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Krawtchouk Polynomials and Iterated Stochastic

Integration

Nicolas Privault� and Wim Schoutens�

Abstract

We show that for the binomial process �Sn�n�IN� the orthogonal functionals con�
structed in Kroeker ��� for Markov chains can be expressed using the Krawtchouk
polynomials� and by iterated stochastic integrals	 This allows to construct a chaotic
calculus based on gradient and divergence operators and structure equations� and
to establish a Clark representation formula	

AMS Subject classi�cation 
�H��� ��E
�

Keywords Markov Chains� Krawtchouk Polynomials� Binomial Process�

Iterated Stochastic Integrals� Clark Formula

� Introduction

In the classical deterministic integration theory the polynomials fpn�x� � xn� n � �g� and
the exponential function exp�x� �

P�
n�� pn�x��n� play a special role because they satisfyR t

� pn�x�dx � �
n��

pn���t� and
R t
� exp�x�dx � exp�t��exp���� In the stochastic case it turns

out that the role of pn is taken up by orthogonal polynomials related to the distribution of

the integrator� The most studied stochastic case is integration with respect to Brownian

motion fBt� t � �g� where Bt has a Normal distribution N ��� t�� i�e� with mean zero and

variance t � �� The notion of multiple stochastic integration for this process was 	rst

introduced by Wiener� As is well known� in stochastic It
o integration theory with respect

to standard Brownian motion� the Hermite polynomials play the role of the pn� as such

Z t

�
Hn�Bs� s�dBs �

Hn���Bt� t�

n� 

�

where Hn�x� t� is the monic �with leading coe�cient equal to one� Hermite polynomial

with parameter t� The monic Hermite polynomialsHn�x� t� are orthogonal with respect to

the Normal distribution N ��� t�� the distribution of Bt� Note also that because stochastic

integral are martingales� that fHn�Bt� t�g are martingales� see also Schoutens and Teugels

�
�� �
����� Using the generating function
P�

n��Hn�x� t�z
n�n� � exp��tz��� � zx�� one

can easily see that the role of the exponential function is now taken by the function
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exp��t���Bt� because we have
R t
� exp��s���Bs�dBs � exp��t���Bt�� 
� The trans�

formation exp�Bt � t��� of the Brownian motion is sometimes called geometric Brow�

nian motion or the stochastic exponent of the Brownian motion� There is a similar

result for the compensated Poisson process Mt � Nt � t� the monic orthogonal poly�

nomials with respect to the Poisson distribution P�t� are the monic Charlier polyno�

mials� Cn�x� t�� de	ned by the generating function �Koekoek and Swarttow� ���� 
�����

W �x� t� z� �
P�

n��Cn�x� t�z
n�n� � exp��tz��
 � x�x� We have�

Z t

�
Cn�Ns�� s�dMs �

Cn���Nt� t�

n� 

� �
�

In terms of the generating function� this is equivalent with

Z t

�
W �Ns�� s� w�dMs �

W �Nt� t� w�� 


w
�

This result goes back to Ogura �
�� �
���� and Engel ��� �
����� and also implies that the

monic Charlier polynomials fCn�Nt� t�g are martingales� see also �
�� �
�����

Chaos expansions for Markov chains have been constructed in Kroeker ��� �
���� via

orthogonal functionals that are the analogs of multiple stochastic integrals with respect

to martingales� A natural question for investigation is the determination of martingales

whose multiple stochastic integrals can be expressed as polynomials� In continuous time�

Privault� Sol�e and Vives �
�� �
���� proved that the only normal martingales solutions

of structure equations which have an associated family of polynomials are the Poisson

process and the Brownian motion� In the i�i�d� case it is shown in ��� that such polyno�

mials have to be Meixner polynomials� In this paper we will show that the Markov chain

approach to multiple stochastic integrals coincides with the i�i�d� approach of ��� only for

the binomial process� and that the binomial process is the only i�i�d� discrete time pro�

cess for which the multiple stochastic integrals of ��� can be expressed with polynomials�

namely the Krawtchouk polynomials� Moreover� in this case these functionals can be also

expressed as discrete iterated integrals with respect to the compensated binomial process�

This paper is organised as follows� In Sect� � we reformulate the construction of ��� in the

language of tensor products� We give a particular attention to this construction because

it is valid for processes with non�independent increments� and the non�independence of

increments is always a non�trivial problem in chaotic representation� cf� Emery ��� and

Biane �
� in continuous time� Sect� � deals with the i�i�d� case� Sect� � is devoted to the

representation of orthogonal functionals of the binomial process as Krawtchouk polyno�

mials� and Sect� � presents the iterated stochastic integrals and the relation between the

�



Krawtchouk polynomials and the binomial process� In Sect� � we obtain a Clark repre�

sentation formula for functionals of the binomial process� using gradient and divergence

operators�

� Orthogonal expansions for Markov chains

In this section we formulate the construction of orthogonal functionals of Markov chains

due to ���� in the language of tensor products� This construction does not seem to be

related to the chaos expansions de	ned in �
� �
���� for 	nite Markov chains in continuous

time� The notion of tensor product makes the construction signi	cantly di�erent� but leads

to the same objects� The tensor product� resp� symmetric tensor product of functions

in l��IN�� with IN� � INnf�g � f
� �� � � �g will be denoted as ���� resp� ��� and �ek�k�IN

denotes the canonical basis of l��IN��� In particular� e�n�i� � � � � � e�ndid
is the symmetrization

in n� � � � �� nd � n variables of e�n�i� � � � � � e�ndid
� and

he�n�i� � � � � � e�ndid
� e�n�i� � � � � � e�ndid

il��IN���n �
n�� � � �nd�

n�
� ���

The symmetric tensor product l��IN���n is by de	nition the set of all square�summable

symmetric functions in n strictly positive integer variables� Let �Sn�n�IN be a Markov

chain with state space IN and transition matrix �P �x� y��x�y�IN� starting from �� on a

probability space �� Let ��k� � IN � f	g� denote the dimension of l��IN�P �k� ���� and
let ��n�� j k����n�� be a complete orthogonal set of polynomials in l��IN�P �k� ���� with
�n�� j k� of degree n� k�n�� j k�k�l��IN�P �k���� � n�� � 
 n 
 ��k�� k � �� and �n�x j k� � ��

n � ��k�� x� k � IN�

Remark� In the construction of ���� the functional �n�x j y� is not constrained to be a

polynomial in x � IN� and the choice of the family ��n�� j y��n�IN is not unique� �

Also� in ���� the data of the initial distribution � of �Sn�n�IN is also considered� In our

notation this can be easily taken into account by letting P ��� �� � �����

De�nition � With 
 
 i� 	 � � � 	 in� and n� � � � �� nd � n � 
� let

Jn�e
�n�
i� � � � � � e�ndid

� �
k�dY
k��

�nk�Sik j Sik����

We let J��f�� � 
� f� � IR� i�e� l��IN��� is identi	ed to IR� A Wick type product � of

random variables may also be de	ned as

�
i�dY
i��

�ni�Ski j Ski���
�
�
�
i�dY
i��

�mi�Ski j Ski���
�
�

i�dY
i��

�ni�mi�Ski j Ski����

�



�By induction on d � IN�
Qi�d
i�� �

ni�Ski j Ski��� is the unique functional representing

Jn�e
�n�
i� � � � � � e�ndid

��� For all symmetric function fn � l��IN���n of n variables with 	nite

support written as

fn �
d�nX
d��

X
��i������id
n������nd�n

ai������ide
�n�
i� � � � � � e�ndid

� ���

we let

Jn�fn� �
d�nX
d��

X
��i������id
n������nd�n

ai������idJn�e
�n�
i� � � � � � e�ndid

��

The functional Jn is the analog of the multiple stochastic integral in the case of continuous

time martingales� In terms of the Wick product � we have for fn and gm as above�

Jn�fn� � Jm�gm� � Jn�m�fn � gm��

Proposition � The functional Jn�fn� is orthogonal to Jm�gm� in L���� if n �� m� and

Jn � l��IN���n �
 L���� extends as a linear continuous operator with

E�Jn�fn�
�� 
 n�kfnk�l��IN���n � fn � l��IN���n� n � IN� ���

The equality E�Jn�fn�
�� � n�kfnk�l��IN���n� fn � l��IN���n� n � IN� holds if ��k� � 	�

k � IN�

Proof� By construction we have

E��nk�Sik j Sik����mk�Sj j Sj��� j Si� � � � � � Sik��� � nk�
fik�jg
fnk�mkg
fnk���Sik���g�

and for nk � 
�

E��nk�Sik j Sik��� j Si� � � � � � Sik��� � ��

hence by induction on k � 
� � � � � d�

E�Jn�e
�n�
i� � � � � � e�ndid

�Jm�e
�m�

j� � � � � � e�ml

jl
�� � �

if fi�� � � � � idg �� fj�� � � � � jdg or n �� m� and

� 
 E�Jn�e
�n�
i� � � � � � e�ndid

��� 
 n�� � � �nd��

With fn � l��IN���n and gm � l��IN���m as in ��� we have E�Jn�fn�Jm�gm�� � � if n �� m�

and

E�Jn�fn�
�� 
 n�

d�nX
d��

X
��i������id
n������nd�n

n�� � � �nd�
n�

a�i������id � n�hfn� fnil��IN���n �

�



from ���� �

Remark� The isometry formula E�Jn�fn�Jm�gm�� � 
fn�mgn�hfn� gmil��IN���n �see Re�

lation �
�� in ���� does not hold in general� e�g� for the binomial process we have

E�Jn�

�n
���N 	�

�� � �n���
�
N
n

�
	 n�k
�n���N 	k�l��IN���n � cf� Sect� �� �

From the expression

f �n �
d�nX
d��

X
��i������id
n������nd�n

n�

n�� � � �nd�f
n��i�� � � � fnd�id�e�n�i� � � � � � e�ndid

� f � l��IN��� ���

We have

Jn�

�n
���N 	� �

d�nX
d��

X
��i������id�N

n������nd�n

n�

n�� � � �nd�
k�dY
k��

�nk�Sik j Sik����

and a stochastic exponential E�N�z� can be constructed as

E�N�z� �
n�NX
n��

znJn�

�n
���N 	� �

n�NX
n��

zn
d�nX
d��

X
��i������id�N

n������nd�n

n�

n�� � � �nd�
k�dY
k��

�nk�Sik j Sik���� z � IR�

���

� Orthogonal expansions for i�i�d� processes

From now on we consider processes with i�i�d� increments� i�e� �Sn � Sn���n	� � �Xn�n	�

is a family of i�i�d� random variables� In this case the function �n�x j y� depends only on

the di�erence x� y� so that we denote �n�x j y� � �n�x� y�� We have

Jn�

�n
���N 	� �

d�nX
d��

X
��i������id�N

n������nd�n

n�

n�� � � �nd��
n��Xi�� � � ��nd�Xid��

De�nition � Given f � l��IN�� we denote by f
n the symmetrization in n variables of

�k�� � � � � kn� �
 
fk� �������kngf�k�� � � �f�kn��

and call l��IN��
n � l��IN���n the completed linear span generated by ff
n � f � l��IN��g�

The space l��IN��
n consists in fact of all the symmetric functions in l��IN���n that vanish

on every diagonal in �IN��n� We have

he
n�i� � � � � � e
ndid
� e
n�i� � � � � � e
ndid

il��IN���n � 
fn������nd��g
fi� �������idg� ���

and l��IN��
n is also the n�th chaos of the toy Fock space� cf� Meyer ���� p� 
�� For all

symmetric function fn � l��IN��
n we have

Jn�fn� �
X

��i������in

fn�i�� � � � � in��
��Xi�� � � ����Xin��

�



Proposition � The functional Jn�fn� is orthogonal to Jm�gm� in L���� if n �� m� and

Jn � l��IN��
n �
 L���� extends as a linear continuous operator with

E�Jn�fn�
�� � kfnk�l��IN���n � fn � l��IN��
n� n � IN� ���

Proof� The orthogonality property follows from Prop� 
� By independence we have if

fi�� � � � � ing �� fj�� � � � jng�

E�Jn�ei� � � � � � ein�Jn�ej� � � � � � ejn�� � �� n � ��

and

E��Jn�ei� � � � � � ein��
�� � 
fi� �������ing�

With fn � l��IN��
n we have

E�Jn�fn�
�� �

X
��i������in

fn�i�� � � � � in�
� � hfn� fnil��IN���n � �

The corresponding exponential martingale E
N�z� is constructed as

E
N �z� �
n�NX
n��

znJn�


n
���N 	� �

i�NY
i��

�
 � z���Xi�� �
i�NY
i��

�
 � z�
 � �Xi��� z � IR� ���

We now completes the result of ��� by showing that the integral Jn�


n
���N 	� is a polynomial

in SN if and only if �Sn�n�IN is the binomial process� We have

J��
���N 	� �
i�NX
i��

J��ei� �
i�NX
i��

���Xi� � 
N � �SN �

Proposition � Each of the following statements holds if and only if �Sn�n	� is a binomial

process�

i� The exponentials E�N�z� and E
N�z� coincide� i�e�

E�N�z� �
n�NX
n��

znJn�

�n
���N 	� �

n�NX
n��

znJn�


n
���N 	� � E
N�z�� z � IR�

ii� The integrals Jn�f

n� and Jn�f

�n� coincide� f � l��IN��� n � IN�

iii� The integral J��


�
���N 	� can be expressed as a second degree polynomial in SN for all

N � 
�

�



Proof� We note that �i� is equivalent to �ii�� Taking n � N � �� �ii� implies �� � ��

hence the distribution of Xk is supported by two points only and �Sn�n	� is the binomial

process� Concerning �iii� we have 

����N 	 �
P

��i��j�N ei � ej� and

J��


�
���N 	� �

X
��i��j�N

���Xi��
��Xj� � �
N � �SN�

� � X
��i�N

���Xi�
��

If J��


�
���N 	� is a second degree polynomial in SN � then

Pi�N
i�� ���Xi�

� � cNS
�
N �dNSN �eN

is polynomial of degree at most two in SN � hence

���XN�
� � cNS

�
N � dNSN � eN � cN��S

�
N�� � dN��SN�� � eN��

Hence� i�e� with SN � XN � SN��� we have for N � 
�

�
� �XN�
� � cN�XN � SN���

� � dN�XN � SN��� � eN � cN��S
�
N�� � dN��SN�� � eN��

or

X�
N��

� � cN� �XN��
� � �cNSN�� � dN�

�cNS�
N�� � dNSN�� � eN � cN��S

�
N�� � dN��SN�� � eN�� � 
� � ��

If XN is allowed to take at least three distinct values� then cN � �� and �
���cNSN���
dN � �� N � 
� which is impossible� As XN can only attain � values� the process Sn is a

binomial process� The fact that Jn�

�n
���N 	� is a polynomial in SN if �Sn�n�IN is the binomial

process will be proved in Sect� �� �

� Krawtchouk polynomials and the binomial process

In the following we assume that �Sn�n�IN is the binomial process with parameter p� i�e�

P �x� y� � q
fy�xg�p
fy�x��g� x� y � IN� In other terms� S� � � and �Xi�i	� � �Si�Si���i	�
is a family of i�i�d� Bernoulli random variables with parameter � 	 p � Pr�Xi � 
� 	 
�

and SN has a binomial distribution Bin�N� p�� given by the probabilities
�
N
i

�
piqN�i� i �

�� 
� � � � � N � The monic orthogonal polynomials with respect to the binomial distribution

are the monic Krawtchouk polynomials and are determined by the generating function

�Koekoek and Swarttouw ��� � 
�����

Y �x�N� z� �
NX
n��

 Kn�x�N� p�
zn

n�
� �
 � qz�x�
� pz�N�x�

where N � IN� � 	 p 	 
 and p� q � 
� with  Kn�x�N� p� � �� x � IR� n � N � Explicitly�

this implies

 Kn�x�N� p� � pn��N�n
i�nX
i��

��n�i��x�i
��N�i

�
�p�i

i�
� x� n � IN� �
��

�



and in particular  K��x�N� p� � x�Np� where �a�k � a�a� 
� � � � �a� k � 
� denotes the

Pochhammer symbol� with �a�� � 
� a � IR� The Krawtchouk polynomials are orthogonal

with respect to the binomial distribution Bin�N� p��

x�NX
x��

�
N

x

�
pxqN�x  Kn�x�N� p�  Km�x�N� p� � ��
�nn���N�n�pq�

n
fn�mg� � 
 n�m 
 N�

�

�

see ��� �
����� We have ���x j y� � �pq�����  K��x � y� 
� p� � �pq������x � y � p� and

�n�x j y� � �� x� y � IR� n � 
�

Proposition � With �Sn�n�IN the binomial process we have

Jn�

�n�
�M����N�	

� � � � � 
�nd�Md���Nd	
� � �pq��n��

k�dY
k��

 Knk�SNk � SMk
�Nk �Mk� p��

n� � � � �� nd � n� � 
 Mi 	 Ni 
 Mi��� i � 
� � � � � d� 
� and Md 	 Nd�

Proof� From ��� we have


�n�M���N 	 �
d�nX
d��

X
M�i������id�N

n������nd�n

n�

n�� � � �nd�e
�n�
i� � � � � � e�ndid

�

hence

Jn�

�n
�M���N 	� � 
f��n�N�Mgn�

X
M�i������in�N

k�nY
k��

���Xik�

� 
f��n�N�Mg�pq�
�n��n�

X
M�i������in�N

k�nY
k��

�Xik � p��

This also shows that Jn�

�n
�M���N 	� is a �polynomial� functional of SN � SM since it de�

pends only on the number of jumps of �Sn�n	� on fM�
� � � � � Ng� and not on jump times�

Moreover� Jn�

�n
�M���N 	� satis	es the same orthogonality property as the Krawtchouk poly�

nomials� Since

E�Jn�

�n
�M���N 	�

�� � �n���
�
N �M

n

�
� n���
�n�M �N�n

and from the orthogonality relation �

�� E��  Kn�SN � SM �N �M� p���� � n���
�n�M �
N�n�pq�

n� we obtain

Jn�

�n
�M���N 	� � �pq��n��  Kn�SN � SM �N �M� p��

�



Finally� from the de	nition of Jn we have since ���Xik� is independent of Sik���

Jn�

�n�
�M����N�	

� � � � � 
�nd�Md���Nd	
� �

l�dY
l��

nl�
X

Ml�i������inl�Nl

k�nlY
k��

���Xik�

�
l�dY
l��

Jnl�

�nl
�Ml���Nl	

�

� �pq��n��
l�dY
l��

 Knl�SNl � SMl
�Nl �Ml� p�� �

Note that as N goes to in	nity� N�nE�Jn�

�n
���N 	�

�� converges to n�� which is the usual

value of the square norm of the multiple stochastic integral over ��� 
�n with respect to a

continuous time normal martingale� We also obtained the relation

Jn�

�n
���N 	� �  Kn�SN �N� p� � n�

X
��i������in�N

k�nY
k��

�Xik � p� �
X

��i� �������in�N

k�nY
k��

�Xik � p��

see xV���� of ��� for the symmetric case p � q � 
���

� Iterated stochastic summation with respect to the

binomial process

In the usual continuous time stochastic integration with respect to a martingale �Mt�t�IR�
�

the multiple stochastic integral In�fn� of a symmetric function of n real variables is n�

times the iterated integral of fn over the simplex f� 
 t� 
 � � � 
 tng�



n�
In�fn� �

Z �

�

Z tn

�
� � �
Z t�

�
fn�t�� � � � � tn�dMt� � � �dMtn �

Given fn � L��IRn
�� one lets In�fn� � In�  fn�� where  fn denotes the symmetrization of fn

in n variables� Given fn�� � L��IR��
�n � L��IR�� this impliesZ �

�
In�fn����� t�
���t	n���

n

����dMt � In���fn��

n��
��

where fn����� t�
���t	n���

n
��� is the function of n variables de	ned as

�t�� � � � � tn� �
 fn���t�� � � � � tn� t�
���t	�t�� � � �
���t	�tn�

n
�t�� � � � � tn�� �
��

and In�fn� � n�In�fn

n
�� fn � L��IR��

�n� We will show that analogously� the functional

�
n�
Jn�fn� is an iterated multiple stochastic integral in discrete time with respect to the

compensated binomial process �Sn � np�n�IN� We set Jn�fn� � Jn�  fn� if fn � l��INn� is

not symmetric� and let !n � f� 
 k� 	 � � � 	 kng denote the simplex in INn� and let

Yk � �Xk� p��
p
pq� k � 
� denote the normalised �centered with variance one� increment

of �Sn�n�IN��

�



Theorem � We have for fn�� � l��IN���n � l��IN���

k��X
k��

YkJn�fn����� k�
���k��	n���

n
���� � Jn���fn��

n��

�� �
��

where fn����� k�
���k��	n���

n
���� k � n� 
� is de�ned as in �	
��

Proof� First we note that Jn�fn����� k�
���k��	n���� � � if n � k�
� so that the summation

�
�� actually starts at k � n� 
� We start by proving that

k�NX
k�M��

�Xk � p�  Kn�Sk�� � SM � k � 
�M� p� �
 Kn���SN � SM �N �M� p�

n� 

� �
��

with  Kn�x�N� p� the monic Krawtchouk polynomial of degree n� Using the generating

function it is su�cient to prove

k�NX
k�M��

�Xk � p�Y �Sk�� � SM � k � 
�M� z� �
Y �SN � SM � N �M� z�� 


z
�

This follows immediately from the fact that

Y �Sk � SM � k �M� z�� Y �Sk�� � SM � k � 
�M� z�

z

�
Y �Sk�� � SM � k � 
�M� z�

z

�
�
 � qz�Xk

�
� pz�Xk��
� 


�

� Y �Sk�� � SM � k � 
�M� z��Xk � p��

Another way of proving �
�� is to directly use the representation formula �
��� From the

relation

Jn�

�n�
�M����N�	

� � � � � 
�nd�Md���Nd	
� �

k�dY
k��

Jnk�

�nk
�Mk���Nk	

��

we deduce that �
�� holds for

fn�� � 
�n��M����N�	
� � � � � 
�nd�Md���Nd	

� 
�Ml���Nl	�

For this it su�ces to consider l � d and to note that

k��X
k��

Xk � pp
pq

Jn�fn����� k�
���k��	n���

n
����

�
k��X
k��




n�

Xk � pp
pq

Jn�fn����� k�
���k��	n����

�



n�

k�NdX
k�Md��

Xk � pp
pq

Jn�

�n�
�M����N�	

� � � � � 
�nd�Md���k��	
�

�



n�
�pq���n�����

k�d��Y
k��

 Knk�SNk � SMk
�Nk �Mk� p�


�



�
k�NdX

k�Md��

 Knd�Sk�� � SMd
� k � 
�Md� p��Xk � p�

�
�pq���n�����

n��nd � 
�
 Knd���SNd � SMd

�Nd �Md� p�
k�d��Y
k��

 Knk�SNk � SMk
�Nk �Mk� p�

�



n��nd � 
�
Jn���


�n�
�M����N�	

� � � � � 
��nd����Md���Nd	
��

Now� for � 
 k� 	 � � � 	 kn�� we have

�

�n��M����N�	

� � � � � 
��nd����Md���Nd	

�
�k�� � � � � kn���

�
n��nd � 
�

�n� 
��

�

�n��M����N�	

� � � � � 
�nd�Md���Nd	
� 
�Md���Nd	

�
�k�� � � � � kn���

�
n��nd � 
�

�n� 
��
fn���k�� � � � � kn���

�
n��nd � 
�

�n� 
��
fn���k�� � � � � kn���

n��

�k�� � � � � kn����

This shows that 
�n��M����N�	
� � � � � 


��nd���
�Md���Nd	

is n��nd � 
� times the symmetrization of

fn��

n��
� Hence

k��X
k��




n�

Xk � pp
pq

Jn�fn����� k�
���k��	n���� � Jn���fn��

n��
��

Finally from ���� by linearity and density� Relation �
�� holds for all fn�� � l��IN���n �
l��IN��� �

The interpretation of this result is that the Krawtchouk polynomials are the stochastic

counterparts of the usual powers �SN � Np�n � �  K��SN �N� p��
n� n � � for the compen�

sated binomial process fSn � np� n � INg� Also we found that the role of the classical

exponential function� now is taken by Y �Sn� n� 
� � �
� q�Snqn�Sn because of the relation

i�nX
i��

�

 � q

q

�Si��
qi���Xi � p� �

�

 � q

q

�Sn
qn � 
�

Furthermore there is a striking similarity with integration with respect to Brownian mo�

tion and Hermite polynomials on the one hand and the Poisson process and the Charlier

polynomials on the other hand�

� Gradient	 divergence and Clark formula

In this section we introduce gradient and divergence operators� and obtain a Clark formula

for the functionals of �Sn�n	�� We use the convention 
�N�M 	 � � if M 	 N � Let P denote







the set of polynomials in X�� X�� X�� � � �� and let U denote the space of discrete�time

processes �u�k��k	�� with 	nite support in k � 
 and such that u�k� � P� k � 
� The space

P is clearly dense in L���� P �� hence the process �Sn�n	� has the chaos representation

property� i�e� any F � L���� P � can be represented as a series of multiple stochastic

integrals�

F �
�X
n��

Jn�fn�� fk � l��IN���k� k � IN��

with J��f�� � E�F ��

De�nition � We de�ne the gradient operator D � L���� �
 L���� IN�� on P as

DkF �
i�dX
i��

ni
�Mi�ni�Ni	�k�Jn���

�n�
�M����N�	

� � � � � 
�ni���Mi���Ni	
� � � � � 
�nd�Md���Nd	

�

with F � Jn�

�n�
�M����N�	

� � � � � 
�nd�Md���Nd	
��

We have in particular

DkJn�

�n
�M���N 	� � n
�M�n�N 	�k�Jn���


��n���
�M���N 	�� k � IN��

De�nition � The divergence operator � � L���� IN�� �
 L���� is de�ned on U as

��Jn�fn����� ���� � Jn���  fn��� � Jn���fn����

fn�� � l��IN��n � l��IN���

We have in particular

��u� � Jn���

�n�
�M����N�	

� � � � � 
�nl���Ml���Nl	
� � � � � 
�nd�Md���Nd	

�

with u�k� � Jn�

�n�
�M����N�	

�� � ��
�nd�Md���Nd	
�
�Ml���Nl	�k�� Let Fk denote the 
�	eld generated

by X�� � � � � Xk�

Proposition � Let �u�k��k	� be a predictable square�integrable process� i�e� u�k� is Fk���

measurable� k � 
� and E�kuk�l��IN��� 	 	� Then ��u� coincides with the discrete time

stochastic integral with respect to �Sn�n	��

��u� �
�X
k��

Yku�k��

with E���u��� � E�kuk�l��IN����


�



Proof	 Given fn�� � l��IN��n� l��IN�� and u�k� � Jn�fn����� k��� k � 
� the predictability

condition means that fn����� k� � fn����� k�
���k��	n���� hence the symmetrization of fn��

is n� times the symmetrization of fn��

n��
� Thus from Th� 
 we have�

��Jn�fn����� ���� � Jn���fn��� � n�Jn���fn��

n��
�

� n�
�X
k��

YkJn�fn�����
���k��	n���

n
����

�
�X
k��

YkJn�fn�����
���k��	n���� �
�X
k��

Yku�k�� �

The truncation by the function 
�n�N 	�k� in

DkJn�

�n
���N 	� � n
�n�N 	�k�Jn���


��n���
���N 	 ��

is not present in continuous time� The following proposition shows that it disappears

after taking the predictable projection of the gradient process�

Proposition 
 Let fn � l��IN��n� We have

E�DkJn�fn� j Fk��� � nJn���fn��� k�
���k��	n������� k � IN��

Proof	 It is su�cient to note that if M 	 k 
 N �

E�DkJn�

�n
�M���N 	� j Fk��� � n
�M�n�N 	�k�E�Jn���


��n���
�M���N 	� j Fk���

� n
�M�n�N 	�k�Jn���

��n���
�M���k��	�

� nJn���

��n���
�M���k��	��

since Jn���

��n���
�M���N��k���	� � � if n � k � M � If k � N or k 
 M we have � �

E�DkJn�

�n
�M���N 	� j Fk��� � n
�M���N 	�k�Jn���


��n���
�M���N 	�� �

The following proposition shows that D � L���� �
 L���� IN�� and � � L���� IN�� �

L���� are mutually adjoint�

Proposition � We have

E��DF� u�l��IN��� � E�F��u��� u � U � F � P�
and D � L���� �
 L���� IN��� � � L���� IN�� �
 L���� closable�

Proof	 It su�ces to consider F � Jn�

�n
�M���N 	� and u�k� � Jm�


�m
�M ����N �	�
�M ����N �	�k��

with M 
 
M 	 N 
 
 N � We have if n � m� 
�

E��DF� u�l��IN��� � n
�X
k��


�M�n�N �	�k�E�Jn���

��n���
�M���N 	�Jm�


�m
�M ����N �	��

� n�N 
 �M �m�m�
�N 
 �M��

�N 
 �M �m��
� �m � 
��

�N 
 �M��

�N 
 �M �m� 
��

� E�Jn�

�n
�M���N 	�Jm���


��m���
�M ����N �	�� � E�F��u���


�



If n �� m � 
 then � � E��DF� u�l��IN��� � E�F��u��� The closability of D and � is a

consequence of the duality formula and of the density of P and U in L���� and L����IN��

respectively� �

The normalised increment Yi of �Sn�n�IN� satis	es the structure equation

Y �
i � 
 � �Yi� i � 
� with � �

q � pp
pq

�

see xII���
 of ��� �
����� and ��� �
����� This implies in particular the following elementary

product formula for single stochastic integrals�

J��f�J��g� � J��f � g� � �f� g�l��IN�� � �J��fg�� �
��

for f� g � l��IN�� such that fg � l��IN��� We also have

Jn�

�n
�M���N 	�J��
�M���N 	�

� Jn���

��n���
�M���N 	� � n�N �M � n� 
�Jn���


��n���
�M���N 	� � �nJn�


�n
�M���N 	��

from the three term recurrence relation for Krawtchouk polynomials� see e�g� ����

 K��SN � SM �N �M� p�  Kn�SN � SM �N �M� p� �  Kn���SN � SM �N �M� p�

�npq�N �M � n� 
�  Kn���SN � SM �N �M� p� � n�q � p�  Kn�SN � SM �N �M� p��

The operator D and � do not satisfy the same product rules as in the continuous time

case �cf� Prop� 
�� of �

��� since we have in general�

Dk�FG� �� FDkG�GDkF � �DkFDkG� k � IN�� �
��

and

F��u� �� ��Fu� � �DF� u�l��IN�� � ���uDF �� F � P� u � U � �
��

The latter inequality expresses the fact that there is no explicit formula for the product

 Kn�x�N� p�  Km�x�N� p�� n�m � 
� In fact Dk is not the operator a�k that acts by removal

of an eventual jump at time k as

a�k  Kn�SN � p�N� �  Kn�SN � 
fXk��g� p�N��

cf� xII���� of ���� since we have Dk
 Kn�SN � p�N� � n
�n�N 	�k�  Kn���SN � p�N�� The next

result is the predictable representation of the functionals of �Sn�n	��

Proposition � We have the Clark formula

F � E�F � �
�X
k��

E�DkF j Fk���Yk � E�F � � ��E�D�F j F������ F � L�����


�



Proof	 For F � Jn�fn� we have

E�DkJn�fn� j Fk��� � nJn���fn��� k�
���k��	n��� � n�Jn���fn��� k�
���k��	n�����

n��
�����

We apply Th� 
�

F � Jn�fn� � n�Jn�fn

n
� � n�

�X
k��

Jn���fn��� k�
���k��	n�����

n��
����Yk

� n
�X
k��

Jn���fn��� k�
���k��	n������Yk �
�X
k��

E�DkJn�fn� j Fk���Yk�

Next we apply Prop� � to the predictable process u � �E�DkF j Fk����k	��

F �
�X
k��

E�DkJn�fn� j Fk���Yk � ��E�D�F j F������ F � P�

This identity also shows that F �
 E�D�F j F���� has norm bounded by one as an operator

from L���� into L���� IN���

kE�D�F j F����k�L��
�IN�� � kF � E�F �k�L��
� 
 kF � E�F �k�L��
� � E�F �� 
 kFk�L��
��

hence the Clark formula extends to F � L����� �

A generalisation consists in replacing the constant � in the structure equation Y �
k � 
��Yk

by a deterministic function � � IN� �
 IR and considering the solution of the structure

equation

Z�
i � 
 � �iZi� i � IN��

i�e�

Zi �
q
��
i � �

�
�Xi �

�
 � �i�
q
��
i � �

�

�
A � i � 
�

The process �Z� � � � �� Zn�n	� will be a martingale under P if and only if

�
 � �i�
q
��
i � �

�
� �p�

i�e� � � �q � p��
p
qp� In fact it is a Markov chain with transition matrix

P �i� i� �



�
�

�i

�
q
��
i � �

� qi� P �i� i� 
� �



�
� �i

�
q
��
i � �

� pi� i � 
�

Remark� The results of Sects� � and � can be generalised by replacing �Y�� � � ��Yn�n	�

by the process �Z� � � � �� Zn�n	� solution of Z�
i � 
 � �iZi� i � IN�� except for the fact

that Jn�

�n
���N 	� is not a �polynomial� functional of SN if �i is dependent on i since Jn�


�n
���N 	�

depends not only on the number of jumps from 
 to N but also on their positions�


�
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