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Abstract

Advances in hardware technology pave the way to small,
low power wireless sensor devices, such as wireless micro-
phones. This makes it possible to use a large number, i.e.
thousands, of microphones at positions where it is not feasi-
ble to put wired microphones, creating an enormous poten-
tial for improved flexibility and performance within a trans-
parent acoustic communication context. In order to reduce
battery consumption, each of the wireless microphones has
to be sampled much below the Nyquist sample rate. In this
paper we will discuss some preliminary results and open
research issues that are involved in such an Undersampled
Wireless Acoustic Sensor (UWAS) network scenario.

1. Introduction

In acoustic communication systems people want to cre-
ate a virtual acoustic communication link that gives conver-
sation partners the impression of being in the same acous-
tic environment. Besides providing quality and robust-
ness Transparent Acoustic Communication (TAC) systems
should exploit the growing computer power to design more
flexible systems in which an acoustic interface is built that
on the one hand perfectly acquires audio signals, such as
speech and sound, and yet allows people to move around
freely without wearing or holding a microphone. For this
reason we have seen an enormous amount of research in
the recent past in sensor arrays (an array of microphones)
that can deal with multiple source signals, multiple micro-
phones, multiple loudspeakers running in real time on one
or more digital signal processing cores. Although sensor ar-
rays yield a higher performance than single-sensor systems,
their performance is limited by the fact that up to now typ-
ically a static configuration has been considered, where the
position of the array is fixed, the number of sensors is fixed

and rather small, and all signal processing is performed on
one (eventually multicore) central processor. Within a TAC
context, a more flexible scenario in a meeting room is in-
dicated in a.o. [1], where many meeting participants bring
portable devices such as laptops, mobiles and PDA’s. The
microphones of all these different devices form an ad hoc
network of distributed microphone arrays. Such an ad hoc
array, which will be indicated in this paper as Distributed
Portable Acoustic Sensor (DPAS) network, is much more
dynamic than the existing fixed acoustic sensor arrays, since
the position of the sensors is not exactly known and may
even vary in time.
In this paper we will discuss another scenario of dis-

tributed microphone arrays within a TAC context. This sce-
nario is based on the observation that advances in hardware
technology pave the way to extremely small, low power
wireless sensor devices with limited on-board processing
capability, enabling individual devices to perform simple
processing tasks and to communicate over a short range.
Within this context a Micro Electro Mechanical (MEM)
based wireless acoustic sensor (microphone) can afford in-
creased flexibility in installation options and can be manu-
factured in bulk quantity using processes developed by the
silicon wafer integrated circuit microchip industry. Due to
energy constraints of battery-powered devices, power aware
signal processing methods are needed. This can be achieved
by sampling each of the wireless acoustic sensors (much)
below the Nyquist sample rate, since it is known from liter-
ature [2] 1 that power consumption is linear proportional to
the sample frequency of an A/D convertor. Thus the lower
the sample frequency of the A/D the lower the battery con-
sumption. This approach opens the door to the possibility
of using a large number, i.e. thousands, of low cost un-
dersampled wireless acoustic sensors at positions where it

1p.50: P = αfCV 2
DD

, with P power consumption of any digital
block, VDD supply voltage, C total capacity that needs to be switched, f
is clock frequency and α parameter expressing the average activity of the
gates
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is not feasible to put wired microphones, creating an enor-
mous potential for improved flexibility and performance
within a TAC context. The dynamic character of such an
Undersampled Wireless Acoustic Sensor (UWAS) network
is obtained by the fact that it contains a huge amount of
sensors from which only a time-varying subset of sensors
will produce useful information and will be used. Due to
many conceptual differences with a fixed array of sensors,
novel array signal processing algorithms need to be devel-
oped for the UWAS scenario accounting for different un-
dersampled wireless acoustic sensors, dynamic array con-
figuration, synchronization between the devices, distributed
and collaborative processing. This paper will give a general
description of the UWAS scenario. Furthermore we discus
some preliminary results and some open research topics.

2. Basic UWAS scenario

The basic UWAS scenario is depicted in Fig. 1. This
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Figure 1. Basic UWAS scenario consisting of
different clusters of acoustic sensors.

figure shows a typical meeting room in which we encounter
different audio sources, e.g. speech (x, xa) and sound (xb)
signals. Some of these sources are desired (e.g. x and xa)
while others may be disturbing (undesired) ones (e.g. xb).
Most of the sources have a non-stationary character and can
move around in the room. All the sources are band limited
signals with maximum frequency fmax = 1/2πT0 [Hz].
The meeting room contains a large number, i.e. thousands,
of wireless acoustic sensors. These sensors are anywhere
in the room, e.g. behind the wall-paper or within the paint
on the walls. Only a time-varying subset of sensors will
produce useful information. Such subsets are denoted in
the figure by dashed circles. Each dashed circle contains a
cluster of different undersampled wireless acoustic sensors.
Each of these clusters has a wireless transmission link with
a host computer. A cluster may sense one signal (e.g. x)
or a mixture of signals (e.g. xa and xb). Adaptive algo-
rithms that run on the host PC combine all the incoming

sensed signals and produce desired signals, e.g. x̂ and x̂a

and suppress undesired signals (e.g. xb). One such cluster
of L different undersampled wireless acoustic sensors that
senses one source signal x is depicted in Fig. 2. Signal
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Figure 2. Cluster of L different undersampled
wireless acoustic sensors that senses one
source signal x.

x arrives via L different acoustic transfer functions Hi, for
i = 0, 1, · · · , L−1, at L different wireless acoustic sensors.
Each sensor contains one microphone. The input signal of
this microphone is first filtered by an analog prefilter F with
cut-off frequency |fc| > fmax. The power consumption of
each of the wireless acoustic sensors is limited by using a
sample rate (1/Ki) ·fc, for i = 0, 1, · · · , L−1, withKi an
integer number. Thus each of the sensors contains samples
of an aliased version of the source signal x. Each sens-
ing device contains a limited amount of computing power,
denoted by the boxes DSPi, for i = 0, 1, · · · , L− 1, creat-
ing the possibility of distributed processing. Collaborative
processing can be obtained by creating a transmission link
between different sensing devices. The aliased and eventu-
ally pre-processed signal samples are transmitted to a host
computer which combines L of these (aliased) UWAS sig-
nal samples and calculates a reconstruction x̂ of the original
source signal x. In the following paragraph we will derive a
reconstruction structure for a simplified cluster that senses
one source signal.

3. Reconstruction structure for a cluster that
senses one source signal

In this section we will show how a source signal x can
be reconstructed in the host PC, when using a simplified
setup of a cluster of L acoustic sensors as depicted in Fig.
2. In this simplified setup we make the following assump-
tions: a) The analog prefilter F is an ideal low pass filter

2
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with cut-off frequency |fc| > fmax, b) The acoustic trans-
fer functionsHl are different, c) All L A/D convertors sam-
ple at the same rate (1/K) · fc, with K a natural number
≥ 1, d) The sensors do not perform any further processing
and finally e) The wireless transmission is assumed to be
ideal. We will make our further derivation completely in
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Figure 3. Discrete-time model of a cluster of
L factor K undersampled wireless acoustic
sensors that senses one source signal.

the discrete-time domain. For this we need a discrete-time
model of the cluster of L factor K undersampled wireless
acoustic sensors, which is depicted in Fig. 3. In this fig-
ure we used Ts = K · T0. The frequency response of each
of the acoustic transfer functions is given byHl(ejθ), where
θ = 2πf ·T0 is the normalized discrete-time frequency with
period 2π. It was shown in [3] that the derivation can be
simplified by using an alternative model that uses a modu-
lation and demodulation operator. For branch index l, with
l = 0, 1, · · · , L− 1, this is depicted in Fig. 4. In the upper
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Figure 4. Alternative model of one branch l of
discrete-time model of a cluster that senses
one source signal.

part of this figure we have applied a modulation operator to
the input signal. The result is that the frequency response
of the input signal is shifted over over K−1

K
π [rad]. This

modulation operator is followed by a demodulation opera-
tor, which shifts the frequency response of the input signal
over the same amount in the opposite direction. In the lower
part of this figure, the demodulation operator is first moved
over the filter Hl(ejθ), resulting in a shifted version:

Hs,l(ejθ) = Hl(ejθ ·W
K−1

2
K ) (1)

with the twiddle factor WK = e−j
2π

K . Finally the demod-
ulation operator is moved over the down-sampling operator
which results in the following simple demodulation oper-
ator: e−j(K−1)πn = (−1)(K−1)·n. Furthermore the fre-
quency response of the shifted input can be written as:

Xs(ejθ) = X(ejθ ·W
K−1

2
K ) (2)

Using the standard expression for the factor K downsam-
pler we can now derive for each branch l = 0, 1, · · · , L− 1
the following equation in the frequency domain:

Ys,l(ejθ) =
1
K

K−1
2∑

q=−K−1
2

Hl(ejθ/KW−q
K ) ·X(ejθ/KW−q

K ).

(3)
The frequency response of the output is obtained by:

Yl(ejθ) = Ys,l(ejθ · ej(K−1)π). (4)

Note that the running index q of the summation in equa-
tion (3) is defined by: q = −K−1

2 : 1 : K−1
2 and thus q

needs not to be an integer. Combining expression (3) for
all branches l = 0, 1, · · · , L − 1 results in the following
vector-matrix expression:

Ys(e
jθ) =

1
K
·H(ejθ/K) ·X(ejθ/K) (5)

with:

X(ejθ/K) =
(
X(ejθ/KW

K−1
2

K ), · · · , X(ejθ/KW
−

K−1
2

K )
)t

H(ejθ/K) =
(
H0(e

jθ/K), · · · ,HL−1(e
jθ/K)

)t

Hl(e
jθ/K) =

(
Hl(ejθ/KW

K−1
2

K ), · · · , Hl(ejθ/KW
−

K−1
2

K )
)t

Ys(e
jθ) =

(
Ys,0(ejθ), · · · , Ys,L−1(ejθ)

)t

(6)

In this equation we used underlined boldface characters for
vectors and boldface characters for matrices, while (·)t de-
notes the transpose of a vector. Finally we have to apply a
demodulation operator to each of the L branches, which is
expressed in the following vector:

Y(ejθ) =
(
Ys,0(ejθ · ej(K−1)π), · · · , Ys,L−1(ejθ · ej(K−1)π)

)t

(7)

3
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Furthermore for different acoustic transfer functions Hl the
L ×K filter matrix H(ejθ/K) of equation (6) is nonsingu-
lar. The first step of the reconstruction can be achieved by
inverting equation (5), which results in:

1
K
·X(ejθ/K) = G(ejθ/K) ·Ys(e

jθ) (8)

with
G(ejθ/K) = H†(ejθ/K) (9)

in which ()† denotes the generalized inverse operation.
From this point onwards we use an efficient realization of
the synthesis part of a DFT modulated filterbank to recon-
struct the original source samples x[nT0] which are repre-
sented in frequency domain as X(ejθ). The reconstruction
makes use of the signal samples of K frequency bands of
vector X(ejθ/K) of equation (8). This, non-causal, recon-
struction structure is depicted in Fig. 5. Note that we used
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Figure 5. Reconstruction structure (non-
causal) for a cluster of L factor K undersam-
pled wireless acoustic sensors that senses
one source signal.

a ’shifted’ DFT matrix Fs that is defined as:

Fs =
(
W0

K , · · · ,WK−1
K

)t

(10)

Wk
K =

(
W
−

K−1
2 ·k

K , · · · , W
K−1

2 ·k

K

)t

.

Efficiency is achieved by implementing the prototype filter
that is used for the synthesis part of the DFT modulated fil-
terbank as polyphase filters in each of the K branches. If
furthermore the prototype filter is assumed to be an ideal
low pass filter with cut-off frequency |π/K| the polyphase
decomposed prototype filters reduce to fractional delays.
This is represented in the diagonal fractional delay matrix

(ejθ/K) which is, in the ideal case, defined as:

(ejθ/K) = diag
{
e−j0·θ/K , · · · , e−j(K−1)·θ/K

}
. (11)

Furthermore it noted here that we used in Fig. 5 the symbol
ejθ to represent a (non-causal) delay of T0 [sec].
Observations:

1. The reconstruction structure of Fig. 5 reconstructs the
uniform Nyquist signal samples of a virtual micro-
phone at the position of sensor 0 by using factor K
sub-sampled microphones at L different positions.

2. In a fixed array of sensors we are used to work with
the signal samples x[nT0], with frequency response
X(ejθ). In the UWAS case this signal is, as a result
of the factor K downsamplers, split into K subband
signals samples, with frequency response X(ejθ/K ·

W
K−1

2 ·q

K ). As a result of this the reconstruction has to
cope with a mixture of these K subband signals.

In order to obtain more physical insight into the reconstruc-
tion structure we will discuss in the following paragraph
the result for the case when the acoustic transfer functions
Hl(ejθ/K) represent acoustic delays.

4. Reconstruction structure for a cluster with
acoustic delayed sensor signals

In this section we will use the results of the previous sec-
tion to derive the reconstruction structure for a cluster that
senses one source signal for the special case that the acous-
tic transfer functions can be represented by pure acoustic
delays, thus Hl(ejθ) = e−jτlθ. We assume all delays are in
the interval 0 ≤ τl < K and are different, thus τp �= τq.
Furthermore, without loss of generality, we use τ0 = 0.
Note furthermore that the delays τl need not to be integer
valued. The sensor samples yl[nTs] can now be regarded
as a recurrent non-uniform sampling process [4]: a combi-
nation of L mutual delayed sequences of uniform discrete-
time signal samples taken at one Kth of the Nyquist sam-
pling rate. An example of a recurrent nonuniform sampling
distribution for the case K = L = 3 is depicted in Fig.
6. This figure shows a time axis on which the small ver-

����� � ��

�� � � � ��
��

�
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 � �	

Figure 6. Example of recurrent nonuniform
signal samples for K = L = 3.

tical lines have a distance of T0 [sec], the Nyquist period.

4
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With K = 3 the under-sampled period equals Ts = 3 · T0

[sec]. Within each under-sampled period of Ts [sec] we
have L = 3 samples. The first sample point in each under-
sampled period is denoted with a × at τ0 = 0 [sec]. The
second sample point, denoted with a �, has a delay of τ1 ·T0

[sec] with respect to the first sample point. Finally, the third
sample point, denoted with a •, has a delay of τ2 · T0 [sec]
with respect to the first one.
For this special case with acoustic delays we can split

([4, 3]) the filter matrix H(ejθ/K) of equation (6) as fol-
lows:

H(ejθ/K) = Δ(ejθ/K) ·W (12)

with2:

W =
(
Wτ0

K , · · · ,WτL−1
K

)t

Wτl

K =
(
W
−

K−1
2 ·τl

K , · · · , W
K−1

2 ·τl

K

)t

Δ(ejθ/K) = diag
{
e−jτ0θ/K , · · · , e−jτL−1θ/K

}
(13)

Using this matrix splitting in equation (5) the acoustic sen-
sor model becomes:

Ys(e
jθ) =

1
K
·Δ(ejθ/K) ·W ·X(ejθ/K) (14)

Inverting this equation results in a vector with K subbands
of the source signal:

1
K
·X(ejθ/K) = W† ·Δ−1(ejθ/K) ·Ys(e

jθ) (15)

and the reconstruction structure simplifies to the one that is
depicted in Fig. 7. The first step of this scheme is the mod-
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Figure 7. Reconstruction structure (non-
causal) for a cluster of L factor K undersam-
pled wireless acoustic sensors that senses
one source signal in case of acoustic delays.

2Matrix W is the nonuniform equivalent of the DFT matrix Fs as de-
fined in equation(10)

ulation of the incoming signals. In order to further process
the L parallel signals, a proper time alignment is needed
which is taken care of by the inverse of the diagonal filter
matrix Δ(ejθ/K). Each of the resulting signals contains a
mixture ofK subbands of the input signal vectorX(ejθ/K).
This mixture is de-mixed by the generalized inverse of ma-
trix W. From this point onwards the structure is equivalent
to the synthesis part of an efficient DFT modulated uniform
filterbank.
Observations:

1. From the above derived structure it follows that for
known and different acoustic delays τl the reconstruc-
tion is possible for L = K, since for such a case the
matrix W is square and non singular. Thus in order
to reconstruct the source signal samples at uniform
Nyquist rate we need the same amount of non uni-
form sampling points of the source signal in one pe-
riod Ts = K · T0 compared to the number of uniform
sampling points. This is in line with the results of [5].

2. For the very special case when the acoustic delays are
known and successive integer values, thus K = L and
τl = l, for l = 0, 1, · · · , L− 1, the values of the signal
samples yl[nTs] represent L successive uniform sam-
ples of the original source samples x[nT0]. For this
uniform sampled case the reconstruction structure of
Fig. 7 can be simplified since we haveFs·W−1 = IK ,
with IK theK×K identity matrix. Furthermore when
using an ideal prototype filter for the synthesis part,
we also have (ejθ/K) · Δ−1(ejθ/K) = IK . Thus
for this uniform sampled case the whole reconstruc-
tion structure of Fig. 7 reduces, as expected, to a time-
interleaved structure which consists of a set of K = L
parallel up-samplers and (non-causal) delays.

5. Open research issues

Due to many conceptual differences with a fixed array
of sensors, novel array signal processing algorithms need to
be developed for the UWAS scenario. Some of these open
research issues are discussed in this section.
One of the first steps to study within the UWAS scenario

is a cluster that senses one source, as depicted in Fig. 2. For
such a cluster we assume that we have selected a set of L
acoustic sensors that sense one source signal x. The main
question is how to reconstruct the uniform signal samples
x̂[n · T0] at Nyquist rate based on the samples of L un-
dersampled sensor signals. Obviously this study has to be
done (similar to section 3) with acoustic transfer functions
Hl. However, in order to obtain more insight, it is useful to
simplify the acoustic transfer functions in first instance by
acoustic delays (similar to section 4). In this simplified case

5
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the L sensor signals represent L nonuniform samples of the
source signal. Some relevant research questions of this non
uniform sampling approach are given below:

1. Blind and adaptive reconstruction algorithms:
If all acoustic delays are known, we have shown in sec-
tion 4 that we need L = K acoustic sensors in order to
reconstruct the original uniform (Nyquist) signal sam-
ples. In a more practical context however the acoustic
delays will be unknown and may even vary in time.
Thus blind and adaptive reconstruction algorithms are
needed. Although such algorithms are not available
yet, it is argued here that we can construct a set of
equations which can be solved.
The vector-matrix equation (14) of the acoustic sensor
model, which consists of L equations, holds for any
frequency θi in the range |θi| < π. We can use this
equation to construct L equations at N different fre-
quencies, say θi, with i = 0, 1, · · · , N − 1. For each
new frequency θi we have K new unknown variables
of the signal vector X(ejθi). However the L unknown
delays are the same for each new frequency θi. Thus
we can create in this way N · L equations in order to
calculate L + N ·K unknowns. This system of equa-
tions can be solved if: N ·L ≥ L+N ·K or equivalently
N ≥ L/(L−K). From this it follows that we can con-
struct a blind reconstruction scheme by evaluating the
L sensor signals at N different frequencies and with
L > K acoustic sensors. Note that L > K implies
a form of oversampling of the original source signal.
A final remark here is that we can reduce the number
of equationsN by using symmetry properties that exist
between the different frequency bandsX(ejθ/KW−q

K ).

2. Timing ambiguity:
In the development of the reconstruction structure of
section 4, we used the assumption that all delays are in
the interval 0 ≤ τl < K. This restriction causes a tim-
ing ambiguity for delays that are outside this interval.

3. Tuning power consumption:
The battery level of all acoustic sensors can be differ-
ent. Thus all the subsample factors (1/Kl) · fc will be
different. This implies that the reconstruction structure
of section 4 needs to be generalized for such a case.

4. Robustness:
Different issues that are discussed in this paper deal
with ideal situations which do not hold in practice.
One of these issues is the fact that the reconstruction
structures that are depicted in Fig. 5 and Fig. 7 make
use of the synthesis part of ideal uniform DFT modu-
lated filterbanks. In practice the used filters will not be
ideal and will cause leakage. More robust structures
need to be developed.

After the generalization of the above research topics to
the more general case of acoustic transfer functions, the
next step is to study a cluster that senses different sources.
When different source signals are sensed by a cluster of
L undersampled acoustic sensors we need to develop new
beam forming, source separation and source extraction al-
gorithms. An important part to study of the UWAS scenario
is obviously the overall UWAS scenario. Some important
topics are: a) Dynamic array configuration: Which time-
varying subset of sensors produces useful information? b)
Synchronization: The oscillation drift of the A/D conver-
sions of the different acoustic sensors may be different and
will cause synchronization errors. c) Distributed and col-
laborative processing: How can we use the sensor DSP’s
in order to collaborate or to distribute the total amount of
processing?

6 Conclusions

In this paper we presented some preliminary results of
an UWAS scenario and we posed some open research ques-
tions. We do believe that many new array processing algo-
rithms have to be developed in the UWAS scenario. Such al-
gorithms have to account for combining undersampled sig-
nal samples, dynamic array configuration, synchronisation
between the devices, and distributed and collaborative pro-
cessing aimed at meeting power and complexity constraints.
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