

Multi-resource management in embedded real-time systems

Citation for published version (APA):
Holenderski, M. J. (2012). Multi-resource management in embedded real-time systems. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR735556

DOI:
10.6100/IR735556

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR735556
https://doi.org/10.6100/IR735556
https://research.tue.nl/en/publications/0030807e-e40a-4438-9693-bf10105eda76

Multi-Resource Management in
Embedded Real-Time Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen

op woensdag 17 oktober 2012 om 16.00 uur

door

Michał Jakub Holenderski

geboren te Warschau, Polen

Dit proefschrift is goedgekeurd door de promotor:

prof.dr. J.J. Lukkien

Copromotor:

dr.ir. R.J. Bril

Printed by: Eindhoven University Press, Eindhoven, The Netherlands

© Michał Holenderski 2012

All rights are reserved. Reproduction in whole or in part is prohibited without the
written consent of the copyright owner.

A catalogue record is available from the Eindhoven University of Technology
Library

ISBN: 978-90-386-3237-7

Contents

1 Introduction 1
1.1 Problem statement . 3
1.2 Contributions . 3
1.3 Outline . 4

2 System model 5
2.1 Resource model . 5
2.2 Application model . 7
2.3 Mapping . 11

3 Processor management 17
3.1 Related work . 19
3.2 System model . 24
3.3 RELTEQ . 29
3.4 Periodic tasks . 33
3.5 Servers . 35
3.6 Hierarchical scheduling . 42
3.7 Evalulation . 44
3.8 Discussion . 50

4 Memory management 55
4.1 Related work . 57
4.2 System model . 62
4.3 Reducing memory requirements . 68
4.4 Handling overload conditions . 77
4.5 Bounding the mode change latency . 79
4.6 Discussion . 93

5 Multi-resource management 95
5.1 Related work . 97
5.2 Recap of related synchronization protocols 101
5.3 Towards multi-resource sharing . 106
5.4 System model . 107
5.5 Parallel-SRP (PSRP) . 110
5.6 Schedulability analysis for PSRP . 113
5.7 Evaluation . 128
5.8 Discussion . 130

6 Grasp 133
6.1 Related work . 135

i

ii CONTENTS

6.2 Grasp overview . 136
6.3 Multiprocessor scheduling . 141
6.4 Hierarchical scheduling . 144
6.5 Hierarchical multiprocessor scheduling 146
6.6 Timestamp synchronization . 147

7 Conclusion 151

Bibliography 153

Symbol index 164

Acronyms 166

Accomplishments 167

Summary 171

Curriculum Vitae 174

Chapter 1

Introduction

The history of the modern computer starts in 1944 with the Colossus. It was the
world’s first electronic, digital programmable computer, used by the British to de-
crypt German messages during World War II. It used vacuum tubes instead of me-
chanical or electrical relay switches found in its predecessors. The vacuum tubes
were the computational units and were interconnected by simple copper wires. The
machine was programmed by manually routing the wires. The first general-purpose
electronic computer was the ENIAC, completed in 1946. Like the Colossus, it was
colossal, weighing 30 tons, occupying 165 m2, and consuming 174kW of power (Mc-
Cartney, 1999). Its 18 000 vacuum tubes could perform 5000 additions per second,
and were initially used by the US army for computing the behavior of chemical re-
actions inside of a hydrogen bomb for the Manhattan project and later for ballistic
analysis.

The invention of the transistor and the integrated circuit in the late 1940s, followed
by their mass production in the 1950s, made it possible to shrink computers and to
reduce their cost, making them available for many new applications. Initially they
found their application in large and powerful mainframe computers, where several
users at a time could execute their computations on a shared mainframe computer.

With their ever shrinking size, however, digital computers could also be used for
controlling smaller systems. A prominent example is the Apollo Guidance Computer,
which was responsible for guidance, navigation and control of the Apollo spacecrafts
on their lunar missions in the late 1960s. It weighed 32kg, occupied 1 cubic foot, had
2K of RAM, and 36K of hard-wired core-rope memory with copper wires threaded or
not threaded through tiny magnetic cores. It consumed 55 Watts and could perform
40 000 additions per second (O’Brien, 2010). The state of the art in scheduling in
those days was to divide the entire control application into individual tasks, and to
schedule them according to a round robin, First-In-First-Out, or table driven scheme.
However, the safety critical nature of the Apollo Guidance Computer, combined with
its limited resources, required new task scheduling methods, giving rise to one of the
earliest priority-based schedulers. In the case of an overload, the scheduler would
continue executing the highest priority tasks, at the cost of dropping those with a

1

2 Introduction

lower priority (Martin, 1994).
As digital computers were increasingly used for controlling safety critical systems,

theories for reasoning about the behavior of these systems started to emerge, in par-
ticular, the real-time scheduling theory. Its goal is to analyze the mapping of the
digital resources (such as the processor, memory or network) to tasks to ensure that
the tasks’ timing constraints (derived from the system timing constraints) are met.
The seminal paper by Liu and Layland (1973) is often regarded as the beginning
of the real-time scheduling theory. It proposed su�cient and necessary utilization
bounds for fixed priority preemptive scheduling on uniprocessor systems. Since then,
real-time theory has addressed more complicated systems, such as multiprocessor
and distributed platforms, with dependencies between tasks, and various other con-
straints. Even though significant progress has been made, real-time scheduling and
analysis still o↵ers many challenging and fundamental open problems, in particular
in the multiprocessor domain (Davis and Burns, 2011).

The Apollo Guidance Computer can be regarded as the precursor of modern
embedded systems. Unlike large super computers, embedded devices have stringent
operational constraints, such as weight, size, and cost. Consequently, embedded
systems are characterized by limited processing, storage and energy resources. For
example, due to the weight constraints, an airplane will reuse the same computer
hardware to run the control software during di↵erent modes of operation, such as
takeo↵, flight, and landing. Switching between the di↵erent modes of operation must
be e�cient and predictable, without disturbing the operation of the entire system.

It is often too costly to develop dedicated hardware for solving a particular prob-
lem, which has lead to a wide adoption of general purpose computers, exemplified
already by the Colossus vs. ENIAC. General purpose computers o↵er the flexibility
to reuse the same hardware for di↵erent applications. As computer platforms and
applications become ever more complex, however, the programmers must rely on op-
erating systems providing higher level abstractions for managing the resources. In
embedded systems this is often achieved by explicit fine-grained multi-resource man-
agement of the various resources comprising the platform. A popular abstraction are
resource reservations (Mercer et al., 1994), which aim at providing temporal isola-
tion between independent tasks. They form the basis for virtual platforms, which
provide tasks with the illusion of executing on a dedicated platform, often comprised
of several di↵erent resources.

As applications became increasing complex, comprised of hundreds of tasks, it be-
came more di�cult and costly to develop large systems. This gave rise to component-
based engineering, which o↵ers a modular approach for designing and developing
complex systems by grouping the tasks performing a particular function inside of
components. Several component models for real-time systems were proposed since,
most notably the periodic resource model (Shin and Lee, 2003), aiming to facili-
tate independent development and analysis of components. Hierarchical scheduling
is then used to schedule components on the global level, and tasks locally within
components. Due to the limited resources in embedded systems, it is important that
the mechanisms provided by an operating system, such as task scheduling and timer
management, are e�cient and introduce little overhead.

Problem statement 3

We conducted our work within the context of multimedia processing systems in
the surveillance domain. The hardware platforms in this domain are usually resource-
constrained embedded systems, comprised of multiple di↵erent resources, such as a
processor, memory and digital signal processors. The multimedia applications which
are mapped to these platforms have real-time constraints, are data intensive, and
experience high variability of resource requirements due to data-dependent work-
load. For example, an MPEG encoder will require more processing time for a scene
with a lot of movement. Consequently, the encoded video frames will vary in size,
requiring variable amount of network bandwidth during transmission and memory
during decoding. If several video streams are processed on the same platform, and
their total resource requirements exceed the available resources, then a tradeo↵ needs
to be maintained between the resource requirements and the quality of the individ-
ual streams (expressed in terms of e.g. timing constraints on individual frames), to
guarantee a system wide quality of service. We considered multimedia processing
applications comprised of several scalable components, which can operate in di↵erent
modes and are scheduled by a hierarchical scheduling framework.

1.1 Problem statement

This thesis addresses the problem of mapping multiple heterogenous resources to
tasks in the context of resource constrained embedded real-time systems. It focuses
on three research questions:

1. How can we design an e�cient hierarchical scheduling framework for supporting
independent development and analysis of component based systems, to provide
temporal isolation between components?

2. How do we change the mapping of resources to tasks and components during
run-time e�ciently and predictably, and how do we analyze the latency of such
a system mode change in systems comprised of several scalable components?

3. How do we schedule and analyze a set of parallel-tasks which require simultane-
ous access to several di↵erent resources, while guaranteeing that all tasks meet
their deadlines?

1.2 Contributions

In Chapter 2 we propose a system model, comprised of a resource model, an applica-
tion model, and a mapping between the two. The novel resource model abstracts the
key properties of heterogenous resources from a scheduling perspective, providing a
uniform model for di↵erent resources, such as a processor, memory or network. The
application model is based on the notions of tasks and components, and supports the
modeling and analysis of hierarchical and reservation-based systems.

4 Introduction

In Chapter 3 we present RELTEQ, which is a general timer management system
exhibiting low processor and memory overheads. We then leverage RELTEQ to de-
sign and implement an e�cient hierarchical scheduling framework, which provides
temporal isolation between components. The system overheads are evaluated based
on an implementation within µC/OS-II, a real-time operating system used in the in-
dustry in various domains, such as aerospace, automotive, medical, and surveillance.

In Chapter 4 we investigate scalable applications operating in a memory-constrained
system. A scalable application, comprised of scalable components, can operate in one
of several predefined system modes, defined in terms of component modes. A com-
ponent mode defines a trade-o↵ between its resource requirements and its output
quality. During runtime the system may reallocate the resources between the com-
ponents, resulting in a system mode change. The latency of a system mode change,
defined as the time duration between a mode change request and the time that it
has been e↵ected, should satisfy an upper bound. We first show how to reduce the
memory requirements in a streaming multimedia application. We then show how
to provide guaranteed resource access in spite of mode changes, while at the same
time minimizing the mode change latency bound. We present a novel mode change
protocol called Swift Mode Changes, which relies on fixed priority with deferred
preemption scheduling. The design, analysis and implementation are presented and
evaluated based on a quantitative analysis.

In Chapter 5 we address the problem of scheduling periodic parallel tasks on
a multi-resource platform, where tasks have real-time constraints. The goal is to
exploit the inherent parallelism of a platform comprised of multiple heterogeneous
resources. A new scheduling algorithm called PSRP is presented, together with the
accompanying schedulability analysis. The benefits of PSRP are demonstrated by
means of simulation results and an example application showing that PSRP indeed
exploits the available concurrency in heterogeneous real-time systems.

In Chapter 6 we present a trace visualization toolset called Grasp, which we have
used extensively during the design and development of the various real-time oper-
ating system extensions described in this thesis. It provides and clear and intuitive
user interface and a simple architecture, making it easy to extend Grasp with new
visualizations.

1.3 Outline

This thesis is structured as follows. Chapter 2 introduces the system model, which is
used later in Chapters 3, 4, and 5. Each of these chapters instantiates and extends
the model for its particular needs. Chapters 3, 4, 5, and 6 discuss the main contribu-
tions outlined in Section 1.2. Chapter 7 concludes this thesis. A list of publications
contributing to this thesis can be found in the Accomplishments appendix.

Chapter 2

System model

A system consists of applications, resources and a mapping between them. Applica-
tion workload is expressed in terms of tasks, where a task represents the work which
needs to be done in response to an event, such as processing a newly arrived video
frame. The mapping of resources to tasks describes how the “ownership” of resources
changes during runtime, i.e. which task “owns” a particular resource at a particu-
lar time. The ownership may change, e.g. if several tasks need to access the same
memory region or the same processor. A mapping must satisfy certain soundness
constraints, e.g. every mutually exclusive resource is owned by at most one task at
a time. In real-time systems there are additional timeliness constraints, which are
often expressed in terms of task deadlines. Embedded systems exhibit additional
constraints which address the overheads associated with the mapping due to limited
resources, such as scheduling, and context switching overheads.

In this chapter we present an abstraction which allows us to model the scheduling
of tasks on di↵erent resources in a uniform way. The essential abstraction is that
any resource (such as a processor, memory space or bus) can be represented as a
multi-unit preemptive or non-preemptive resource.

2.1 Resource model

The purpose of a resource model is to provide a certain level of abstraction helping
to describe the mapping of physical resources to tasks. It has to be simple enough to
reason about, while at the same time expressive enough to use the available resources
e�ciently. The main contribution of our model is the ability to schedule tasks on
various di↵erent resources, such as processor and memory, in a uniform way. At the
core of our resource model is the multi-unit resource.

Definition 2.1 (Multi-unit resource). Let R be the set of all resources in the system.
A multi-unit resource r 2 R consists of multiple units, where each unit is a serially
accessible entity. A resource r is specified by its capacity N

r

� 1, which represents
the maximum number of units the resource can provide simultaneously.

5

6 System model

Memory space is an example of a multi-unit resource. In this thesis, when talking
about the memory space resource we are interested in the memory requirements in
terms of memory size, and ignore the specifics of memory allocation and the actual
data stored in the memory. A memory, managed as a collection of fixed sized blocks,
can be regarded as a multi-unit resource with capacity equal to the number of blocks.
In this sense our multi-unit resource is similar to a multi-unit resource discussed by
Baker (1991).

The capacity of a multi-unit resource represents essentially the maximum num-
ber of tasks which can use the resource simultaneously. A multi-core processor can
therefore be modeled as a resource with capacity equal to the number of cores.

Resource management is about managing access to scarce resources, i.e. resources
for which at times the demand may exceed their provision. If the total requirement
for a resource never exceeds its capacity, then the management is trivial: we can
always provide access to the resources. When modeling systems we can therefore
ignore resources for which the demand never exceeds their provision.

Single-unit resources are a special case of multi-unit resources.

Definition 2.2 (Single-unit resource). A single-unit resource r 2 R is a multi-unit
resource such that N

r

= 1

A single-core processor is an example of a single-unit resource, since only a single
task can be using it at a time. A memory controller synchronizing the access to a
memory space can also be regarded as a single-unit resource1. In the remainder of the
thesis we assume multi-unit resources with capacity greater than 1, unless explicitly
stated otherwise.

2.1.1 Preemptive vs. non-preemptive resources

A preemption is the change of ownership of a resource unit before the owner is ready to
relinquish the ownership. In terms of the traditional task model, a job (representing
the ownership of a resource) may be preempted by another job before it completes.
We can classify all resources in one of two categories:

Definition 2.3 (Preemptive resource). The usage (or ownership) of a unit of a
preemptive resource can be preempted without corrupting the state of the resource.
We use P ✓ R to denote the set of all preemptive resources in the system.

Definition 2.4 (Non-preemptive resource). The usage (or ownership) of a unit of a
non-preemptive resource may not be preempted without the risk of corrupting the state
of the resource. We use N ✓ R to denote the set of all non-preemptive resources in
the system.

Every resource is either preemptive or non-preemptive, i.e.

(N [P = R) ^ (N \ P = ;). (2.1)

1A memory can therefore be modeled by two resources: one representing the memory space and
the other representing mutually exclusive access to the memory.

Application model 7

A processor is an example of a preemptive resource, as the processor state of a
running task can be saved upon a preemption and later restored. A bus is an example
of a non-preemptive resource, as an ongoing message transfer cannot be preempted
without loosing the message. A logical resource (e.g. a shared variable) is another
example of a non-preemptive resource.

Preemption is usually provided on the software level, by the operating system. For
example, when an interrupt arrives, the operating system first stores the processor
state, then executes the interrupt handler, and finally restores the saved processor
state. Note that actually the usage of nearly any resource can be preempted: e.g.
memory space (usually considered a non-preemptive resource) can be “switched out”
to a memory higher in the memory hierarchy (e.g. data can be moved from the
processor cache to the RAM), or the data can be simply overwritten and recomputed
later. However, this will come at the cost of a performance penalty (incurred by
storing-and-restoring or recomputing the state of the resource). A non-preemptive
resource is basically one for which the system designer has decided that its preemption
overhead is too large.

We assume mutually exclusive access to resources, meaning that each unit of a
multi-unit resource can be accessed by at most one task at a time. For example, each
core in a multicore processor can be accessed by at most one task at a time. Notice
that preemptiveness is orthogonal to mutual exclusion, as mutual exclusion holds for
both preemptive and non-preemptive resources.

2.1.2 Physical vs. virtual resources

Physical resources are the hardware resources provided by the platform, such as a
processor, memory or bus. As we will see later in Section 2.2.2, application compo-
nents can provide their own virtual resources. We use R to denote both physical
and virtual resources. Similar to physical resources, each virtual resource is either
preemptive or non-preemptive.

2.2 Application model

Let T = R+

0

be the time domain (of non-negative real numbers), with t 2 T repre-
senting a time instant or the duration of a time interval.

2.2.1 Tasks

We model applications in terms of a set of tasks. Each task specifies the resource
requirements which are required to do a particular work.

Definition 2.5 (Task). A task ⌧
i

is specified by its

• fixed and unique priority ⇡
i

(lower number indicating higher priority),

• period T
i

, which specifies the inter-arrival time between two consecutive in-
stances of ⌧

i

,

8 System model

• initial o↵set (or phasing) O
i

, which specifies the arrival time of the first instance
of ⌧

i

,

• relative deadline D
i

, with D
i

 T
i

,

• sequence of segments S
i

, where the j-th segment ⌧
i,j

2 S
i

is specified by its
worst-case execution time E

i,j

, and a set of resource requirements R
i,j

. Each
resource requirement (r, n) 2 R

i,j

represents a requirement for n > 0 units of
resource r 2 R.

We use � to denote the set of all tasks in the system, and S to denote the set of all
segments in the system, i.e.

S =
[

⌧

i

2�

S
i

Our task therefore models programs which can be expressed as a sequence of
segments, where each segment ⌧

i,j

is wrapped between a lock(R
i,j

) and unlock(R
i,j

)
operation. The semantics of these operations is similar to the primitives used in
(Havender, 1968) for locking resources collectively.

Priorities are used for resolving conflicts during runtime when more than one task
tries to access a shared resource. All segments ⌧

i,j

2 S
i

share its priority ⇡
i

. We use
⇡? to denote a priority lower than the lowest priority, and ⇡> to denote a priority
higher than the highest priority among all tasks.

Notation To keep the notation short, if a segment ⌧
i,j

requires only single-unit
resources, or if the number of required units is not important, we will write R

i,j

=
{r

1

, r
2

, r
3

} instead of R
i,j

= {(r
1

, 1), (r
2

, 1), (r
3

, 1)}.
We use a shorthand notation to refer to the resources which are required by a

segment, where r 2 R
i,j

means that 9(x, n) 2 R
i,j

: x = r.
When specifying segments we use a shorthand notation, where (e, {r

1

, r
2

, . . .})
represents a segment ⌧

i,j

with E
i,j

= e and R
i,j

= {r
1

, r
2

, . . .}.
When applying set operations to sets of resource requirements we are usually

interested only in the identity of the resources (and not the number of units). There-
fore, for simplicity, we will use R

i,j

\R
x,y

to denote {r | (r, n) 2 R
i,j

^(r,m) 2 R
x,y

},
and R

i,j

[R
x,y

to denote {r | (r, n) 2 R
i,j

_ (r,m) 2 R
x,y

}.
We use E

i

=
P

⌧

i,j

2S

i

E
i,j

to denote the worst-case execution time of task ⌧
i

.

Example 2.1. Our model distinguishes between 2 single-core processors (modeled
as 2 single-unit resources) and a single 2-core processor (modeled as one multi-unit
resource). In the 2 single-core processors case, we can specify a task requiring simul-
taneous access for t time units to particular single-core processors, e.g.

P = {p
1

, p
2

}, N
p1 = 1, N

p2 = 1,�
=

{⌧
1

}, S
1

= h(t, {p
1

, p
2

})i.

In the 2-core processor case we can only specify a task requiring simultaneous access
for t time units to a particular number of cores, e.g.

Application model 9

P = {p}, N
p

= 2,�
=

{⌧
1

}, S
1

= h(t, {(p, 2)})i.

2.2.2 Components

Next to the notion of physical resources (described in Section 2.1.2) we introduce the
notion of virtual resources, which are provided by components.

Definition 2.6 (Component). A component c is specified by its

• fixed and unique priority ⇡
c

(lower number indicating higher priority),

• period T
c

, which specifies the inter-arrival time between two consecutive in-
stances (or replenishments of the budget) of c,

• initial o↵set (or phasing) O
c

, which specifies the arrival time of the first instance
(or replenishment of the budget) of c,

• relative deadline D
c

, with D
c

 T
c

,

• set of resource requirements R
c

, where each resource requirement (r, n) 2 R
c

represents a requirement for n > 0 units of resource r 2 R,

• set of resource provisions P
c

, where each resource provision (r, n) 2 P
c

repre-
sents a provision of n > 0 units of resource r 2 R,

• time capacity (or budget) E
c

, which specifies the amount of time during each
period that component c will provide the resources in P

c

, while requiring the
resources in R

c

.

We use C to denote the set of all components in the system.

A component c provides virtual resources, which are specified in P
c

. We include
these resources in the set of all resources in the system, i.e.

8c 2 C : P
c

✓ R.

The following two examples demonstrate how to express a processor server and a
memory bu↵er in terms of our component model.

Example 2.2 (A processor server component). A single core processor can be mod-
eled as a preemptive resource cpu 2 P with N

cpu

= 1. A processor server s provides
a share of a processor bandwidth, which is specified by its replenishment period ⇧

s

and capacity ⇥
s

(Shin and Lee, 2003). When a server is running, every time unit its
remaining budget is decremented by one. Every ⇧

s

time units its remaining budget
is replenished to ⇥

s

. In systems with global fixed-priority scheduling each server also
has a fixed priority ⇡

s

.

10 System model

A server s providing a share of processor cpu, can be modeled as a component
c 2 C with

⇡
c

= ⇡
s

T
c

= ⇧
s

O
c

= 0
D

c

= ⇧
s

E
c

= ⇥
s

R
c

= {(cpu, 1)}
P
c

= {(cpu
s

, 1)}

(2.2)

with cpu
s

2 P.

Example 2.3 (A memory bu↵er component). A memory containing M bytes can
be modeled by a non-preemptive resource mem 2 N with N

mem

= M . A memory
bu↵er component manages a part of the memory space in terms of bu↵er elements
and provides a FIFO access to these elements. Each bu↵er q has a finite capacity
NumElems

q

, defining the maximum number of elements which can be stored in the
bu↵er, where each element has a fixed size of ElemSize

q

bytes.
A bu↵er q, which resides in memory mem and is created during the initialization

of the system and never destroyed, can be modeled as a component c 2 C with

T
c

= 1
O

c

= 0
D

c

= 1
E

c

= 1
R

c

= {(mem,ElemSize
q

⇤NumElems
q

)}
P
c

= {(elements
q

, NumElems
q

), (mutex
q

, 1)}

(2.3)

with elements
q

,mutex
q

2 N. T
c

= 1 means that the component is aperiodic.
O

c

= 0 and D
c

= E
c

= 1 mean that the bu↵er will be created at the system
initialization and live until the system terminates. During that time it will require
ElemSize

q

⇤NumElems
q

units of the mem resource, and in return it will provide a
virtual elements

q

resource containing NumElems
q

bu↵er elements.
A bu↵er provides interface methods to store and retrieve elements from the bu↵er.

These methods manipulate the bu↵er’s internal data structures and have to execute
in a mutually exclusive fashion. A common implementation will guard these methods
with a mutex. A call to the bu↵er’s interface methods is modeled by a requirement for
one unit of the virtualmutex

q

resource for the duration of the call. Since N
mutex

q

= 1
and mutex

q

2 N, only one task may access the bu↵er’s interface methods at a
time. Note that a bu↵er requires mutually exclusive access only to its internal data
structures. This means that one task can be reading from the bu↵er’s head element,
while another task is writing to the tail element, provided that the internal data
structures keeping track of the pointers to the head and tail are updated in a mutually
exclusive manner.

Note that since bu↵ers live in the memory for the entire duration of the system
execution, during runtime there is no need for arbitration between two bu↵ers com-

Mapping 11

peting for memory: all bu↵ers need to fit in the memory or the application cannot
start executing. Hence, the priority of the bu↵er component is irrelevant.

2.2.3 Applications

We can group tasks and components which together perform a particular function to
form an application.

Definition 2.7. An application a is specified by its

• task set �
a

✓ �,

• component set C
a

✓ C.

We use A to denote the set of all applications in our system.

Every task (or component) belongs to at most one application. We assume that
applications are independent and do not share tasks (or components), i.e.

8a, b 2 A : a 6= b) (�
a

\ �
b

= ; ^ C
a

\ C
b

= ;). (2.4)

2.3 Mapping

In Sections 2.1 and 2.2 we have defined the static models describing the resources
and the applications. Now we move on to the mapping of resources to applications.
The mapping is responsible for time sharing the access to resources during runtime,
and is defined by allocation and scheduling. An allocation assigns task segments and
components to their required resources, while a schedule describes when segments
and components gain access to their assigned resources.

2.3.1 Allocation

In this thesis we assume static allocation of resources (also referred to as partitioning),
which is specified in our system model by the resource requirements of task segments
and components. In embedded systems, where hardware platforms are usually com-
prised of several di↵erent resources (e.g. CPU, DSP, DMA controller), tasks must be
explicitly mapped to the various resources. In such systems static allocation of tasks
to resources is often desired. It also simplifies the scheduling of the entire platform
during runtime, since the decision of allocation has been taken o✏ine.

Resource identity in multi-unit resources

When a task or component requests memory space for storing its data, it assumes that
no other task or component will modify and corrupt the data inside of its memory
space. This suggests that two parameters should be associated with each granted
memory request: its size and its identity. The scheduling function makes sure that
a resource request for n units of a multi-unit resource is granted only if the resource

12 System model

has at least n units available. When a request is granted, the requesting task or
component has complete control over these units. Protection mechanisms preventing
tasks and components from corrupting each others resources are outside the scope of
this model.

However, when a task or component accessing a resource is preempted it may be
critical that it is later resumed on the same resource units. For example, when a job
is preempted while it is writing to a particular memory location, once it is resumed it
should continue writing to the same location. Our model abstracts from the identity
of individual units in a multi-unit resource and therefore it cannot be used to reason
about particular resource units. However, we can assume the context switch to be
responsible for making sure that a segment is resumed on the appropriate resource
units. In the example of a preemption of a task writing to memory, upon preemption
the system may store the partially written data to the disk and later restore it to the
memory upon resuming.

2.3.2 Scheduling

The schedule needs to maintain the timing constraints of tasks and components and
mutually exclusive access to shared resources. All these constraints can be resolved
o✏ine, giving rise to a time-driven schedule. Alternatively, the scheduling can be
done online, where scheduling decisions are event-driven and performed according to
a predefined scheduling policy. In this thesis we consider the latter, focusing on Fixed-
Priority Preemptive Scheduling (FPPS) and Fixed-Priority with Deferred-preemption
Scheduling (FPDS).

We can schedule both tasks and components. When a task segment (or a com-
ponent) is scheduled on a resource during runtime, we say that the segment (or
component) is using the resource, or that it owns the resource. The ownership of
a resource may change. However, at any point in time each unit of a multi-unit
resource may be used by at most one segment (or component).

The scheduling of segments on a multi-unit resource r can be visualized by means
of N

r

“tracks”, where each track represents the usage of a single unit of resource r,
as illustrated in Example 2.4.

Example 2.4. Figure 2.1 represents a schedule of segments b, c, and d on resources
cpu and dsp, with b scheduled at time 0, d scheduled at time 1 and c scheduled at
time 5 and preempting segment d. The arrival pattern of a segment is determined
by the task it belongs to, which is discussed in the next section.

A resource manages its units internally, meaning that we cannot specify a re-
quirement for a particular unit of a multi-unit resource. A segment can only specify
a requirement for a certain number of arbitrary units within a multi-unit resource.
However, we assume that while a segment is “executing” on a resource unit the seg-
ment will not be migrated to another unit. For example, in Figure 2.1, once d’s
requirement for 2 cores of the cpu is granted, d will own the same cpu cores through-
out its execution in the time interval [1, 5). Note that the cpu resource may decide
to migrate d to di↵erent units when it is preempted at time 5.

Mapping 13

d d

c

cpu.1

cpu.2

cpu.3

cpu.4

0 5 10 15 20 25

d d

b

dsp b

c

c

Figure 2.1: Example of a mapping of segments S = {b, c, d} with E
b

= 20, R
b

=
{(cpu, 1), (dsp, 1)}, E

c

= 8, R
c

= {(cpu, 3)}, E
d

= 7, R
d

= {(cpu, 2)}, on a platform
containing a 4-core cpu and a single dsp, i.e. R = {cpu, dsp} with N

cpu

= 4, N
dsp

=
1. We use a dot notation to refer to the individual units in a multi-unit resource.

Scheduling of tasks

Definition 2.8 (Task schedule). A schedule �S : T ⇥S⇥R ! N expresses resource
ownership by task segments during runtime, where �S(t, s, r) is the number of units
of resource r which are owned by segment s at time t.

Saying that “at time t segment s owns n units of resource r” is synonymous to
saying that “at time t segment s executes on n units of resource r” or that “at time
t segment s is scheduled on n units of resource r”.

Definition 2.9. We define ⌘S : T ⇥S⇥R ! {0, 1}, where ⌘S(t, s, r) returns 1 if at
time t segment s is scheduled on resource r, and 0 otherwise, i.e.

⌘S(t, s, r) =

(
1 if �S(t, s, r) > 0,

0 otherwise.
(2.5)

The scheduling function �Smust satisfy the following criteria:

1. A segment is scheduled only on resources which it requires, i.e.

8t 2 T, s 2 S, r 2 R : �S(t, s, r) > 0) r 2 R
s

. (2.6)

2. A segment is scheduled on all of its required resources, or not at all, i.e.

8t 2 T, s 2 S : (9r 2 R
s

: �S(t, s, r) > 0)) (8(r, n) 2 R
s

: �S(t, s, r) = n).
(2.7)

3. The scheduling function must satisfy the realtime constraints, by making sure
that every segment receives its worst-case execution time on its required re-
sources before its parent task’s deadline, i.e.

8k 2 N, ⌧
i,j

2 S, r 2 R
i,j

: (k + 1)E
i,j

Z

k⇤T
i

+D

i

0

⌘S(x, ⌧
i,j

, r)dx. (2.8)

14 System model

Scheduling of components

Definition 2.10 (Component schedule). A schedule �C : T ⇥ C ⇥R ! N expresses
resource ownership by components during runtime, where �C(t, c, r) is the number of
units of resource r which are owned by component c at time t.

Saying that “at time t component c owns n units of resource r” is synonymous
to saying that “at time t component c executes on n units of resource r” or that “at
time t component c is scheduled on n units of resource r”.

Definition 2.11. We define ⌘C : T ⇥ C ⇥R ! {0, 1}, where ⌘C(t, c, r) returns 1 if
at time t component c is scheduled on resource r, and 0 otherwise, i.e.

⌘C(t, c, r) =

(
1 if �C(t, c, r) > 0,

0 otherwise.
(2.9)

Definition 2.12. We define � : T ⇥ C ! T , which captures the remaining budget
(or time) of components during runtime, where �(t, c) is the remaining budget of
component c at time t.

The scheduling function �Cmust satisfy the following criteria:

4. A component is scheduled only on resources which it requires, i.e.

8t 2 T, c 2 C, r 2 R : �C(t, c, r) > 0) r 2 R
c

. (2.10)

5. A component is scheduled on all of its required resources, or not at all, i.e.

8t 2 T, c 2 C : (9r 2 R
c

: �C(t, c, r) > 0)) (8(r, n) 2 R
c

: �C(t, c, r) = n).
(2.11)

6. The scheduling function must satisfy the realtime constraints, by making sure
that every component receives its required time capacity on its required re-
sources before its deadline. The exact specification may di↵er for di↵erent
components. For the periodic-idling server component (see Section 3.2.2), the
real-time requirement can be formalized as

8k 2 N, c 2 C, r 2 R
c

: (k + 1)E
c

=

Z
k⇤T

c

+D

c

0

⌘C(x, c, r)dx. (2.12)

7. Only components with remaining budget are scheduled, i.e.

8t 2 T , c 2 C : (9r 2 R : �C(t, c, r) > 0)) �(t, c) > 0. (2.13)

8. The remaining budget should never exceed component’s time capacity, i.e.

8t 2 T , c 2 C : 0 �(t, c) E
c

. (2.14)

Mapping 15

9. The remaining budget of a component c is replenished periodically, with period
T
c

. Each budget is consumed at a uniform rate whenever it is scheduled. The
exact specification may di↵er for di↵erent components. For the periodic-idling
server component (see Section 3.1.2), the periodic replenishment and uniform
consumption requirement can be formalized as

8k 2 N, c 2 C, t 2 [kT
c

, (k + 1)T
c

), r 2 R
c

: �(t, c) = E
c

�
Z

t

kT

c

⌘C(x, c, r)dx.

(2.15)

Scheduling of tasks and components

The scheduling functions �Sand �Cmust satisfy the following criteria:

10. The scheduling functions never schedule more units than a resource can provide,
i.e.

8t 2 T , r 2 R :
X

s2S
�S(t, s, r) +

X

c2C
�C(t, c, r) N

r

. (2.16)

Note that several segments and component may be scheduled on a resource at
the same time, as long as together they do not require more units than the
resource can provide.

11. A task or component is scheduled on a virtual resource provided by another
component only when that component is itself scheduled on its required re-
sources, i.e.

8t 2 T , s 2 S, c 2 C, p 2 P
c

: �S(t, s, p) > 0) (8q 2 R
c

: �C(t, c, q) > 0)
(2.17)

8t 2 T , c
1

, c
2

2 C, p 2 P
c2 : �C(t, c

1

, p) > 0) (8q 2 R
c2 : �C(t, c

2

, q) > 0)
(2.18)

16 System model

Chapter 3

Processor management

Modern real-time systems have become exceedingly complex. A typical car is con-
trolled by over 100 million lines of code executing on close to 100 Electronic Control
Units (ECU). With more and more functions being implemented in software, the
traditional approach of implementing each function (such as engine control, ABS,
windows control) on a dedicated ECU is no longer viable, due to increased manufac-
turing costs, weight, power consumption, and decreased reliability and serviceability
(Nolte et al., 2009). With the ECUs having increasingly more processing power, it
has become feasible to integrate several functions on a single ECU. However, this
introduces the challenge of supporting independent and concurrent development and
analysis of individual functions which are later to be integrated on a shared platform.
A popular approach in the industry and literature is component-based engineering,
where the complete system is divided into smaller software components which can be
developed independently. The Automotive Open System Architecture (AUTOSAR)
(AUTOSAR, 2011) standard is an example of such an approach in the automotive
domain. It relies on a formal specification of component interfaces to verify the
functional properties of their composition. Many functions in automotive systems,
however, also have real-time constraints, meaning that their correct behavior is not
only dependent on their functional correctness but also their temporal correctness.
AUTOSAR does not provide temporal isolation between components. Verifying the
temporal properties of an integrated system requires complete knowledge of all func-
tions comprising the components mapped to the same ECU, and therefore violates
the requirement for independent development and analysis.

In this chapter we address the problem of providing temporal isolation to compo-
nents in an integrated system. Ideally, temporal isolation allows to develop and verify
the components independently (and concurrently), and then to seamlessly integrate
them into a system which is functioning correctly from both a functional and timing
perspective (Shin and Lee, 2008; Nolte, 2011). The question is how to provide true
temporal isolation when components execute on a shared processor. We address this
problem by means of an hierarchical scheduling framework (HSF).

An HSF provides the means for the integration of independently developed and

17

18 Processor management

analyzed components into a predictable real-time system. A component is defined
by a set of tasks, a local scheduler and a server, which defines the component’s time
budget (i.e. its share of the processing time) and its replenishment policy.

Problem description

An HSF-enabled platform should provide the following general functionalities:

1. Interface for the creation of servers and assigning tasks to servers.

2. Virtual timers, which are relative to a components’s budget consumption, as
well as global timers, which are relative to a fixed point in time.

3. Local scheduling of tasks within a component, and global scheduling of compo-
nents on the system level.

In this chapter we focus on providing temporal isolation and preventing interfer-
ence between components. We aim at satisfying the following additional requirement:

4. Expiration of events local to a component, such as the arrival of periodic tasks,
should not interfere with other components. In particular, the handling of the
events local to inactive components should be deferred until the corresponding
component is activated. The time required to handle them should be accounted
to the corresponding component, rather than the currently active one.

These requirements should be met by a modular and extensible design, with
low performance overhead and minimal modifications to the underlying RTOS. It
should exhibit predictable overhead, while remaining e�cient to support resource-
constrained embedded systems in the automotive domain.

Real-time applications will often require support for periodic task arrival. Periodic
tasks rely on timers to represent their arrival time. For servers, we also need timers
representing the replenishment and depletion of a budget. Vital, and a starting
point for our design, is therefore the support for simple timers (or timed events), i.e.
the assumption that an event can be set to arrive at a certain time. This simple
timer support is typically available in an o↵-the-shelf Real-Time Operating System
(RTOS) (Labrosse, 2002). Some RTOSes provide much more functionality (for which
our work then provides an e�cient realization) but other systems provide just that.
As a result, the emphasis lies with the management of timers. The timer management
should support long event inter-arrival times and long lifetime of the system at a low
overhead.

Contributions

We first present the design of a general timer management system, which is based
on Relative Timed Event Queues (RELTEQ), an e�cient timer management system
targeted at embedded systems. Pending timers are stored in a queue sorted on the
expiration time, where the expiration time of each timer is stored relative to the

Related work 19

previous timer in the queue. This representation makes it possible to reduce the
memory requirements for storing the expiration times, making it ideal for resource
constrained embedded systems. We have implemented RELTEQ within µC/OS-II,
and showed that it also reduces the processor overhead compared to the existing
timer implementation.

We then leverage RELTEQ to implement periodic tasks and design an e�cient
HSF. The proposed HSF extension of RELTEQ supports various servers (including
the polling, idling-periodic, deferrable and constant-bandwidth servers), and provides
access to both virtual and global timers. It supports independent development of
components by separating the global and local scheduling, and allowing each server
to define a dedicated scheduler. The HSF design provides a mechanism for tasks to
monitor their server’s remaining budget, and addresses the system overheads inherent
to an HSF implementation. It provides temporal isolation and limits the interference
of inactive servers on the system level. Moreover, it avoids recalculating the expiration
of virtual events upon every server switch and thus reduces the worst-case scheduler
overhead.

The proposed design is evaluated based on an implementation within µC/OS-II,
a commercial operating system used in the automotive domain. The results demon-
strate low overheads of the design and minimal interference between the components.

In this chapter we focus on the means for implementing a HSF. The corresponding
analysis falls outside of the scope.

Publications

We have introduced RELTEQ in (Holenderski et al., 2009c). In (Holenderski et al.,
2010a, 2012a) we have presented an HSF extension of RELTEQ supporting fixed-
priority servers. We have extended the design with the constant bandwidth server
in (van den Heuvel et al., 2011), and applied it to priority processing in multimedia
systems.

3.1 Related work

In this section we summarize the existing work related to the processor management
discussed in this chapter.

3.1.1 Processor reservations

Resource reservations have been introduced by (Mercer et al., 1994), aiming at pro-
viding temporal isolation for individual components comprising a real-time system,
to guarantee resource provisions in a system with dynamically changing resource re-
quirements. They focused on the processor and specified the reservation budget by a
tuple (C, T), with capacity C and period T . The semantics is as follows: a reservation
will be allocated C units of processor time every T units of time. When a reservation

20 Processor management

uses up all of its C processor time within a period T it is said to be depleted. Other-
wise it is said to be undepleted. At the start of the period T the reservation capacity
is replenished.

(Rajkumar et al., 1998) identify four ingredients for guaranteeing resource provi-
sions:

1. Admission: When a reservation is requested, the system has to check if granting
the reservation will not a↵ect any timing constraints.

2. Scheduling: The reservations have to be scheduled on the global level, and tasks
have to be scheduled within the reservations.

3. Accounting or monitoring: Processor usage of tasks has to be monitored and
accounted to their assigned reservations.

4. Enforcement: A reservation, once granted, has to be enforced by preventing
other components from “stealing” the granted budget.

(Rajkumar et al., 1998) aim at a uniform resource reservation model and ex-
tended the concept of processor reserves to other resources, in particular the disk
bandwidth. They schedule processor reservations according to FPPS and EDF, and
disk bandwidth reservations according to EDF. They extend the reservation model
to (C, T,D, S, L), with capacity C, period T , deadline D, starting time S and the
life-time L of resource reservation, meaning that the reservation guarantees of C, T
and D start at S and terminate at S + L. Note that (Rajkumar et al., 1998) apply
their uniform resource reservation model only to single-unit resources, such as pro-
cessor or disk-bandwidth. They do not show how their methods can be applied to
multi-unit resources, such as memory.

3.1.2 Hierarchical scheduling frameworks

A hierarchical scheduling framework (HSF) facilitates independent analysis and de-
velopment of components, which can be integrated into a complete system based
only on the information provided on their interfaces. A compositional system model
is therefore critical.

Shin and Lee (2003) introduce the periodic resource model, allowing the integra-
tion of independently analyzed components in compositional hard real-time systems.
Their resource is specified by a pair (⇧

i

,⇥
i

), where ⇧
i

is its replenishment period
and ⇥

i

is its capacity. They also describe the schedulability analysis for a HSF based
on the periodic resource model under the Earliest Deadline First and Rate Monotonic
scheduling algorithms on local and global level. While the periodic-idling (Davis and
Burns, 2005) and deferrable (Strosnider et al., 1995) servers conform to the periodic
resource model, the polling (Lehoczky et al., 1987) server does not. The HSF pre-
sented in this chapter supports various two-level hierarchical processor scheduling
mechanisms, including the polling, periodic idling, deferrable servers, and constant-
bandwidth (Abeni and Buttazzo, 1998) servers. We have reported on the benefits
of our constant-bandwidth server implementation in (van den Heuvel et al., 2011).

Related work 21

In this chapter we focus on the underlying timer management and illustrate it with
fixed-priority servers.

Åsberg et al. (2009) make first steps towards using hierarchical scheduling in the
AUTOSAR standard. They sketch what it would take to enable the integration of
software components by providing temporal isolation between the AUTOSAR com-
ponents. In (Nolte et al., 2009) they extend their work to systems where components
share logical resources, and describe how to apply the SIRAP protocol (Behnam
et al., 2007) for synchronizing access to resources shared between tasks belonging to
di↵erent components. In this work we consider independent components and focus
on minimizing the interference between components due to them sharing the timer
management system.

HSF implementations

Saewong et al. (2002) present the implementation and analysis of an HSF based on
deferrable and sporadic servers using an hierarchical rate-monotonic and deadline-
monotonic scheduler, as used in systems such as the Resource Kernel (Rajkumar
et al., 1998).

Inam et al. (2011) present a FreeRTOS implementation of an HSF, which is based
on our earlier work in (Holenderski et al., 2010a). It supports temporal isolation for
fixed-priority global and local scheduling of independent tasks, including the support
for the idling-periodic and deferrable servers. Their goal is to minimize the changes to
the underlying OS. Consequently they rely on absolute timers provided by FreeRTOS.
They do not address virtual timers. The HSF presented in this chapter relies on
relative times, which allow for an e�cient implementation of virtual timers. Also,
our HSF implementation is modular and supports both fixed-priority as well as EDF
scheduling on both global and local levels, as well as constant-bandwidth servers.

Kim et al. (2000) propose a two-level HSF called the SPIRIT µKernel, which
provides a separation between components by using partitions. Each partition exe-
cutes a component, and uses the Fixed-Priority Scheduling (FPS) policy as a local
scheduler to schedule the component’s tasks. An o✏ine schedule is used to schedule
the partitions on a global level.

Behnam et al. (2008) present an implementation of a HSF based on the periodic
resource model in the VxWorks operating system. They keep track of budget deple-
tion by using separate event queues for each server in the HSF by means of absolute
times. Whenever a server is activated (or switched in), an event indicating the de-
pletion of the budget, i.e. the current time plus the remaining budget, is added to
the server event queue. On preemption of a server, the remaining budget is updated
according to the time passed since the last server release and the budget depletion
event is removed from the server event queue. When the server’s budget depletion
event expires, the server is removed from the server ready queue, i.e. it will not be
rescheduled until the replenishment of its budget.

Oikawa and Rajkumar (1999), describe the design and implementation of the
Linux/RK, an implementation of a resource kernel (Portable RK) within the Linux
kernel. They minimize the modifications to the Linux kernel by introducing a small

22 Processor management

number of call back hooks for identifying context switches, with the remainder of the
implementation residing in an independent kernel module. Linux/RK introduces the
notion of a resource set, which is a set of processor reservations. Once a resource
set is created, one or more processes can be attached to it to share its reservations.
Although reservations are periodic, periodic tasks inside reservations are not sup-
ported. The system employs a replenishment timer for each processor reservation,
and a global enforcement timer which expires when the currently running reservation
runs out of budget. Whenever a reservation is switched in the enforcement timer is
set to its remaining budget. Whenever a reservation is switched out, the enforcement
timer is cancelled, and the remaining budget is recalculated.

AQuoSA (Palopoli et al., 2009) also provides the Linux kernel with EDF schedul-
ing and various well-known resource reservation mechanisms, including the constant
bandwidth server. Processor reservations are provided as servers, where a server can
contain one or more tasks. Periodic tasks are supported by providing an API to sleep
until the next period. Similar to Oikawa and Rajkumar (1999) it requires a kernel
patch to provide for scheduling hooks and updates the remaining budget and the
enforcement timers upon every server switch.

Faggioli et al. (2009) present an implementation of the Earliest Deadline First
(EDF) and constant bandwidth servers for the Linux kernel, with support for multi-
core platforms. It is implemented directly into the Linux kernel. Each task is assigned
a period (equal to its relative deadline) and a budget. When a task exceeds its bud-
get, it is stopped until its next period expires and its budget is replenished. This
provides temporal protection, as the task behaves like a hard reservation. Each task
is assigned a timer, which is activated whenever a task is switched in, by recalculating
the deadline event for the task.

Eswaran et al. (2005) describe Nano-RK, a reservation-based RTOS targeted for
use in resource-constrained wireless sensor networks. It supports fixed-priority pre-
emptive multitasking, as well as resource reservations for processor, network, sensor
and energy. Only one task can be assigned to each processor reservation. Nano-RK
also provides explicit support for periodic tasks, where a task can wait for its next
period. Each task contains a timestamp for its next period, next replenishment and
remaining budget. A one-shot timer drives the timer ISR, which (i) loops through
all tasks, to update their timestamps and handle the expired events, and (ii) sets the
one-shot timer to the next wakeup time.

Unlike the work presented in (Behnam et al., 2008), which implements a HSF on
top of a commercial operating system, and in (Oikawa and Rajkumar, 1999; Faggioli
et al., 2009; Palopoli et al., 2009), which implement reservations within Linux, our
design for HSF is integrated within a RTOS targeted at embedded systems. Kim et al.
(2000) describe a micro-kernel with a two-level HSF and time-triggered scheduling
on the global level.

Our design aims at e�ciency, in terms of memory and processor overheads, while
minimizing the modifications of the underlying RTOS. Unlike Oikawa and Rajkumar
(1999); Behnam et al. (2008); Palopoli et al. (2009) it avoids recalculating the expira-
tion of local server events, such as budget depletion, upon every server switch. It also
limits the interference of inactive servers on system level by deferring the handling

Related work 23

of their local events until they are switched in. While Behnam et al. (2008) present
an approach for limiting interference of periodic idling servers, to the best of our
knowledge, our work is the first to also cover deferrable servers.

Monitoring

Run-time monitoring of the consumed resources is intrinsic to realizing correct imple-
mentation of the scheduling and enforcement rules. Monitoring of real-time systems
can be classified as synchronous or asynchronous (Chodrow et al., 1991). In the
synchronous case, a constraint (e.g worst-case execution time) is examined by the
task itself. In the asynchronous case, a constraint is monitored by a separate task.
The approaches in (Chodrow et al., 1991) are based on program annotations and,
hence, are synchronous. In reservation-based systems, however, monitoring should be
asynchronous to guarantee enforcement without relying on cooperation from tasks.
Moreover, monitoring should not interfere with task execution, but should be part of
the operating system or middleware that hosts the real-time application. Our HSF
takes the asynchronous monitoring approach.

3.1.3 Timer management

The two most common ways to represent the timestamps of pending timers are:
absolute timestamps are relative to a fixed point in time (e.g. January 1st, 1900),
while relative timestamps are relative to a variable point in time (e.g. the last tick
of a periodic timer).

In (Oikawa and Rajkumar, 1999; Palopoli et al., 2009) each timer consists of a
64-bit absolute timestamp and a 32-bit overflow counter. The timers are stored in a
sorted linked list. A timer Interrupt Service Routine (ISR) checks for any expiring
timers, and performs the actual enforcement, replenishment, and priority adjust-
ments. In (Oikawa and Rajkumar, 1999) the timer ISR is driven by a one-shot high
resolution timer which is programmed directly. Palopoli et al. (2009) use the Linux
timer interface, and therefore their temporal granularity and latency depend on the
underlying Linux kernel.

The Eswaran et al. (2005) implementation is based on the POSIX time structure
timeval, with two 32-bit numbers to represent seconds/nanoseconds. The authors
assume the absolute timestamp value is large enough such that it will practically not
overflow.

Carlini and Buttazzo (2003) present the Implicit Circular Timers Overflow Han-
dler (ICTOH), which is an e�cient time representation of absolute deadlines in a
circular time model. It assumes a periodic timer and absolute time representation.
It’s main contribution is handling the overflow of the time due to a fixed-size bit rep-
resentation of time. It requires managing the overflow at every time comparison and
is limited to timing constraints which do not exceed 2n�1, where n is the number of
bits of the time representation. Buttazzo and Gai (2006) present an implementation
of an EDF scheduler based on ICTOH for the ERIKA Enterprise kernel (Evidence,
2010) and focus on minimizing the tick handler overhead.

24 Processor management

The µC/OS-II (Labrosse, 2002) real-time operating system stores timestamps
relative to the current time. The timers are stored in an unordered queue. It assumes
a periodic timer, and at every tick it decrements the timestamp of all pending timers.
A timer expires when its timestamp reaches 0. Timestamps are represented as 16-bit
integers. The lifetime of their queue is therefore 216 ticks.

In (Holenderski et al., 2009c) we introduced the Relative Timed Event Queues
(RELTEQ), which is a timed event management component targeted at embedded
operating systems. It supports long event interarrival time (compared to the size
of the bit representation for a single timestamp), long lifetime of the event queue,
and low memory and processor overheads. By using extra “dummy” events it avoids
the need to handle overflows at every comparison due to a fixed bit-length time
representation, and allows to vary the size of the time representation to trade the
processor overhead for handling dummy events for the memory overhead due to time
representation. Similar to (Engler et al., 1995; Kim et al., 2000), our RELTEQ
implementation is tick based, driven by a periodic hardware timer.

3.2 System model

In this section we specialize the system model presented in Chapter 2 and extend it
with notions which are specific to this chapter.

3.2.1 Resource model

In this chapter we consider a uniprocessor platform and assume that the task or
component which has access to the processor has access to the complete platform.
Also, we assume no blocking between tasks and components. Hence, we have R =
{cpu}, with N

cpu

= 1, P = {cpu} and N = ;.

3.2.2 Application model

In this chapter we assume a system is composed of independently developed and
analyzed subsystems. A subsystem consists of a set of tasks which implement the
desired application, a local scheduler, and a server. There is a one-to-one mapping
between subsystems and servers.

Servers

We consider a set of server components (or simply servers) ⌃ ✓ C, where each server
s 2 ⌃ is specified according to Example 2.2.

Tasks

We assume that tasks are preemptive and independent, and that each task ⌧
i

is
mapped to exactly one server.

System model 25

Definition 3.1. We define � : C ! 2� , where �(c) is the set of tasks requiring
component c, i.e.

�(c) = {⌧
i

2 � | 9⌧
i,j

2 S
i

: c 2 R
i,j

}

Since we assume that each task is mapped to exactly one server, we have

[

s2⌃

�(s) = � ^
\

s2⌃

�(s) = ;. (3.1)

Definition 3.2. We define � : � ! 2C , where �(⌧
i

) is the set of components required
by task ⌧

i

, i.e.

�(⌧
i

) = {c 2 C | 9⌧
i,j

2 S
i

: c 2 R
i,j

}

Notation We will use ⇢(⌧
i

) to denote the server which task ⌧
i

is mapped to, i.e.
⇢(⌧

i

) = s 2 ⌃ | ⌧
i

2 �(s).

Since tasks are independent and mapped to a single server, it su�cient to model
the resource requirements of each task ⌧

i

with a single segment S
i

= h⌧
i,1

i, with E
i,1

representing the worst-case execution time of ⌧
i

, and R
i,1

= {(cpu
⇢(⌧

i

)

, 1)}, where
cpu

⇢(⌧

i

)

is the virtual processor provided by server ⇢(⌧
i

) (see Example 2.2).

Component states during runtime

During runtime, a component may be in one of five states: running, ready, blocked,
depleted or waiting. In this section we define these states in terms of our system
model.

Definition 3.3. We define ⌫ : T ⇥R ! N, where

⌫(t, r) = N
r

�
X

b2S
�(t, b, r)

is the number of units of resource r which are available at time t.

Definition 3.4. We define ↵ : T ⇥ � ! S, where ↵(t, ⌧
i

) is the segment of task ⌧
i

which is active at time t.

Note that ↵ is a partial function, as during the time interval between the com-
pletion of a task and its next arrival, the task will not have an active segment.

We will use ↵(t, ⌧
i

) mainly for identifying the resources which are required by task
⌧
i

at time t.

Definition 3.5. We define R
↵(t,⌧

i

)

: T ⇥ � ! 2R , where R
↵(t,⌧

i

)

is the set of
resources required by task ⌧

i

at time t. If ↵(t, ⌧
i

) = ⌧
i,j

, then R
↵(t,⌧

i

)

= R
i,j

. For
those values of t for which ↵(t, ⌧

i

) is not defined, we assume R
↵(t,⌧

i

)

= ;.

26 Processor management

Definition 3.6. We say that there is demand for component c at time time t, referred
to by the predicate demand(t, c), i↵ at time t there is (i) a segment which is active
and is requiring a resource provided by c, or (ii) a component which has a remaining
budget and is requiring a resource provided by c, i.e.

demand(t, c) ⌘ (9⌧
i

2 � : R
↵(t,⌧

i

)

\ P
c

6= ;) _
(9d 2 C : �(t, d) > 0 ^ R

d

\ P
c

6= ;) (3.2)

Definition 3.7. A component c is said to be running at time t, referred to by the
predicate running(t, c), i↵ at time t it is scheduled on any of its required resources1,
i.e.

running(t, c) ⌘ 9r 2 R
c

: �C(t, c, r) > 0. (3.3)

Definition 3.8. A component c is said to be blocked at time t, referred to by the
predicate blocked(t, c), i↵ at time t it requires a resource r which is owned by a task
or component with a lower priority and there are insu�cient units of r available for
c, i.e.

blocked(t, c) ⌘ �(t, c) > 0 ^ (9(r, n) 2 R
c

: ⌫(t, r) < n ^
(9⌧

i

2 � : (�S(t, ⌧
i

, r) > 0 ^ ⇡
c

< ⇡
i

) _
(9d 2 C : (�C(t, d, r) > 0 ^ ⇡

c

< ⇡
d

)). (3.4)

Definition 3.9. A component c is said to be ready at time t, referred to by the
predicate ready(t, c), i↵ at time t it requires a resource r which is owned only by tasks
or components with a higher priority and there are insu�cient units of r available
for c, i.e.

ready(t, c) ⌘ �(t, c) > 0 ^ (9(r, n) 2 R
c

: ⌫(t, r) < n ^
(8⌧

i

2 � : �S(t, ⌧
i

, r) > 0) ⇡
c

> ⇡
i

) ^
(8d 2 C : �C(t, d, r) > 0) ⇡

c

> ⇡
d

)). (3.5)

Definition 3.10. A component c is said to be depleted at time t, referred to by the
predicate depleted(t, c), i↵ its remaining budget has been exhausted, i.e.

depleted(t, c) ⌘ �(t, c) = 0. (3.6)

Definition 3.11. A component c is said to be waiting on demand at time t, referred
to by the predicate waiting(t, c), i↵ at time t it has remaining budget but there is no
demand for it, i.e.

waiting(t, c) ⌘ �(t, c) > 0 ^ ¬demand(t, c). (3.7)

1According to the scheduling condition 5 in Section 2.3.2, a running component will be scheduled
on all of its required resources.

System model 27

Deferrable server The deferrable server by Strosnider et al. (1995) is bandwidth
preserving. This means that when a server is switched out because none of its tasks
are ready, it will preserve its budget to handle tasks which may become ready later.
A deferrable server can be in one of the states shown in Figure 3.1. A server in the
running state is said to be active, and in either ready, waiting or depleted state is
said to be inactive. A change from inactive to active or vice-versa is accompanied by
the server being switched in or switched out, respectively.

Depleted

RunningReady

demand replenishment

depletion

dispatch

preemption

Waiting

replenishment

demand depletion

replenishmentreplenishment

replenishment

create

Figure 3.1: State transition diagram for the deferrable server.

A deferrable server s 2 C is created in the waiting state, with its remaining budget
equal to its capacity, i.e. �(O

s

, s) = ⇥
i

. As soon as there is demand for it, it moves
to the ready state. When it is dispatched by the scheduler it moves to the running
state. A running server s may become inactive for one of three reasons:

• It has been preempted by a higher priority server, upon which it preserves its
budget and moves to the ready state.

• It has remaining budget, but none of its tasks in �(s) are ready to run, upon
which it preserves its budget and moves to the waiting state.

• Its budget has become depleted, upon which it moves to the depleted state.

When a depleted server is replenished it moves to the ready state and becomes
eligible to run. A waiting server may be woken up by a newly arrived periodic task
or a delay event.

28 Processor management

Idling periodic server When the idling periodic server by Davis and Burns (2005)
is replenished and none of the tasks in �(s) is ready, then it idles its budget away
until either a task arrives or the budget depletes. An idling periodic server follows
the state transition diagram in Figure 3.2. It resembles the state transition diagram

Depleted

RunningReady

depletion

dispatch

preemption

replenishment

replenishmentreplenishment

create demand depletion

Figure 3.2: State transition diagram for the periodic-idling server.

of a deferrable server, however, due to its idling nature the periodic-idling server
will never reach the waiting state. The idling property can be regarded as artificial
demand for it when there is no proper demand from its tasks.

Polling server The polling server by Lehoczky et al. (1987) is not bandwidth
preserving. Therefore, when it is replenished and none of the tasks in �(s) is ready,
or when its workload is exhausted, then its budget is immediately depleted.

A polling server can be in one of three states, shown in Figure 3.3. The di↵erence

Depleted

RunningReady

depletion
or

workload exhausted

dispatch

preemption

replenishment

replenishmentreplenishment

create

Figure 3.3: State transition diagram for the polling server.

between a polling and a deferrable server lies in what happens when the workload of

RELTEQ 29

a running server is exhausted. Rather than moving to the waiting state (and thus
preserving its budget), the polling server discards any remaining budget and moves
to the depleted state.

Hierarchical scheduling

In two-level hierarchical scheduling one can identify a global scheduler which is re-
sponsible for selecting a server component. The server is then free to use any local
scheduler to select a task to run.

In order to facilitate the reuse of existing server components when integrating
them to form larger systems, the platform should support (at least) fixed-priority
preemptive scheduling at the local level within servers (since it is a de-facto standard
in the industry). To give the system designer the most freedom it should support
arbitrary schedulers at the global level. In this chapter we will focus on a fixed-
priority scheduler on both local and global level.

Timed events

The platform needs to support at least the following timed events: task delay, arrival
of a periodic task, server replenishment and server depletion, which are generated by
the timer handler.

Events local to server s, such as the arrival of periodic tasks in �(s), should
not interfere with other servers, unless they wake a server, i.e. the time required
to handle them should be accounted to s, rather than the currently running server.
In particular, handling the events local to inactive servers should not interfere with
the currently active server and should be deferred until the corresponding server is
switched in.

3.3 RELTEQ

Our goal in this chapter is to extend the real-time operating system µC/OS-II with
an HSF. To implement the desired extensions in µC/OS-II we needed a general
mechanism for di↵erent kinds of timed events, exhibiting low runtime overheads. This
mechanism should be expressive enough to easily implement higher level primitives,
such as periodic tasks, fixed-priority servers and two-level fixed-priority scheduling.

3.3.1 RELTEQ time model

RELTEQ stores the arrival times of future events relative to each other, by expressing
their time relative to their previous event. The arrival time of the head event is relative
to the current time2, as shown in Figure 3.4.

2Later in this chapter we will use RELTEQ queues as an underlying data structure for di↵erent
purposes. We will relax the queue definition: all event times will be expressed relative to their
previous event, but the head event will not necessarily be relative to “now”.

30 Processor management

12 4 5 5 10

e1 e2 e3 e4 e5

absolute time1002

event time

1006 1011 1016 1026990

now

Figure 3.4: Example of the RELTEQ event queue.

Unbounded interarrival time between events

One of our requirements is for long event interarrival times with respect to time
representation. In other words, given d as the largest value that can be represented
for a fixed bit-length time representation, we want to be able to express events which
are kd time units apart, for some parameter k > 1.

For an n-bit time representation, the maximum interval between two consecutive
events in the queue is 2n � 1 time units3. Using k events, we can therefore represent
event interarrival time of at most k(2n � 1). RELTEQ improves this interval even
further and allows for an arbitrarily long interval between any two events by inserting
“dummy” events, as shown in Figure 3.5.

(a)

(b)

4 5 Legend:

event

dummy event
4 5 2n-1 9

2n+10

Figure 3.5: Example of (a) an overflowing relative event time (b) RELTEQ inserting
a dummy event with time 2n � 1 to handle the overflow.

If t represents the event time of the last event in the queue, then an event e
i

with
a time larger than 2n�1 relative to t can be inserted by first inserting dummy events
with time 2n � 1 at the end of the queue until the remaining relative time of e

i

is
smaller or equal to 2n � 1.

In general, dummy events act as placeholders in queues and can be assigned any
time in the interval [0, 2n � 1].

3.3.2 RELTEQ data structures

A RELTEQ event is specified by the tuple (kind , time, data). The kind field identifies
the event kind, e.g. a delay or the arrival of a periodic task. time is the event time.
data points to additional data that may be required to handle the event and depends
on the event kind. For example, a delay event will point to the task which is to be
resumed after the delay event expires. Decrementing an event means decrementing
its event time and incrementing an event means incrementing its event time. We will

3With n bits we can represent 2n distinct numbers. Since we start at 0, the largest one is 2n�1.

RELTEQ 31

use a dot notation to represent individual fields in the data structures, e.g. e
i

.time
is the event time of event e

i

.
A RELTEQ queue is a list of RELTEQ events. Head(q

i

) represents the head event
in queue q

i

.

3.3.3 RELTEQ tick handler

While RELTEQ is not restricted to any specific hardware timer, in this chapter we
assume a periodic timer which invokes the tick handler, outlined in Figure 3.6.

The tick handler is responsible for managing the system queue, which is a RELTEQ
queue keeping track of all the timed events in the system. At every tick of the peri-
odic timer the time of the head event in the queue is decremented. When the time of
the head event is 0, then the events with time equal to 0 are popped from the queue
and handled.

The scheduler is called at the end of the tick handler, but only in case an event
was handled. If no event was handled the currently running task is resumed.

The behavior of a RELTEQ tick handler is summarized in Figure 3.6.

Head(system).time := Head(system).time - 1;
if Head(system).time = 0 then
repeat
HandleEvent(Head(system));
PopEvent(system);

until Head(system).time > 0
Schedule();

end if

Figure 3.6: Pseudocode for the RELTEQ tick handler.

How an event is handled by HandleEvent() depends on its kind. E.g. a delay
event will resume the delayed task. In general, the event handler will often use the
basic RELTEQ primitives, as described in the following sections.

Note that the tick granularity dictates the granularity of any timed events driven
by the tick handler: e.g. a server’s budget can be depleted only upon a tick. High
resolution one-shot timers (e.g. High Precision Event Timers) provide a fine grained
alternative to periodic ticks. In case these are present, RELTEQ can easily take
advantage of the fine time granularity by setting the timer to the expiration of the
earliest event among the active queues. The tick based approach was chosen due to
lack of hardware support for high resolution one-shot timers on our example platform.
In case such a one-shot timer is available, our RELTEQ based approach can be easily
modified to take advantage of it.

3.3.4 Basic RELTEQ primitives

A new event can be created using the following method:

32 Processor management

Event NewEvent(Kind k, Time t, Data d) Creates and returns a new event e
i

with e
i

.kind = k, e
i

.time = t, and e
i

.data = d.

Three operations can be performed on an event queue: a new event can be in-
serted, the head event can be popped, and an arbitrary event in the queue can be
deleted:

void InsertEvent(Queue q

i

, Event e
j

) Inserts event e
j

into queue q
i

.

void PopEvent(Queue q

i

) Removes the earliest event from q
i

.

void DeleteEvent(Queue q

i

, Event e
j

) Removes event e
j

from queue q
i

.

3.3.5 Event queue implementation

The most straightforward RELTEQ queue implementation is probably a doubly
linked list:

void InsertEvent(Queue q

i

, Event e

j

) When a new event e
j

with absolute time
t
j

is inserted into the event queue q
i

, the queue is traversed accumulating the relative
times of the events until a later event e

k

is found, with absolute time t
k

� t
j

. When
such an event is found, then (i) e

j

is inserted before e
k

, (ii) its time e
j

.time is set
relative to the previous event, and (iii) the arrival time of e

k

is set relative to e
j

(i.e.
t
k

� t
j

). If no later event was found, then e
j

is appended at the end of the queue,
and its time is set relative to the previous event.

void PopEvent(Queue q

i

) When an event is popped from a queue it is simply
removed from the head of the queue q

i

.

void DeleteEvent(Queue q

i

, Event e

j

) Since all events in a queue are stored
relative to each other, the time e

j

.time of any event e
j

2 q
i

is critical for the integrity
of the events later in the queue. Therefore, before an event e

j

is removed from q
i

, its
event time e

j

.time is added to the following event in q
i

.
Note that the addition could overflow. In such case, instead of adding e

j

.time to
the following event in q

i

, the kind of e
j

is set to a dummy event and the event is not
removed. If e

j

is the last event in q
i

then it is simply removed, together with any
dummy events preceding it.

The time complexity of the InsertEvent() operation is then linear in the number
of events in the queue, while the complexity of the DeleteEvent() and PopEvent()
operations is constant.

The linear time complexity of the insert operation may be inconvenient for large
event queues. An alternative implementation based on a heap or a balanced binary

Periodic tasks 33

tree may seem more appropriate, as it promises logarithmic time operations. How-
ever, as the following theorem states, the relative time representation coupled with
the requirement for long event interarrival times (compared to the time representa-
tion) make such an implementation impossible.

Theorem 3.1. Assume that the maximum value we can represent in the time repre-
sentation is d and also assume that we store times in a tree using relative values no
greater than d. Finally, assume that any two events in the tree are at most kd apart
in real time, for some parameter k. Then a logarithmic time retrieval of an event
from a tree is not possible.

Proof. If there are k events, the largest time span these k events can represent is kd
time units, i.e., the time di↵erence between the first and last event can be at most
kd units. If we are to obtain this value by summing over a path this path has to be
of length k which leads to a linear representation. This argument pertains to any
representation that sums contributions over a path.

We can illustrate Theorem 3.1 using dummy events: assuming that we start at
time 0, the real time of a newly inserted event is at most kd. We would need to insert
dummy events until a root path can contain this value. This means we would need
to add dummy events until there is a root path of length k.

Conversely, if we assume a tree representation, then we would like to obtain kd as
a sum of log(k) events. If we assume an even distribution over all events, which is the
best case with respect to the number of bits required for the time representation, then

each event time will be equal to k

log(k)

d. This means that
l
log

⇣
k

log(k)

⌘m
extra bits are

needed. Therefore, in a tree implementation one cannot limit the time representation
to a given fixed value, independent of kd (i.e. the tree span).

In order to satisfy our initial requirement for long event interarrival time, we
chose for a linked-list implementation of RELTEQ queues. In future work we look
into relaxing this requirement.

3.4 Periodic tasks

The task concept is an abstraction of a program text. There are roughly three
approaches to periodic tasks, depending on the primitives the operating system pro-
vides. Figure 3.7 illustrates the possible implementations of periodic tasks, where
function f

i

() represents the body of task ⌧
i

(i.e. the actual work done during each
job of task ⌧

i

).
In Figure 3.7.a, the periodic behavior is programmed explicitly while in Figure

3.7.b this periodicity is implicit. The first syntax is typical for a system without
support for periodicity, like µC/OS-II. It provides two methods for managing time:
GetT ime() which returns the current time, and DelayFor(t) which delays the ex-
ecution of the current task for t time units relative to the time when the method
was called. As an important downside, the approach in Figure 3.7.a may give rise to
jitter, when the task is preempted between now := GetT ime() and DelayFor().

34 Processor management

Task ⌧i :
k := 0;
while true do

now := GetT ime();
DelayFor(Oi + k ⇤ Ti � now);
k := k + 1;
fi();

end while

Registration:

TaskMakePeriodic(⌧i, Oi, Ti);

Task ⌧i :
while true do

TaskWaitPeriod();
fi();

end while

(a) (b)

Registration:

RegisterPeriodic(fi(), Oi, Ti);

(c)

Figure 3.7: Possible implementations of a periodic task.

In order to go from Figure 3.7.a to 3.7.c we extract the periodic timer man-
agement from the task in two functions: a registration of the task as periodic
and a synchronization with the timer system. A straightforward implementation
of TaskWaitPeriod() is a suspension on a semaphore. Note that we wait at the be-
ginning of the while loop body (rather than at the end) in case O

i

> 0. Going from
interface in Figure 3.7.b to 3.7.c is now a simple implementation issue.

Note that the task structure described in Figure 3.7.b guarantees that a job will
not start before the previous job has completed, and therefore makes sure that two
jobs of the same task will not overlap if the first job’s response time exceeds the task’s
period.

RELTEQ primitives for periodic tasks

In order to provide the periodic task interface in 3.7.b, we need to implement a timer
which expires periodically and triggers the task waiting inside the TaskWaitPeriod()
call.

To support periodic tasks we introduce a new kind of RELTEQ events: a period
event. Each period event e

i

points to a task ⌧
i

. The expiration of a period event
e
i

indicates the arrival of a periodic task ⌧
i

upon which (i) the event time of the e
i

is set to T
i

and reinserted into the system queue using InsertEvent(), and (ii) the
semaphore blocking ⌧

i

is raised.
To support periodic tasks we have equipped each task with three additional at-

tributes: TaskPeriod , expressed in the number of ticks, TaskPeriodSemaphore, point-
ing to the semaphore guarding the release of the task, and TaskPeriodEvent , pointing
to a RELTEQ period event. For e�ciency reasons we have added these directly to
the Task Control Block (TCB), which is the µC/OS-II structure storing the state in-

Servers 35

formation about a task. Our extensions could, however, reside in a separate structure
pointing back to the original TCB.

A task ⌧
i

is made periodic by calling TaskMakePeriodic(⌧
i

, O
i

, T
i

), which

1. sets the TaskPeriod to T
i

,

2. removes the TaskPeriodEvent from the system queue using DeleteEvent(), in
case it was already inserted by a previous call to TaskMakePeriodic(), otherwise
creates a new period event using NewEvent(period, T

i

, ⌧
i

) and assigns it to
TaskPeriodEvent .

3. sets the event time of the TaskPeriodEvent to O
i

if O
i

> 0 or T
i

if O
i

= 0, and
inserts it into the system queue.

3.5 Servers

A server s is created using ServerCreate(⇧
i

,⇥
i

, kind), where kind specifies whether
the server is idling periodic or deferrable. A task ⌧

i

is mapped to server s using
ServerAddTask(s, ⌧

i

).
In Section 3.3.3 we have introduced a system queue, which keeps track of pending

timed events. For handling periodic tasks assigned to servers we could reuse the
system queue. However, this would mean that the tick handler would process the
expiration of events local to inactive servers within the budget of the running server.

In order to limit the interference from inactive servers we would like to separate
the events belonging to di↵erent servers. For this purpose we introduce additional
RELTEQ queues for each server. We start this section by introducing additional
primitives for manipulating queues, followed by describing how to use these in order
to implement fixed-priority servers.

3.5.1 RELTEQ primitives for servers

We introduce the notion of a pool of queues, and define two pools: active queues and
inactive queues. They are implemented as lists of RELTEQ queues. Conceptually, at
every tick of the periodic timer the heads of all active queues are decremented. The
inactive queues are left untouched.

To support servers we extend RELTEQ with the following methods:

void ActivateQueue(Queue q

i

) Moves queue q
i

from the inactive pool to the ac-
tive pool.

void DeactivateQueue(Queue q

i

) Moves queue q
i

from the active pool to the
inactive pool.

void IncrementQueue(Queue q

i

) Increments the head event in queue q
i

by 1.
Time overflows are handled by setting the overflowing event to 2n � 1 and inserting
a new dummy event at the head of the queue with time equal to the overflow (i.e. 1).

36 Processor management

void SyncQueueUntilEvent(Queue q

i

, Queue q

j

, Event e
k

) Synchronizes queue
q
i

with queue q
j

until event e
k

2 q
j

, by conceptually computing the absolute time of
e
k

, and then popping and handling all the events in q
i

which have occurred during
that time interval.

3.5.2 Limiting interference of inactive servers

To support servers, we add an additional server queue for each server s, denoted by
s.sq, to keep track of the events local to the server, i.e. delays and periodic arrival
of tasks ⌧

j

2 �(s). At any time at most one server can be active; all other servers
are inactive. The additional server queues make sure that the events local to inactive
servers do not interfere with the currently active server.

When the active server is switched out (e.g. because a higher priority server is
resumed, or the active server gets depleted) then the active server queue is deactivated
by calling DeactivateQueue(s.sq). As a result, the queue of the switched out server is
“paused”. When a server s is switched in then its server queue is activated by calling
ActivateQueue(s.sq). As a result, the queue of the switched in server is “resumed”.
The system queue is never deactivated.

In this new configuration the hardware timer drives two event queues:

1. the system queue, keeping track of system events, i.e. the replenishment of
periodic servers,

2. the server queue of the active server, keeping track of the events local to a
particular server, i.e. task delays and the arrival of periodic tasks belonging to
the server.

To keep track of the time which has passed since the last server switch, we intro-
duce a stopwatch. The stopwatch is basically a counter, which is incremented with
every tick. In order to handle time overflows discussed in Section 3.3.1, we represent
the stopwatch as a RELTEQ queue and use IncrementQueue(stopwatch) to increment
it.

During the time when a server is inactive, several other servers may be switched
in and out. Therefore, next to keeping track of time since the last server switch, for
each server we also need to keep track of how long it was inactive, i.e the time since
that particular server was switched out. Rather than storing a separate counter for
each server, we multiplex the stopwatches for all servers onto the single stopwatch
which we have already introduced, exploiting the RELTEQ approach. We do this by
inserting a stopwatch event, denoted by s.se, at the head of the stopwatch queue using
InsertEvent(stopwatch, s.se) whenever server s is switched out. The event points to
the server and its time is initially set to 0. The behavior of the tick handler with
respect to the stopwatch remains unchanged: upon every tick the head event in the
stopwatch queue is incremented using IncrementQueue(stopwatch).

During runtime the stopwatch queue will contain one stopwatch event for every
inactive server (the stopwatch event for the currently active server is removed when
the server is switched in). The semantics of the stopwatch queue is defined as follows:

Servers 37

the accumulated time from the head of the queue until (and including) a stopwatch
event s.se represents the time the server s was switched out.

When a server s is switched in, its server queue is synchronized with the stopwatch
using SyncQueuesUntilEvent(s.sq, stopwatch, s.se), which handles all the events in
s.sq which might have occurred during the time the server was switched out. It
accumulates the time in the stopwatch queue until the stopwatch event s.se and
handles all the events in s.sq which have expired during that time. Then s.se is
removed from the stopwatch queue. When s is switched out, s.se with time 0 is
inserted at the head of the stopwatch queue.

Example 3.1. The stopwatch queue is a great example of RELTEQ’s strength. It
provides an e�cient and concise mechanism for keeping track of the inactive time
for all servers. Figure 3.8 demonstrates the behavior of the stopwatch queue for an
example system consisting of three servers A, B and C. It illustrates the state of the
stopwatch queue at di↵erent moments during execution, before the currently running
server is switched out and after the next server is switched in.

A

B

C

Stopwatch

0 5 10 15 20 25

3
B

0
C

4
A

2
B

4
A

7
C

2
B

6
A

9
C

Legend

0
C

running server

stopwatch event
before server switch

stopwatch event
after server switch

0
A

0
B

0
C

4
A

3
C

0
B

0
C

4
A

0
B

4
A

0
C

2
B

6
A

7
C

9
C

0
B

0
C

0
A

3
C

Figure 3.8: Example of the stopwatch queue.

Initially, when server s is created, a stopwatch event s.se with time 0 is inserted
into the stopwatch queue. At time 0 server A is switched in and its stopwatch event
is removed. While server A is running, the tick handler increments the head of the
stopwatch queue, which happens to be the stopwatch event of server B. At time 3,

38 Processor management

when server A is switched out and server B is switched in, server B synchronizes its
absolute queue with the stopwatch queue until and including B.se, B.se is deleted,
and A.se with time 0 is inserted. Note that when B.se is deleted, its time is added
to C.se.

At time 7 server C is switched in, its absolute queue is synchronized with time
4 + 3 = 7, after which C.se is deleted, and B.se with time 0 is inserted.

At time 9, since no server is switched in, no synchronization is taking place and
no stopwatch event is deleted. Only stopwatch event C.se with time 0 is inserted,
since server C is switched out.

At time 16, when server B is switched in and its stopwatch event B.se is deleted,
the time of B.se is added to C.se.

Deferrable server

When the workload of a deferrable server s is exhausted, i.e. there are no ready
tasks in �(s), then the server is switched out and its server queue s.sq is deactivated.
Consequently, any periodic task which could wake up the server to consume any
remaining budget cannot be noticed. One could alleviate this problem by keeping
its server queue active when s is switched out. This, however, would make the tick
handler overhead linear in the number of deferrable servers, since a tick handler
decrements the head events in all active queues (see Section 3.5.6).

Instead, in order to limit the interference of inactive deferrable servers, when a
deferrable server s is switched out and it has no workload pending (i.e. no tasks in
�(s) are ready), we deactivate s.sq, change its state to waiting, and insert a wakeup
event, denoted as s.we, into the system queue. The wakeup event has its data pointing
to s and time equal to the arrival of the first event in s.sq. When the wakeup event
expires, the state of s is set to the ready state. This way handling the events inside
s.sq is deferred until s is switched in.

Idling periodic server

An idling periodic server is a special kind of a deferrable server containing an idle
task (with lowest priority). The idle task is switched in if no higher priority task
is ready, e↵ectively idling away the remaining capacity. In order to save memory
needed for storing the task control block and the stack of the idle task, one idle task
is shared between all idling periodic servers in the system.

3.5.3 Virtual timers

When the server budget is depleted an event must be triggered to guarantee that a
server does not exceed its budget. In the next section we present a general approach
for handling server depletion. It relies on the notion of virtual timers, which are
events relative to server’s budget consumption. These compliment the global timers,
which operate in the absolute time domain, used for triggering events such as server
replenishment or the arrival of periodic tasks.

Servers 39

We can implement virtual timers by adding a virtual server queue for each server,
denoted by s.vq. Similarly to the server queues introduced earlier, when a server is
switched in, its virtual server queue is activated. The di↵erence is that the virtual
server queue is not synchronized with the stopwatch queue, since during the inactive
period a server does not consume any of its budget. When a server is switched out,
its virtual server queue is deactivated.

The relative time representation by RELTEQ allows for a more e�cient virtual
queue activation than an absolute time representation does. An absolute time rep-
resentation (e.g. in (Behnam et al., 2008; Inam et al., 2011)) requires to recompute
the expiration time for all the events in a virtual server queue upon switching in the
corresponding server, which is linear in the number of events. In our RELTEQ-based
virtual queues the events are stored relative to each other and their expiration times
do not need to be recomputed upon queue activation. Note that it will never be
necessary to handle an expired virtual event upon queue activation, since such an
event would have been already handled before the corresponding server was switched
out. Therefore, our HSF design exhibits a constant time activation of a virtual server
queue.

3.5.4 Server replenishment and depletion

We introduce two additional RELTEQ event kinds to support servers: server replen-
ishment and server depletion. When a server s is created, a replenishment event e

j

is inserted into the system queue, with e
j

.data pointing to s and e
j

.time equal to the
server’s replenishment period ⇧

i

. When e
j

expires, e
j

.time is updated to ⇧
i

and it
is inserted into the system queue.

Upon replenishment, the server’s depletion event e
j

is inserted into its virtual
server queue, with e

j

.data pointing to s and e
j

.time equal to the server’s capacity
⇥

i

. If the server was not depleted yet, then the old depletion event is removed from
the virtual server queue using DeleteEvent(s.vq, e

j

).

3.5.5 Switching servers

The methods for switching servers in and out are summarized in Figures 3.9 and 3.10.

SyncQueuesUntilEvent(s.sq, stopwatch, s.se);
ActivateQueue(s.sq);
ActivateQueue(s.vq);
if s.we 6= ; then
DeleteEvent(system, s.we);
s.we = ;;

end if

Figure 3.9: Pseudocode for ServerSwitchIn(s).

40 Processor management

DeleteEvent(stopwatch, s.se);
s.se = NewEvent(stopwatch, 0, s);
InsertEvent(stopwatch, s.se);
DeactivateQueue(s.sq);
DeactivateQueue(s.vq);
if s.readyTasks = ; then

s.we = NewEvent(wakeup, Head(s.sq).time, s);
InsertEvent(system, s.we);

end if

Figure 3.10: Pseudocode for ServerSwitchOut(s).

3.5.6 RELTEQ tick handler with support for servers

An example of the RELTEQ queues managed by the tick handler in the proposed
RELTEQ extension with servers is summarized in Figure 3.11. Conceptually, every

56 4 5 2n-1 10system queue

23 2n-1 34
inactive

server queues &
virtual server queus

37 4

3

17 21
active

server queue

7 2n-1stopwatch queue

27 5 101active
virtual server queue

Legend: head of an active queue which is decrementdevent

dummy event head of an active queue which is incremented

327

Figure 3.11: Example of the RELTEQ queues managed by the tick handler.

tick the stopwatch queue is incremented and the heads of the system queue, the active
server queue and the active virtual server queue are decremented. If the head of any
queue becomes 0, then their head event is popped and handled until the queue is

Servers 41

exhausted or the head event has time larger than 0.
Actually, rather than decrementing the head of each active queue and check-

ing whether it is 0, a CurrentTime counter is incremented and compared to the
EarliestTime, which is set whenever the head of an active queue changes. If they
are equal, then (i) the CurrentTime is subtracted from the heads of all the active
queues, (ii) any head event with time 0 is popped and handled, (iii) CurrentTime
is set to 0, and (iv) EarliestTime is set to the earliest time among the heads of all
active queues4.

The behavior of a RELTEQ tick handler supporting servers is summarized in
Figure 3.12.

IncrementQueue(stopwatch);
CurrentT ime := CurrentT ime+ 1;
if EarliestT ime = CurrentT ime then
for all q 2 activequeues do
Head(q).time := Head(q).time � CurrentT ime;
while Head(q).time = 0 do
HandleEvent(Head(q));
PopEvent(q);

end while
end for
CurrentT ime := 0;
EarliestT ime := Earliest(activequeues);
Schedule();

end if

Figure 3.12: Pseudocode for the RELTEQ tick handler supporting hierarchical
scheduling.

Note that at any moment in time there are at most four active queues, as shown in
Figure 3.11. Also, the tick handler is executed with disabled interrupts, guaranteeing
mutually exclusive access to the queue data structures.

3.5.7 Summary

We have described a generic framework for supporting servers, which is tick based
(Section 3.3.3) and limits the interference of inactive servers on system level (Section
3.5.2). The interference of inactive servers which are either ready or depleted was
limited by means of a combination of inactive server queues and a stopwatch queue.
Deactivating server queues of waiting servers was made possible by inserting a wakeup
event into the system queue, in order to wake up the server upon the arrival of a
periodic task while the server is switched out.

A large part of our design concerns manipulating events in di↵erent event queues.
Table 3.1 summarizes which events are stored in which queues. Note that each queue

4Note that the time of any event will never become negative.

42 Processor management

can contain dummy events to prolong the event inter-arrival times.

Queue Events
System queue Server replenishment, server wakeup
Stopwatch queue Stopwatch event
Server queue Periodic task arrival, task delay
Server virtual queue Server depletion

Table 3.1: Mapping between events and queues.

3.6 Hierarchical scheduling

Rajkumar et al. (1998) identified four ingredients necessary for guaranteeing resource
provisions: admission, monitoring, scheduling and enforcement. In this section we
describe how our implementation of HSF addresses each of them.

3.6.1 Admission

We allow admission of new components only during the integration, not during run-
time. The admission testing requires analysis for hierarchical systems, which is out-
side the scope of this chapter.

3.6.2 Monitoring

There are two reasons for monitoring the budget consumption of servers: (i) handle
the server depletion and (ii) allow the assigned tasks to track and adapt to the
available budget.

In order to notice the moment when a server becomes depleted we have introduced
a virtual depletion event for every server, which is inserted into its virtual server
queue. When the depletion event expires, then (i) the server’s capacity is set to 0,
(ii) its state is set to depleted, and (iii) the scheduler is called.

We would like to allow tasks ⌧
j

2 �(s) to track the remaining server budget �
s

.
Upon such a request, we could sum up the event times of the depletion event of server
s and all the previous events in the virtual server queue. However, this approach
would incur an overhead linear in the number of events in the virtual server queue
upon every request for the remaining budget. We therefore equipped each server with
a budget counter. Upon every tick the budget counter of the currently active server
is decremented by one. The depletion event will make sure that a depleted server is
switched out before the counter becomes negative. We also added the ServerBudget()
method, which can be called by any task.

Ticks ServerBudget(Server s) Returns the current value of �
i

, which represents
the lower bound on the processor time that server s will receive within the remainder
of its current period.

Hierarchical scheduling 43

3.6.3 Scheduling

The µC/OS-II the scheduler does two things: (i) select the highest priority ready task,
and (ii) in case it is di↵erent from the currently running one, do a context switch. Our
hierarchical scheduler replaces the original OS SchedNew() method, which is used by
the µC/OS-II scheduler to select the highest priority ready task.

It first uses the global scheduler HighestReadyServer() to select the highest priority
ready server, and then the server’s local scheduler HighestReadyTask(), which selects
the highest priority ready task belonging to that server. This approach allows to
implement di↵erent global and local schedulers (such as fixed-priority or EDF), and
also di↵erent schedulers in each server. Our fixed-priority global scheduler is shown
in Figure 3.13.

highestServer := HighestReadyServer();
if highestServer 6= currentServer then

if currentServer 6= ; then
ServerSwitchOut(currentServer);

end if
if highestServer 6= ; then
ServerSwitchIn(highestServer);

end if
currentServer := highestServer;

end if
if currentServer 6= ; then
return currentServer.HighestReadyTask();

else
return idleTask;

end if

Figure 3.13: Pseudocode for the hierarchical scheduler.

The currentServer is a global variable referring to the currently active server.
Initially currentServer = ;.

The scheduler first determines the highest priority ready server. Then, if the server
is di↵erent from the currently active server, a server switch is performed, composed
of 3 steps:

1. If there is a currently active server, then it is switched out, using ServerSwitchOut()
described in Section 3.5.5.

2. If there is a ready server, then it is switched in, using ServerSwitchIn() described
in Section 3.5.5.

3. The currentServer is updated.

Finally the highest priority task in the currently active server is selected, using
the current server’s local scheduler HighestReadyTask(). If no server is active, then
the idle task is returned.

44 Processor management

3.6.4 Enforcement

When a server becomes depleted during the execution of one of its tasks (i.e. if a
depletion event expires), the task will be preempted and the server will be switched
out. This is possible, since we assume preemptive and independent tasks.

3.7 Evalulation

Figure 3.14 shows a trace of an example application consisting of two servers, each
serving one task. We ran the setup within the OpenRISC simulator (OpenCores,
2010), with 1 tick set to 1ms5. The task execution is shown on top, with the server
capacities illustrated underneath. The application was traced and visualized using
the Grasp toolset (see Chapter 6).

0 50 100

0

5

10

0

5

10

Deferrable Server

Periodic Server

Task2

Task1

uC/OS-II Idle

Figure 3.14: Example trace of an application with one deferrable and one periodic
idling server.

In this particular example Task1 is assigned to the Deferrable Server, and Task2
is assigned to the Periodic Server. Both tasks have a period of 30ms and execution

5The complete simulation setup and the source code of our HSF realization are available at
http://www.win.tue.nl/

~

mholende/ucos/.

Evalulation 45

time of 5ms. Task1 has an o↵set of 5ms. Both servers have a replenishment period of
25ms and capacity of 10ms. The figure demonstrates, how the idling periodic server
idles away its capacity when there is no workload pending (time interval 10-15ms),
while the deferrable server preserves its capacity until Task1 arrives (time interval
25-35ms). The figure also illustrates how the handling of period events (indicated by
the arrows) of Task2 is postponed until the Periodic Server is switched in (at time
50ms).

In the remainder of this section we evaluate the modularity, memory footprint
and performance of the HSF extension for RELTEQ. We chose a linked-list as the
data structure underlying our RELTEQ queues and implemented the proposed design
within µC/OS-II.

3.7.1 Modularity and memory footprint

The design of RELTEQ and the HSF extension is modular, allowing to enable or
disable the support for HSF and di↵erent server types during compilation with a
single compiler directive for each extension.

The complete RELTEQ implementation including the HSF extension is 1610 lines
of code (excluding comments and blank lines), compared to 8330 lines of the original
µC/OS-II. 105 lines of code were inserted into the original µC/OS-II code, out
of which 60 were conditional compilation directives allowing to easily enable and
disable our extensions. No original code was deleted or modified. Note that the
RELTEQ+HSF code can replace the existing timing mechanisms in µC/OS-II, and
that it provides a framework for easy implementation of other scheduler and servers
types.

The 105 lines of code represent the e↵ort required to port RELTEQ+HSF to
another operating system. Such porting requires (i) redirecting the tick handler to
the RELTEQ handler, (ii) redirecting the method responsible for selecting the highest
priority task to the HSF scheduler, and (iii) identifying when tasks become ready or
blocked.

The memory footprint of RELTEQ+HSF is summarized in Table 3.2. It lists
the additional memory required by and application consisting of 6 servers with 6
tasks each using µC/OS-II+RELTEQ+HSF, compared to the memory requirements
of an application consisting of 36 tasks (with a stack of 128B each) using the original
µC/OS-II.

µC/OS-II RELTEQ+HSF
Code 32KB 8KB
Data 47KB 5KB

Table 3.2: Memory overhead of RELTEQ+HSF.

46 Processor management

3.7.2 Performance analysis

In this section we evaluate the system overheads of our extensions, in particular the
overheads of the scheduler and the tick handler. We express the overhead in terms
of the maximum number of events inside the queues which need to be handled in a
single invocation of the scheduler or the tick handler, times the maximum overhead
for handling a single event.

Handling a single event

Handling di↵erent events will result in di↵erent overheads.

• When a dummy event expires, it is simply removed from the head of the queue.
Hence, handling it requires O(1) time.

• When a task period event expires, an event representing the next periodic
arrival is inserted into the corresponding server queue. In this section we assume
a linked-list implementation, and consequently insertion is linear in the number
of events in a queue. Note that we could delay inserting the next period event
until the task completes, as at most one job of a task may be running at a
time. This would reduce the handling of a periodic arrival to constant time,
albeit at the additional cost of keeping track for each task of the time since
its arrival, which would be taken into account when inserting the next period
event. However, if we would like to monitor whether tasks complete before their
deadline, then we will need to insert a deadline event into s.sq anyway. Hence
the time for handling an event inside of a server queue is linear in the number
of events in a server queue. Since there are at most two events per task in a
server queue (period and deadline events), handling a period event is linear in
the maximum number of tasks assigned to a server, i.e. O(m(s)).

• When a task deadline event expires, it is simply removed from the head of the
queue an the system is notified that a deadline was missed. Hence, handling it
requires O(1) time.

• When a server replenishment event expires, an event representing the next
replenishment is inserted into the system queue6. Since there are at most
two events in the system queue per server (replenishment and wakeup event),
handling a replenishment event is linear in the number of servers, i.e O(|⌃|).

• When a server depletion event expires, it is simply removed from the queue.
Hence, handling it requires O(1) time.

6Inserting the next replenishment event could be deferred until the server is depleted, at a similar
cost and benefit to deferring the insertion of the task period event.

Evalulation 47

Scheduler

Our HSF supports di↵erent global and local schedulers, by means of the methods
HighestReadyServer() and HighestReadyTask(). For the sake of a fair comparison
with the µC/OS-II which implements a fixed-priority scheduler, we also assume
fixed-priority global and local schedulers in this section. For both global and lo-
cal scheduling we can reuse the bitmap-based approach implemented by µC/OS-II,
which has a constant time overhead for selecting the highest priority ready task as
well as indicating whether a task is ready or not (Labrosse, 2002). Consequently, in
our HSF we can select the highest priority server and task within a server in constant
time.

Once a highest priority server s is selected, the overhead of switching in the server
depends on the number of events inside the stopwatch queue and s.sq (which needs
to be synchronized with the stopwatch), and the overhead of selecting the highest
priority task.

The stopwatch queue contains one stopwatch event for each inactive server. The
length of the stopwatch queue is therefore bounded by |⌃| + d

s

, where |⌃| is the

number of servers, and d
s

= max
s2⌃

j
t

s

(s)

2

n�1

k
is the maximum number of dummy

events inside the stopwatch queue. t
s

(s) is the longest time interval that a server can
be switched out, and 2n�1 is the largest relative time which can be represented with
n bits.

The only local events are a task delay and the arrival of a periodic task. Also,
each task can wait for at most one timed event at a time. The number of events inside
the server queue is therefore bounded by m(s) + d

l

(s), where m(s) is the maximum

number of tasks assigned to server s, and d
l

(s) =
j

t

l

(s)

2

n�1

k
is the maximum number

of dummy events local to the server queue s.sq. t
l

(s) is the longest time interval
between any two events inside of s.sq (e.g. the longest task period or the longest task
delay).

The complexity of the scheduler is therefore O(|⌃|+d
s

+m(s)+d
l

(s)). Note that
the maximum numbers of dummy events d

s

and d
l

(s) can be determined at design
time.

Tick handler

The tick handler synchronizes all active queues with the current time, and (in case
an event was handled) calls the scheduler. The active queues are comprised of the
system queue and two queues for the server s which is active at the time the tick
handler is invoked (its server queue s.sq and virtual server queue s.vq).

The system queue contains only replenishment and wakeup events. Its size is

therefore proportional to |⌃| + d
g

, where d
g

=
j

t

g

2

n�1

k
is the maximum number of

dummy events inside the global system queue. t
g

is the longest time interval between
any two events inside the global system queue (i.e. the longest server period).

The size of s.sq is linear in the number of tasks assigned to the server. Similarly,
since s.vq contains one depletion event and at most one virtual timer for each task,

48 Processor management

its size is linear in the number of tasks assigned to the server.
Therefore, when server s is active at the time the tick handler is invoked, the tick

handler will need to handle t
t

(s) = |⌃| + d
g

+m(s) + d
l

(s) events. The complexity
of the tick handler is therefore O(max

s2⌃

m(s)t
t

(s)). Note that the tick handler
overhead depends only on tasks belonging to the server s which is active at the time
of the tick. It does not depend on tasks belonging to other servers.

The tick handler keeps track of the remaining budget of servers by decrementing
the counter corresponding to the server which is active at the moment of the tick.
Consequently, the server that is active at the moment of the tick is charged the entire
previous tick. Therefore, any scheduler invocations during a tick interval (including
those triggered by the tick handler itself) are executed within the budget of the server
which is active at the moment of the following tick.

Experimental results

In Section 3.5.2 we introduced wakeup events in order to limit the interference due
to inactive servers. In order to validate this approach we have also implemented a
variant of the HSF scheduler which avoids using wakeup events and instead, whenever
a deferrable server s is switched out, it keeps the server queue s.sq active. Conse-
quently, the scheduler does not need to synchronize the server queue when switching
in a server. However, this overhead is shifted to the tick handler, which needs to
handle the expired events in all the server queues from inactive deferrable servers. In
the following discussion we refer to this approach as without limited interference, as
opposed to with limited interference based on wakeup events.

Figures 3.15, 3.16 and 3.17 compare the two variants. We have varied the number
of deferrable servers and the number of tasks assigned to each server (all servers had
the same number of tasks). The server replenishment periods and the task periods
were all set to the same value (100ms), to exhibit the maximum overhead by having all
tasks arrive at the same time. Each task had a execution time of 1ms and each server
had a capacity of 7ms. We have run the setup within the cycle-accurate hardware
simulator for the OpenRISC 1000 architecture (OpenCores, 2010). We have set the
processor clock to 345MHz and the tick to 1KHz, which is inline with the platform
used by our industrial partner. Each experiment was run for an integral number of
task periods.

Figure 3.15 shows the maximum measured overheads of the scheduler and the
tick handler, while Figure 3.16 shows the total overhead of the scheduler and the
tick handler in terms of processor utilization. The figures demonstrate that wakeup
events reduce the tick overhead, at the cost of increasing the scheduler overhead,
by e↵ectively shifting the overhead of handling server’s local events from the tick
handler to the scheduler. Since the scheduler overhead is accounted to the server
which is switched in, as the number of servers and tasks per server increase, so does
the advantage of the limited interference approach. Figure 3.17.a combines Figures
3.16.a and 3.16.b and demonstrates that the additional overhead due to the wakeup
events in the limited interference approach is negligible.

Figure 3.17.b compares the system overheads of our HSF extension to the standard

Evalulation 49

 1 2 3 4 5 6 1
 2

 3
 4

 5
 6

 0
 1
 2
 3
 4
 5
 6
 7

N
um

be
r o

f i
ns

tru
ct

io
ns

 (x
10

00
)

Number of servers Number of tasks per se
rver

With limited interference
Without limited interference

N
um

be
r o

f i
ns

tru
ct

io
ns

 (x
10

00
)

(a)

 1 2 3 4 5 6 1
 2

 3
 4

 5
 6

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

N
um

be
r o

f i
ns

tru
ct

io
ns

 (x
10

00
)

Number of servers Number of tasks per se
rver

With limited interference
Without limited interference

N
um

be
r o

f i
ns

tru
ct

io
ns

 (x
10

00
)

(b)

Figure 3.15: (a) maximum overhead of the (local + global) scheduler, (b) maximum
overhead of the tick handler.

µC/OS-II implementation. As the standard µC/OS-II does not implement hierar-
chical scheduling, we have implemented a flat system containing the same number
of tasks with the same parameters as in Figure 3.17.a. The results demonstrate the
temporal isolation and e�ciency of our HSF implementation. While the standard

50 Processor management

µC/OS-II scans through all tasks on each tick to see if any task delay has expired, in
the HSF extension the tick handler needs to consider only head event in the server
queue of the currently running server.

Figures 3.18 and 3.19 compare the best-case and worst-case measured overheads
of the scheduler and tick handler between µC/OS-II with our extensions, compared
to the standard µC/OS-II, for which we have implemented a flat system containing
the same number of tasks with the same parameters as for the µC/OS-II+HSF case.

Figures 3.18 and 3.19 show that both scheduler and tick handler su↵er larger
execution time jitter under µC/OS-II+HSF, than the standard µC/OS-II. In the
best case the µC/OS-II+HSF tick handler needs to decrement only the head of the
system queue, while in µC/OS-II the tick hander traverses all the tasks in the system
and for each one it checks whether its timer has expired.

In a system with small utilization of individual tasks and servers (as was the
case in our experiments), most local events will arrive while the server is switched
out. Since handling local events is deferred until the server is switched in and its
server queue synchronized with the stopwatch queue, it explains why the worst-case
tick handler overhead is increasing with the number of servers and the worst-case
scheduler overhead is increasing with the number of tasks per server.

3.8 Discussion

We have presented an e�cient, modular and extensible design for enhancing a real-
time operating system with a two-level HSF. It relies on Relative Timed Event Queues
(RELTEQ), a general timer management system targeting embedded systems. Our
design supports various server types (including polling, idling periodic, and deferrable
servers), and global and virtual timers. It supports fixed-priority and EDF schedulers
on both local and global level. It provides temporal isolation between components
and limits the interference of inactive servers on the active server, by means of wakeup
events and a combination of inactive server queues with a stopwatch. Enforcement
is provided by means of depletion events, which preempt any running task in the
depleted server. This is possible since we assume independent tasks. Monitoring is
provided by means of an interface which returns a lower bound on the processor time
that a server will receive during the following time interval equal to its period.

We have evaluated a fixed-priority based implementation of our RELTEQ and
HSF within the µC/OS-II real-time operating system used in the automotive domain.
The results demonstrate that our approach exhibits low performance overhead and
limits the necessary modifications of the underlying operating system.

We have assumed a linked-list implementation of our RELTEQ queues, and indi-
cated the challenges of a tree-based implementation due to the relative time repre-
sentation. In the future we want to investigate in more detail other advanced data
structures for implementing RELTEQ queues.

Discussion 51

 1 2 3 4 5 6 1
 2

 3
 4

 5
 6

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

O
ve

rh
ea

d
(%

 p
ro

ce
ss

or
 ti

m
e)

Number of servers Number of tasks per se
rver

With limited interference
Without limited interference

O
ve

rh
ea

d
(%

 p
ro

ce
ss

or
 ti

m
e)

(a)

 1 2 3 4 5 6 1
 2

 3
 4

 5
 6

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

O
ve

rh
ea

d
(%

 p
ro

ce
ss

or
 ti

m
e)

Number of servers Number of tasks per se
rver

With limited interference
Without limited interference

O
ve

rh
ea

d
(%

 p
ro

ce
ss

or
 ti

m
e)

(b)

Figure 3.16: (a) total overhead of the scheduler, (b) total overhead of the tick handler.

52 Processor management

 1 2 3 4 5 6 1
 2

 3
 4

 5
 6

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

O
ve

rh
ea

d
(%

 p
ro

ce
ss

or
 ti

m
e)

Number of servers Number of tasks per se
rver

With limited interference
Without limited interference

O
ve

rh
ea

d
(%

 p
ro

ce
ss

or
 ti

m
e)

(a)

 1 2 3 4 5 6 1
 2

 3
 4

 5
 6

 0
 1
 2
 3
 4
 5
 6
 7

O
ve

rh
ea

d
(%

 p
ro

ce
ss

or
 ti

m
e)

Number of servers Number of tasks per se
rver

µC/OS-II + HSF
µC/OS-II

O
ve

rh
ea

d
(%

 p
ro

ce
ss

or
 ti

m
e)

(b)

Figure 3.17: Total overhead of the tick handler and the scheduler.

Discussion 53

 1 2 3 4 5 6 1
 2

 3
 4

 5
 6

 0
 1
 2
 3
 4
 5
 6
 7

N
um

be
r o

f i
ns

tru
ct

io
ns

 (x
10

00
)

Number of servers Number of tasks per se
rver

Max scheduler overhead
Min scheduler overhead

N
um

be
r o

f i
ns

tru
ct

io
ns

 (x
10

00
)

(a)

 1 2 3 4 5 6 1
 2

 3
 4

 5
 6

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

N
um

be
r o

f i
ns

tru
ct

io
ns

 (x
10

00
)

Number of servers Number of tasks per se
rver

Max scheduler overhead
Min scheduler overhead

N
um

be
r o

f i
ns

tru
ct

io
ns

 (x
10

00
)

(b)

Figure 3.18: (a) scheduler overhead in µC/OS-II+HSF, (b) scheduler overhead in
µC/OS-II.

54 Processor management

 1 2 3 4 5 6 1
 2

 3
 4

 5
 6

 0
 1
 2
 3
 4
 5
 6
 7

N
um

be
r o

f i
ns

tru
ct

io
ns

 (x
10

00
)

Number of servers Number of tasks per se
rver

Max tick handler overhead
Min tick handler overhead

N
um

be
r o

f i
ns

tru
ct

io
ns

 (x
10

00
)

(a)

 1 2 3 4 5 6 1
 2

 3
 4

 5
 6

 0

 0.5

 1

 1.5

 2

 2.5

 3

N
um

be
r o

f i
ns

tru
ct

io
ns

 (x
10

00
)

Number of servers Number of tasks per se
rver

Max tick handler overhead
Min tick handler overhead

N
um

be
r o

f i
ns

tru
ct

io
ns

 (x
10

00
)

(b)

Figure 3.19: (a) tick handler overhead in µC/OS-II+HSF, (b) tick handler overhead
in µC/OS-II.

Chapter 4

Memory management

In this chapter, we focus on memory management in resource constrained embedded
systems, where several applications execute on a single processor. We present a set of
general techniques targeted at streaming, or data driven, systems, and use example
multimedia processing applications for illustration and motivation.

Problem statement

In this chapter we address three Quality of Service (QoS) related problems in resource
constrained multimedia systems:

• Multimedia applications are known to be data intensive. Many of these ap-
plications, especially in the consumer electronics domain, are implemented on
resource-constrained embedded systems where the memory space is scarce (Yim
et al., 2004; Menichelli and Olivieri, 2009; Ahn et al., 2009). Reducing the mem-
ory requirements of these applications is therefore crucial.

• Hentschel et al. (2003) present the theory and practice of video QoS for Con-
sumer Terminals. They describe a pipelined multimedia processing application,
where a multiplexed audio and video input stream is demultiplexed into two
bu↵ers and processed independently by two processing subchains, as shown in
Figure 4.1. They observe that fluctuation in the processing time for decod-
ing di↵erent video frames may fill up the bu↵ers along the video processing
subchain, leading to the blocking of the demultiplexer and consequently the
dropping of audio frames, manifested by sound artifacts. The problem arises
due to temporal dependencies between component subchains sharing a common
predecessor.

• The third problem we address in this chapter is bounding the mode change
latency in scalable multimedia applications, distinguishing between the appli-
cation latency and the system latency. From the application perspective, a
mode change may interfere with the processing of a video stream. A large

55

56 Memory management

DVD
player reader demulti-

plexer

audio
decoder

video
decoder

audio
renderer

sharpness
enhancer

Digital
camera scaler mixer

TV
Application

Legend: internal
data flow

external
data flow

software
component

hardware
component

ba

bv

buffer
component

Figure 4.1: Block diagram of the system implementation on a multimedia processor
presented in Hentschel et al. (2003). The demultiplexer component writes to two
output bu↵ers: the audio output bu↵er b

a

and the video output bu↵er b
v

.

mode change latency will delay the rendering of frames and lead to artifacts
in the output video. From the system perspective, during a mode change, re-
sources can be allocated to applications in the new mode only after they have
been released by the applications in the old mode. Therefore the mode change
latency will impact when the resources can be reallocated between applications
and when these applications can resume operating in the new mode.

Contributions

The contribution of this chapter is three fold.

• Section 4.3 shows how a shared memory pool can reduce the total memory
requirements of an application comprised of a data-driven chain of components
communicating via bounded bu↵ers, with a time-driven head and tail, and a
bounded end-to-end latency. The necessary bu↵er capacities and component
priorities along the component chain are derived. Subsequently it is shown how
a shared memory pool can reduce the total memory requirements of the whole
application. The general technique targeted at memory-constrained streaming
systems is demonstrated with a video encoding example, showing memory sav-
ings of about 19%. The impact of a shared memory pool is also evaluated in
the context of scalable applications.

• In Section 4.4, it is shown how additional access to the bu↵er, in particular
the support for dropping selected frames, allows to guarantee the QoS of the
application during overload conditions, preventing congestion in one bu↵er to
propagate across the whole application. In particular, we present an approach
which prevents the demultiplexer in Figure 4.1 from blocking.

Related work 57

• In Section 4.5, two approaches are presented for reducing the mode change
latency bound in scalable multimedia processing applications, which can adapt
their memory requirements during runtime according to a set of predefined
modes. The first approach relies on fixed-priority scheduling with deferred
preemption to shorten the time between a mode change request and the time
when the mode change starts. The second approach applies in-bu↵er scaling to
reduce the duration of the mode change itself.

Publications

In (Holenderski et al., 2011b,c) we describe how to reduce the memory requirements
in a multimedia streaming application. In (Holenderski et al., 2009a,b, 2010b) we
describe how to reduce the mode change latency in scalable applications.

4.1 Related work

4.1.1 Memory management in embedded systems

In Geelen (2005), systems are investigated which can change their functionality during
runtime, by varying their sets of components. Their notion of dynamic functionality
is similar to the concept of scalability discussed in Section 4.1.4, where the total
memory requirements are determined by the current application mode. They propose
a method for dynamic loading of memory in real-time systems. They present a
case study of a DVD player platform, with a memory management unit present but
disabled, which uses static memory partitioning for memory management.

They propose a method with the memory management unit enabled for dividing
the memory requirements into static overlays, created during the initialization phase.
An overlay groups together the memory requirements of several components belong-
ing to a particular mode (e.g. dvd playback or tv recording). They also show how
to manage the loading and storing of overlays between RAM and hard disk by di-
rectly controlling the entries in a TLB, and implement their approach in a particular
DVD player product. They assume soft deadlines on the mode changes, aiming at
providing QoS in terms of “smooth” transitions.

In this thesis we present an approach for dynamic reallocation of memory be-
tween components during runtime, on a platform without a memory management
unit. We organize the memory requirements of components into memory budgets,
which components can request, resize and discard during runtime. We show how the
components can resize their budgets during a mode change, before the memory can
be reallocated to other components.

Our approach is well suited for platforms with explicitly managed local memory,
such as scratch-pad memory. A scratch-pad provides low latency data storage, sim-
ilar to on-chip caches, but under explicit software control. The simple design and
predictable nature of scratchpad memories has seen them incorporated into a num-
ber of embedded and real-time system processors Brash (2002). McIlroy et al. (2008)
present a dynamic run-time heap management algorithm for scratch-pad memory.

58 Memory management

Their approach is based on a combination of fixed-sized macro blocks, which are
later subdivided into variable sized allocations.

In this thesis, we assume the memory is managed in terms of fixed sized blocks
(e.g. single bytes or multiple of bytes), allowing to easily reallocate memory between
components. We use the notion of memory reservations, which are defined as contain-
ers for memory allocations, allowing components to request memory and guarantee
granted requests during runtime, avoiding static memory allocation in the absence
of paging support. Memory reservations are granted to components only if there is
enough space in the common memory pool, and memory allocations are granted only
if there is enough space within the corresponding reservation.

4.1.2 Memory reservations

Nakajima (1998) apply memory reservations in the context of continuous media pro-
cessing applications. They aim at reducing the number of memory pages wired in
the physical memory at a time, by wiring only those pages which are used by threads
currently processing the media data in the physical memory. Unlike the traditional
approaches which avoid page faults by wiring all code, data and stack pages, they
introduce an interface to be used by the real-time applications to request reservations
for memory pages. During runtime, upon a page fault, the system will load the miss-
ing page only if it does not exceed the application’s reservation. Thus the number of
wired pages is limited.

Eswaran and Rajkumar (2005) implement memory reservations in Linux to limit
the time penalty of page faults within the reservation, by isolating the memory man-
agement of di↵erent applications from each other. They distinguish between hard
and firm reservations, which specify the maximum and minimum number of pages
used by the application, respectively. Their reservation model is hierarchical, allow-
ing child reservations to request space from a parent reservation. Their energy-aware
extension of memory reservations allows to maximize the power savings, while min-
imizing the performance penalty, in systems where di↵erent hardware components
can operate in di↵erent power levels and corresponding performance levels. They
also provide an algorithm which calculates the optimal reservation sizes for the task
set such that the sum of the task execution times is minimized.

In this thesis we use (hard) memory reservations as containers for memory al-
locations, allowing components to request memory and guarantee granted requests
during runtime, avoiding static memory allocation in the absence of paging support.
Memory reservations are granted to components only if there is enough space in the
common memory pool, and memory allocations are granted only if there is enough
space within the corresponding reservation.

4.1.3 Reducing memory requirements

Optimizing memory usage in resource-constrained devices is becoming increasingly
important with the increasing number of mobile and multimedia applications. Yim
et al. (2004) present an approach for reducing the internal memory fragmentation in

Related work 59

flash memory for mobile devices. Ahn et al. (2009) consider memory-constrained
portable media players and propose a memory allocation scheme for multimedia
stream bu↵ers, which allows reducing the number of page faults in heap and thus
helps multimedia players perform with a consistent quality. Kim et al. (2010) propose
a region reuse technique, based on storing objects in upper local regions to the disk
and reusing the reclaimed space for new object allocations, and hence reducing heap
memory usage in mobile consumer devices with very limited memory. In contrast
to (Yim et al., 2004; Ahn et al., 2009; Kim et al., 2010), which try to manage the
memory requirements dictated by the applications, in this thesis we focus on actually
reducing the memory requirements.

We↵ers-Albu (2008) explores how the assignment of task priorities and bu↵er
capacities impact the behavior of multimedia streaming applications comprised of a
task chain. The author shows that a task chain with a time-driven tail exhibiting
varying task execution times (where processing a window of M consecutive frames
is bounded by MT) will meet its real-time constraints if the last bu↵er has capacity
for M frames. They also show that a task chain with a time-driven head and tail,
and M = 2, will meet its real-time constraints if all bu↵ers have capacity 1. In this
thesis we derive the bu↵er capacities for a chain consisting of a time-driven head and
tail and an arbitrary M .

Goddard 0 studies the real-time properties of PGM dataflow graphs, which closely
resemble our media processing graphs. Given a periodic input and the dataflow
attributes of the graph, exact node execution rates are determined for all nodes. The
periodic tasks corresponding to each node are then scheduled using a preemptive
Earliest Deadline First algorithm. For this implementation of the graph, the author
shows how to bound the response time of the graph and the bu↵er requirements.
However, it is limited to task sets with deadlines equal to the period, i.e. without
self-interference. This approach provided valuable insights, but no rigorous support
for analyzing and steering system behavior and associated resource needs has resulted.

Though we consider variations in execution time, we do not consider overload
problems resulting from the inability to process the input in time. Approaches aiming
at that situation can be used to prevent this from happening (Isovic and Fohler, 2004;
Wüst et al., 2005), or to deal with it when it happens, through scaling or skipping
the media content (Lan et al., 2001; Wüst et al., 2005; Jarnikov et al., 2004).

In (Holenderski et al., 2010b) we investigated scalable applications, which can
operate in one of several predefined modes, where each mode specifies the resource
requirements in terms ofM for all the bu↵ers belonging to the application. We showed
how to use in-bu↵er scaling to reduce the memory requirements of each bu↵er. Upon a
mode change request for a mode with a smaller M and smaller memory requirements,
we would drop the least significant frames from the chain and/or reduce the number
of blocks for certain frames, and show how this could reduce the mode change latency.
In this thesis we concentrate on how a shared memory pool will a↵ect the memory
requirements of a scalable application in di↵erent modes.

60 Memory management

4.1.4 Scalable applications and mode changes

Multimedia processing systems are characterized by few but resource intensive tasks,
communicating in a pipeline fashion. The tasks require a processor for processing
the video frames (e.g. encoding, decoding, content analysis), and memory for storing
intermediate results between the pipeline stages. The pipeline nature of task depen-
dencies poses restrictions on the lifetime of the intermediate results in the memory.
The large gap between the worst-case and average-case resource requirements of the
tasks is compensated by bu↵ering and their ability to operate in one of several pre-
defined modes, allowing to trade o↵ their processor requirements for quality (Wüst
et al., 2005), or network bandwidth requirements for quality (Jarnikov et al., 2004).
In this thesis we investigate trading memory requirements for quality. We assume
there is no memory management unit available.

(Real and Crespo, 2004) present a comprehensive survey of mode change proto-
cols for FPPS on a single processor, where modes express the application’s proces-
sor requirements, and propose several new protocols along with their corresponding
schedulability analysis and configuration methods. They consider a standard fixed
priority sporadic task model, with task ⌧

i

specified by its priority i (lower i meaning
higher priority), minimum interarrival period T

i

, worst-case execution time C
i

, and
deadline D

i

, with 0 < C
i

 D
i

 T
i

.
They classify existing mode change protocols according to three dimensions:

1. Ability to abort old-mode tasks upon a mode change request:

(a) All old-mode tasks are immediately aborted.

(b) All old-mode tasks are allowed to complete normally.

(c) Some tasks are aborted.

2. Activation pattern of unchanged tasks during the transition:

(a) Protocols with periodicity, where unchanged tasks are executed indepen-
dently from the mode change in progress.

(b) Protocols without periodicity, where the activation of unchanged periodic
tasks may be delayed until the mode change has completed (limiting thus
the interference with the tasks involved in the mode change).

3. Ability of the protocol to combine the execution of old- and new- mode tasks
during the transition

(a) Synchronous protocols, where new-mode tasks are never released until all
old-mode tasks have completed their last activation in the old mode.

(b) Asynchronous protocols, where a combination of both old- and new-mode
tasks are allowed to be executed at the same time during the transition.

(Real, 2000) present a synchronous mode change protocol without periodicity,
where upon a mode change request the active old-mode tasks are allowed to complete,

Related work 61

but are not released again (if their next periodic invocation falls within the mode
change), classified in the three dimensions as (1b, 2b, 3a). Their algorithm bounds
the mode change latency by

L =
X

⌧

i

2�

old

[�

unch

E
i

(4.1)

where �
old

is the set of tasks in the old mode and �
unch

is the set of unchanged
tasks. L is the upper bound on the latency of a mode change, i.e. the time interval
between a mode change request and the time when all the old-mode tasks have been
deleted and all the new-mode tasks, with their new parameters, have been added and
resumed.

(Sha et al., 1988) consider periodic task executing according to the Rate Mono-
tonic schedule and sharing resources according to the priority ceiling protocol (Sha
et al., 1990). Their (1b, 2a, 3b) mode change protocol provides a complicated set of
rules for determining when the priority ceilings of shared resources can be changed
without conflicting with the delayed release of the new-mode tasks.

The (1b, 2a, 3a) mode change protocol by (Tindell and Alonso, 1996) is applicable
when tasks access shared resources according to any resource access policy. Upon a
mode change request the protocol waits until an idle instant. When an idle instant
is detected, the activation of old-mode tasks is suspended, the mode is changed (e.g.
in case of priority ceiling protocol the ceilings of the shared resources are adjusted)
and the new-mode tasks are released. This protocol is very simple, however it su↵ers
from a large mode change latency, bounded by the worst-case response time of the
lowest priority task.

In this thesis we present a (1b, 2b, 3a) mode change protocol. We assume that
the old-mode jobs cannot be aborted at an arbitrary moment, but only at subtask
boundaries. Our protocol is as simple as (Tindell and Alonso, 1996), yet improves
the mode change latency bound of (Real, 2000). The presented latency bound takes
into account resource sharing between tasks according to FPDS or the kernelized
monitoring approach (Mok, 1983) for FPPS.

4.1.5 Fixed-Priority Scheduling with Deferred Preemption

On the two sides of the Fixed Priority Scheduling spectrum we have Fixed Prior-
ity Non-preemptive Scheduling (FPNS) and Fixed Priority Preemptive Scheduling
(FPPS) Liu and Layland (1973). While FPNS favors the lower priority tasks, by
postponing preemption by higher priority tasks until a lower priority running task
completes, FPPS focuses on the schedulability of higher priority tasks. However,
by allowing preemptions at arbitrary moments in time, FPPS ignores the cost of
such preemptions. This overhead may become especially significant when tasks share
multiple resources, e.g. cache, local or main memory.

Fixed Priority Scheduling with Deferred Preemption (FPDS) was described by
Burns (1994); Burns et al. (1994); Gopalakrishnan and Parulkar (1996); Burns (2001);
Bril et al. (2007). FPDS, also known as cooperative scheduling (Burns and Wellings,
2001), allows task preemption only at predefined preemption points. It finds a middle
ground between FPNS and FPPS:

62 Memory management

• It reduces the cost of arbitrary preemptions in FPPS, by allowing them only
at times convenient for the system (referred to as preemption points), e.g. at
times where the context switch overhead due to preemption will be smallest. If
FPDS is used as a guarding mechanism for critical sections, then there is also
no need for access protocols to the shared resources (other than the processor),
further reducing the system overheads.

• It can improve the schedulability of systems compared to FPNS by allowing
shorter non-preemptive subjobs and thus improves the response-time of higher
priority tasks.

FPDS is a generalization of FPPS and FPNS, where FPPS can be modeled by
FPDS with arbitrarily short subjobs (ignoring context switch and scheduling over-
heads), and FPNS by FPDS with tasks consisting of a single subjob.

(Bril et al., 2009) provide a worst case response time analysis for FPDS. They also
model a task as a directed acyclic graph of subtasks, where nodes represent subtasks
and edges represent the successor relationship between subtasks. The interference of
a task on lower priority tasks is bounded by the longest execution time among all
paths through its subtask graph.

FPDS can be used to reduce the cost of context switches of preemptive resources,
and provide simple access protocol to non-preemptive resources. It o↵ers a simple
implementation of critical sections, compared to the intricate priority inheritance
protocols used in FPPS, as Polock and Zöbel (2000); Zöbel et al. (2005) reveal wrong
implementation of these protocols in the existing real-time operating systems. In
FPDS, subjobs simply execute non-preemptively.

4.2 System model

In this section we instantiate the system model introduced in Chapter 2 with a
multimedia streaming platform.

4.2.1 Resource model

In this chapter we consider a uniprocessor platform and focus on managing two
resources: the processor and the memory. Hence, we have R = {cpu,mem}, where
N

cpu

= 1 and N
mem

� 1, and P = {cpu} and N = {mem}.

4.2.2 Application model

An application consists of a chain of n tasks ⌧
1

, . . . , ⌧
n

communicating via n�1 shared
bu↵ers q

1

, . . . , q
n�1

. Figure 4.2 shows an example of such an application, which is
based on the Nexperia TSSA platform investigated by We↵ers-Albu (2008).

We assume several applications in our system which contend for the available
resources. In the remainder of this chapter we will focus on the behavior of a single
application and model other applications by restricting the available resources, either

System model 63

τ2τ1 τn

q1 q2

Legend: data flowprocessing
component

buffer
component

Figure 4.2: A linear chain of media processing tasks communicating via shared
bu↵ers.

statically or dynamically during runtime. This will simplify the notation, as we
will not need to distinguish between tasks and components belonging to di↵erent
applications.

Bu↵ers

A frame bu↵er q has a finite initial capacity Cap
q

, defining the maximum number of
frames which can be stored in the bu↵er. To accommodate di↵erent frame sizes at
di↵erent stages in the processing pipeline (e.g. raw video frames are likely to be larger
than the encoded frames), we assume frames may span across several bu↵er elements.
To keep things simple, however, we assume that each bu↵er element contains at
most one video frame, i.e. video frames do not share bu↵er elements. Therefore we
assume an n-to-1 relationship between bu↵er elements and video frames. A frame
bu↵er q therefore provides NumElems

q

= MaxFrameSize ⇤ Cap
q

elements, where
MaxFrameSize is the maximum size of a frame in terms of bu↵er elements.

Following Example 2.3, a frame bu↵er, which resides in memory mem and is
created during the initialization of the system and never destroyed, can be modeled
as a component q 2 C with

T
q

= 1
O

q

= 0
D

q

= 1
E

q

= 1
R

q

= {(mem,ElemSize
q

⇤NumElems
q

)}
P
q

= {(elements
q

, NumElems
q

), (mutex
q

, 1)}

(4.2)

where ElemSize
q

is the fixed size of each bu↵er element in terms of bytes.
The interface provides methods for reading and writing, which provide a hand-

shake protocol allowing to do in-memory processing:

Bu↵er NewBu↵er(Size s) allocates the memory for the bu↵er, i.e. requests a
memory budget containing s units, and returns a reference to the bu↵er.

void ReadAcquire(Bu↵er q) removes a full element from the head of bu↵er q and
returns a reference to that element. This operation blocks if no full frame is available.

64 Memory management

void ReadRelease(Bu↵er q, Element e) adds the element referred to by e to
bu↵er q as an empty element.

Bu↵er WriteAcquire(Bu↵er q) removes an empty element from tail of bu↵er q
and returns a reference to that element. This operation blocks if no empty element
is available.

void WriteRelease(Bu↵er q, Element e) adds the element referred to by e to
bu↵er q as a full element.

void DeleteBu↵er(Bu↵er q) frees the memory allocated to bu↵er q, i.e. discards
the corresponding memory budget.

Tasks

The first and the last tasks in the chain are time-driven, with periods T
1

and T
n

,
phasings O

1

and O
n

, and relative deadlines D
1

and D
n

, respectively. The time
between activations and deadlines represent the times that the application may access
the input frame bu↵er and the output frame bu↵er respectively. All other tasks in the
chain are data-driven, meaning that their arrival time is determined by the availability
of data, rather than being determined by their period and o↵set (as is the case for
time-driven tasks). For example, in Figure 4.2, if task ⌧

2

is data-driven, then at
the moment that it completes processing a frame it will immediately arrive again to
process the next frame, unless either q

1

is empty or q
2

is full, in which case it will
block until q

1

is not empty or q
2

is not full, respectively.
Clearly, the periods of the head and tail tasks must be consistent with the frame

counts since this system can only be expected to work if the inflow equals the outflow.
In this chapter we do not consider variations in the number of frames produced or
consumed by a task nor any other data dependent behavior than varying execution
times. In particular, we assume that every instance of every task along the chain
consumes and produces exactly one frame (with the head task only producing one
frame and the tail task only consuming one frame). We therefore adopt

T
1

= T
n

= T. (4.3)

Definition 4.1. We define Ẽk

i

to be the execution time of the kth instance of task
⌧
i

.

Hence, Ẽk

i

is the execution time needed by task ⌧
i

to process the kth frame.
Component execution is determined by task priorities, data availability, bu↵er

sizes and time triggering at the boundaries of the system. The execution times of
tasks may vary depending on the data they process, however, we assume that after
producing the kth frame the total execution time needed to produce the following M
frames is (strictly) bounded by MT .

System model 65

Notation We use Ê
i

= max
k

Ẽk

i

to represent the worst-case execution time of task

⌧
i

on any frame. We use ⌧
a..b

to denote a sub-chain of tasks ⌧
i

with a i b, and�!
E k

a..b

=
P

b

i=a

Ẽk

i

to denote the execution time needed by chain ⌧
a..b

to process the
kth frame.

The pseudo code for a data-driven task is shown in Figure 4.3. In each iteration,
task ⌧

i

reads a frame from q
i�1

using ReadAcquire(q
i�1

, inFrame) and retrieves a
reference to a bu↵er slot inside q

i

usingWriteAcquire(q
i

outFrame). While processing
the input frame from q

i�1

it writes the output frame to the slot it obtained from q
i

.
After it has finished processing the frame, it releases the input frame by calling
ReadRelease(q

i�1

, inFrame) and marks the output frame as ready for reading by
calling WriteRelease(q

i

, outFrame).

var inFrame, outFrame: Frame reference;
while true do

outFrame := WriteAcquire(q
i

);
inFrame := ReadAcquire(q

i�1

);
Process

i

(inFrame, outFrame);
ReadRelease(q

i�1

, inFrame);
WriteRelease(q

i

, outFrame);
end while

Figure 4.3: Pseudo-code for a data-driven task ⌧
i

.

The head task has no input bu↵er and the tail task has no output bu↵er. More-
over, the head and tail tasks are time-driven, as outlined in Figure 4.4 and Figure
4.5. Note that a time-driven task can block on both communication and time.

var outFrame: Frame reference;
k: integer ;

k := 0;
while true do

DelayUntil(O
1

+ kT
i

);
outFrame := WriteAcquire(q

i

);
Process

1

(inputFrameBu↵er, outFrame);
WriteRelease(q

i

, outFrame);
k := k + 1;

end while

Figure 4.4: Pseudo-code for a time-driven head task ⌧
1

.

Note that inputFrameBu↵er and displayBu↵er represent references to memory
which is external to the task chain. Process

1

() and Process
n

() will simply copy
frames to and from the local bu↵ers q

1

and q
n�1

, respectively.

66 Memory management

var inFrame: Frame reference;
k: integer ;

k := 0;
while true do

DelayUntil(O
n

+ kT
n

);
inFrame := ReadAcquire(q

n�1

);
Process

n

(inFrame, displayBu↵er);
ReadRelease(q

n�1

, inFrame);
k := k + 1;

end while

Figure 4.5: Pseudo-code for a time-driven tail task ⌧
n

.

Scalable tasks and components

Scalable tasks and components are those which can adapt their workload to the
available resources. In this thesis we consider scalable tasks and components which
can operate in one of several predefined modes. A task mode (or component mode)
represents a tradeo↵ between the Quality of Service (QoS) provided by the task
(or component) and its resource requirements. We assume a resource constrained
system, meaning that not all tasks and components can operate in their highest
modes (i.e. modes requiring the most resources) at the same time, forcing some tasks
or components to operate in lower modes. A system mode identifies the task and
component modes of all tasks and components in the system. In order to provide
system wide QoS during runtime, the system may decide to switch between system
modes, resulting in amode change. We define scalable tasks and components similarly
to Real and Crespo (2004).

Definition 4.2 (System mode). A system mode identifies the mode of operation of
the system. Let M ⇢ N be the set of system modes. Without loss of generality we
assume that M is a set of consecutive numbers {1, . . . , |M|}.

Definition 4.3 (Scalable task). We define �S ⇢ �|M| to be the set of all scalable
tasks in the system. A scalable task ⌧

i

2 �S is represented as a tuple of tasks

⌧
i

= (⌧1
i

, ⌧2
i

, . . . , ⌧ |M|
i

) (4.4)

where |M| is the number of system modes, and each task ⌧k
i

for 1 k |M|
represents the resource requirements and provisions of task ⌧

i

during system mode k.

Definition 4.4 (Scalable component). We define CS ⇢ C|M| to be the set of all
scalable components in the system. A scalable component c 2 CS is represented as a
tuple of components

c = (c1, c2, . . . , c|M|) (4.5)

where |M| is the number of system modes, and each component ck for 1 k |M|
represents the resource requirements and provisions of component c during system
mode k.

System model 67

Example 4.1. Consider a scalable multimedia processing application comprised of
two tasks communicating via a FIFO bu↵er. In a system comprised of two such
applications a

1

, a
2

2 A we will have two bu↵ers. If we assume a memory constrained
platform such that the available memory cannot accommodate both applications at
their highest quality at the same time, we may need to reallocate the memory between
the bu↵ers during runtime to provide a system wide Quality of Service. Assuming the
system can operate in two modes (representing more memory assigned to application
a
1

or a
2

), we can model the memory requirements of the two bu↵ers residing in
memory mem by means of scalable components c

1

, c
2

2 C ⇥ C, where

R
c

1
1
= R

c

2
2
= {(mem,n

more

)} (4.6)

R
c

1
2
= R

c

2
1
= {(mem,n

less

)} (4.7)

where n
more

and n
less

represent the number of units of the mem resource which
are required by the two bu↵ers in the two system modes, with n

more

> n
less

and
n
more

+ n
less

 N
mem

.

A non-scalable task (or component) can be regarded as a degenerate case of a
scalable task (or component) which can only operate in a single mode, i.e. all of its
task (or component) modes are the same.

At any time a task (or component) is operating in one of its modes.

Definition 4.5 (Current task mode). We define µ� : T ⇥ �S ! M, where µ�(t, ⌧
i

)
represents the system mode in which task ⌧

i

is operating at time t.

Definition 4.6 (Current component mode). We define µC : T ⇥ CS ! M, where
µC(t, c) represents the system mode in which component c is operating at time t.

Definition 4.7 (Mode change request). A mode change request is an event e which
is specified by its

• time Time
e

2 T , representing the time when the mode change request occurred,

• target mode Mode
e

2 M.

We use � to denote the set of all mode change request events.

Definition 4.8 (Mode change completion time). We define mcc : � ! T , where
mcc(e) is the mode change completion time of the mode change request e, i.e. the
earliest time after a mode change request time Time

e

when all tasks and components
are operating in the target mode Mode

e

, i.e.

mcc(e) = t 2 T |Time
e

 t ^ (8⌧
i

2 �S : µ�(t, ⌧
i

) = Mode
e

) ^ (4.8)

(8c 2 CS : µC(t, c) = Mode
e

) ^ (4.9)

(8x 2 T : Time
e

 x < t) (4.10)

(9⌧
i

2 �S : µ�(x, ⌧
i

) 6= Mode
e

) ^ (4.11)

(9c 2 CS : µC(x, c) 6= Mode
e

)). (4.12)

68 Memory management

Note that at some points in time, for example during a mode change, di↵erent
tasks or components may be operating in di↵erent system modes. At all times,
however, the cumulative resource requirements of all the tasks and components may
never exceed the available resources.

Definition 4.9 (Mode change latency). We define L : � ! T , where L(e) is the
mode change latency of mode change request e, representing the length of the time
interval between Time

e

and the time when all tasks and components have changed to
their target mode Mode

e

, i.e.

L(e) = mcc(e)� Time
e

. (4.13)

Real-time constraints

In this chapter we focus on applications which pose a QoS requirement in terms of
a minimum and maximum bound on the time interval between consecutive di↵erent
outputs generated by the last task in the chain. The application expresses its real-
time constraints in terms of relative deadlines D

1

on task ⌧
1

and D
n

on task ⌧
n

,
with Ê

1

 D
1

 T
1

and Ê
n

 D
n

 T
n

. More precisely, we require that the k’th
instance of tasks ⌧

1

and ⌧
n

(processing the k’th frame) execute within time intervals
[O

1

+ kT
1

, O
1

+ kT
1

+D
1

) and [O
n

+ kT
n

, O
n

+ kT
n

+D
n

), respectively.
In Section 4.5 there is an additional requirement in terms of a maximum bound

on the mode change latency, i.e. if L
�

is the mode change latency bound, then we
must guarantee that

8e 2 � : L(e) L
�

. (4.14)

4.3 Reducing memory requirements

In this section we analyze the execution of a surveillance system, consisting of a video
digitizer at the head, a video renderer at the tail, and a number of data-driven tasks.
The data-driven tasks have the role of improving the video frames received from the
video digitizer through additional processing. We address the problem of how large
the bu↵ers must be and how we must choose the task priorities, in order to meet the
real-time constraints.

In Section 4.3.1 we show that, in case of varying execution times, meeting the real-
time constraints of the last task in the chain requires a particular priority assignment,
and the first and last bu↵ers in the chain to have capacity for M and M + 1 frames,
respectively, with all other bu↵ers having capacity for 1 frame1. We also observe that
in the above scenario the number of frames in transit never exceeds M + 1.

In Section 4.3.2 we introduce the concept of a shared memory pool, which en-
capsulates the memory shared between all bu↵ers in an application. We show how
a shared memory pool in an application consisting of a chain of n tasks can save

1In case of an MPEG-like video encoding, a video-processing task may need to store past frames
for encoding or decoding a new frame. In this chapter we ignore the internal memory requirements
of each task, and focus on the memory required for communicating frames between tasks.

Reducing memory requirements 69

memory for storing M + n � 3 frames, for n � 3. To be more precise, since at dif-
ferent stages of the task chain frames may have di↵erent sizes, we can save memory
for storing M + n � 3 smallest frames. Memory is managed in terms of fixed-sized
blocks, which simplifies the reallocation of memory between bu↵ers, allowing for an
e�cient implementation of a shared memory pool. We evaluate the memory savings
in a real application and show experimental results for a H.264 video encoder.

In Section 4.3.3 we combine shared memory pools with scalable applications and
discuss how they a↵ect the memory requirements of applications in di↵erent modes,
and how they can reduce the mode change latency.

4.3.1 Meeting real-time constraints

Because of the equal periods of the head and tail tasks, and the assumption that each
instance of a task consumes and produces exactly one frame, there is a constant num-
ber of frames in transit within the system. Clearly, if the worst-case execution time
for processing one frame is within T the system will satisfy the real-time constraints
with just 1 frame in transit.

However, this strict restriction on the execution time of the complete chain is not
realistic. We would like to allow the processing time for individual frames to take
longer than T , as long as shorter processing of other frames will compensate for it.

In the following subsections we will derive the task priorities and bu↵er capacities
which will prevent the tasks from ever blocking on data (the head and tail task may
still block on time). The absence of blocking will allow us then to satisfy the real-time
constraints introduced in Section 4.2.2.

Component priorities

When the execution time of a frame is larger than T , more than one frame will be in
transit. Then, the priority assignment becomes important, as observed by We↵ers-
Albu (2008); Holenderski et al. (2011c).

Example 4.2. Consider the system of Figure 4.6 with three tasks where the head
task has the lowest priority. If the execution time of a frame exceeds D

1

= T then
the head task will miss the deadline of the next frame as the head task will not be
scheduled before a computation has been completed. A similar reasoning holds for
the tail task.

Example 4.2 suggests that the head and tail tasks should be assigned priorities
higher than any of the data-driven tasks in between. With these choices we can
regard the system as consisting of three parts: high priority ⌧

1

, low priority data-
driven chain ⌧

2..n�1

and high priority ⌧
n

. The following example demonstrates that
the priority assignment of the tasks in the chain ⌧

2..n�1

is not arbitrary either.
Let ⇡

1

be maximal, ⇡
2

be minimal, ⇡
n

= ⇡
1

+ 1, and ⇡
n�1

= ⇡
2

� 1. Since tasks
⌧
1

and ⌧
n

are time-driven and have priorities higher than any data-driven task in the
chain, they can interrupt the execution of the chain at arbitrary places. However,
since priorities ⇡

2

and ⇡
n�1

are lower than the priorities of all other tasks in the

70 Memory management

0 5 10 15 t

τ1

τ2

τ3

!
Figure 4.6: Example of the ⌧

1

missing its deadline if it is assigned the lowest priority,
for D

1

= T = 10. After the head task has written the frame to the first bu↵er,
the higher priority data-driven tasks preempt ⌧

1

which then has to wait until they
complete.

chain ⌧
2..n�1

, tasks ⌧
1

and ⌧
n

will not a↵ect the execution order of actions in ⌧
2..n�1

.
In the remainder of this section we assume this particular priority assignement.

Variable execution time

We now define and bound the variable execution time more precisely, which will be
relevant later for deriving the necessary bu↵er capacities.

Definition 4.10. We define F : N ! T , where F (k) is an upper bound on the
execution time needed by the chain ⌧

1..n

to produce the kth frame, after producing the
k � 1th frame.

We allow F (k) to vary, but the duration of each size M window has to be smaller
than MT , i.e.

kX

i=k�M+1

F (i) < MT, k � M. (4.15)

Here M is a natural number, which can be regarded as a system parameter. The
strict “smaller than” relation indicates that there will always be some idle time in
the processing of any sequence of M frames.

Later in this section we will derive the bu↵er capacities which are necessary to
prevent the tasks from blocking on output. For now, however, let us assume that the
bu↵ers are unbounded.

During MT time units ⌧
1

will be activated M times, inserting M frames into
the chain. Now, consider the system at time 0 when ⌧

1

starts and suppose ⌧
n

does
not execute. Then, according to (4.15), after MT time units, the last bu↵er will
contain M frames. We start ⌧

n

shortly after MT and choose O
n

= MT +D
1

(with
Ê

1

 D
1

 T � Ê
n

), making sure that, if we assign ⌧
n

a lower priority than ⌧
1

, then
⌧
1

will not be preempted by ⌧
n

. From this point on the number of frames in transit
within the chain is either M or M + 1, as long as ⌧

1

does not block on output and
⌧
n

does not block on input.

Reducing memory requirements 71

By the time O
n

= MT +D
1

, the chain ⌧
1..n�1

will have done work equal to

MX

i=1

�!
E i

1..n�1

. (4.16)

During the time interval [O
n

, O
n

+ MT) the chain will produce M frames and
will execute for

2MX

i=M+1

�!
E i

1..n�1

+
MX

i=1

Ẽi

n

. (4.17)

According to (4.15), the chain is guaranteed to reach idle state within at mostMT
time units. At that time all of the M or M + 1 frames in transit will be residing in
q
n�1

. In general, starting from an idle state, processing a window of size M preceding
the production of frame k will require

k�MX

i=k�2M+1

�!
E i

1..n�1

+
kX

i=k�M+1

Ẽi

n

. (4.18)

Since the head task will simply write the raw frame data to q
1

and the tail task
will simply read the data from q

2

, their execution times will not vary and we can use
their worst-case execution times and rewrite (4.18) as

MÊ
1

+
k�MX

i=k�2M+1

�!
E i

2..n�1

+MÊ
n

. (4.19)

We can use (4.19) as a lower bound for (4.15), and consequently have

MÊ
1

+
k�MX

i=k�2M+1

�!
E i

2..n�1

+MÊ
n

kX

i=k�M+1

F (i) < MT. (4.20)

Capacity of the first and last bu↵er

The following examples demonstrate how this particular priority assignment a↵ects
the required bu↵er capacities.

Example 4.3. Let us assume the above priority assignment and the following sce-
nario. Task ⌧

1

writes a frame to q
1

. Subsequently ⌧
2

reads it from q
1

and processes
it. Let the frame be computationally intensive. Since ⇡

2

is minimal, the data-driven
chain ⌧

2..n�1

will process each new frame completely to q
n�1

before ⌧
2

executes again.
According to (4.20) the data-driven chain may be busy with processing the frame for
at most M(T � Ê

1

� Ê
n

) time units. During that time the time-driven ⌧
1

, which has
the highest priority, will have written M frames to q

1

.

Example 4.4. Continuing with the last example, let us consider the capacity of
the last bu↵er in the chain. Equation (4.15) implies that after MT time units the

72 Memory management

data-driven chain will process the frames in no time, since the execution time for
processing any window of size M is bounded by MT . Therefore, the data-driven
chain ⌧

2..n�1

will process the next M frames before ⌧
1

writes another frame into
q
1

, essentially purging the first bu↵er. Since the head and tail task share the same
period, these M frames will accumulate in q

n�1

.
Assume that the next frame which enters the chain is very easy to process, i.e.

that ⌧
2..n�1

will push this frame through to q
n�1

before ⌧
n

gets a chance to remove
a frame from q

n�1

(i.e. before it completes the call to ReadRelease() in Figure 4.5).
Since q

n�1

had already accumulated M frames, it will now contain M + 1 frames.
However, since tasks ⌧

1

and ⌧
n

share the same period T , the following frame will not
arrive before ⌧

n

had the chance to remove a frame from q
n�1

. The last bu↵er will
therefore never exceed M + 1 frames.

The previous two examples imply that the bu↵er capacities should be Cap
q1 = M

and Cap
q

n�1 = M + 1.

Capacity of the middle bu↵ers

In the previous examples we made no assumption on the capacities of the middle
bu↵ers, i.e. bu↵ers q

i

for 2 i n � 2. Now we show that all middle bu↵ers can
have capacity 1.

Lemma 4.1. If Cap
q

i

= 1 for 2 i n � 2, then none of the tasks in ⌧
2..n�1

will
block on output.

Proof. Let us consider the situation at time O
n

= MT + D
1

. During the initial
MT time units, task ⌧

1

has inserted M frames into the chain. According to (4.15),
by the time O

n

the subchain ⌧
1..n�1

had enough time to push the M frames to the
last bu↵er q

n�1

. Assume that at time MT , i.e. before ⌧
n

had a chance to remove
a frame from q

n�1

, a new frame arrives which is very easy to process. The chain
⌧
2..n�1

will immediately push this frame through to q
n�1

, which at this point will
reach M + 1 frames. However, since tasks ⌧

1

and ⌧
n

share the same period T , the
next frame will not arrive before ⌧

n

had the chance to remove a frame from q
n�1

.
Since Cap

q

n�1 = M + 1, task ⌧
n�1

cannot become blocked on q
n�1

. Moreover, since
⇡
2

is minimal, ⌧
2..n�1

will process each new frame completely to q
n�1

before ⌧
2

gets
a chance to insert the next frame into q

2

. Hence none of the bu↵ers within the chain
⌧
2..n�1

will ever need to store more than 1 frame, and consequently Cap
q

i

= 1 for
2 i n�2 is su�cient for none of the tasks in ⌧

2..n�1

to ever block on output.

Meeting real-time constraints

Let ⇡
1

be maximal, ⇡
2

be minimal, ⇡
n

= ⇡
1

+ 1, and ⇡
n�1

= ⇡
2

� 1. Since the head
and tail tasks are activated periodically and have higher priority than the data-driven
tasks, if we show that ⌧

1

will never block on output and ⌧
n

will never block on input,
then we will have shown that the tasks ⌧

1

and ⌧
n

will meet their real-time constraints.

Lemma 4.2. ⌧
1

will never block on output and ⌧
n

will never block on input.

Reducing memory requirements 73

Proof. We demonstrate that this blocking of ⌧
1

or ⌧
n

cannot occur, by showing that
q
1

can never be full and q
n�1

can never be empty. We show it by contraposition.
Assume that blocking of ⌧

1

or ⌧
n

on communication does in fact occur and consider
the first blocking of either of the two tasks at time t. Since we have assumed a single
processor allowing only a single task executing at a time, the two tasks cannot become
blocked at the same time.

This blocking task cannot be ⌧
1

since, as long as ⌧
n

does not block, ⌧
2..n

can
either process or bu↵er the frames (given the bu↵er capacities derived earlier in this
section); hence, the contents of q

1

can vary up to M but will reach 0 within each MT
time interval.

Then the blocking task must be ⌧
n

, waiting for a new frame. However, as long
as q

n�1

contains less than M frames, the system is not idle as there are frames in
transit; because of (4.15) the state with q

n�1

containing M frames recurs within at
most MT time units again and thus can never reach 0. It follows that no such first
moment of blocking exists.

Now that we have shown that ⌧
1

does not block on output and ⌧
n

does not block
on input, we can state the following theorem.

Theorem 4.1. Given a single application comprised of a task chain in Figure 4.2
with a time-driven head and tail task, executing on a single processor, satisfying (4.15)
based on (4.20), and the following settings:

1. ⇡
1

is maximal, ⇡
2

is minimal,

2. ⇡
n

= ⇡
1

+ 1, ⇡
n�1

= ⇡
2

� 1,

3. O
n

= MT +D
1

,

4. Cap
q1 = M , Cap

q

n�1 = M + 1,

the real-time constraints of tasks ⌧
1

and ⌧
n

will be satisfied, for

1. 3 n,

2. Ê
1

 D
1

 T � Ê
n

, Ê
n

 D
n

 T ,

3.
P

k

i=k�M+1

F (i) < MT for k � M .

Note that since we made no assumptions on the sizes of bu↵ers q
i

, 1 < i < n� 1,
they can all have capacity 1.

In this section we have implicitly assumed a single application in the system. In
case there are several applications running side by side, we have to increase the lower
bound on deadlines D

1

and D
n

, taking the interference of other applications into
account.

74 Memory management

4.3.2 Reducing memory requirements

From Theorem 4.1 we know that the total capacity of all bu↵ers in an application
consisting of a chain of 3 n tasks, as shown in Figure 4.2, is equal to M +(n�3)+
(M + 1) frames, where M represents the first bu↵er, (n � 3) represents the bu↵ers
with capacity 1 between the first and last bu↵er, and (M + 1) represents the last
bu↵er. However, as mentioned in Section 4.3.1, the total number of frames in transit
never exceeds M + 1 frames.

Rather than allocating each bu↵er its required capacity, we can have them share
a common memory pool, since all bu↵ers together will never require more memory
than for storing M+1 frames. In this way can save the memory for storing M+n�3
frames, for 3 n.

At di↵erent stages of the task chain frames may have di↵erent sizes. Let s
i

be
the frame requirement for a single frame at stage i, i.e the size (in terms of blocks)
of the largest frame ever stored in the i’ th bu↵er in the chain. A chain of n tasks
defines a collection of frame requirements:

{s
1

, . . . , s
1| {z }

M

, s
2

, s
3

, . . . , s
n�2| {z }

n�3

, s
n�1

, . . . , s
n�1| {z }

M+1

}.

If we order the frame requirements in the application in ascending order of s
i

, then
using a shared memory pool can save the memory space required by the M + n� 3
smallest frame requirements. More precisely, if we arrange theM+(n�3)+(M+1) =
2M + n� 2 frame requirements in ascending order in a sequence

hr
1

, r
2

, . . . , r
2M+n�2

i , (4.21)

such that
8i : 1 i 2M + n� 2 : r

i

 r
i+1

, (4.22)

then the absolute memory savings are given by

M+n�3X

i=1

r
i

, (4.23)

and the relative memory savings are given by
P

M+n�3

i=1

r
iP

2M+n�2

i=1

r
i

. (4.24)

The memory reservations based on fixed-sized blocks simplify the reallocation of
memory between bu↵ers, allowing for an e�cient implementation of a shared memory
pool.

Experimental results

Figure 4.7 shows an application example of a H.264 video encoder (Wiegand et al.,
2003), which is commonly used in the consumer electronics domain. We used it to
evaluate the memory savings in a real application.

Reducing memory requirements 75

H.264
encoder

Video
digitizer

Video
renderer

s1 s2

M M + 1Buffer capacity (in frames):

Largest frame size (in bytes):

Figure 4.7: A video encoding application.

The application consists of three tasks: the video digitizer provides raw frames
in CIF format (with resolution 352x288 pixels) for the H.264 video encoder, which
produces a 300kbs video stream with the same resolution for the video renderer. The
s
1

parameter is equal to the size of a raw input frame, i.e s
1

= 352*288 = 101376
bytes. We have measured the largest frame ever produced by the H.264 encoder for
a series of video sequences2 to be s

2

= 26002 bytes. By using a shared memory pool,
in our chain of n = 3 tasks we can save the memory for storing M + n � 3 = M of
the smaller frames, which in this case are the encoded frames of size s

2

. The relative
memory savings are therefore given by

M ⇤ s
2

M ⇤ s
1

+ (M + 1)s
2

. (4.25)

Figure 4.8 shows the relative memory savings of our approach as a function of M ,
by filling in the above values for s

1

and s
2

in (4.25).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 2 3 4 5 6 7 8 9

M
em

or
y

sa
vi

ng
s (

in
 %

)

M

Figure 4.8: Memory savings in our example application as a function of M .

2Available at http://media.xiph.org/video/derf/

76 Memory management

Note that video scaling algorithms in Section 4.5 and (Wüst et al., 2005; Jarnikov
et al., 2004) can be applied to guarantee that the M parameter holds, i.e. that the
processing of any sequence of M frames does not exceed MT .

In our video encoder application the raw frames were 4 times larger than the
encoded frames. In general, the smaller the di↵erence between the frame requirements
at di↵erent stages, the larger the memory savings, as shown in Figure 4.9.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

10.0 2.5 1.42 1.0 0.7 0.4 0.1

M
em

or
y

sa
vi

ng
s (

in
 %

)

Ratio between s1 and s2

Figure 4.9: Memory savings for di↵erent ratios between s
1

and s
2

, assuming n = 3
and M = 4.

4.3.3 Scalable streaming applications

In this section we investigate reallocating memory between applications. Let us con-
tinue with the multimedia processing application example shown in Figure 4.2 and
consider a system comprised of two such applications. In the new setting both appli-
cations are scalable, meaning that when they are provided more resources they can
generate higher quality output. More specifically, given more processing time and
more memory, each application will generate a higher quality video encoding. Higher
quality video will require more memory for storing the bu↵ered frames, thus increas-
ing the s

i

values. Also, varying processing time will result in greater fluctuations
of the latency of the processing chain and consequently larger M , requiring larger
bu↵ers along the processing chain.

In Section 4.5 we show how to use in-bu↵er scaling to reduce the memory require-
ments of each bu↵er. In this section we concentrate on how a shared memory pool
will a↵ect the memory requirements of a scalable application in di↵erent modes.

Equation (4.24) indicates that the relative memory savings due to a shared mem-
ory pool increase with increasing M , as visualized in Figure 4.8.

Handling overload conditions 77

A higher quality mode (i.e. a mode requiring more resources, in particular more
processor time) is likely to exhibit larger variation in execution time of the individual
tasks, and hence also of the complete chain, thus increasing M (provided it is not
assigned a larger processor share after the mode change).

Also, (4.23) and (4.24) indicate that the smaller the variation in s
i

the larger
the memory savings due to a shared memory pool. Many multimedia streaming
applications can be classified as encoders or decoders. An encoder receives a fixed-
sized input (e.g. raw video frames from a camera) and encodes it into an output, of
which the size depends on the quality settings. Conversely, a decoder will receive a
variable sized input and generate a fixed-sized output (e.g. decoded frames rendered
to a screen). Given the fixed-sized output or input frames, an application operating in
a lower quality mode is likely to exhibit large variation in the frame sizes at di↵erent
stages of the chain.

In summary, scalable applications are likely to exhibit larger relative memory
savings due to a shared memory pool when they execute in higher modes.

Note that if the memory reservations underlying the memory pools of di↵erent
applications are managed in terms of fixed-sized blocks of the same size, then the
reallocation of memory between memory pools belonging to di↵erent applications
will be simpler and more e�cient. Memory blocks can be simply added and removed
from a list of available blocks, compared to a solution based on finding the best fit
between memory requirements and available blocks. Moreover, rather than scaling
the memory reservations for all bu↵ers one by one, a shared memory pool allows to
scale the memory requirements of the complete chain in a single step3. Thus a shared
memory pool, next to reducing the memory requirements of a scalable application,
can also reduce the mode change latency.

4.4 Handling overload conditions

In this section we generalize the application model to a directed acyclic graph,
with time-driven boundary components and all other components being data-driven.
Hentschel et al. (2003) present a study of a multimedia processing application, shown
in Figure 4.1. They observe that fluctuation in the processing time for decoding dif-
ferent video frames may fill up the bu↵ers along the video processing subchain. The
bu↵ers may continue to fill up until the demultiplexer component becomes blocked,
when it is not able to write both the audio and the video frames into its two output
bu↵ers. This is an example of how the decoding of the audio stream may become
blocked due to insu�cient bu↵er space along the video processing path. In the end
this leads to the dropping of audio frames, manifested by sound artifacts.

In this section we will focus on the audio and video subchains following the de-
multiplexer. The demultiplexer reads multiplexed frames from its input bu↵er and
writes the audio part to its audio output bu↵er b

a

and the video part to its video
output bu↵er b

v

. If either of these queues is full, then the demultiplexer blocks.

3The data residing in the bu↵ers still needs to be managed for each bu↵er individually.

78 Memory management

Let t be the time when b
v

becomes full. If we do not address the congestion in
the video subchain, then the demultiplexer will block and consequently stop feeding
b
a

, eventually leading to audio artifacts.
One option is to extend b

v

with additional memory, to prevent the demultiplexer
from blocking. However, since we assumed a memory constrained platform, we cannot
simply allocate more memory to one application without other applications su↵ering.
We therefore propose to free up some space for the demultiplexer by dropping some
of the frames in b

v

. Note that dropping frames from any other bu↵er along the video
subchain will not alleviate the problem, since the demultiplexer will still be blocked
on its output bu↵er.

We cannot simply pop the head element from the video output bu↵er. Since a
single video frame is allowed to span across several bu↵er elements, the head element
could belong to a video frame which is currently being processed by the video decoder.

Waiting until the decoder has finished processing the current frame, and then
discarding the head frame by simply popping it, is not an option either, since this is
the very delay we want to avoid.

Instead, we propose to selectively drop those frames from b
v

which can no longer
be processed in time. Since we have assumed a bounded end-to-end latency, and ad-
justed the bu↵er capacities accordingly, an overload condition means that a deadline
was already missed. We want to prevent the deadline miss to propagate to other
video and audio frames, leading to artifacts in the audio stream. We therefore pro-
pose to scan the video output bu↵er for the beginning of the next frame and drop
all those elements which belong to that frame. A mechanism for dropping arbitrary
frames also makes it possible to scan the bu↵er for the least significant video frame
(e.g. a B or P frame in case of MPEG encoding Isovic and Fohler (2004)) and to
drop that one instead, thus preserving the perceived quality of the output video as
much as possible.

For this to work we extend the bu↵er component interface in Section 4.2.2 with
additional methods providing limited access to arbitrary bu↵er elements:

Element GetNextElement(Bu↵er q) allows to iterate through the bu↵er elements
in bu↵er q. Every following invocation returns the following bu↵er element, or a
NULL pointer if the end of the queue was reached.

void ResetNextElement(Bu↵er q) resets the pointer returned by the next call to
GetNextElement(q) to the head of the queue q.

void Drop(Bu↵er q, Element e) deletes the bu↵er element pointed to by e from
the queue q.

We need to iterate through the bu↵er elements (using the methods GetNextElement()
and ResetNextElement()) and drop those belonging to the least significant frames
(using the method Drop()). This congestion control should be triggered by the de-
multiplexer whenever it notices a full output bu↵er. It should be executed by a

Bounding the mode change latency 79

component which is aware of the semantics of the frames in the congested bu↵er.
Only the access to the shared data structures (such as the administration data

structures for bu↵ers and budgets) is synchronized, according to the Stack Resource
Policy Baker (1991). Having the highest priority component do all the scaling and
dropping of bu↵er elements guarantees that no other component will interfere.

4.5 Bounding the mode change latency

In Section 4.4 we have dealt with overload conditions. In this section we investigate
reallocating memory between applications. We describe a scalable multimedia appli-
cation, which can operate in one of several modes (see Section 4.2.2), and show how
to reduce the mode change latency. We outline our implementation of the proposed
method in the µC/OS-II real-time operating system, and present simulation results
which validate our approach.

A mode change latency in a synchronous mode change protocol is composed of
two parts: the waiting time between a mode change request and the start of a mode
change (Section 4.5.1), and duration of the mode change itself (Section 4.5.2).

4.5.1 Bounding the waiting time before a mode change

Upon a mode change request the system needs to know when the old mode tasks
(or components) are ready to release their resources (i.e. when they have completed)
before reallocating these resources to the new mode tasks (or components), and it
must deal with task and component interdependencies, in case they access shared
resources. Our solution based on FPDS o↵ers a simple implementation of mode
changes, from the perspective of component design and system integration, while
improving on the existing mode change latency bound.

The system may decide to change the mode of a task or component at an arbitrary
moment during the execution of a segment. We assume that the computations per-
formed by the tasks are scalable, such that the execution of a task can be terminated
at segment boundaries.

Upon a mode change request, tasks need to execute mode change routines re-
sponsible for adapting the resource requirements of the components they use. We let
the QM task ⌧

qm

(released upon a mode change request and responsible for managing
the mode change) execute the component mode change routines on behalf of the com-
ponents and assign ⌧

qm

the highest priority4. After the currently running segment
completes, ⌧

qm

performs the mode changes for all components. Since ⌧
qm

has the
highest priority other tasks will not be able to interfere with the mode change, thus
reducing the mode change latency.

Our approach is especially suited for applications composed of scalable tasks or
components which produce incremental results, e.g. a scalable MPEG decoder, which
incrementally processes enhancement layers to produce higher quality results. After

4In case of FPPS with non-preemptive resource access protocol, the priority of ⌧qm must be lower
than the priority assigned by the resource access protocol to a task executing a critical section.

80 Memory management

each layer the decoding can be aborted, or continued to improve the result. We
assume a scalable MPEG decoder (Haskell et al., 1996; Jarnikov, 2007), with a layered
input stream. Every frame in the stream has a base layer, and a number of additional
enhancement layers, which can be decoded to increase the quality of the decoded
video stream.

Quality Manager

We add an additional task to the system, the Quality Manager (QM) task ⌧
qm

, which
is responsible for coordinating the mode changes. There is one QM per application,
which is responsible for distributing the resources between the tasks and components
comprising the application. In a system comprised of several applications, there may
be a global QM, which distributes the resources between the applications. ⌧

qm

is
released upon a mode change request and has the highest priority among all tasks
belonging to the same application.

The QM is aware of the possible modes of all scalable tasks and components in
�S and CS (e.g. bu↵er components). We are not concerned with how the QM selects
system modes, and for the sake of simplicity we assume that the set of components
is fixed and that the mode selection is table driven, based on a system mode table
pre-computed o✏ine5.

Upon a mode change request, the QM determines the necessary task and compo-
nent mode changes by computing the “di↵erence” between the target system mode
and the current system mode in the system mode table.

Each scalable component implements the following methods, which are called by
the QM upon a mode change:

BeforeModeChange(targetMode) The argument targetMode refers to the com-
ponent’s mode after the mode change. This method allows the component to do any
pre-processing before a mode change. For example, if the memory requirements of
a bu↵er in targetMode are smaller than in the current mode, then the bu↵er gets a
chance to gracefully scale down its requirements (e.g. by discarding some of its ele-
ments or shrinking the data stored inside the elements) and to decrease its memory
reservation by calling DiscardMemoryReservation().

AfterModeChange(oldMode) The argument oldMode refers to the component’s
mode before the mode change. This method allows the component to do any post-
processing after a mode change. For example, if the memory requirements of a bu↵er
in the current mode are larger than in the oldMode, then the bu↵er gets a chance to
increase its memory reservation by calling RequestMemoryReservation().

5Our mode change approach is applicable also to open systems, where tasks and components
may enter and leave the system during runtime.

Bounding the mode change latency 81

The Swift Mode Change protocol

A mode change request is represented by the arrival of the QM task ⌧
qm

, which
performs the following steps, illustrated in Figure 4.10:

1. Identify the tasks and components involved in the mode change, by comparing
the current application mode and the target application mode.

2. Wait for the currently active segments which are involved in the mode change or
are using components involved in the mode change to complete. The protocol
for this step depends on the scheduling algorithm:

FPPS: In order to prevent tasks not involved in the mode change from inter-
fering, QM raises the priority of the tasks involved in the mode change
higher than those which are not (for the duration of their current seg-
ment). This guarantees that these segments will complete without being
preempted by other tasks. As soon as they complete, ⌧

qm

is resumed and
proceeds with the mode change.

FPDS: When ⌧
qm

is started, the fact that we are using FPDS guarantees
that all other active tasks are remaining at a segment boundary6. Hence
the FPDS scheduler takes care of this step automatically, by having the
currently running segment complete before starting ⌧

qm

.

3. Call BeforeModeChange() in all components involved in the mode change.

4. Adapt the global data structure keeping track of the current system mode.

Note that the task mode basically controls the execution path through a task.
Each task is responsible to check its mode before any mode dependent code is
executed. Therefore, no additional work is required to change the task modes,
besides adapting the data structure keeping track of the current system mode.

5. Call AfterModeChange() in all components involved in the mode change.

Notice that we presented here a synchronous mode change protocol without peri-
odicity, where the current segments of tasks involved in the mode change are forced
to complete first (by raising their priority), possibly interfering with the unchanged
components not involved in the mode change. However, this interference is bounded
by the mode change latency and thus it can be taken into account in the schedulability
analysis as a blocking term for all tasks, including the unchanged ones.

Analysis

We now present the analysis for system mode change latency under FPPS and FPDS.

Definition 4.11. We define É : C ! T , where É(c) is the sum of the worst case
pre- and post-processing times of component c.

6A segment boundary corresponds to a preemption point in the literature on FPDS.

82 Memory management

Bufffer 1 Buffer 2 MemoryQM

BeforeModeChange()

BeforeModeChange()

AfterModeChange()
AfterModeChange()

RequestMemoryReservation()

DiscardMemoryReservation()

wait for the running
segment to complete

Mode change request

Figure 4.10: A message sequence diagram illustrating the Swift Mode Change proto-
col for a mode change request requiring the Bu↵er 1 component to reduce its memory
requirements and Bu↵er 2 to increase its memory requirements.

Definition 4.12. We define �� : M ⇥M ! 2�
S

, where ��(x, y) is the set of tasks
directly involved in the mode change from system mode x to y, i.e.

��(x, y) = {⌧
i

2 �S | ⌧x
i

6= ⌧y
i

} (4.26)

Definition 4.13. We define �C : M ⇥ M ! 2C
S

, where �C(x, y) is the set of
components directly involved in the mode change from system mode x to y, i.e.

�C(x, y) = {c 2 CS | cx 6= cy} (4.27)

The system mode change latency is given by

L(x, y) = L
W

(x, y) +
X

c2�

C
(x,y)

É(c) + E
sys

(4.28)

where

• L(x, y) is the latency of a system mode change from system mode x to y.

• L
W

(x, y) is the worst-case time interval between a mode change request and the
time when all tasks accessing components in �C(x, y) have reached a segment
boundary. It corresponds to step 2 in the mode change protocol. L

W

(x, y)
depends on the scheduling algorithm and is discussed in the following two sec-
tions.

Bounding the mode change latency 83

•
P

c2�

C
(x,y)

É(c) is the time required by all components direclty involved in the
mode change to do any pre- and post-processing, corresponding to steps 3 and
5 in the mode change protocol.

• E
sys

is the time needed to identify the tasks and components involved in the
mode change and to adapt the mode tables, corresponding to steps 1 and 4 in
the mode change protocol. Since this overhead is relatively small compared to
the other terms, we represent it with a constant worst-case overhead.

Fixed-priority preemptive scheduling In a preemptive system, a segment may
be preempted by a higher priority segment. This higher priority segment may again
be preempted by a segment with an even higher priority. Therefore, due to arbitrary
preemption, several segments may be preempted and active at the same time. In
the worst case we can have a chain of segments which are preempted just after they
started executing.

Since tasks may share components, the tasks involved in a mode change may block
on the unchanged tasks which are not involved in the mode change. For example, in
Figure 4.11, if a mode change involves only the output bu↵er of the ⌧

d

component,
then the decoder task (involved in the mode change) may block on the network task
(not involved in the mode change), since they communicate over a shared bu↵er
component.

Definition 4.14. We define �(x, y) : M ⇥ M ! 2� , where �(x, y) is the set of
tasks directly and indirectly involved in the mode change from system mode x to y.
It includes a transitive closure of tasks which require components involved in the mode
change, i.e.

�(x, y) = ��(x, y) [f(�C(x, y))

where f(�C(x, y)) is the set of tasks indirectly involved in the mode change, i.e.

f : 2C ! 2� and f(C) = g(C) [f(g(h(C)))

g : 2� ! 2C and g(T) =
[

⌧

i

2T

�(⌧
i

)

h : 2C ! 2� and h(C) =
[

c2C

�(c)

The set union gets rid of duplicates due to tasks accessing several components,
and components serving several tasks.

Lemma 4.3. Given a set of scalable tasks �S and a mode change from system mode x
to y, we can divide �S into two disjoint subsets: �S

c

= �(x, y) and �S

u

= �S \ �(x, y),
representing the set of tasks involved in the mode change (directly and indirectly), and
the set of unchanged tasks, respectively. For FPPS with a non-preemptive resource
access protocol7, the maximum blocking time B

�(x,y)

experienced by components in

7A“non-preemptive resource access protocol” refers to a synchronization protocol where segments
requiring non-preemptive resources are executed non-preemptively, e.g. by temporarily raising their
priority higher than any other priority in the task set.

84 Memory management

�S

c

due to components in �S

u

is bounded by the duration of the longest critical section8

among tasks in �S

u

.

Proof. We prove Lemma 4.3 by contradiction. Let b
max

2 S be the longest critical
section among tasks in �S

u

and let ⌧ 2 �S

c

arrive just after a critical section b
i

2 S
in one of the tasks in �S

u

has started. The non-preemptive resource access protocol
guarantees that at most one critical section can be entered at a time (assuming no
nested critical sections). If the blocking time B

�(x,y)

is larger than b
max

then there
must be a sequence of at least two critical sections b

i

and b
j

among the tasks in �S

u

which execute without preemption by ⌧ . Assuming the mode change protocol raises
the priorities of the tasks in �S

c

higher than any task in �S

u

upon a mode change
request, ⌧ is guaranteed to have a priority higher than the tasks containing b

i

and
b
j

. Therefore, after b
i

is finished b
j

will not be able to start before ⌧ completes.

Since a segment s has to complete before allowing the components providing re-
sources in R

s

to change their mode, for FPPS the L
W

(x, y) term in (4.28) is bounded
by the sum of durations of longest segments of tasks accessing the components in-
volved in the mode change plus the blocking time due to the unchanged components,
i.e.

LFPPS

W

(x, y) =
X

⌧

i

2�(x,y)

✓
max

⌧

i,j

2S

i

E
i,j

◆
+B

�(x,y)

(4.29)

Combining (4.28) and (4.29) we get

LFPPS(x, y) =
X

⌧

i

2�(x,y)

✓
max

⌧

i,j

2S

i

E
i,j

◆
+B

�(x,y)

+
X

c2�

C
(x,y)

É(c) + E
sys

(4.30)

Fixed-priority with deferred preemption scheduling When using FPDS with
non-preemptive segments, a component may be preempted only at segment bound-
aries. This implies that at most one segment may be active at a time (the currently
running one); all other components will be waiting at one of their segment bound-
aries. We therefore can avoid waiting until all the components currently accessing
those components involved in the mode change have completed, and wait only until
the currently running component reaches its next segment boundary.

Therefore, for FPDS the L
W

(x, y) term in (4.28) is bounded by the duration of
longest segment among all components in the system (since all segments are non-
preemptive, including those not involved in the mode change):

LFPDS

W

(x, y) = max
⌧

i

2�

S

✓
max

⌧

i,j

2S

i

E
i,j

◆
(4.31)

Note that by considering the complete set of scalable tasks �S we take into account the
blocking due to unchanged components which share components with the components
involved in the mode change.

8A critical section is a segment requiring at least one non-preemptive resource.

Bounding the mode change latency 85

Combining (4.28) and (4.31) we get

LFPDS(x, y) = max
⌧

i

2�

S

✓
max

⌧

i,j

2S

i

E
i,j

◆
+

X

c2�

C
(x,y)

É(c) + E
sys

(4.32)

Intermezzo Until now we have assumed that under FPDS segments are non-
preemptive. We can relax this assumption and distinguish between two classes of
components: application components and framework components. An application
component is non-preemptive with respect to other application components, but it
can be interrupted by a framework component as long as they do not share common
non-preemptive resources. From the perspective of the interrupted component the
framework components behave similarly to interrupt service routines, resuming the
preempted component upon completion. If we implement the QM component ⌧

qm

as
a framework component we can reduce the mode change latency by considering only
those components which are involved in the mode change, rather than considering
all components in the system, since a segment not sharing any resources with com-
ponents involved in the mode change can be preempted by a framework component.
The L

W

(x, y) term in (4.28) therefore becomes

LFPDS

W

(x, y) = max
⌧

i

2�(x,y)

✓
max

⌧

i,j

2S

i

E
i,j

◆
(4.33)

Combining (4.28) and (4.33) we get

LFPDS(x, y) = max
⌧

i

2�(x,y)

✓
max

⌧

i,j

2S

i

E
i,j

◆
+

X

c2�

C
(x,y)

É(c) + E
sys

(4.34)

Improving the bound for synchronous mode change protocols, without
periodicity As indicated in Section 4.1.4, the currently best known bound on the
mode change latency in a synchronous mode change protocol without periodicity, due
to (Real, 2000), is equal to

L =
X

⌧

i

2�

old

[�

unch

E
i

(4.35)

where �
old

is the set of tasks in the old mode and �
unch

is the set of unchanged
tasks. Their algorithm behaves similarly to the one we described for the FPPS case,
in Section 4.5.1. We can apply our results for FPDS to the processor mode change
domain and reduce this mode change latency bound.

If we make the components ⌧
i

2 �
old

[�
unch

non-preemptive, then at most one
component will be running at a time, and the mode change latency will be reduced
to

L = max
⌧

i

2�

old

[�

unch

E
i

(4.36)

Of course, the lower bound comes at a price of a tradeo↵ between the latency bound
and the schedulability of the component set, where the non-preemptive components
may increase the blocking time of higher priority components.

86 Memory management

τdτn

data flow componentLegend: control flow

τr

qe qd

τqm

Figure 4.11: An example of a scalable multimedia application.

On the one hand, it is likely that a component will be required to complete after a
mode change request, in order to avoid the corruption of shared resources. Therefore
the increase in blocking time may not be significant. On the other hand, there are
more e�cient resource access protocols than Fixed-Priority Non-preemptive Schedul-
ing (FPNS), with lower bounds on the maximum blocking time. For example FPNS
can be considered as the most pessimistic configuration of FPDS: if components can
be subdivided into shorter segments, then the mode change latency can be reduced,
while at the same time improving the schedulability of the component set.

Simulation results

We simulated the complete system from the perspective of a single application, and
represented the resource contention between applications by varying the target modes
in mode changes.

The simulation setup is shown in Figure 4.11. It is an instance of an application
comprised of a chain of components described in Section 4.2. It consists of three
communicating tasks. The network task ⌧

n

receives incoming frames via the network
and writes them to the bu↵er q

e

containing encoded frames. The decoder task ⌧
d

reads the encoded frames from q
e

, decodes them, and writes the result to q
d

containing
decoded frames. The renderer task ⌧

r

reads the decoded frames from q
d

and renders
them. The rendering hardware bu↵ers the last rendered frame, and in case a new
frame has not arrived in time, the bu↵ered frame is rendered again. For simplicity we
assume that each incoming video frame fits within a single bu↵er element. The bu↵er
components reside in a shared memory mem (which is large enough to accommodate
both bu↵ers), and all tasks require a shared processor p to execute. The execution
of tasks ⌧

n

, ⌧
d

, and ⌧
r

is comprised of three phases: initialize the task, execute
the body of the task, and finalize the task. The component and task parameters
are summarized in Table 4.1, with the parameters in bold depending on the system
mode.

A mode change request was generated periodically with period T
qm

= 1.05T .
Running the simulation for 20T ensured that mode changes were requested at di↵er-

Bounding the mode change latency 87

c ⇡
c

O
c

T
c

D
c

R
c

P
c

q
e

5 0 1 1 {(mem,Ne)} {(b
e

,Ne)}
q
d

6 0 1 1 {(mem,Nd)} {(b
d

,Nd)}

⌧
i

⇡
i

O
i

T
i

D
i

S
i

⌧
qm

1 0 52.5 ms 52.5 ms h(1, {p, b
e

, b
d

})i
⌧
n

2 0 50 ms 50 ms h(", {p}), (E
n

, {p, b
e

}), (", {p})i
⌧
r

3 1 50 ms 50 ms h(", {p}), (E
r

, {p, b
d

}), (", {p})i
⌧
d

4 2 50 ms 50 ms h(", {p}), (E
d

, {p, b
e

, (b
d

,nd)}), (", {p})i

Table 4.1: Summary of the component and task parameters.

ent points during the execution of components. Every mode change involved ⌧
d

, q
e

and q
d

. The mode changes would alternate between the high and low modes defined
as follows:

low mode: q
e

and q
d

have 2 bu↵er elements (N
e

= N
d

= 2), and each video frame
produced by the ⌧

d

requires a single bu↵er element (n
d

= 1).

high mode: q
e

has 2 bu↵er elements (N
e

= 2), q
d

has 4 bu↵er elements (N
d

= 4),
and each video frame produced by the ⌧

d

requires 2 bu↵er elements (n
d

= 2).

The setup was embedded in the real-time operating system µC/OS-II (Labrosse,
1998), which was extended with support for periodic components, FPDS, and the
architecture described in this chapter (the RM, the QM and the corresponding com-
ponent interfaces). The RM used the memory partitions provided by µC/OS-II to
provide guaranteed memory allocations. We simulated the computation of task ⌧

i

by
means of busy-waiting. To get consistent results we ran the simulation within the
cycle accurate OpenRISC simulator inside Linux (Ubuntu 8.10).

Following the observation that FPNS is the most pessimistic configuration for
FPDS, we had each task consist of a single segment, and compared the mode change
latency under FPPS vs. FPDS by scheduling the segments preemptively vs. non-
preemptively. In case of FPPS, since the synchronization of access to bu↵ers was
limited to updating their administration data, the blocking time due to components
sharing the two bu↵ers was insignificant compared to the component execution times.

In Figures 4.12 and 4.13 the period T was set to 50ms and the total utilization of
all three components was fixed at 0.6. We varied E

d

and distributed the remaining
execution time equally between E

n

and E
r

. The “V” shape of the FPDS results is
due to the mode change latency being dominated by ⌧

n

and ⌧
r

for lower values of E
d

.
Since there is at most a single frame in each bu↵er, the contribution of theP

c2�

C
(x,y)

É(c) term in (4.28), representing the scaling down of frames inside the

BeforeModeChange() and AfterModeChange() methods, is relatively small. Hence
the measured mode change latency shown in the figure is dominated by the L

W

(x, y)
term.

88 Memory management

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

M
ax

 m
ea

su
re

d
m

od
e

ch
an

ge
 la

te
nc

y
(m

s)

Execution time of od task (ms)

FPDS
FPPS

Figure 4.12: Execution time E
d

vs. maximum measured mode change latency. E
n

=
E

r

= 30ms� E
d

/2

The results in Figures 4.12 and 4.13 validate the analysis in Section 4.5.1 and il-
lustrate the improvement of FPDS over FPPS in terms of the worst-case and average-
case system mode change latency.

4.5.2 Bounding the mode change duration

In the previous section we have focused on reducing the waiting time between a mode
change request and the start time of the mode change. In this section we focus on
reducing the duration of the mode change itself.

A mode change will a↵ect each component in one of three ways with respect to
resource provisions: reduce, increase or keep them the same. The interesting case
is when the target mode allocates fewer resources than the current mode and the
component has to adapt its resource requirements by giving up some of its resources.
Reducing the mode of a bu↵er component (implemented by
BeforeModeChange()) can be divided into two steps: scaling down its frames followed
by reducing its budget size. There are several approaches to scaling down the frames.

According to Section 4.3.1, the end-to-end latency of the complete task chain is
bounded by MT . If we reduce the application mode, the M parameter is likely to
change as well, since processing frames across the chain is likely to take less time.
Let M

c

and M
t

be the M parameters in the current and target modes, respectively.
We continue by describing two di↵erent approaches to scaling down the frames

throughout the chain. The first approach drops all bu↵ered frames upon a mode
change request, while the second approach applies the method presented above and

Bounding the mode change latency 89

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30

A
ve

ra
ge

 m
ea

su
re

d
m

od
e

ch
an

ge
 la

te
nc

y
(m

s)

Execution time of od task (ms)

FPDS
FPPS

Figure 4.13: Execution time E
d

vs. average measured mode change latency. E
n

=
E

r

= 30ms� E
d

/2

drops only selected frames. For each approach we will analyze its mode change
latency bound from the application and the system perspective (referred to as the
application latency and the system latency).

Approach 1: drop all bu↵ered frames

Instead of waiting for the renderer to read all the frames from the last bu↵er, we can:

1. Immediately drop all frames from all bu↵ers.

2. Suspend ⌧
r

and wait until the pipe is filled again before resuming it.

The first step avoids the delay in the previous approach, however, dropping frames
means loosing the work invested in processing the dropped frames. Note that M

c

+1
frames will be dropped.

The second step again su↵ers a delay of (M
t

+ 1)T time units. Moreover, due to
interdependencies between video frames (e.g. in MPEG a B frame depends on a P
or an I frame), several of the first frames which arrive in step 2 may be useless, thus
increasing the delay even further.

Approach 2: drop only selected frames

In our approach we scale the two bu↵ers q
e

and q
d

di↵erently. We reduce the mode
of q

e

by dropping only selected frames, and reduce the mode of q
d

by reducing the
resolution of the frames already in the bu↵er.

90 Memory management

1. Drop selected frames from q
e

(and optionally q
d

), with preference for the least
significant ones.

2. Reduce the quality of the remaining frames in both bu↵ers.

We can accomplish the first step using the methodsGetNextElement(), ResetNextElement()
and Drop(), as described in Section 4.4. Note that we need to drop exactly M

c

�M
t

frames. We start with dropping selected frames from q
e

(in case of MPEG the B and
P frames)9. However, if there are not enough frames in q

e

to drop, then we proceed
with dropping selected frames from q

d

, until we have dropped M
c

�M
t

frames.
The algorithm for selecting the desired frames to drop strongly depends on the

application and the video encoding. In the worst case, selectively dropping the desired
frames will require linearly scanning through M

c

+ 1 frames in all the bu↵ers. If
iterating through a single frame and optionally dropping it costs E

drop

, then the
worst-case total cost for selectively dropping the desired frames will be (M

c

+ 1)E
drop

time units10.

System latency Application latency
Approach 1 0 (M

t

+ 1)T
Approach 2 (M

c

+ 1)(E
drop

+ E
scale

) (M
c

+ 1)(E
drop

+ E
scale

)

Table 4.2: Impact of di↵erent scaling approaches on the mode change latency with
respect to the complete system and the application itself.

In the second step, the mechanism for reducing the quality of frames is likely to
be di↵erent for di↵erent bu↵ers. For example, in q

e

we can drop the enhancement
layers (Jarnikov, 2007), while in q

d

we can reduce the resolution. Note that dropping
enhancement layers assumes a particular video encoding and in general may not
always be possible.

We can accomplish the second step using the standard read and write interface
of a bu↵er described in Section 4.2.2. Let n

d

be the number of frames in q
d

upon
the mode change request. We cycle through all the n

d

frames by popping the head
frame from the q

d

, reducing its resolution and pushing it back on q
d

, until we have
processed all the n

d

frames. We can do the same for the frames in q
e

11. In the worst
case we will need to scale M

c

+ 1 frames in all the bu↵ers. If E
scale

is the worst-case
time required to scale a frame in any of the bu↵ers12, then the second step will take
(M

c

+ 1)E
scale

time units.
Both bu↵ers will be able to reduce their budgets, allowing the system to reallocate

the reclaimed memory, after (M
c

+ 1)(E
drop

+ E
scale

) time units.

9We assume here temporal video scaling. See (Jarnikov, 2007) for other scaling methods, such
as spatial or SNR scaling.

10In the best case, an optimal algorithm would require nE
drop

time for dropping n frames.
11If the enhancement layers are stored in separate bu↵er elements, then we can optimize this step

by using the bu↵er interface for selective dropping.
12Note that dropping enhancement layers is likely to take less time than reducing the resolution

of a frame, hence E
scale

is pessimistic.

Bounding the mode change latency 91

From the application perspective, since the scaling is executed at the highest
priority, the renderer may su↵er a delay of (M

c

+ 1)(E
drop

+ E
scale

) time units.
Note that since we drop exactly M

c

� M
t

frames we end up with M
t

frames in
the chain, hence we do not need to suspend ⌧

r

to fill the pipeline (as it is done in
the first approach). Also note, that if M

c

= M
t

, then we can skip step 1 altogether,
reducing the system and application latency to (M

c

+ 1)E
scale

.
Table 4.2 summarizes the impact of the di↵erent approaches on the system and

the application latency. Note that both latencies define a time interval starting with
the arrival of the mode change request.

In practice, iterating through a frame and scaling down the resolution of a frame
are simple operations (relative to decoding) and so E

drop

+E
scale

is very likely to be
smaller than the frame period T .

Simulation results

The simulation setup was similar to the one described in Figure 4.11 in the previous
section. We ran the simulation with the following parameters:

• period of the network component ⌧
n

and the renderer component ⌧
r

, T = 50ms,

• execution time of the network component E
⌧

n

= 2ms,

• execution time of the decoder component E
⌧

d

= 3ms,

• execution time of the renderer E
⌧

r

= 3ms,

• worst-case time needed to scale down a single frame E
scale

= 2ms,

• period of the QM component T
qm

= 410ms,

• M
c

= M
t

= M ,

• two application modes: high and low,

• each encoded frame in q
e

occupies one bu↵er element,

• each decoded frame in q
d

occupies one bu↵er element in the low mode and two
bu↵er elements in the high mode.

The QM component would periodically request a mode change alternating between
the high and low modes. We varied the execution time of the complete component
chain by executing the decoder component for E

⌧

d

most of the time, and once in
MT having it fill the remaining capacity by executing it for an additional MT �
M (E

⌧

n

+ E
⌧

d

+ E
⌧

r

).
The particular component parameters were selected based on data collected in a

study of video frame sizes in MPEG encoding by Fitzek and Reisslein (2001)13. The
processing time of the decoder was assumed to be proportional to the frame size. We

13Their collected data is available at http://www.tkn.tu-berlin.de/research/trace/trace.html

92 Memory management

determined the ratio between the minimum and maximum execution times for the
decoder by averaging over several data sets.

The simulations were run for 3300ms. The first invocation of the renderer com-
ponent was o↵set with T (M +0.5) ms to fill the pipeline (according to We↵ers-Albu
(2008)), resulting in around 60 frames for approach 2.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70

tim
e

in
te

rv
al

 si
nc

e
la

st
di

ffe
re

nt
 re

nd
er

ed
 fr

am
e

(m
s)

n’th different rendered frame

Approach 1
Approach 2

Figure 4.14: Simulation results, for T = 50ms, C
n

= 2ms, C
d

= 3ms, C
r

= 3ms,
E

scale

= 2ms, T
q

= 410ms, and M = 2

Figure 4.14 compares approaches 1 and 2, illustrating their application latency.
The graph visualizes the interruptions in the rendered frames. A peak means that
during one or more consecutive iterations of the renderer the q

e

bu↵er was empty,
forcing the renderer to repeat the last rendered frame. Therefore a peak means
a larger interval between consecutive di↵erent rendered frames, possibly leading to
video artifacts. Note that during the time interval represented by a peak no new
frames are rendered, meaning that fewer di↵erent frames are rendered, explaining
why the peaks for approach 2 are slightly shifted.

Figure 4.14 confirms the behavior claimed in Section 4.5 for M = 2: the large
peaks of about 150 ms for approach 1 correspond to the waiting time of (M

t

+ 1)T .
The small peaks for approach 2 correspond to the overhead for scaling the frames
residing in q

d

.
Figure 4.15 shows the simulation results for M = 8. As expected, the behavior

is very similar, with larger application latencies for approach 1 due to the larger M
t

resulting in a longer waiting time for filling the pipeline.
The lack of a bump in Figure 4.15 may be explained by most frames residing in

the encoded bu↵er when a mode change occurred, due to MT = T
qm

. Since the
overhead for dropping frames is negligible it does not show in the figure.

Discussion 93

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60

tim
e

in
te

rv
al

 si
nc

e
la

st
di

ffe
re

nt
 re

nd
er

ed
 fr

am
e

(m
s)

n’th different rendered frame

Approach 1
Approach 2

Figure 4.15: Simulation results, for T = 50ms, C
n

= 2ms, C
d

= 3ms, C
r

= 3ms,
E

scale

= 2ms, T
q

= 410ms, and M = 8

4.6 Discussion

In Section 4.3 we have shown a general mechanism for reducing memory requirements
in a streaming application comprised of a chain of components with periodic head and
tail components communicating via shared bu↵ers. The proposed method is based
on having the bu↵ers share a common memory pool. We have shown that the total
capacity of all bu↵ers in an application consisting of a chain of 3 N components
is equal to M + (N � 3) + (M + 1) frames. We exploited the fact that in the above
scenario the total number of frames in transit never exceeds M +1, and proposed to
share a memory pool with capacity for M + 1 frames between all the bu↵ers. As a
result, in an application consisting of a chain of N components, we can save memory
for storing M + N � 3 frames. To be more precise, since at di↵erent stages of the
component chain frames may have di↵erent sizes, we can save memory for storing
M +N � 3 smallest frames.

Managing the memory in terms of fixed-sized blocks simplifies the reallocation of
memory between bu↵ers, allowing for an e�cient implementation of a shared memory
pool. The results for an H.264 encoder show memory savings of around 19%. If
applied to scalable applications, a shared memory pool will result in greater relative
memory savings for applications operating in higher modes.

In Section 4.4 we have shown how additional access to the bu↵er, in particular
the support for dropping arbitrary frames, can be used to guarantee the Quality of
Service of the application during overload conditions.

In Section 4.5 we have investigated mode changes in scalable applications. We

94 Memory management

compared two approaches, based on FPPS and FPDS, in the presence of resource
sharing. We showed that combining scalable components with FPDS (exploiting its
non-preemptive property and coinciding early termination points with preemption
points), guarantees a shorter worst case latency than FPPS, and applied these results
to improve the existing latency bound for mode changes in the processor domain. By
adopting the presented architecture, a mode change in a pipelined application can
be performed almost instantaneously, without the need to clear the whole pipeline,
further reducing the mode change latency. The presented mode change protocol
is simple and avoids the complication and overheads associated with task signaling
during a mode change, necessary in existing mode change protocols.

We have also shown how a combination of two in-bu↵er scaling approaches: drop-
ping selected frames in the bu↵er, and reducing the resolution of frames in the bu↵er
by iterating through all its elements, can guarantee a low mode change latency from
the system and application perspective. We have validated our analysis with simu-
lation results.

Chapter 5

Multi-resource management

Modern computers consist of several processing units, connected via one or more
interconnects to a memory hierarchy, auxiliary processors and other devices. A simple
approach to sharing such platforms between several applications treats the machine
as a single resource: the task having access to the processor has also implicitly access
to all other resources, such as a bus, memory, or network. Consequently, only a
single task is allowed to execute at a time. On the one hand, this approach avoids
the complexity of fine-grained scheduling of multiple resources. On the other hand, it
prevents tasks with independent resource requirements to execute concurrently and
thus use the available resources more e�ciently. For example, a video processing task
requiring the processor and operating on the processor’s local memory can execute
concurrently with a DMA transfer task moving data between the global memory and
the network interface. In this chapter we assume that a task represents workload
which does not necessarily require a processor.

With the advent of multiprocessor platforms new scheduling algorithms have been
devised aiming at exploiting some of the available concurrency. However, they are
again limited to tasks which execute on one processor at a time. In this chapter
we address the problem of scheduling tasks on a multiprocessor platform, where a
task can execute on several processors at the same time. Moreover, a task may also
specify requirements for other heterogeneous resources, such as a bus, digital signal
processor, shared memory variable, etc. In this respect our problem is related to
parallel-task scheduling on multiple resources, where a task may execute on several
processors at the same time.

Parallel-task scheduling was originally investigated in the context of large main-
frame computers without real-time constraints (Ousterhout, 1982). When threads
belonging to the same task execute on multiple processors and communicate via
shared memory, then it is often desirable to schedule these threads at the same time
(called gang scheduling (Ousterhout, 1982)), in order to avoid invalidating the shared
memory (e.g. L2 cache) by switching in threads of other tasks. Also, simultaneous
scheduling of threads which interact frequently will prevent the otherwise sequential
execution due to synchronization points and the large context switching overheads

95

96 Multi-resource management

(Ousterhout, 1982). Parallel-task scheduling is especially desired in data intensive
applications (e.g. multimedia processing), where multithreaded tasks operate on the
same data (e.g. a video frame), performing di↵erent functions at the same rate (An-
derson and Calandrino, 2006). To the best of our knowledge, existing literature on
preemptive parallel-task scheduling with real-time constraints has only considered in-
dependent tasks. In this chapter we present a fixed-priority preemptive multi-resource
scheduling algorithm for parallel tasks with real-time constraints.

Table 5.1 lists the concurrent scheduling problems found in real-time literature
and expresses them in terms of our model in Chapter 2, in particular in terms of
constraints on the resource and the application models. It uses the following notation:

• {(p, k) | k = 1} represents a set containing single-unit resources,

• {(p, 1)} represents a singleton set containing one single-unit resource.

• {(p, k)} | k � 1 represents a singleton set containing one multi-unit resource,

Name P R
i,j

Partitioned multi-processor scheduling {(p, k) | k = 1} {(p, 1)}
Global multi-processor scheduling {(p, k)} | k � 1 {(p, 1)}
Partitioned parallel-task scheduling {(p, k) | k = 1} {(p, k) | k = 1}
Global parallel-task scheduling {(p, k)} | k � 1 {(p, k)} | k � 1

Table 5.1: Classification of di↵erent concurrent scheduling problems

Note that scheduling is part of the mapping, which is a relation between the
application model and the resource model. By restricting the resource and application
models in Table 5.1, we are introducing constraints on the mapping.

In partitioned scheduling each segment is allocated to a particular subset of pro-
cessors, unlike global scheduling where a task specifies only a number of (homoge-
nous) processors it requires, which the system allocates during runtime. While in
multi-processor scheduling a segment represents an execution requirement for one of
several processors, in parallel-task scheduling a segment represents a requirement for
simultaneous execution on several processors.

Problem description

Current multiprocessor synchronization protocols only consider tasks which execute
on a single processor at a time. They are not suitable for synchronizing parallel
tasks, which may execute on several processors at a time and share resources. A
simple approach to scheduling such tasks on a platform comprised of multiple het-
erogeneous resources is to “collapse” all the processors into one virtual processor and
use uniprocessor scheduling. However, this will result in at most one task executing
at a time. Our goal in this chapter is to provide a scheduling algorithm for partitioned
parallel tasks with real-time constraints which can exploit the inherent parallelism of
a platform comprised of multiple heterogeneous resources.

Related work 97

Contributions

In this chapter we present a new partitioned parallel-task scheduling algorithm called
Parallel-SRP (PSRP), which generalizes MSRP (Gai et al., 2001) for multiproces-
sors, and the corresponding schedulability analysis for the problem of multi-resource
scheduling of parallel tasks with real-time constraints. We show that the algorithm
is deadlock-free, derive a maximum bound on blocking, and use this bound as a basis
for a schedulability test. We present an example which demonstrates the benefits of
PSRP.

Publications

The PSRP algorithm and its schedulability analysis was presented in (Holenderski
et al., 2012c).

5.1 Related work

To the best of our knowledge our work is the first to consider parallel-task scheduling
on multiple resources with real-time constraints. In this section we discuss the re-
lated literature from the domains of multiprocessor scheduling with shared resources
and multiprocessor scheduling of parallel tasks. See (Davis and Burns, 2011) for a
thorough survey of hard real-time scheduling for multiprocessor systems.

5.1.1 Multiprocessor scheduling of independent tasks

Most of the existing literature on multiprocessor scheduling can be classified in two
categories: partitioned scheduling, where tasks are assigned to a particular processor,
and global scheduling, where tasks or jobs can migrate between processors. Calan-
drino et al. (2007); Easwaran et al. (2009); Lipari and Bini (2010) present a clustering
approach, which generalizes partitioned and global scheduling. Given a platform with
m processors, they define a cluster as a set of m0 processors, where 1 m0 m.
Tasks are partitioned into clusters and globally scheduled within the clusters. A
physical cluster of size m0 is statically allocated to a set of m0 processors, while a
virtual cluster is allocated to processors dynamically such that at any time at most
m0 tasks within a cluster are executing.

5.1.2 Multiprocessor scheduling of dependent tasks

When tasks share non-preemptive resources, they may block when the resource they
are trying to access is already locked by another task. Such conflicts may be resolved
o✏ine by means of a table-driven schedule, or during runtime by means of synchro-
nization protocols. In this thesis we focus on runtime mechanisms, in particular
fixed-priority scheduling.

In priority-based scheduling blocking may lead to priority inversion when a higher
priority task is blocked on a resource locked by a lower priority task. In real-time

98 Multi-resource management

systems it is important to bound the duration of priority inversion. Sha et al. (1990)
investigate uniprocessor systems where tasks share several single-unit non-preemptive
resources and propose the Priority Inheritance Protocol (PIP) for bounding priority
inversion, and the Priority Ceiling Protocol (PCP), which also avoids deadlock. The
Stack Resource Policy (SRP) by Baker (1991) avoids deadlock, bounds the priority
inversion to a single critical section and allows all tasks to share a single stack in
systems scheduled according to fixed or dynamic priority and where tasks share multi-
unit non-preemptive resources.

In multiprocessor scheduling of dependent tasks each task requires one of the
available processors and may share additional logical resources with other tasks.
Scheduling with such dependencies requires multiprocessor synchronization protocols.

Dijkstra (1964, 1982) presents one of the earlier synchronization protocols for
multiprocessors, called the Banker’s algorithm. The algorithm focuses on avoiding
deadlock when several concurrently executing tasks share a common multi-unit non-
preemptive resource, but it does not provide any real-time guarantees. Tasks do
not have priorities nor timing constraints (besides terminating in a finite amount of
time), and each task is assumed to execute on its own processor. They may acquire
and release the units of the shared resource in any order, as long as the total number
of claimed units does not exceed a specified maximum, and as long as they release
all claimed units upon completion. Habermann (1969) presents a generalization of
the Banker’s algorithm to several nonpreemptive multi-unit resources.

More recently, existing real-time synchronization protocols for uniprocessors have
been extended to multiprocessors. They focus on synchronizing access to global
resources, which are resources accessed from tasks executing on di↵erent processors.
There are two main approaches for handling global resources: when a task wants
to access a global resource which is already locked by another task executing on a
di↵erent processor, the task may be (i) suspended, or (ii) it may execute a spin-lock.
When a spin-lock is used, a task blocking on a locked global resource continues to spin
on the resource, preventing lower priority tasks from executing. In the suspension
approach, when a task blocks on a global resource it is suspended, enabling lower
priority tasks to execute. The key benefit of the suspension approach is that the idle
time during suspension is available for execution by other tasks. The disadvantages,
however, are the penalties of back-to-back executions and multiple priority inversions
per task.

Rajkumar et al. (1988) takes the suspension based approach and presents the
Multiprocessor Priority Ceiling Protocol (MPCP) and Distributed Priority Ceiling
Protocol (DPCP) (for distributed memory systems). Gai et al. (2001) takes the
spin-lock approach and presents the Multiprocessor Stack Resource Policy (MSRP).
All three protocols assume partitioned EDF scheduling. The Flexible Multiprocessor
Locking Protocol (FMLP) by Block et al. (2007) can be regarded as a combination of
MPCP and MSRP and can be applied to both partitioned and global EDF multipro-
cessor scheduling. Brandenburg and Anderson (2008b) extend FMLP to partitioned
static-priority scheduling (FMLP P-SP).

MPCP, DPCP, MSRP and FMLP assign ceilings to locks in order to defer requests
which otherwise could be granted. Deferring the requests allows to reduce and bound

Related work 99

the blocking due to priority inversion.
The authors in Gai et al. (2003); Brandenburg et al. (2008); Brandenburg and

Anderson (2008a) investigate the performance penalties between various spin-lock
and suspension based protocols (MPCP, DPCP, MSRP and FMLP) and conclude
that spin-lock based approaches incur smaller scheduling penalty than suspension
based, especially for short critical sections and when access to local resources dom-
inates access to global resource. The authors in Lakshmanan et al. (2009) extend
the original suspension-based MPCP description with spin locking, compare the two
implementations and show the opposite, i.e. that for low preemption overheads and
long critical sections the suspension-based approaches perform better, while in other
settings they perform similarly.

Block et al. (2007) claim that FMLP outperforms MSRP, by showing that FMLP
can schedule more task sets than MSRP. They assume freedom in partitioning the
task set, i.e. that tasks may be assigned to arbitrary processors, and exploit this
assumption to schedule task sets which are not schedulable under MSRP. Arbitrary
partitioning, however, may not necessarily hold for heterogeneous systems, where
di↵erent processors may provide di↵erent functionality. Our PSRP algorithm is spin-
lock based. The advantage of choosing this approach is simpler design and analysis,
compared to a suspension based approach. We based our algorithm on MSRP, as it
suits our model better, in the sense that given the particular resource requirements
of tasks we cannot exploit the advantages of FMLP.

The description of MSRP in Gai et al. (2001, 2003) does not address multi-unit
resources, which were supported by the original SRP description for a uniprocessor
Baker (1991). Our PSRP algorithm supports multi-unit nonpreemptive resources.

Nested critical sections can lead to deadlock. MSRP and MPCP explicitly forbid
nested global critical sections. FMLP supports nested critical sections, by means of
resource groups. Two resources belong to the same resource group i↵ there exists a
task which requests both resources at the same time. Before a task can lock a resource
r it must first acquire the lock to the corresponding resource group G(r). This ensures
that only a single task can access the resources in a group at any given time. On
the other hand, the resource groups in e↵ect introduce large super-resources, which
can be accessed by at most one task at a time, thus limiting concurrency in the
system. In this thesis we model tasks as sequences of parallel segments which require
concurrent access to a set of resources. Nested global critical sections are addressed by
a task segment requiring simultaneous access to all of its required resources (similar
to the approach proposed in Havender (1968) for the general problem of deadlock
avoidance in multitasking), without the need for locking entire resource groups. It
can be visualized as stretching the inner critical sections outward, until they overlap
with the outermost one. This stretching is safe, in the sense that it preserves the
integrity of the resources guarded by inner critical sections.

Notice that the schedulability analysis for PSRP resembles the holistic schedul-
ing analysis presented by Tindell and Clark (1994). They describe the end-to-end
delay for a pipeline of tasks in a distributed system, where each task is bound to
a processor and can trigger a task on another processor by sending a message via
a shared network. Their tasks correspond to our segments, and their pipelines of

100 Multi-resource management

tasks correspond to our tasks. However, in their model each task executes on a single
processor and may require only local nonpreemptive resources. Their model was ex-
tended in Garćıa et al. (2000) to include tasks which can synchronize on and generate
multiple events. They allow tasks to execute concurrently on di↵erent nodes, but do
not enforce parallel execution, while in this thesis we assume parallel provision of all
resources required by a task segment.

5.1.3 Multiprocessor scheduling of parallel tasks

While under multiprocessor scheduling of sequential tasks each task executes on ex-
actly one processor at a time, under parallel task scheduling a task needs to execute
on several preemptive resources (e.g. processors) or nonpreemptive resources (e.g.
graphical processing units) simultaneously.

A well-known method for addressing the parallel task scheduling problem is called
gang scheduling. It was first introduced in Ousterhout (1982), and later discussed
among others in Feitelson (1990); Feitelson and Rudolph (1992). In its original formu-
lation it was intended for scheduling concurrent jobs on large multiprocessor systems
without real-time constraints.

The work on parallel task scheduling with real-time constraints dates back to Li
and Malek (1988), where the authors extend Amdahl’s law Amdahl (1967) to include
communication delay. They estimate the lower and upper bounds on speedup in
a multiprocessor system and propose a method for estimating the response time of
parallel tasks which incorporates the communication delays. They assume a uniform
distribution of workload between the processors. In contrast, in this thesis we target
systems with arbitrary workload distribution.

More recently, Anderson and Calandrino (2006) present a “spread-cognizant”
scheduler (SCS), which is a homogenous multi-processor scheduling algorithm for in-
dependent tasks which encourages individual threads of a multi-threaded task to be
scheduled together. They observe that when such threads are cooperative and share a
common working set, this method enables more e↵ective use of on-chip shared caches
resulting from fewer cache misses. They consider a multi-core architecture with sym-
metric single-threaded cores and a shared L2 cache. They employ the global PD2 and
EDF schedulers. Notice that their algorithm only “encourages” individual threads of
a multithreaded task to be scheduled together, unlike gang scheduling, which guar-
antees that these threads will be scheduled together. Also, the threads belonging to
the same task may have di↵erent execution times, but a common period.

Kato and Ishikawa (2009) present a preemptive EDF gang scheduling algorithm on
homogenous multiprocessors (Gang EDF), together with the corresponding schedu-
lability analysis. They assume that a task ⌧

i

requires a subset of m
i

homogeneous
processors, and that tasks are fully preemptive and independent.

Goossens and Berten (2010) present an exact schedulability test for several vari-
ants of preemptive fixed-priority gang scheduling on homogenous multiprocessors
(Gang FPS), including Parallelism Monotonic, Idling, Limited Gang, and Limited
Slack Reclaiming. They assume that a task ⌧

i

requires a subset of m
i

homogeneous
processors, and that tasks are fully preemptive and independent.

Recap of related synchronization protocols 101

The authors of (Lakshmanan et al., 2010) adopt the basic fork-join model. A task
starts executing in a single master thread until it encounters a fork construct. At
that moment it spawns multiple threads which execute in parallel. A join construct
synchronizes the parallel threads. Only the master thread can fork and join. A task
can therefore be modeled as an alternating sequence of single- and multi-threaded
subtasks. They assume that tasks are fully preemptive and independent.

Saifullah et al. (2011) address the problem of scheduling independent periodic
parallel tasks with implicit deadlines on multi-core processors. They propose a new
task decomposition method that decomposes each parallel task into a set of sequen-
tial tasks and prove that their task decomposition achieves a resource augmentation
bound when the decomposed tasks are scheduled using global EDF and partitioned
deadline monotonic scheduling, respectively. They do not consider shared resources.

5.1.4 Summary of the related work

Figure 5.2 summarizes the related work discussed earlier in this section using the
terminology of our system model.

5.2 Recap of related synchronization protocols

In this section we first recapitulate the definitions of various kinds of blocking which
can result from sharing non-preemptive resources. We then recapitulate several syn-
chronization protocols which aim at reducing the blocking. In particular, we describe
the Banker’s algorithm, the Stack Resource Policy (SRP), and the MSRP protocol,
which inspired our PSRP algorithm described later in this chapter.

5.2.1 Blocking due to shared non-preemptive resources

We can summarize the di↵erent terms related to blocking in uniprocessor systems
(Buttazzo, 2004):

Blocking or priority inversion occurs when a higher priority task waits for the
execution of a lower priority task.

Direct blocking occurs when a higher priority task tries to acquire a resource al-
ready held by a lower priority task. Direct blocking is necessary to ensure
mutually-exclusive access to a shared resource, in order to maintain its consis-
tency.

Transitive blocking occurs when a higher priority task is directly blocked by a
middle priority task, which itself is directly blocked by the lower priority task.

Push-through blocking or avoidance blocking occurs when a medium priority
task is blocked by a lower priority task that has inherited a higher priority from
a task it directly or transitively blocks. Push-through blocking is necessary to
avoid “unbounded” priority inversion.

102 Multi-resource management

Global vs.
Partitioned

Priorities

P
N

R
i
,
j

|S
i |

Nested global
critical sections

B
an

ker’s
algorith

m
P
,
G

F
,
D

{(p,k
)
|
k
=

1}
3

{(n
,k
)}

|
k
�

1
{(p,1)}

or
{(p,1),(n

,k
)}

|
k
�

1
N

5

yes
H
ab

erm
an

n
(1969)

P
,
G

F
,
D

{(p,k
)
|
k
=

1}
3

{(n
,k
)
|
k
�

1}
{(p,1)}

or
{(p,1),(n

,k
)}

|
k
�

1
N

5

yes
S
R
P

-
1

F
,
D

{(p,1)}
{(n

,k
)
|
k
�

1}
{(p,1)}

or
{(p,1),(n

,k
)}

|
k
�

1
N

-
M
P
C
P

P
F

{(p,k
)
|
k
=

1}
{(n

,k
)
|
k
=

1}
{(p,1)}

or
{(p,1),(n

,1)}
N

n
o

M
S
R
P

P
F
,
D

{(p,k
)
|
k
=

1}
{(n

,k
)
|
k
=

1}
{(p,1)}

or
{(p,1),(n

,1)}
N

n
o

F
M
L
P

P
,
G

D
{(p,k

)
|
k
=

1}
{(n

,k
)
|
k
=

1}
{(p,1)}

[
{(n

,k
)
|
k
=

1}
N

yes
4

F
M
L
P

P
-S
P

P
,
G

F
,
D

{(p,k
)
|
k
=

1}
{(n

,k
)
|
k
=

1}
{(p,1)}

[
{(n

,k
)
|
k
=

1}
N

yes
4

S
C
S

G
D

{(p,k
)}

|
k
�

1
;

{(p,k
)}

|
k
�

1
2

N
6

-
G
an

g
E
D
F

G
D

{(p,k
)}

|
k
�

1
;

{(p,k
)}

|
k
�

1
1

-
G
an

g
F
P
S

G
F

{(p,k
)}

|
k
�

1
;

{(p,k
)}

|
k
�

1
1

-
P
S
R
P

P
F

{(p,k
)
|
k
=

1}
{(n

,k
)
|
k
�

1}
{(p,k

)
|
k
=

1}
[
{(n

,k
)
|
k
�

1}
N

yes
4

P
P
artition

ed
sch

ed
u
lin

g
G

G
lob

al
sch

ed
u
lin

g
F

F
ixed

p
riority

D
D
yn

am
ic

p
riority

(E
D
F
)

1

It
d
oes

n
ot

m
ake

sen
se

to
talk

ab
ou

t
th
e
glob

al
or

p
artition

ed
sch

ed
u
lin

g,
sin

ce
th
ere

is
a
sin

gle
resou

rce.
2

S
egm

ent
item

s
d
o
n
ot

h
ave

to
b
e
p
rovid

ed
sim

u
ltan

eou
sly

(th
ey

are
“en

cou
raged

”
to

b
e
sch

ed
u
led

togeth
er).

3

E
ach

com
p
on

ent
is

execu
tin

g
on

its
ow

n
p
rocessor.

4

G
rou

p
lock

for
n
ested

glob
al

critical
section

s.
5

S
egm

ents
m
ay

b
e
n
ested

(rath
er

th
an

on
ly

sequ
ential).

6

A
ll
segm

ents
h
ave

th
e
sam

e
len

gth
(th

e
sch

ed
u
lin

g
qu

antu
m
),
an

d
all

segm
ents

b
elon

gin
g
to

th
e
sam

e
com

p
on

ents
h
ave

a
requ

irem
ent

for
th
e
sam

e
nu

m
b
er

of
u
n
its

of
th
e
m
u
lti-u

n
it

p
rocessor.

-
N
ot

ap
p
licab

le.

T
ab

le
5.2:

S
u
m
m
ary

of
th
e
related

w
ork

Recap of related synchronization protocols 103

Chained blocking occurs when a task experiences a sequence of two or more direct
or transitive blockings.

Deadlock occurs when two or more tasks are waiting indefinitely for an event that
will never happen. A deadlock can occur when resources are acquired in nested
fashion and there is a cyclic dependency (Hansen, 1973, p. 123).

Any priority-driven system will su↵er priority inversion if tasks are allowed to
share non-preemptive resources. The synchronization protocols presented in the re-
mainder of this section all avoid deadlock and chained blocking, at the cost of intro-
ducing push-through blocking.

5.2.2 Banker’s algorithm

Dijkstra (1964, 1982) presents the Banker’s algorithm, which avoids deadlock in a
system where several (concurrent) tasks share a common multi-unit resource. In its
original formulation the shared resource is money which is lent out by a banker to
several clients, who need the money to complete their project. Since all clients can
operate in parallel, we can consider them as tasks executing on a multiprocessor
platform, consisting of as many processors as there are tasks. Each client can borrow
one or more florins1, which are then added to his loan, and may return one or more
florins, which are then subtracted from his loan. Each client specifies the maximum
loan he will ever require at a time and is obliged to return any outstanding loan upon
completion of his project, which he is assumed to complete in finite amount of time.
The money provided by the banker can be regarded as a non-preemptive multi-unit
resource, since the money lent out to a client cannot be claimed back by the banker
until the client returns it, and each florin can be regarded as a unit of the multi-unit
resource. The algorithm is invoked whenever a client requests a loan. It checks if
granting the client the loan will never lead to a deadlock, given the outstanding claims
and loans of other clients, i.e. if it can be guaranteed that all (present and future)
requests can be granted within a finite amount of time if clients current request is
granted. In case a potential deadlock is detected, the request is denied, otherwise it
is granted.

The algorithm maintains two variables for each client i: the current loan(i) and
the outstanding claim(i). Let need(i) be the maximum loan which client i will ever
require. At all times for each client it holds:

loan(i) + claim(i) = need(i).

Let capital be the banker’s initial capital and cash be the remaining money, given
the outstanding loans. At any time it holds:

cash = capital �
X

i

loan(i).

1Old Dutch currency.

104 Multi-resource management

The banker may not lend out more money that the initial capital, i.e.

cash � 0.

The banker maintains a list of clients in ascending order according to their outstand-
ing claims, hence

claim(i) claim(i+ 1).

To guarantee absence of deadlock, the banker simulates actually granting the request
and checks if the resulting state is safe. The algorithm for determining if the resulting
state is safe is outlined in Algorithm 1. It returns true if the state is safe and false
otherwise.

Algorithm 1 The Banker’s Algorithm
available := cash;
i := 1;
while claim(i) available do

available := available+ loan(i);
if available < capital then
i := i+ 1;

else
return true;

end if
end while
return false;

While the Banker’s algorithm prevents deadlock, it does not bound the response
time of tasks. It only assumes that each task has a finite execution time, and conse-
quently it can only guarantee that each task will complete within a finite amount of
time.

5.2.3 Stack Resource Policy (SRP)

The Stack Resource Policy (SRP) was introduced by Baker (1991). It was intended
as a priority inversion protocol for accessing shared logical multi-unit resources on
a uniprocessor system. The protocol prevents deadlock, chained blocking, allows to
share a single stack and has a very straightforward implementation.

The seminal paper on SRP considered a uniprocessor system. In order to sup-
port fixed-priority scheduling as well as Earliest Deadline First (EDF), Baker (1991)
equipped each task ⌧

i

with a preemption level. Unlike the priority of a task in EDF,
the preemption level is fixed during runtime. SRP also assigns each resource r a
resource ceiling '(r) which is equal to the highest preemption level among all tasks
accessing the resource. During runtime, the system ceiling ⇧ is equal to the highest
resource ceiling among the currently accessed resources, or ⇡? if no resources are
accessed. In this chapter we consider fixed-priority scheduling, so we ignore the pre-
emption levels in SRP, which are needed for EDF scheduling, and use tasks’ priorities
instead.

Recap of related synchronization protocols 105

The original SRP scheduling rule says:

Definition 5.1 (SRP scheduling rule). A task is not allowed to start executing until
its priority is the highest among the ready tasks and its preemption level is higher
than the system ceiling.

Algorithm 2 outlines a uniprocessor fixed-priority scheduler supporting SRP based
synchronization.

Algorithm 2 Single processor FPPS scheduler based on SRP
⌧
i

:= highest priority task in the ready queue
if ⇡

i

< ⇡
running

^ ⇡
i

< ⇧ then
⌧
running

:= ⌧
i

end if

5.2.4 Multiprocessor Stack Resource Policy (MSRP)

In this section we summarize the Multiprocessor Stack Resource Policy (MSRP) by
Gai et al. (2001), which forms the basis for the PSRP algorithm proposed in this
chapter.

MSRP is an extension of SRP to multiprocessors. Gai et al. (2001) assume par-
titioned multiprocessor scheduling, meaning that each task is statically allocated to
a processor. Depending on this allocation, they distinguish between local and global
resources: local resources are accessed by tasks assigned to the same processor, while
global resources are accessed by tasks assigned to di↵erent processors. Similarly to
SRP, the original MSRP relies on preemption levels to allow sharing of resources un-
der EDF scheduling. However, by substituting task priorities for preemption levels,
MSRP can be easily applied to fixed-priority systems.

The MSRP protocol is defined by the following five rules:

1. For local resources, the algorithm is the same as the SRP algorithm. In par-
ticular, for every local resource r we define a resource ceiling '(r) equal to the
highest priority among the tasks using the resource, and for every processor p
we define a system ceiling ⇧(t, p) which at any moment t is equal to the high-
est resource ceiling among all resources locked by the tasks on p, or ⇡? if no
resources are accessed. At time t, a task ⌧

i

is allowed to preempt a task already
executing on p only if its priority ⇡

i

is higher than ⇧(t, p).

2. Tasks are allowed to access local resources through nested critical sections. It
is possible to nest local and global resources. However, it is not possible to nest
global critical sections.

3. For each global resource r, every processor p defines a resource ceiling '
p

(r)
greater than or equal to the highest priority of the tasks on p.

106 Multi-resource management

4. When at time t a task ⌧
i

allocated to processor p accesses a global resource r,
the system ceiling ⇧(t, p) is raised to '

p

(r) making the task non-preemptable
on p. Then, the task checks if the resource is free: in this case, it locks the
resource and executes the critical section. Otherwise, the task is inserted in r’s
global FIFO queue, and then performs a spin-lock.

5. When at time t a task ⌧
i

allocated to processor p releases a global resource r,
the algorithm checks the corresponding FIFO queue, and, in case some other
task ⌧

j

is waiting, it grants access to r, otherwise r is unlocked. Then, the
system ceiling ⇧(t, p) is restored to the previous value.

Our PSRP algorithm presented in the following section di↵ers from MSRP in the
following ways:

• MSRP disallows nested global critical sections, allowing a task to acquire only
a single global resource at a time. PSRP supports global nested critical section
by allowing each segment to acquire several global resources, e↵ectively shifting
the inner critical sections outward Havender (1968).

• PSRP supports multi-unit non-preemptive resources, while MSRP supports
only single-unit non-preemptive resources.

• Under MSRP each task requires exactly one preemptive resource, while PSRP
allows a task segment to require several preemptive resources (e.g. several
processors in parallel).

• MSRP assumes that all segments of one task are assigned to the same processor.
Under PSRP, each segment can start executing on a new set of processors.
In multi-processor terminology we can say that our tasks can migrate across
processors at segment boundaries.

• Under MSRP, segments requiring global resources execute non-preemptively.
PSRP extends the notion of a global resource, allowing to schedule parallel
segments requiring several preemptive resources non-preemptively.

5.3 Towards multi-resource sharing

At a first glance the gang scheduling problem looks similar to synchronization on
multiprocessors: several tasks can execute concurrently and can share global logical
resources. There are variants where tasks are assigned to a particular processor (par-
titioned scheduling) and where tasks or jobs can migrate between processors (global
scheduling). While global scheduling deals with both allocating tasks to processors
and scheduling them during runtime, partitioned scheduling assumes task allocation
is done o✏ine limiting the runtime e↵ort to local scheduling on each processor. In
both cases, however, a task executes on exactly one processor at a time. The key part
of gang scheduling is that a task needs to execute on several preemptive resources

System model 107

(e.g. processors) or non-preemptive resources (e.g. graphical processing units) con-
currently. A gang scheduler resembles a global multiprocessor scheduler in the sense
that it maintains a global ready queue, while in partitioned multiprocessor scheduling
each processor maintains its local ready queue and schedules tasks locally.

Nested critical sections are problematic, as they may lead to deadlock. There are
several approaches to deal with nested global critical sections:

• Disallow nested global critical sections (Rajkumar et al., 1988; Gai et al., 2003)

• Allow locking of resources only in a particular order (Hansen, 1973)

• Claim nested resources simultaneousely (Block et al., 2007; Brandenburg and
Anderson, 2008b)

• Allow arbitrary nesting (Dijkstra, 1964; Habermann, 1969)

Similar to the Banker’s algorithm, the original SRP protocol handles multi-unit
resources, however, SRP applies only to uniprocessor systems. It follows a similar
idea to the one behind the Banker’s algorithm: if a request for a resource could
ever lead to deadlock, the request is denied. While the Banker’s algorithm checks
for deadlock at the time the task tries to access a non-preemptive resource, SRP
checks for deadlock at the time the task is activated. The resource ceilings in SRP,
which are computed o✏ine, are a very e�cient encoding of the deadlock conditions.
During runtime, whenever a task requests a resource, the scheduler avoids deadlock by
simply checking if the task’s priority is higher than the system ceiling. Priority based
scheduling together with a known priority assignment policy (e.g Rate Monotonic
or Deadline Monotonic) and timing properties of tasks, allow to also provide real-
time guarantees. Therefore, SRP can be regarded as an e�cient implementation of
the Banker’s algorithm in the domain of priority-based uniprocessor scheduling with
shared resources and real-time constraints.

Following a similar reasoning one may consider MSRP as an e�cient implementa-
tion of the Banker’s algorithm in the domain of priority-based multiprocessor schedul-
ing with shared resources and real-time constraints. In the remainder of this chapter
we present PSRP, a scheduling algorithm for fixed-priority parallel-task scheduling
with shared resources and real-time constraints, which was inspired by the Banker’s
algorithm, SRP and MSRP.

5.4 System model

In the remainder of this chapter we assume that all preemptive resources are single-
unit, i.e.,

8r 2 P : N
r

= 1. (5.1)

This restriction does not apply to non-preemptive resources, which can have arbi-
trarily many units, i.e.,

8r 2 N : N
r

� 1. (5.2)

108 Multi-resource management

5.4.1 Local vs. global resources

MSRP distinguishes between local and global resources. A resource is called local
if it is accessed only by tasks assigned to the same processor, otherwise it is called
global. Let us first explain the rationale behind local and global resources before
adapting their definition to parallel processor systems.

In uniprocessor systems, when a task blocks on a shared logical resource, then
the resource can only be released by another task running on the same processor.
Therefore, the only option is to suspend the blocked task and allow the other task to
continue, so that eventually the resource will be released.

In multiprocessor systems, a task can access local and global resources. Similar
to uniprocessors, a local resource can only be acquired by another task running on
the same processor. A global resource, however, can be acquired by a task running
on a di↵erent processor. We therefore have two options for a task blocked on a
global resource: we can either suspend it and allow another task assigned to the
same processor to do useful work while the blocked task is waiting, or we can have
the blocked task perform a spin-lock (also called a “busy wait”).

In either case, the blocking time has to be taken into account in the schedulability
analysis. When a task suspends on a global resource, it allows lower priority tasks
to execute and lock other resources, potentially leading to priority inversion. When
a task spins on a global resource, it wastes the processor time which could have
been used by other tasks. Hence, for global resources it is very important to keep
the resource holding times short, more important than for local resources. In the
multiprocessor case it therefore makes sense to distinguish between local and global
resources.

Similar to MSRP, our PSRP algorithm relies on the notion of local and global
resources. Unfortunately, the definition of local and global resources for MSRP in
Section 5.2.4 assumes that a task requires exactly one processor, and hence it is
not su�cient for our parallel task model. Also, it considers only non-preemptive re-
sources, which makes it impossible to model tasks which require several (preemptive)
processors at the same time. We therefore generalize the notion of local and global
resources. The essential property of a global resource is that it is required by seg-
ments which can attempt to access their resources independently of each other (e.g.
segments which are not sequentialized on one shared processor).

Definition 5.2. We define : R ! S, where (r) is the set of segments requiring
resource r, i.e.

(r) = {s 2 S | r 2 R
s

} (5.3)

Definition 5.3 (Local and global resources). We define a resource r as local if
(i) it is preemptive and accessed only by segments which require only nonpreemptive
resources besides r, or (ii) it is nonpreemptive and accessed only by segments which
also share one and the same preemptive resource p. Otherwise the resource is global.
More formally, we use RL and RG to denote the sets of local and global resources,

System model 109

c1b1a1

p1 p2

n1

p3

c2 d1

n2 n3

d2

Legend: global resourcelocal resource

global segmentlocal segment

f1e1

n4

Figure 5.1: Example illustrating local and global resources and segments in a segment
requirements graph, for a system comprised of P = {p

1

, p
2

, p
3

}, N = {n
1

, n
2

, n
3

, n
4

},
S = {a

1

, b
1

, c
1

, c
2

, d
1

, d
2

, e
1

, f
1

}, � = {a, b, c, d, e, f} with S
a

= ha
1

i, S
b

= hb
1

i,
S
c

= hc
1

, c
2

i, S
d

= hd
1

, d
2

i, S
e

= he
1

i, S
f

= hf
1

i, and R
a1 = {p

1

}, R
b1 = {p

1

, n
1

},
R

c1 = {p
1

, n
1

, n
2

}, R
c2 = {p

2

, p
3

, n
2

}, R
d1 = {p

2

, p
3

, n
2

, n
3

}, R
d2 = {n

3

}, R
e1 =

R
f1 = {p

3

, n
4

}.

respectively, such that

RL = {r 2 P|8b 2 (r) : (8s 2 R
b

\ {r} : s 2 N)}[
{r 2 N|(8b 2 (r) : R

b

\ P 6= ;) ^ (|P \
S

b2(r)

R
b

| = 1)},
RG = R \RL.

(5.4)

Notice that the local/global classification in MSRP is limited only to nonpreemp-
tive resources, while in our definition it also includes preemptive resources. Figure
5.1 illustrates the di↵erence between local and global resources.

5.4.2 Local vs. global segments

Similarly to MSRP distinguishing between local and global critical sections (guarding
access to local and global resources, respectively), in PSRP we distinguish between
local and global segments.

Definition 5.4 (Local and global segments). We define a local segment as one re-
quiring at least one local preemptive resource, otherwise the segment is global. More
formally, we use SL and SG to denote the sets of local and global segments, respec-
tively, such that

SL = {s 2 S | 9r 2 R
s

: r 2 RL \ P},
SG = S \ SL.

(5.5)

Figure 5.1 illustrates the di↵erence between local and global segments. The in-
tention of PSRP is to schedule segments a

1

, b
1

, c
1

preemptively and in fixed-priority
order, and c

2

, d
1

, d
2

, e
1

, f
1

nonpreemptively and in FIFO order.

110 Multi-resource management

Resource holding time is the duration of a continuous time interval during which
a segment owns a resource, preventing other segments to access it. Minimizing the
holding time is important in the schedulability analysis, as it adds to the blocking
time. Nonpreemptive scheduling of global segments will keep the holding times of
global resources short. Our choice for executing global segments in FIFO order is in
line with MSRP.

When identifying global and local resources and segments, we consider only the
identity of the required resources, i.e. a resource or a segment will be marked local
or global irrespective of the number of required resource units.

A segment can experience interference from other segments: it can be blocked
by lower priority segments and preempted by higher priority segments (on a local
resource). The term waiting is used to describe competition for a global resource. A
local segment can wait only for global segments using the same global resource. A
global segment can wait for both global and local segments sharing a global resource.
During its execution a local segment may be preempted by higher priority segments
(global segments execute non-preemptively).

Figure 5.2 shows the state diagrams for a local and global segment. A segment
may be inactive, ready, executing, waiting (on a global resource), or blocked (on a
local resource). A local segment may be both waiting and blocked at the same time.

A task ⌧
i

inherits the state from its currently active segment. If no segment in S
i

is active, then task ⌧
i

is considered inactive.

5.5 Parallel-SRP (PSRP)

In this section we present the Parallel-SRP (PSRP) algorithm, which is inspired by
MSRP and can be regarded as its generalization to the parallel task model. The
PSRP algorithm follows the following set of rules:

1. For local resources the algorithm is the same as SRP. In particular, for every
local nonpreemptive resource r 2 RL\N, we define a resource ceiling '(r) to be
equal to the highest priority of any task requiring r. For every local preemptive
resource p 2 RL\P we define a system ceiling2 ⇧(t, p) which at any moment t is
equal to the maximum resource ceiling among all local nonpreemptive resources
locked by any segment that also locks p. We also equip p with a ready queue
queue(p), which stores tasks waiting for or executing on p sorted by priority.
At time t, a task at the head of queue(p) is allowed to preempt a task already
executing on p only if its priority is higher than ⇧(t, p).

2. Each global resource r 2 RG is equipped with a FIFO resource queue queue(r)3,
which stores tasks waiting for or executing on r.

2The term “system ceiling” suggests a system wide property, rather than a property of each
preemptive resource. We chose this terminology, however, to comply with the existing literature on
multiprocessor synchronization (Gai et al., 2001).

3MSRP also equips each global resource with a FIFO queue.

Parallel-SRP (PSRP) 111

inactive

blocked
and/or
waiting

ready

executing

preempt

complete

run

all local resources become
not used by lower priority tasks

and/or
all global resources
become available

inactive

waiting ready

executing
complete

run

all global resources
become available

activate while
 all resources
 are available

activate while
a global resource is used

by another segment

(a)

(b)

Legend:

active state

inactive state

activate while
a local resource is used

by a lower priority segment
and/or

a global resource is used
by another segment

activate while
 all resources
 are available

Figure 5.2: State diagram for (a) a local segment, and (b) a global segment.

3. When a task ⌧
i

attempts to lock a set of resources R using lock(R), it is inserted
into the resource queues of all global resources in R. Moreover, this insertion
is atomic, meaning that no other task can be inserted into any of the resource
queues in R before ⌧

i

has been inserted into all queues in R.

When a task ⌧
i

releases a set of resources R using unlock(R), it is removed
from the resource queues of all global resources in R. Each unlock(R) must be
preceded by a lock(R) call, with the same R.

4. A task ⌧
i

is said to be ready at time t if for all resources r required by its
currently active segment ⌧

i,j

the following conditions hold:

112 Multi-resource management

• r has enough units available

• if r 2 RL \ P then ⌧
i

’s priority is higher than the system ceiling of r at
time t

• if r 2 RG [(RL \ P) then all tasks in front of it at the head of queue(r)
are also ready.

More formally,

ready(t, ⌧
i

) ⌘(8r 2 R
↵(t,⌧

i

)

: N
r

 ⌘(t, r)) ^
(8r 2 R

↵(t,⌧

i

)

\ (RL \ P) : ⇡
i

< ⇧(t, r)) ^
(8r 2 R

↵(t,⌧

i

)

\ (RG [(RL \ P)) : head(t, queue(r), k) = ⌧
i

^ 8j 2 N : 0 j < k) ready(t, head(t, queue(r), j)))

where head(t, q, i) is the ith element from the head of queue q at time t, with
head(t, q, 0) being the first element at the head of q at time t.

5. The scheduler is called after adding a task ⌧
i

to a ready queue or a resource
queue, or if after removing a task from a queue the queue is not empty. The
scheduler then traverses the ready and resource queues and schedules all the
ready tasks which become executing. This will occupy a certain number of units
of the resources in the system. If so, then the task is scheduled and becomes
executing. Otherwise, ⌧

i

performs a spin-lock (at the highest priority) on each
resource containing ⌧

i

at the head of its queue and becomes waiting4.

6. The following invariant is maintained: the system ceiling of each local preemp-
tive resource is equal to the top priority whenever a segment requiring a global
resource is spinning or executing on it, i.e.

8t 2 T , p 2 P : (9s 2 S : R
s

\RG 6= ; ^ �(t, s, p) > 0)) ⇧(t, p) = ⇡>

According to rule 5, if a task ⌧
i

requires several units of a resource r, then it will
wait by performing a spin-lock until enough of the segments currently using r have
completed and released a su�cient number of units of r for ⌧

i

to start executing.
Notice that a segment does not have to require a preemptive resource. It is

very well possible for a segment to require only non-preemptive resources. On some
resources “spinning” may not make sense (e.g. spinning on a bus). The spinning
operation essentially “reserves” a resource, preventing other tasks to execute on it.
It can therefore be implemented di↵erently on di↵erent resources. Figure 5.3 shows
the state diagram for any resource (preemptive or non-preemptive). It distinguishes
between actively “using” a resource and “reserving” it without doing actual work
(e.g. spinning).

4On some resources “spinning” may not make sense (e.g. spinning on a bus). Spinning essen-
tially “reserves” a resource, preventing other tasks from executing on it, and can be implemented
di↵erently on di↵erent resources.

Schedulability analysis for PSRP 113

free

used reserved

reserveuse

use

free

reserve

Figure 5.3: State diagram for a resource.

5.6 Schedulability analysis for PSRP

We first show that PSRP does not su↵er from deadlock nor from livelock, and then
we proceed to bound the worst-case response time (WCRT) of tasks.

Lemma 5.1. PSRP does not su↵er from deadlock.

Proof. Access to local resources is synchronized using SRP, which was proved to be
deadlock free by Baker (1991). We therefore need to show the absence of dependency
cycles when accessing global resources, in particular when (i) segments are waiting
for resources and (ii) after they have started executing.

(i) Without loss of generality, let us assume that there is a deadlock between
two segments ⌧

i,j

and ⌧
x,y

, which require two resources r
1

, r
2

2 R
i,j

\ R
x,y

. For the
deadlock to occur each segment would have to acquire one of the resources, while
the other resource was held by the other segment. Consequently, since the resource
queues handle the tasks in FIFO order, there would have to be a moment when
the resource queues were in the following state: queue(r

1

) = h. . . , ⌧
i

, . . . , ⌧
x

, . . .i and
queue(r

2

) = h. . . , ⌧
x

, . . . , ⌧
i

, . . .i. However, since the addition to all queues in R
i,j

and R
x,y

is atomic (see rule 3), such a queue state is not possible. Hence a deadlock
cannot occur during the waiting phase.

(ii) Since we have assumed that critical sections do not span across task segments
and that all resources required by a segment are provided simultaneously, once a
segment starts executing it will be able to complete and release the acquired resources.
Hence a deadlock cannot occur during the execution phase.

Lemma 5.2. PSRP does not su↵er from livelock.

Proof. Similarly to Lemma 5.1, we need to show the absence of livelock when seg-
ments are accessing global resources. In particular, we need to show that every
segment ⌧

i,j

requiring global resources will eventually start executing. According
to Lemma 5.1, a segment will not deadlock during its waiting phase, so, as long as
other segments waiting in a resource queue in front of it eventually complete, it will

114 Multi-resource management

eventually start executing. Since each segment needs to execute for a finite amount
of time, and since, according to Lemma 5.1, it will not deadlock during the execution
phase either, every segment inserted into a resource queue will have to wait for at
most a finite amount of time. Hence a livelock cannot occur.

To show that task are schedulable, we derive the bound on the WCRT of all
segments, and check if the WCRT of the last segment of every task, measured from
the arrival time of the task, is within the task’s deadline.

Lemma 5.3. A local segment requires exactly one preemptive local resource.

Proof. According to Definition 5.3, segments which share a local resource share ex-
actly one preemptive resource. According to Definition 5.4, every local segment
requires at least one local preemptive resource. Lemma 5.3 follows.

Lemma 5.4. A global segment requires at least one global resource.

Proof. Let s be a global segment, i.e. s 2 SG. Then,

s 2 SG

⌘ { Equation (5.5) }
8r 2 R

s

: ¬(r 2 RL ^ r 2 P)
⌘ { Equations (5.5), (5.4), (2.1) }

8r 2 R
s

: r 2 RG _ r 2 N)

⌘ { Equation (5.4) }
8r 2 R

s

: r 2 RG _ (r 2 N ^ r 2 RG) _ (r 2 N ^ r 2 RL)

⌘ 8r 2 R
s

: r 2 RG _ (r 2 N ^ r 2 RL) (5.6)

We introduce the following shorthand notation to simplify the representation of
(5.4) in the remainder of this proof:

f(r)
def⌘ 8b 2 (r) : (8s 2 R

b

\ {r} : s 2 N),

g(r)
def⌘ 8b 2 (r) : R

b

\ P 6= ;,

h(r)
def⌘ |P \

[

b2(r)

R
b

| = 1.

We can safely assume that each segment requires at least one resource, i.e. 8s 2
S : R

s

6= ;. We now show by contradiction that no segment can require only local

Schedulability analysis for PSRP 115

non-preemptive resources, i.e. we show that ¬9s 2 S : (8r 2 R
s

: r 2 N ^ r 2 RL):

9s 2 S : (8r 2 R
s

: r 2 N ^ r 2 RL)

⌘ { Equation (5.4), definition of f(r), g(r) and h(r) }
9s 2 S : (8r 2 R

s

: r 2 N ^ ((r 2 P ^ f(r)) _ (r 2 N ^ g(r) ^ h(r)))

⌘ { Equation (2.1) }
9s 2 S : (8r 2 R

s

: r 2 N ^ g(r) ^ h(r))

) 9s 2 S : (8r 2 R
s

: r 2 N ^ g(r))

⌘ { Definition of g(r) }
9s 2 S : (8r 2 R

s

: r 2 N ^ (8b 2 (r) : R
b

\ P 6= ;))
) 9s 2 S : (8r 2 R

s

: r 2 N ^ ((9q 2 R
s

: q 2 P) _R
s

= ;))
⌘ { 8s 2 S : R

s

6= ; }
9s 2 S : (8r 2 R

s

: r 2 N) ^ (9q 2 R
s

: q 2 P)
⌘ 9s 2 S : false

⌘ false

Since no segment can require only local non-preemptive resources, and since
according to (5.6) each resource required by a global segment is either local non-
preemptive or global, each global segment must require at least one global resource.

According to Lemma 5.3, a local segment requires exactly one preemptive re-
source. This preemptive resource will dictate the behavior of the local segments
sharing it. PSRP will use the priority-ordered ready queue to schedule local seg-
ments based on their priority. According to Lemma 5.4, a global segment requires
at least one global resource, and according to Definition 5.4 it does not require any
local preemptive resources. PSRP will use the resource queues attached to the global
resources to schedule the global segments nonpreemptively in FIFO order. In the
remainder of this section we derive an equation for the WCRT for global and local
segments.

5.6.1 Response time of global segments

A global segment spin-locks and executes on all its required resources at the highest
priority. Consequently, as a global segment cannot be preempted, its response time
is comprised of three time intervals, as illustrated in Figure 5.4.

The delay due to segments preceding ⌧
i,j

in R
i

is equal to the response time of the
previous segment ⌧

i,j�1

for j > 1, and 0 for j = 1 (i.e. the first segment in sequence
R

i

). If ⌧
i,j�1

is global, then its response time is again comprised of the three intervals
illustrated in Figure 5.4. The response time of a local segment is discussed later in
Section 5.6.2. The execution time of segment ⌧

i,j

is simply E
i,j

. The interesting part
is the time that segment ⌧

i,j

spends waiting for resources in R
i,j

(which includes the
spin-lock time).

116 Multi-resource management

!i,j

delay due to previous segments
required by the same task

waiting for
required resources

segment
execution

time

Legend: previous segment current segmentcomponent arrival

Figure 5.4: Response time of a global segment ⌧
i,j

.

The MSRP algorithm assumes that at any time each global segment ⌧
i,j

requires
one preemptive and at most one nonpreemptive resource. Also, access to a global
resource is granted to segments in FIFO order. Consequently, they observe that the
worst-case spinning time of segment ⌧

i,j

on a preemptive resource is equal to the sum
of the segment execution times of all segments sharing the nonpreemptive resource
with ⌧

i,j

. In our model, a segment can require an arbitrary number of preemptive
and nonpreemptive resources, which may result in a longer spinning time.

Definition 5.5. The requirements of all segments can be represented by a segment
requirements graph G = (V,E) where the set of vertices V = R [S, and the set of
edges E ✓ 2S⇥R represents the resource requirements of segments, i.e.

(⌧
i,j

, r) 2 E , (⌧
i,j

2 S ^ r 2 R
i,j

). (5.7)

The graph is tripartite, as we can divide E into two disjoint sets EP and EN , such
that

8(⌧
i,j

, r) 2 EP : (⌧
i,j

2 S ^ r 2 P), (5.8)

8(⌧
i,j

, r) 2 EN : (⌧
i,j

2 S ^ r 2 N). (5.9)

A segment requirements graph may seem similar to a resource allocation graph
introduced by Holt (1972) and used for deadlock analysis. However, unlike a resource
allocation graph, a segment requirements graph is an undirected graph. Its purpose
is finding dependencies between budgets to compute the waiting times in Chapter 5,
rather than identifying deadlocks due to cyclic dependencies.

Notation In the segment requirements graphs we draw budget nodes as rectangles
and resource nodes as circles.

Example 5.1. Consider a platform comprised of four processors P = {p
1

, p
2

, p
3

, p
4

},
executing an application consisting of four tasks, each containing one segment. We
name these segments S = {a, b, c, d}, and define their resource requirements as fol-
lows: R

a

= {p
1

}, R
b

= {p
1

, p
2

}, R
c

= {p
2

, p
3

}, and R
d

= {p
3

, p
4

}, as shown in
Figure 5.5. Notice that all resources and segments are global.

Schedulability analysis for PSRP 117

cba

p1 p2 p3

d

p4

Figure 5.5: A segment requirements graph for a system comprised of P =
{p

1

, p
2

, p
3

, p
4

}, N = ;, S = {a, b, c, d} with R
a

= {p
1

}, R
b

= {p
1

, p
2

}, R
c

= {p
2

, p
3

},
and R

d

= {p
3

, p
4

}.

Let us assume a scenario, where the processors are idle and segments a, b, c, d
arrive soon after each other, as shown in Figure 5.6. When segment a arrives and
processor p

1

is idling, it is immediately scheduled and starts executing. When seg-
ment b arrives, requiring processors p

1

and p
2

, and encounters a busy processor p
1

,
it is added to the resource queues of queue(p

1

) and queue(p
2

). Since it is at the head
of queue(p

2

) it starts spinning on p
2

(at the highest priority). Soon after segment c
arrives and similarly is inserted into the resource queues of queue(p

2

) and queue(p
3

)
and starts spinning on p

3

. When segment d arrives soon after segment c, it is inserted
into queue(p

3

) and queue(p
4

) and starts spinning on p
4

. When segment a completes
and releases p

1

, it is removed from queue(p
1

), enabling segment b, which starts exe-
cuting. This process continues, subsequently releasing segments c and d. Notice that
segment d cannot start executing before c has completed, which cannot start before
b has completed, which cannot start before a has completed.

A segment may be required to wait inside of a resource queue, either passively
waiting in the queue’s tail or actively spinning at its head. Example 5.1 suggests
that, under PSRP, a segment may need to wait on its required resources until all
segments which it “depends on” in the segment requirements graph have completed.
We can observe, however, that some of the dependencies in a segment requirements
graph are not feasible. In particular,

• Segments belonging to the same task are executed sequentially (by definition),
and therefore cannot interfere with each other. We can therefore ignore seg-
ments belonging to task ⌧

i

when computing the time that segment ⌧
i,j

may
need to wait.

• A segment depends only on other segments which share global resources, be-
cause only segments which require at least one global resource may wait inside
of a resource queue (as resource queues are defined only for global resources).
Segments which require only local resources will never be inserted into a re-
source queue. Therefore, such segments will not interfere with other global
segments and can be safely ignored when computing the time that a segment
may need to wait.

We now define the notion of a partial segment requirements graph, which includes
only those dependencies in a segment requirements graph which are indeed feasible.
We use these graphs later to formalize the notion of dependency.

118 Multi-resource management

a

b

a

b

b b c

b

c

c

c

c d

d

d

d

queue(p1)

queue(p2)

queue(p3)

queue(p4)

b

c

d

p1

p2

p3

p4

b

c

d

c

b

c

d

Legend: budget executionbudget arrival budget spinning waiting queue

d

a ba

time

Figure 5.6: Example of transitive blocking of global segments. The figure shows
the arrival and execution of segments S = {a, b, c, d} on preemptive resources P =
{p

1

, p
2

, p
3

, p
4

} and the contents of their resource queues. Since we assumed that each
task contains only one segment, for ease of presentation we refer to the tasks inside
the resource queues by the corresponding segment names.

Definition 5.6. A partial segment requirements graph G0 = (V 0, E0) derived from
segment requirements graph G = (V,E) is a subgraph of G, with V 0 ✓ V and E0 ✓ E,
such that

1) V 0 contains all global resources, but no local resources, i.e.

RG ✓ V 0 ^RL \ V 0 = ;,

2) segments requiring only local resources are ignored

8⌧
i,j

2 S : R
i,j

✓ RL) ⌧
i,j

/2 V 0,

3) if ⌧
i

requires at least one global resource, then there is exactly one segment

Schedulability analysis for PSRP 119

from R
i

in V 0, i.e.

8⌧
i

2 � : ((9⌧
i,j

2 R
i

: R
i,j

\RG 6= ;)
) |{⌧

i,j

| ⌧
i,j

2 V 0}| = 1),

4) E0 contains all the edges (and only those edges) from E which have both end-
points in V 0, i.e.

8{a, b} 2 E : (a 2 V 0 ^ b 2 V 0) , {a, b} 2 E0.

Condition 1 in Definition 5.6 makes sure that segments which require only local
resources will be unreachable from global segments. Condition 2 removes those seg-
ments from a partial segment requirements graph to keep it concise. Condition 3
discards segments belonging to the same task.

Definition 5.7. We define partial(G) as the set of all possible partial segment re-
quirements graphs which can be derived from the segment requirements graph G.

Lemma 5.5. The partial(G) set contains

Y

⌧

i

2�

��{⌧
i,j

|⌧
i,j

2 R
i

^R
i,j

\RG 6= ;}
��

Y

⌧

i

2�

|R
i

|

graphs.

Proof. It follows directly from conditions 2 and 3 in Definition 5.6. The inequality is
due to the fact that a partial segment requirements graph does not contain segments
which require only local resources.

Figure 5.7 illustrates the partial graphs derived from the segment requirements
graph in Figure 5.1.

Definition 5.8. Let G = (V,E) be a segment requirements graph. We define �(⌧
i,j

, g)
to be the set of segments which ⌧

i,j

can reach in the partial segment requirements graph
g 2 partial(G). We say that “⌧

i,j

can reach ⌧
x,y

in g” i↵ both segments belong to the
same connected subgraph of g, and ⌧

i,j

6= ⌧
x,y

. We say that “⌧
i,j

depends on ⌧
x,y

” i↵

9g 2 partial(G) : ⌧
x,y

2 �(⌧
i,j

, g). (5.10)

Notice that the dependency relation is symmetric, i.e.

⌧
x,y

2 �(⌧
i,j

, g) , ⌧
i,j

2 �(⌧
x,y

, g), (5.11)

and transitive, i.e.

⌧
x,y

2 �(⌧
i,j

, g) ^ ⌧
i,j

2 �(⌧
a,b

, g)) ⌧
x,y

2 �(⌧
a,b

, g). (5.12)

120 Multi-resource management

G1

c1

p2 p3

d1

n2 n3

f1e1

G1

p2 p3

c2 d1

n2 n3

f1e1

G3

c1

p2 p3

n2 n3

d2 f1e1

G4

p2 p3

c2

n2 n3

d2 f1e1

Figure 5.7: Partial segment requirements graphs derived from the segment require-
ments graph in Figure 5.1, assuming tasks � = {a, b, c, d, e, f}, with S

a

= ha
1

i,
S
b

= hb
1

i, S
c

= hc
1

, c
2

i, S
d

= hd
1

, d
2

i, S
e

= he
1

i, S
f

= hf
1

i.

Example 5.2. Figure 5.8 shows an example of the dependencies in the partial seg-
ment requirements graphs in Figure 5.7.

⌧
i,j

�(⌧
i,j

, G
1

) �(⌧
i,j

, G
2

) �(⌧
i,j

, G
3

) �(⌧
i,j

, G
4

)
c
1

{d
1

, e
1

, f
1

} ; ; ;
c
2

; ; {d
1

, e
1

, f
1

} {e
1

, f
1

}
d
1

{c
1

, e
1

, f
1

} ; {c
2

, e
1

, f
1

} ;
d
2

; ; ; ;
e
1

{c
1

, d
1

, f
1

} {f
1

} {c
2

, d
1

, f
1

} {c
2

, f
1

}
f
1

{c
1

, d
1

, e
1

} {e
1

} {c
2

, d
1

, e
1

} {c
2

, e
1

}

Figure 5.8: Dependencies for segments in Figure 5.7, where G
1

, G
2

, G
3

, G
4

represents
the partial segment requirements graphs in Figure 5.7.

Lemma 5.6. Under PSRP, each segment ⌧
i,j

2 S will have to wait on global resources
before it can start executing for at most

wait(⌧
i,j

) = max

0

@0, max
g2partial(G)

X

⌧

x,y

2�(⌧

i,j

,g)

E
x,y

1

A , (5.13)

where G is the segment requirements graph.

Schedulability analysis for PSRP 121

Proof. Consider the situation when a segment ⌧
i,j

tries to start executing and acquire
resources in R

i,j

. If any of the resources is not available, ⌧
i,j

will have to wait. Let
wait resource(⌧

i,j

, r) be the worst-case time that segment ⌧
i,j

may spend waiting
due to resource r.

When ⌧
i,j

tries to access a global resource r which is not available, then ⌧
i

will
be inserted at the end of queue(r). Since queue(r) is a FIFO queue, a segment ⌧

x,y

residing inside of queue(r) in front of ⌧
i,j

will have to complete first, before ⌧
x

can
be added at the end of queue(r) again. Hence a task may be represented only once
inside of a resource queue, and therefore the length of the resource queue is at most
equal to the number of tasks requiring r. In other words, a task ⌧

x

, which is sharing
resource r with segment ⌧

i,j

, will interfere with ⌧
i,j

(during the time ⌧
i,j

is waiting
on r) for the duration of at most one of its segments in R

⌧

x

.

Let B(⌧
i,j

, r) be the worst-case set of segments which are waiting in queue(r)
in front of ⌧

i,j

. Each segment ⌧
x,y

2 B(⌧
i,j

, r) can itself be waiting on other re-
sources: for each resource s 2 R

x,y

, segment ⌧
x,y

may need to wait for all segments
in B(⌧

x,y

, s). For each of those segments in B(⌧
x,y

, s) we can apply the same reason-
ing. In e↵ect, segment ⌧

i,j

may need to wait for many segments which it indirectly
depends on. A straightforward approach would be to designate all segments which
are reachable from ⌧

i,j

in G as the set that segment ⌧
i,j

depends on. We now show
how to bound this set by removing the unnecessary vertices from G.

(i) The fact that ⌧
x,y

is inside of a resource queue implies that its priority is higher
or equal to the system ceiling of any preemptive resource it may require, meaning
that it cannot be waiting any more for local resources. We therefore need to consider
only global resources.

(ii) At any moment in time only one segment of a task can be active. Therefore,
segment ⌧

i,j

will not depend on segments belonging to the same task, i.e segments in
R

i

\ {⌧
i,j

}.
(iii) Segment ⌧

i,j

will not depend on any segment which a segment ⌧
i,k

from the
same task depends on, unless ⌧

i,j

also depends on it after removing ⌧
i,k

from G. The
same holds for any other segment in S.

According to (i), (ii) and (iii) we need to consider only segments which are
reachable from ⌧

i,j

in G, after we remove the vertices corresponding to the local
resources, and segments belonging to the same task from G. In other words, segment
⌧
i,j

depends only on segments ⌧
x,y

, such that (according to Definition 5.7 and 5.8)
⌧
x,y

2 �(⌧
i,j

, g), where g 2 partial(G). Moreover, since (according to Lemma 5.1)
there are no dependency cycles, we need to consider only a single job of each ⌧

x,y

.

Segment ⌧
i,j

will have to wait for wait resource(⌧
i,j

, r) time on all resources
r 2 R

i,j

. Since a segment is inserted into the resource queues of all resources r 2 R
i,j

simultaneously, and any spin-locks are performed concurrently, its total waiting time
is given by (5.13).

Example 5.3. Figure 5.9 shows an example of the waiting times for segments in the
partial segment requirements graphs in Figure 5.7 for example values of E

i,j

.

122 Multi-resource management

⌧
i,j

E
i,j

wait(⌧
i,j

)
c
1

2 3
c
2

2 3
d
1

2 3
d
2

16 0
e
1

0.5 4.5
f
1

0.5 4.5

Figure 5.9: Waiting times for segments in Figure 5.7.

Note that (5.13) is pessimistic. Figure 5.10 illustrates the source of the pessimism
for wait(b). According to PSRP, segment b may be delayed by a or c, but not both.
Lemma 5.6, however, assumes that in the worst-case b will have to wait for both a
and c, which is pessimistic in case a and c do not share a common resource.

cba

p1 p2

Figure 5.10: A segment requirements graph for a system comprised of P = {p
1

, p
2

},
N = ;, S = {a, b, c} with R

a

= {p
1

}, R
b

= {p
1

, p
2

}, and R
c

= {p
2

}.

Corollary 5.1. A segment ⌧
i,j

which requires only local resources will never have to
wait inside of a resource queue, i.e.

8⌧
i,j

2 S : R
i,j

✓ RL) wait(⌧
i,j

) = 0.

Definition 5.9. For segment ⌧
i,j

we use E0(⌧
i,j

) = wait(⌧
i,j

) + E
i,j

to denote the
execution time of ⌧

i,j

extended with its waiting time.

Definition 5.10. We define A(⌧
i,j

) to be the worst-case activation time of segment
⌧
i,j

relative to the arrival time of its parent task ⌧
i

. A(⌧
i,j

) is equal to the WCRT of
the previous segment in R

i

, or 0 in case ⌧
i,j

is the first segment in R
i

, i.e.

A(⌧
i,j

) =

(
WCRT (⌧

i,j�1

) if j > 1,

0 otherwise.
(5.14)

Theorem 5.1. Under PSRP, the WCRT of a global segment ⌧
i,j

2 SG, measured
since the arrival of the parent task, is bounded by

WCRT (⌧
i,j

) = A(⌧
i,j

) + E0(⌧
i,j

). (5.15)

Schedulability analysis for PSRP 123

Proof. Since each segment ⌧
i,j

belonging to task ⌧
i

is dispatched only after the previ-
ous segment ⌧

i,j�1

has completed (or when ⌧
i

has arrived, in case of the first segment),
and since we assumed D

i

 T
i

for all tasks ⌧
i

, segments belonging to the same task
do not interfere with each other. Since each segment is dispatched immediately after
the previous one has completed (or at the moment ⌧

i

has arrived, in case of the first
segment), there is no idle time between the segments. Therefore, segment ⌧

i,j

will
attempt to lock its required resources at time A(⌧

i,j

).
At this moment it will start waiting on all the resources which it requires but

which are unavailable. It will wait for at most wait(⌧
i,j

) time units.
Since segments spin at the highest priority, immediately after it stops spinning it

will start executing. Also, since we assumed that all nested critical sections have been
shifted outwards and since the system ceiling of all resources in R

i,j

is raised to the
top priority at the moment ⌧

i,j

starts executing, segment ⌧
i,j

cannot be preempted
nor blocked once it starts executing. In the worst-case it will therefore execute for
E

i,j

time before completing. In order to compute the WCRT of a global segment ⌧
i,j

,
we therefore simply have to sum up its release jitter, total waiting time and execution
time.

5.6.2 Response time of local segments

In this section we derive the WCRT of a local segment.

Lemma 5.7. Under PSRP, the maximum blocking that a local segment ⌧
i,j

can
experience is given by

B(⌧
i,j

) =

(
max{0, BL(⌧

i,j

), BG(⌧
i,j

)} if R
i,j

✓ RL,

BL(⌧
i,j

) otherwise.
(5.16)

where

BL(⌧
i,j

) = max{E
x,y

| R
x,y

\RG = ;
^ ⇡

x

> ⇡
i

^ (9r 2 R
x,y

\R
i,j

: '(r) ⇡
i

)}, (5.17)

BG(⌧
i,j

) = max{E0(⌧
x,y

) | R
x,y

\RG 6= ;
^ ⇡

x

> ⇡
i

^R
x,y

\R
i,j

6= ;}. (5.18)

Proof. A local segment ⌧
i,j

can be blocked by local and global segments. Let BL(⌧
i,j

)
and BG(⌧

i,j

) be the blocking time experienced by ⌧
i,j

due to local and global re-
sources, respectively.

According to Definition 5.4, global segments use only global resources or local non-
preemptive resources. Local segments therefore only compete with local segments on
local preemptive resources. Access to local preemptive resources is managed using
SRP. According to SRP, segment ⌧

i,j

may be blocked by a lower priority segment
only once, before ⌧

i,j

starts executing. Moreover, this blocking time is equal to the

124 Multi-resource management

length of the longest segment among those which have a lower priority than ⌧
i,j

and
share resources with ⌧

i,j

. Equation (5.17) follows.
A local segment ⌧

i,j

which requires only local resources may also be blocked by a
lower priority local segment ⌧

x,y

which requires also global resources, when it spin-
locks or executes on those global resources. According to Lemma 5.3, every local
segment uses exactly one local preemptive resource. The PSRP algorithm allows
a segment to execute the lock() operation only if its priority is higher than the
system ceiling of the local preemptive resource shared with ⌧

i,j

. Since the ready
segments are scheduled on the preemptive resource according to their priority, ⌧

i,j

can be blocked by only one segment ⌧
x,y

and at most once. Moreover, ⌧
x,y

must have
started executing before ⌧

i,j

has arrived, otherwise ⌧
i,j

would have been scheduled
instead. According to Lemma 5.1, the resource holding time of segment ⌧

x,y

on each
of its required resources is bounded by E0(⌧

x,y

). Equation (5.18) follows.
Since (according to Definitions 5.3 and 5.4) exactly one preemptive resource p

will be shared between all local segments sharing resources with a local segment ⌧
i,j

,
access to all other (nonpreemptive) resources required by ⌧

i,j

will be synchronized
by SRP on p. Segment ⌧

i,j

which requires only local resources can therefore block
on either a local segment or a global segment, but not both. The first condition in
(5.16) follows.

A local segment ⌧
i,j

, which requires at least one global resource, will start spinning
at the highest priority as soon as it reaches the highest priority on the preemptive re-
source. Since the spinning time is already taken into account in E0(⌧

i,j

), we only need
to consider blocking on local segments, and can ignore blocking on global segments.
The second condition in (5.16) follows.

Example 5.4. Applying Lemma 5.7 to our leading example in Figure 5.1 (with
segment priorities decreasing alphabetically) will result in the following blocking times
for local segments:

B(a
1

) = max{E0(b
1

), E0(c
1

)}, B(b
1

) = E0(c
1

), B(c
1

) = 0.

Notice that Lemma 5.7 ignores the fact that c
1

may block on d
1

, since it is taken into
account in the E0(c

1

) term in Theorem 5.2.

Theorem 5.2. Under PSRP, the WCRT of a local segment ⌧
i,j

2 SL, measured
since the arrival of the parent task, is bounded by

WCRT (⌧
i,j

) = A(⌧
i,j

) + w(⌧
i,j

), (5.19)

where w(⌧
i,j

) is the smallest value which satisfies

w(⌧
i,j

) =B(⌧
i,j

) + E0(⌧
i,j

) +
X

⌧

x,y

2X

⇠
w(⌧

i,j

) + J(⌧
x,y

)

T
x

⇡
E0(⌧

x,y

), (5.20)

where J(⌧
x,y

) = A(⌧
x,y

) �
P

z<y

E
x,z

is the activation jitter of segment ⌧
x,y

, and

X = {⌧
x,y

| ⇡
x

< ⇡
i

^ (R
x,y

\R
i,j

\RL 6= ;)} is the set of higher priority segments
which share a local resource with ⌧

i,j

.

Schedulability analysis for PSRP 125

Proof. As soon as a local segment ⌧
i,j

is released, it will try to lock all its required
resources in R

i,j

. If any of the resources it requires are not available, it will block
for B(⌧

i,j

) given by (5.16). When ⌧
i,j

is ready to resume after the initial blocking,
we distinguish between two cases, depending on whether (i) ⌧

i,j

requires only local
resources, or (ii) ⌧

i,j

requires at least one global resource.
In case (i), according to Corollary 5.1, segment ⌧

i,j

will not wait inside of a
resource queue, i.e. wait(⌧

i,j

) = 0. During the time that the segment is blocked
or executing, higher priority segments sharing local resources with ⌧

i,j

can arrive
and interfere with it. The inter-arrival time between two consecutive invocations
of a higher priority segment ⌧

x,y

is equal to its tasks period, with the first arrival
su↵ering an activation jitter J(⌧

x,y

), which can be bounded by the activation time
of ⌧

x,y

minus the execution time of all the segments preceeding it in S
x

. Equation
(5.20) follows.

In case (ii), during the time ⌧
i,j

is blocked, higher priority segments may arrive.
However, since ⌧

i,j

requires a global resource, as soon as it becomes ready to execute it
will be inserted into the resource queue of all resources inR

i,j

and start spinning at the
highest priority on the single local preemptive resource which it requires (according
to Lemma 5.3). The spinning time is included in the E0(⌧

i,j

) term in (5.20). As soon
as all the resources in R

i,j

are available, it will continue executing at the highest
priority on the preemptive resource. Therefore, higher priority segments arriving
during the time ⌧

i,j

is waiting or executing (i.e. “during” the E0(⌧
i,j

) term) will not
interfere with ⌧

i,j

. Since in this theorem we are providing an upper bound, equation
(5.20) follows.

A local segment ⌧
i,j

will be delayed (relative to the arrival of its parent task)
by the WCRT of the previous segment (if any), represented by the A(⌧

i,j

) term in
(5.19).

5.6.3 Response time of tasks

Now that we know how to compute the WCRT of local and global segments, we can
easily determine the WCRT of tasks.

Corollary 5.2. Under PSRP, the WCRT of a task ⌧
i

2 � is given by the WCRT of
the last segment in R

i

.

Note that the WCRT of a segment depends on the activation time of another
segment. In turn, the activation time of a segment depends on the WCRT of another
segment. However, since the priority of all segments of a given task is the same,
this mutual dependency problem can be solved by simply computing response and
activation times in order from the highest priority task to the lowest priority task.

Example 5.5. Earlier in this chapter we have observed that a common approach for
scheduling tasks on a platform comprised of multiple heterogeneous resources is to
treat the whole platform as a whole, allowing at most one task to use the platform at
a time. In this example we compare this approach to PSRP and show that PSRP can
indeed exploit the concurrency available on a multi-resource platform by verifying for
an example task set with a utilization greater than 1 all deadlines are met.

126 Multi-resource management

Consider our leading example platform from Figure 5.1, comprised of three
processors P = {p

1

, p
2

, p
3

}, three logical resources N = {n
1

, n
2

, n
3

, n
4

}, exe-
cuting an application consisting of tasks � = {a, b, c, d, e, f} and segments S =
{a

1

, b
1

, c
1

, c
2

, d
1

, d
2

, e
1

, f
1

}, specified in Figure 5.11. The corresponding partial seg-
ment requirements graphs are shown in Figure 5.7 with the derived dependencies for
global segments in Figure 5.8.

⌧
i

⇡
i

O
i

T
i

D
i

S
i

a 1 0 14 14 ha
1

i
b 2 0 14 14 hb

1

i
c 3 0 14 14 hc

1

, c
2

i
d 4 0 14 14 hd

1

, d
2

i
e 5 0 14 14 he

1

i
f 6 0 14 14 hf

1

i

⌧
i,j

E
i,j

R
i,j

a
1

2 {p
1

}
b
1

2 {p
1

, n
1

}
c
1

3 {p
1

, n
1

, n
2

}
c
2

1 {p
2

, p
3

, n
2

}
d
1

1 {p
2

, p
3

, n
2

, n
3

}
d
2

8 {n
3

}
e
1

1 {p
3

, n
4

}
f
1

1 {p
3

, n
4

}

Figure 5.11: Task and segment specifications.

We use Lemmas 5.1 and 5.2 to compute the worst case response times of all
segments in S, and hence of all the tasks in �.

Segment a
1

will experience local blocking due to b
1

and global blocking due to c
1

,

BL(a
1

) = E0(b
1

) = wait(b
1

) + E
b1

BG(a
1

) = E0(c
1

) = wait(c
1

) + E
c1

B(a
1

) = max{BL(a
1

), BG(a
1

)} = max{E0(b
1

), E0(c
1

)}

Since b
1

requires only local resources, according to Corollary 5.1, wait(b
1

) = 0. We
can compute wait(c

1

) using Lemma 5.6. For each partial segment requirements
graphs derived from G we need to compute the set of segments which c

1

depends on
and sum up their execution times. wait(c

1

) is then equal to the maximum of these
sums. According to Figure 5.8, the only dependency sets for c

1

among all partial
segment requirements graphs segment c

1

is {d
1

, e
1

, f
1

}. Therefore,

wait(c
1

) = E
d1 + E

e1 + E
f1 .

and
E0(b

1

) = 0 + 2 = 2
E0(c

1

) = 1 + 1 + 1 + 3 = 6.

The worst-case response time of segment a
1

is given, according to Lemma 5.2, by

WCRT (a
1

) = A(a
1

) + w(a
1

)

with

w(a
1

) = B(a
1

) + E0(a
1

) +
X

⌧

x,y

| ⇡

x

<⇡

a

^ (R

x,y

\R

a1\RL 6=;)

⇠
w(a

1

) + J(a
1

)

T
x

⇡
E0(⌧

x,y

)

Schedulability analysis for PSRP 127

Since a
1

is the first segment in the sequence R
a

, its activation time A(a
1

) = 0, and
it will su↵er no jitter, i.e. J(a

1

) = 0. Since it requires only local resources, according
to Corollary 5.1, wait(a

1

) = 0. Since a
1

belongs to the highest priority task, it will
not be preempted while executing. Therefore,

WCRT (a
1

) = max{E0(b
1

), E0(c
1

)}+ E
a1 = max{2, 6}+ 2 = 8.

Similarly, we can compute the worst-case response time for local segment b
1

BL(b
1

) = 0
BG(b

1

) = E0(c
1

)
B(b

1

) = E0(c
1

)
WCRT (b

1

) = E0(c
1

) + E
b1 + E

a1 = 6 + 2 + 2 = 10

Since the local segment c
1

requires a global resource n
2

, according to (5.16) its block-
ing time is bounded by BL(c

1

). Since c
1

has a lower priority than a
1

and b
1

, it can
be preempted by both of them. Therefore,

BL(c
1

) = 0
B(c

1

) = 0
WCRT (c

1

) = E0(c
1

) + E
a1 + E

b1 = 6 + 2 + 2 = 10

Segment c
2

is a global segment. Its worst-case response time is therefore given by
Lemma 5.1. According to Figure 5.8, the dependency sets for c

2

are {d
1

, e
1

, f
1

} and
{e

1

, f
1

}. Therefore,

wait(c
2

) = max{E
d1 + E

e1 + E
f1 , Ee1 + E

f1} = 1 + 1 + 1 = 3
E0(c

2

) = wait(c
2

) + E
c2 = 3 + 1 = 4

WCRT (c
2

) = WCRT (c
1

) + E0(c
2

) = 10 + 4 = 14

Segment d
1

is a global segment. According to the dependencies in Figure 5.8 we get

wait(d
1

) = max{E
c1 + E

e1 + E
f1 , Ec2 + E

e1 + E
f1}

= max{3 + 1 + 1, 1 + 1 + 1} = 5
WCRT (d

1

) = wait(d
1

) + E
d1 = 5 + 1 = 6

Segment d
2

is a global segment. According to Figure 5.8 it does not depend on any
other segments. Therefore,

wait(d
2

) = 0
WCRT (d

2

) = WCRT (d
1

) + wait(d
2

) + E
d2 = 6 + 8 = 14

Similarly, we can compute the worst-case response times of segments e
1

and f
1

,

WCRT (e
1

) = 6
WCRT (f

1

) = 6

According to Corollary 5.2, the worst-case response times of tasks a, b, c, d, e, f
are 8, 10, 14, 14, 6, 6, respectively. Since the worst-case response time of each task is

128 Multi-resource management

smaller or equal to its deadline, the system is schedulable. The utilization of the
system is

U(a)+U(b)+U(c)+U(d)+U(e)+U(f) =
2

14
+

2

14
+

3 + 1

14
+

1 + 8

14
+

1

14
+

1

14
=

19

14

which is greater than 1, so we are exploiting some of the available concurrency.

5.7 Evaluation

In this section we demonstrate the e↵ectiveness of PSRP in exploiting the inherent
parallelism of a platform comprised of multiple heterogeneous resources. We consider
a task set where some task segments require several processors at the same time
and also share nonpreemptive resources. We schedule it using two approaches: (i)
using PSRP, and (ii) by collapsing all the processors into one virtual processor and
applying uniprocessor scheduling (which we refer to as ”Collapsed”). To the best of
our knowledge, the second approach is currently the best alternative to PSRP for
scheduling parallel tasks which can execute on arbitrary subsets of processors and
share nonpreemptive resources. We compute the WCRT of the complete task for
the two approaches. The di↵erence in response times represents potential utilization
gain, which can be exploited by e.g. background tasks or tighter timing requirements.

The simulated task set � represents a multimedia application, where video frames
are captured periodically with period T and subsequently processed by a set of fil-
ters. Some of the filters are computationally intensive, but can exploit functional
parallelism and execute on several processors in parallel. The video frames are stored
in a shared global memory. Each parallel filter loads the necessary frame data from
the global memory into its local bu↵er, operates on it, and writes the result back to
the global memory. The data is transferred using a DMA controller. The simulated
platform corresponds to a PC with a multicore processor. For simplicity we assume
no caches.

PSRP approach: The platform consists of M processors p
j

, 1 j M , a
global memory m, local memories accessible by individual processors (or groups of
processors) where m

i

represents the memory region in a local memory allocated to
task ⌧

i

, and a DMA controller dma for transferring data between the global and local
memories. It can be expressed in terms of our model as P = {p

1

, p
2

, . . . , p
M

} and
N = {dma,m,m

1

,m
2

, ...,m|�|}.
We consider several scenarios. In each scenario we divide the processors into H

groups P
g

, 1 g H. Each group contains W processors, with H ⇤ W = M .
On each group of processors we execute a set of K parallel tasks. Each parallel
task ⌧

i

belonging to group g is specified by S(⌧
i

) = h(0.5, {dma,m,m
i

}), (5,P
g

[
{m

i

}), (0.5, {dma,m,m
i

})i. On each processor p
j

2 P we also execute a sequential
task ⌧

i

with S(⌧
i

) = h(2, {p
j

,m
i

})i. All tasks share the same period T , 8⌧
i

2 � :
D

i

= T
i

, and the parallel tasks have higher priority than the sequential tasks.
Collapsed approach: We can model the Collapsed approach by replac-

ing all processors by one preemptive resource p and having each segment re-
quire at least the resource p. For a scenario with H, W and K defined

Evaluation 129

above, the “collapsed” task set then consists of H ⇤ K tasks ⌧
i

with S(⌧
i

) =
h(0.5, {p, dma,m,m

i

}), (5, {p,m
i

}), (0.5, {p, dma,m,m
i

})i, and H ⇤ W tasks ⌧
i

with
S(⌧

i

) = h(2, {p})i.
Figure 5.12 compares the maximum WCRT among all tasks in � between the

PSRP and Collapsed approaches for H = 2. We vary the number of tasks per
processor group K and the number of processors required by parallel tasks W . We
have computed the WCRT for the PSRP approach using the analysis presented in
this chapter, and for the Collapsed approach using the Fixed Priority Preemptive
Scheduling analysis Audsley et al. (1993).

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5

M
ax

 w
or

st
-c

as
e

re
sp

on
se

 ti
m

e

Number of tasks in each processor group (K)

Collapsed, W=4
Collapsed, W=2

PSRP, W=4
PSRP, W=2

Figure 5.12: Comparison of WCRTs for cases (i) and (ii) for H = 2 and varying W
and K.

The results show that PSRP experiences lower WCRT than the Collapsed ap-
proach. Moreover, since the di↵erence in WCRT increases for larger values of K and
W , the benefits of PSRP increase with larger task sets and more parallelism, i.e.
when tasks execute on more processors in parallel. The results therefore demonstrate
that PSRP indeed outperforms the Collapsed approach.

5.7.1 Time complexity of the analysis

The worst-case response time of all tasks can be computed using the following pro-
cedure:

1. Construct the segment requirements graph G.

2. Compute the partial segment requirements graphs partial(G).

3. For each partial segment requirements graph compute its connected tasks.

4. For each global segment ⌧
i,j

2 SG compute its waiting time wait(⌧
i,j

).

130 Multi-resource management

5. For each task ⌧
i

2 �, starting with the highest priority one, traverse its required
segments sequence R

i

, starting with the first one, and compute its worst-case
response time.

Lemma 5.8. The worst-case response time of all tasks in � can be computed in
exponential time.

Proof. The time complexity is given by the sum of the complexities of the individual
steps of the above procedure.

Step 1: A segment requirements graph G = (V,E) is a tripartite graph which con-
tains |V | = |R| + |S| vertices and |E| = |I| edges, where I =

S
⌧

i,j

2S R
i,j

is the set of all segment resource requirements. It can be constructed in
O(|R|+ |S|+ |I|) time.

Step 2: According to Lemma 5.5, the set of all partial segment requirements graphs
partial(G) contains |partial(G)|

Q
⌧

i

2�

|S
i

| graphs. If we define S
max

as the

longest sequence of segments among all tasks, then |partial(G)| |S
max

||�|.
Each partial graph can be computed by removing segment-nodes and connecting
edges from the original graph G, which can be done in O(|R|+ |S|+ |I|) time.
This entire step will therefore take O(|S

max

||�| ⇤ (|R|+ |S|+ |I|)) time.

Step 3: Each partial graph can be decomposed into connected subgraphs by per-
forming a breadth first search in O(|R|+ |S|+ |I|) time. This entire step will
therefore take O(|S

max

||�| ⇤ (|R|+ |S|+ |I|)) time.

Step 4: By precomputing the sum of the execution times of each connected sub-
graph in all partial segment requirements graphs (which can be done while
constructing the connected subgraphs in Step 3), we can can compute theP

⌧

x,y

2�(⌧

i,j

,g)

E
x,y

term in (5.13) in O(1) time, by subtracting its execution
time from the sum for each partial segment requirements graph. This has to
be repeated for each partial segment requirements graph to compute the max
term in (5.13). This entire step will therefore take O(|S

max

||�|) time.

Step 5: The worst-case response time of a local segment in (5.19) relies on solving
the recursive equation (5.20), which (according to Lehoczky et al. (1989)) can
be done for all local segments in pseudo-polynomial time.

Steps 1-4 show that the worst-case response time for all global segments can be
computed in exponential time, while step 5 shows that for all local segments it can
be done in pseudo-polynomial time. Therefore, using Corollary 5.2, the worst-case
response time for all tasks can be computed in exponential time.

5.8 Discussion

In this chapter we addressed the problem of multi-resource scheduling of parallel tasks
with real-time constraints. We proposed a new resource model, which classifies dif-
ferent resources (such as bus, processor, shared variable, etc.) as either a preemptive

Discussion 131

or non-preemptive multi-unit resource. We then presented a new scheduling algo-
rithm called PSRP and the corresponding schedulability analysis. Simulation results
based on an example application show that it can exploit the inherent parallelism of
a platform comprised of multiple heterogeneous resources.

In the remainder of this section we discuss the pros and cons of the proposed
system model and PSRP.

5.8.1 Multi-unit preemptive resources

We can model a homogenous multiprocessor containing n cores in two ways: as a
preemptive resource p with N

p

= n, or as n preemptive resources p
1

, p
2

, . . . , p
n

, with
capacities N

p

i

= 1, for all 1 i n. Existing literature on parallel-task scheduling
on multiprocessors assumes the first option, where each task segment specifies a
requirement for a number of units of a multi-unit resource p. The system is then
responsible for allocating tasks to processors during runtime. This model will ignore
potentially large migration overheads, e.g. in memory intensive applications as data
locality cannot be guaranteed. Using the second approach, our model allows to
partition the task set upfront, e.g. optimizing data locality.

5.8.2 Nonpreemptive execution on preemptive resources

When a preemptive resource p is required by a segment which requires also an-
other preemptive resource, then p is marked as a global resource, resulting in non-
preemptive execution on p. This may appear overly pessimistic, especially compared
to the work by Kato and Ishikawa (2009) who describe a preemptive gang scheduling
algorithm. However, they assume independent tasks. In multiprocessor scheduling
with shared resources it is critical to keep the holding time of global non-preemptive
resources as short as possible (which is the rationale between the spin-lock based
approach to locking global resources in MSRP). If we were to schedule all preemptive
resources preemptively, then segments requiring several preemptive resources in a
chained fashion (illustrated in Figure 5.5) would increase the resource holding time.
We therefore decided to limit preemptive execution to preemptive resources which
are required by segments which do not require any other preemptive resource.

5.8.3 Pessimistic analysis for local segments

Theorem 5.2 describes the WCRT of a local segment. It treats all local segments alike,
whether they require global resources or not. However, only a local segment which
requires only local resources can be preempted by higher priority segments while it
is executing. A segment which requires at least one global resource will be scheduled
non-preemptively on all preemptive resources it requires. We can therefore lower the
bound on WCRT of local segments which require global resources by ignoring the
interference of higher priority tasks during the execution of those segments. For this
purpose we can adopt the schedulability analysis for Fixed-Priority with Deferred
Preemption Scheduling by Bril et al. (2007).

132 Multi-resource management

5.8.4 Pessimistic bound for the waiting time

Lemma 5.6 presents a bound for the waiting time. This bound, however, is pes-
simistic, as illustrated by the following example.

Example 5.6. Figure 5.13 illustrates the source of the pessimism for wait(b). Ac-
cording to PSRP, segment b may be delayed by a or c, but not both. Lemma 5.6,
however, assumes that in the worst-case b will have to wait for both a and c, which
is pessimistic in case a and c do not share a common resource.

cba

p1 p2

Figure 5.13: A segment requirements graph for a system comprised of P = {p
1

, p
2

},
N = ;, S = {a, b, c} with R

a

= {p
1

}, R
b

= {p
1

, p
2

}, and R
c

= {p
2

}.

The pessimism stems from the definition of dependency. According to Definition
5.8, a segment depends on another segment i↵ there exists a partial segment require-
ments graph g, such that the two segments belong to the same connected subgraph
of g. Hence, segment b in Figure 5.13 will have to wait for both a and c, since all of
them belong to the same subgraph.

5.8.5 Nested global critical sections

FMLP supports nested critical sections by means of resource groups. The resource
groups partition the set of resources into independent subsets. Consequently, a task
trying to access resource r may become blocked on all resources in the resource group
G(r).

Under PSRP, if a task has nested critical sections we can move the inner critical
sections outwards until they overlap exactly with the outer most critical section.
This new task can be expressed in our system model, where segments require several
resources at the same time. Each segment can be blocked only on resources which
it requires (rather than the complete resource group). PSRP therefore provides a
more flexible approach for dealing with nested global critical sections than FMLP. In
the worst case, under FMLP a segment requiring resource r will be blocked by every
task for the duration of the longest segment which requires a resource from G(r),
while under PSRP a segment will be indirectly blocked by all dependent segments
(see Figure 5.5).

Under FMLP every time a job is resumed it may block on a local resource. This
is the same for PSRP, where we have to include the blocking time for each segment
(rather than once per task).

Chapter 6

Grasp

Modern real-time systems are becoming increasingly more complex, with many tasks
executing concurrently on many processors, making it di�cult to understand the
system behavior. A popular trend in coping with the vast number of tasks and
the resulting interferences between them is to hide tasks inside components and to
integrate the system from those components. This approach requires hierarchical
scheduling, which has been covered extensively in the literature for uniprocessor sys-
tems. Recently, the real-time literature has been investigating applying hierarchical
scheduling to multiprocessor platforms. In this chapter we address the problem of
how to provide insight into complex interaction patterns between jobs executing in a
hierarchical multiprocessor system.

Several approaches are available for tackling the complexity of modern software
systems. Ideally, every system would be meticulously documented, providing a for-
mal yet concise description of the emergent system behavior. However, this is a long
and costly process without immediate e↵ects (such as additional functionality) and is
therefore not common in practice. Examples of poorly documented code and system
designs are abundant. The description of the dynamic system behavior therefore
needs to be extracted from existing systems. There are modeling and verification
tools available, which rely on the developers analyzing the implementation and con-
structing its model. These tools then employ formal methods to verify the behavior
of the extracted model against an abstract model. The state of the art modeling
and verification techniques, however, are not scalable and therefore can be applied
to verify only a small portion of the entire system.

Visualization tools o↵er an interesting alternative. Existing systems can be in-
strumented to generate runtime traces, which can then be analyzed by engineers and
researchers, leveraging their expertise and human capacity to recognize patterns, to
gain insight into the system behavior. The challenge here lies in presenting the in-
formation in an intuitive way, enabling the user to extract the essential properties of
the analyzed system.

Grasp is a toolset for tracing and visualizing the behavior of complex real-time
systems. Its main strength lies in providing many di↵erent visualizations for various

133

134 Grasp

real-time primitives and scheduling techniques in a consistent and intuitive way. Its
flexible architecture allows to easily extend it with new visualization and analysis
techniques.

We have been using Grasp extensively within our group during our research of
embedded real-time systems and the development of various extensions of a com-
mercial real-time operating system µC/OS-II, including a hierarchical scheduling
framework and slot shifting. The usage of Grasp has also been reported in (Åsberg
et al., 2010, 2011; van den Heuvel et al., 2010) where it was used to gain insights into
new approaches for hierarchical scheduling in Linux and VxWorks operating systems.
Recently Grasp was used in the context of the Smart Objects For Intelligent Appli-
cations (SOFIA) European research project to visualize the communication patterns
between sensor nodes in a smart home environment.

In this chapter we focus on tracing multiprocessor systems. The challenge here
lies in presenting the execution and communication between jobs running on di↵erent
processors in an intuitive and compact way. Moreover, if the timestamps of events
occurring on a processor are recorded in its local time, special care must be taken
to synchronize the individual traces. While some custom-built clusters such as IBM
Blue Gene o↵er su�ciently accurate global clocks, most distributed systems can only
rely on local clocks (Becker et al., 2011). If the local clocks drift too far apart it
may lead to inaccuracies or even errors during the trace analysis or visualization, as
the causality between events may appear to be broken (e.g. messages arriving before
they were sent).

The Grasp toolset together with example traces is available for Linux, Mac and
Windows at http://www.win.tue.nl/

~

mholende/grasp.

Contributions

In this chapter we focus on visualizing the timing of job execution and communication
in the context of multiprocessor systems. In particular, we demonstrate Grasp’s
ability to visualize

• partitioned and global multiprocessor scheduling,

• migrating tasks and jobs,

• communication between jobs via shared memory and message passing,

• hierarchical scheduling in combination with multiprocessor scheduling,

• time synchronization between traces from di↵erent processors.

We also describe Grasp’s interface for synchronizing timestamps in traces gener-
ated in a distributed system.

Publications

The ability of Grasp to visualize hierarchical scheduling was presented in (Holen-
derski et al., 2010c). The visualization of multiprocessor systems was introduced

Related work 135

in (Holenderski et al., 2011a), with the time synchronization between traces from
di↵erent processors described in (Holenderski et al., 2012b).

6.1 Related work

Existing visualization tools for real-time systems are specialized to visualize a fixed set
of behaviors. For example, the Tracealyzer Mughal and Javed (2008) and TimeDoctor
TimeDoctor (2011) are targeting only non-hierarchical uniprocessor systems. Making
a step towards distributed systems is not trivial. Grasp, on the other hand, supports
multiprocessor systems with two level virtualization.

There are several trace visualization tools which support the development of par-
allel programs on uniform parallel-processor platforms, such as VAMPIR Nagel et al.
(1996), Paje Kergommeaux et al. (2000), Jedule Hunold et al. (2010), or Scalasca
Geimer et al. (2010). They illustrate the execution of parallel jobs and communica-
tion between them, but they are limited to flat systems. To the best of our knowledge
no visualization tools currently support the visualization of hierarchical scheduling
in a uniprocessor or multiprocessor setting.

Traces accepted by most tools are lists of timed events, often in a binary format.
Grasp, on the other hand, has adopted the idea of treating the trace as a script.
On the one hand, Grasp traces are more verbose and require more storage space,
compared to the binary format. On the other hand, they allow for large degree of
flexibility, making it easy to add new events to the event model without changing
the core implementation of the visualization and analysis components. This makes
Grasp ideal for rapid prototyping of new visualization tehcniques. We have exploited
this flexibility during the development of Grasp’s various visualization and analysis
features.

There are several tracing tools available, mainly for the Linux platform, which gen-
erate traces. Examples include the Data Stream Kernel Interface (DSKI) Buchanan
et al. (1998), Ftrace Ftrace (2008), and Dtrace Dtrace (2008). DSKI is a platform
independent interface standard to support collection of a variety of performance data
from the operating system internals. It has been implemented on Linux. Ftrace and
Dtrace are integrated in many Linux distributions. They exhibit low performance
overhead and low memory footprint. In order to leverage their popularity, we have
implemented a converter from the sched switch tracer output of Ftrace, allowing to
use Grasp in many Linux and Unix environments.

When tracing is used to analyze the behavior of distributed systems, then there
is the additional problem of synchronizing the times of events occurring on di↵erent
nodes. Time di↵erences among distributed clocks can be characterized in terms of
their relative o↵set and drift. If we assume constant drift, then the local time can
be mapped onto the global (or master) time via linear interpolation. Existing time
synchronization algorithms compute the interpolation based on the timestamps of
messages exchanged back and forth with a master node Cristia (1989); Maillet and
Tron (1995) or with other nodes Mills (1992); Biberstein et al. (2008); Becker et al.
(2009). The timestamp synchronization in Grasp is based on Maillet and Tron (1995).

136 Grasp

The authors of Becker et al. (2009, 2011) observe that while linear o↵set interpola-
tion might prove satisfactory for short runs, measurement errors and time-dependent
drifts may create inaccuracies and violate causality relations during longer runs (e.g.
a message is received before it was sent). They propose a method for fixing these
errors by postponing certain events in the trace. However, while maintaining the
causality relations in traces, their methods change the timing of the events. As
Grasp is targeting real-time systems, it relies on linear interpolation for synchroniz-
ing traces and if it detects inconsistencies in the ordering of events then it notifies
the user that the constant drift assumption was violated.

6.2 Grasp overview

The Grasp toolset is composed of three entities: the Grasp Recorder, the Grasp Trace
and the Grasp Player, as shown in Figure 6.1.

Target System

Grasp
Recorder

Grasp
Trace

Grasp
Player

Figure 6.1: Overview of the Grasp archictecture.

The Grasp Recorder is embedded in the target system and is responsible for gen-
erating a trace. The generated Grasp Trace contains the raw data from a particular
system run. The Grasp Player reads in a trace and displays it in an intuitive way.

6.2.1 Grasp Recorder

The Grasp Recorder is implemented as a library providing functions to initialize the
recorder, log events, and finalize the recorder. Calls to the event logging methods
are inserted at several places inside the kernel to log common events, such as context
switches, arrival of tasks, or server replenishment. The recorder also provides a
function to log custom events, which programmers may call inside their applications.

Designing and implementing an instrumentation infrastructure which exhibits low
performance and memory overheads can be a daunting task. Therefore, rather than
designing a custom Grasp Recorder and integrating it within the target system, one
can implement a converter for existing trace format, leveraging existing instrumenta-
tion and tracing tools, as we have done for the sched switch tracer output of Ftrace
(Ftrace, 2008).

Grasp overview 137

6.2.2 Grasp Trace

The Grasp Trace is a Tcl (Welch et al., 2003) script. The decision for treating
the Grasp Trace as a script results in large degree of flexibility. The Grasp Player
basically provides a set of commands which can be called from within a Grasp Trace.
A trace can therefore be a simple list of commands, but it can also be a complete
system simulator, or anything in between. This allows to embed various extensions
(or plugins) inside a trace, resulting in a self-contained trace which can be visualized
by any Grasp Player, independent of the plugins it provides. It can also be used
to reduce the size of very large traces, by automatically generating or factoring out
common or repeating parts. Also, a trace may call methods in the player’s public API
to override its default settings, making sure that the trace is visualized as intended
by its creator. The greatest benefit of the trace being a script, however, is the simple
plugin infrastructure discussed in the next section.

A typical Grasp Trace event has the following structure:

plot time event arguments

which means that event has occurred at time time. The arguments parameter is a
list and describes the instance of the event. Every event defines its own signature, i.e.
the number and the semantics of the arguments which it accepts. Usually an event
accepts a list of required arguments followed by a list of -key value pairs for optional
arguments. In the remainder of this chapter we will often ignore the plot time
part, as it is common for most events. Also, we will ignore optional arguments for
customizing the trace visualization, such as assigning names or colors to tasks.

There are several basic events for tracing job execution:

• newTask task creates a new task, where task is a new identifier used in later
events.

• jobArrived job task indicates that job belonging to task has arrived, where
job is a new identifier used in later events, and task is the identifier of a task
created previously with newTask.

• jobStarted job indicates that job has started.

• jobPreempted job indicates that job has been preempted.

• jobBlocked job indicates that job has been blocked (e.g. trying to access a
locked shared resource).

• jobResumed job indicates that job has been resumed.

• jobCompleted job indicates that job has completed.

An example trace is shown in Figure 6.2.

138 Grasp

newTask task1 -priority 7 -name "Task 1"

newTask task2 -priority 8 -name "Task 2"

plot 5 jobArrived job2.1 task2

plot 5 jobResumed job2.1

plot 20 jobArrived job1.1 task1

plot 20 jobPreempted job2.1 -target job1.1

plot 20 jobResumed job1.1

plot 35 jobCompleted job1.1 -target job2.1

plot 35 jobResumed job2.1

plot 50 jobCompleted job2.1

Figure 6.2: Example of a Grasp Trace.

6.2.3 Grasp Player

The Grasp Player is the main contribution of Grasp. It basically provides an execu-
tion environment for the script inside of a Grasp Trace. As the Grasp Player is also
written in Tcl, its operation is very simple: it loads the definitions of all methods
which can be called inside a trace, and then evaluates the trace script. Figure 6.3
shows an example of a trace of a video processing algorithm. The visualization corre-
lates the contents of the frame bu↵ers with the system execution, allowing to inspect
their content at di↵erent times in relation to the dynamic events occurring during
runtime.

The Grasp Player comes with a powerful set of features, including the visual-
ization of task execution in flat and hierarchical systems, uni- and multiprocessor
scheduling, intervals in slot shifting, measurement of execution and response times,
automatic verification of certain trace properties, command line interface, and ex-
porting to postscript (useful for creating high quality figures for research articles, e.g.
Figures 6.5, 6.6, 6.7, and 6.10).

Plugins

The Grasp Player provides a simple yet versatile infrastructure for extending it with
custom visualization and analysis plugins. For example, the Grasp Recorder exten-
sion and Grasp Player visualization plugin for intervals in slot shifting was imple-
mented by a student within two hours, extending the budget visualization for servers
in hierarchical scheduling.

A plugin has three interfaces at its disposal:
(i) A plugin can define and implement its own methods which can be called within

a trace. The Bu↵er visualization in Figure 6.3 is an example of such a plugin. It
defines methods for tracing the content of bu↵ers via events for adding and removing
messages from a bu↵er:

• newBu↵er bu↵er creates a new bu↵er, where bu↵er is a new identifier used
in later events.

Grasp overview 139

Figure 6.3: Example illustrating a video processing application comprised of several
tasks (including Network, Decoder and Renderer tasks) executing on a single proces-
sor and communicating individual frames of an MPEG video via two shared bu↵ers.
As the mouse cursor moves across the trace, the contents of the bu↵ers changes. The
figure shows the contents of the bu↵ers at time 614, including the sequence number
and the kind of the video frames.

• bu↵erplot time write bu↵er message indicates that message was added at
bu↵er ’s tail at time time.

• bu↵erplot time read bu↵er indicates that a message was removed from the
bu↵er ’s head at time time.

140 Grasp

(ii) Alternatively, a plugin can register handlers for a set of virtual events, which
are generated when the traced events are processed. The Grasp Player provides a
method allowing a plugin to register a script which will be evaluated whenever a
particular event occurs. For example, the Measurement plugin registers a handler for
the jobArrived and jobCompleted events, to compute the response time of jobs.

(iii) The Grasp Player also provides a set of player events. For example, a plugin
can register a script which will be called upon the TimeChanged event, which is
generated when the mouse cursor is moved across the trace. This player event is used
by the Bu↵er plugin to illustrate the bu↵er content at the time pointed to by the
mouse cursor (e.g in Figure 6.3).

The simple plugin infrastructure is made possible by the Grasp Trace being a
script. Other visualization tools rely on a “dispatch” method which is called for each
event in the trace to dispatch the corresponding event handler. Extending such tools
with new events requires to modify the dispatch method (or to limit the syntax of
traced events). As the Grasp Trace simply calls methods provided by the Grasp
Player, there is no need for a dispatch method. Extending the Grasp Player with a
plugin requires simply to place the plugin script inside of the plugins directory (which
is automatically included when the player starts).

Automatic verification

The plugin infrastructure can be leveraged to implement various verification tools
for automatically analyzing the system behavior in a trace. For example, the Bud-
getCheck plugin shows a warning when a server exceeds its budget, and the Mutex-
Check plugin verifies proper nesting of mutex locking events inside a trace.

For any given target system, if a particular behavior is expected, then a “test-
suite” plugin may be implemented to verify that for a specific scenario the target
system satisfies the desired properties, e.g. after a maintenance activity.

Measurements

The Grasp player measures the execution and response time of jobs and provides a
summary of the average, best case and worst case execution and response times for
all jobs of a task. This information is shown on demand, by clicking on a job or a
task label, or by selecting “Measurements” from the menu, shown in Figure 6.4.

The Grasp plugins also allow to easily implement custom measurement tools, as
we did for measuring the mode change latencies for the simulations in Chapter 4. To
measure the mode change latencies we have added a simple plugin with three new
events:

• latencyStart starts a latency measurement.

• latencyStop stops a previously started latency measurement.

• latencySummary collects all the measured latencies, uses the gnuplot
tool (Gnuplot, 2010) to plot them on a graph, and automatically writes the
graph to a postscript file.

Multiprocessor scheduling 141

Figure 6.4: Example of trace measurements, summarizing the worst-case (WCET),
average-case (ACET) and best-case (BCET) execution times, and the worst-case
(WCRT), average-case (ACRT) and best-case (BCRT) response times for all appli-
cation tasks.

The first two events are generated during the simulation whenever a mode change
occurs. The latter event is generated at the end of the simulation.

6.3 Multiprocessor scheduling

In this section we present Grasp’s support for multiprocessor systems. The multi-
processor support is implemented by extending a subset of events for tracing job
execution with an optional -processor argument.

Our goal was to support various concepts commonly found in multiprocessor
scheduling. Grasp supports partitioned as well as global multiprocessor scheduling
with task and job migration, and communication between jobs on shared and dis-
tributed memory platforms. In this section we discuss each of these features in more
detail.

6.3.1 Creating a processor

Similar to other objects in a trace, such as tasks or servers, a processor needs to be
created before it can be referred to in other trace events.

• newProcessor processor creates a new processor, where processor is an iden-
tifier which can be added to other trace events to support multiprocessor visu-
alization.

6.3.2 Partitioned and global scheduling

In partitioned scheduling, each task is assigned to a particular processor and during
runtime all of its jobs execute on that processor. In global scheduling, di↵erent jobs
of the same task may execute on di↵erent processors.

142 Grasp

Partitioned scheduling

When a task is created, it can be assigned to a particular processor:

• newTask task -processor processor creates a new task and assigns it to the
processor.

All subsequent job events will be mapped to the processor (unless the processor ar-
gument is overridden, as discussed in the next section). Figure 6.5 shows an example
of a trace on partitioned multiprocessor platform.

0 10 20 30 40 50 60 70

Core 1

Core 2

Tasks: Task 1 Task 2 Task 3 Task 4

Figure 6.5: Example illustrating the execution of five tasks on a partitioned multi-
processor platform consisting of two cores.

Figure 6.5 shows the system behavior in a collapsed view, where the execution
of all tasks is collapsed on a single timeline. Alternatively, the Grasp Player also
supports an expanded view, where each processor is shown in a separate window
illustrating the interactions between the local tasks, as shown for a single processor
in Figure 6.3.

Note that the Grasp Player provides many details upon a mouse click. For ex-
ample, when the mouse is clicked on top of a downward pointing arrow, a message
is shown telling which task has arrived. These features are di�cult to visualize on
paper.

Global scheduling

In global scheduling we can distinguish between task and job migration (also re-
ferred to as restricted- and full-migration scheduling, respectively (Carpenter et al.,
2004)). When only task migration is allowed, then tasks are allowed to migrate
between processors, however, each job must execute on one processor. When job
migration is allowed, then jobs may migrate between processors, i.e. they can halt
on one processor and resume on another. Grasp supports both task and job migra-
tion by having the jobArrived, jobStarted, and jobResumed events accept an
optional -processor argument. In a trace containing only task migration only the
jobArrived event will specify the -processor argument. In a trace containing job

Multiprocessor scheduling 143

migration also the jobStarted and jobResumed events will specify the -processor
argument. Figure 6.6 illustrates job migration by having the first job of task 1 arrive
at time 15 on core 2 and later at time 22 migrate to core 1.

newProcessor core1 -name "Core 1"

newProcessor core2 -name "Core 2"

newTask task1 -name "Task 1"

...

plot 15 jobArrived job1.1 task1 -processor core2

plot 15 jobPreempted job4.1

plot 15 jobResumed job1.1

...

plot 22 jobPreempted job1.1 -processor core1

plot 22 jobPreempted job3.1

plot 22 jobResumed job1.1 -processor core1

plot 22 jobResumed job4.1

...

0 10 20 30 40 50 60 70

Core 1

Core 2

Tasks: Task 1 Task 2 Task 3 Task 4

Figure 6.6: Example showing a partial trace and the corresponding visualization,
illustrating the migration of a job. At time 22 the first job o task 1 migrates from
core 2 to core 1, indicated by the dashed arrow.

6.3.3 Communication between jobs

Depending on the memory architecture in a multiprocessor system, jobs can commu-
nicate via shared memory or via message passing.

Shared memory

When jobs executing on di↵erent processors communicate via shared memory, it is
critical to maintain the data consistency of the shared data structures. A common
approach is using mutexes. Grasp provides events for acquiring and releasing a mutex,
as shown in the example in Figure 6.7. The relevant events are:

• jobAcquiredMutex job mutex indicates that job has acquired mutex .

144 Grasp

• jobReleasedMutex job mutex indicates that job has released mutex .

The arguments job and mutex are identifiers for a previously created job and mutex,
respectively.

0 10 20 30 40 50 60 70

Core 1

Core 2

Tasks: Task 1 Task 2 Task 3 Task 4

Mutexes: Mutex 1

Figure 6.7: Example showing tasks 2 and 4 using a mutex to communicate via shared
memory.

Figure 6.7 shows an example of two tasks communicating via shared memory.
At time 12 task 2 locks Mutex 1 guarding a shared memory location. When task 4
arrives at time 15 it finds the shared mutex in a locked state and is suspended. At
time 17, when task 2 unlocks the mutex, task 4 is able to resume and lock Mutex 1
to read the data communicated from task 2.

Message passing

On a distributed memory platform jobs communicate via message passing. A popular
example is the Message Passing Interface (MPI) (Pacheco, 1996). We reuse the Bu↵er
plugin for this purpose. Depending on the communication paradigm (one to one,
broadcast, multicast), we create the appropriate message bu↵ers.

When the mouse cursor is dragged inside of the Grasp Player window, the contents
of the bu↵ers is animated, reflecting their state at the current time, indicated by the
long vertical red line. Clicking on a bu↵er element reveals more message details (in
case they were provided in the trace).

Figure 6.8 shows an example of tasks 1 and 2 communicating via message passing.
At time 12, there are 2 messages A and B from task 2 inside of a message bu↵er,
waiting for task 1 to read them.

6.4 Hierarchical scheduling

An interesting and unique feature of Grasp is the built in support for visualizing
behavior of servers in a hierarchical real-time system. An example is shown in Figure
6.9. There are four events for tracing the budget of a server:

Hierarchical scheduling 145

Figure 6.8: Example showing tasks 1 and 2 using a bu↵er to communicate via message
passing.

• serverReplenished server budget indicates that server’s remaining budget
was replenished to budget.

• serverResumed server indicates that a task has started consuming server’s
budget.

• serverPreempted server indicates that a task has stopped consuming
server’s budget.

• serverDepleted server budget indicates that server’s remaining budget has
been depleted.

These four events are su�cient to visualize the behavior of most servers in the
real-time literature. We have extended µC/OS-II with the polling (Lehoczky et al.,
1987), periodic idling (Davis and Burns, 2005), deferrable (Strosnider et al., 1995),
and constant bandwidth (Abeni and Buttazzo, 1998) servers. Figure 6.9 shows the
visualization of a trace of a system comprised of two tasks mapped to a polling and
a deferrable server. The task execution is shown on top, with the server capacities
illustrated underneath.

146 Grasp

0 50 100

0

5

10

0

5

10

Polling
server

Deferrable
server

Task 2

Task 1

Figure 6.9: Example of a trace visualization for hierarchical scheduling. Task 1 is
assigned to the Deferrable server, and Task 2 is assigned to the Polling server.

6.5 Hierarchical multiprocessor scheduling

In Section 6.4 we have introduced Grasp’s support for hierarchical scheduling in
uniprocesor systems. In this section we discuss the combination of hierarchical and
multiprocessor scheduling.

Using the standard hierarchical scheduling support, the Grasp Player is not aware
of the task-to-server mapping, nor of the desired behavior of particular server types
(such as periodic-idling or deferrable server). The hierarchical scheduling events
pertain only to the replenishment, depletion and consumption of server’s budget.
The target system is responsible for generating the correct behavior. However, the
Grasp Player can be easily extended with a verification plugin, making sure that the
server behavior is according to its specification, e.g. that only tasks assigned to the
server consume its budget, or that a periodic idling server always idles its budget
away.

The fact that Grasp is not aware of the mapping between servers and tasks al-
lows to easily trace systems where tasks consume budgets from several servers, and
systems where a server is serving its budget to several tasks executing at the same
time on di↵erent processors (Shin et al., 2008). The latter is accomplished by al-
lowing several serverResumed events to occur in a trace without a corresponding
serverPreempted event in between. This provides a very simple way for tracing
budget consumption in a multiprocessor setting: whenever a task assigned to a bud-

Timestamp synchronization 147

get is resumed on any processor, the corresponding server is also resumed. Similarly,
a server is preempted whenever a task consuming its budget is preempted on any
processor.

0 10 20 30 40 50 60 70

Core 1

Core 2

0

10

20

Deferrable
server

Tasks: Task 1 Task 2 Task 3 Task 4

Figure 6.10: Example showing a trace visualization of a hierarchical multiprocessor
system, where a deferrable server with period 30 and capacity 20 is serving its budget
to tasks 1 and 2.

Figure 6.10 shows an example visualization of such a system, where a deferrable
server with period 30 and capacity 20 is serving its budget to tasks 1 and 2. Tasks
3 and 4 are not bound to any server. At time 10, when task 2 arrives, it starts
consuming server’s budget. At time 15, when task 1 arrives, it also starts consuming
server’s budget. The budget is consumed at twice the rate until task 2 completes at
time 20.

6.6 Timestamp synchronization

In Section 6.2.2, we mentioned that the events comprising a Grasp Trace do not have
to be totally ordered by time. In a distributed multiprocessor system this allows
to record traces on each processor individually, and then to simply concatenate the
traces to form a single system trace, without the need for interleaving the events.
This system trace file can then be loaded into the Grasp Player as any other trace
file.

In the absence of a global time, i.e. if each processor records its local events
using an asynchronous local clock, we need to synchronize the events which were
recorded on di↵erent processors. The clock synchronization algorithm used by Grasp
is based on the work presented in (Maillet and Tron, 1995). Unlike Maillet and Tron

148 Grasp

(1995), however, Grasp does not enforce to synchronize with a single master node.
It allows nodes to synchronize their time with an arbitrary node, creating clusters of
synchronized nodes.

Let P
i

(for i 2 {1..p}) be a processor in our target system, and let C
i

(t) be the
value of its local clock at physical time t 2 R. If we assume constant drift of each
local clock, then we can express each local clock function as

C
i

(t) = ↵
i

+ �
i

t,

where ↵
i

is the initial o↵set at t = 0 and �
i

is the drift with respect to the physical
time t. We can then use the algorithm presented by Maillet and Tron (1995) to
approximate the ↵

i

and �
i

parameters, and use the C
i

(t) functions to map events
recorded on di↵erent processors onto the same timeline.

The algorithm relies on processors exchanging synchronization messages, as illus-
trated in Figure 6.11.

Pi

Pj

(Ci(t1), S) (Ci(t4), R)

(Cj(t2), R) (Cj(t3), S)

Figure 6.11: Two processors P
i

and P
j

exchange messages to synchronize their clocks.

The tuples indicate the recorded events: (C
i

(t), S) indicates the transmission and
(C

i

(t), R) the reception of a synchronization message at local time C
i

(t). Processor
P
i

sends a message to P
j

and records the event (C
i

(t
1

), S) using its local clock
time. Upon reception of the message, P

j

records the event (C
j

(t
2

), R) using its own
local time and immediately sends a message back to P

i

, recording the sending event
(C

j

(t
3

), S). Upon reception of the message, P
i

records the event (C
i

(t
4

), R).
Grasp provides the following events for synchronizing time between events gener-

ated on di↵erent processors:

• syncSent source target id indicates that the source processor has sent a mes-
sage id to the target processor.

• syncReceived source target id indicates that the target processor has re-
ceived a message id from the source processor.

The id parameter is used to match the transmission and reception events, in case
several synchronization messages are sent between the same nodes. It also allows
Grasp to identify lost synchronization messages.

Figure 6.12 shows an example of a system trace, which was obtained by concate-
nating two traces recorded on processors core1 and core2 . Note that each synchro-
nization event is recorded with the local time on the processor where it is generated.

Timestamp synchronization 149

newProcessor core1

...

plot 15 syncSent core1 core2 m1

plot 28 syncReceived core1 core2 m2

...

newProcessor core2

...

plot 21 syncReceived core1 core2 m1

plot 22 syncSent core1 core2 m2

...

Figure 6.12: Example showing a partial trace illustrating the use of synchronization
events.

When the Grasp Player loads the complete system trace, it has enough information
to synchronize the events.

Grasp does not pose a minimum bound on the number of synchronization mes-
sages. However, the larger the number of messages and the longer the interval be-
tween the messages, the higher the accuracy of the approximation of the ↵

i

and �
i

parameters. Of course, the accuracy comes at the cost of additional overhead for
exchanging the messages and storing the corresponding events.

150 Grasp

Chapter 7

Conclusion

This thesis addressed the problem of multi-resource management in embedded real-
time systems. It focused on three research questions. The first question concentrated
on how to design an e�cient hierarchical scheduling framework for supporting inde-
pendent development and analysis of component based systems, to provide temporal
isolation between components. The second question investigated how to change the
mapping of resources to tasks and components during run-time e�ciently and pre-
dictably, and how to analyze the latency of such a system mode change in systems
comprised of several scalable components. The third question dealt with the schedul-
ing and analysis of a set of parallel-tasks with real-time constraints which require
simultaneous access to several di↵erent resources.

For providing temporal isolation we chose a reservation-based approach. We first
focused on processor reservations, where timed events play an important role. Com-
mon examples are task deadlines, periodic release of tasks, budget replenishment
and budget depletion. E�cient timer management is therefore essential. We inves-
tigated the overheads in traditional timer management techniques and presented a
mechanism called Relative Timed Event Queues (RELTEQ), which provides an ex-
pressive set of primitives at a low processor and memory overhead. We then leveraged
RELTEQ for an e�cient, modular and extendible design for enhancing a real-time
operating system with periodic tasks, polling, idling periodic and deferrable servers,
and a two-level fixed-priority Hierarchical Scheduling Framework (HSF). The HSF
design provides temporal isolation and supports independent development of com-
ponents by separating the global and local scheduling, and allowing each server to
define a dedicated scheduler. Furthermore, the design addresses the system overheads
inherent to an HSF and prevents undesirable interference between components. It
limits the interference of inactive servers on the system level by means of wakeup
events and a combination of inactive server queues with a stopwatch queue. Our
implementation is modular and requires only a few modifications of the underlying
operating system. Experimental results based on an implementation in the µC/OS-II
real-time operating system demonstrated a reduction of system overheads and the
e↵ect of limited interference between subsystems.

151

152 Conclusion

We then investigated scalable components operating in a memory-constrained
system. We first showed how to reduce the memory requirements in a streaming
multimedia application, based on a particular priority assignment of the di↵erent
components along the processing chain. Then we investigated adapting the resource
provisions to tasks during runtime, referred to as mode changes. We presented a novel
mode change protocol called Swift Mode Changes, which relies on Fixed Priority with
Deferred preemption Scheduling to reduce the mode change latency bound compared
to existing protocols based on Fixed Priority Preemptive Scheduling.

We then presented a new partitioned parallel-task scheduling algorithm called
Parallel-SRP (PSRP), which generalizes MSRP for multiprocessors, and the cor-
responding schedulability analysis for the problem of multi-resource scheduling of
parallel tasks with real-time constraints. We showed that the algorithm is deadlock-
free, derived a maximum bound on blocking, and used this bound as a basis for a
schedulability test. We presented an example which demonstrated how PSRP can
exploit the inherent parallelism of a platform comprised of multiple heterogeneous
resources.

Finally, we presented Grasp, which is a visualization toolset aiming to provide
insight into the behavior of complex real-time systems. Its flexible plugin infrastruc-
ture allows for easy extension with custom visualization and analysis techniques for
automatic trace verification. Its capabilities include the visualization of hierarchi-
cal multiprocessor systems, including partitioned and global multiprocessor schedul-
ing with migrating tasks and jobs, communication between jobs via shared memory
and message passing, and hierarchical scheduling in combination with multiprocessor
scheduling. For tracing distributed systems with asynchronous local clocks Grasp
also supports the synchronization of traces from di↵erent processors during the visu-
alization and analysis.

Future work

Our RELTEQ implementation is based on a linked-list implementation of the event
queues. We have indicated the challenges of a tree-based implementation due to the
relative time representation. In the future we want to investigate in more detail other
advanced data structures for implementing RELTEQ queues.

Our HSF implementation, as well as several HSF implementations in the literature
(Behnam et al., 2008; Kato et al., 2010), implicitly assume that server budget is
accounted for at tick granularity, which is also the granularity of timed events in the
system. Consequently, it can be shown that the utilization of a server may approach 1,
independent of its period or capacity. In the future we want to investigate how we can
limit the excess utilization of servers by accounting their budget with finer granularity.
This can be accomplished e.g. by reading the counter of a higher resolution timer
when a server is switched in or out, instead of relying on the tick counter.

In the investigation of temporal protection and memory constrained systems we
have assumed independent tasks. An interesting future work is to extend these
approaches to dependent tasks which share non-preemptive resources.

153

The PSRP algorithm can handle non-preemptive resources with arbitrary capac-
ity, however, it is limited to single-unit preemptive resources. While it is su�cient for
partitioned parallel-task scheduling, where processors are allocated to task segments
up front, in the future we want to extend PSRP to also handle multi-unit preemptive
resources, which would result in a novel global parallel-task scheduler for tasks which
share non-preemptive resources.

We have indicated that our schedulability analysis of PSRP is pessimistic. The
analysis is pessimistic with respect to local segments, because it ignores the fact
that local segments which require at least one global resource will execute non-
preemptively and therefore will not su↵er interference from higher priority tasks.
A possible future direction for eliminating this pessimism is to combine our analysis
with the analysis of Fixed Priority with Deferred Preemption scheduling.

Our schedulability analysis is also pessimistic with respect to our definition of
dependency between segments, which assumes that all segments in a connected sub-
graph of a partial segment requirements graph depend on each other. In the future
we can reduce this pessimism by considering an alternative definition of dependency,
which will e.g. distinguish between dependency chains in a subgraph which share
common resources and those which do not.

154 Conclusion

Bibliography

L. Abeni, G. Buttazzo. Integrating multimedia applications in hard real-time systems.
In Real-Time Systems Symposium (RTSS), pp. 4–14. 1998.

H. Ahn, S. Cho, H. Na, H. Han. Access pattern based stream bu↵er management
scheme for portable media players. IEEE Transactions on Consumer Electronics,
vol. 55(3):pp. 1522 –1529, 2009.

G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Spring joint computer conference, pp. 483–485. 1967.

J. H. Anderson, J. M. Calandrino. Parallel real-time task scheduling on multicore
platforms. In Real-Time Systems Symposium (RTSS), pp. 89 –100. 2006.

M. Åsberg, M. Behnam, F. Nemati, T. Nolte. Towards hierarchical scheduling in
AUTOSAR. In Emerging Technologies Factory Automation (ETFA), pp. 1 –8.
2009.

M. Åsberg, T. Nolte, S. Kato. Towards hierarchical scheduling in linux/multi-core
platform. In International Conference on Emerging Technologies and Factory Au-
tomation (ETFA), pp. 1–4. 2010.

M. Åsberg, T. Nolte, S. Kato. A loadable task execution recorder for hierarchical
scheduling in linux. In Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA), vol. 1, pp. 380 –387. 2011.

N. Audsley, A. Burns, M. Richardson, K. Tindell, A. J. Wellings. Applying new
scheduling theory to static priority pre-emptive scheduling. Software Engineering
Journal, vol. 8(5):pp. 284–292, 1993.

AUTOSAR. Automotive open system architecture (AUTOSAR). 2011. URL http:

//www.autosar.org.

T. P. Baker. Stack-based scheduling for realtime processes. Real-Time Systems,
vol. 3(1):pp. 67–99, 1991.

D. Becker, M. Geimer, R. Rabenseifner, F. Wolf. Extending the scope of the controlled
logical clock. Cluster Computing, pp. 1–19, 2011.

155

156 BIBLIOGRAPHY

D. Becker, R. Rabenseifner, F. Wolf, J. C. Linford. Scalable timestamp synchro-
nization for event traces of message-passing applications. Parallel Computing,
vol. 35:pp. 595–607, 2009.

M. Behnam, T. Nolte, I. Shin, M. Åsberg, R. J. Bril. Towards hierarchical scheduling
on top of VxWorks. In International Workshop on Operating Systems Platforms
for Embedded Real-Time Applications (OSPERT), pp. 63–72. 2008.

M. Behnam, I. Shin, T. Nolte, M. Nolin. Sirap: a synchronization protocol for hier-
archical resource sharingin real-time open systems. In International Conference on
Embedded Software (EMSOFT), pp. 279–288. 2007.

M. Biberstein, Y. Harel, A. Heilper. Clock synchronization in cell be traces. In Euro-
Par 2008 – Parallel Processing, vol. 5168 of Lecture Notes in Computer Science,
pp. 3–12. Springer Berlin / Heidelberg, 2008.

A. Block, H. Leontyev, B. B. Brandenburg, J. H. Anderson. A flexible real-time
locking protocol for multiprocessors. In International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), pp. 47–56. 2007.

B. B. Brandenburg, J. H. Anderson. A comparison of the M-PCP, D-PCP, and
FMLP on LITMUSRT . In International Conference on Principles of Distributed
Systems (OPODIS), pp. 105–124. 2008a.

B. B. Brandenburg, J. H. Anderson. An implementation of the PCP, SRP, D-PCP,
M-PCP, and FMLP real-time synchronization protocols in litmusRT . In Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA), pp. 185–194. 2008b.

B. B. Brandenburg, J. M. Calandrino, A. Block, H. Leontyev, J. H. Anderson. Real-
time synchronization on multiprocessors: To block or not to block, to suspend
or spin? In Real-Time and Embedded Technology and Applications Symposium
(RTAS), pp. 342–353. 2008.

D. Brash. The ARM architecture version 6 (ARMv6). White Paper, 2002. URL
www.arm.com/pdfs/ARMv6_Architecture.pdf.

R. J. Bril, J. J. Lukkien, W. Verhaegh. Worst-case response time analysis of real-time
tasks under fixed-priority scheduling with deferred preemption. Real-Time Systems,
vol. 42(1):pp. 63–119, 2009.

R. J. Bril, J. J. Lukkien, W. F. J. Verhaegh. Worst-case response time analysis of
real-time tasks under fixed-priority scheduling with deferred preemption revisited.
In Euromicro Conference on Real-Time Systems (ECRTS), pp. 269–279. 2007.

B. Buchanan, D. Niehaus, S. Sheth, Y. Wijata. The data stream kernel interface.
Tech. Rep. ITTC-FY98-TR11510-04, University Of Kansas, 1998.

A. Burns. Preemptive priority based scheduling: An appropriate engineering approach.
In S. Son, ed., Advances in Real-Time Systems, pp. 225–248. Prentice-Hall, 1994.

BIBLIOGRAPHY 157

A. Burns. Defining new non-preemptive dispatching and locking policies for ada.
Reliable SoftwareTechnologies —Ada-Europe 2001, pp. 328–336, 2001.

A. Burns, M. Nicholson, K. Tindell, N. Zhang. Allocating and scheduling hard real-
time tasks on a parallel processing platform. Tech. Rep. YCS-94-238, University of
York, UK, 1994.

A. Burns, A. J. Wellings. Real-Time Systems and Programming Languages: ADA
95, Real-Time Java, and Real-Time POSIX. Third edition ed. Addison Wesley
Longman, 2001.

G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications. 2nd ed. Springer, 2004.

G. Buttazzo, P. Gai. E�cient EDF implementation for small embedded systems. In
International Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT). 2006.

J. M. Calandrino, J. H. Anderson, D. P. Baumberger. A hybrid real-time scheduling
approach for large-scale multicore platforms. In Proceedings of the 19th Euromicro
Conference on Real-Time Systems, pp. 247–258. 2007.

A. Carlini, G. C. Buttazzo. An e�cient time representation for real-time embedded
systems. In ACM Symposium on Applied Computing, pp. 705–712. 2003.

J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, S. Baruah. Handbook
of Scheduling: Algorithms, Models, and Performance Analysis, chap. A Catego-
rization of Real-Time Multiprocessor Scheduling Problems and Algorithms, pp.
30–1 – 30–19. Chapman and Hall/CRC, 2004.

S. Chodrow, F. Jahanian, M. Donner. Run-time monitoring of real-time systems. In
Real-Time Systems Symposium (RTSS), pp. 74–83. 1991.

F. Cristia. Probabilistic clock synchronization. Distributed Computing, vol. 3:pp.
146–158, 1989.

R. I. Davis, A. Burns. Hierarchical fixed priority pre-emptive scheduling. In Real-Time
Systems Symposium (RTSS), pp. 389–398. 2005.

R. I. Davis, A. Burns. A survey of hard real-time scheduling for multiprocessor sys-
tems. ACM Computing Surveys, vol. 43(4):pp. 35:1–35:44, 2011.

E. W. Dijkstra. Een algorithme ter voorkoming van de dodelijke omarming, 1964.
URL http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD108.PDF. Circulated
privately.

E. W. Dijkstra. The mathematics behind the Banker’s Algorithm. In Selected Writings
on Computing: A Personal Perspective, pp. 308–312. Springer-Verlag, 1982.

Dtrace. http://wikis.sun.com/display/dtrace/dtrace. 2008.

158 BIBLIOGRAPHY

A. Easwaran, I. Shin, I. Lee. Optimal virtual cluster-based multiprocessor scheduling.
Real-Time Systems, vol. 43:pp. 25–59, 2009.

D. R. Engler, M. F. Kaashoek, J. O’Toole, Jr. Exokernel: an operating system
architecture for application-level resource management. In Symposium on Operating
Systems Principles (SOSP), pp. 251–266. 1995.

A. Eswaran, R. R. Rajkumar. Energy-aware memory firewalling for qos-sensitive
applications. In Euromicro Conference on Real-Time Systems (ECRTS), pp. 11–
20. 2005.

A. Eswaran, A. Rowe, R. Rajkumar. Nano-RK: An energy-aware resource-centric
RTOS for sensor networks. In Real-Time Systems Symposium (RTSS), pp. 256–
265. 2005.

Evidence. ERIKA Enterprise: Open Source RTOS for single- and multi-core appli-
cations. 2010. URL http://www.evidence.eu.com.

D. Faggioli, M. Trimarchi, F. Checconi, C. Scordino. An EDF scheduling class for
the linux kernel. In Real-Time Linux Workshop. 2009.

D. G. Feitelson. Distributed hierarchical control for parallel processing. Computer,
vol. 23(5):pp. 65–77, 1990.

D. G. Feitelson, L. Rudolph. Gang scheduling performance benefits for fine-grain
synchronization. Journal of Parallel and Distributed Computing, vol. 16(4):pp.
306 – 318, 1992.

F. H. Fitzek, M. Reisslein. MPEG4 and H.263 video traces for network performance
evaluation. IEEE Network, vol. 15(6):pp. 40–53, 2001.

Ftrace. http://www.kernel.org/doc/Documentation/trace/ftrace.txt. 2008.

P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, P. Marceca. A comparison of
MPCP and MSRP when sharing resources in the Janus multiple-processor on a chip
platform. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), pp. 189–198. 2003.

P. Gai, G. Lipari, M. D. Natale. Minimizing memory utilization of real-time task sets
in single and multi-processor systems-on-a-chip. In Real-Time Systems Symposium
(RTSS), pp. 73–83. 2001.

J. J. G. Garćıa, J. C. P. Gutiérrez, M. G. Harbour. Schedulability analysis of dis-
tributed hard real-time systems with multiple-event synchronization. In Euromicro
Conference on Real-Time Systems (ECRTS), pp. 15–24. 2000.

T. Geelen. Dynamic loading in a real-time system: An overlaying technique using
virtual memory. Tech. rep., Eindhoven University of Technology, 2005.

BIBLIOGRAPHY 159

M. Geimer, F. Wolf, B. J. N. Wylie, D. Becker, D. Böhme, W. Frings, M.-A. Her-
manns, B. Mohr, Z. Szebenyi. Recent developments in the scalasca toolset. In
International Workshop on Parallel Tools for High Performance Computing, pp.
39–51. Springer, 2010.

Gnuplot. http://www.gnuplot.info. 2010.

J. Goossens, V. Berten. Gang FTP scheduling of periodic and parallel rigid real-time
tasks. In Real-Time and Network Systems (RTNS), pp. 189–196. 2010.

R. Gopalakrishnan, G. M. Parulkar. Bringing real-time scheduling theory and practice
closer for multimedia computing. SIGMETRICS Perform. Eval. Rev., vol. 24(1):pp.
1–12, 1996.

A. N. Habermann. Prevention of system deadlocks. Commun. ACM, vol. 12:pp.
373–382, 1969.

P. B. Hansen. Operating system principles. Prentice-Hall, 1973.

B. G. Haskell, A. Puri, A. N. Netravali. Digital Video: An introduction to MPEG-2.
Chapman & Hall, Ltd., 1996.

J. W. Havender. Avoiding deadlock in multitasking systems. IBM Systems Journal,
vol. 7(2):pp. 74 –84, 1968.

C. Hentschel, R. Bril, Y. Chen, R. Braspenning, T.-H. Lan. Video quality-of-service
for consumer terminals - a novel system for programmable components. IEEE
Transactions on Consumer Electronics, vol. 49(4):pp. 1367–1377, 2003.

M. Holenderski, R. J. Bril, J. J. Lukkien. Swift mode changes in memory constrained
real-time systems. In International Conference on Embedded and Ubiquitous Com-
puting (EUC), pp. 262–269. 2009a.

M. Holenderski, R. J. Bril, J. J. Lukkien. Swift mode changes in memory con-
strained real-time systems. Tech. Rep. CS-09-08, Eindhoven University of Technol-
ogy, 2009b.

M. Holenderski, R. J. Bril, J. J. Lukkien. Grasp: Visualizing the behavior of hier-
archical multiprocessor real-time systems. In International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS). 2011a.

M. Holenderski, R. J. Bril, J. J. Lukkien. Reducing memory requirements in a multi-
media streaming application. In International Conference on Consumer Electronics
(ICCE). 2011b.

M. Holenderski, R. J. Bril, J. J. Lukkien. Reducing memory requirements in a
multimedia streaming application. IEEE Transactions on Consumer Electronics,
vol. 57(1):pp. 145–152, 2011c.

160 BIBLIOGRAPHY

M. Holenderski, R. J. Bril, J. J. Lukkien. An e�cient hierarchical scheduling frame-
work for the automotive domain. In S. M. Babamir, ed., Real-Time Systems,
Architecture, Scheduling, and Application. InTech, 2012a.

M. Holenderski, R. J. Bril, J. J. Lukkien. Grasp: Visualizing the behavior of hierar-
chical multiprocessor real-time systems. Journal of Systems Architecture, 2012b.

M. Holenderski, R. J. Bril, J. J. Lukkien. Parallel-task scheduling on multiple re-
sources. In Euromicro Conference on Real-Time Systems (ECRTS). 2012c.

M. Holenderski, W. Cools, R. J. Bril, J. J. Lukkien. Multiplexing real-time timed
events. In Emerging Technologies and Factory Automation (ETFA), pp. 1718–
1721. 2009c.

M. Holenderski, W. Cools, R. J. Bril, J. J. Lukkien. Extending an open-source real-
time operating system with hierarchical scheduling. Tech. Rep. CS-report 10-10,
Eindhoven University of Technology, 2010a.

M. Holenderski, C. G. Okwudire, R. J. Bril, J. J. Lukkien. Memory management for
multimedia quality of service in resource constrained embedded systems. In Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA),
pp. 1–8. 2010b.

M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, J. J. Lukkien. Grasp:
Tracing, visualizing and measuring the behavior of real-time systems. In Interna-
tional Workshop on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS), pp. 37–42. 2010c.

R. C. Holt. Some deadlock properties of computer systems. ACM Comput. Surv.,
vol. 4:pp. 179–196, 1972.

S. Hunold, R. Ho↵mann, F. Suter. Jedule: A tool for visualizing schedules of par-
allel applications. In International Conference on Parallel Processing Workshops
(ICPPW), pp. 169–178. 2010.

R. Inam, J. Maki-Turja, M. Sjödin, S. M. H. Ashjaei, S. Afshar. Support for hi-
erarchical scheduling in freertos. In Emerging Technologies Factory Automation
(ETFA), pp. 1 –10. 2011.

D. Isovic, G. Fohler. Quality aware MPEG-2 stream adaptation in resource con-
strained systems. In Euromicro Conference on Real-Time Systems (ECRTS), pp.
23–32. 2004.

D. Jarnikov. QoS Framework for Video Streaming in Home Networks. Ph.D. thesis,
Eindhoven University of Technology, 2007.

D. Jarnikov, P. van der Stok, C. Wust. Predictive control of video quality under
fluctuating bandwidth conditions. In International Conference on Multimedia and
Expo (ICME), vol. 2, pp. 1051–1054. 2004.

BIBLIOGRAPHY 161

S. Kato, Y. Ishikawa. Gang EDF scheduling of parallel task systems. In Real-Time
Systems Symposium (RTSS), pp. 459 –468. 2009.

S. Kato, R. Rajkumar, Y. Ishikawa. A loadable real-time scheduler framework for
multicore platforms. In Submitted to Real-Time Computing Systems and Applica-
tions (RTCSA). 2010.

J. C. D. Kergommeaux, B. D. O. Stein, M. S. Martin. Paje: An extensible environ-
ment for visualizing multi-threaded program executions. LNCS 1900, 2000.

D. Kim, Y.-H. Lee, M. Younis. SPIRIT-µKernel for strongly partitioned real-time
systems. In Real-Time Computing Systems and Applications (RTCSA), pp. 73–80.
2000.

S. Kim, T. Kim, E. G. Im, H. Han. E�cient reuse of local regions in memory-limited
mobile devices. IEEE Transactions on Consumer Electronics, vol. 56(3):pp. 1297
–1303, 2010.

J. J. Labrosse. MicroC/OS-II: The Real-Time Kernel. CMP Books, 1998.

J. J. Labrosse. MicroC/OS-II: The Real Time Kernel. CMP Books, 2nd ed., 2002.

K. Lakshmanan, D. de Niz, R. Rajkumar. Coordinated task scheduling, allocation and
synchronization on multiprocessors. In Real-Time Systems Symposium (RTSS), pp.
469 –478. 2009.

K. Lakshmanan, S. Kato, R. Rajkumar. Scheduling parallel real-time tasks on multi-
core processors. In Real-Time Systems Symposium (RTSS), pp. 259 – 268. 2010.

T. Lan, Y. Chen, Z. Zhong. Mpeg2 decoding complexity regulation for a media pro-
cessor. In Workshop on Multimedia Signal Processing (MMSP), pp. 193 –198.
2001.

J. Lehoczky, L. Sha, Y. Ding. The rate monotonic scheduling algorithm: exact char-
acterization and average case behavior. In Real Time Systems Symposium (RTSS),
pp. 166 –171. 1989.

J. P. Lehoczky, L. Sha, J. K. Strosnider. Enhanced aperiodic responsiveness in hard
real-time environments. In Real-Time Systems Symposium (RTSS), pp. 261–270.
1987.

X. Li, M. Malek. Analysis of speedup and communication/computation ratio in multi-
processor systems. In Real-Time Systems Symposium (RTSS), pp. 282 –288. 1988.

G. Lipari, E. Bini. A framework for hierarchical scheduling on multiprocessors: From
application requirements to run-time allocation. In Real-Time Systems Symposium
(RTSS), pp. 249–258. 2010.

C. L. Liu, J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM, vol. 20(1):pp. 46–61, 1973.

162 BIBLIOGRAPHY

E. Maillet, C. Tron. On e�ciently implementing global time for performance evalua-
tion on multiprocessor systems. Parallel Distributed Computing, vol. 28:pp. 84–93,
1995.

F. H. Martin. Apollo 11: 25 years later. Apollo 11 Lunar Surface Journal, 1994.

S. McCartney. Eniac: The Triumphs and Tragedies of the World’s First Computer.
Walker & Company, 1999.

R. McIlroy, P. Dickman, J. Sventek. E�cient dynamic heap allocation of scratch-
pad memory. In International Symposium on Memory Management (ISMM), pp.
31–40. 2008.

F. Menichelli, M. Olivieri. Static minimization of total energy consumption in mem-
ory subsystem for scratchpad-based systems-on-chips. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 17(2):pp. 161 –171, 2009.

C. Mercer, R. Rajkumar, J. Zelenka. Temporal protection in real-time operating
systems. In IEEE Workshop on Real-Time Operating Systems and Software, pp.
79–83. 1994.

D. L. Mills. Network Time Protocol (Version 3). The Internet Engineering Task
Force—Network Working Group, 1992. RFC 1305.

A. K. Mok. Fundamental Design Problems of Distributed Systems for The Hard-Real-
Time Environment. Ph.D. thesis, Laboratory for Computer Science, Massachusetts
Institute of Technology, 1983.

M. I. Mughal, R. Javed. Recording of Scheduling and Communication events on
Telecom Systems. Master’s thesis, Mälardalen University, 2008.

W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, K. Solchenbach. Vampir: Visual-
ization and analysis of MPI resources. Supercomputer, vol. 12:pp. 69–80, 1996.

T. Nakajima. Resource reservation for adaptive QoS mapping in real-time mach.
Parallel and Distributed Processing, pp. 1047–1056, 1998.

T. Nolte. Compositionality and CPS from a platform perspective. In Embedded and
Real-Time Computing Systems and Applications (RTCSA), vol. 2, pp. 57 –60. 2011.

T. Nolte, I. Shin, M. Behnam, M. Sjödin. A synchronization protocol for tempo-
ral isolation of software components in vehicular systems. IEEE Transactions on
Industrial Informatics, vol. 5(4):pp. 375–387, 2009.

F. O’Brien. The Apollo Guidance Computer: Architecture and Operation. Praxis
Publishing Ltd., 2010.

S. Oikawa, R. Rajkumar. Portable RK: a portable resource kernel for guaranteed and
enforced timing behavior. In Real-Time Technology and Applications Symposium
(RTAS), pp. 111–120. 1999.

BIBLIOGRAPHY 163

OpenCores. Openrisc 1000: Architectural simulator. 2010. URL http://opencores.

org/openrisc,or1ksim.

J. Ousterhout. Scheduling techniques for concurrent systems. In International Con-
ference on Distributed Computing Systems, pp. 22–30. 1982.

P. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1996.

L. Palopoli, T. Cucinotta, L. Marzario, G. Lipari. Aquosa—adaptive quality of service
architecture. Software – Practice and Experience, vol. 39(1):pp. 1–31, 2009.

D. Polock, D. Zöbel. Conformance testing of priority inheritance protocols. In Inter-
national Conference on Real-Time Systems and Applications (RTCSA’00), p. 404.
2000.

R. Rajkumar, K. Juvva, A. Molano, S. Oikawa. Resource kernels: A resource-centric
approach to real-time and multimedia systems. In Conference on Multimedia Com-
puting and Networking (CMCN), pp. 150–164. 1998.

R. Rajkumar, L. Sha, J. Lehoczky. Real-time synchronization protocols for multipro-
cessors. In Real-Time Systems Symposium (RTSS), pp. 259 –269. 1988.

J. Real. Protocols de cambio de mondo para sistemas de tiempo real (mode change
protocols for real time systems). Ph.D. thesis, Technical University of Valencia,
2000.

J. Real, A. Crespo. Mode change protocols for real-time systems: A survey and a
new proposal. Real-Time Systems, vol. 26(2):pp. 161–197, 2004.

S. Saewong, R. R. Rajkumar, J. P. Lehoczky, M. H. Klein. Analysis of hierar-
chical fixed-priority scheduling. In Euromicro Conference on Real-Time Systems
(ECRTS), p. 173. 2002.

A. Saifullah, K. Agrawal, C. Lu, C. Gill. Multi-core real-time scheduling for general-
ized parallel task models. In Real-Time Systems Symposium (RTSS), pp. 217–226.
2011.

L. Sha, R. Rajkumar, J. Lehoczky, K. Ramamritham. Mode change protocols for
priority-driven preemptive scheduling. Tech. Rep. CMU/SEI-88-TR-34, Carnegie
Mellon University, 1988.

L. Sha, R. Rajkumar, J. P. Lehoczky. Priority inheritance protocols: An approach to
real-time synchronization. IEEE Transactions on Computers, vol. 39(9):pp. 1175–
1185, 1990.

I. Shin, A. Easwaran, I. Lee. Hierarchical scheduling framework for virtual clustering
of multiprocessors. In Euromicro Conference on Real-Time Systems (ECRTS), pp.
181 –190. 2008.

164 BIBLIOGRAPHY

I. Shin, I. Lee. Periodic resource model for compositional real-time guarantees. In
Real-Time Systems Symposium (RTSS), pp. 2–13. 2003.

I. Shin, I. Lee. Compositional real-time scheduling framework with periodic model.
ACM Transactions in Embedded Computing Systems (TECS), vol. 7:pp. 30:1–
30:39, 2008.

J. K. Strosnider, J. P. Lehoczky, L. Sha. The deferrable server algorithm for enhanced
aperiodic responsiveness in hard real-time environments. IEEE Transactions on
Computers, vol. 44(1):pp. 73–91, 1995.

TimeDoctor. http://sourceforge.net/projects/timedoctor/. 2011.

K. Tindell, A. Alonso. A very simple protocol for mode changes in priority preemptive
systems. Tech. rep., Universidad Politecnica de Madrid, 1996.

K. Tindell, J. Clark. Holistic schedulability analysis for distributed hard real-time
systems. Microprocess. Microprogram., vol. 40(2-3):pp. 117–134, 1994.

M. M. H. P. van den Heuvel, R. J. Bril, J. J. Lukkien. Protocol-transparent resource
sharing in hierarchically scheduled real-time systems. In International Conference
on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. 2010.

M. M. H. P. van den Heuvel, M. Holenderski, R. J. Bril, J. J. Lukkien. Constant-
bandwidth supply for priority processing. IEEE Transactions on Consumer Elec-
tronics, vol. 57(2):pp. 873–881, 2011.

M. M. H. P. van den Heuvel, M. Holenderski, W. Cools, R. J. Bril, J. J. Lukkien.
Virtual timers in hierarchical real-time systems. In Work in Progress session of
the Real-time Systems Symposium (RTSS), pp. 35–38. 2009.

M. We↵ers-Albu. Behavioral analysis of real-time systems with interdependent tasks.
Ph.D. thesis, Technische Universiteit Eindhoven, 2008.

B. Welch, K. Jones, J. Hobbs. Practical Programming in Tcl and Tk. Prentice Hall,
2003.

T. Wiegand, G. Sullivan, G. Bjontegaard, A. Luthra. Overview of the h.264/avc video
coding standard. IEEE Transactions on Circuits and Systems for Video Technology,
vol. 13(7):pp. 560 –576, 2003.

C. C. Wüst, L. Ste↵ens, W. F. Verhaegh, R. J. Bril, C. Hentschel. Qos control
strategies for high-quality video processing. Real-Time Systems, vol. 30(1-2):pp.
7–29, 2005.

K. S. Yim, H. Bahn, K. Koh. A flash compression layer for smartmedia card systems.
IEEE Transactions on Consumer Electronics, vol. 50(1):pp. 192 – 197, 2004.

D. Zöbel, D. Polock, A. van Arkel. Testing for the conformance of real-time proto-
cols implemented by operating systems. Electronic Notes in Theoretical Computer
Science, vol. 133:pp. 315–332, 2005.

Symbol index

R Set of all resources 5
P Set of preemptive resources 6
N Set of nonpreemptive resources 6
T Time domain 7
� Set of all tasks 7
S Set of all segments 7
R

i,j

Set of resource requirements of segment ⌧
i,j

7
E

i,j

Worst-case execution time of segment ⌧
i,j

7
E

i

Worst-case execution time of task ⌧
i

8
C Set of all components 9
⇡
c

Priority of component c 9
T
c

Period of component c 9
O

c

O↵set (or phasing) of component c 9
D

c

Deadline of component c 9
R

c

Set of resource requirements of component c 9
P
c

Set of resource provisions of component c 9
E

c

Time capacity of component c 9
�S(t, s, r) Number of units of resource r owned by segment s at

time t
13

⌘S(t, s, r) Returns 1 if segment s is scheduled on resource r at
time t, 0 otherwise

13

�C(t, c, r) Number of units of resource r owned by component c
at time t

14

⌘C(t, c, r) Returns 1 if component c is scheduled on resource r
at time t, 0 otherwise

14

�(t, c) Remaining budget of component c at time t 14
�(c) Set of tasks requiring component c 25
�(⌧

i

) Set of components required by task ⌧
i

25
⌫(t, r) Number of units of resource r available at time t 25
↵(t, ⌧

i

) Segment of task ⌧
i

which is active at time t 25
R

↵(t,⌧

i

)

Set of resources required by task ⌧
i

at time t 25
s.sq Server queue of server s 36
s.se Stopwatch event of server s 36

165

166 BIBLIOGRAPHY

s.vq Virtual server queue of server s 39
s.we Wakeup event of server s 38
M Set of system mode identifiers 66
�S Set of scalable tasks 66
CS Set of scalable components 66
Ẽk

i

Execution time needed by task ⌧
i

to process the kth

frame
64

Ê
i

Worst-case execution time of task ⌧
i

65
�!
E k

a..b

Execution time needed by task chain ⌧
i..j

to process
the kth frame

64

⌧k
i

Specification of scalable task ⌧
i

during system mode

k, where ⌧
i

= (⌧1
i

, ⌧2
i

, . . . , ⌧k
i

, . . . , ⌧ |M|
i

)

66

ck Specification of scalable component c during system
mode k, where c = (c1, c2, . . . , ck, . . . , c|M|)

66

É(c) Worst-case pre- and post-processing time of compo-
nent c.

81

��(x, y) Set of tasks directly involved in the mode change from
mode x to mode y

82

�C(x, y) Set of components directly involved in the mode
change from mode x to mode y

82

�(x, y) Set of tasks directly and indirectly involved in the
mode change from mode x to mode y

83

(r) Set of segments requiring resource r 108
RL Set of local resources 108
RG Set of global resources 108
SL Set of local segments 109
SG Set of global segments 109
partial(G) Set of partial segment requirements graphs derived

from graph G
119

�(⌧
i,j

, g) Set of segments which segment ⌧
i,j

can reach in the
partial segment requirements graph g

119

E0(⌧
i,j

) Execution time of segment ⌧
i,j

extended with its wait-
ing time

122

A(⌧
i,j

) Worst-case activation time of segment ⌧
i,j

122

Acronyms

AUTOSAR Automotive Open System Architecture
DPCP Distributed Priority Ceiling Protocol
DSKI Data Stream Kernel Interface
ECU Electronic Control Unit
EDF Earliest Deadline First
FCFS First Come First Serve
FMLP Flexible Multiprocessor Locking Protocol
FMLP P-SP Flexible Multiprocessor Locking Protocol for Partitioned

Static-Priority scheduling
FPDS Fixed-Priority Deferred Scheduling
FPNS Fixed Priority Non-preemptive Scheduling
FPPS Fixed-Priority Preemptive Scheduling
FPS Fixed-Priority Scheduling
HSF Hierarchical Scheduling Framework
ICTOH Implicit Circular Timers Overflow Handler
ISR Interrupt Service Routine
MPCP Multiprocessor Priority Ceiling Protocol
MPI Message Passing Interface
MSRP Multiprocessor-SRP
PCP Priority Ceiling Protocol
PIP Priority Inheritance Protocol
PSRP Parallel-SRP
QM Quality Manager
RELTEQ Relative Timed Event Queues
RM Resource Manager
RTOS Real-Time Operating System
SCS Spread-Cognizant Scheduling
SDK Software Development Kit
SRP Stack Resource Policy
TCB Task Control Block
TSC Time Stamp Counter
WCET Worst-Case Execution Time
WCRT Worst-Case Response Time

167

168 BIBLIOGRAPHY

Accomplishments

This appendix contains a list of papers of which Mike Holenderski is an author, a
list of Master thesis and internship projects which Mike has supervised, and courses
which Mike has assisted with.

Peer-reviewed publications

M. Bergsma, M. Holenderski, R. J. Bril, J. J. Lukkien. Extending RTAI/Linux with
fixed-priority scheduling with deferred preemption. In International Workshop on
Operating Systems Platforms for Embedded Real-Time Applications (OSPERT).
2009.

M. Holenderski, R. J. Bril, J. J. Lukkien. Using fixed priority scheduling with deferred
preemption to exploit fluctuating network bandwidth. In Work in Progress session
of the Euromicro Conference on Real-Time Systems (ECRTS). 2008.

M. Holenderski, R. J. Bril, J. J. Lukkien. Swift mode changes in memory constrained
real-time systems. In International Conference on Embedded and Ubiquitous Com-
puting (EUC), pp. 262–269. 2009a.

M. Holenderski, R. J. Bril, J. J. Lukkien. Grasp: Visualizing the behavior of hier-
archical multiprocessor real-time systems. In International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS). 2011a.

M. Holenderski, R. J. Bril, J. J. Lukkien. Reducing memory requirements in a multi-
media streaming application. In International Conference on Consumer Electronics
(ICCE). 2011b.

M. Holenderski, R. J. Bril, J. J. Lukkien. Reducing memory requirements in a
multimedia streaming application. IEEE Transactions on Consumer Electronics,
vol. 57(1):pp. 145–152, 2011c.

M. Holenderski, R. J. Bril, J. J. Lukkien. An e�cient hierarchical scheduling frame-
work for the automotive domain. In S. M. Babamir, ed., Real-Time Systems,
Architecture, Scheduling, and Application. InTech, 2012a.

169

170 BIBLIOGRAPHY

M. Holenderski, R. J. Bril, J. J. Lukkien. Grasp: Visualizing the behavior of hierar-
chical multiprocessor real-time systems. Journal of Systems Architecture, 2012b.

M. Holenderski, R. J. Bril, J. J. Lukkien. Parallel-task scheduling on multiple re-
sources. In Euromicro Conference on Real-Time Systems (ECRTS). 2012c.

M. Holenderski, W. Cools, R. J. Bril, J. J. Lukkien. Multiplexing real-time timed
events. In Emerging Technologies and Factory Automation (ETFA), pp. 1718–
1721. 2009b.

M. Holenderski, C. G. Okwudire, R. J. Bril, J. J. Lukkien. Memory management for
multimedia quality of service in resource constrained embedded systems. In Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA),
pp. 1–8. 2010a.

M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, J. J. Lukkien. Grasp:
Tracing, visualizing and measuring the behavior of real-time systems. In Interna-
tional Workshop on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS), pp. 37–42. 2010b.

M. M. H. P. van den Heuvel, M. Holenderski, R. J. Bril, J. J. Lukkien. Constant-
bandwidth supply for priority processing. In International Conference on Consumer
Electronics (ICCE). 2011a.

M. M. H. P. van den Heuvel, M. Holenderski, R. J. Bril, J. J. Lukkien. Constant-
bandwidth supply for priority processing. IEEE Transactions on Consumer Elec-
tronics, vol. 57(2):pp. 873–881, 2011b.

M. M. H. P. van den Heuvel, M. Holenderski, W. Cools, R. J. Bril, J. J. Lukkien.
Virtual timers in hierarchical real-time systems. In Work in Progress session of
the Real-time Systems Symposium (RTSS), pp. 35–38. 2009.

Program committees

During his Ph.D., Mike was on the following program committees:

• Workshop on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS), 2012

Supervision

During his Ph.D., Mike was involved in supervising the following Master of computer
Science thesis:

• Extending RTAI Linux with FPDS by Mark Bergsma,

• Support for fast mode-changes of applications by Martijn van den Heuvel,

BIBLIOGRAPHY 171

• Extending uC/OS-II with FPDS and Reservations by Wim Cools,

• Modeling and measuring the performance of a surveillance camera by Norbert
Verhagen.

and the following internships:

• Memory sharing for queues of media processing chains by Ashu Gebreweld,

• Dynamic memory re-allocation for swift mode changes by Chidi Okwudire.

Courses

During his Ph.D., Mike was involved in

• assisting with the “Real-time systems architectures” course in the Master of
Computer Science program in the years 2009/2010 and 2010/2011,

• assisting with the “Real-time, embedded and concurrent programming” work-
shop in the Professional Doctorate in Engineering program in the years
2010/2011 and 2011/2012,

• setting up and subsequently assisting with the “Real-time systems architectures
(in automotive domain)” course in the Master of Embedded Systems program
in the year 2011/2012.

172 BIBLIOGRAPHY

7.0 Bibliography 173

Summary

This thesis addresses the problem of online multi-resource management in embedded
real-time systems. It focuses on three research questions. The first question concen-
trates on how to design an e�cient hierarchical scheduling framework for supporting
independent development and analysis of component based systems, to provide tem-
poral isolation between components. The second question investigates how to change
the mapping of resources to tasks and components during run-time e�ciently and
predictably, and how to analyze the latency of such a system mode change in sys-
tems comprised of several scalable components. The third question deals with the
scheduling and analysis of a set of parallel-tasks with real-time constraints which
require simultaneous access to several di↵erent resources.

For providing temporal isolation we chose a reservation-based approach. We first
focused on processor reservations, where timed events play an important role. Com-
mon examples are task deadlines, periodic release of tasks, budget replenishment and
budget depletion. E�cient timer management is therefore essential. We investigated
the overheads in traditional timer management techniques and presented a mecha-
nism called Relative Timed Event Queues (RELTEQ), which provides an expressive
set of primitives at a low processor and memory overhead. We then leveraged REL-
TEQ to create an e�cient, modular and extensible design for enhancing a real-time
operating system with periodic tasks, polling, idling periodic and deferrable servers,
and a two-level fixed-priority Hierarchical Scheduling Framework (HSF). The HSF
design provides temporal isolation and supports independent development of com-
ponents by separating the global and local scheduling, and allowing each server to
define a dedicated scheduler. Furthermore, the design addresses the system overheads
inherent to an HSF and prevents undesirable interference between components. It
limits the interference of inactive servers on the system level by means of wakeup
events and a combination of inactive server queues with a stopwatch queue. Our
implementation is modular and requires only a few modifications of the underlying
operating system.

We then investigated scalable components operating in a memory-constrained
system. We first showed how to reduce the memory requirements in a streaming
multimedia application, based on a particular priority assignment of the di↵erent
components along the processing chain. Then we investigated adapting the resource
provisions to tasks during runtime, referred to as mode changes. We presented a novel
mode change protocol called Swift Mode Changes, which relies on Fixed Priority with

174 BIBLIOGRAPHY

Deferred preemption Scheduling to reduce the mode change latency bound compared
to existing protocols based on Fixed Priority Preemptive Scheduling.

We then presented a new partitioned parallel-task scheduling algorithm called
Parallel-SRP (PSRP), which generalizes MSRP for multiprocessors, and the corre-
sponding schedulability analysis for the problem of multi-resource sche-duling of par-
allel tasks with real-time constraints. We showed that the algorithm is deadlock-free,
derived a maximum bound on blocking, and used this bound as a basis for a schedu-
lability test. We then demonstrated how PSRP can exploit the inherent parallelism
of a platform comprised of multiple heterogeneous resources.

Finally, we presented Grasp, which is a visualization toolset aiming to provide
insight into the behavior of complex real-time systems. Its flexible plugin infrastruc-
ture allows for easy extension with custom visualization and analysis techniques for
automatic trace verification. Its capabilities include the visualization of hierarchi-
cal multiprocessor systems, including partitioned and global multiprocessor schedul-
ing with migrating tasks and jobs, communication between jobs via shared memory
and message passing, and hierarchical scheduling in combination with multiprocessor
scheduling. For tracing distributed systems with asynchronous local clocks Grasp
also supports the synchronization of traces from di↵erent processors during the visu-
alization and analysis.

Curriculum Vitae

Micha l Holenderski was born on January 12, 1982 in Warsaw, Poland. After fin-
ishing the International Secondary School in Eindhoven, Netherlands, in 2000, he
studied Computer Science at the Eindhoven University of Technology (TU/e), where
he received his Bachelor of Science in 2003 and Master of Science in 2007. During
his Master studies he did two six-months internships: at the National University of
Singapore (NUS), and at Sun Microsystems Labs (SunLabs) in Menlo Park, USA.
At NUS he conducted research into distributing machine learning in a wireless sensor
network. At SunLabs he investigated programming FLEET, an experimental asyn-
chronous data-driven processor architecture, which was also the topic of his Master
thesis. In 2007 Micha l started a PhD at the Systems Architecture and Networking
(SAN) group at the TU/e, of which the results are presented in this thesis. In 2011
he joined the SAN group as a post-doctoral researcher, and founded a startup which
focuses on developing software for mobile platforms.

175

	Contents
	1.Introduction
	2.System model
	3.Processor management
	4.Memory management
	5.Multi-resource management
	6.Grasp
	7.Conclusion
	Bibliography
	Symbol index
	Acronyms
	Accomplishments
	Summary
	Curriculum Vitae

