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ON A PRIORI ERROR ESTIMATES FOR A TWO-PHASE
MOVING-INTERFACE PROBLEM WITH KINETIC CONDITION

Adrian Muntean

CASA – Centre for Analysis, Scientific computing and Applications,

Department of Mathematics and Computer Science,
Technical University of Eindhoven, Eindhoven, PO Box 513, 5600 MB, The Netherlands

Abstract. We discuss the error analysis for a moving-boundary system in

two phases arising from modeling the penetration of a sharp carbonation front
into unsaturated cement-based materials. The special feature of this problem

is that the moving boundary is driven by a kinetic condition proportional to

the rate of a fast carbonation reaction concentrated on the moving boundary.
We prove a priori error estimates for the concentration profiles and position of

the moving boundary.

1. Introduction. A natural way to describe fast reaction-slow transport scenarios
in porous media is to employ a so-called moving-interface model. Such a model
consists of a system of mass-balance equations whose main feature is that it describes
a chemical reaction concentrated at the moving interface (or, following the case, near
a thin layer, or within one or multiple larger strips [10]). Typically, the position
of the moving reaction locus is a priori unknown. Therefore, this needs to be
determined simultaneously together with the concentration profiles of the involved
chemical species.

Mathematically, the moving-inteface models are interesting from at least two
perspectives: they are quite difficult to classify and there is no general framework
for the study of their well-posedness or numerical approximation. Usually, each
model has its own particularities, and therefore, it requires specific investigation
techniques. Note that, in general, one distinguishes in principle between two differ-
ent classes of moving-interface models. Following the terminology from Visintin’s
book on modeling phase transitions [18], we have

(A) Models with equilibrium conditions at the moving interface;
(B) Models with non-equilibrium conditions at the moving interface.
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2 ADRIAN MUNTEAN

Free-boundary problems like those due to Stefan, Hele-Show, Muskat, Mullins and
Sekerka belong to class (A), while moving-interface models with kinetic1 condition
belong to class (B).

In this note, we focus on a PDE model belonging to the class (B). More pre-
cisely, we deal with a moving-interface model with kinetic condition arising in the
modeling of concrete carbonation. CO2 and humidity attack concrete samples and
reduce their protection to corrosion (i.e. the alkalinity) via the apparently harmless
reaction CO2(g → aq) + Ca(OH)2(s → aq) → CaCO3 + H2O; see [6] for details on
the physics and chemistry of the full process and [7] for a well-posedness study of
a moving sharp-interface model for concrete carbonation. Note that the book by
Ortoleva [15] contains a wealth of reaction-diffusion scenarios from geo-chemistry
that belong to the class (B). We also draw the reader’s attention to the paper [14],
where a moving-boundary model with kinetic condition describing the dissolution
and precipitation of salts in porous media is analyzed.

The main objective here is to extend the results of our paper [9], obtained for
the case of a one-phase moving-boundary system, in two different directions. On
one hand, the PDE system we have now in view is more complex (two more PDEs
have been supplemented to describe the humidity behaviour in concrete, and addi-
tionally, a PDE model replaces the former ODE model for Ca(OH)2 dissolution).
On the other hand, the reaction-diffusion scenario in section 3 includes two mov-
ing phases instead of a single one. At the technical level, our approach remotely
ressembles [1, 12, 13], e.g., and goes in the same spirit as the works on the numerical
analysis of the one-dimensional Stefan problem by A. K. Pani and collaborators;
see [16, 3] and references cited therein. In what our problem concerns, we rely on
previously obtained analysis results: We extensively use the positivity, L∞− and
the energy estimates derived in [7] for the continuous case (with two moving phases)
and similar estimates stated in [9] (Theorem 4.5) for the space-discrete case (with
one moving phase). Herein, we enumerate a set of a priori error estimates that can
be derived for this type of problem and give a sketch of the main ideas of the proof.
In a forthcoming publication, we will complement these results with a posteriori es-
timates and use this information for an implemention of the full carbonation model
in the adaptive FEM environment ALBERTA [17].

The note is organized as follows: The governing equations for the physical situ-
ation outlined above are given within a fixed-boundary formulation together with
initial, boundary and interface conditions in section 3. In the same section, we also
give the weak formulation and state the main result (see Theorem 3.3) – a priori
error estimates for concentrations and interface position. Section 4 contains the
main ideas of the proof.

2. Notation. The sets {1, 2, 5} and {3, 6} are denoted by I1 and I2, while I :=
I1 ∪ {4} ∪ I2. As a rule if i ∈ I1, then ]a, b[:=]0, 1[; if i ∈ I2, then ]a, b[:=]1, 2[.
Let ST :=]0, T [ (T > 0) be the time interval under consideration and s(t) be the
interface position at time t ∈ ST . Here Ω1(t) :=]0, s(t)[ and Ω2(t) =]s(t), L[ (L > 0)

1The word kinetic means here that an explicit expression of the normal component of the
velocity of the moving interface (where the bulk of the carbonation reaction is concentrated)
is given as a function of the carbonation-reaction rate. Kinetic conditions have been originally
introduced to describe non-equilibrium interface kinetics during rapid solidification (see e.g. [18]),
where deviations from the local equilibrium occur at a rapidly moving solid-liquid interface. This

is a typical situation where phase diagram information cannot describe in an accurate manner the
thermodynamics at the moving interface.
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are spatial domains referring to the reacted and resp. to the unreacted phase. They
are mapped via Landau transfomations [5, 7] into the intervals ]0, 1[ and ]1, 2[. u
is the vector of concentrations. For concrete carbonation, we consider as active
chemical species the following: In Ω1(t), we have u1 := [CO2(aq)], u2 := [CO2(g)],
u4 := [CaCO3], and u5 := [moisture], while in Ω2(t), we have u3 := [Ca(OH)2(aq)]
and u6 := [moisture]. Various function spaces are used here. We only men-
tion the Gelfand’s triple (V, H, V∗), where H := L2(0, 1)|I1| × L2(1, 2)|I2| and
V :=

∏
i∈I−4 Vi, while Vi := {w ∈ H1(0, 1) : w(0) = 0} for i ∈ I1 and Vi := H1(1, 2)

for i ∈ I2. Furthermore, the set W 1
2 (ST , V, H) := {w ∈ L2(ST , V) and wt ∈

L2(ST , V∗)} is a Banach space with the norm

||w||W 1
2

:= ||w||L2(ST ,V) + ||w′||L2(ST ,V?).

For details on the other involved Lebesgue, Sobolev and Bochner spaces, we refer
the reader to [19].

3. PDE model with moving interface, weak formulation and main result.
In a fixed-domain formulation, the problem reads: Find the couple (u(y, t), s(t))
(y ∈]a, b[, t ∈ ST ) satisfying the following system of partly dissipative PDEs:

(u1 + λ1)t −
D1

s2
u1,yy = −P1(u1 −Q1u2) + y

s′

s
u1,y in ]0, 1[, (1)

(u2 + λ2)t −
D2

s2
u2,yy = P2(u1 −Q2u2) + y

s′

s
u2,y in ]0, 1[, (2)

(u3 + λ3)t −
D3

(L− s)2
u3,yy = −S3,diss(u3 − u3,eq) + (2− y)

s′

L− s
u2,y in ]1, 2[, (3)

u′4(t) = ηΓ(u(s(t), t), for all t ∈ ST , (4)

(u5 + λ5)t −
D5

s2
u5,yy = y

s′

s
u5,y in ]0, 1[, (5)

(u6 + λ6)t −
D6

(L− s)2
u6,yy = (2− y)

s′

L− s
u2,y in ]1, 2[, (6)

with boundary conditions

u1(0, t) = u2(0, t) = u3,y(2, t) = u5(0, t) = u6,y(0, t) = 0, (7)

moving interface conditions

− D1

s
= ηΓ(1) + s′(u1(1) + λ1), (8)

−D2

s
= s′(u2(1) + λ2), (9)

− D3

L− s
= −ηΓ(1, t) + s′(u3(1) + λ3), (10)

−D5

s
= − D6

L− s
− ηΓ(1, t), u5(1) + λ5 = u6(1) + λ6, (11)

as well as homogeneous initial conditions. The PDE system is closed by the kinetic
condition

s′(t) = ηΓ(1, t) for all t ∈ ST . (12)
The original PDE model can be obtained by transforming (1)–(12) backwards to the
moving domains via inverse Landau transformation [5, 8]. Note that in the original
domain the reaction rate has the form ηΓ(u(s(t), t), t) for all t ∈ ST , while ηΓ(1, t)
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is a notation valid in the fixed-domain formulation. In what will follow, we refer to
(1)–(12) as problem PΓ and to its semi-discrete counterpart as problem P sd

Γ .

Definition 3.1. The couple (u, s) is called weak solution of problem PΓ if and only
if there is Sδ :=]0, δ[ with δ ∈]0, T [ such that

s0 < s(δ) ≤ L0 < L, (13)

u ∈ W 1
2 (Sδ; V, H) ∩ [S̄δ → L∞(a, b)]|I|, s ∈ W 1,4(Sδ), (14)

s
∑
i∈I1

(ui,t(t), ϕi) + (L− s)
∑
i∈I2

(ui,t(t), ϕi) + A(s, u, ϕ) + E(s′, u + λ, ϕ)

= BF (u + λ, s, ϕ) + H(s′, u,y, ϕ)− s
∑
i∈I

(ui,t(t), ϕi), and u′4(t) = ηΓ(u(s(t), t), (15)

s′(t) = ηΓ(1, t), (16)

for all ϕ ∈ V a.e. t ∈ Sδ and

u(0) = u0 ∈ H, s(0) = s0 > 0. (17)

The expressions of A(·), E(·), BF (·), and H(·) can be obtained easily by writting
down the weak formulation of (1)–(12) and identifying respectively the transport
term by diffusion, the boundary terms, the forcing terms as well as the new terms
arising due to the immobilization of the moving interface.

Definition 3.2. The couple (uh, sh) is called weak solution of problem P sd
Γ if and

only if there is Sθ :=]0, θ[ with θ ∈]0, T [ such that

s0 < sh(θ) ≤ L0 < L, (18)

uh ∈ W 1
2 (Sθ; Vh, H) ∩ [S̄θ → L∞(a, b)]|I|, sh ∈ W 1,4(Sθ), (19)

sh

∑
i∈I1

(uih,t(t), ϕi) + (L− sh)
∑
i∈I2

(uih,t(t), ϕi) + A(sh, uh, ϕ) + E(s′h, uh + λ, ϕ)

= BF (uh + λ, sh, ϕ) + H(s′h, uh,y, ϕ)− sh

∑
i∈I

(uih,t(t), ϕi),

u′4h(t) = ηh
Γ(uh(sh(t), t), (20)

s′h(t) = ηh
Γ(1, t), (21)

for all ϕ ∈ Vh a.e. t ∈ Sθ and

uh(0) = u0h ∈ H, sh(0) = s0 > 0. (22)

Assumption H: (H1) λ ∈ W 1,2
+ (ST ), u3,eq ∈ L∞+ (ST ), u0 ∈ L∞+ (0, 1)|I1| ×

L∞+ (1, 2)|I2|, u40 ∈ L∞+ (0, s(t)) a.e. t ∈ ST ; (H2) All coeficients Di (i ∈ I1 ∪ I2),
P1, P2, Q1, Q2, and S3,diss are strictly positive; (H3) Assumptions (A)-(C) listed in
[7], which ensure the existence of L∞-bounds on u and s′, hold here too.

Let (u, s) and (uh, sh) be weak solutions to PΓ and P sd
Γ , i.e. (u, s) and (uh, sh)

are in agreement with Definition 3.1 and Definition 3.2. Our main result is the
following.

Theorem 3.3. Let u0 ∈
∏

i∈I1∪I2
Vi × H2(a, b) and consider assumption (H) be

satisfied.
(i) Then the problems PΓ and P sd

Γ are uniquely solvable.
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(ii) There exist a ρ ∈ ST and strictly positive constants ck (k = 1, 2, 3), which are
independent on h, such that the following estimates hold:

||u− uh||L2(Sρ,V) ≤ c1

(
h2 + |s− sh|W 1,4(Sρ)

)
, (23)

|s′ − s′h|L2(Sρ) ≤ c2h, (24)
||u− uh||L∞(Sρ,H)∩L2(Sρ,V) + ||s− sh||W 1,4(Sρ) ≤ c3h. (25)

Remark 1. It is worth noting that Theorem 3.3 recovers known results2 from the
one-phase case stated Theorem 5.1 in [9]. Moreover, we observe that u4 satisfies
the estimate (24) as well.

4. Proof of Theorem 3.3. The proof of (i) relies on the use of fixed-point princi-
ples as in [7, 9] or [10]. In this section, we only sketch the proof of (ii). Testing by
wh ∈ Vh in both the weak formulation and its semi-discrete counterpart and then
subtracting the results, we obtain∑
i∈I−{4,5,6}

((ui + λi)t, wih)− ((uih + λi)t, wih) +
1
s2

∑
i∈I1−{5}

(Diui,y, wih,y)−

− 1
s2

h

∑
i∈I1−{5}

(Diuih,y, wih,y) +
1

(L− s)2
∑

i∈I2−{6}

(Diui,y, wih,y)

− 1
(L− sh)2

∑
i∈I2−{6}

(Diuih,y, wih,y) = −ηΓ(1)
s

w1(1) +
ηh
Γ(1)
sh

w1h(1)

+
2∑

`=1

s′

s
(u`(1) + λ`)w`(1)−

2∑
`=1

s′h
sh

(u1h(1) + λ1)w1h(1)

−ηΓ(1)
L− s

w3(1) +
ηh
Γ(1)

L− sh
w3h(1)

+
s′

L− s
(u3(1) + λ3)w3(1)− s′h

L− sh
(u3h(1) + λ3)w3h(1)− P1(u1 −Q1u2, w1)

+P1(u1h −Q1u2h, w1h) + P2(u1 −Q2u2, w2)− P2(u1h −Q2u2h, w2h)

−S3,diss(u3 − u3,eq, w3h) + S3,diss(u3h − u3,eq, w3h) +
2∑

`=1

s′

s
(yu`,y, w`h)

−
2∑

`=1

s′h
sh

(yu`h,y, w`) +
s′

L− s
((2− y)u3,y, w3h)− s′h

L− sh
((2− y)u3h,y, w3h) (26)

and
6∑

j=5

((uj + λj)t, swjh)− ((ujh + λj)t, shwjh) +
D5

s
(u5,y, w5h,y)

−D5

sh
(u5h,y, w5h,y) +

D6

L− s
(u6,y, w6h,y)− D6

L− sh
(u6h,y, w6h,y)

= ηΓ(1)w5(1)− ηh
Γ(1)w5h(1) + s′((2− y)u6,y, w6h)− s′h((2− y)u6h,y, w6h). (27)

In what follows, we deal only with (27) and refer the reader to [9] for a way of
estimating (26). We denote e := u− uh, and correspondingly, ei := ui − uih for all

2Of course, the size of the constants ck and the way they depend on the model parameters is
different here than in the one-phase scenario.
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i ∈ I. Grouping conveniently the terms and then dividing the final result by s, we
get the following expression:

(e5,t, w5h) +
L− s

s
(e6,t, w6h) +

D5

s2
(e5y, w5h,y) +

D6

(L− s)2
L− s

s
(e6,y, w6,y)

=
sh − s

s
(u5h,t, w5h) +

s− sh

s
(u6h,t, w6h) +

1
s

(
1
s
− 1

sh

)
(D5u5h,y, w5h,y)

+
1
s

(
1

L− sh
− 1

L− s

)
(D6u6h,y, w6h,y) +

s′ − s′h
s

w5h(1)

+
s′

L− s
((2− y)e6,y, w6h) +

s′h − s′

L− s
((2− y)u6h,y, w6h)

+
s′

s
(ye5,y, w5h) +

s′h − s′

s
(yu5h,y, w5h). (28)

We denote

d̂ := (d̂(s(t)) :=) min
t∈S̄T

{L− s(t)
s(t)

}D6. (29)

Note that for all r ∈ [s0, L[ we have 0 < d̂(r) < ∞ and limr→L−
d̂(r)

(L−r)2 = +∞. For

convenience of notation, we will not point out anymore the dependence of d̂ on s(t).
Furthermore, for all vh ∈ Vh we take wh = (vh − u) + e. Choosing in (28) as test
function wh = vh − uh ∈ Vh, we obtain:

1
2

d

dt

(
|e5|2 + |e6|2

)
+

D5

s2
||e5||2 +

d̂

(L− s)2
||e6||2

≤ (e5,t, u5 − u5h) + (e6,t, u6 − u6h) +
D5

s2
(e5,y, (u5 − u5h),y)

+
d̂

(L− s)2
(e6,y, (u6 − u6h),y) =

6∑
`=5

(e`,t, u` − v`h) +
D5

s2
(e5,y, (u5 − v5h),y)

+
d̂

(L− s)2
(e6,y, (u6 − v6h),y) +

6∑
`=5

(e`,t, v`h − u`h) +
D5

s2
(e5,y, (v5h − u5h),y)

+
d̂

(L− s)2
(e6,y, (v6h − u6h),y). (30)

Remark 2. (1) We need to estimate the non-standard terms (yuih,y, vih − uih)
for all i ∈ I1 and ((2 − y)uih,y, vih − uih) for all i ∈ I2. We illustrate here our
strategy when i ∈ I1. Integrating by parts in

∫ 1

0
yuih,y(vih − uih)dy and employing

the L∞-bounds on (semi-discrete) concentrations, the interpolation inequality as
well as the Cauchy-Schwarz’s inequality, we obtain

|(yuih,y, vih − uih)| ≤ uih(1)|vih(1)− uih(1)|+ |uih||vih − uih|+ |uih|||vih − uih||
≤ |uih(1)|ĉ||vih − uih||θ|vih − uih|1−θ + |uih|(|vih − uih|+ ||vih − uih||)

≤ c̄(|vih − uih|+ ||vih − uih||), (31)

where c̄ := k1

(
ĉ

2
1−θ + 1

)
.

(2) Let Rh be the Riesz’s projection operator. Its properties needed here can
be summarized as follows: For any f ∈ H2(a, b), there exist the strictly positive
constants γk (k = 1, 2, 3), which are independent of the mesh size h, such that
the Lagrange interpolant Rhf satisfies the inequalities |f −Rhf | ≤ γ1h

2|f |H2(a,b),
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||f − Rhf || ≤ γ2h|f |H2(a,b), and |f(1) − Rhf(1)| ≤ γ3h
2−θ|f |H2(a,b). For details,

see Lemma 3.2 in [9] and Theorem 5.5, p. 65 in [4].

Combining (28), (30), and the estimates mentioned in Remark 2, we obtain

1
2

d

dt

(
|e5|2 + |e6|2

)
+

D5

s2
||e5||2 +

d̂

(L− s)2
||e6||2

≤ sh − s

s
|u5h,t||v5h − u5h|+

sh − s

s
|u6h,t||v6h − u6h|

+
6∑

`=5

|e`,t||u` − v`h|+
D5

s2
||e5||||u5 − v5h||+

d̂

(L− s)2
||e6||||u6 − v6h||

+
|s− sh|
s2sh

|D5u5h,y||(v5h − u5h),y|+
|s− sh|

s(L− s)(L− sh)
|D6u6h,y||(v6h − u6h),y|

+|s′ − s′h|
1
s
|v5h(1)− u6h(1)|

+
s′

s

(
1
2
|e6(1)|2 +

1
2
|e6|2 + ||e6|||v6h − u6h|

)
+
|s′ − s′h|

s
|u6h,y||v6h − u6h|

+
s′

s

(
1
2
|e5(1)|2 + ||e5|||v5h − u5h|

)
+

s′h − s′

s
|u5h,y||v5h − u5h|

≤
6∑

`=5

|e`,t||u` − v`h|+
D5

s2
||e5||2||u5 − v5h||+

d̂

(L− s)2
||e6||||u6 − v6h||

+
|sh − s|

s
|u5h,t|(|v5h − u5|+ |e5|) +

|sh − s|
s

|u6h,t|(|v6h − u6|+ |e6|)

+
|s− sh|
s2sh

|D5u5h,y|(||v5h − u5h||+ ||e5||)

+
|s− sh|

s(L− s)(L− sh)
|D6u6h,y|(||v6h − u6h||+ ||e6||)

+
6∑

`=5

|s′ − s′h|
1
s
(|v`h(1)− u`(1)|+ |e`(1)|+ |e`|+ |v`h − u`|). (32)

Finally, we get

1
2

d

dt
(|e5|2 + |e6|2) +

D5

s2
||e5||2 +

d̂

(L− s)2
||e6||2

≤
6∑

`=5

|e`,t|γ1h
2
(
|u5|H2(0,1) + |u6|H2(1,2)

)
+ ε

D5

s2
||e5||2 + cε

D5

s2
γ2h

2||u5||H2(0,1)

+ε
d̂

(L− s)2
||e6||2 + cε

D6

(L− s)2
γ2h

2||u6||H2(1,2)

+
|sh − s|

s
|u5h,t|

(
γ1h

2||u5||H2(0,1) + |e5|
)
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+
|sh − s|

s
|u6h,t|

(
γ1h

2||u6||H2(1,2) + |e6|
)

+
|s− sh|D5|u5h,y|

ssh

(
γ2h||u5||H2(0,1) + |e5|

)
+
|s− sh|D6|u6h,y|
s(L− s)(L− sh)

(
γ2h||u6||H2(1,2) + |e6|

)
+

6∑
`=5

|s′ − s′h|
1
s

(
γ3h

2−θ||u`||H2 + ĉ||e`||θ|e`|1−θ + |e`|+ γ1h
2|u`|H2

)
=

7∑
j=1

Ij , (33)

where the terms Ij (j ∈ {1, . . . , 7}) are defined as follows:

I1 :=
6∑

`=5

|e`,t|γ1h
2
(
|u5|H2(0,1) + |u6|H2(1,2)

)
I2 := ε

D5

s2
||e5||2 + cε

D5

s2
γ2h

2||u5||H2(0,1)

+ ε
d̂

(L− s)2
||e6||2 + cε

D6

(L− s)2
γ2h

2||u6||H2(1,2)

I3 :=
|sh − s|

s
|u5h,t|

(
γ1h

2||u5||H2(0,1) + |e5|
)

I4 :=
|sh − s|

s
|u6h,t|

(
γ1h

2||u6||H2(1,2) + |e6|
)

I5 :=
|s− sh|D5|u5h,y|

ssh

(
γ2h||u5||H2(0,1) + |e5|

)
I6 :=

|s− sh|D6|u6h,y|
s(L− s)(L− sh)

(
γ2h||u6||H2(1,2) + |e6|

)
I7 :=

6∑
`=5

|s′ − s′h|
1
s

(
γ3h

2−θ||u`||H2 + ĉ||e`||θ|e`|1−θ + |e`|+ γ1h
2|u`|H2

)
.

By e`,t ∈ L2(Sρ, L
2(a, b)) (` = 5, 6) for ρ ∈]0,min{θ, δ} and the standard energy

estimates for the continuous problem [7], we note that all Ij are bounded from
above. After manipulating elementary inequalities, we obtain:

I1 ≤
6∑

`=5

|e`,t|2

2
h2 +

γ1h
2

2

(
|u5|2H2(0,1) + |u6|2H2(1,2)

)
I2 ≤ ε

D5

s2
||e5||2 + ε

d̂

(L− s)2
||e6||2 + cεγ

2
2

(
D5

s2
+

D6

(L− s)2

)
(||u5||2H2 + ||u6||2H2)

I3 ≤ |sh − s|2 +
γ1

2
|u5h,t|2|u5|2H2h4 +

γ2
1

2
|u5h,t|2|e5|2

I4 ≤ |sh − s|2 +
γ1

2
|u6h,t|2|u6|2H2h4 +

γ2
1

2
|u6h,t|2|e6|2
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I5 ≤ 1
2

(
1 +

cεD
2
5|u5h,y|2

2s2
h

)
|s− s2

h|+
γ2
2D5|u5h,y|2

2s2s2
h

||u5||2H2h2

+ cε
|s− sh|2D2

5|u5h,y|2

2s2
h

+ ε
||e5||2

s2

I6 ≤ 1
2

(
1 +

cεD
2
6|u6h,y|2

2s2(L− sh)2

)
|s− s2

h|+
γ2
2D6|u6h,y|2

2s2(L− s)2(L− sh)2
||u6||2H2h2

+ ε
||e6||2

(L− s)2

I7 ≤
6∑

`=5

[
|s′ − s′h|2

2
+

γ2
3

s2
h2(2−θ)|u`|2H2

]
+ ζ̄|s′ − s′h|2 + ζcζ̄

||e5||2

s2

+ ζcζ̄

||e6||2

(L− s)2
+ cεcε̄(γ3ĉ)

2
1−θ

(
L− s

s

) 2
1−θ

|e6|2 + cζcζ̄(γ3ĉ)
2

1−θ |e5|2

+
6∑

`=5

|e`|2

2
+

3
2
|s− s′h|2 +

γ2
1

2

6∑
`=5

|u`|2H2h4.

Finally, we estimate
∑7

j=1 Ij by

7∑
j=1

Ij ≤ |s− sh|2
(

3 + cζ
D2

5

2s2
h

|u5h,y|2 +
cζD

2
6|u6h,y|2

2s2(L− sh)2

)
+ |s′ − s′h|(

7
2

+ ζ̄)

+
||e5||2

s2

(
εD5 + ζcζ̄

)
+

||e6||2

(L− s)2
(
εd̂ + ζcζ̄

)
+h2

(
6∑

`=5

|e`,t|2 +
γ1

2
(||u5||H2 + ||u6||H2) +

γ2
1

2
|u5h,t|2|u5|2H2 +

γ2
1

2
|u6h,t|2|u6|2H2+

+
γ2
2

2s2s2
h

D2
5|u5h,y|2|u5|H2 +

γ2
2

2s2(L− s)2(l − sh)2
D2

6|u6h,y|2|u6|H2+

+
γ2
3

s2

(
||u5||2H2 + ||u6||2H2

)
+

γ1

2
(
||u5||2H2 + ||u6||2H2

))
+(|e5|2 + |e6|2)

[
γ2
1

2
(
|u5h,t|2 + |u6h,t|2

)
+ cζcζ̄(γ3ĉ)

2
1−θ

((
L

s
− 1
) 2

1−θ

+ 1

)
+

1
2

]
. (34)

Note that the second term from the r.h.s. of (34) can be estimated with the help of

|s′ − s′h| ≤ ||e||, (35)

while the third and the forth terms can be compensated employing the two ’diffusive’
terms from the l.h.s. of (34). We denote D̃5 := D5− εD5− ζcζ̄ and d̃ = d̂− εd̂− ζcζ̄

and choose ε > 0 and ζcζ̄ > 0, such that D̃5 ≥ 0 and d̃ ≥ 0. Furthermore, using
(35), it yields

d

dt

(
|e5|2 + |e6|2

)
+

D̃5

s2
||e5||2 +

d̃

(L− s)2
||e6||2

≤ α1(t)h2 + α2(t)(|e5|2 + |e6|2) + α3(t)|s− sh|2. (36)
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In (36), we have αi ∈ L1
+(ST ) (i ∈ {1, 2, 3}), while their exact definitions can be

read off from (34). It is important to notice that (36) has a nice structure for which
Gronwall’s inequality can be applied (after adding further terms arising from (26)).
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