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Abstract  A 6-9 GHz prototype array of dual-polarized 
connected dipoles has been manufactured. The array is 
composed by two orthogonal sets of 8×8 elements for each 
polarization (128), arranged in an egg-crate configuration. 
Preliminary measurements highlighted the presence of 
unpredicted common-mode resonances excited in the vertical 
feeding lines. An analysis of the common-mode excitation is 
carried out and exit strategies for a design of a resonance-free 
connected array are presented. 

1 INTRODUCTION 

The realization of wide-band, wide-scanning angle, 
phased arrays with good cross-polarization 
performance has been the object of many recent 
investigations. Although tapered slot antennas have 
very broad bandwidth, they are known to produce high 
cross-polarization components, especially in the 
diagonal cuts (45o), [1]. On the other hand, 
conventional phased array based on printed radiating 
elements can achieve only moderate bandwidths 
(~25%), [2]-[4]. Therefore, a novel trend in this field 
is the use of connected arrays, i.e. arrays of long 
dipoles or slots periodically fed, in order to 
approximate Wheeler’s continuous current sheet [5]. 
This concept was originally proposed by Hansen, [6], 
and further theoretically developed in [7], showing the 
wideband characteristic of such arrays. Thanks to the 
planarity of the radiators, the low cross-polarization 
level is among the most important features of such 
antenna solutions. 
 The first practical demonstration of a planar 
connected array antenna was given in [8]. This 
consisted in a connected array of slots in the UHF 
band, with good performance observed for broadside 
radiation. In [9], scanning performance of connected 
array was investigated for the first time and a 
theoretical design of a connected dipole array was 
presented, with 40% relative bandwidth and wide scan 
capability, up to 45 degrees in all the azimuth planes.  
 This paper reports the development of a dual-
polarized phased array of connected dipoles, in the 
operational frequency band 6-9 GHz. Preliminary 

measurements highlighted an unpredicted problem 
with the performance, associated with common-
mode resonances on the vertical feeding lines. The 
array element is fed via balanced lines, which can 
support both differential (desired) and common 
(undesired) currents. From an analysis of the 
common-mode, it appears that the resonance 
condition depends on both the length of the lines and 
the periodicity of the array. While common-mode 
propagation might be not directly observable from 
the matching performance of the array, it is always 
visible in form of high level of cross polarization 
when scanning on the diagonal plane ( =45o). Due to 
the electrical connection of the elements, standard 
wideband baluns are not effective in a connected 
array. Therefore, a novel type of Printed Circuit 
Board (PCB) transformers is proposed as a valid 
solution for the design a resonance-free connected 
dipole array. 
 

 
Fig. 1: Prototype array. 

 

 
Fig. 2: Feeding lines of the array element, with 
impedance transformation from 400 to 50 Ohms. 
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2  PROTOTYPE ARRAY 

The prototype array is shown in Fig. 1. The dipoles 
are printed on one side of a low permittivity ( r=2.2) 
thin Duroid substrate, and electrically connected to 
form a unique long dipole periodically fed. The 
element spacing is 15.52 mm, which is about half 
wavelength at 9 GHz. The impedance transformation 
from the wave impedance of the free space, 377 
Ohms, at the aperture level, to 50 Ohms at the 
connector, is performed with two wavelengths long 
transmission lines, printed on vertical printed circuit 
boards in a egg-crate configuration (Fig. 2). The 
transition from coplanar strip-lines (CPS) to coplanar 
waveguide (CPW) and then to microstrip (MS) 
performs the balanced to unbalanced conversion, 
together with a wideband impedance transformation. 
A double feed configuration in each periodic cell has 
been adopted in order to decrease the reactive 
capacitance associated with the feeding gaps. This 
arrangement of the feeding lines, implemented with a 
CPS power divider (Fig. 2), was shown to improve 
the bandwidth of the array, [9]. A ground plane is 
included at a height of approximately 0.3 0 (with 0 
being the wavelength at 9 GHz) from the centre of 
the dipole, acting as a backing reflector. 

Fig. 3 shows the active reflection coefficient of a 
central port of the finite array prototype when 
scanning toward broadside. From the measured 
curves, two unexpected resonance were observed at 
about 7 GHz and 8.5 GHz. Triggered by such 
observation, full-wave simulations of the entire 
structure including the feeding network have been 
performed, for the first time. The comparison between 
simulations and measurements is relatively good, 
indicating that the numerical tools are able to 
efficiently describe the wave phenomena in place. 
Note that the measurements include the summation of 
all significant co-polarized S parameters for the 
investigated port, while the equivalent simulations are 
performed using the full wave simulator tool CST 
Microwave Studio and account for the entire finite 
array (8×8 elements).  

 

 
Fig. 3: Active reflection coefficient of a central 
element of the finite array. 

In order to analyse the nature of such resonances, 
further simulations were carried out assuming an 
infinite periodic array analysis. The reflection 
coefficient in the presence of the feeding lines was 
significantly different from those that were simulated 
in the design phase without the inclusion of the long 
matching network. In Fig. 4, the simulated active 
reflection coefficient when the array is radiating 
toward  =0o and =0o is reported. It is apparent that 
the array is completely mismatched at 5.25 and 7 GHz. 
At those frequencies, the simulations explicitly show 
the coexistence of common and differential modes in 
the long transmission lines. In Fig. 5, a schematic view 
of the electric current distribution along the feeding 
lines shows common mode propagation at 7 GHz, in 
correspondence of the resonance, while at 8 GHz 
designed differential mode is dominant. It should be 
noted that these resonances are sharp and the radiation 
patterns, not reported here for brevity, do not indicate 
polarization degradation. However, the same 
simulations realized for the array radiating toward  = 
45o and  = 45o also show significant increases of the 
cross-polarized field levels. In practice, the scanning 
performance of the prototype array is limited by 
common modes excited in the vertical feeding lines. 
Needless to say that the infinite array configurations, 
while of great help in understanding the physics, 
overestimate the coherence of these standing waves, 
which are much less strong in a finite array (Fig. 3). 

 

 
Fig. 4: Active reflection coefficient for an infinite 
array when radiating toward =0o and =0o. 

 

 
Fig. 5: Surface current distribution at 7 and 8 GHz. 
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Figure 6: Geometry of a two dimensional array of 
dipoles fed by CPS lines. 

3  COMMON-MODE ANALYSIS 

In order to analyse the common-mode resonance, let 
us consider the simplified case of an infinite two-
dimensional array of dipoles with periodicity dx and dy, 
as shown in Fig. 6. The array elements are fed by CPS 
lines, whose length is equal to l. For sake of 
generality, no backing reflector is introduced. 
However, typically connected arrays involve the 
presence of a backing reflector. Accordingly, the 
transmission line lengths are in the order of a quarter 
of the free space wavelength, in order to reach the 
ground-plane level, where load or source circuit are 
located. As an example, in the most standard design 
situation in which the periodicity of the array is about 
half wavelength, and the vertical lines are a quarter 
wavelength, two neighboring feeding lines and the 
electrical connection via the dipole constitute a one 
wavelength continuous electric path (dx + 2l = ) and 
create a strong cross-polarizing standing wave. The 
active input impedance for dx = dy =15 mm, l =7.5 mm, 
is shown in Fig. 7. In addition to the expected grating 
lobe and the guided pole resonances, a peak of the 
impedance appears at 10 GHz. By observing the 
vector current distribution, the resonance can be 
recognized as associated with common-mode 
distribution in the CPS lines (Fig. 8). According to the 
third definition of X-pol by Ludwig, [10], common-
mode currents along z radiate strong cross-polarized 
fields when scanning on the diagonal plane. In Fig. 10, 
the ratio between co-pol and X-pol fields rapidly 
increases in proximity of the resonance at 10 GHz. 
Therefore, to ensure low X-pol level, the length of the 
path 2l+dx should be significantly shorter than a 
wavelength in order to shift the common-mode 
resonances at higher frequencies, outside the 
operational bandwidth of the array. 

4  RESONANCE-FREE ARRAY DESIGN 

A CPStoCPS transformer, based on aperture coupling, 
has been designed to shorten the length of continuous 
current paths and reject common-mode propagation. A 
schematic  view of the  component is  shown in Fig. 

 
Figure 7: Real (—) and imaginary (- -) part of the 
active input impedance, when the array is scanning 
towards  = 45o

 and  = 45o. 
 

 
Fig. 9: Surface current distribution at 10 GHz. 

 

 
Fig. 10: X-pol level when pointing at  = 45o,  = 45o. 
 
11, where the ground plane on which the slot is etched 
is assumed to be infinite along x. The component is 
divided in two parts separated by the ground plane. 
The part at z=h, here in after the primary circuit, 
comprises a transition from CPS lines to Grounded 
CPS (GCPS) lines, then a power divider that splits the 
circuit in two equal halves, which are eventually re-
connected in correspondence of a coupling slot. The 
secondary circuit at z=–h is the same as the primary, 
but mirrored with respect to the slot. The initial input 
from the CPS lines can be associated with a 
differential-mode or a common-mode type of current. 
The common mode in input corresponds to a zero of 
electric current in correspondence of the slot. In turn, 
this translates in no electric current being excited in 
the secondary circuit of the transformer.  
 The condition for high transmission levels of the 
differential mode is Zcell ‹‹ Zslot, where Zslot is the 
impedance of the slot and Zcell is the connected array 
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Referenceselement loading. Therefore, the bandwidth of the 
transformer is wider for low values of Zcell. Normally, 
the input impedance of an evenly sampled array 
(dx=dy) in the presence of a backing reflector is about 

0  400 . However, since Zcell is proportional to 
dx/dy, lower impedances can be obtained by 
considering a denser sampling of the array in the 
longitudinal direction. For example, with 4 feeds per 
cell (dx= 0/8), the input impedance at each feed point 
becomes Zcell = 0/4  100 . The CPStoCPS or 
CPStoMS (balun) transitions can be made compact on 
high permittivity dielectric ( r=10), and the same 
number on T/R modules can be kept by means of 
power dividers (Fig. 12).  
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Fig. 12: Geometry of a unit cell of a connected array 
with periods dx = dy = 0/2. Fig. 13: X-pol level when pointing at  = 45o,  = 45o, 

for the geometry in Fig. 12. 
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