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Initial conditions and robust Newton-Raphson
for Harmonic Balance analysis of free-running
oscillators

J. Virtanen, J. ter Maten, T. Beelen, M. Honkala, and M. Halkén

Abstract Poor initial conditions for Harmonic Balance (HB) analysisfree-
running oscillators may lead to divergence of the direct té@aRaphson method
or may prevent to find the solution within an optimization egach. We exploit
time integration to obtain estimates for the oscillaticggiuency and for the oscilla-
tor solution. It also provides an initialization of the peotoltage. Next we describe
new techniques from bordered matrices and eigenvalue migtbamprove Newton
methods for Finite Difference techniques in the time donaaiwell as for Harmonic
Balance. The method gauges the phase shift automaticallgssumption about the
range of values of the Periodic Steady State solution isetted

1 Introduction

A free-running oscillator is an autonomous circuit, whi@stonly DC bias sources
connected to the circuit and, thus, no periodic excitatiouring the time-domain
transient analysis of an oscillator, the oscillation stdy itself due to noise or
instability. Long start-up time implies long simulatiormi& to get the Periodic
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Steady State (PSS) solution. Harmonic balance (HB) arslyaifrequency-domain
PSS method. HB is needed for (phase) noise simulations amaris suitable for
frequency-dependent linear devices. It may convergerfestbe PSS solution of a
free oscillator than the transient analysis. To enhanceargence one either mod-
ifies the HB equations or one applies artificial excitationatldition, the oscilla-
tion frequency (the fundamental HB frequency), is unknowth ane needs a gauge
equation and an initial estimate. Frequency domain mettmdstimate these can
be found in [1, 3, 6-8] (and their references).

We present two algorithms for oscillation frequency detecfrom transient data
and improve by (vector) extrapolation [10]. The initialima of the probe voltage
amplitude and of the HB solution are considered. Finally wsadibe new tech-
niques from bordered matrices and eigenvalue methods tooirapghe Newton
method for HB analysis.

2 Initializing HB Oscillator Analysis

The oscillator analysis in the APLAC simulator [2] utilizaprobe element and op-
timization techniques. Inside an optimization loop HB gs& is performed with
new values of the optimization variables, being the ogdalifafrequency,fose, and
the oscillation amplitudeyyse. An artificial excitation probe, being a voltage source
in series with a non-zero resistor (to prevent an increasiesoDAE-index), is con-
nected to the circuit. The goal of the optimization is to haweero current through
the probe element. For a related procedure see [8]. Thelindgnditions for the op-
timization of fosc andvysc are obtained from transient analysis as described next.
Initially a (limited) transient analysis is run, followeg la Fourier transform (FFT)
to get an impression of the spectrum of the oscillator andhefsblution. A spec-
tral line having the largest magnitude indicates the asidlh frequency. Depending
on the sampling rate, the actual oscillation frequency nagituated between the
sampled frequency points. Therefore, quadratic intetfwolavith three frequency
points around the maximum is used to determine a more aecestimate for the
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Fig. 1 Left: Quadratic interpolation of the frequency from the spectr®ight: Zero-crossing:
the x-markers connected with lines show the points usedferpolation.
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oscillation frequency, see Fig. 1 (left). An alternativera-crossing, method also
applies to transient simulation results. The period isrieitged from the zero cross-
ings in the waveform with the DC-value. Accuracy of the zewssings is improved
by using linear inverse interpolation, see Fig. 1 (right)isTcan be generalized to
a Poincaré method [4, 5] that determines the next root of@dg) phase condition
s(x(t)) = (x(t),n) —a =0 (i.e. solve botlx = x4 [with constraind(x(t),n)/dt > 0]
andt = t) and restarts the time integrationtat t, with initial value x4*. The
valuesxy.1 = F(xk) (for some functiorF andk > 0), determined in this way, ap-
proximate the boundary value used by the ultimate PSS soluii/e accelerate by
vector extrapolation. Define recursiveB 1 = [Dk dky1], with Do = 0 (empty)
anddy;1 = X1 — Xk. Clearly Dy = X Ay for Xy = [Xo X1 ... X¢] and a difference
matrix Ag. By a QR-decomposition we determine the rankDgf 1 = Qx 1Rk 1,
with Qi1 = [Qk Ok+1] and Ry1 = Fék ;T;ll
di.1 € SparfQy) = Spar{Dy), i.e. we we can writel,, 1 = Qxlkr1 = DkR;lrkH =
5% 10pdp Whereo = (01,...,0i)" = R, 'rys1. Settingoi,1 = —1 we thus have
z';;;ll opdp = 0. This linear combination has a crucial application. If wesss the
dn in terms of lower and higher order effects we observe thastime of the lower
order effects nearly cancels. We assume that 1, that® = dF/dx is uniformly
bounded and that alsgd — @)~ exists and is uniformly bounded. We summarize
some basic steps in Alg. 1. Starting with this valp@ne generates iterangg

. Jake1| < € we assume that

Algorithm 1 Algorithmic background for the accelerated Poincaré maghad [5].

1: Denote the limit of the recursiat, 1 = F(x,) (n > 0) by X = lim X;.

2: Letey = X — X, theney. 1 = en + /(| 12). Thus|en /2 = &(|lenl[2) = &(]eol|?).

3: For thed, mentioned above we hadg, 1 = ®dn + 0/(||en—en_1]|?) = @dn+ O(|Jen_1||?) =
®dy + O(||eo||?) (for n > 1). This last 2-terms recursion makes the next steps a hitreas
to formulate than the more precise intermediate 3-termsrseam. Forn = 0 we haved; =
X1—Xo =€ —e = (@ —1)eo+ O(||eo][?), henceey = (@ —1) *d1 + (| |eo||?).

4: We have0 = 5¥ apdp = 5515 0p®@P1dy + 011 + (| |eo|[?), hencey §'] op P dy =
O (|leof[?).

5. Let = = (y¥j0p)X. We obtain 37 opxp = ST 0p(X + &) = = + 5K opep =
=43P opeP e+ O(ledf[?) = =+ 30 op@Pey + O(||e]|?) = = + 30 op P (@ —
1)ty + 6(]eo]|?) = =+ D(d— 1)L 5 0,07 1dy + (| [eol[2) = = + (| |eo] ).

6: Finally y = 3" 0pxp/(5510p) is a higher order accurate approximation, with error
0(||eol|?), or, taking the effect into account, with error(||eg||?) + O (€).

with as next extrapolatiom. The rowx,y,z,... converges super-linearly. Storing
thety =tq easily provides the periotl =t ; —tk. A final integration over one pe-
riod gives a time-domain solution from which an initial HBion is obtained.
With n = g one traces a particular unknown (this choice requires kedge by the
designer about the location where the oscillation occUisg. phase condition can
be for a difference of a voltage or a zero condition for a autrre

1 This method is used in Pstar, the in-house analog circuitlsitor of NXP Semiconductors.
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3 VCO oscillator

The methods implemented in APLAC were tested with an inéals#CO circuit
that consists of 40 MOSFETS (modelled by BSIM3) and 80 (Jppdades. The
expected results based on transient simulatiodi@ge- 3.25 GHz and/psc= 1.25V,
while the initial values for the analysis werksc= 3.0 GHz andvpsc= 1.0 V.

The circuit has been simulated using HB oscillator analysthout initialization
(old), and with FFT and zero crossing (ZeroC) initializatidable 1 summarizes
the CPU times and the number of HB iterations obtained toiréae oscillator so-
lution (fosc= 3.25GHz andvysc = 1.25V) as well as initial values ofysc andvosc
for the HB based optimization — with the old method user-gjgetvalues are used
directly, and improved values are obtained using either &F4eroC method.

A typical result of the Poincaré method for a Colpitts datdr gives 3 outer iter-
ations (extrapolations) with 4, 3, 2 inner iterations, i&pely, to build each time
a subspace in which extrapolation leads to an improvedlnitilue for solution
and period (final errox 10-%6). The zero crossing and the Poincaré method as-
sume that two successive crossings determine the perigsleXbludes situations
in which four or more crossings really determine the overatiod.

Table 1 Number of HB iterations and CPU times, and user-specifield’{'@r improved initial
values (‘FFT’, ‘ZeroC’) of fosc andvpsc Of the VCO circuit.

method HBITER CPU/s initial value of,sdGHz initial value ofvysd/V

old 2259 110.6 3.0 1.00
FFT 47 6.2 2.7 1.09
ZeroC 31 14 3.1 1.17

4 Newton Raphson

The Newton-Raphson method to solve the Harmonic Balandersylsecomes

xk+l_xk F Xk7 fk Ak bk
Mk{fkqtl_fk] ——L}Xk_g], MK = {CT 5} 1)
Here
ak— 9F _ok.chygk pho 08 (2)
ox xk, fk ’ of Xk’fk’

for suitable matrice€ andG, that are composed by the local Jacobians and (dis-
crete) Fourier Transform& = diag.. ., i, ...), with w = m((fk) (for some func-
tion @). The last row in (1) corresponds with the phase equatiamliysd = 0. The
matrix A becomes badly conditioned when the Newton iterands coavatys is
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Fig. 2 LC oscillator: normalized corrections for solutions anebfuency.

due to the fact that the time derivative of the PSS solutidaesothe linearized
homogeneous circuit equations when linearized at the P&8mso Hence when
the discretization is exact this time derivative of theralite PSS is in the kernel
of A. This has led to study more carefully bordered matrices][&rf@dl general-
ized eigenvalue methods. In [9] the eigentriple, W, A) is determined such that
[AfC+G]V=0andWT[AfC+G]=0fortheA closestto 1. We approximate the
bi-orthogonality relation betweevt andW by WT.C-Q-X —1=0, i.e.in (1) we
takec = W' .C-Q andc = 1. We may even considef = V.

5 LC oscillator

We consider ai.C tank with a nonlinear resistor that is governed by the foilamyv
differential equations for the unknownsi( [v being the nodal voltage;being the
inductor current]

S0 & [0) [BA] [9] [0
i(0) =io. 4)

whereC, L andR are the capacitance, inductance and resistance, resggciiie
voltage controlled nonlinear resistor is defined by #8ndG parameters. The val-
uesL = 0.53nH,C=1.33pF,R=2500Q, S=1/R, andG = —1.1/R correspond
with an oscillation frequency 6 GHz. Starting with initiadreditionsTy = 1.1 x 2,
Vo(t) = sin(t), ip(t) = 0.2sin(t), andN = 101 (100 actual grid points), the PSS so-
lutions are obtained using the old phase-shift conditiothime and with the new
eigenvector gauge method. For both methods we determinmax@num of the
normalized correction of the solution and the normalized@irency correction

AXK = X = XKoo /[ X oo, AFE = [T — 1414
Normalized Normalized

during eactk-th Newton-Raphson iteration, which are presented in Fig. \®rong
value in the old phase shift condition even prevents corerezg for this method [9].
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6 Conclusion

Time domain initializations have been presented that erdnéire convergence op-
tions for Harmonic Balance within an outer optimization eggrh and within a

direct Newton-Raphson procedure. One method exploits EEfniques. A zero-

crossing technique was generalized to a Poincaré methere. $fpeed up by vector
extrapolation was based on Minimal Polynomial Extrapolati

Finally, a new technique for the Newton-Raphson simulatiba free-running os-

cillator was presented. The generalized eigenvectorhoeigenvalue closest to 1
and the time derivative of the solution provide a robust gaeguation that is dy-

namically updated within each Newton-Raphson iteratibmvas verified that the

new method has better convergence properties compared ular phase-shift
condition method and does not need additional informatimuéathe solution.
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