riccati transformations as discussed in the pre-
vious two sections. The reduced superposition principle allows for a more efficient imple-
mentation of the shooting method in the sense that less IVPs have to be solved. A de-
tailed description of this marching technique and reduced superposition principle for a
general BVP can be found in section 4.4 of [2]. Here we would just like to mention some
key features and show the connection with RCWA. Recall that for standard RCWA the
second-order ODEs per layer are completely independent and can in principle be solved
in parallel. Similarly for standard multiple shooting the first-order ODEs per layer are
completely independent and thus all IVPs can also be solved in parallel. Afterwards the
stable condensation algorithm is a sequential process by design which then requires all
these intermediate solution components of all layers. A stabilised march on the other
hand combines both the solving of the ODE per layer with a stable decoupling algo-
rithm. This means that not all IVPs can be solved in parallel anymore, only those that
belong to one and the same layer. Essentially one starts at the bottom interface with
an orthogonal set of initial conditions. Then, as with standard multiple shooting, these
initial conditions are numerically integrated up to the next interface or shooting point.
At this point a classical QU-decomposition is performed on the matrix containing the
numerically integrated solution components. Here Q is an orthogonal matrix and U is
an upper triangular matrix. The reorthogonalisation restores the linear independence
of the solution components and the columns of the matrix Q become the new initial
conditions for the next layer. The upper triangular matrix U introduces the necessary
decoupling needed for stability. This process is repeated for all layers until the top
interface of the top layer is reached. Then a small linear system can be solved for the ex-
pansion coefficients in the top layer after which all other coefficients can be found with
a backward recursion using the upper triangular matrices. It is worth mentioning here
that the essential part is the upper triangular matrix U taking care of the decoupling.
The fact that the matrix Q is orthogonal is (very) nice to have but not essential here.
Therefore also a slightly different decomposition could be used where U is block upper
triangular and Q close to being orthogonal. In order to speed up the computations one
can apply the reduced superposition principle. Because of the completely separated
boundary conditions of the discrete BVP actually only half the number of IVPs need to
be solved. This also means that half the number of columns need to be reothogonalised
resulting in a QU-decomposition where Q is a rectangular matrix of size 2M×M and
U is a square matrix of size M×M. Instead of using the columns of the identity matrix
as initial conditions, the reduced superposition principle requires the initial conditions
to be chosen such that they already satisfy the boundary condition of the discrete BVP
belonging to the bottom interface. So with these modifications the classical multiple
shooting method is approximately twice as fast, but still requires rather smooth profiles
in order to be competitive.

We will now show that the stable condensation algorithm based on Riccati transfor-
mations can also be interpreted as a stabilised march with reduced superposition but
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without a classical QU-decomposition. In order to keep the notation as simple as possi-
ble we will use the planar diffraction case as a reference and drop the subscript R again.
First a set of orthogonal initial conditions are defined at the bottom interface

F̂K(ZK) =

[
I

jwK+1KII,z

]
=:
[

FK+1
GK+1

]
. (5.22)

Since G2:
K F̂K(ZK) = d 2 = 0 they indeed satisfy the boundary conditions of the discrete

BVP belonging to the bottom interface. Instead of numerically integrating these initial
conditions up to the next layer, the fundamental solutions derived in (4.18) can be used
to write down the solution at the next interface or shooting point

F̂K(ZK−1) = FK(ZK−1)F
−1
K (ZK)F̂K(ZK)

=
1
2

[
QK QK

WKQKMK −WKQKMK

] [
X−1

K O
O XK

]
[

Q−1
K (WKQKMK)

−1

Q−1
K − (WKQKMK)

−1

] [
FK+1
GK+1

]
. (5.23)

Unfortunately this expression cannot be used directly since the product FK(ZK−1)F
−1
K (ZK)

contains both the exponentially growing and decaying terms which caused all the prob-
lems in the first place. Equation (5.23) as such is just another way of writing down the
first step in the unstable compactification algorithm or T-matrix algorithm as discussed
in 5.1. If on the other hand one is able to decompose the right-hand side of (5.23) as a
QU-decomposition without having to build this right-hand side explicitly (which would
result in disastrous round-off error accumulation), the RCWA equivalent of a stabilised
march could continue. A traditional QU-decomposition is not an option, however it
is possible to come up with a decomposition where Q is a rectangular matrix of size
2M × M with properly scaled independent columns and where U is a full (not upper
triangular) matrix of size M × M. Recall that without reduced superposition U needs
to be a (block) upper triangular matrix of size 2M× 2M so that in the case of reduced
superposition we only need the upper left block which can thus be upper triangular or
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simply full, but of size M×M. To this end (5.23) is rewritten as follows

F̂ 1
K(ZK−1) =

1
2 QK

(
X−1

K

(
Q−1

K FK+1 + (WKQKMK)
−1 GK+1

)
+

XK

(
Q−1

K FK+1 − (WKQKMK)
−1 GK+1

))

= QK

(
I + XK

(
Q−1

K FK+1 − (WKQKMK)
−1 GK+1

)
·

(
Q−1

K FK+1 + (WKQKMK)
−1 GK+1

)−1
XK

)
·

1
2 X−1

K

(
Q−1

K FK+1 + (WKQKMK)
−1 GK+1

)
= QK

(
I + XKRKXK

)
U11

K = FKU11
K , (5.24a)

F̂ 2
K(ZK−1) =

1
2 WKQKMK

(
X−1

K

(
Q−1

K FK+1 + (WKQKMK)
−1 GK+1

)
−

XK

(
Q−1

K FK+1 − (WKQKMK)
−1 GK+1

))

= WKQKMK

(
I− XK

(
Q−1

K FK+1 − (WKQKMK)
−1 GK+1

)
·

(
Q−1

K FK+1 + (WKQKMK)
−1 GK+1

)−1
XK

)
·

1
2 X−1

K

(
Q−1

K FK+1 + (WKQKMK)
−1 GK+1

)
= WKQKMK

(
I− XKRKXK

)
U11

K = GKU11
K . (5.24b)

So the decomposition that RCWA makes is simply

F̂K(ZK−1) =

[
FK
GK

]
U11

K , (5.24c)

where all the matrices are already defined in the stable backward one-stage Riccati re-
cursion (5.10). Note that in the derivation above a different relation was used for RK
instead of (5.10a). Namely, one can also use (5.10b) with i = K in combination with
the extended definition of FK+1 and GK+1 in (5.22). The decomposition derived in (5.24)
for the bottom layer also holds for all other layers and one simply needs to replace the
subscript K with i. So having shown already that the enhanced transmittance matrix ap-
proach was equal to the stable compactification algorithm based on Riccati transforma-
tions, we have now also shown that both approaches can be interpreted as a stabilised
march with reduced superposition.





Chapter 6

Modifications and improvements
for RCWA

Although RCWA is a simpler and more flexible mode expansion method than Bloch, this
comes at the price of not discretising the transitions inside a grating layer very well. The
jump in the permittivity function in combination with the (pseudo-periodic) Fourier se-
ries is not optimal. In this chapter we will therefore discuss two possible improvements
for the standard RCWA method with the goal of improving the convergence. The first
improvement replaces the standard Fourier discretisation with a layer-specific stretched
Fourier discretisation and is known as adaptive spatial resolution (ASR). ASR first applies
a coordinate transformation in the periodic x-direction before Fourier discretising the
transformed Maxwell’s equations again. This coordinate transformation squeezes the
spatial variable near a transition in a layer (thereby increasing the resolution near this
point) and stretches the spatial variable far away from this transition. Because each
layer in principle requires a different coordinate transformation, again a coupling ma-
trix needs to be computed when the layers are connected through the interface bound-
ary conditions. The second improvement removes the Fourier discretisation completely
and uses a finite difference (FD) discretisation. In order to maintain the general struc-
ture of the linear system and the stable compactification algorithm, finite differences is
applied only in the periodic x-direction and not in the other spatial coordinates. Two
types of FD stencils are derived while taking special care of the inner layer interface
boundary conditions. Unfortunately being unable to fully exploit the sparseness of the
FD discretisation this approach is not competitive for square like grating structures but
might still be useful for smooth profiles.
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6.1 Adaptive spatial resolution

The name ASR and the idea of improving the convergence of RCWA using a coordinate
transformation was originally suggested in [17]. In this article the geometry consists of
one grating layer containing a binary structure in between a superstrate and substrate
halfspace. A single coordinate transformation is then used to transform the equations
in the grating layer as well as in both halfspaces followed by the standard (pseudo-
periodic) Fourier discretisation. This approach ensures that no coupling matrix needs
to be computed when applying the interface boundary conditions between different
layers. However, two additional eigenvalue problems have to be solved in both half-
spaces thereby creating additional overhead. Moreover extending this approach with a
single coordinate transformation that works well for all layers of a multi-layered grating
is not really feasible. Therefore in [36] the ASR method is improved with a layer specific
coordinate transformation that does not require extra work in the superstrate and sub-
strate halfspaces. The drawback here is that now a coupling matrix has to be computed
when the layers are connected through the interface boundary conditions. In this sec-
tion we will follow the latter approach and briefly repeat the necessary changes to the
existing RCWA model in a planar diffraction case for both polarisations. The starting
point is the coordinate transformation in [36] for which we show that the coefficients of
the coupling matrix can be computed efficiently with the help of Bessel-related special
functions. Then using the exact eigenfunctions as a reference we explain that the ASR
improvement simply tries to approximate these Bloch modes better than the standard
RCWA method and that therefore the convergence is also comparable to the Bloch mode
method. Finally also two other coordinate transformations are investigated in order to
get an idea of the criteria for a good transformation. These alternative transformations
explained in more detail in Appendix C are either less smooth resulting in a coupling
matrix that is easier to compute or stretch on only one side of the grating interface. This
last idea is motivated by the fact that some eigenfunctions as computed by Bloch show
an exponential decay on only one side of the grating interface.

6.1.1 Overview of necessary changes to RCWA

The ASR improvement that we discuss here does not change the Helmholtz equation
(2.37) outside the grating layers. So there the solution is still given by the classical
Rayleigh expansion as was derived in (2.49) and (2.50). However inside the grating
layers we no longer solve (2.25) or (2.30) directly. Instead ASR first applies a coordi-
nate transformation in these layers along the periodic x-direction. This transformation
increases the resolution around the offsets Xi,l where the piecewise constant permittiv-
ity function is discontinuous and where its truncated Fourier approximation is worst.
A possible change of variable in layer i for x ∈ (Xi,l−1, Xi,l) and l = 1, . . . , Li is the
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following

x(s) = αi,l +βi,ls +
γi,l

2π
sin
(

2π
s− Si,l−1

Si,l − Si,l−1

)
, for s ∈ (Si,l−1, Si,l), (6.1)

where

αi,l =
Si,l Xi,l−1 − Si,l−1Xi,l

Si,l − Si,l−1
, (6.2a)

βi,l =
Xi,l − Xi,l−1

Si,l − Si,l−1
, (6.2b)

γi,l = Gi(Si,l − Si,l−1)− (Xi,l − Xi,l−1). (6.2c)

This coordinate transformation is very general and still has some parameters that can
be tuned. The additional parameters Si,l are the offsets in the transformed space and
can in principle be chosen differently from the original offsets Xi,l (naturally the pitch
should remain the same and thus Si,0 = −Λ/2 and Si,Li

= Λ/2). By choosing for exam-
ple a uniform distribution of offsets in the transformed space one can enhance certain
small features in the original problem. The parameter Gi controls the amount of stretch-
ing and squeezing that is present inside a grating layer and should lie in the interval
(0, minl=1,...,Li

βi,l ] for the transformation to be one-to-one. Note that if Si,l = Xi,l and
Gi = βi,l = 1 the original RCWA formulation is found again. It is important to realise
that the transformation given by (6.1) is continuously differentiable and that dx/ds = Gi
at the offsets s = Si,l . These criteria are important when later on other transformations
are discussed. Finally it should be pointed out that (6.1) should not be used directly for
the grating in Figure 2.3. This is because we do not want to refine near the edges of such
a unit cell since the permittivity does not jump there. One possible option is that each
layer of such a grating is temporarily shifted to the left until the permittivity function re-
ally jumps when crossing the unit cell. An additional phase factor for the fields can then
compensate for this shift. Alternatively the general transformation is reformulated by
combining the first and last interval for such a unit cell. Here the latter approach is cho-
sen for the symmetric grating discussed in Chapter 3 corresponding to Figure 2.3 with
Xi,2 = −Xi,1 = Xi. Setting the transformed offsets equal to the real offsets simplifies the
coordinate transformation to

x(s) =


s +

(Gi − 1)2Xi

2π
sin
(

2π
s + Xi

2Xi

)
, |s| ≤ Xi ,

s +
(Gi − 1)(Λ− 2Xi)

2π
sign(s) sin

(
2π
|s| − Xi

Λ− 2Xi

)
, Xi ≤ |s| ≤ Λ

2 .

(6.3)

Figure 6.1 shows an example of this transformation for Xi = 0.2 and Λ = 1 when no
stretching (Gi = 1), some stretching (Gi = 0.5) and a reasonable amount of stretching
(Gi = 0.1) is applied.
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Figure 6.1: Coordinate transformation for three different values of the stretching parameter Gi
for a layer in a symmetric binary grating with Xi = 0.2 and Λ = 1.

The coordinate transformation is used to transform the coupled system of first-order
partial differential equations in the grating layers given by (2.24) and (2.29) or equiva-
lently the second-order partial differential equations (2.25) and (2.30). Since the trans-
formation only has an impact along the x-direction, one can simply replace ∂

∂x with ds
dx

∂

∂s .
The transformed equations for the planar diffraction case become for i = 1, . . . , K

1
k2

0

(
1
hi

∂

∂s
1
hi

∂

∂s
+

∂
2

∂z2 + k2
0ε̂

r
i

)
Êi,y = 0, (6.4a)

1
k2

0

(
ε̂ r

i

hi

∂

∂s
1
ε̂ r

i hi

∂

∂s
+

∂
2

∂z2 + k2
0ε̂

r
i

)
Ĥi,y = 0, (6.4b)

where

hi(s) =
dx
ds

=


1 + (Gi − 1) cos

(
2π

s + Xi

2Xi

)
, |s| ≤ Xi ,

1 + (Gi − 1) cos
(

2π
|s| − Xi

Λ− 2Xi

)
, Xi ≤ |s| ≤ Λ

2 ,

(6.4c)

and

ε̂ r
i = ε̂ r

i (s), Êi,y = Êi,y(s, z), Ĥi,y = Ĥi,y(s, z). (6.4d)

In principle one can now expand the transformed (reciprocal) permittivity function, the
derivative of the coordinate transformation and the electromagnetic fields in (pseudo-
periodic) Fourier series as was done in Section 4.1. However, in order to improve the
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convergence and take full advantage of ASR, first some functions are grouped together
before discretising them. Equation (6.4) is therefore rewritten into

1
k2

0

(
∂

2

∂z2 +
1
hi

(
∂

∂s
1
hi

∂

∂s
+ k2

0ε̂
′
i

))
Êi,y = 0, (6.5a)

1
k2

0

(
∂

2

∂z2 +
1
p̂ ′i

(
∂

∂s
1
ε̂ ′i

∂

∂s
+ k2

0hi

))
Ĥi,y = 0, (6.5b)

where

ε̂ ′i = ε̂
r
i hi , p̂ ′i =

hi

ε̂ r
i

. (6.5c)

Because the coordinate transformation was continuously differentiable this means that
the Fourier coefficients of its derivative typically go faster to zero than those of the piece-
wise constant permittivity function. When a function is smooth its Fourier coefficients
go to zero fast and thus less coefficients are required to get a good approximation. By
Fourier transforming these scaled (reciprocal) permittivity functions instead of all the
individual functions the convergence is improved significantly which is supported by
the numerical tests in Section 7.1. Figure 6.2 illustrates the effect of Fourier transforming
the different functions for a typical grating layer.
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Figure 6.2: Modulus of the Fourier coefficients of the permittivity function, scaled permittivity
function and derivative of the coordinate transformation. The grating layer corresponds to a
symmetric binary grating with nI = 1, nII = 3.77, Xi = 0.2, Λ = 1 and Gi = 0.1 (left),
Gi = 0.01 (right).

The discretisation for ASR remains the same as in standard RCWA. Thus the derivative
of the coordinate transformation hi and scaled (reciprocal) permittivity functions ε̂ ′i and
p̂ ′i are again expanded in regular Fourier series as in (4.1). Similarly the transformed
electromagnetic fields Êi,y and Ĥi,y are expanded in pseudo-periodic Fourier series as in
(4.2). Substituting these expansions into (6.5) and truncating them while taking care of
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applying either Laurent’s multiplication rule or the inverse multiplication rule results
in the following two second-order ODEs

1
k2

0

v̂ e ′′
R i = Ĥ−1

i
(
KxĤ−1

i Kx − Ê ′i
)
v̂ e

R i =: Â ′i v̂ e
R i , (6.6a)

1
k2

0

v̂h ′′
R i = Ê ′−1

i
(
KxP̂ ′−1

i Kx − Ĥi
)
v̂h

R i =: Ê ′−1
i B̂ ′i v̂h

R i , (6.6b)

where the matrices Ĥi, Ê ′i and P̂ ′i are Toeplitz and contain the Fourier coefficients of the
respective functions hi, ε̂

′
i and p̂ ′i . When no stretching is applied and the transformed

and real offsets are chosen equal then Ĥi = I, Ê ′i = Ei and P̂ ′i = Pi and the standard
RCWA equations (4.6) are recovered. Note that in (6.6a) the inverse of the Toeplitz ma-
trix Ĥi appears suggesting the use of the inverse multiplication rule. However, since
the derivative of the coordinate transformation is continuous actually both multiplica-
tion rules can be applied. In this case the inverse rule is used because then all Fourier
coefficients can be computed analytically. The solution of these two ODEs can be writ-
ten in terms of the eigenvalues and eigenvectors of the constant coefficient matrices like
in (4.7). Finally the solution of the transformed electromagnetic field in each layer is
then given by (4.8) except that now the variable x in the pseudo-periodic Fourier modes
needs to be replaced with s.

The unknown expansion coefficients in the solution of the (transformed) electromag-
netic fields in each of the grating layers, superstrate and substrate can be found by ap-
plying the interface boundary conditions. Since in principle all grating layers can have
different coordinate transformations, one can no longer simply match the coefficients
as was done with standard RCWA in 4.2.1. Similar as with Bloch in 3.3.1 a method of
moments technique can be used to derive the necessary relations. Here we choose a
homogeneous method and use the standard pseudo-periodic Fourier modes in (2.46) as
test functions. Note that these are also used as the expansion functions in the super-
strate and substrate. The reason for choosing a homogeneous method is that computing
the coefficients of the corresponding coupling or projection matrix Si are relatively ex-
pensive making a hybrid method less attractive. For each grating layer the coefficients
of this coupling matrix are given by

Si,pm =
1
Λ

∫ Λ
2

− Λ
2

e− jkxms(x)e jkxp xdx

=
1
Λ

∫ Λ
2

− Λ
2

hi(s)e
− jkxmse jkxp x(s)ds. (6.7)

Since the coordinate transformation in (6.3) is given as a function of the transformed
variable s and is not that easily inverted, the second line in (6.7) can be used to compute
all coefficients. However, it is not completely clear how these coupling coefficients can
be computed stably and efficiently for this specific coordinate transformation. At least
three different approaches can be used to compute these coefficients. Perhaps the sim-
plest option is to approximate the integral and use some sort of numerical quadrature.
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The second option is to rewrite the integral into computing the Fourier coefficients of
some function and then use an FFT (Fast Fourier Transform) library routine. The third
option is to rewrite the integral into the sum of some standard integrals resulting in the
evaluation of Bessel related special functions. In Appendix B these three approaches are
explained in more detail. Having computed the coupling matrix in (6.7) the matching
boundary conditions again result in a system of equations identical to (4.17), except that
the fundamental solutions in the grating layers are slightly different. Therefore (4.18)
needs to be replaced with

FR i(Zi−1) =

[
Si O
O Si

] [
Q̂R i O
O ŴiQ̂R i

] [
I I

M̂R i −M̂R i

] [
I O
O X̂R i

]
, (6.8a)

FR i(Zi) =

[
Si O
O Si

] [
Q̂R i O
O ŴiQ̂R i

] [
I I

M̂R i −M̂R i

] [
X̂R i O
O I

]
. (6.8b)

The matrices Q̂R i, M̂R i and X̂R i are similar to standard RCWA and thus contain the
eigenvectors, square root of the eigenvalues and exponential terms but now of the co-
efficient matrices in (6.6). Finally the matrix Ŵi is again related to the weight function
coming from the different matching boundary condition between TE and TM polari-
sation. For TE polarisation this matrix is simply the identity, but for TM polarisation
this matrix is equal to the Toeplitz matrix P̂i containing the Fourier coefficients of the
transformed reciprocal permittivity. This means that in case of TM polarisation first the
multiplication with the reciprocal permittivity is taken in the transformed space before
coupling or projecting the solution to the next layer. The remaining steps are identical
to standard RCWA, meaning that the large linear system for the expansion coefficients
in the grating layers can be derived and solved using a stable condensation algorithm.

6.2 Finite difference discretisation

The Fourier discretisation used in both standard RCWA and ASR does not model the
material interfaces inside a grating layer as well as the Bloch modes. Although ASR
alleviates the problem by stretching near such an interface one could also remove the
Fourier discretisation completely and replace it with a finite difference (FD) discretisa-
tion in the grating layers. An FD discretisation can model this material interface better
either by discretising the inner layer interface boundary conditions directly or by incor-
porating this interface into a special finite difference stencil. Unlike Bloch this approach
(as well as ASR) does not get more complicated when the materials are lossy or when
more material interfaces are present in a grating layer. In order to remain in the RCWA
framework as much as possible the discretisation along the other spatial coordinates
remains the same. This means that along the z-direction the geometry is still approxi-
mated by layers in which a second-order ODE is solved using an eigendecomposition.
Also in the superstrate and substrate halfspaces the Rayleigh expansion is used to write
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down the solution. The subsequent transmission problem can then be solved with the
classical enhanced transmittance matrix approach or the stable condensation algorithm
based on Riccati transformation as discussed in Section 5.2.

Focusing on the planar diffraction case a typical starting point when applying an FD
discretisation are the coupled first-order partial differential equations in (2.24) or (2.29).
By eliminating the x-component of the field only tangential components to the mate-
rial interface inside a grating layer remain. Then, like with a Finite Difference Time
Domain (FDTD) method, some sort of Yee cell can be introduced resulting in a sam-
pling of the electric and magnetic field on a staggered grid. Having approximated the
first-order derivatives with respect to the periodic x-direction with typically a central
difference scheme, one can then eliminate the remaining z-component of the field. This
finally results in a second-order ODE for the tangential y-component of the field. In [23]
such an approach is chosen where the resulting second-order ODE is optimised for the
specific grating diffraction problem by some sort of averaging of the (reciprocal) permit-
tivity function when crossing a material interface. In this section we start directly from
the second-order PDE (2.25) or (2.30) requiring no staggered grid making the derivation
somewhat easier. Moreover, the averaging of the permittivity is replaced by discretising
the inner layer interface boundary conditions (3.2a) directly. Finally also a non-uniform
mesh different from [23] is investigated that is based on geometric refinement closely
matching the behaviour of the ASR coordinate transformation in (6.1).

6.2.1 Partitioned domain approach

A first-order accurate finite difference scheme for the second derivative of a function
using a non-uniform mesh with geometric refinement is derived in several steps. First
consider the interval [0, Λ] which is sampled with the points {xn}

n=N+1
n=0 such that x0 =

0, xN+1 = Λ with geometric refinement near the right boundary as indicated in Figure
6.3. The geometric refinement is constructed using the auxiliary function g

Figure 6.3: Non-uniform mesh with geometric refinement near the right boundary

g(x) =
δ1−x − δ

1− δ Λ, with δ =
1

GN+1 . (6.9)
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The location of the discretisation points or mesh is now given by

xn = g
(

n
N + 1

)
, (6.10)

for n = 0, . . . , N + 1. Due to its construction the points x0 and xN+1 indeed correspond
with the left and right boundary of the interval and moreover

∆xn

∆xn−1
=

xn+1 − xn

xn − xn−1
=
δ1− n+1

N+1 − δ1− n
N+1

δ1− n
N+1 − δ1− n−1

N+1

=
δ−

1
N+1 − 1

1− δ
1

N+1
=

G − 1
1− G−1 = G. (6.11)

If the parameter G which controls the level of refinement is chosen positive and smaller
than 1, then the mesh refines geometrically to the right boundary. Note that a similar
parameter is present in the ASR improvement that controls the amount of stretching
and squeezing in a grating layer. Clearly the standard uniform mesh is obtained when
setting G = 1. From (6.11) it follows that for n ∈ 0, . . . , N

∆xn = Gn∆x0, (6.12a)

and

Λ =
N

∑
n=0

∆xn = ∆x0

N

∑
n=0

Gn = ∆x0
1− GN+1

1− G
, (6.12b)

so that

∆x0 =
1− G

1− GN+1 Λ, (6.12c)

for G 6= 1. For a uniform mesh (6.12c) should be replaced by ∆x0 = Λ/(N + 1). Having
introduced a mesh with geometric refinement towards one boundary one can now con-
struct a first-order accurate difference scheme for the second derivative of a function,
say u(x), on all interior points. The standard way of deriving such a scheme is by prop-
erly combining the Taylor expansions of u(xn−1) and u(xn+1) around the point xn with
u(xn) resulting in

u′′(xn) = 2
∆xnu(xn−1)− (∆xn−1 + ∆xn)u(xn) + ∆xn−1u(xn+1)

∆xn−1∆xn(∆xn−1 + ∆xn)
+ err, (6.13a)

err = 1
3 (∆xn−1 − ∆xn)u

′′′(xn)−

1
12 (∆x2

n−1 − ∆xn−1∆xn + ∆x2
n)u

′′′′(xn) + . . . . (6.13b)
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The three-point relation or stencil (6.13a) for the second derivative on a non-uniform
mesh is only first-order accurate as can be seen from the error term in (6.13b). In the
special case of a uniform mesh this finite difference scheme reduces to the standard
symmetric three-point stencil which is second-order accurate. Combining (6.11) with
(6.13a) gives the following approximation of the second derivative on a mesh with geo-
metric refinement

u′′(xn)
.
=

1
∆x2

n−1

2
G(G + 1)

(
Gu(xn−1)− (G + 1)u(xn) + u(xn+1)

)
=

1
∆x2

n

2G
G + 1

(
Gu(xn−1)− (G + 1)u(xn) + u(xn+1)

)
. (6.14)

Apart from this approximation on the interior points also the boundary points need
to be considered. There typically boundary conditions are approximated which in the
RCWA context means that a first derivative is required near the right boundary point
with refinement. As will become clear later on the left boundary point actually can be
treated as an interior point and is therefore neglected in this part. For the non-uniform
mesh a first-order approximation of the first derivative can be used making the overall
scheme also first-order accurate, whereas for the uniform mesh a second-order accu-
rate scheme is probably best. Again Taylor expansions of u(xN) (and u(xN−1)) around
the point xN+1 can be combined with u(xN+1) resulting in the following single sided
difference schemes

u′(xN+1) =
u(xN+1)− u(xN)

∆xN
+ 1

2∆xNu′′(xN+1) + . . . , (6.15a)

u′(xN+1) =
∆x2

Nu(xN−1)− (∆xN−1 + ∆xN)
2u(xN)

∆xN−1∆xN(∆xN−1 + ∆xN)
+ (6.15b)

∆xN−1(∆xN−1 + 2∆xN)u(xN+1)

∆xN−1∆xN(∆xN−1 + ∆xN)
+ 1

6∆xN(∆xN−1 + ∆xN)u
′′′(xN+1) + . . . .

Again combining (6.11) with (6.15) gives two possible approximations of the first deriva-
tive at the right boundary of a mesh with geometric refinement

u′(xN+1)
.
=

1
∆xN

(
u(xN+1)− u(xN)

)
, (6.16a)

u′(xN+1)
.
=

1
∆xN−1

1
G(G + 1)

(
G2u(xN−1)− (G + 1)2u(xN) + (2G + 1)u(xN+1)

)
=

1
∆xN

1
G + 1

(
G2u(xN−1)− (G + 1)2u(xN) + (2G + 1)u(xN+1)

)
. (6.16b)

Having derived all necessary relations on the interior and boundary points of a non-
uniform mesh with geometric refinement, one can now apply these stencils to the spe-
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cific grating diffraction problem. Again the symmetric grating discussed in Chapter 3
corresponding to Figure 2.3 with Xi,2 = −Xi,1 = Xi is used as an example. The ge-
ometry is simplified even further by assuming only a single layer grating. This means
that the layer index subscript i can be dropped. Like the coordinate transformation in
ASR here the mesh refines on both sides of the material interface as indicated in Figure
6.4. More precisely the mesh actually consists of four copies of the auxiliary mesh in

Figure 6.4: Non-uniform mesh with geometric refinement near material interfaces

Figure 6.3 in a symmetric configuration. The top part of Figure 6.4 shows the mesh in
between the offsets (−X, X) where the permittivity is constant and equal to εII = n2

II.
Here x0 = 0 is centred in the origin whereas −xNII+1 = −X+ and xNII+1 = X− are lo-
cated just right and left of the material interface respectively. The bottom part of Figure
6.4 shows the mesh in between

(
−Λ

2 ,−X
)

and
(
X, Λ

2

)
where the permittivity is again

constant but now equal to εI = n2
I . Here ±x̃0 = ±Λ/2 corresponds with the end points

of the interval. Moreover −x̃NI+1 = −X− and x̃NI+1 = X+ are now located just to the
left and right of the material interface respectively. The four points located at the mate-
rial interfaces are considered the boundary points of the problem. There the inner layer
interface boundary conditions (3.2a) are discretised using the single sided finite differ-
ence stencils derived in (6.15). All other points are considered interior points including
those located at x = ±Λ

2 . This is because there is no material interface located at these
edges. Instead the pseudo-periodic boundary condition implies that the interior point
located at −x̃0 actually overlaps with x̃0 and can therefore be removed completely. On
the remaining interior points the second-order PDE (2.25) or (2.30) is semi-discretised
using the three-point stencil as derived in (6.14). Thus the pseudo-periodic boundary
condition should be incorporated into this stencil at the locations −x̃1 and x̃0.

Let f±n(z) = F(±xn, z) for n = 1, . . . , NII + 1 and f0(z) = F(x0, z) (and similarly for f̃
related to F(x̃n, z)) represent the sampled y-component of either the electric or magnetic
field for TE or TM polarisation respectively. Then on the interior points the following
system of second-order ODEs can be derived for n = 2, . . . , NI

1
k2

0

d2

dz2 f̃−1 =
1
k2

0

1
∆x̃2

1

2GI

GI + 1
(
− τ−1GI f̃0 + (GI + 1) f̃−1 − f̃−2

)
−εI f̃−1

1
k2

0

d2

dz2 f̃−n =
1
k2

0

1
∆x̃2

n

2GI

GI + 1
(
− GI f̃−n+1 + (GI + 1) f̃−n − f̃−n−1

)
−εI f̃−n

(6.17a)
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and for n = 1, . . . , NII

1
k2

0

d2

dz2 f−n =
1
k2

0

1
∆x2

n

2GII

GII + 1
(
− f−n−1 + (GII + 1) f−n − GII f−n+1

)
−εII f−n

1
k2

0

d2

dz2 f0 =
1
k2

0

1
∆x2

0

(
− f−1 + 2 f0 − f1

)
−εII f0

1
k2

0

d2

dz2 fn =
1
k2

0

1
∆x2

n

2GII

GII + 1
(
− GII fn−1 + (GII + 1) fn − fn+1

)
−εII fn

(6.17b)

and for n = NI, . . . , 1
1
k2

0

d2

dz2 f̃n =
1
k2

0

1
∆x̃2

n

2GI

GI + 1
(
− f̃n+1 + (GI + 1) f̃n − GI f̃n−1

)
−εI f̃n

1
k2

0

d2

dz2 f̃0 =
1
k2

0

1
∆x̃2

0

(
− f̃1 + 2 f̃0 − τ f̃−1

)
−εI f̃0

(6.17c)

where τ = e− jkxΛ comes from the pseudo-periodic boundary condition. Before this sys-
tem of second-order ODEs can be solved (which up to now is the same for both TE
and TM polarisation), first the boundary points located at both sides of the material
interfaces have to be eliminated. As already mentioned the necessary relations are de-
rived from discretising the inner layer interface boundary conditions (3.2a) (which are
different for TE and TM polarisation) using single sided finite difference stencils. The
first-order approximations are

f̃−NI−1 = f−NII−1

wI

∆x̃NI

(− f̃−NI
+ f̃−NI−1) =

wII

∆xNII

(− f−NII−1 + f−NII
)

(6.18a)


fNII+1 = f̃NI+1

wII

∆xNII

(− fNII
+ fNII+1) =

wI

∆x̃NI

(− f̃NI+1 + f̃NI
)

(6.18b)
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whereas the second-order approximations are

f̃−NI−1 = f−NII−1

wI

∆x̃NI

1
GI + 1

(G2
I f̃−NI+1 − (GI + 1)2 f̃−NI

+ (2GI + 1) f̃−NI−1) =

wII

∆xNII

1
GII + 1

(−(2GII + 1) f−NII−1 + (GII + 1)2 f−NII
− G2

II f−NII+1)

(6.19a)



fNII+1 = f̃NI+1

wII

∆xNII

1
GII + 1

(G2
II fNII−1 − (GII + 1)2 fNII

+ (2GII + 1) fNII+1) =

wI

∆x̃NI

1
GI + 1

(−(2GI + 1) f̃NI+1 + (GI + 1)2 f̃NI
− G2

I f̃NI−1)

(6.19b)

Using the first-order approximations (6.18) to eliminate the field components sampled
on the boundary points from (6.17) results in the following first-order accurate system
of second-order ODEs

1
k2

0

d2

dz2

[
f̃
f

]
=

[
A11 A12

A21 A22

] [
f̃
f

]
, (6.20a)

where

f̃ =
[

f̃NI
, . . . , f̃−NI

]T
, f =

[
f−NII

, . . . , fNII

]T
. (6.20b)

The constant coefficient matrix A consists of two square tri-diagonal matrices A11 and
A22 and two (in general) rectangular matrices A12 and A21 with non-zero components in
the lower left and top right corner. Here the partitioning of the matrix matches the size
of the vectors in (6.20b). More specifically the matrices on the diagonal can be written
as

A11 = XIDI −εII, A22 = XIIDII −εIII, (6.21a)

where

XI =
1
k2

0

2GI

GI + 1
diag

(
1

∆x̃2
NI

, . . . ,
1

∆x̃2
1

,
GI + 1

2GI

1
∆x̃2

0

,
1

∆x̃2
1

, . . . ,
1

∆x̃2
NI

)
, (6.21b)

XII =
1
k2

0

2GII

GII + 1
diag

(
1

∆x2
NII

, . . . ,
1

∆x2
1

,
GII + 1

2GII

1
∆x2

0

,
1

∆x2
1

, . . . ,
1

∆x2
NII

)
, (6.21c)
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DI =



GI + wII −GI

−1 GI + 1 −GI

. . . . . . . . .

−1 GI + 1 −GI

−1 2 −τ

− 1
τ

GI GI + 1 −1

−GI GI + 1 −1

. . . . . . . . .

−GI GI + 1 −1

−GI GI + wII



, (6.21d)

DII =



GII + wI −GII

−1 GII + 1 −GII

. . . . . . . . .

−1 GII + 1 −GII

−1 2 −1

−GII GII + 1 −1

. . . . . . . . .

−GII GII + 1 −1

−GII GII + wI



, (6.21e)

with the auxiliary variables at the corners defined by wI = (wI/∆x̃NI
)/((wI/∆x̃NI

) +
(wII/∆xNII

)) and wII = (wII/∆xNII
)/((wI/∆x̃NI

) + (wII/∆xNII
)) = 1− wI. The matrices

on the off-diagonal are then given by

A12 =
1
k2

0

1
∆x̃2

NI

2GI

GI + 1


−wII

−wII

 , (6.21f)

A21 =
1
k2

0

1
∆x2

NII

2GII

GII + 1


−wI

−wI

 . (6.21g)
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Note that the phasefactor coming from the pseudo-periodic boundary condition ap-
pears in the matrix (6.21d). Moreover, the total coefficient matrix although very sparse
is not banded because of the fill-in in the top right and bottom left corner. Alterna-
tively a second-order accurate system of second-order ODEs can be derived by combin-
ing (6.19) with (6.17) without geometric refinement. Thus a normal central difference
scheme is used on the interior points and GI = GII = 1. Moreover ∆x̃n = ∆x̃0 =
(Λ/2− X)/(NI + 1) for n = 1, . . . , NI and ∆xn = ∆x0 = X/(NII + 1) for n = 1, . . . , NII.
Thus the blocks on the diagonal of the constant coefficient matrix simplify to

XI =
1
k2

0

1
∆x̃2

0

I, XII =
1
k2

0

1
∆x2

0

I, (6.22a)

DI =



2− 4
3 wI −1 + 1

3 wI

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 2 −τ

− 1
τ

2 −1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 + 1
3 wI 2− 4

3 wI



, (6.22b)

DII =



2− 4
3 wII −1 + 1

3 wII

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 + 1
3 wII 2− 4

3 wII


, (6.22c)
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and the off-diagonal blocks have slightly more fill-in and are given by

A12 =
1
k2

0

1
∆x̃2

0



1
3 wII − 4

3 wII

− 4
3 wII

1
3 wII


, (6.22d)

A21 =
1
k2

0

1
∆x2

0



1
3 wI − 4

3 wI

− 4
3 wI

1
3 wI


. (6.22e)

Having derived the second-order ODE which is either first-order accurate with geo-
metric refinement or second-order accurate on a regular uniform mesh, one can now
return to the standard RCWA approach for solving it. By computing the eigenvalues
and eigenvectors of the constant coefficient matrix the z-dependent part of the solution
can be written down like in (4.7). Initially the idea was to keep the matrix as sparse as
possible and find an optimised eigendecomposition routine which exploits this sparse-
ness (e.g. library routines from ARPACK [39] or EISPACK [40]). This is the reason why
only low-order approximations are considered resulting in less fill-in. Unfortunately
the periodic boundary conditions make the coefficient matrix not banded whereas most
of these optimised routines require this property. Moreover all eigenvalues and eigen-
vectors are required and not just a few. Therefore all numerical results were obtained
using the same eigendecomposition routine that was used in standard RCWA based on
dense and full matrices (e.g. library routines from LAPACK [41]). Clearly this does not
result in optimal computation times and perhaps other strategies could be employed
improving the performance. One alternative could be to solve the second-order ODE
numerically using for example a multiple shooting approach as discussed in Section 5.3.
Because the matrix is very sparse an efficient matrix-vector product could be defined
which is possibly more efficient than having to compute all eigenvectors and eigenval-
ues. Having solved the ODE the unknown expansions coefficients are again found by
applying the interface boundary conditions (2.27) or (2.32). Here also a small modi-
fication is required since the solution in the grating layer is only available at discrete
points corresponding to the mesh along the x-direction, whereas in the superstrate and
substrate a continuous description is available in the form of the Rayleigh expansions
(which uses the pseudo-periodic Fourier series along the x-direction). One possible so-
lution is to sample these Rayleigh expansions at the mesh points of the grating layer
when applying the interface boundary conditions. The remaining steps are again iden-
tical to standard RCWA, meaning that the resulting linear system can be solved using
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a stable condensation algorithm. When the grating consist of more layers each having
their own mesh these interface boundary conditions become slightly more involved.
Then an approach as discussed in [23] could be considered where with each mesh-point
a local expansion functions is associated followed by a moment matching technique as
discussed in 3.3.1.

6.2.2 Single domain approach

Contrary to the partitioned domain approach consisting of a mesh with both interior
and boundary points one can also consider a single domain approach consisting of a
mesh with interior points only. In that case a special finite difference stencil needs to
be derived for those points in the mesh that lie just left and right of a material interface
(when a material interface coincides with a mesh point only there a special stencil is
required). This approach has been used before in the context of waveguides and in [37]
a derivation of such a stencil can be found. Because for waveguide computations the
periodic boundary condition is typically replaced with a transparent boundary condi-
tion the resulting matrix is not only sparse but also banded. So then it is worthwhile to
invest in a stencil that results in a tri-diagonal matrix for which a lot of efficient library
routines are available. Recall that in the partitioned domain approach as discussed in
6.2.1 the single sided difference scheme needed for the boundary points increased the
bandwidth of the matrix. The stencil as derived in [37] assumes a uniform mesh and is
second-order accurate for TE polarisation whilst only first-order accurate for TM polar-
isation. However by exploiting the special structure of the equations to be discretised
the accuracy can be improved to fourth and second-order for TE and TM polarisation
respectively without increasing the bandwidth of the matrix [38]. Such a single domain
approach on a uniform mesh can also be used in the context of grating diffraction prob-
lems. However in combination with an eigendecomposition routine that is not able to
exploit the sparseness because of the periodic boundary conditions, the added value of
a single domain approach over a partitioned domain approach seems limited.





Chapter 7

Numerical results

Having discussed various discretisation strategies and modifications in the previous
chapters, this chapter compares and evaluates these methods by presenting numerical
results. In Section 7.1 some typical test structures are considered consisting of a rela-
tively easy low contrast resist application, followed by a more challenging high contrast
silicon application. Section 7.2 explains how these methods can be incorporated in a
metrology tool for critical dimension (CD) measurements.

7.1 Comparison of the forward diffraction models and their
improvements

First the two mode expansion methods Bloch and RCWA as discussed in Chapters 3
and 4 are compared for a resist and silicon type application. The resist case consists
of a resist pillar lying on a homogeneous Backward Anti-Reflective Coating (BARC)
layer on a silicon substrate with the superstrate simply air. The refraction indices of
air, resist, BARC and silicon are fixed at 1.0, 1.51, 1.55 and 3.88 respectively. The geo-
metrical parameters like pitch, resist width, resist height and BARC height are fixed at
500nm, 80nm or 250nm (iso or dense), 120nm and 30nm. Note that two different resist
widths are investigated corresponding to two typical configurations, namely isolated
and dense structures. Moreover the resist pillar is modelled as a single layer structure
in case of a perfectly vertical sidewall angle, and later also as a 6-layered trapezoid in
case of a sloped sidewall angle of 85 degrees (in which case all layers of the trapezoid
are equally thick, thus 20nm each, and the mid-CD of the trapezoid then corresponds
to the specified iso or dense widths of the single layered example). Finally the incident
field is characterised by a linearly TE or TM polarised plane wave at a wavelength of
632.8nm and polar angle of 25 degrees (thus planar incidence). Although all geometri-
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cal parameters are specified in nanometres here (because that is typically the preferred
unit used in optical lithography), both methods internally normalise with respect to the
wavelength. Figure 7.1 shows the absolute error in the diffraction efficiency, typically
the quantity of interest since that is what a metrology tool often measures, as a func-
tion of the number of modes for the single layered resist case. The top figure on the
left (right) corresponds to the 0th diffraction order while the bottom figure on the left
(right) corresponds to the 1st diffraction order for the isolated (dense) resist pillar. The
solid lines all correspond to incident TE polarisation whilst the dashed lines correspond
to incident TM polarisation. The colours represent the different methods: RCWA (red),
Bloch with homogeneous projection on plane waves (green) and Bloch with hybrid pro-
jection on mixed plane waves and Bloch modes (blue). The number of modes along
the x-axis are actually single-sided, meaning that the total number of modes is always
twice that plus one (also for Bloch). Finally the reference values are obtained using the
hybrid Bloch approach with 400 modes. As can be seen from the figure the lines cor-
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Figure 7.1: Absolute error in the diffraction efficiency of the 0th (top) and 1st (bottom) diffraction
order for an isolated (left) and dense (right) single layer resist grating as a function of the number
of modes. The solid lines correspond to incident TE polarisation, the dashed lines to incident TM
polarisation and the colours represent the different discretisations Bloch homogeneous, Bloch
hybrid and RCWA (blue, green, red).

responding to the homogeneous and hybrid Bloch mode method are most of the times
indistinguishable. Note that even with only a single mode (thus for RCWA the har-
monics run from −1, . . . , 1 and for Bloch 3 modes are used in total) already an error
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of approximately 10−3 is obtained for both the isolated as well as the dense pillars and
for both polarisations. This shows that low contrast applications like resist are indeed
amongst the easier cases. Even so, when a higher accuracy is required the advantage
of Bloch becomes clear, that is for TE polarisation. For this polarisation the Bloch lines
not only show a slight offset with respect to the RCWA lines, also the slope is slightly
steeper for Bloch. This means that when an accuracy of 10−6 is required the number
of modes for Bloch is 3 times smaller than for RCWA. For TM polarisations however
the differences between the methods almost disappears and Bloch does not show a real
advantage anymore over RCWA. The different slopes between both polarisations can
be explained from the different smoothness the field possesses. Recall that for TE po-
larisation the electric field was continuously differentiable across a material interface
whereas for TM polarisation the magnetic field was only continuous across such an in-
terface. This could explain why the results of Bloch and RCWA actually overlap for TM
polarisation. Although Bloch is in principle capable of computing the real eigenmodes
inside a layer whereas RCWA is only able to approximate them, Bloch cannot deal with
the corner points in the resist pillar any better than RCWA can. For TM polarisation the
magnetic field in these corner points is singular which could explain why both methods
behave the same.
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Figure 7.2: Absolute error in the diffraction efficiency of the 0th (top) and 1st (bottom) diffrac-
tion order for an isolated (left) and dense (right) single layer silicon grating as a function of the
number of modes. The solid lines correspond to incident TE polarisation, the dashed lines to inci-
dent TM polarisation and the colours represent the different discretisations Bloch homogeneous,
Bloch hybrid and RCWA (blue, green, red).
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The silicon case consists of a silicon pillar directly lying on a silicon substrate with the
superstrate simply air. The refraction indices of air and silicon are fixed at 1.0 and 3.88
respectively. The geometrical parameters like pitch, silicon width and silicon height
are identical to the resist case and thus fixed at 500nm, 80nm or 250nm (iso or dense)
and 120nm. Also now the silicon pillar is modelled as a single layer structure and later
as 6-layered trapezoid in case of a perfectly vertical and sloped sidewall angle of 85
degrees respectively. Finally the incident field is also identical to the resist case, thus
linearly TE and TM polarised at 632.8nm and incident under 25 degrees. Figure 7.2 is the
counterpart of Figure 7.1 but now shows the absolute error in the diffraction efficiency
for the silicon case. Overall the results are very similar to the resist case, although here
the initial error when using only a single mode is in the order of 10−2 − 10−1. Not
surprisingly the higher contrast in the refraction index for this silicon case requires more
modes than the resist case to obtain a similar error level. When higher accuracy levels
are required the use of Bloch modes clearly show an advantage over RCWA for TE
polarisation, although again for TM polarisation the differences between both methods
are minor.
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Figure 7.3: Absolute error in the diffraction efficiency of the 0th (top) and 1st (bottom) diffraction
order for an isolated (left) and dense (right) 6-layer trapezoid resist grating as a function of the
number of modes. The solid lines correspond to incident TE polarisation, the dashed lines to inci-
dent TM polarisation and the colours represent the different discretisations Bloch homogeneous
and RCWA (blue, red).
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Figure 7.4: Absolute error in the diffraction efficiency of the 0th (top) and 1st (bottom) diffraction
order for an isolated (left) and dense (right) 6-layer trapezoid silicon grating as a function of the
number of modes. The solid lines correspond to incident TE polarisation, the dashed lines to inci-
dent TM polarisation and the colours represent the different discretisations Bloch homogeneous
and RCWA (blue, red).

Having presented the results for a single layer pillar of resist and silicon, it is interest-
ing to see that for a more realistic scenario of a 6-layered trapezoid the results roughly
remain unchanged as can be seen in Figure 7.3 for the resist case and in Figure 7.4 for
the silicon case. Since the single layer results showed hardly any difference between the
hybrid and homogeneous Bloch approach, here only the homogeneous Bloch is shown
(which is also used to generate the reference solution). Another reason for choosing the
homogeneous Bloch approach is that for a trapezoid its implementation is somewhat
easier, since the elements of the projection or coupling matrix are always computed in
the same way and no Bloch to Bloch mode coupling needs to be computed. The fact
that some graphs tend to curve downwards near the maximum number of 100 modes
can be explained by the fact that the reference solution was not computed accurately
enough. For the dense silicon case the error plot for the 0th TM order looks somewhat
noisy but this seems to be the case for both the Bloch as well as RCWA results. Finally it
is worth mentioning that these graphs by themselves confirm that the stable recursion
with Riccati transformations as discussed in Chapter 5.2 indeed works and is required.
The silicon case presented here is very similar to the input used to generate the data in
Table 5.1a. Clearly using the T-matrix algorithm here would have been disastrous when
more than 20 modes were used (let alone to compute a reference solution at 400 modes).
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In Section 6.1 the technique adaptive spatial resolution (ASR) was introduced to im-
prove RCWA. In Figure 7.5 the results of this technique are shown for the single layer
silicon case. The ASR-stretching parameter is fixed at G = 0.01 in combination with the
coordinate transformation of (6.3). These results can be directly compared with those
in Figure 7.2 as can be seen from the identical reference values and RCWA curves. Fur-
thermore the legend shows three types of ASR results (ASR, ASR+, ASR 2x) which cor-
respond to three slightly different simulation settings or model inputs. The first (ASR)
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Figure 7.5: Absolute error in the diffraction efficiency of the 0th (top) and 1st (bottom) diffraction
order for an isolated (left) and dense (right) single layer silicon grating as a function of the
number of modes. The solid lines correspond to incident TE polarisation, the dashed lines to
incident TM polarisation and the colours represent the different discretisations RCWA, ASR,
ASR+, ASR 2x (red, blue, green, black).

type corresponds to the standard approach as described in Section 6.1 which means that
only in the single silicon grating layer a coordinate transformation is used. The second
(ASR+) type introduces two artificial homogeneous layers just above and below the sin-
gle silicon grating layer. Thus in between the grating layer and superstrate of air there
is an additional 10nm thick homogeneous layer of air in which two refinement points
are chosen near the corner points of the underlying silicon pillar. Similarly in between
the grating layer and silicon substrate an additional 10nm thick homogeneous layer of
silicon is placed with again two refinement points near the corner points of the silicon
pillar. So instead of a single layer in between two halfspaces, now three layers each with
the same coordinate transformation are positioned in between two halfspaces. The idea



7.1 Comparison of the forward diffraction models and their improvements 109

is that for TM polarisation the corner singularities in the field are modelled better when
the refinement is also present just above and below these singularities. The third (ASR
2x) type actually does the same as the first type except that for the grating layer a 2 times
larger eigenvalue problem is solved of which only half of the (converged) eigenvalues
and eigenvectors are used. Several observations can be made from Figure 7.5:

• First note that upon close inspection of the ASR 2x results it becomes clear that
these black curves are (almost) identical to the Bloch curves in Figure 7.2. Appar-
ently the stretching is able to approximate the Bloch modes, which are the exact
eigenfunctions and thus in a way optimal, much better than standard RCWA. This
is supported by Figure 7.6 which shows the absolute error in the eigenvalues for
a fixed number of 20 modes (thus for 41 modes in total). Whereas the standard
RCWA method shows a clear difference between TE and TM polarisation, ASR ap-
proximates the eigenvalues almost equally well for both polarisations. Although
ASR shows a deterioration in the larger eigenvalues, the smaller eigenvalues are
approximated much better compared to RCWA. Since the smaller eigenvalues cor-
respond to the most important modes, the improvement obtained there outweighs
the increased error in the less important higher frequency modes. Moreover in-
creasing the eigenvalue system in standard RCWA by a factor 2 does not give the
same improvement as for ASR 2x.

0 100 200 300 400 500 600
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Bloch eigenvalue

ab
so

lu
te

 e
rr

or
 in

 e
ig

en
va

lu
e

 

 

RCWA TE
RCWA TM
RCWA 2x TE
RCWA 2x TM
ASR TE
ASR TM
ASR 2x TE
ASR 2x TM

0 100 200 300 400 500 600
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Bloch eigenvalue

ab
so

lu
te

 e
rr

or
 in

 e
ig

en
va

lu
e

 

 

RCWA TE
RCWA TM
RCWA 2x TE
RCWA 2x TM
ASR TE
ASR TM
ASR 2x TE
ASR 2x TM

Figure 7.6: Absolute error in the eigenvalues for an isolated (left) and dense (right) single
layer silicon grating. The reference values along the x-axis are obtained from the Bloch mode
method. The solid lines correspond to incident TE polarisation, the dashed lines to incident TM
polarisation and the colours represent the different discretisations RCWA, RCWA 2x, ASR, ASR
2x (red, green, blue, black). The number of modes is fixed at 20.
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• Secondly what is perhaps most striking and not well understood is the plateau in
Figure 7.2 (around 20-40 modes) that can be reached for TE polarisation with stan-
dard ASR. This plateau is slightly larger for the dense grating and in this regime
the error in the diffraction efficiency is even smaller than obtained with Bloch. On
the basis of the approximated eigenvalues it is not clear why ASR would do bet-
ter than Bloch (or for that matter better than ASR 2x which seems to approximate
Bloch very well). Moreover, increasing the number of modes beyond this plateau
only gives unstable and inaccurate results. The reason for this behaviour is partly
related to ill-conditioned matrices in the algorithm which can be traced back to
the eigenvectors and eigenvalues that were not approximated well (and thus not
a stability issue like the T-matrix algorithm). This plateau is not present when
the alternative coordinate transformations are used from Appendix C which were
missing the extra smoothness and fast decaying Fourier coefficients. Clearly a bet-
ter understanding of this plateau could prove extremely useful since one is able
to do better than the exact eigenfunctions from Bloch, and one does not have to
solve a larger eigensystem and throw away half of the eigenvectors and eigenval-
ues. It should be pointed out that this plateau is not present for TM polarisation in
combination with the standard ASR even though the error in the spectrum looks
almost similar to TE polarisation.

• Thirdly the auxiliary layers introduced by ASR+ only seem to show a limited ad-
vantage. As expected for TE polarisation there is no improvement since also no
corner singularities are expected there. However, for TM polarisation on the dense
silicon stack again some sort of plateau can be observed where the error is smaller
than both RCWA and Bloch. By construction RCWA and Bloch simply cannot
refine near a corner whereas with the artificial layers of ASR+ one is able to cap-
ture the higher gradients in the field around sharp corners of the geometry. The
isolated case shows that adding these artificial layers does not always improve
the convergence of the diffraction efficiencies. An additional complication is in-
troduced when a trapezoid grating is approximated with layers. Either multiple
refinement points per layer should be introduced and/or additional thin layers
could subdivide existing layers. For such a trapezoid the additional overhead
generated by the extra layers quickly throws away most of the improved con-
vergence, especially since for these trapezoid structures the plateau typically lies
somewhat closer to the standard RCWA and Bloch results.

• Finally the ASR results obtained in Figure 7.2 for the silicon case are almost iden-
tical for the resist case. Although for resist the initial error was already pretty
small, also here a plateau can be found for standard ASR in combination with
TE polarisation reducing the error even further. Changing the angle of incidence
also does not significantly change the outcome of the results, making a good co-
ordinate transformation thus pretty robust for a wide range of incident angles.
Alternative values for the stretching parameter G also did not improve the results
any further and also for various other cases a value of 0.01 seemed to be rather op-
timal. Lastly the more general stretching of (6.1) did not improve the result of the
isolated silicon pillar either (e.g. choosing the offsets S such that the transformed
pillar effectively becomes dense).
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In section 6.2 a second alternative to standard RCWA was discussed based on finite
difference discretisations. Here we briefly summarise the results obtained with this
method. Not having found a proper eigendecomposition routine that can exploit the
sparseness in the coefficient matrix, this method is simply not competitive to ASR or
even standard RCWA. For example repeating the test in Figure 7.6 for the dense silicon
case using 42 meshpoints without refinement (which is roughly the equivalent of 20
single-sided modes resulting in the same size of the coefficient matrix and thus equal
computational complexity) shows a graph for both polarisations with the same trend
as RCWA TM. However, this graph lies roughly two orders above the RCWA graph
meaning that the eigenvalues are approximated much worse. Moreover the TE polar-
isation now performs equally bad as TM whereas for standard RCWA the TE eigen-
values are approximated much better than TM. When adding a geometric refinement
factor GI = GII = 0.75 which seems to perform the best for this geometry and number
of meshpoints, the eigenvalues are approximated only slightly better (not even a full
order on the smallest eigenvalues) and by no means comparable to the improvement
seen with ASR. Although the geometric refinement technique resulted in a relatively
simple structured coefficient matrix, perhaps other mesh refinements (which require a
different finite difference stencil to be derived) might perform better and show a similar
improvement as ASR. Nevertheless if one is not able to exploit the sparseness (except
from a storage point of view of the coefficient matrix) this method will simply not be
competitive enough.

7.2 Application of the forward diffraction model to grat-
ing reconstruction

As explained in the introduction a metrology tool [4, 5] typically measures overlay or
CD. Here we focus on the latter since measuring CD typically requires a close cooper-
ation with Maxwell solvers. A simplified schematic overview of the metrology tool for
a CD measurement can be found in Figure 7.7. A light source illuminates the periodic
grating on the wafer after which its reflected signal or intensity pattern I is measured
on a CCD camera. This intensity pattern is typically a function of the incident wave-
length λ, angle of incidence (θ,φ) and polarisationψ for a certain grating. The incident
wavelength and polarisation can be selected using colour and polarisation filters in the
illumination branch. Instead of using only a single angle of incidence and measuring
spectroscopically (i.e. varying the wavelength continuously) here the wavelength is
fixed and instead the angles of incidence are varied using a high numerical aperture
(NA) microscope objective. Each point on the objective lens essentially corresponds to a
unique angle of incidence. By illuminating the entire microscope a lot of different angles
of incidence can be measured at the same time making high throughput times possible.
After reflection of the grating the light passes back through the microscope objective
and finally is detected on a camera.
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Figure 7.7: Schematic overview of metrology tool and reconstruction process

Unfortunately the measured signal does not directly translate into the CD parameters
like height, width or sidewall angle of a grating. Instead this information is somehow
encrypted in the measured intensity pattern. Therefore an additional post-processing
step or reconstruction is required to extract or decrypt this information from the mea-
surement. The right part of Figure 7.7 depicts such a reconstruction strategy which here
simply consists of a library search. A library simply contains pre-computed intensity
patterns for all kinds of different gratings with different CD configurations. A library
search then looks for the closest match between the measured and computed intensity
patterns in this library. The CD configuration that belongs to the best match then corre-
sponds to the actual grating structure on the wafer. More advanced library search algo-
rithms can be used that for example interpolate between patterns to get an even more
accurate description of the grating. This library option clearly has an obvious drawback,
namely it only works if a dense enough library (in combination with a smart sampling
scheme) has been pre-computed. This does not necessarily have to be a problem if for
example the library can be reused for multiple measurements. If this is not the case a
second reconstruction strategy can be considered which consist of a direct reconstruc-
tion. A direct reconstruction or real-time regression typically minimises a cost function
(e.g. the 2-norm of a vector where each entry corresponds to a camera pixel contain-
ing the difference of the measured and simulated intensity) using some optimisation
technique. Some examples of these optimisation techniques include (damped) Gauss-
Newton, Levenberg-Marquardt or Broyden-Fletcher-Goldfarb-Shann (BFGS) possibly
extended with some form of regularisation. In [1] these optimisation techniques have
been investigated in more detail for this specific grating reconstruction problem. More-
over [1] also discusses a technique to get CD parameter derivatives from RCWA very
efficiently which are required by some of these optimisation techniques (clearly a finite
difference approximation can also be used to approximate these derivatives at the cost
of additional forward computations). Most of the times this direct reconstruction strat-
egy is still supported by a small library that is used to extract an initial guess for the
real-time regression. Clearly this library only needs to be coarse and therefore the setup
time is much smaller than the full fledged library solution.
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Figure 7.8: Single angle of incidence and corresponding outgoing diffraction orders (left). Su-
perposition over all angles of incidence results in typical simulated intensity pattern (right).

It is clear that both reconstruction strategies require an accurate and fast forward model.
Library fill times should remain in the order of hours whereas a real-time regressions is
more in the order of seconds. In the remainder of this section we discuss in more detail
how to compute these intensity patterns, how to incorporate the diffraction algorithms
like RCWA or Bloch and how to exploit some additional symmetries of the problem.
Figure 7.8 shows a top view of the microscope objective while looking down towards a
grating which is aligned with the y-axis. As mentioned at the beginning of this section
each point on the high NA objective lens corresponds to a unique angle of incidence
and thus a single forward model computation. The angles of incidence (θ,φ) which
also correspond to those in Figure 2.2 can be related to positions on the lens as indicated
in the left part of Figure 7.8. After the incident plane wave interacts with the grating
several diffraction orders are reflected and (some of) the propagating orders pass back
through the lens. In the figure these are indicated with the 0th and 1st order. The
location of these outgoing plane waves follows from tracking the outgoing wave vector.
If for example the position of the incoming point corresponds to (x i, y i) and the position
of the outgoing point of the mth reflected order corresponds to (x r

m, y r
m) then

(x i, y i) = (−kx,−ky)/k0, (7.1a)

(x r
m, y r

m) = (kxm, ky)/k0, (7.1b)

assuming the superstrate is air and nI = 1. Equation (2.44) gives the desired connection
between the incoming and outgoing points

(x r
m, y r

m) = (−x i −mλ0/Λ,−y i) (7.1c)

In order to arrive at the final simulated intensity pattern one simply needs to superim-
pose the output from all individual incoming angles. Because all incoming angles are
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independent from each other, they can be computed in parallel allowing for a dramatic
speed improvement when using a multi-core hardware platform. After superposition
one can clearly see ring-like areas in the intensity pattern. These rings mark out the
areas where higher diffraction orders are located which also follows from the constant
offset along the x-direction in (7.1c) for these higher orders.

Apart from the level of parallelism between different angles of incidence also additional
symmetries can be exploited in the computation. For example when the grating is sym-
metric (which was the case in Figure 7.8) only one quadrant of the objective lens needs
to be sampled, the others simply follow from mirror symmetry afterwards reducing the
overall computation time by a factor 4. In case the grating is asymmetric only two quad-
rants (either q1 and q2 or alternatively q3 and q4) need to be sampled, the other two
follow from mirror-symmetry in the x-axis in which case the computation time can be
halved. Sometimes it is advantageous for the reconstruction to repeat the measurement
for a second polarisation state (e.g. by rotating the polarisation filter). Then for each an-
gle of incidence actually two forward problems are solved (note that because Maxwell’s
equations are linear at most two independent polarisations need to be computed, all
other polarisation states follow from taking a proper linear combination). From an im-
plementation point of view it is important to keep these two forward problems grouped
together. This is because for all conical angles of incidence both polarisation states share
the same transcendental eigenvalue equation in Bloch or equivalently solve the same
eigenvalue problem in RCWA. This can also be seen from (4.29c) and (3.51c) where
the incident polarisation only appears in the right-hand side vector d0 and not in the
coefficient matrix of the linear system. It is actually possible to reuse the eigenvalue
information (either Bloch or RCWA) in more places. For all incoming points that lie on
a line parallel to the y-axis the eigenvalue problem is essentially the same apart from
a constant shift related to the y-component of the wave vector (this has also been ad-
dressed earlier below Equations (3.18) and (4.11)). Thus by sampling the objective lens
such that points fall on lines parallel to the y-axis, additional speed improvements are
possible. Note that this trick does have certain implications when distributing work
packages on a multi-core hardware platform. Apart from these symmetry properties
that can speed up the computations for certain individual sample points, a final speed
improvement can be realised by selecting as few sample points as possible. Clearly if
one wishes to compare the simulated intensity pattern one-to-one with the measure-
ment, the sample points must coincide with the camera pixels. Typically this is in the
order of several hundreds of pixels along the radius of the microscope objective. Even
with the speed improvements discussed above this number is simply too large to make
real-time reconstruction possible. Therefore a subset of these pixels is chosen as repre-
sentative sample points which can then be compared with some averaged (because of
better signal to noise) measured pixels. If no a-priori knowledge is available on what a
good subset could be, typically a uniform sampling of the microscope objective is sug-
gested. If during the reconstruction more information becomes available (e.g. areas in
the intensity pattern with large sensitivities or minimal correlation between different
CD parameters) a smarter subset of points can be selected which could speed up the
reconstruction or make it more robust.



Chapter 8

Conclusions and future work

In this thesis two mode expansion methods are presented that solve the plane wave inci-
dent scattering problem of periodic (staircase approximated) gratings. The Bloch mode
method describes the electromagnetic field in the exact eigenfunctions of each grating
layer. By using a symmetric unit cell description two clearly separated sub-problems
can be derived, the periodic eigenvalue problem and semi-periodic eigenvalue prob-
lem. For lossless symmetric grating layers an efficient strategy is described to compute
all eigenvalues of the (semi-)periodic eigenvalue problem without running the risk of
skipping one. The individual layers can still be stacked on top of each other to create a
more general asymmetric profile. Moreover the extension to deal with multiple material
interfaces inside a (symmetric) grating layer has been explained, thereby enabling more
complicated gratings to be modelled. However, generalising and implementing the
Bloch mode method for lossy and/or asymmetric grating layers has proven to be rather
difficult, which led us to investigate an alternative mode expansion method. The Rigor-
ous Coupled-Wave Analysis describes the grating profile (and electromagnetic field) in
(pseudo-periodic) Fourier series for each grating layer. This industry standard method
is much more flexible than Bloch since its implementation does not differentiate be-
tween lossy, lossless, symmetric or asymmetric gratings.

Both methods after computing the (approximate) eigenfunctions of each grating layer
match the solution at the grating layer interfaces. The resulting linear system has a large
but sparse block structured coefficient matrix. Standard transfer matrix algorithms are
not able to solve the condensed linear system stably. Other condensation algorithms
like for example the enhanced transmittance matrix approach or S-matrix algorithm are
stable but in the derivation the key aspect of separating the exponentially growing and
decaying terms is often missing. Therefore a decoupling algorithm based on Riccati
transformations has been presented to condense and solve this linear system stably and
efficiently. This technique has been used before in a much wider context of solving
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general boundary value problems and its stability results have a solid mathematical
foundation. Two implementation variants of the Riccati approach are derived of which
the two-stage variant is the most efficient. Moreover from an algorithmic point of view
we have shown that the Riccati approach can be linked one-to-one to the frequently
used enhanced transmittance matrix approach (thereby confirming its stability as well).

Although RCWA is more flexible than Bloch, the sharp material interfaces inside a grat-
ing layer (i.e. the piecewise constant geometry description) are not that well approxi-
mated using truncated Fourier series. For both isolated and dense gratings of high and
low contrast Bloch typically outperforms (at least is not worse than) RCWA in the sense
that with the same number of modes a higher accuracy is obtained. Not wanting to give
up on the extra flexibility and relatively straightforward implementation of RCWA, two
modifications have been investigated that could improve its convergence. Adaptive
Spatial Resolution applies an additional layer specific coordinate transformation before
Fourier discretising the problem again like standard RCWA. By increasing the resolu-
tion with this transformation near a material interface inside a grating layer, a higher
accuracy is obtained. Numerical examples show that a good coordinate transforma-
tion should not only refine near an interface but also do so in a smooth way. Moreover
we have shown that ASR approaches the accuracy of Bloch when only a subset of the
(converged) eigenvalues are used. However, numerical tests have also revealed some
unexpected behaviour of ASR. In particular for TE polarisation a dramatic improve-
ment in the accuracy is observed which remains present over a wide range of inputs.
For TM polarisation also some improvement is observed when adding artificial layers
to the staircase approximated grating. These extra layers allow for extra refinement
around the corners of the grating where singularities are expected in the field. The sec-
ond modification is based on a finite difference discretisation that completely replaces
the Fourier discretisation. This approach is able to properly take care of the material
transitions inside a grating layer by incorporating them in the FD-stencils. Unfortu-
nately the sparsity of the resulting coefficient matrix could not be exploited to make this
implementation competitive to standard RCWA or Bloch. Only when combined with
either an efficient sparse-eigendecomposition routine or alternatively a numerical inte-
grator which uses an efficient matrix-vector multiplication could this approach perhaps
become competitive.

Finally we have shown how these diffraction models are combined with a metrology
tool when applied to a grating CD reconstruction application. Because such a recon-
struction, whether based on libraries or real-time regression, typically requires a lot of
calls to these forward diffraction models, it is essential to have the most accurate and
fastest implementation available allowing for high throughput times. Apart from sim-
ply having a fast forward diffraction model, symmetries in the grating geometry can be
exploited to minimise the number of calls. Also we have shown how to exploit addi-
tional symmetries (or opportunities to reuse information) inside the diffraction models
themselves. Integration of this work into the overall CD reconstruction software of the
metrology tool has contributed in making real-time (typically in the order of seconds)
grating CD reconstruction possible on a multi-core hardware platform.
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Several topics have actually raised new questions that would require more research but
in the end could result in even faster throughput times for the metrology tool. For ex-
ample, Bloch typically shows a comparable or faster convergence when compared to
RCWA. The main challenge would be to implement a robust root finding algorithm for
the transcendental eigenvalue equation to deal with both lossy (i.e. find complex-valued
roots) and asymmetric gratings (i.e. separate roots when close together). Alternatively
one could also invest in further developing the ASR technique. Although smoothness
of the coordinate transformation plays an important role, a more extensive search for
alternative transformations (or tuning of the existing transformation parameters) could
improve the accuracy even more. Moreover, the unexpected but dramatic improvement
for TE polarisation (even outperforming Bloch) is still not understood. Insights into
this mechanism could prove extremely useful when high precision is required at min-
imal computational cost. Finally CD reconstruction on 2D periodic gratings has also
received a great deal of attention. For Bloch modes this extension might not be easy
to derive (or even feasible) except for perhaps very specific structure like holes in per-
fectly electric conductors. For RCWA we already implemented a 2D periodic version
that can deal with staircase approximated rectangular like structures (i.e. the material
interfaces of the geometry inside a grating layer should be aligned with one of the two
vectors spanning the orthogonal unit cell). Since the computational complexity of the
algorithm is now O(M6), a real-time reconstruction with RCWA would still be challeng-
ing. In order to reduce computation time and memory usage it is therefore essential to
exploit as much symmetry as possible. Also the combination with ASR could further
improve the convergence.
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Appendix A

Quantities related to the Rayleigh
expansion

A.1 Derivation of the perpendicular s-polarised and
p-polarised parts

The tangential components in the direction perpendicular to sm and pm can be obtained
in several steps. These steps make use of some vector identities and previously derived
relations. For example, for the tangential component of the electric field the perpendic-
ular s-polarised part is given by

R e
m · (sm × ez) = −

1
k0nI

(
kr

m × Rh
m

)
· (sm × ez)

= − 1
k0nI

ez ·
((

kr
m × Rh

m

)
× sm

)
= − 1

k0nI
ez ·
(

Rh
m (kr

m · sm)− kr
m

(
Rh

m · sm

))
=

1
k0nI

Rpmez · kr
m = −

kI,zm

k0nI
Rpm. (A.1)

The first equality simply follows from relation (2.51a) whereas the second equality is
the result of applying the vector identity A · (B× C) = C · (A× B). Applying another
vector identity (A× B)× C = B(A · C)− A(B · C) gives the third equality. Finally if
one realises that (2.52) is simply arctan(ky/kxm) but extended to four quadrants, then
the last equality is obtained from the fact that kr

m · sm = 0. The other perpendicular
components can be derived in a similar way.
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A.2 Derivation of the energy flow

The time-averaged energy flow for the general conical diffraction case in terms of the
s-polarised and p-polarised parts can be obtained in several steps. These steps involve
introducing a new orthogonal coordinate system, applying some vector identities and
making use of previously derived relations. For example, the energy of a reflected
diffraction order in the superstrate in the direction of −ez is given by

P r
0,m =

∫ 1

0

∫ Λ
2

− Λ
2

S r
0,m · −ez dxdy

= − 1
2 YI Λe−2Im[kI,zm ]z

(
R e

m × Rh
m

)
· ez

= − 1
2 YI Λe−2Im[kI,zm ]z 1

k0nI

(
R e

m × (kr
m × R e

m)
)
· ez, (A.2)

where equations (2.59a) and (2.51a) were used in deriving the second and third equal-
ity respectively. In order to arrive at an expression in terms of the s-polarised and p-
polarised parts, the cross products are computed with respect to the orthogonal coordi-
nate system (sm × ez, sm, ez). Therefore the wave vector and Rayleigh amplitude need
to be rewritten in terms of this new coordinate system

kr
m = (kr

m · (sm × ez)) (sm × ez) + (kr
m · sm) sm + (kr

m · ez) ez

= (kr
m · (sm × ez)) (sm × ez)− kI,zmez, (A.3a)

R e
m = (R e

m · (sm × ez)) (sm × ez) + (R e
m · sm) sm + (R e

m · ez) ez

= −
kI,zm

k0nI
Rpm (sm × ez) + Rsmsm + (R e

m · ez) ez. (A.3b)

Here in the last line of (A.3a) the relation kr
m · sm = 0 was used as was already derived in

Appendix A.1. Moreover in the last line of (A.3b) the definition of the s-polarised part
(2.53a) and the relation for the perpendicular s-polarised part (2.54a) were substituted.
The last term in (A.3b) still needs to be expressed in terms of the s-polarised and p-
polarised parts which is accomplished by following the same steps as in Appendix A.1

R e
m · ez = −

1
k0nI

(
kr

m × Rh
m

)
· ((sm × ez)× sm)

= − 1
k0nI
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(
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m

(
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m

)
− Rh

m (sm · kr
m)
)

= − 1
k0nI

Rpm (kr
m · (sm × ez)) . (A.4)
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In the first equality (2.51a) and the orthogonality of the new coordinate system were
used followed by the vector identity A · (B× C) = B · (C × A) in the second equality.
Applying another vector identity A × (B × C) = B(A · C) − C(A · B) gives the third
equality. The last equality is again obtained from the fact that sm · kr

m = 0. Now all the
ingredients are there to compute the cross products with respect to the new coordinate
system

kr
m × R e

m = kI,zmRsm (sm × ez) +
1

k0nI
Rpm

(
k2

I,zm + (kr
m · (sm × ez))

2
)

sm+

Rsm (kr
m · (sm × ez)) ez

= kI,zmRsm (sm × ez) + k0nIRpmsm + Rsm (kr
m · (sm × ez)) ez, (A.5)

where the term within the largest set of brackets is nothing more than the squared ab-
solute value of the wave vector and thus equal to k2

0n2
I . Finally the total cross product

becomes (
R e

m × (kr
m × R e

m)
)
· ez = −

kI,zm

k0nI
Rpmk0nIRpm − RsmkI,zmRsm

= −kI,zm|Rsm|2 − kI,zm|Rpm|2. (A.6)

The energy flow is thus given by

P r
0,m = 1

2 YI Λe−2Im[kI,zm ]z
( kI,zm

k0nI
|Rsm|2 +

kI,zm

k0nI
|Rpm|2

)
. (A.7)

Following the same steps an expression can be derived for the energy flow of a trans-
mitted diffraction order in the substrate in the direction of ez

P t
K+1,m = 1

2 YII Λe2Im[kII,zm ](z−ZK)
(( kII,zm

k0nII

)
|Tsm|2 +

kII,zm

k0nII
|Tpm|2

)
. (A.8)
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Appendix B

ASR coupling matrix

The coefficients of the coupling matrix in (6.7) can be computed in several ways. Here
three different approaches with some of their (dis)advantages are discussed for the gen-
eral coordinate transformation in (6.1). They are based on either numerical quadra-
ture, FFT computations or the evaluation of Bessel related special functions. It is worth
mentioning that the first two approaches do not really require any information on the
specific coordinate transformation and can therefore also be applied to transformations
other than (6.1). First the integral can be simplified somewhat by applying partial inte-
gration

Si,pm =
1
Λ

∫ Λ
2

− Λ
2

hi(s)e
− jkxmse jkxp x(s)ds

=
1
Λ

1
jkxp

[
e− jkxmse jkxp x(s)

] Λ
2

− Λ
2

+
1
Λ

kxm

kxp

∫ Λ
2

− Λ
2

e− jkxmse jkxp x(s)ds, (B.1)

for kxp 6= 0. When kxp = 0 there is no need to apply partial integration since then the
original integral is trivial. Therefore in the remainder of this section kxp 6= 0 and one
can focus on the integral appearing in the right-hand side of (B.1).

B.1 Numerical quadrature

Probably an obvious choice when computing the integral in (B.1) is simply to approxi-
mate it using some sort of numerical quadrature. Naturally all kinds of different quadra-
tures can be evaluated but in this thesis we have not attempted to find an optimal
quadrature with optimal settings. Instead, having tried a couple, the best results were
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obtained with Matlab’s built in ’quad’ function which uses a recursive adaptive Simp-
son quadrature. It turns out that even for a simple coordinate transformation with only
two jumps as given by (6.3) this numerical quadrature is (much) more expensive than
the other two approaches discussed in B.2 and B.3. Partly this is due to the fact that the
numerical quadrature has to be restarted for all coefficients of the coupling matrix since
the integrand simply changes. Moreover the error tolerance needs to be set pretty strict
in order to get enough correct digits. For example, in order to get 6 digits matching with
the other approaches for the simple binary example the absolute error tolerance was set
to 10−6. Finally it should be noted that the integrand consists of complex-valued expo-
nentials and sines making a function evaluation in the numerical quadrature not that
cheap. So although the overall complexity scales with M2, the time spent in the numer-
ical quadrature makes this approach not very attractive.

B.2 Fast Fourier Transform

Another way of computing the integral in (B.1) is by making use of FFTs. To this end
rewrite the integral as follows

1
Λ

∫ Λ
2

− Λ
2

e− jkxmse jkxp x(s)ds =
1
Λ

∫ Λ
2

− Λ
2

e j(kxp x(s)−k0nI sinθ s)e j2πms/Λds. (B.2)

This means that the integral can also be interpreted as computing the Fourier coeffi-
cients of the function e j(kxp x(s)−k0nI sinθ s). By sampling this function equidistantly on the
interval

[
−Λ

2 , Λ
2

]
and using an FFT library routine one can approximate these Fourier

coefficients. For a fixed value of p and thus for a complete row in the coupling matrix
only one FFT is required! Therefore the overall complexity of computing the coupling
matrix is O(M2 log M) resulting in a very efficient implementation. For the simple co-
ordinate transformation of (6.3) the integral was computed accurately up to at least 6
correct digits by making the FFT size (and thus the amount of samples) at least twice
as large as the size of the coupling matrix. In order to fully exploit the speed of an FFT
library routine one should make sure that the FFT size equals a power of two or the
product of small prime numbers. Clearly this approach requires less implementation
effort than the numerical quadrature and as a bonus it is also much faster.

B.3 Bessel related special functions

A third way of computing the integral in (B.1) is by making use of Bessel related special
functions. However this approach only applies to the specific coordinate transformation
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of (6.1). First the integral is split up into the following sum

∫ Λ
2

− Λ
2

e− jkxmse jkxp x(s)ds =
Li−1

∑
l=1

∫ Si,l

Si,l−1

e− jkxmse jkxp x(s)ds, (B.3)

where the focus now lies on one of these new integrals with bounds between two off-
sets in the transformed space. Substituting the specific coordinate transformation while
dropping, for notational convenience, the subscript i denoting the layer index gives∫ Sl

Sl−1

e− jkxmse jkxp x(s)ds = e jkxpαl

∫ Sl

Sl−1

e j(kxpβl−kxm)s+ jkxp
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)
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∫ 2π

0
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)
+ jkxp
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2π sin tdt

= e j(kxpαl+(kxpβl−kxm)Sl−1) Sl−Sl−1
2π

∫ 2π

0
e j(νl,pmt+zl,p sin t)dt (B.4a)

where

νl,pm = (kxpβl − kxm)
Sl − Sl−1

2π
, zl,p = kxp

γl

2π
. (B.4b)

When γl = 0 this implies that zl,p = 0 making the integral in (B.4a) again trivial. There-
fore assume that the coordinate transformation is not trivial and thus zl,p 6= 0. In this
case a standard integral can be obtained by splitting up once more the integration inter-
val ∫ 2π

0
e j(νl,pmt+zl,p sin t)dt =

∫ π

0
e j(νl,pmt+zl,p sin t)dt +

∫ 2π

π
e j(νl,pmt+zl,p sin t)dt

=
∫ π

0
e j(νl,pmt+zl,p sin t)dt + e jνl,pmπ

∫ π

0
e j(νl,pmt−zl,p sin t)dt (B.5)

Since both νl,pm and zl,p are real-valued one can relate the integrals appearing in (B.5) to
so-called Anger and Weber functions

Jν(z) =
∫ π

0

cos(νt− z sin t)
π

dt, (B.6a)

Eν(z) =
∫ π

0

sin(νt− z sin t)
π

dt, (B.6b)

so that

Jν(z) + jEν(z) =
∫ π

0

e j(νt−z sin t)

π
dt. (B.6c)

Using the symmetry properties of these special functions only ν ≥ 0 needs to be consid-
ered. When ν is an integer the Anger function reduces to the classical Bessel function
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whereas the Weber function can then be related to a Struve function and a sum with
Gamma functions. For non-integer values of ν either power series for small arguments
or asymptotic expansions for large arguments can be used. Here again several special
functions are required namely the Lommel functions, Lommel functions of the second
kind, Bessel functions of the first and second kind of fractional order. A more detailed
overview of the Anger and Weber functions and a possible implementation in C can be
found in [35]. Also here the overall complexity scales with M2 because each coefficient
of the coupling matrix results in different values for νl,pm and zl,p. Although zl,p remains
constant for a complete row in the coupling matrix, this unfortunately does not result in
a lot of reuse. Moreover, large values of νl,pm and zl,p (for example when increasing the
number of harmonics) sometimes resulted in inaccurate results where only 3 significant
digits were obtained. This could possibly be alleviated somewhat by having a closer
look at the specific implementation and used formulas. All things considered it turns
out that the amount of function calls per coefficient of the coupling matrix make this
third approach not competitive enough. Although faster than the numerical quadra-
ture discussed in B.1 the implementation based on [35] cannot compete with the FFT
implementation in B.2 which is faster, more accurate and easier to implement.
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Alternative ASR coordinate
transformations

The coordinate transformation in (6.1) is of course not unique but already shows very
good results. Without going into an optimisation process of finding the best possible co-
ordinate transformation, it is important to find certain criteria that, if satisfied, result in
a good transformation. Because of the larger gradients in the field near a material inter-
face, one of these criteria should be that the coordinate transformation refines near such
an interface resulting in a better approximation when Fourier series are used. Clearly
(6.1) does exactly that and the two alternatives discussed here also satisfy this criterium.

The first alternative tries to mimic the exact same behaviour as the original coordinate
transformation but uses only piecewise low order polynomials. The reason for doing
so is that then the coupling coefficients can be computed slightly easier while trying to
preserve the same good convergence. The transformation is given by

x(s) = αi,l +βi,ls + 2γi,l

s− Si,l− 1
2

Si,l − Si,l−1

(∣∣∣∣∣ s− Si,l− 1
2

Si,l − Si,l−1

∣∣∣∣∣− 1
2

)
,

for s ∈ (Si,l−1, Si,l), (C.1)

where Si,l− 1
2
= (Si,l + Si,l−1)/2 and where the coefficientsαi,l ,βi,l and γi,l are the same as

in (6.2). A plot of this coordinate transformation would look the same as in Figure 6.1.
The coupling coefficients can be computed using the same strategies as in Appendix B
except that no Bessel related special functions are required. Now equation (B.3) can be
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rewritten into∫ Λ
2

− Λ
2

e− jkxmse jkxp x(s)ds =
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∑
l=1

(∫ Si,l− 1
2
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)
. (C.2)

Focusing on one term in this sum and substituting the specific coordinate transforma-
tion into the second integral (the first integral can be simplified in a similar way) while
dropping the subscript i gives∫ Sl

Sl− 1
2

e− jkxmse jkxp x(s)ds = e
j(kxpαl+(kxpβl−kxm)

1
2 Sl− 1

2
) Sl−Sl−1

2

∫ 1

0
e j(νl,pmt+zl,pt2)dt (C.3a)

where

νl,pm = (kxpβl − kxm)
Sl − Sl−1

2
− kxp

γl

2
, zl,p = kxp

γl

2
. (C.3b)

For a non-trivial coordinate transformation with γl 6= 0 and thus also zl,p 6= 0 the
remaining integral in (C.3a) can be linked to the complex-valued error function or its
related Fresnel integrals

C(z) =
∫ z

0
cos

(π
2

t2
)

dt, (C.4a)

S(z) =
∫ z

0
sin
(π

2
t2
)

dt, (C.4b)

so that

C(z) + jS(z) =
∫ z

0
e j π2 t2

dt. (C.4c)

These Fresnel integrals can be implemented somewhat easier than the Anger and Weber
functions and do not require any additional special functions [35]. However, still based
on asymptotic expansions and an overall complexity of M2 (because each coefficient of
the coupling matrix results in a different integration interval) makes this implementa-
tion still not as competitive as the FFT trick discussed in B.2. Figure C.1 illustrates the
effect of Fourier transforming the different ASR related functions for a typical grating
layer using the alternative coordinate transform. These results can be compared directly
with those of Figure 6.2. The original transformation based on a sine is smoother than
the piecewise low order polynomial transformation resulting in a faster drop-off of the
Fourier coefficients. Increasing the stretching seems to have much less impact on the
Fourier coefficients with the alternative transformation.

The second alternative tries to accommodate certain specific Bloch modes which are the
exact eigenfunctions that standard RCWA tries to approximate as was explained just
below (4.8). Recall that in Section 3.2 it was explained that for a lossless binary grating
as depicted in Figure 2.3 with nII > nI that κIIi is always positive real-valued and κIi is
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Figure C.1: Modulus of the Fourier coefficients of the permittivity function, scaled permittivity
function and derivative of the coordinate transformation. The grating layer corresponds to a
symmetric binary grating with nI = 1, nII = 3.77, Xi = 0.2, Λ = 1 and Gi = 0.1 (left),
Gi = 0.01 (right).

either positive real- or imaginary-valued. But this in turn means that the corresponding
eigenfunction either consists of sines and cosines in both media, or sines and cosines in
the part with refraction index nII and hyperbolic sines and cosines in the part with re-
fraction index nI. In other words the eigenfunction either has a propagating behaviour
in both media or a propagating behaviour in the part with the larger refraction index
and an evanescent or exponentially decaying behaviour in the part with smaller refrac-
tion index. If the ASR coordinate transformation is used to get a better approximation of
these eigenfunctions, typically the exponentially decaying modes are difficult to capture
with RCWA and its standard Fourier series. Therefore a good coordinate transforma-
tion should probably focus on capturing this exponentially decaying behaviour. Since
this behaviour only takes place on one side of the material interface, this could suggest
that one only needs to refine on one side too. The corresponding coordinate transfor-
mation is therefore largely the same as the original or first alternative, except that in the
part with the lower refraction index the parameter γi,l is set to zero. For example, for
the binary grating the first line in equation (6.3) would only contain the linear term and
not the sine. In Figure 6.1 this would mean that with a stretching of Gi = 0.1 the graph
would correspond with the blue line in the interval (−0.2, 0.2) and with the green line
otherwise. Clearly such a coordinate transformation is still continuous but not differen-
tiable.
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Summary

Forward Diffraction Modelling: Analysis and Application to Grating
Reconstruction

The semiconductor industry uses lithography machines for manufacturing complex in-
tegrated circuits (also called ICs) onto wafers. Because an IC is built up layer by layer
and feature sizes get smaller and smaller, tight control of the lithography process is re-
quired to guarantee a fast production of working ICs. Typically a lot of information
on the lithography process can be obtained by measuring test structures or gratings
which are scattered over the wafer. These gratings are tiny periodic structures much
smaller than ICs. First these gratings are illuminated and its response (a scattered in-
tensity) is measured. For certain applications like overlay metrology the asymmetry in
this measured signal (due to an offset between two gratings) can be used to align the
lithographic process. For other applications like critical dimension (CD) metrology one
is interested in the shape of the grating lines that produced the measured signal. Since
this information is not directly available but encrypted in the measurement, a recon-
struction algorithm is used to extract it. The reconstructed values like height, width and
sidewall angle can then be related to machine settings like dose and focus which control
the lithographic process. In particular the CD metrology application requires rigorous
mathematical models that solve optical diffraction problems for periodic gratings in
combination with advanced reconstruction algorithms.

This thesis focuses on the optical diffraction problem for 1D periodic gratings. Starting
from Maxwell’s equations a reduced model is derived by simplifying both the grating
and the incident electromagnetic field. The former is approximated with an infinitely
periodic layered structure with isotropic non-magnetic materials. The latter is approx-
imated with a time-harmonic incident plane wave. The reduced model is discretised
using two different mode expansion methods, Bloch and the Rigorous Coupled-Wave
Analysis (RCWA). Bloch expands the electromagnetic field in each layer in terms of the
exact eigenfunctions whereas RCWA only uses approximate eigenfunctions. After trun-
cation of the involved series a transmission problem is derived by matching the fields
at the layer interfaces. Having solved the resulting linear system, the scattered field can
be computed easily.
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Both mode expansion methods solve a similar linear system containing a large but
sparse, block structured coefficient matrix. However, special care needs to be taken
when solving this system stably and efficiently. Therefore a stable condensation al-
gorithm is derived based on Riccati transformations that decouples the exponentially
growing and decaying terms that are present in the solution. This separation or decou-
pling is the key feature explaining the stability which is not always clear in alternative
condensation algorithms. Furthermore the algorithm is optimised for speed by using a
two-stage approach. Finally it is shown that the resulting stable recursions are identi-
cal to those used in the “enhanced transmittance matrix approach” (a frequently used
condensation algorithm), thereby confirming its stability as well.

This thesis also examines and extends both mode expansions methods. The Bloch
method is generalised to deal with multiple material transitions inside a grating layer
covering a wider range of applications. However, lossy or fully asymmetric gratings are
still hard to solve. On the other hand the Fourier discretisation used in RCWA is much
more flexible but only approximates the more exact discretisation of Bloch. Therefore
two RCWA modifications have been investigated to improve the accuracy while keep-
ing its flexibility and relatively straightforward implementation. Adaptive Spatial Res-
olution applies an additional layer specific coordinate transformation before Fourier
discretising the problem again. A good transformation not only refines near a material
interface but also does this in a smooth way. A significant improvement in accuracy
is observed that approaches and sometimes outperforms the results obtained with the
Bloch method. The second modification removes the Fourier discretisation completely
and uses a finite difference approximation in the periodic direction. Although this ap-
proach allows for a better discretisation near a material interface, the sparsity of the
resulting matrices could not be exploited to make a competitive implementation within
the standard RCWA framework.

Finally the integration of the forward diffraction model in the CD reconstruction appli-
cation is discussed. Either a library based or real-time regressions approach can be used
for this reconstruction. Both approaches rely heavily on having an accurate and fast
forward model. By exploiting additional symmetries and smart reuse of information,
acceptable library fill times and real-time reconstructions are now feasible.



Samenvatting

De halfgeleiderindustrie maakt gebruik van lithografiemachines om complexe geı̈nte-
greerde circuits (ook wel IC’s) te produceren op wafers. Omdat een IC laag voor laag
wordt opgebouwd en de afmetingen van de structuren alsmaar kleiner worden, is het
belangrijk het lithografisch proces zo goed mogelijk onder controle te krijgen om een
snelle productie van IC’s te kunnen garanderen. Informatie over dit proces kan verkre-
gen worden door specifieke structuren genaamd gratings te meten die verspreid liggen
over de wafer. Deze gratings zijn extreem kleine, periodiek herhalende structuren die
zelfs nog kleiner zijn dan een IC. Eerst wordt een grating belicht om vervolgens de res-
pons, bestaande uit een verstrooid veld, te meten. Voor bepaalde toepassingen zoals
overlay metrologie kan de asymmetrie in dit gemeten signaal (als gevolg van een ver-
schuiving tussen twee gratings) gebruikt worden om het lithografische proces uit te
lijnen. Voor andere toepassingen zoals “critical dimension” (CD) metrologie is men
meer geı̈nteresseerd in de daadwerkelijke vorm van de grating lijnen behorende bij
dit gemeten signaal. Omdat vorminformatie niet direct beschikbaar maar gecodeerd
is in de meting, wordt een reconstructie-algoritme gebruikt om deze informatie te de-
coderen. De gereconstrueerde vormparameters zoals hoogte, breedte en hoeken van
schuine wanden kunnen vervolgens gerelateerd worden aan instellingen van de ma-
chine, zoals bijvoorbeeld de focussering of hoeveelheid licht, die het lithografisch pro-
ces sturen. Voornamelijk de CD metrologie applicatie vereist rigoureuze wiskundige
modellen voor het oplossen van optische diffractie problemen voor periodieke gratings
in combinatie met geavanceerde reconstructie algoritmen.

Dit proefschrift focust zich op het optische diffractie probleem voor 1D periodieke gra-
tings. Beginnende bij de Maxwell vergelijkingen wordt een gereduceerd model afgeleid
dat zowel de grating alsook het invallende elektromagnetische veld vereenvoudigd.
De grating wordt oneindig periodiek verondersteld en trapsgewijs benaderd met la-
gen waarin de materialen isotroop en niet-magnetisch zijn. Het invallende veld wordt
gemodelleerd met een tijdharmonische vlakke golf. Het gereduceerde model wordt ver-
volgens gediscretiseerd met behulp van twee verschillende expansiemethoden, Bloch
en de “Rigorous Coupled-Wave Analysis” (RCWA). Bloch expandeert het elektromag-
netische veld in termen van de exacte eigenfuncties behorende bij elke laag, daar waar
RCWA slechts benaderde eigenfuncties gebruikt. Na het trunceren van de betreffende
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reeksen wordt een transmissieprobleem opgesteld door de velden aan elkaar gelijk te
stellen op de grensvlakken tussen de verschillende lagen. Nadat het resulterende li-
neaire systeem is opgelost kan het verstrooide veld eenvoudig worden berekend.

Beide expansiemethoden lossen een vergelijkbaar lineair systeem op waarvan de coëffi-
ciënten matrix groot en blok-gestructureerd is en veelal nullen bevat. Echter, het sta-
biel en efficiënt oplossen van dit systeem vereist speciale zorg. Daarom is een stabiel
condensatie algoritme afgeleid op basis van Riccati transformaties dat de exponentieel
groeiende en dalende termen die aanwezig zijn in de oplossing ontkoppelt. Deze ont-
koppeling is de cruciale eigenschap dat de stabiliteit van dit algoritme verklaart en wat
vaak niet duidelijk naar voren komt in alternatieve condensatie algoritmen. Daarnaast
is het algoritme geoptimaliseerd voor snelheid door gebruik te maken van een twee-
stappen-implementatie. Ten slotte wordt aangetoond dat de resulterende stabiele re-
cursie identiek is aan de “enhanced transmittance matrix approach” (een veelgebruikt
condensatie algoritme), waarmee diens stabiliteit bevestigd is.

In dit proefschrift worden beide expansiemethoden nader onderzocht en uitgebreid.
De Bloch methode wordt gegeneraliseerd zodat deze ook kan omgaan met meerdere
materiaalovergangen per laag waardoor een breder scala van toepassingen afgedekt
kan worden. Echter, verliezende of volledig asymmetrische gratings zijn nog steeds
moeilijk door te rekenen. Daarentegen is de Fourier discretisatie binnen RCWA een
stuk flexibeler, maar geeft deze alleen een benadering van de meer exacte discretisatie
in Bloch. Daarom zijn er twee RCWA gerelateerde modificaties onderzocht om diens
nauwkeurigheid te verbeteren met behoud van de flexibiliteit en relatief eenvoudige im-
plementatie. “Adaptive Spatial Resolution” past een additionele laag-specifieke coördi-
natentransformatie toe alvorens het probleem opnieuw te Fourier discretiseren. Een
goede transformatie verfijnt niet alleen in de buurt van een materiaalovergang, maar
doet dit ook op een gladde manier. Een significante verbetering in de nauwkeurigheid
is waargenomen die niet alleen in de buurt komt van de met Bloch verkregen resul-
taten maar soms zelfs beter is. De tweede modificatie verwijdert de Fourier discretisatie
volledig en vervangt deze door een eindige differentie discretisatie in de periodieke
richting. Hoewel deze aanpak beter om kan gaan met een materiaalovergang, kan de
ijlheid van de resulterende matrices niet uitgebuit worden om een concurrerende im-
plementatie te maken binnen het standaard RCWA kader.

Tenslotte wordt de integratie van het voorwaartse diffractie model binnen de CD recon-
structie applicatie besproken. Zowel een op bibliotheken gebaseerde of een real-time re-
gressie aanpak kan gebruikt worden voor deze reconstructie. Beide aanpakken leunen
sterk op het hebben van een accuraat en snel voorwaarts model. Door gebruik te maken
van extra symmetrieën en slim hergebruik van informatie, zijn acceptabele bibliotheek
vultijden en real-time reconstructies vandaag de dag mogelijk.
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