

Virtual timers in hierarchical real-time systems

Citation for published version (APA):
Heuvel, van den, M. M. H. P., Holenderski, M. J., Cools, W. A., Bril, R. J., & Lukkien, J. J. (2009). Virtual timers
in hierarchical real-time systems. In D. Zhu (Ed.), Work-in-Progress (WiP) session of the 30th IEEE Real-Time
Systems Symposium (RTSS 2009, Washington DC, USA, December 1-4, 2009) (pp. 37-40)

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/821175ee-8142-41a5-8700-e75c647cf53f

Virtual Timers in Hierarchical Real-time Systems
Martijn M.H.P. van den Heuvel, Mike Holenderski, Wim Cools, Reinder J. Bril and Johan J. Lukkien

Technische Universiteit Eindhoven (TU/e)
Den Dolech 2, 5600 AZ Eindhoven, The Netherlands

Abstract—Hierarchical scheduling frameworks (HSFs) provide
means for composing complex real-time systems from well-
defined subsystems. This paper describes an approach to provide
hierarchically scheduled real-time applications with virtual event
timers, motivated by the need for integrating priority processing
applications in an HSF. Specifically, the paper proposes a tech-
nique to minimize the overhead of event handling in HSFs and
outlines a simple implementation.

I. INTRODUCTION

The increasing complexity of real-time systems demands
for a decoupling between (i) development and analysis of
individual applications and (ii) integration of applications
on a shared platform, including the analysis at the system
level. Hierarchical scheduling frameworks (HSFs) have been
extensively investigated as a paradigm to facilitate this de-
coupling, see for example [1]. In this paper we consider a
two level HSF, where a system is composed of a set of
independent applications, each of which is composed of a
set of tasks. A server is allocated to each application. A
global scheduler is used to determine which server should be
allocated the processor at any given time. A local scheduler
determines which of the chosen application’s tasks should
actually execute.

Multimedia applications define a well-studied class of real-
time applications. To enable cost-effective media processing
in software, scalable video algorithms (SVAs) have been
developed that allow trading quality for resource needs. The
principle of priority processing provides optimal real-time
performance for scalable video algorithms on programmable
platforms even with limited system resources [2]. According to
this principle, SVAs provide their output strictly periodically
and processing of images follows a priority order. Hence,
important image parts are processed first, followed by less
important parts in a decreasing order of importance. After
creation of an initial output by a basic function, processing
can be preliminary terminated at an arbitrary moment in time,
yielding the best output for given resources, see Figure 1.

To distribute the available resources, i.e. CPU-time, among
independent priority processing algorithms, an application
specific strategy has been developed [3]. This strategy is
implemented in a decision scheduler and aims at maximizing
the total relative progress of the SVAs. The relative progress
of an algorithm is defined in terms of the fraction of the
performed work relative to the consumed budget and the total
amount of work to be done in a video frame.

As a leading example, we consider a priority processing
application, composed of multiple independent SVAs and a de-

Basic Analyse Enhance
time

basic
quality
(0%)

100%

en
h
an

ce
d

q
u
al
it
y

prel. termination

Fig. 1. Priority processing, as a function of time consumption versus output
quality, can be divided in three time-frames: 1) produce a basic output at the
lowest quality level; 2) Identify the most important image content; 3) Enhance
the quality of the output by processing the most important picture parts first.

cision scheduler, which divides the available virtual processor
resources among the SVAs, as described in [4]. They assume
that the application has the full processor at its disposal.

A. Problem Description

In this paper we consider the scenario in which a priority
processing application is provided a virtual share of the avail-
able processor resources, by assigning the decision scheduler
and the SVAs a single virtual processor.

The decision scheduler implements the control strategy
and divides the available processor time within the applica-
tion budget into fixed-sized quanta termed time-slots of the
size ∆ts. The control strategy selects the SVA to execute next
upon completion of a time-slot, i.e. synchronous with virtual
time. Activation of the decision scheduler is triggered by the
depletion of a time-slot. Hence, the application requires virtual
timers to trigger timed events relative to the consumed budget,
to activate the decision scheduler for monitoring the progress
of the SVAs.

B. Contributions

Given the need for virtual timer events on shared virtual
platforms, we outline a low-overhead implementation of vir-
tual timers, targeted at embedded systems. Additionally, the
outlined solution aims at minimizing the overhead of handling
events of inactive applications in HSFs.

C. Outline

The remainder of this paper is as follows. Section II
describes the related work. Section III describes the virtual

37

platform model used as a reference for our implementation
directions. Section IV describes an approach to realize virtual
timed events. Finally, Section V concludes the paper.

II. RELATED WORK

The notion of a virtual timer within an application already
exists for POSIX-compliant operating systems [5]. Each pro-
cess running on such a platform has the availability of a
virtual timer that counts processor time used by that process.
When the virtual timer expires, a signal is sent to the process.
Upon expiration of a timer, the corresponding signal is queued
for the corresponding process, whereas arrival of a signal
depends on the granularity of the kernel clock. Signals, as
described in the POSIX standard, are a form of inter-process
communication. Processes are the primitive units for allocation
of system resources. Each process has its own address space
and one thread of control. When considering our priority
processing application, it is natural to map the application on a
single process. The decision scheduler and the SVAs are each
mapped on its own thread contained in the process, whereas
a thread is used as a scheduling unit. We require signalling of
the decision scheduler’s thread upon expiration of the virtual
timer, instead of the main process. Although the concept is
similar, we require a more general notion of virtual timers.

Partitioning the system to independent subsystems, which
are each provided with a virtual platform, is currently re-
searched in two slightly different directions. On the one
hand, directions go towards hierarchical scheduling schemes.
Hierarchical real-time system development is based on sound
analysis and well-defined application interfaces [1]. On the
other hand, virtual real-time operating systems (RTOSs) are in-
vestigated to obtain a strong partitioning of the system [6], [7].
Main challenges with respect to satisfying real-time constraints
in virtualizing a RTOS are (I) increasing responsiveness with
respect to hardware interrupts and (II) synchronization of
virtual machine related timer events. Both issues require a
low level virtual machine monitor to manage interrupts and
events messages [7]. Issue (I) includes the problem that an
interrupt can be generated for a particular virtual machine
which is not assigned to the processor at that moment in time.
The virtual RTOS is not allowed to disable interrupts, which
entails additional demands on the virtual machine’s monitoring
layer. The virtual machine monitor has to queue all interrupts
for an inactive RTOS and block the interrupts for an RTOS
when it requests to temporarily disable interrupts. Issue (II)
relates to managing event queues. When a virtual RTOS is
active, it can handle all timer events directly. All queued timer
events for a particular inactive virtual RTOS, as addressed by
issue (I), must be synchronized with the local event queue
upon activation of the virtual machine. Support for virtual
timers, as required by our priority processing application, is
lacking in the description in [6], [7].

[8] presents a novel design for managing timed event
queues, RELTEQ, applicable for embedded operating systems
demanding low memory and processor overhead. Reservation
based real-time systems provide applications with the facility

to request their remaining budget within the current replenish-
ment period. Reservation based kernels rely on mechanisms
for admission control, scheduling, monitoring and enforce-
ment [9]. Note that virtual timed events are different from
monitoring the consumed budget within an application. Al-
though RELTEQ can be exploited to support budget monitor-
ing, it does not support the generalized concept of virtual timed
events. Enforcement of budgets requires expiration of timers
upon depletion of the budget. [10] implemented enforcement
timers by setting a single timer on activation of a server, indi-
cating the depletion of the server’s budget. The enforcement
timer is set to the minimum value of the remaining budgets of
all levels in the hierarchical resource chain, e.g. levels in an
HSF. Every budget has its own replenishment timer. Finally,
all timers are added to a single global event queue.

[11] keeps track of budget depletion by using separate event
queues for each server in the HSF by means of absolute times.
On activation of a server, an event indicating the depletion of
the budget, i.e. the current time plus the remaining budget, is
added to the server event queue. On preemption of a server,
the remaining budget is updated according to the time passed
since the last server release and the budget depletion event
is removed from the server event queue. When the server’s
budget depletion event expires, the server is removed from
the server ready queue, i.e. it will not be rescheduled until the
replenishment of its budget.

In this paper we show how to extend the RELTEQ [8]
approach to manage virtual timed event queues.

III. VIRTUAL PLATFORM MODEL

Given an HSF mapped on a single processor, we consider a
priority processing application, attached to a server within the
HSF. For simplicity, we assume an idling periodic server [12],
however the proposed approach is expected to be easily
adaptable to other server types. We say that tasks assigned to a
server consume processor time relative to the server’s budget
to signify that the consumed processor time is accounted to
(and subtracted from) that budget.

Given the priority processing application, the decision
scheduler task is assigned the highest priority, such that upon
activation it can immediately preempt the SVAs. The SVAs
are each mapped on a strictly periodic task. All SVAs are
synchronous with the same period, Pf , i.e. each period the
SVAs start with a new video frame and at the end of a
period the processing is terminated. The SVAs are not blocked
by their input and output and share no resources except
the processor. All tasks comprising the priority processing
application are assigned to the same server.

A server has a replenishment period, Pb, and a budget, Qb.
Activation of the decision scheduler, i.e. a virtually timed
event, is triggered after consumption of a time-slot, ∆ts,
relative to the budget Qb. For convenience we assume that Pf

is a multiple of Pb and has the same phasing. For example,
the video frame rate Pf = 20ms, the application is provided
with a budget Qb = 5.5ms every period Pb = 10ms, and
∆ts = 1ms. This scenario is sketched in Figure 2.

38

20 ms

10 ms 10 ms

Legend:

server execution

task deadline

task arrival

expiration of a virtual
time slot event

Fig. 2. Example of budget replenishments and virtual events, with Pf =
20ms, Pb = 10ms, Qb = 5.5ms, and ∆ts = 1ms.

IV. PROPOSED APPROACH

We start this section by summarizing the RELTEQ [8]
approach to multiplexing timed events on a single hardware
timer. Then we describe how RELTEQ can be extended to
support hierarchical scheduling. Finally, we outline an efficient
RELTEQ implementation of virtual timers.

A. Basic RELTEQ timer management

RELTEQ stores the arrival times of events relative to each
other, by expressing the arrival time of an event relative to
the arrival time of the previous event. The arrival time of
the head event is relative to the current time, as shown in
Figure 3. While RELTEQ is not restricted to any specific
hardware timer, in this paper we assume a periodic timer. At
every tick of the periodic timer the time of the head event in
the queue is decremented.

Two operations can be performed on an event queue: new
events can be inserted and the head event can be popped. When
a new event ei with absolute time ti is inserted, the event
queue has to be traversed, accumulating the relative times of
the events until a later event ej is found, with ti < tj , where ti
and tj are both absolute times. When such an event is found,
then (i) ei is inserted before ej , (ii) its time is set relative to
the previous event, and (iii) the arrival time of ej is set relative
to ei. If no later event was found, then ei is appended at the
end of the queue, and its time is set relative to the previous
event.

12 4 5 5 10

e1 e2 e3 e4 e5

absolute time1002

event time

1006 1011 1016 1026990

now

Fig. 3. Example of the RELTEQ event queue.

The first event: The arrival time of the first event is
expressed in absolute time. To prevent the first event from
overflowing, RELTEQ inserts dummy events at times when
the absolute time would overflow, as shown in Figure 4.

The time will overflow once in 2n ticks (assuming an n-
bit time representation), requiring to insert one dummy event
every 2n ticks. Since the number of proper events within that
time interval is likely to be high, the overhead of using dummy
events to handle absolute time overflows is small.

[8] also describes how to use dummy events to provide
unbounded interarrival times between events.

0 2n time

(a)

0 2n time

(b)

2n - 20 2n + 25

2n - 20 252n

Legend:

current time

dummy event

proper event

Fig. 4. Example of (a) overflowing absolute time of the first event (b)
RELTEQ inserting a dummy event to handle the overflow.

B. Extending RELTEQ with hierarchical scheduling

The original description of RELTEQ [8] revolved around
a periodic hardware timer driving a single event queue. To
support hierarchical scheduling, we add an additional server
queue for each server, to keep track of the events local to the
server. At any time at most one server can be active; all other
servers are inactive. The additional server queues make sure
that the events local to inactive servers do not interfere with
the currently active server.

In this new configuration the hardware timer drives two
event queues:

1) the system queue, keeping track of events such as
replenishment of periodic servers,

2) the server queue of the active server, keeping track of
events such as task deadlines or the arrival of periodic
tasks.

At every tick of the periodic timer the heads of both
queues are decremented. The inactive server queues are left
untouched.

When the active server is switched out (e.g. a higher priority
server is resumed, or the active server gets depleted) then the
active server queue is replaced by the queue belonging to the
new active server. As a result, the queue of the switched out
server will be “paused”, and the queue of the switched in
server will be “resumed”.

To keep track of the time which has passed since the last
server switch, we introduce one additional stopwatch queue.
Initially it contains a single “dummy” event with time 0. At
every tick of the periodic timer the head of the stopwatch
queue is decremented. Time overflows are handled by setting
the overflowing event to −2n and inserting a new “dummy”
event at the head of the queue with time equal to the overflow.

When the active server is switched out, the head event in
the server queues of all inactive servers is decremented with
the sum of all event times in the stopwatch queue, and the stop
watch queue is reset to a single “dummy” event with time 0.
Time overflows in the server queues are handled by inserting
dummy events at the head of the queue, similar to handling
overflows of the stopwatch queue.

When an inactive server is switched in, all leading events in
its server queue are handled, until the head points to an event
with a positive absolute event time. The absolute event times
are computed in the same way as in the original RELTEQ,

39

by accumulating the relative times of subsequent events in the
queue.

When the server budget is depleted an event must be
triggered, to guarantee that a server does not exceed its budget.
We could resolve the budget depletion events in a way similar
to [11]. Because their approach requires to remove the budget
depletion event from the server queue every time the server is
switched out and to insert it back when the server is switched
in, we opt for an alternative approach.

C. Extending RELTEQ with virtual timers

In Section I we have identified the need for “time-slot”
events, which expire at times relative to the consumption of the
server budget. In this section we present a general approach
for handling both budget depletion and time-slot events and
introduce the notion of virtual timers. Our approach avoids
removing virtual events upon server switching and is therefore
more efficient than that of [11].

We can implement virtual timers by adding a virtual server
queue for each server. In this new configuration, at every
tick of the periodic timer the heads of all four queues are
decremented: system queue, active server queue, stopwatch
queue, and active virtual server queue.

Similarly to the server queues introduced earlier, when a
server is switched out, the active virtual server queue is paused
and the switched in virtual server queue is resumed. The
difference is that the stopwatch time is not subtracted from
the head of the virtual server queue, since during the inactive
period a server does not consume any of its budget.

An example of the proposed RELTEQ extension with hier-
archical scheduling and virtual timers is shown in Figure 5.

56 4 5 3 10system queue

74 21 4active server
queue

-9 2 15 7
inactive server

and virtual server
queues

37 4

Legend: N event decremented upon every tick N event not decremented

27 5 101active virtual
server queue

-7 -2nstopwatch queue

Fig. 5. Example of RELTEQ based implementation of reservations.

V. CONCLUSION

This paper generalizes the concept of a virtual timer to
hierarchical real-time systems. Specifically, the paper proposes

a technique to minimize the overhead of event handling in
hierarchical scheduling frameworks that may be used in com-
positional design and analysis of complex real-time systems.
In such systems, several applications execute on a shared
processor where each application is given a virtual share of
the processor and is responsible for local scheduling of tasks
within itself. We outlined an implementation of hierarchical
scheduling and virtual timers based on the RELTEQ approach
to multiplexing timed events on a single hardware timer. The
proposed implementation aims at minimizing the overhead of
handling events belonging to inactive servers. In the future we
would like to further investigate trade-offs between different
design and implementation alternatives of HSFs with virtual
timers in RELTEQ.

Our current research on providing temporal isolation be-
tween applications in real-time systems focusses on two-level
HSFs. In the future work we would like to extend the proposed
approach to multi-level hierarchical scheduling, where the
hardware timer is driving a server queue for each server in
the hierarchy of currently active servers.

REFERENCES

[1] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Proc. 24th IEEE Real-Time Systems Symposium (RTSS),
Dec. 2003, pp. 2–13.

[2] C. Hentschel and S. Schiemenz, “Priority-processing for optimized real-
time performance with limited processing resources,” in Proc. 26th IEEE
Int. Conference on Consumer Electronics (ICCE). Digest of Technical
Papers., Jan. 2008.

[3] S. Schiemenz, “Echtzeitsteuerung von skalierbaren Priority-Processing
Algorithmen,” in Tagungsband ITG Fachtagung - Elektronische Medien,
March 2009, pp. 108 – 113.

[4] M. van den Heuvel, R. J. Bril, S. Schiemenz, and C. Hentschel, “Dy-
namic resource allocation for real-time priority processing applications,”
in Accepted for 28th IEEE Int. Conference on Consumer Electronics
(ICCE). Digest of Technical Papers., Jan. 2010.

[5] GNU-Project. (2009, Sep.) Setting an alarm - the gnu c
library. [Online]. Available: http://www.gnu.org/s/libc/manual/html
node/Setting-an-Alarm.html

[6] S. Yoo, M. Park, and C. Yoo, “A step to support real-time in virtual ma-
chine,” in Proc. 6th IEEE Consumer Communications and Networking
Conference (CCNC), Jan. 2009, pp. 1–7.

[7] D. Kim, Y.-H. Lee, and M. Younis, “Spirit-µkernel for strongly parti-
tioned real-time systems,” in Proc. 7th Int. Conference on Real-Time
Computing Systems and Applications., 2000, pp. 73–80.

[8] M. Holenderski, W. Cools, R. J. Bril, and J. J. Lukkien, “Multiplexing
real-time timed events,” in Proc. 14th IEEE Int. Conference on Emerging
Technologies and Factory Automation (ETFA), July 2009.

[9] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels: A
resource-centric approach to real-time and multimedia systems,” in Proc.
SPIE, Vol. 3310, Conference on Multimedia Computing and Networking
(CMCN), January 1998, pp. 150–164.

[10] S. Saewong and R. Rajkumar, “Hierarchical reservation support in
resource kernels,” 2001. [Online]. Available: http://www.cs.cmu.edu/
afs/cs/project/rtml-2/Papers/hrsv.ps.gz

[11] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril, “Towards
hierarchical scheduling on top of VxWorks,” in Proc. 4th Int. Workshop
on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT), July 2008, pp. 63–72.

[12] R. Davis and A. Burns, “Hierarchical fixed priority pre-emptive schedul-
ing,” in Proc. 26th IEEE Int. Real-Time Systems Symposium (RTSS), Dec.
2005, pp. 389–398.

40

