

Five determinisation algorithms

Citation for published version (APA):
Glabbeek, van, R. J., & Ploeger, B. (2008). Five determinisation algorithms. (Computer science reports; Vol.
0814). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/65fdba3f-0a6e-4619-8bc8-9fc923e99a40

Five Determinisation Algorithms

Rob van Glabbeek1,2

rvg@cs.stanford.edu
Bas Ploeger3∗

s.c.w.ploeger@tue.nl

1 National ICT Australia, Locked Bag 6016, Sydney, NSW1466, Australia

2 School of Computer Science and Engineering, The University of New South Wales
Sydney, NSW 2052, Australia

3 Department of Mathematics and Computer Science, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract
Determinisation of nondeterministic finite automata is a well-studied problem that
plays an important role in compiler theory and system verification. In the lat-
ter field, one often encounters automata consisting of millions or even billions of
states. On such input, the memory usage of analysis tools becomes the major bot-
tleneck. In this paper we present several determinisation algorithms, all variants of
the well-known subset construction, that aim to reduce memory usage and produce
smaller output automata. One of them produces automata that are already mini-
mal. We apply our algorithms to determinise automata that describe the possible
sequences appearing after a fixed-length run of cellular automaton 110, and obtain
a significant improvement in both memory and time efficiency.

1 Introduction
Finite state automata (or finite state machines) are an established and well-studied
model of computation. From a theoretical point of view, they are an interesting object
of study because they are expressive yet conceptually easy to understand and intuitive.
They find applications in compilers, natural language processing, system verification
and testing, but also in fields outside of (theoretical) computer science like switching
circuits and chip design. Over the years, many flavours and variants of finite state
machines have been defined and studied for a large variety of purposes.

One of the most classic and elementary type of finite state machine is the nondeter-
ministic finite automaton (NFA). Typical applications of finite state automata involve
checking whether some sequence of symbols meets some syntactic criterion, such as
displaying a prescribed pattern or being correct input for a given program, a problem
that can often be recast as checking whether that sequence is accepted by a given NFA.

A more restrictive type of automaton is the deterministic finite automaton (DFA).
DFAs are as expressive as NFAs, in the sense that for every NFA there exists a DFA that
is language equivalent (i.e. accepts the same input sequences). Contrary to NFAs, for
any DFA there is a trivial linear time, constant space, online algorithm to check whether
∗This author is partially supported by the Netherlands Organisation for Scientific Research (NWO) under

VoLTS grant number 612.065.410.

1

2 Rob van Glabbeek & Bas Ploeger

an input sequence is accepted or not. Consequently, lexical-analyser generators like
LEX work on DFAs, and so do many implementations of GREP. For this reason, in
many applications it pays to convert NFAs into DFAs, even though the worst-case time
and space complexities of this conversion are exponential in the size of the input NFA.

Once a language equivalent DFA of an NFA has been found, it is usually minimised
to obtain the smallest such DFA. This minimal DFA is unique and the problem of
finding it for a given NFA is called the canonisation problem.

Another application of NFAs is in the realm of process theory and system verifica-
tion where they are used to model the behaviour of distributed systems. Typically, both
a specification and an implementation of a system are represented as NFAs, and the
question arises whether the execution sequences of one NFA are a subset of those of
another. This is the trace inclusion problem. Although PSPACE-hard in general, this
problem is decidable in PTIME once the NFAs are converted into equivalent DFAs.

As we see, in both the canonisation problem and the trace inclusion problem,
determinisation plays an essential role. The standard determinisation algorithm is
called subset construction (see e.g. [11]). Although the determinisation problem is
EXPTIME-hard, this algorithm is renowned for its good performance in practice. For
DFA minimisation a lot of algorithms have been proposed, of which Watson presents a
taxonomy and performance analyses [16]. The algorithm with the best time complexity
is by Hopcroft [10]: O(n log n) where n is the number of states in the input DFA.

Another algorithm for canonisation is by Brzozowski [2]. It generates the min-
imal DFA directly from an input NFA by repeating the process of “reversing” and
determinising the automaton twice. Tabakov and Vardi compare both approaches to
canonisation experimentally by running them on randomly generated automata [15].
They show that the “subset-Hopcroft” approach performs best overall and for smaller
transition densities, but for larger transition densities Brzozowski’s algorithm is faster.

On some NFAs, the exponential blow-up by subset construction is unavoidable.
However, we have encountered NFAs for which subset construction consumes a lot of
memory and generates a DFA that is much larger than the minimal DFA. Therefore,
our main goal is to find algorithms that are more memory efficient and produce smaller
DFAs than subset construction.

In this paper we present five determinisation algorithms based on subset construc-
tion. For all of them we prove correctness. One algorithm generates the minimal
DFA directly and hence is a canonisation algorithm. However, it calculates language
inclusion as a subroutine; as deciding language inclusion is PSPACE-complete, it is
unattractive to use in an implementation. The other four produce a DFA that is not nec-
essarily minimal but is usually smaller than the DFA produced by subset construction.

We have implemented subset construction and these four new algorithms. We have
benchmarked these implementations by running them on NFAs that describe patterns
on the lines of a cellular automaton’s evolution and on randomly generated automata.
We compare the implementations on the time and memory needed for the complete
canonisation process (i.e. including minimisation) and the size of the DFA after deter-
minisation.

2 Preliminaries
Finite automata. A nondeterministic finite automaton (NFA)N is a tuple (SN , ΣN ,
δN , iN , FN) where SN is a finite set of states, ΣN is a finite input alphabet, δN ⊆
SN × ΣN × SN is a transition relation, iN ∈ SN is the initial state and FN ⊆ SN

Five Determinisation Algorithms 3

is a set of final (or accepting) states. A deterministic finite automaton (DFA) is an
NFA D such that for all p ∈ SD and a ∈ ΣD there is precisely one q ∈ SD such that
(p, a, q) ∈ δD.

In graphical representations of DFAs we also allow states that have at most one
outgoing a-transition for each alphabet symbol a. Formally speaking, these abbreviate
the DFA obtained by adding a non-accepting sink state as the target of all missing tran-
sitions. Note that adding such a state preserves language equivalence (defined below).

For any alphabet Σ, Σ∗ denotes the set of all finite strings over Σ and ε ∈ Σ∗

denotes the empty string. Any subset of Σ∗ is called a language over Σ. For any states
p, q ∈ SN of an NFA N and string σ ∈ Σ∗N with σ = σ1 · · ·σn and σ1, . . . , σn ∈ ΣN
for some n ≥ 0, we write p

σ−→N q to denote the fact that:

∃p0, . . . , pn ∈ SN . p0 = p ∧ pn = q ∧ (p0, σ1, p1), . . . , (pn−1, σn, pn) ∈ δN .

Language semantics. The language of a state p ∈ SN of an NFA N is defined as:
LN (p) = {σ ∈ Σ∗N | ∃q ∈ FN . p

σ−→N q}. The language of an NFA N is defined
as: L(N) = LN (iN). For any NFAs N and M and states p ∈ SN and q ∈ SM,
p is language included in q, denoted p vL q, iff LN (p) ⊆ LM(q). Moreover, p
and q are language equivalent, denoted p ≡L q, iff p vL q ∧ q vL p. An NFA N is
language included in an NFA M iff iN vL iM and N and M are language equivalent
iff iN ≡L iM.

Simulation semantics. Given NFAs N and M, a relation R ⊆ SN × SM is a simu-
lation iff for any p ∈ SN and q ∈ SM, p R q implies:

• p ∈ FN ⇒ q ∈ FM and

• ∀a ∈ ΣN .∀p′ ∈ SN . p
a−→N p′ ⇒ ∃q′ ∈ SM . q

a−→M q′ ∧ p′ R q′.

Given NFAs N and M, for any p ∈ SN and q ∈ SM:

• p is simulated by q, denoted p ⊂→ q, iff there exists a simulation R such that p R q;

• p and q are simulation equivalent, denoted p →← q, iff p ⊂→ q ∧ q ⊂→ p;

Clearly p ⊂→ q implies pvL q.

Subset construction. The subset construction (or powerset construction) is the stan-
dard way of determinising a given NFA. For reasons that will become apparent in the
next sections, we slightly generalise the normal algorithm by augmenting it with a
function f on sets of states of the input NFA, which is applied to every generated set.
The algorithm is Algorithm 1 and shall be referred to as SUBSET(f). It takes an NFA
N and generates a DFA D. Of course, it should be the case that N ≡L D, which de-
pends strongly on the function f . For normal subset construction, SUBSET(I), where
I is the identity function, it is known that the language of N is indeed preserved. In
Appendix A we show that the same holds for SUBSET(f), for any function f that sat-
isfies f(P) ≡L P for every set of states P ⊆ SN . In the sequel, whenever we use the
term “subset construction” we mean the normal algorithm, i.e. SUBSET(I).

It is known that in the worst case, determinisation yields a DFA that is exponen-
tially larger than the input NFA. An example of an NFA that gives rise to such an
exponential blow-up is the NFA that accepts the language specified by the regular ex-
pression Σ∗xΣn for some alphabet Σ, x ∈ Σ and n ≥ 0. Figure 1(a) shows the NFA
for Σ = {a, b} and x = a. This NFA has n+2 states, whereas the corresponding DFA
has 2n+1 states and is already minimal.

4 Rob van Glabbeek & Bas Ploeger

Algorithm 1 The SUBSET(f) determinisation algorithm
Pre: N = (SN ,ΣN , δN , iN , FN) is an NFA
Post: D = (SD,ΣD, δD, iD, FD) is a DFA

1: ΣD := ΣN ; δD := ∅; iD := f({iN }); FD := ∅;
2: SD := {iD}; todo := {iD}; done := ∅;
3: while todo 6= ∅ do
4: pick a P ∈ todo;
5: for all a ∈ ΣN do
6: P ′ := f({p′ ∈ SN | ∃p ∈ P . p

a−→N p′});
7: SD := SD ∪ {P ′};
8: δD := δD ∪ {(P, a, P ′)};
9: todo := todo ∪ ({P ′} \ done);

10: end for
11: if ∃p ∈ P . p ∈ FN then
12: FD := FD ∪ {P};
13: end if
14: todo := todo \ {P};
15: done := done ∪ {P};
16: end while

An interesting thing to note is that if the initial state were accepting (Figure 1(b)),
the minimal DFA would consist of only one state with an a, b-loop: the accepted lan-
guage has become Σ∗. However, subset construction still produces the exponentially
larger DFA first, which should then be reduced to obtain the single-state, minimal DFA.

3 Determinisation using Transition Sets
In this section we show that subset construction can just as well be done on sets of
transitions as on sets of states. We observe that the contribution of an NFA state p
to the behaviour of a DFA state P consists entirely of p’s outgoing transitions. We
no longer think of a DFA state as being a set of NFA states, but rather a set of NFA
transitions.

p0 p1 · · · pn pn+1

a, b

a a, b a, b a, b

(a)

q0 q1 · · · qn qn+1

a, b

a a, b a, b a, b

(b)

Figure 1: Two NFAs of sizeO(n) for which subset construction produces a DFA of size
O(2n). Here initial states are marked by unlabelled incoming arrows, and final states
by double circles. In case (a) this DFA is already minimal; in case (b) the minimal DFA
has size 1.

Five Determinisation Algorithms 5

Algorithm 2 The TRANSSET(f) determinisation algorithm
Pre: N = (SN ,ΣN , δN , iN , FN) is an NFA
Post: D = (SD,ΣD, δD, iD, FD) is a DFA

1: ΣD := ΣN ; δD := ∅; iD := f(tuple(iN)); FD := ∅;
2: SD := {iD}; todo := {iD}; done := ∅;
3: while todo 6= ∅ do
4: pick a P ∈ todo;
5: for all a ∈ Σ do
6: P ′ := f(

⋃
(a,p)∈set(P) trans(p), ∃(a, p) ∈ set(P) . p ∈ FN);

7: SD := SD ∪ {P ′};
8: δD := δD ∪ {(P, a, P ′)};
9: todo := todo ∪ ({P ′} \ done);

10: end for
11: if fin(P) then
12: FD := FD ∪ {P};
13: end if
14: todo := todo \ {P};
15: done := done ∪ {P};
16: end while

Definition 1. Given an NFA N , a transition tuple is a pair (T, b) where T ∈ P(ΣN ×
SN) is a set of transitions and b ∈ B is a boolean.

For every transition tuple (T, b) we define the projection functions set and fin as:
set(T, b) = T and fin(T, b) = b. For every state p ∈ SN of NFA N , trans(p) is
the set of outgoing transitions of p and tuple(p) is the transition tuple belonging to p:

trans(p) = {(a, q) ∈ ΣN × SN | p
a−→N q}

tuple(p) = (trans(p), p ∈ FN).

The DFA state P ⊆ SN now corresponds to the transition tuple (T, b) where T =⋃
p∈P trans(p) and b ≡ ∃p∈P . p∈FN . We need the boolean b to indicate whether

the DFA state is final as this can no longer be determined from the elements of the set.
Only the labels and target states of the transitions are stored because the source states
are irrelevant and would only make the sets unnecessarily large.

Given NFA N , the language of a transition (a, p) ∈ ΣN × SN is defined as:
LN (a, p) = {aσ ∈ Σ∗N | σ ∈ LN (p)}. The language of a set of transitions T is
defined as LN (T) =

⋃
t∈T LN (t) and the language of a transition tuple (T, b) is

defined as:

LN (T, b) = LN (T) ∪
{
{ε} if b
∅ if ¬b.

Language inclusion and equivalence for transitions and transition tuples can now be
defined in the usual way by means of set inclusion and equality.

The determinisation algorithm that uses transition tuples is Algorithm 2. We shall
refer to it as TRANSSET(f) where f is a function on transition tuples. Again, language
preservation depends on the specific function f being used. For f = I — and more
generally when f satisfies f(P)≡L P for each transition tuple P — this is indeed the
case, which we prove in Appendix B. Using TRANSSET(I) for determinisation can
give a smaller DFA than SUBSET(I) as is shown by the example in Figure 2. Here,

6 Rob van Glabbeek & Bas Ploeger

p0

p2p1 p3

p4

a
b

b

a, b
a

b

(a)

q0

q2q1

q3

a b

a, b a, b

(b)

r0

r1

r2

a, b

a, b

(c)

Figure 2: NFA (a) for which the DFA produced by SUBSET(I) (b) is larger than the
(minimal) DFA produced by TRANSSET(I) (c).

TRANSSET(I) happens to produce the minimal DFA directly. This is generally not the
case: on the NFA of Figure 1(b), TRANSSET(I) generates a DFA of size 2n+1, while
the minimal DFA has size 1.

4 Determinisation using Closures
We introduce a closure operation that can be used in the SUBSET algorithm instead of
the identity function I. It aims to add NFA states to a given DFA state (i.e. a set of
NFA states) without affecting its language. This results in an algorithm that generates
smaller DFAs. In particular, we show that if the criterion to add a state is chosen
suitably, SUBSET with closure is an algorithm that produces the minimal DFA directly.

Definition 2. For any set of states P ⊆ SN of an NFA N and relation v ⊆ SN ×
P(SN), the closure of P under v, closev(P), is defined as:

closev(P) = {p ∈ SN | p v P}.

The language preorder vL can be lifted to operate on states and sets of states in the
following way. Define the language of a set of states P of an NFA N as: LN (P) =⋃

p∈P LN (p). Language equivalence and inclusion can now be defined on any com-
bination of states and sets of states, in terms of set equivalence and inclusion. For
instance, for a state p ∈ SN and a set of states P ⊆ SN , p vL P holds if LN (p) ⊆
LN (P).

Applying this, the algorithm SUBSET(closevL
) generates the minimal DFA that is

language equivalent to the input NFA. This statement is proven in Appendix A.1.

5 Simulation Preorder
Although it ensures that the output DFA of SUBSET(closevL

) is minimal, language
inclusion is an unattractive preorder to use. Deciding language inclusion is PSPACE-
complete [13] which implies that known algorithms have an exponential time complex-
ity. Moreover, most algorithms involve a determinisation step which would render our
optimisation useless.

The simulation preorder⊂→ [12] is finer than language inclusion on NFAs, meaning
it relates fewer NFAs. However, considering its PTIME complexity (see e.g. [1, 9]), it is

Five Determinisation Algorithms 7

p0

p2

p1

p3 p4

p1,1

p1,2

p1,3 · · ·

pn,1

pn,2

pn,3 p5 p6

a, b

a, b

a

a

b

a

a, b

a, b

a

b

a, b

a, b

a

b

a, b a, b

Figure 3: NFA of sizeO(n) for which SUBSET(close⊂→) generates a DFA of sizeO(2n)
for any n ≥ 1. The minimal DFA has 1 state.

an attractive way to “approximate” language inclusion (see also [4]). Hence, as a more
practical alternative to SUBSET(closevL

) we define the algorithm SUBSET(close⊂→).
The required lifting of⊂→ to states and sets of states is as follows. For any state p ∈ SN
and set of states P ⊆ SN of an NFA N , we have p ⊂→ P iff:

• p ∈ FN ⇒∃q ∈ P . q ∈ FN and

• there exists a simulation R ⊆ SN × SN such that:

∀a ∈ ΣN .∀p′ ∈ SN . p
a−→N p′ ⇒ ∃q, q′ ∈ SN . q ∈ P ∧ q

a−→N q′ ∧ p′ R q′.

The correctness of SUBSET(close⊂→) is established in Appendix A.2. The example in
Figure 3 shows not only that the resulting DFA is no longer minimal, but moreover that
it can be exponentially larger than the minimal DFA. This NFA contains a pattern that
repeats itself n times for any n ≥ 1. It is based on the NFA of Figure 1(b) interwoven
with a pattern that prevents SUBSET(close⊂→) from merging states that will later turn
out to be equivalent. The NFA accepts the language given by the regular expression
(a | b)∗.

6 Determinisation using Compressions
Algorithm SUBSET(close⊂→) adds all simulated states to a generated set of states. An-
other option would be to remove all redundant states from such a set. More specifically,
we remove every state that is simulated by another state in the set. For this operation to
be well-defined, it is essential that no two different states in the set are simulation equiv-
alent. This can be achieved by minimising the input NFA using simulation equivalence
prior to determinisation. In turn, this amounts to computing the simulation preorder
that was already necessary in the first place.

Definition 3. Given a set P such that ¬∃p, q ∈ P . p 6= q∧p →← q. Then compress⊂→(P)
denotes the compression of P under ⊂→ and is defined as:

compress⊂→(P) = {p ∈ P | ∀q ∈ P . p 6= q ⇒ p 6⊂→ q}.

The function compress⊂→ can be used not only for sets of states but also for transition
tuples. For that, we first define ⊂→ on the transitions of an NFA N as follows. For any
(a, p), (b, q) ∈ ΣN ×SN , we have (a, p) ⊂→ (b, q) iff a = b and p ⊂→ q. By Definition 3
compress⊂→ is now properly defined on sets of transitions and it can be extended to
transition tuples in a straightforward manner: compress⊂→(T, b) = (compress⊂→(T), b).

8 Rob van Glabbeek & Bas Ploeger

SUBSET(I)

TRANSSET(I)SUBSET(compress⊂→)

SUBSET(close⊂→), TRANSSET(compress⊂→)

SUBSET(closevL
)

Figure 4: The lattice of algorithms presented in the previous sections.

This way, we obtain two more determinisation algorithms: SUBSET(compress⊂→)
and TRANSSET(compress⊂→). Their correctness proofs are included in Appendices A.3
and B.2, respectively.

7 Lattice of Algorithms
We order the algorithms described in the previous sections in a lattice. The ordering
� on the algorithms is as follows: A � B iff for every input NFA, A produces a DFA
that is at most as large as the one produced by B. The lattice is depicted in Figure 4
where an arrow from A to B denotes that A � B.

SUBSET(close⊂→) and TRANSSET(compress⊂→) are in the same class of the lattice,
because these algorithms always yield isomorphic DFAs. This statement is substanti-
ated in Appendix C, as well as the validity of the other �-relations of Figure 4. The
following shows that the lattice is complete, in the sense that there are no further �-
relations between our algorithms:

• SUBSET(closevL
) is the unique �-smallest algorithm because it is the only one

that always generates the minimal DFA;

• SUBSET(compress⊂→) 6� TRANSSET(I) by the example in Figure 2;

• TRANSSET(I) 6� SUBSET(compress⊂→) by the example in Figure 1(b).

8 Implementation and Benchmarks
We have implemented the algorithms SUBSET(I), TRANSSET(I), SUBSET(close⊂→),
SUBSET(compress⊂→) and TRANSSET(compress⊂→) in the C++ programming language.
A set of states or transitions is stored as a tree with the elements in the leaves. All sub-
trees are shared among the sets to improve memory efficiency. A hash table provides
fast and efficient lookup of existing subtrees.

The benchmarks are performed on a 32-bits architecture computer having two Intel
Xeon 3.06 GHz CPUs and 4 GB of RAM. It runs Fedora Core 8 Linux, kernel 2.6.23.
The code is compiled using the GNU C++ compiler (version 4.1.2).

Every benchmark starts off by minimising the NFA using simulation equivalence.
For this we have implemented our partitioning algorithm [7] which is based on [6]
and also computes the simulation preorder on the states of the resulting NFA. Every
determinisation algorithm is applied to this minimised NFA, after which the resulting
DFA is minimised by the tool ltsmin of the µCRL toolset [3, 8] (version 2.18.1).

Five Determinisation Algorithms 9

(a) Rule 110

(b) Evolution

Figure 5: Example of a cellular automaton (rule 110).

8.1 Cellular Automaton 110

In his book [18], Wolfram studies cellular automata as a model of computation. A
cellular automaton consists of a line of white or black cells1 of which the colours are
changed in every step of the automaton. The colour of a cell in the next step of the
automaton’s computation depends on its current colour and those of its left- and right-
hand neighbours, as specified by a so-called rule. An example is given in Figure 5.
The rule is depicted in Figure 5(a). For example, it specifies that if a cell is black and
both of its neighbours are black, then that cell becomes white in the next step of the
automaton’s evolution (cf. the leftmost part of the rule).

From Figure 5(a), it is easy to see that there are 256 such rules. The rules can be
numbered uniquely in a straightforward way by taking the bottom row and reading 0
for a white cell and 1 for a black cell. This gives the number for that rule in binary
notation. For example, the rule in Figure 5(a) has number 110 in decimal notation
(01101110 in binary).

Figure 5(b) shows the evolution of this automaton. The first line is the initial state,
for which the colours of the cells have been chosen randomly. Every successive line
shows the next step in the evolution and is computed by applying the rule to every
subsequence of length 3 on the previous line. The line of white or black cells on
which the rule operates can be chosen to be two-way infinite or cyclic. Figure 5(b) is
an example of the latter: the lines are assumed to “wrap”, meaning that the left-hand
neighbour of a cell in the leftmost column is the cell in the rightmost column of the
same line, and vice versa. Here, we have chosen a line width of 100 cells and the first
50 steps of the evolution are depicted.

In general, a one-dimensional cellular automaton can be formally represented by

1Actually, a wide variety of cellular automata can be defined. We consider a basic type here with two
colours and a “neighbourhood” of 1.

10 Rob van Glabbeek & Bas Ploeger

w, b

(a) 0 steps

b

w

w
b

w

b

w
b

b

(b) 1 step

Figure 6: Minimal DFAs describing the possible sequences of white and black cells
that can occur after 0 steps (a) and 1 step (b) of cellular automaton 110.

a function ρ : Σw → Σ, the rule, where Σ is an alphabet and w ≥ 1 is the width of
the automaton. Given an infinite sequence σ ∈ Σ∞, a step of a CA is an application
of ρ to every w-length subsequence of σ, which produces a new infinite sequence. In
the example of Figure 5(a) we have Σ = {white,black}, w = 3 and ρ is as depicted.
In Figure 5(b) we assume that the infinite sequences σ ∈ Σ∞ are periodic with a pe-
riod of 100 cells, and only one period is displayed. Periodicity of the input sequence
guarantees that the successive sequences are also periodic, with a period of the same
size.

Wolfram classifies cellular automata based on the complexity of the patterns that
emerge in their evolutions. Four classes are distinguished of which class 1 contains the
simplest automata and class 4 the most complex. An example of a class 1 automaton
is the one with rule number 0, which simply colours every cell white in the first step
and retains this state in subsequent steps. The complex pattern of Figure 5(b) identifies
automaton 110 as a class 4 automaton. Moreover, Wolfram has shown that the 110 au-
tomaton is universal or Turing complete, which means it can perform exactly the same
computations a Turing machine can. To be precise: given a (possibly universal) Turing
machine M , there are finite sequences ρ, ν∈{white,black}∗ as well as an encoding of
any (finite) input sequence σ of M as a finite sequence σ′ ∈{white,black}∗, such that
the behaviour of M on the input σ is in some sense mimicked (through a complicated
encoding) by the evolution of cellular automaton 110 on the infinite input sequence
composed of σ′, flanked on the left by infinitely many repetitions of ρ and on the right
by infinitely many repetitions of ν.

As described in [17], the possible finite sequences appearing as a continuous sub-
sequence of the infinite sequence obtained after n steps of a given cellular automaton
(starting from a random input sequence) constitute a language that can be described
by a DFA. For example, the DFA that describes the possible sequences after 0 steps of
cellular automaton 110 is depicted in Figure 6(a): any sequence of white or black cells
is allowed. The DFA after 1 step is shown in Figure 6(b). Both DFAs are minimal.
Here every state can be considered final, except for omitted sink states (see Section 2).
It is known that for some rules, the size of these DFAs increases exponentially in n
(cf. [14]). Rule 110 exhibits this phenomenon.

We have generated the minimal DFAs for steps 1 through 6 of this CA using the var-
ious algorithms presented here. We ran the algorithms SUBSET(I) and TRANSSET(I)
with and without minimisation of the input NFA modulo simulation equivalence prior
to determinisation. It turns out that the costs in time and memory of this prior min-
imisation step is very small compared to the costs of the subsequent determinisation

Five Determinisation Algorithms 11

size of input NFA: 800
after applying SIM: 228
minimal DFA: 1 357 STEP 4

SIMT DT MT SIMS DS MS |SD|
SUBSET(I) − 2.55 1.08 − 15.4 5.3 152 804
TRANSSET(I) − 1.87 0.60 − 18.0 3.3 94 473
SUBSET(I) after SIM 0.06 0.6 0.4 0.4 5.4 2.0 58 370
TRANSSET(I) after SIM 0.06 1.0 0.4 0.4 9.0 2.0 58 094
SUBSET(close⊂→) 0.06 1.6 < 0.1 0.4 2.1 0.2 4 720
SUBSET(compress⊂→) 0.06 < 0.1 < 0.1 0.4 0.6 0.2 4 745
TRANSSET(compress⊂→) 0.06 < 0.1 < 0.1 0.4 0.7 0.2 4 720

size of input NFA: 5 224
after applying SIM: 1 421
minimal DFA: 18 824 STEP 5

SIMT DT MT SIMS DS MS |SD|
SUBSET(I) − 1250.3 179.3 − 1966.4 623.8 17 960 608
TRANSSET(I) − 525.1 121.6 − 1376.5 418.3 12 083 653
SUBSET(I) after SIM 2.28 212.5 76.7 5.9 688.2 267.2 7 663 165
TRANSSET(I) after SIM 2.28 257.3 79.1 5.9 1 146.9 263.0 7 541 248
SUBSET(close⊂→) 2.28 2 739.7 1.6 5.9 123.2 6.3 176 008
SUBSET(compress⊂→) 2.28 4.3 1.4 5.9 16.7 6.4 179 146
TRANSSET(compress⊂→) 2.28 4.1 1.6 5.9 22.9 6.3 176 008

size of input NFA: 73 905
after applying SIM: 18 934
minimal DFA: 136 401 STEP 6

SIMT DT MT SIMS DS MS |SD|
SUBSET(I) − † † − † † †
TRANSSET(I) − † † − † † †
SUBSET(I) after SIM 1343.8 † † 433.1 † † †
TRANSSET(I) after SIM 1343.8 † † 433.1 † † †
SUBSET(close⊂→) 1343.8 > 160 000 ? 433.1 ? ? ?
SUBSET(compress⊂→) 1343.8 1 467.2 90.0 433.1 770.9 244.9 7 100 549
TRANSSET(compress⊂→) 1343.8 241.9 88.4 433.1 770.9 234.4 6 770 155

Table 1: Benchmark results for canonising NFAs of steps 4, 5 and 6 of CA 110.
Legend: SIM = Minimisation modulo simulation equivalence prior to determinisation,
D = Determinisation, M = Minimisation, T = Time (sec), S = Space (peak memory use,
MB), |SD| = Size of DFA after determinisation, † = out of memory, ? = not measured.

12 Rob van Glabbeek & Bas Ploeger

0 0.5 1 1.5 2 2.5 3 3.5 4 0
0.2

0.4
0.6

0.8
1

0.1

1

10

100

1000

10000

100000

N
um

be
ro

fs
ta

te
s

(l
og

sc
al

e)
Mean
Standard deviation

Transition density (r)

Final state density (f)

Figure 7: Mean and standard deviation of size of minimal DFA for N = 100

process, and that it makes makes the overall algorithm much more efficient. In order
to run the algorithms SUBSET(compress⊂→) or TRANSSET(compress⊂→), prior minimi-
sation modulo →← is required. For SUBSET(close⊂→) we always minimise modulo →←
as well, as we have to calculate the simulation relation between the states of the NFA
anyway.

The most interesting results are those for steps 4 through 6, which are shown in
Table 1. On step 6, algorithms SUBSET(I) and TRANSSET(I) ran out of memory
on our 4 GB computer. We terminated SUBSET(close⊂→) prematurely after roughly 44
hours of computation and did not measure its memory consumption. The algorithms
that use compress⊂→ clearly outperform the others, in both memory and time efficiency.
Every algorithm that uses a function other than I generates a DFA that is an order of
magnitude smaller than that of its I-counterpart.

8.2 Random Automata
In [15], Tabakov and Vardi experimentally evaluate the performance of several au-
tomata algorithms by running them on randomly generated automata. In their model,
the randomly generated NFAs have an alphabet Σ = {0, 1}. The parameters that can
be set by the user are the number of states N , the transition density r, and the final
state density f . The transition density indicates the ratio of the number of transitions
to the number of states N for a given label a ∈ Σ. The final state density indicates the
ratio of the number of final states |F | to the total number of states N . For example, if
we choose N = 20, r = 2.0, and f = 0.4, the resulting NFA will have 20 states, 40
0-labelled transitions, 40 1-labelled transitions, and 8 final states.

The generated automaton need not be connected: for every label a ∈ Σ transi-
tions are added by repeatedly choosing two states s, t at random and adding transition
(s, a, t) only if it does not already exist, until the number of a-transitions equals (or
exceeds) r · N . So, if the transitions are chosen poorly or the transition density is not
high enough, not all states are reachable from the initial state.

Five Determinisation Algorithms 13

1

10

100

1000

10000

100000

0 0.5 1 1.5 2 2.5 3 3.5 4 10
20

30
40

50
60

70
80

90
100

1

10

100

1000

10000

100000

N
um

be
ro

fD
FA

st
at

es
(l

og
sc

al
e)

Transition density (r)

Number of NFA states (N)

Figure 8: Mean size of minimal DFA for f = 0.40

For our experiments, we let N range from 10 to 100 with steps of 10, r ranges
from 0.25 to 4.0 with steps of 0.25, and f ranges from 0.0 to 1.0 with steps of 0.2.
For every combination of parameter values, we generate 100 random NFAs, giving a
grand total of 96 000 automata. All these automata are first of all minimised modulo
simulation equivalence; this step is the same for all algorithms and not included in
our measurements. Each of the resulting automata is determinised in turn by each of
the algorithms and subsequently minimised. The time, peak memory and size of the
intermediate DFA of each run of an algorithm are measured. For each combination
of parameter values and a determinisation algorithm we compute the mean of the 100
measurements.

For N = 100 we have plotted the size of the minimal DFA in Figure 7. Every data
point is the mean (solid line) or standard deviation (dashed line) of the 100 minimal
DFAs that were generated for that point. We see the same phenomena already noticed
by Tabakov and Vardi: apart from the case f = 0, the final state density does not have
a noteworthy effect on the size of the minimal DFA, but the transition density does.
The mean size shows a clear peak at r = 1.25. For this value, the standard deviation is
about as large as the mean, indicating that there’s quite some variance in the minimal
DFA sizes. For example, for r = 1.25 and f = 0.40 the mean is 44 213, the standard
deviation is 36 182 and the sizes of the minimal DFAs range from 296 to 179 757. For
other values of N the plot has the same shape as that of Figure 7.

Because the final state density does not seem to influence the results that much, we
fix f = 0.40. Again we plot the mean size of the minimal DFA but this time with the
size of the NFA (N) along the y-axis, see Figure 8. We see that the NFA size really
matters for values of r that are in the range of 0.75 to 1.50. Outside of this range, the
size of the minimal DFA remains almost constant as the size of the NFA increases. At
r = 1.25 the effect of the NFA size is most dramatic: the mean size of the minimal
DFA at N = 100 is more than 2 000 times as large as the mean size at N = 10.

As mentioned above, the value of f does not seem to influence the results that
much, so we fix it at f = 0.40. In Appendix D we have plotted for various values
of r the peak memory usage, total running time and size of the intermediate DFAs of

14 Rob van Glabbeek & Bas Ploeger

canonisation using each of the four algorithms against the size of the input NFA N .
Again, every data point is the mean of 100 experiments.

Just looking at the sizes of the intermediate DFAs (Section D.1), we see that, for
all values of r and N , SUBSET(I) and SUBSET(compress⊂→) generate significantly
larger DFAs than the other algorithms. For r ≤ 1.00 these DFAs are very close
(if not equal) to the minimal DFAs. We also see that for r > 3 the DFA generated
by TRANSSET(I) is slightly larger than the ones generated by SUBSET(close⊂→) and
TRANSSET(compress⊂→). Note that the measurements are in accordance with our lat-
tice.

On the time plots of Section D.2, it is clear that SUBSET(I) is the fastest algorithm.
Note that a mean value of 1 · 10−4 indicates that the runs were too fast to allow proper
measuring. SUBSET(compress⊂→) is as fast as SUBSET(I) for 0.25 ≤ r ≤ 1, but
for larger r-values it becomes slower, ending up in 4th place for r > 2. Overall,
TRANSSET(compress⊂→) can be considered the slowest algorithm.

Regarding memory consumption (Section D.3), the SUBSET(f) algorithms overall
perform better than the TRANSSET(f) algorithms, with SUBSET(close⊂→) being the
most memory efficient. The curves for SUBSET(compress⊂→) closely follow the ones
for SUBSET(I), but for r < 2 SUBSET(compress⊂→) performs somewhat better. Given
the fact that SUBSET(close⊂→) produces the same DFA as TRANSSET(compress⊂→), the
former is preferable as it has better time and space performance. Overall, SUBSET(I)
and SUBSET(close⊂→) perform the best. SUBSET(close⊂→) appears to use around 20%
less memory overall, but is by far not as fast.

9 Conclusions

We have presented a schematic generalisation of the well-known subset construction
algorithm that allows for a function to be applied to every generated set of states. We
have given a similar scheme for a variant of subset construction that operates on sets
of transitions rather than states. Next, we instantiated these schemes with several set-
expanding or -reducing functions to obtain various determinisation algorithms. One of
these algorithms even produces the minimal DFA directly, but its use of the PSPACE-
hard language preorder renders it impractical. As our aim is to reduce the average-case
workload in practice, we instead use the PTIME-decidable simulation preorder in the
other algorithms. We have classified all presented algorithms in a lattice, based on the
sizes of the DFAs they produce. This is a natural criterion, as the worst-case complexi-
ties are the same for all algorithms. To assess their performance, we have implemented
and benchmarked them. The case study comprised NFAs describing patterns in the el-
ementary cellular automaton with rule number 110 and randomly generated NFAs. On
the cellular automaton examples, the algorithms that use a function to reduce the com-
puted sets, convincingly outperformed the others. On the random automata, three of the
algorithms generated smaller DFAs than subset construction, which led to less memory
consumption in some cases. In particular, our algorithm SUBSET(close⊂→) systemati-
cally outperforms the standard subset construction in memory consumption. However,
the gain is relatively small, and goes at the expense of the speed of the algorithm.

Based on our algorithm schemes, many more algorithms can be constructed by sub-
stituting various functions, depending on the specific needs and applications. More-
over, the functions we defined here could be equipped with any suitable preorder or
partial order, e.g. from the linear time – branching time spectrum.

Five Determinisation Algorithms 15

We believe that our optimisations to subset construction are particularly beneficial
in cases where normal subset construction is known to leave a large gap between the
generated DFA and the minimal one. Our first case study deals with such a situation
and supports this theory.

Acknowledgements. We would like to thank Jan Friso Groote, Tim Willemse and
Sebastian Maneth for valuable ideas, discussions and/or comments.

References
[1] B. Bloom & R. Paige (1995): Transformational design and implementation of

a new efficient solution to the ready simulation problem. Science of Computer
Programming 24(3), pp. 189–220.

[2] J.A. Brzozowski (1963): Canonical regular expressions and minimal state graphs
for definite events. In Proceedings of the Symposium on Mathematical Theory of
Automata, MRI Symposia Series, vol. 12, Polytechnic Press, Polytechnic Institute
of Brooklyn, pp. 529–561.

[3] CWI: µCRL Toolset Home Page. http://www.cwi.nl/∼mcrl/.

[4] D.L. Dill, A.J. Hu & H. Wong-Toi (1992): Checking for language inclusion
using simulation preorders. In Proceedings of the Third International Workshop
on Computer-Aided Verification (CAV’92), LNCS 575, Springer, pp. 255–265.

[5] R.W. Floyd & R. Beigel (1994): The Language of Machines. Freeman.

[6] R. Gentilini, C. Piazza & A. Policriti (2003): From bisimulation to simulation:
Coarsest partition problems. Journal of Automated Reasoning 31(1), pp. 73–103.

[7] R.J. van Glabbeek & B. Ploeger (2008): Correcting a space-efficient simulation
algorithm. CS-Report 08-06, Eindhoven University of Technology. To appear
in Proceedings 20th International Conference on Computer Aided Verification
(CAV’08), LNCS, Springer.

[8] J.F. Groote & M.A. Reniers (2001): Algebraic process verification. In J.A.
Bergstra, A. Ponse & S.A. Smolka, editors: Handbook of Process Algebra, Else-
vier, pp. 1151–1208.

[9] M.R. Henzinger, T.A. Henzinger & P.W. Kopke (1995): Computing simulations
on finite and infinite graphs. In 36th Annual Symposium on Foundations of Com-
puter Science (FOCS’95), IEEE Computer Society Press, pp. 453–462.

[10] J.E. Hopcroft (1971): An n log n algorithm for minimizing states in a finite au-
tomaton. In Z. Kohavi, editor: Theory of Machines and Computations, Academic
Press, pp. 189–196.

[11] J.E. Hopcroft & J.D. Ullman (1979): Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley.

[12] D.M.R. Park (1981): Concurrency and automata on infinite sequences. In Proc.
5th GI-Conference on Theoretical Computer Science, LNCS 104, Springer, pp.
167–183.

16 Rob van Glabbeek & Bas Ploeger

[13] L.J. Stockmeyer & A.R. Meyer (1973): Word problems requiring exponential
time. In Proc. 5th Annual ACM Symposium on Theory of Computing (STOC’73),
ACM, pp. 1–9.

[14] K. Sutner (2003): The size of power automata. Theoretical Computer Science
295(1-3), pp. 371–386.

[15] D. Tabakov & M.Y. Vardi (2005): Experimental evaluation of classical automata
constructions. In Proceedings of the 12th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR’05), LNCS 3835,
Springer, pp. 396–411.

[16] B.W. Watson (1995): Taxonomies and Toolkits of Regular Language Algorithms.
PhD thesis, Technische Universiteit Eindhoven.

[17] S. Wolfram (1984): Computation theory of cellular automata. Communications
in Mathematical Physics 96(1), pp. 15–57.

[18] S. Wolfram (2002): A New Kind of Science. Wolfram Media, Inc.

Five Determinisation Algorithms 17

A Correctness of SUBSET(f)

We need the following lemma, for which it is important to understand that a set of NFA
states P denotes a set of states in N but must be regarded as only a single state in D.

Lemma 1. Let D be obtained by applying SUBSET(f) on the NFA N , where the func-
tion f : P(SN) → P(SN)) satisfies LN (f(Q)) = LN (Q) for any Q ⊆ SN . Then for
any P ∈ SD it holds that LN (P) = LD(P).

Proof. We show set inclusion both ways.

• We prove that σ ∈ LN (P) implies σ ∈ LD(P) for any σ ∈ ΣN and P ∈ SD by
induction on the length of σ.

Base: σ = ε. Let P ∈ SD, and assume σ ∈ LN (P). Then there exists a p ∈ P
such that ε ∈ LN (p), and hence p ∈ FN . By line 12 of Algorithm 1 we have
P ∈ FD and thus ε ∈ LD(P).

Step: σ = aρ for some a∈ΣN and ρ∈Σ∗N . Let P ∈SD and assume σ ∈LN (P).
Then there exists a p ∈ P such that σ ∈ LN (p). Hence there is a q ∈ SN such that
p

a−→N q and ρ∈LN (q). Since p∈P and p
a−→N q, SUBSET(f) (lines 6–8) ensures

that P
a−→D f(Q) for some Q ⊆ SN with q∈Q. We have ρ∈LN (q) ⊆ LN (Q) =

LN (f(Q)), and thus, by induction, ρ ∈ LD(f(Q)). This implies aρ ∈ LD(P).

• We prove that σ ∈ LD(P) implies σ ∈ LN (P) for any σ ∈ ΣN and P ∈ SD by
induction on the length of σ.

Base: σ = ε. Assume σ ∈ LD(P). Then P ∈ FD so there exists a p ∈ P such that
p ∈ FN . For this p, ε ∈ LN (p). Then also ε ∈

⋃
q∈P LN (q) and thus ε ∈ LN (P).

Step: σ = aρ for some a ∈ΣD and ρ ∈Σ∗D. Let P ∈ SD and assume σ ∈ LD(P).
Then there exists a P ′ ∈ SD such that P

a−→D P ′ and ρ ∈ LD(P ′). By induction
ρ ∈ LN (P ′). We know that P ′ = f(Q) where Q = {q ∈ SN | ∃p ∈ P . p

a−→N q}.
As LN (f(Q)) = LN (Q), we have ρ∈LN (Q). Because LN (Q) =

⋃
q∈Q LN (q),

there exists a q∈Q such that ρ∈LN (q) and hence there is a p∈P such that p a−→N q.
Now aρ ∈ LN (p) for that p and thus we obtain σ ∈ LN (P).

By Lemma 1 we are now allowed to use language equivalence and inclusion without
specifying whether we mean language equivalence (resp. inclusion) between sets of
states in an NFA or single states in the generated DFA.

Theorem 1. Let D be obtained by applying SUBSET(f) on the NFA N , where the
function f : P(SN) → P(SN)) satisfies LN (f(Q)) = LN (Q) for any Q ⊆ SN . Then
D is deterministic and language equivalent to N .

Proof. It can be easily seen from the algorithm that for each combination of P ∈ SD
and a ∈ ΣD, precisely one tuple (P, a, P ′) for some P ′ ∈ SD is added to δD. Hence
D is deterministic. We derive D ≡L N using Lemma 1:

L(D) = LD(iD) = LD(f({iN }))
L1
= LN (f({iN })) = LN ({iN }) = LN (iN) = L(N)

A.1 Correctness of SUBSET(closevL
)

For any set of states P in an NFA N , closevL
(P) contains all states that are lan-

guage included in P . In particular, because p vL P for all p ∈ P , we have that
P ⊆ closevL

(P).

18 Rob van Glabbeek & Bas Ploeger

Proposition 1. For any set of states P ⊆ SN , it holds that P ≡L closevL
(P).

Proof. Let Q := closevL
(P). We show that P vL Q and QvL P :

• P vL Q: using the fact that P ⊆ Q, we derive: LN (P) =
⋃

p∈P LN (p) ⊆⋃
p∈Q LN (p) = LN (Q), hence P vL Q;

• QvL P : for all p ∈ Q we know (by definition) that pvL P , i.e. LN (p) ⊆ LN (P).
Thus: LN (Q) =

⋃
p∈Q LN (p) ⊆ LN (P), hence QvL P .

Theorem 2. Given an NFA N , SUBSET(closevL
) constructs the minimal DFA that is

language equivalent to N .

Proof. It follows immediately from Theorem 1 and Proposition 1 that the NFA D con-
structed by SUBSET(closevL

) is a DFA that is language equivalent to N .
D is minimal if there is no DFA that is language equivalent to D and has fewer

states than D. It is known that this follows directly if we prove that there is no pair
of different states in D that are language equivalent (see for instance Corollary 4.24 in
[5]). Suppose D contains states P and Q such that P ≡L Q and for some T,U ⊆ SN ,
P = closevL

(T) and Q = closevL
(U). Then for all p ∈ P we have pvL P ≡L Q =

closevL
(U) ≡L U , by Proposition 1. Because Q = {q ∈ SN | q vL U} we see that

p ∈ Q and thus that P ⊆ Q. By symmetry we have that Q ⊆ P . Hence P = Q.

A.2 Correctness of SUBSET(close⊂→)

Proposition 2. For any set of states P ⊆ SN , it holds that P ≡L close⊂→(P).

Proof. Let Q := close⊂→(P) = {q ∈ SN | q ⊂→ P}. We show that P ≡L Q:

• P vL Q: this follows immediately from P ⊆ Q;

• QvL P : By induction on the length of σ ∈ ΣN we show that σ ∈LN (Q) implies
σ ∈ LN (P). If ε ∈ LN (Q) then ε ∈ LN (q) for some q ∈ Q. Hence q ∈ FN . It
must be that q ⊂→ P . Thus ∃p ∈ P. p ∈ FN and therefore ε ∈ LN (p) ⊆ LN (P).

If aρ∈LN (Q) then there is a q∈Q and q′∈SN such that q
a−→N q′ and ρ∈LN (q′).

It must be that q ⊂→ P , so there exists a simulation R ⊆ SN × SN such that
∃p, p′ ∈ SN . p ∈ P ∧ p

a−→N p′ ∧ q′Rp′. Therefore, q′ ⊂→ p′ and hence q′ vL p′,
so ρ ∈ LN (p′). It follows that aρ ∈ LN (P).

Theorem 3. Given an NFA N , SUBSET(close⊂→) constructs a DFA that is language
equivalent to N .

Proof. Immediate from Theorem 1 and Proposition 2.

A.3 Correctness of SUBSET(compress⊂→)

Note: In this section we fix an NFAN that is minimal under simulation equivalence.

Proposition 3. For any set of states P ⊆ SN , it holds that P ≡L compress⊂→(P).

Proof. Let Q := compress⊂→(P). We show that P vL Q and QvL P :

• P vL Q: for any p ∈ P there is a q ∈ Q with p ⊂→ q and hence p vL q. Thus
LN (P) =

⋃
p∈P LN (p) ⊆

⋃
q∈Q LN (q) = LN (Q), so P vL Q;

• QvL P : this follows immediately from Q ⊆ P .

Five Determinisation Algorithms 19

Theorem 4. When applied to N , SUBSET(compress⊂→) constructs a DFA that is lan-
guage equivalent to N .

Proof. Immediate from Theorem 1 and Proposition 3.

B Correctness of TRANSSET(f)

Proposition 4. Given NFA N , for any p ∈ SN : p≡L tuple(p).

Proof. Let p ∈ SN and S = {ε} if p ∈ FN and S = ∅ otherwise. We derive:

LN (p) = {σ ∈ Σ∗N | ∃q ∈ FN . p
σ−→N q}

= {aσ ∈ Σ∗N | ∃q ∈ FN . p
aσ−−→N q} ∪ S

= {aσ ∈ Σ∗N | ∃q ∈ SN . p
a−→N q ∧ σ ∈ LN (q)} ∪ S

= {aσ ∈ Σ∗N | ∃(a, q) ∈ trans(p) . σ ∈ LN (q)} ∪ S
=

⋃
(a,q)∈trans(p){aσ ∈ Σ∗N | σ ∈ LN (q)} ∪ S

=
⋃

t∈trans(p) LN (t) ∪ S

= LN (trans(p)) ∪ S
= LN (tuple(p)).

We need the following lemma, in which a transition tuple (T, b) is regarded as such in
the input NFA N , but is regarded as a single state in the output NFA D.

Lemma 2. Let N be an NFA and f : P(ΣN × SN) × B → P(ΣN × SN) × B such
that LN (f(T, b)) = LN (T, b) for all transition tuples (T, b). Let D be obtained by
applying TRANSSET(f) toN . For any (T, b)∈SD, it holds that LN (T, b) = LD(T, b).

Proof. We show that σ ∈LN (T, b) ⇔ σ ∈LD(T, b) for any σ ∈Σ∗N and (T, b)∈ SD
by induction on the length of σ.

Base: σ = ε. Let (T, b)∈SD. Then ε∈LN (T, b) ⇔ b
∗⇔ (T, b)∈FD ⇔ ε∈LD(T, b),

where ∗ follows from lines 11–13 of TRANSSET(f).

Step: σ = aρ for some a ∈ ΣN and ρ ∈ Σ∗N . We assume for any transition tuple
(T ′, b′) ∈ SD:

(IH) ρ ∈ LN (T ′, b′)⇔ ρ ∈ LD(T ′, b′)

and derive, for any (T, b) ∈ SD:

aρ ∈ LN (T, b)⇔ aρ ∈ LN (T) ⇔ aρ ∈
⋃

t∈T LN (t)
⇔ aρ ∈

⋃
(a,p)∈T LN (a, p) ⇔ ρ ∈

⋃
(a,p)∈T LN (p)

∗⇔ ρ ∈
⋃

(a,p)∈T LN (tuple(p))

⇔ ρ ∈
⋃

(a,p)∈T

(
LN (trans(p)) ∪

{
{ε} if p ∈ FN
∅ if p 6∈ FN

)
⇔ ρ ∈

⋃
(a,p)∈T LN (trans(p)) ∪

{
{ε} if ∃(a, p) ∈ T . p ∈ FN
∅ if ¬∃(a, p) ∈ T . p ∈ FN

⇔ ρ ∈ LN (
⋃

(a,p)∈T trans(p),∃(a, p) ∈ T . p ∈ FN)
⇔ ρ ∈ LN (f(

⋃
(a,p)∈T trans(p),∃(a, p) ∈ T . p ∈ FN))

†⇔ ρ ∈ LD(f(
⋃

(a,p)∈T trans(p),∃(a, p) ∈ T . p ∈ FN))
‡⇔ aρ ∈ LD(T, b)

20 Rob van Glabbeek & Bas Ploeger

where at ∗ we used Proposition 4; at † we used (IH) and the fact that lines 6–7 of
TRANSSET(f) ensure that f(. . .) ∈ SD; and at ‡ we used that line 8 of TRANSSET(f)
ensures that (T, b) a−→D f(. . .).

Theorem 5. Let N be an NFA and f : P(ΣN × SN)× B → P(ΣN × SN)× B such
that LN (f(T, b)) = LN (T, b) for all transition tuples (T, b). Let D be obtained by
applying TRANSSET(f) to N . Then D is deterministic and language equivalent to N .

Proof. It can be easily seen from the algorithm that for each combination of P ∈ SD
and a ∈ ΣD, precisely one tuple (P, a, P ′) for some P ′ ∈ SD is added to δD. Hence
D is deterministic. We derive D ≡L N as follows:

L(D) = LD(iD) = LD(f(tuple(iN))) ∗= LN (f(tuple(iN)))

= LN (tuple(iN))
†
= LN (iN) = L(N)

where at ∗ we used Lemma 2 and at † we used Proposition 4.

B.1 Correctness of TRANSSET(I)

As the identity function I trivially satisfies LN (T, b) = LN (I(T, b)), the following
result follows immediately from Theorem 5.

Corollary 1. Let D be obtained by applying TRANSSET(I) to an NFA N . Then D is
deterministic and language equivalent to N .

B.2 Correctness of TRANSSET(compress⊂→)

Note: In this section we fix an NFAN that is minimal under simulation equivalence.

Proposition 5. For any transition tuple (T, b): LN (T, b) = LN (compress⊂→(T, b)).

Proof. Let U := compress⊂→(T). We have to show that:

LN (T) ∪
{
{ε} if b
∅ if ¬b

= LN (U) ∪
{
{ε} if b
∅ if ¬b

which follows naturally if LN (T) = LN (U). For any t∈T there is a u∈U with t ⊂→ u
and hence tvL u. Thus: LN (T) =

⋃
t∈T LN (t) ⊆

⋃
t∈U LN (t) = LN (U). Because

U ⊆ T , we also have that LN (U) ⊆ LN (T). Hence LN (T) = LN (U).

Theorem 6. Let D be obtained by applying TRANSSET(compress⊂→) to N . Then D is
deterministic and language equivalent to N .

Proof. This follows immediately from Proposition 5 and Theorem 5.

C Correctness of the Lattice of Algorithms
Given an NFA N , let D(SUBSET(f)) denote the DFA generated from N by algorithm
SUBSET(f), and likewise for the algorithms TRANSSET(f). For P ⊆ SN let

P/a := {q ∈ SN | ∃p ∈ P. p
a−→N q},

Five Determinisation Algorithms 21

so that line 6 of Algorithm 1 can be rewritten as P ′ := f(P/a). It follows that
SD(SUBSET(f)) is the smallest set S ⊆ P(SN) that contains f({iN }) and satisfies

(1) P ∈ S ⇒ f(P/a) ∈ S .

Likewise, for P a transition tuple, let

P�a := (
⋃

(a,p)∈set(P)

trans(p), ∃(a, p) ∈ set(P) . p ∈ FN) ,

so that line 6 of Algorithm 2 can be rewritten as P ′ := f(P�a). Moreover, for P ⊆
SN we define

tuple(P) := (
⋃
p∈P

trans(p),∃p ∈ P . p ∈ FN) .

It follows that SD(TRANSSET(f)) is the smallest S ⊆ P(SN) that contains f(tuple(iN)),
which equals f(tuple({iN })), and satisfies P ∈ S ⇒ f(P�a) ∈ S.

The following definition extends the operator close⊂→ , originally defined on sets of
states, to transition tuples. The result of applying the operator remains a set of states.

Definition 4. For any state p ∈ SN and transition tuple (T, b) we write p ⊂→ (T, b) iff

• p ∈ FN ⇒ b and

• ∀a ∈ ΣN .∀p′ ∈ SN . p
a−→N p′ ⇒ ∃(a, q′) ∈ T . p′ ⊂→ q′.

For any transition tuple P of an NFA N we define close⊂→(P) := {p ∈ SN | p ⊂→ P}.

Lemma 3. Let N be an NFA, a ∈ ΣN and P ⊆ SN . Then

1. tuple(P)�a = tuple(P/a),

2. compress⊂→(P/a) ⊆ compress⊂→(P)/a,

3. compress⊂→(compress⊂→(P)/a) = compress⊂→(P/a),

4. close⊂→(P/a) ⊇ close⊂→(P)/a,

5. close⊂→(close⊂→(P)/a) = close⊂→(P/a),

6. close⊂→(P) = close⊂→(compress⊂→(P)),

7. close⊂→(P) = close⊂→(tuple(P)),

8. compress⊂→(tuple(P)) = compress⊂→(tuple(close⊂→(P))).

Proof. Ad 1. Note that (a, p) ∈ set(tuple(P)) ⇔ p ∈ (P/a). Hence
tuple(P)�a = (

⋃
(a,p)∈set(tuple(P)) trans(p), ∃(a, p) ∈ set(tuple(P)) . p ∈ FN)

= (
⋃

p∈(P/a) trans(p), ∃p ∈ (P/a) . p ∈ FN)
= tuple(P/a).

Ad 2. Let p′ ∈ compress⊂→(P/a). Then p′ ∈ P/a, so ∃p ∈ P. p
a−→N p′. In fact, the

set of all p ∈ P with p
a−→N p′ is ordered by ⊂→, and we take a ⊂→-maximal p within

that set. Suppose, towards a contradiction, that ∃q ∈ P. q 6= p ∧ p ⊂→ q. Take that
q. Then, by definition of simulation, ∃q′ ∈ SN . q

a−→N q′ ∧ p′ ⊂→ q′, so q′ ∈ P/a. By
construction, q′ 6= p′. Hence p′ 6∈ compress⊂→(P/a). So @q ∈ P. q 6= p ∧ p ⊂→ q, and
thus p ∈ compress⊂→(P). Hence p′ ∈ compress⊂→(P)/a.

Ad 3. By Lemma 3.2 we have

compress⊂→(P/a)=compress⊂→(compress⊂→(P/a))⊆compress⊂→(compress⊂→(P)/a).

On the other hand, compress⊂→(P) ⊆ P (by Definition 3) so compress⊂→(P)/a ⊆ P/a

and thus compress⊂→(compress⊂→(P)/a) ⊆ compress⊂→(P/a).

22 Rob van Glabbeek & Bas Ploeger

Ad 4. Let p′ ∈ close⊂→(P)/a. Then ∃p ∈ close⊂→(P). p
a−→N p′. Take that p. So p ⊂→ P .

Hence, ∃q, q′∈SN . q∈P∧q
a−→N q′∧p′ ⊂→ q′. Therefore, q′∈P/a and p′∈close⊂→(P/a).

(In the latter step we use that if p ⊂→ q and q ∈Q then surely p ⊂→ Q.)

Ad 5. By Lemma 3.4 we have

close⊂→(P/a) = close⊂→(close⊂→(P/a))⊇ close⊂→(close⊂→(P)/a).

Moreover, close⊂→(P) ⊇ P so close⊂→(P)/a ⊇ P/a and thus close⊂→(close⊂→(P)/a) ⊇
close⊂→(P/a).

Ad 6. As compress⊂→(P) ⊆ P we have close⊂→(compress⊂→(P)) ⊆ close⊂→(P).
For the other direction, note that p ∈ P implies ∃q ∈ compress⊂→(P) . p ⊂→ q. From
this it easily follows that p ⊂→ P implies p ⊂→ compress⊂→(P), which in turn yields
close⊂→(P) ⊆ close⊂→(compress⊂→(P)).

Ad 7. This can be restated as p ⊂→ P ⇔ p ⊂→ tuple(P), which follows directly from
the definitions.

Ad 8. fin(compress⊂→(tuple(close⊂→(P))))=fin(tuple(close⊂→(P)))=∃p⊂→P . p∈FN
= ∃q ∈ P . q ∈ FN = fin(tuple(P)) = fin(compress⊂→(tuple(P))).

Furthermore, set(compress⊂→(tuple(P))) ⊆ set(compress⊂→(tuple(close⊂→(P)))),
because P ⊆ close⊂→(P). Finally, take (a, p′)∈set(tuple(close⊂→(P)))\set(tuple(P)).
Then p

a−→N p′ for some p ⊂→ P . Hence ∃q, q′ ∈ SN . q ∈ P ∧ q
a−→N q′ ∧ p′ ⊂→ q′.

Therefore (a, q′) ∈ set(tuple(P)), so (a, p′) 6= (a, q′), and (a, p′) ⊂→ (a, q′), from
which we obtain (a, p′) 6∈ set(compress⊂→(tuple(close⊂→(P)))) by Definition 3. This
implies that set(compress⊂→(tuple(close⊂→(P)))) ⊆ set(compress⊂→(tuple(P))).

Theorem 7. TRANSSET(I) � SUBSET(I).

Proof. A straightforward induction on (1), using Lemma 3.1 at the induction step,
yields

(2) SD(TRANSSET(I)) = {tuple(P) | P ∈ SD(SUBSET(I))}.

This immediately implies that |SD(TRANSSET(I))| ≤ |SD(SUBSET(I))|. (Note that we do
need not have an equality here, because if might be that tuple(P) = tuple(Q) for
different P,Q ∈ SD(SUBSET(I)).) Hence TRANSSET(I) � SUBSET(I).

Theorem 8. SUBSET(compress⊂→) � SUBSET(I).

Proof. A straightforward induction on (1), using Lemma 3.3 at the induction step,
yields

(3) SD(SUBSET(compress⊂→
)) = {compress⊂→(P) | P ∈ SD(SUBSET(I))}.

Hence |SD(SUBSET(compress⊂→
))| ≤ |SD(SUBSET(I))|, from which the theorem follows.

Theorem 9. SUBSET(close⊂→) � SUBSET(compress⊂→).

Proof. By a similar induction as in the previous proof, this time using Lemma 3.5, we
obtain

(4) SD(SUBSET(close⊂→
)) = {close⊂→(P) | P ∈ SD(SUBSET(I))}.

Five Determinisation Algorithms 23

In combination with (3) and Lemma 3.6 this yields

SD(SUBSET(close⊂→
))

(4)
= {close⊂→(P) | P ∈ SD(SUBSET(I))}
3.6= {close⊂→(compress⊂→((P)) | P ∈ SD(SUBSET(I))}
(3)
= {close⊂→(P) | P ∈ SD(SUBSET(compress⊂→

))} .

Hence |SD(SUBSET(compress⊂→
))| ≤ |SD(SUBSET(compress⊂→

))|.

In the following lemma, whose proof is similar to the previous one, we employ a rela-
tion ⊆ between transition tuples defined by (T, b) ⊆ (T ′, b′) iff T ⊆ T ′ and b⇒ b′.

Lemma 4. Let N be an NFA, a ∈ ΣN and P a transition tuple. Then

1. compress⊂→(P�a) ⊆ compress⊂→(P)�a),

2. compress⊂→(compress⊂→(P)�a) = compress⊂→(P�a),

3. close⊂→(P) = close⊂→(compress⊂→(P)).

Theorem 10. TRANSSET(compress⊂→) � TRANSSET(I).

Proof. A straightforward induction using Lemma 4.2, yields

(5) SD(TRANSSET(compress⊂→
)) = {compress⊂→(P) | P ∈ SD(TRANSSET(I))}.

Hence |SD(TRANSSET(compress⊂→
))| ≤ |SD(TRANSSET(I))|.

Theorem 11. TRANSSET(compress⊂→) � SUBSET(close⊂→).

Proof. From (2), (4), (5) and Lemma 3.8 we obtain

SD(TRANSSET(compress⊂→
))

(5)
= {compress⊂→(P) | P ∈ SD(TRANSSET(I))}
(2)
= {compress⊂→(tuple(P)) | P ∈ SD(SUBSET(I))}
3.8= {compress⊂→(tuple(close⊂→(P))) | P ∈ SD(SUBSET(I))}
(4)
= {compress⊂→(tuple(P)) | P ∈ SD(SUBSET(close⊂→

))} .

Hence |SD(TRANSSET(compress⊂→
))| ≤ |SD(SUBSET(close⊂→

))|.

Theorem 12. SUBSET(close⊂→) � TRANSSET(compress⊂→).

Proof. From (2), (4), (5) and Lemmas 3.7 and 4.3 we obtain

SD(SUBSET(close⊂→
))

(4)
= {close⊂→(P) | P ∈ SD(SUBSET(I))}
3.7= {close⊂→(tuple(P)) | P ∈ SD(SUBSET(I))}
(2)
= {close⊂→(P) | P ∈ SD(TRANSSET(I))}
4.3= {close⊂→(compress⊂→(P)) | P ∈ SD(TRANSSET(I))}
(5)
= {close⊂→(P) | P ∈ SD(TRANSSET(compress⊂→

))} .

Hence |SD(SUBSET(close⊂→
))| ≤ |SD(TRANSSET(compress⊂→

))|.

24 Rob van Glabbeek & Bas Ploeger

By the last two theorems we have |SD(SUBSET(close⊂→
))| = |SD(TRANSSET(compress⊂→

))| for

any input NFA N . Thus, the surjective function close⊂→ from SD(TRANSSET(compress⊂→
))

to SD(SUBSET(close⊂→
)) constructed in the last proof must be a bijection. It is not hard to

see that it therefore is an isomorphism.

D Plots for random automata

D.1 DFA Size

1

10

100

0 0.5 1 1.5 2 2.5 3 3.5 4

N
um

be
ro

fD
FA

st
at

es
(l

og
sc

al
e)

Transition density (r)

Sizes of intermediate and minimal DFAs, N = 10, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

Minimal

1

10

100

1000

0 0.5 1 1.5 2 2.5 3 3.5 4

N
um

be
ro

fD
FA

st
at

es
(l

og
sc

al
e)

Transition density (r)

Sizes of intermediate and minimal DFAs, N = 20, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

Minimal

Five Determinisation Algorithms 25

1

10

100

1000

0 0.5 1 1.5 2 2.5 3 3.5 4

N
um

be
ro

fD
FA

st
at

es
(l

og
sc

al
e)

Transition density (r)

Sizes of intermediate and minimal DFAs, N = 30, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

Minimal

1

10

100

1000

10000

0 0.5 1 1.5 2 2.5 3 3.5 4

N
um

be
ro

fD
FA

st
at

es
(l

og
sc

al
e)

Transition density (r)

Sizes of intermediate and minimal DFAs, N = 40, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

Minimal

26 Rob van Glabbeek & Bas Ploeger

1

10

100

1000

10000

0 0.5 1 1.5 2 2.5 3 3.5 4

N
um

be
ro

fD
FA

st
at

es
(l

og
sc

al
e)

Transition density (r)

Sizes of intermediate and minimal DFAs, N = 50, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

Minimal

1

10

100

1000

10000

0 0.5 1 1.5 2 2.5 3 3.5 4

N
um

be
ro

fD
FA

st
at

es
(l

og
sc

al
e)

Transition density (r)

Sizes of intermediate and minimal DFAs, N = 60, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

Minimal

Five Determinisation Algorithms 27

1

10

100

1000

10000

100000

0 0.5 1 1.5 2 2.5 3 3.5 4

N
um

be
ro

fD
FA

st
at

es
(l

og
sc

al
e)

Transition density (r)

Sizes of intermediate and minimal DFAs, N = 70, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

Minimal

1

10

100

1000

10000

100000

0 0.5 1 1.5 2 2.5 3 3.5 4

N
um

be
ro

fD
FA

st
at

es
(l

og
sc

al
e)

Transition density (r)

Sizes of intermediate and minimal DFAs, N = 80, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

Minimal

28 Rob van Glabbeek & Bas Ploeger

1

10

100

1000

10000

100000

0 0.5 1 1.5 2 2.5 3 3.5 4

N
um

be
ro

fD
FA

st
at

es
(l

og
sc

al
e)

Transition density (r)

Sizes of intermediate and minimal DFAs, N = 90, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

Minimal

1

10

100

1000

10000

100000

0 0.5 1 1.5 2 2.5 3 3.5 4

N
um

be
ro

fD
FA

st
at

es
(l

og
sc

al
e)

Transition density (r)

Sizes of intermediate and minimal DFAs, N = 100, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

Minimal

Five Determinisation Algorithms 29

D.2 Time

1e-05

0.0001

0.001

0 0.5 1 1.5 2 2.5 3 3.5 4

C
PU

tim
e

(s
ec

)(
lo

g
sc

al
e)

Transition density (r)

Time needed for canonisation, N = 10, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

0.0001

0.001

0.01

0 0.5 1 1.5 2 2.5 3 3.5 4

C
PU

tim
e

(s
ec

)(
lo

g
sc

al
e)

Transition density (r)

Time needed for canonisation, N = 20, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

30 Rob van Glabbeek & Bas Ploeger

0.0001

0.001

0.01

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
PU

tim
e

(s
ec

)(
lo

g
sc

al
e)

Transition density (r)

Time needed for canonisation, N = 30, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

0.0001

0.001

0.01

0.1

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
PU

tim
e

(s
ec

)(
lo

g
sc

al
e)

Transition density (r)

Time needed for canonisation, N = 40, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

Five Determinisation Algorithms 31

0.0001

0.001

0.01

0.1

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
PU

tim
e

(s
ec

)(
lo

g
sc

al
e)

Transition density (r)

Time needed for canonisation, N = 50, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

0.0001

0.001

0.01

0.1

1

10

0 0.5 1 1.5 2 2.5 3 3.5 4

C
PU

tim
e

(s
ec

)(
lo

g
sc

al
e)

Transition density (r)

Time needed for canonisation, N = 60, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

32 Rob van Glabbeek & Bas Ploeger

0.0001

0.001

0.01

0.1

1

10

0 0.5 1 1.5 2 2.5 3 3.5 4

C
PU

tim
e

(s
ec

)(
lo

g
sc

al
e)

Transition density (r)

Time needed for canonisation, N = 70, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

0.0001

0.001

0.01

0.1

1

10

0 0.5 1 1.5 2 2.5 3 3.5 4

C
PU

tim
e

(s
ec

)(
lo

g
sc

al
e)

Transition density (r)

Time needed for canonisation, N = 80, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

Five Determinisation Algorithms 33

0.0001

0.001

0.01

0.1

1

10

100

0 0.5 1 1.5 2 2.5 3 3.5 4

C
PU

tim
e

(s
ec

)(
lo

g
sc

al
e)

Transition density (r)

Time needed for canonisation, N = 90, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

0.0001

0.001

0.01

0.1

1

10

100

0 0.5 1 1.5 2 2.5 3 3.5 4

C
PU

tim
e

(s
ec

)(
lo

g
sc

al
e)

Transition density (r)

Time needed for canonisation, N = 100, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

34 Rob van Glabbeek & Bas Ploeger

D.3 Memory

10

100

0 0.5 1 1.5 2 2.5 3 3.5 4

Pe
ak

m
em

or
y

(k
B

)(
lo

g
sc

al
e)

Transition density (r)

Peak memory usage of canonisation, N = 10, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

10

100

0 0.5 1 1.5 2 2.5 3 3.5 4

Pe
ak

m
em

or
y

(k
B

)(
lo

g
sc

al
e)

Transition density (r)

Peak memory usage of canonisation, N = 20, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

Five Determinisation Algorithms 35

10

100

1000

0 0.5 1 1.5 2 2.5 3 3.5 4

Pe
ak

m
em

or
y

(k
B

)(
lo

g
sc

al
e)

Transition density (r)

Peak memory usage of canonisation, N = 30, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

10

100

1000

0 0.5 1 1.5 2 2.5 3 3.5 4

Pe
ak

m
em

or
y

(k
B

)(
lo

g
sc

al
e)

Transition density (r)

Peak memory usage of canonisation, N = 40, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

36 Rob van Glabbeek & Bas Ploeger

10

100

1000

0 0.5 1 1.5 2 2.5 3 3.5 4

Pe
ak

m
em

or
y

(k
B

)(
lo

g
sc

al
e)

Transition density (r)

Peak memory usage of canonisation, N = 50, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

10

100

1000

10000

0 0.5 1 1.5 2 2.5 3 3.5 4

Pe
ak

m
em

or
y

(k
B

)(
lo

g
sc

al
e)

Transition density (r)

Peak memory usage of canonisation, N = 60, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

Five Determinisation Algorithms 37

10

100

1000

10000

0 0.5 1 1.5 2 2.5 3 3.5 4

Pe
ak

m
em

or
y

(k
B

)(
lo

g
sc

al
e)

Transition density (r)

Peak memory usage of canonisation, N = 70, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

10

100

1000

10000

0 0.5 1 1.5 2 2.5 3 3.5 4

Pe
ak

m
em

or
y

(k
B

)(
lo

g
sc

al
e)

Transition density (r)

Peak memory usage of canonisation, N = 80, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

38 Rob van Glabbeek & Bas Ploeger

10

100

1000

10000

0 0.5 1 1.5 2 2.5 3 3.5 4

Pe
ak

m
em

or
y

(k
B

)(
lo

g
sc

al
e)

Transition density (r)

Peak memory usage of canonisation, N = 90, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

10

100

1000

10000

100000

0 0.5 1 1.5 2 2.5 3 3.5 4

Pe
ak

m
em

or
y

(k
B

)(
lo

g
sc

al
e)

Transition density (r)

Peak memory usage of canonisation, N = 100, f = 0.40

SUBSET(I)
TRANSSET(I)

SUBSET(close⊂→
)

SUBSET(compress⊂→
)

TRANSSET(compress⊂→
)

