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Velocity and energy profiles in two- versus three-dimensional channels: Effects of an inverse-
versus a direct-energy cascade
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In light of some recent experiments on quasi two-dimensional �2D� turbulent channel flow we provide here
a model of the ideal case, for the sake of comparison. The ideal 2D channel flow differs from its three-
dimensional �3D� counterpart by having a second quadratic conserved variable in addition to the energy and
the latter has an inverse rather than a direct cascade. The resulting qualitative differences in profiles of velocity
V and energy K as a function of the distance from the wall are highlighted and explained. The most glaring
difference is that the 2D channel is much more energetic, with K in wall units increasing logarithmically with
the Reynolds number Re� instead of being Re� independent in 3D channels.

DOI: 10.1103/PhysRevE.79.045304 PACS number�s�: 47.27.nd, 47.27.N�

Experimental realizations of two-dimensional �2D� turbu-
lence are not easy to come by, but there is a tradition, starting
with Couder and co-workers �1,2�, to achieve such realiza-
tions using soap films �3�. A number of elegant experiments,
starting with Goldburg and co-workers, �4–7� on forced soap
films bounded by straight wires, ignited an interest in two-
dimensional turbulence in a channel geometry. Indeed, a
number of simulations �8–10� and models �11� were pre-
sented to compare with the experimental findings. While it is
understood that such experiments suffer from three-
dimensional �3D� effects such as film thickness fluctuations
�6� and friction between the film and the surrounding air �7�,
it is clearly worthwhile to develop a reasonable theoretical
model of ideal 2D channel flows to be able to gauge the
degree of closeness of experiments and theory. It is quite
surprising that not enough had been done in determining
what are the expected velocity and energy profiles in such
ideal channel flows, in parallel to the very well studied 3D
channels. The aim of this Rapid Communication is to close
this gap.

We consider stationary fully developed turbulent flow of a
fluid of unit density in infinitely long �in the stream-wise
direction x̂� 2D and 3D �infinitely wide in ẑ direction� chan-
nels of width 2L �in the ŷ direction�, driven by a pressure
gradient p�=−dp /dx. The velocity field is denoted as
U�r , t�=V�y�x̂+u�r , t�, where V�y� is the mean velocity and
u�r , t� the turbulent velocity fluctuations. In such geometries
V�y� and all the other mean quantities depend only on the
distance from the wall y. We will be interested in the profiles
of one-point averages, with the mean shear S�y�=dV /dy, the
Reynolds stress W�y�=−�uxuy�, and the mean turbulent ki-
netic energy K�y�= ��u2�� /2 being the primary ones. In devel-
oping a model for these profiles it is important to maintain as
many exact relations as possible and one such exact relation
is the momentum balance Eq. �12� which is a direct conse-
quence of the Navier-Stokes equations:

�S�y� + W�y� = p��L − y� , �1�

in which � is the kinematic viscosity.
The second exact relation is the turbulent kinetic energy

balance: P=D+�. Here P�y�=WS is the energy production,

��y�=���� jui�2� is the viscous dissipation and D�y�=DV
+DT is the energy spatial transfer, consisting of the viscous
and turbulent contributions:

DV = − �
d2K

dy2 , DT =
d

dy
�1

2
�uyu

2� + �uyp̃�	 , �2�

where p̃ is the pressure fluctuation. This is as far as once can
go exactly. Now we need to model D in terms of the one-
point averages. This step is identical in 3D and 2D channels;
in its simplest version it is determined by dimensional con-
siderations:

D�y� = −
d

dy
���T + ��

dK

dy
	, �T�y� 
 a��K , �3�

where a is a dimensionless constant and ��y� is the “outer
scale” whose physical meaning is the largest scale of turbu-
lent fluctuations existing at distance y from the wall. We can
define ��y� such that ��y�=y near the wall. Further from the
wall ��y� saturates when coming close to the channel center-
line. The full y dependence of ��y� in three-dimensional
channels was studied in �12� with the final result
��y��Ls
1−exp�−��1+� /2���, where Ls=0.311L and
�=y�1−y /2L� /Ls. Note that the choice of Ls was made on
the basis of 3D data, but we will keep the same value in 2D
for lack of appropriate data. This will weakly affect the quan-
titative results but not at all the qualitative results below.

In the vicinity of the wall, both in two and three dimen-
sions, we expect the flow to be differentiable, and moreover
K�y� should start like y2 �13�. This allows us to compute Dv
as −2�K�y� /y2. Since the energy production vanishes at the
wall, this forces us to estimate the energy dissipation term
near the wall as

lim
y→0

��y� = + 2�K�y�/y2. �4�

To model the energy dissipation away from the wall, we will
ignore �for simplicity� the tensorial structure and write
�up to a factor of unity� the kinetic energy dissipation
����dkk2K�k� via the one-dimensional turbulent energy
spectrum K�k�. Of course, this energy spectrum differs in
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two and three dimensions, resulting in a bifurcation in the
further development.

3D case. In three dimensions the direct energy cascade
results in the well known K41 spectrum K3D�k���2/3k−5/3

�14�. The turbulent kinetic energy K�y� can be then estimated
in the bulk as �1/�

� dkK3D�k���2/3�2/3�y�. The upper limit was
freely extended to infinity since the integral converges in the
ultraviolet. Hence, ��b3DK3/2 /�. Joining up the estimates
near and away from the wall we can write in three dimen-
sions

��y� � 2��K�y�/�2�y�� + b3D�K3/2�y�/��y�� , �5�

where near the wall ��y�→y.
2D case. In a two-dimensional channel the inverse energy

cascade does not play a role since the dominant driving is on
a scale of the order of ��y�. Away from the walls there exists
a direct enstrophy cascade characterized by the Kraichnan
�15� energy spectrum K2D�k ;y���2/3k−3 ln−1/3�k��y��,
where � is the rate of enstrophy transfer. Therefore

��y� � ��
1/�

1/�

dkk2K2D�k;y� � ��2/3 ln2/3���y�/��

� ��2/3 ln2/3��2�y��1/3/�� , �6�

where ���� /�1/3 is the viscous �Kraichnan� length defined
by the viscosity and enstrophy transfer rate. To eliminate �
from these expressions we estimate K�y� as �1/�

� dkK2D�k ;y�
��2/3�2�y� for ��y�	�. Using this in Eq. �6� we get

��y� = b2D�K�−2 ln2/3��−1��K + d� . �7�

Note that we have added a constant d in the argument of the
logarithm which was only correct for large values of ��y�.
With the regularizer we can go to the limit ��y�→y→0
without generating a spurious divergence. Requiring now
that this equation agrees with limit �4� we have to choose
b2D=2 and d=e. In other words,

��y� = 2��K�y�/�2�y��ln2/3���y��K�y�/� + e� . �8�

The resulting energy balance in 3D and 2D is

WS +
d

dy
�d��K + ��

dK

dy
= � 2�

K

�2 + b
K3/2

�
, 3D,

2�
K

�2 ln2/3��−1��K + e� 2D.�
�9�

Together with the momentum balance Eq. �1� we now have
two equations relating our three objects S, W, and K. To
complete the set of equations we employ a version of the
Prandtl closure W�y���T�y�S�y�, which was carefully justi-
fied in �12� for three-dimensional channels, with the final
result

rWW 
 c��KS, rW�y� = �1 + ��buf/y�6�1/6, �10�

where c and �buf are constants ��buf in wall units is 43 for 3D
current best fits�.

Having three equations for three unknown functions of y
we can solve them given reasonable values of the param-
eters. In three dimensions we take the result of Ref. �12�, for
the von-Kármán constant 
3D��c3 /b�1/4. Experimentally in
three dimensions 
3D
0.415, and one is left with adjusting
the constants a and b. We fix them using numerical simula-
tion at the largest available Reynolds number, Re�=2003
�16�, finding a
0.218 and b
0.310. Not having indepen-
dent data in two dimensions we take there the same values
for a, �buf, and Ls. It was suggested in Ref. �11� that

2D
0.2 for Re�
103. While we do not agree with this
reference on the existence of a power law in 2D, there is a
small range of y where such a law can be fitted also in our
results, and we use this number to adjust the value of c to
c
0.047. This completes the choice of parameters in two
and three dimensions.

The theoretical predictions for the mean velocity profiles
are shown in Fig. 1, where we have used the wall coordinates
Re��L�p�L /�, y+�y Re� /L, and V+�V /�p�L. Note the
good agreement between predictions and data in three di-
mensions throughout the entire channel, including the vis-
cous, buffer, log-law and wake regions. This underlines the
quality of the model employed here. We note that in 3D the
log-law region �shown as dashed line� increases with Re�.

FIG. 1. �Color online� Mean velocity profiles as a function of distance from the wall, in wall units, in three- and two-dimensional
channels, for four values of the Reynolds number Re�, shifted up by five units for clarity. The �gray� symbols in the left panel represent
numerical simulations �16�. Note that the log-law �dashed lines� in 3D with an invariant von-Kármán constant is increasing its range of
validity whereas in 2D there is only an apparent log-law with a variable “constant” 
 �see insets�.
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Indeed, the present model is very similar to the one proposed
in �12� in which the von-Kármán log-law 

0.415 was ob-
tained. The model also captures the “wake” feature of the
velocity profiles. In contrast, the mean velocity profiles for
two-dimensional channel in the right panel reveal a very lim-
ited log-law region �if any� as well as an increase in the
apparent von-Kármán constant upon increasing Re�; see inset
in Fig. 1 right panel. The “wake” feature is also absent, in-
stead the curves bend down.

Even a larger qualitative difference is seen in the turbulent
kinetic energy profiles in wall units, as seen in Fig. 2, left
and middle panels. We first note the order of magnitude dif-
ference in the value of the kinetic energy in favor of the
two-dimensional channel. Second, the 3D profiles are almost
Re� independent, saturating at Re�→�. In contradistinction
the 2D profiles increase almost linearly with ln�Re��. The
third difference is the decline of the 3D K+ with y+ outside
the buffer layer, reaching a pronounced minimum at the cen-
terline. In the two-dimensional case K+ becomes almost y+

independent. Interestingly enough, the highly different be-
havior of K+ is not mirrored in the profiles of W+ which are
shown in the right panel of Fig. 2.

In order to rationalize all the differences presented above,
we will discuss the energy balances between production, dif-
fusion, and dissipation which are shown in the left panel of
Fig. 3. In order not to get mixed up between diffusion and
dissipation we will consider the total �integral over the chan-

nel� energy balance from which the diffusion term disappears
exactly. The integral of energy production EP��0

LWSdy is
dominated by the bulk region y�y�=y�

+p�L /� where
y�

+�20. In this region we can take W� p�L and
S�y���p�L / �
�y� where 
 is the von-Kármán constant in
three dimensions and a very weakly Re� dependent number
in two dimensions. Integrating between y� and L we end up
with the estimate ��p�L�3/2 /
�ln�L /y�� or

EP � ��p�L�3/2/
�ln�Re�/y�
+� . �11�

On the other hand the total dissipation ED differs in three and
two dimensions. In 3D we estimate the main term from the

bulk of the channel as ED
b�y�

L K3/2�y� /y
 K̃3/2 ln�Re� /y�
+�,

where K̃ is some typical value of K�y� in the bulk.

Comparing with Eq. �11� we see that indeed K̃� p�L and
therefore Re� independent, cf. Fig. 2, left panel. This is not
the case in two dimensions. According to Eq. �9� the dissi-
pation in 2D is roughly constant up to y
 ỹ�10p�L /�,
whereas for y� ỹ it decreases roughly like y−2. Moreover, the
integral over the dissipation is roughly equal in these two

regions. We can therefore estimate ED
4�K̃�ỹ
Ldy /y2 where

the weak logarithm is neglected. This integral is dominated
by its lower limit and therefore in two dimensions

ED
4�K̃ / ỹ� K̃�p�L / ỹ+. Comparing with Eq. �11� we see
that

FIG. 2. �Color online� Left and middle panels: Profiles of the turbulent kinetic energy K+=K / �p�L� in 3D and 2D channels, respectively.
Symbols in the left panel are from numerical simulations �16�. Right panel: Reynolds shear stress W+=W / �p�L� as a function of y /L in three
�solid lines� and two dimensions �dashed lines�, respectively, for four different values of Re�. The symbols are numerical simulations �16�.
The inset in the left panel compares the profiles of K in three and two dimensions at Re�=2003 normalized to their maximal values.

FIG. 3. �Color online� Wall units. Left panel: the energy balance between production, diffusion, and �minus� dissipation for 3D
�solid lines� and 2D �broken lines� channels at Re�=2003. Middle panel: the Re� dependence of typical values of the kinetic energy in 2D
channels. Note the agreement with the estimate in Eq. �12�. Right panel: averaged turbulent kinetic energy over the channel half-width L:
Kaverage=L−1�0

LK�y�dy. Inset: the quick saturation of Kaverage
+ in 3D channels.
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K̃+ 
 �ỹ+/
�ln�Re�/y�
+� � A ln�Re�� + B , �12�

with A and B being constants. This explains nicely the results
of Fig. 2, middle panel, where we see that multiplying the
values of Re� by a factor of 5 results in equidistant curves of

K+ in linear scale, and this is why K̃ can be taken as the
asymptotic �almost constant� value of K. To support these
estimates by numerics we show in Fig. 3, middle panel, the
actual functional dependence of Kmax

+ and K+ at various po-
sitions in the channel on Re�. Equation �12� is very well
supported by these data.

Finally, we want to explain the profiles in Fig. 1. The
log-law in three dimensions can easily be derived by taking
the dominant terms in Eqs. �1�, �9�, and �10� �in the limits
Re�→� and p�L /��y�L�; W= p�L, WS=bK3/2 /y, and W
=cy�KS. Solving these for S we find S�y�
1 /y, i.e., log
profile. This simple solution is lost in 2D because of the
absence of the direct cascade that leads to the term bK3/2 /y.
Nevertheless we see that the role of the direct cascade in two
dimensions is mimicked by the �negative of the� diffusive
term which is also Re� independent and leading to a similar
estimate if we replace dK /dy by K /y. For that reason we still
have a remnant of a log-law also in 2D, but with a slope that

changes with Re� due to the dependence of K̃ on Re�.
In conclusion, we show that the Reynolds stress profiles

in 2D and 3D channels look similar. The velocity profiles in
3D are truly represented by a log-law, but in 2D they are

only apparently varying according to a log-law, the “con-
stant” is changing as a function of Re�, even though not vary
rapidly. But the major change between two and three dimen-
sions is in the kinetic energy profile. The two-dimensional
channel is much more energetic, with the mean kinetic en-
ergy increasing like ln�Re��. This is the main result of the
loss of the direct energy cascade. Nevertheless even without
this cascade the energy dissipation exceeds its laminar value
and it changes the dependence of the kinetic energy on Re�

from O�Re�� as in laminar flows, to O�ln Re�� which is one
of the interesting predictions offered above. To make this
point clear we show in the right panel of Fig. 3 the difference
between the averaged kinetic energy in the channel in 2D
and 3D as a function of Re�. The former is roughly linear in
ln�Re�� and the latter saturates quickly to a constant of about
2. It should be tempting to test in experiments some of these
predictions, even if the ideal 2D channel model is not easy to
achieve. Clearly, with air friction the energy dissipation will
increase and the energy profiles decrease; the mean velocity
gradients will increase, reducing the effective von-Kármán
constant. If the fluid is still accelerating, not reaching
asymptotic velocities, again the energy profile will reduce.

This work was supported in part by Minerva Foundation,
Munich, Germany. We thank Walter Goldburg and Nigel
Goldenfeld for interesting communications that attracted our
attention to the present issue.
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