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2 Chapter 1. Introduction and Outline

1.1 Introduction

As you read this sentence in the thesis that lies before you, your brain is
extracting information mediated by the photons that reflected from this
page onto the receptive fields in the retinas of your eyes. The retinal re-
ceptive fields connect via the optic nerve to the visual cortex of your brain.
Already at this point the human visual system has a difficult problem to
solve: Typical receptive field sizes increase as a function of distance to
the fovea, which is the part of the retina that contains the smallest and
most densely packed receptive fields. As a result the image that is mapped
to the cortical surface (a representation of the optical world) is hard to
interpret directly and has to be reformatted such that it is better suited
for further analysis. This reformatting we refer to as reconstruction. A
visualization of the mapping from the real world to the cortical surface,
which is believed to be close to a log-polar mapping [95], and the image
to which the mapping is applied, is shown in Figure 1.1. Given the image
in the right part of this figure one would like to obtain the “undeformed”
image that is shown on the left.

Similar inverse problems occur when a magnetic resonance imaging (MRI)
scan, computed tomography (CT) scan or a picture with a photo camera
is made. The observations that are done by, e.g., counting the number
of photons that hit the surface of a detector during some period of time
have to be decoded into a representation that is more useful for further
processing. In this thesis we will discuss how one can retrieve a convenient
representation of “the real world” when only a few measurements are done
with receptors of varying shapes and sizes. The information in these mea-
surements is usually insufficient for a perfect reconstruction therefore we
aim at providing a plausible representation based on the information we
are given. Apart from reconstruction of images or signals we will discuss
enhancement. Enhancement methods aim at getting a convenient or in
some sense more appealing (approximate) representation of a signal or
image.
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Figure 1.1: The image on the right is obtained by applying a log-polar map to
the image on the left. Such a mapping is believed to take place when the optical
world is mapped to the cortical surface.
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1.1.1 Reconstruction from Sparse Image Representations

Image and signal processing techniques heavily rely on the representation
of the signals or images they act on. For certain classes of algorithms such
as image matching it is beneficial to employ an adaptive sparse represen-
tation of the underlying image. A sparse representation of an image can
be thought of as a relatively small set of linear functionals on the image,
or “features”. In this thesis we present several methods to reconstruct im-
ages or signals from sparse representations. We restrict ourselves to linear
representations.

An interesting linear representation is the Gaussian scale space represen-
tation of an image. This representation is useful since it makes the scale
component of the represented image explicit. Scale (in the sense of in-
verse resolution) is an inherent property of images and signals in general.
Iĳima [57] was the first to propose such a representation in the Japanese
literature. In 1983 Witkin [118] and Koenderink [74] introduced it to the
western scientific community.

The application of catastrophe theory in Gaussian scale space theory led
to the identification of special singularities in the Gaussian scale space rep-
resentation of images. Image matching work by Platel and Balmashnova
shows that the locations of singularities and their properties are ideally
suited [92, 6] for pattern recognition tasks. Janssen and Florack [63, 43]
showed the applicability of singular point tracking in time sequences for
motion estimation. To asses the inherently sparse representation of a Gaus-
sian scale space representation of an image by means of its singular points,
Nielsen, Lillholm and Griffin [86, 79] developed a reconstruction algorithm.
Related approaches for reconstruction from zero-crossings in wavelet rep-
resentations of images can also be found in literature [82].

In this thesis we develop reconstruction methods and apply them to the
reconstruction from measurements that are taken at the locations of these
singularities in the scale space representation of an image. Figure 1.2
shows a projection of the famous “Lena” image onto a plane. The figure
gives an interpretation of the scale space representation of “Lena”. Here
the z-direction corresponds to the scale parameter. A point that is further
away from the depicted plane corresponds to a larger scale and thus a more
blurred view of the image that is depicted on the plane. Now measurements
are taken at the locations of the balls that are depicted in the image, where
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the height of the ball corresponds to the size of the receptive field. A ball
at a greater height covers a larger area of the image. The location of such
a ball corresponds to the location of a singular point in the scale space
representation of the image that is shown on the plane in the figure. Paths
on which the balls are located are called critical paths and correspond to
spatial local extrema. The number of measurements is very small compared
to the number of pixels we need to represent the image on a computer
screen. The task we take upon ourselves is to find an image that looks
as much as possible like the image the measurements have been obtained
from.

Although we apply our algorithms to the reconstruction from properties of
singular points of Gaussian scale space representations of images we note
that the presented algorithms are not limited to this application. Physical
measurements can in general be modeled by means of linear functionals
and therefore fit in our framework. When there is special structure present
in the measurements often more efficient algorithms can be devised to re-
construct the measured physical object. An example of an inverse problem
of this type is de-blurring [24], where the assumption of a space invariant
point spread function is often quite reasonable. Medical applications such
as reconstruction of cone beam CT images or reconstruction from MRI
acquisitions also fit in our framework. With respect to the latter exam-
ple it is shown in [20] that from only a few measurements satisfactory
reconstructions can be obtained.

1.1.2 Enhancement of Time-Frequency Representations
of Signals

When images or signals are to be manipulated it pays off to select a suit-
able representation. Duits, van Almsick, and Franken [35, 107, 46] for ex-
ample showed that orientation scores are suitable representations for the
enhancement of elongated structures. These scores make the orientation
component explicit and are shown to be of value for crossing preserving
image enhancement. This application is a specialization of the general
group theoretic framework that was developed in [35]. We use the same
framework for the time-frequency analysis of signals.

A musical composition is expressed by means of a musical score such as the
one in Figure 1.3. In such a score the pitch and duration are both explicitly
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represented at the same time. Such a representation is very convenient and
was an inspiration for researchers to come up with a signal transform that
has similar properties [48, 30, 31]. This eventually led to a field of research
known as time-frequency analysis. The underlying group for the Gabor
transform we use to obtain a time-frequency view of a signal is the Weyl-
Heisenberg group. Because we recognize the underlying group structure
we are able to find representations of a signal that are easier to interpret
and still close to the original signal (“reassignment”). Furthermore we are
able to enhance the signal itself, making use of the same techniques as
those that were used to obtain the reassigned signal.

In fact reconstruction from Gabor transforms of signals or images is again
an example of the reconstruction algorithms we mentioned earlier. Here
a very special structure is present which allowed researchers to come up
with very efficient reconstruction algorithms [8]. We also note that this
representation is not signal adaptive and, in our case, highly redundant.

All in all, we present several reconstruction methods to reconstruct from a
sparse set of features that are obtained at the locations of image adaptive
interest points that are present in the scale space representations of images
and show how a time-frequency representations of signals can be enhanced,
both in the sense that the time-frequency representation of the signal is
easier to interpret and in the sense that spurious structure is removed from
the signal itself. To accomplish the enhancement we make use of a group
theoretic approach. Time-frequency processing of signals is a step-stone
towards time-frequency image processing.
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Figure 1.2: A visualization of the critical paths and singular points in the scale
space representation of “Lena”. The balls correspond to the locations of singular
points. When the ball is further away from the plane on which the image of
“Lena” is depicted it corresponds to a larger scale and thereby to a filter that
has a larger support. These filters are used to obtain the features from which an
image will be reconstructed.

Figure 1.3: An excerpt of the score for “Allegro” in “Concerto per il Clarino”
by Joseph Haydn (arranged for B[ trumpet). This concert for the predecessor of
the trumpet was composed for Anton Weidinger, the inventor of the first keyed
trumpet [112].
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1.2 Outline of this Thesis

The outline of this thesis is as follows.

Chapter 2 discusses the reconstruction from differential structure that is
obtained at the locations of singular points of a scale space representation
of an image by means of orthogonal projections. The proposed method
is applicable to the reconstruction from a set of linear functionals on the
image to which we will henceforth refer as features. To obtain a visually
appealing reconstruction a prior (model) is minimized while insisting on
the features to hold. That is, both the original image the features were
extracted from and the reconstructed image share the same features. Any
prior that is a norm formed by an inner product can be mapped to the
presented framework. We select a norm of Sobolev type to demonstrate
the method.

In Chapter 3 the reconstruction method is formulated on the bounded do-
main. The framework that was presented in Chapter 2 on the unbounded
domain is adapted such that all operators, including the scale space genera-
tors, are confined to the bounded domain on which the to-be-reconstructed-
image is defined. This circumvents boundary problems that would arise if
the method for unbounded domains were applied to finite-domain images.
To avoid approximation and truncation errors the method is implemented
such that it is exact on the grid. As a result we can obtain visually more
appealing reconstructions compared to those obtained by the method that
is presented in Chapter 2 when much regularization is applied.

The reconstructions that are obtained by means of the methods that are
presented in Chapter 2 and Chapter 3 give an interpolation of the features.
These reconstructions also have to be obtained in a single step, i.e., it
is not possible to get a quickly obtainable “preview” of the image at a
coarse resolution. Chapter 4 presents a coarse-to-fine image reconstruction
method that allows an approximate reconstruction from the features, i.e.,
a reconstruction for which the features hold approximately. Information
from coarse scale reconstructions is not directly encoded in the features
that are used for the finer scale reconstructions but are passed to a finer
scale in an implicit manner by means of a gauge field. An advantage of
using the gauge field is the reduction of memory consumption and thereby
the increase of computational efficiency.
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In Chapter 5 the representation of signals in the Gabor domain is dis-
cussed. We recognize that Gabor transforms of signals are functions on
the Weyl-Heisenberg group. This observation allows us to define differ-
ential operators on the Gabor domain that are left-invariant. When an
operator on the Gabor domain is left-invariant the corresponding operator
on the signal domain is translation and modulation invariant. Using these
operators we define a convection process on the Gabor domain of a signal
that results in a sharper representation but leaves the signal itself approxi-
mately intact. To this end the convection is steered along iso-phase planes
in the Gabor domain. The convection process, which is also referred to as
differential reassignment, is applied on phase-space. This allows for a fast
computation compared to computation on the full group. Discretization
is done by identifying a discrete group that corresponds to the continuous
Weyl-Heisenberg group. The discrete left-invariant vector fields on this dis-
crete group are used to obtain a reassigned time-frequency representation
of the signal.

Chapter 6 discusses how the left-invariant vector fields that were obtained
in Chapter 5 can be used to enhance the signal itself. To this end a non-
linear anisotropic diffusion equation is defined on the domain of Gabor
transforms. The initial condition for this evolution equation is the Gabor
transform of the raw signal. We show that this diffusion process, which is
similar to the coherence enhancing diffusion scheme on images by Weick-
ert [114], can successfully remove noise.
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type inner products. International Journal of Computer Vision, 70(3):231–
240, 2006. (Invited Paper)
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Abstract. Exploration of information content of features that are present
in images has led to the development of several reconstruction algorithms.
These algorithms aim for a reconstruction from the features that is visu-
ally close to the image from which the features are extracted. Degrees of
freedom that are not fixed by the constraints are disambiguated with the
help of a so-called prior (i.e., a user defined model). We propose a linear
reconstruction framework that generalizes a previously proposed scheme.
The algorithm greatly reduces the complexity of the reconstruction pro-
cess compared to non-linear methods. As an example we propose a specific
prior and apply it to the reconstruction from singular points. The recon-
struction is visually more attractive and has a smaller L2-error than the
reconstructions obtained by previously proposed linear methods.

2.1 Introduction

Reconstruction from differential structure of scale space interest points
was first introduced by Nielsen and Lillholm [86]. Using the reconstruc-
tion the information content of these points can be investigated. Unser
and Aldroubi [105] generalized sampling theory by Shannon [97] and Pa-
poulis [90] by finding a consistent reconstruction of a signal from its integer
shifted filter responses, i.e., a reconstruction that is indistinguishable from
its original when observed through the filters the features were extracted
with. The consistency requirement is adopted by Lillholm, Nielsen and
Griffin [79, 86] and Kybic et al. [76, 77]. They describe a variational frame-
work that finds a consistent reconstruction that minimizes a so called prior
(i.e., a user defined model). The disadvantage of this variational approach
is that the reconstruction algorithm is not linear and therefore slow and
somewhat cumbersome to implement. Kanters et al. [71] investigated a
special case of the reconstruction by Nielsen and Lillholm [86] by adopting
the L2-norm as a prior. We shall refer to this as the standard linear recon-
struction scheme. Advantages of this approach are that the reconstruction
algorithm is linear and analytical results for the generalized correlation ma-
trix can be found. The disadvantage is that this method is qualitatively
outperformed by nonlinear reconstruction methods [79, 76, 86].

We propose a general reconstruction framework which can be applied to a
large set of priors. Any prior that can be described by a norm formed by an
inner product can be mapped to this framework. Our method overcomes
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the disadvantages of the standard linear reconstruction scheme [71] while
retaining linearity. This is done by replacing the L2-inner product by an
inner product of Sobolev type. To verify the proposed method we apply
it to the reconstruction from singular points. A prior that smoothens the
reconstructed image is selected. This results in a reconstruction that has
as few additional singular points as possible under the constraints. Also
the features are enriched by taking higher order derivatives into account.

For a mathematically rigorous analysis of linear image reconstruction and
its connection to Gelfand triples we refer to Duits [41, Section 3.4].

2.2 Theory

Definition 1 (L2-Inner Product). The L2-inner product for f, g ∈ L2(R2)
is given by

(f, g)L2 =
∫
R2

f(x) g(x)dx . (2.1)

This is the standard inner product used in previous work [71, 79, 86].

The reconstruction problem boils down to the selection of an instance of
the metameric class consisting of g ∈ L2

(
R2) such that

(ψi, g)L2
= ci , (i = 1...N) (2.2)

with ψi denoting the distinct localized filters that generate the ith filter
response ci = (ψi, f)L2 ∈ C, i.e., the selection from the equivalence class
of images g that share the same predefined set of features (2.2). The selec-
tion of g is done by minimizing a prior subject to the constraints of equa-
tion (2.2). A distinction can be made between priors (global constraints)
that are constructed by a norm formed by an inner product and those that
are constructed by a norm that is not formed by an inner product. In the
former case it is possible to translate the reconstruction problem to a lin-
ear projection. This maps the reconstruction problem onto straightforward
linear algebra. To this end we propose a generalization of Definition 1 as
follows.

Definition 2 (A-Inner Product). We define A to be an operator on L2(R2)
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such that (I +A†A)−1 is bounded1. Then

(f, g)A = (f, g)L2 + (Af,Ag)L2 . (2.3)

Note that we can write

(f, g)A =
(
f, (I +A†A)g

)
L2

. (2.4)

For an image f ∈ L2(R2) we consider a collection of filters ψi ∈ L2(R2)
and filter responses ci, i = 1, ..., N , given by

ci = (ψi, f)L2 . (2.5)

Thus the a priori known features are given in terms of an L2-inner product.
In order to express these features relative to the new inner product we seek
an effective filter, κi say, such that

(κi, f)A = (ψi, f)L2 (2.6)

for all f . We will henceforth refer to ψi as an “L2-filter” and to κi as its
corresponding “A-filter”.

Lemma 2.2.1 (A-Filters). Given ψi ∈ L2(R2) then its corresponding A-
filter is given by

κi = (I +A†A)−1ψi . (2.7)

Proof. Applying Definition 2,

(κi, f)A =
(
(I +A†A)−1ψi, f

)
A

=
(
(I +A†A)(I +A†A)−1ψi, f

)
L2

=(ψi, f)L2 . (2.8)

1By Neumann [121] p.200, we have that for every closed densely defined operator A
in a Hilbert space H the operator A†A is self adjoint and (I + A†A) has a bounded
inverse.
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We aim to establish a reconstruction g that satisfies equation (2.2) and
minimizes

E(g) = 1
2(g, g)A . (2.9)

Since g satisfies equation (2.2) we may as well write

E(g) = 1
2 ((g, g)L2 + (Ag,Ag)L2)− λi ((ψi, g)L2 − ci) , (2.10)

in other words

E(g) = 1
2(g, g)A − λi ((κi, g)A − ci) . (2.11)

Here and henceforth Einstein summation convention applies to upper and
lower feature indices i = 1...N , i.e., whenever an upper index matches a
lower one it is supposed to be regarded as a dummy summation index.
The first term in equation (2.11) is referred to as the prior. The remainder
consists of a linear combination of constraints, recall equation (2.2), with
Lagrange multipliers λi.

Theorem 2.2.2. The solution to the Euler-Lagrange equations for equa-
tion (2.11) can be found by A-orthogonal projection of the original image
f on the linear space V spanned by the filters κi, i.e.,

g = PVf = (κi, f)A κi . (2.12)

Here we have defined κi def= Gijκj with Gram matrix

Gij = (κi, κj)A (2.13)

and GikGkj = δij.

Proof. The functional derivative of equation (2.11) with respect to the
image g is given by (recall equation (2.4))

δE(g)
δg

= (I +A†A)g − λiψi (2.14)

The solution to the corresponding Euler-Lagrange equations is formally
given by

g = λi(I +A†A)−1ψi = λiκi . (2.15)
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So the filter responses can be expressed as

ci = (ψi, g)L2 = λj
(
ψi, (I +A†A)−1ψj

)
L2

= λj(ψi, κj)L2 = λj(κi, κj)A .

(2.16)
Consequently λi = Gijcj . Applying this to equation (2.15) leads to

g = λiκi = Gijcjκi = Gij(κj , f)A κi = (κi, f)A κi . (2.17)

This completes the proof of Theorem 2.2.2.

Theorem 2.2.2 refers to an Euler-Lagrange formalism to comply with pre-
vious work on this subject [71, 79, 86]. The authors do notice the linear
reconstruction problem can be approached in a simpler and more elegant
way. This approach is sketched in Appendix A.1.

2.3 Reconstruction from Singular Points

The theory of the previous section is applicable to any set of linear features.
Here we are particularly interested in feature attributes of so-called singular
points in Gaussian scale space. A Gaussian scale space representation
u(x; s) in n spatial dimensions is obtained by convolution of a raw image
f(x) with a normalized Gaussian:

u(x; s) = (f ∗ ϕs) (x)

ϕs(x) = 1√
4πsn

e−
||x||2

4s .
(2.18)

For the remainder of this paper we use the following convention for the
continuous Fourier Transform

F (f) (ω) = f̂(ω) = 1√
2πn

∞∫
−∞

e−iωxf(x)dx

F−1 (f) (x) = f(x) = 1√
2πn

∞∫
−∞

eiωxf̂(ω)dω .

(2.19)

Notice that with this definition Fourier transformation becomes a unitary
transformation.
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2.3.1 Singular Points

A singular point is a non-Morse critical point2 of a Gaussian scale space
representation of an image. Scale s is taken as a control parameter. This
type of point is also referred to in the literature as a degenerate spatial
critical point or as a toppoint or catastrophe.

Definition 3 (Singular Point). A singular point (x; s) ∈ Rn+1 is defined by
the following equations, in which ∇ denotes the spatial gradient operator:{

∇u(x; s) = 0
det∇∇Tu(x; s) = 0

(2.20)

The behavior near singular points is the subject of catastrophe theory. Da-
mon rigorously studied the applicability of established catastrophe theory
in a scale space context [26]. Florack and Kuĳper have given an overview
of the established theory in their paper about the topological structure of
scale space images for the generic case of interest [44]. More on catastrophe
theory in general can be found in a monograph by Gilmore [51].

2.3.2 Prior Selection

Johansen showed [65, 66] that a one dimensional signal is defined up to
a multiplicative constant by its singular points. This is probably not the
case for two dimensional signals (images). It was conjectured that these
points endowed with suitable attributes do contain enough information to
be able to obtain a reconstruction that is visually close to the initial image
[71, 79, 86].

As can be seen in Figure 2.1 the standard linear reconstruction proposed
by Kanters et al. [71], which uses the standard L2-inner product, is far
from optimal. The problem can be identified by determining the number
of additional singular points that appear in the reconstructed image while
strictly insisting on the features to hold. In case of a perfect reconstruction
the number of singular points would be equal for the reconstructed and
original image. In practice, however, one observes that a reconstruction like
the one shown in Figure 2.1 on the right, has more singular points than

2See [51] pp. 13 for notational conventions.
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Figure 2.1: The image on the right hand side shows the standard linear reconstruc-
tion, taking up to second order differential structure into account, as is proposed
by Kanters et al. [71] from 63 singular points of Lena’s eye. The original image,
from which the singular points are taken is shown on the left hand side.

the original image. The number of singular points in the reconstructed
image can be reduced by smoothing the image (while not violating the
constraints). Therefore a prior derived from the following inner product is
proposed3:

(f, g)A = (f, g)L2 + (−γ
√
−∆f,−γ

√
−∆g)L2 = (f, g)L2 − (f, γ2∆g)L2

= (f, g)L2 + (γ∇f, γ∇g)L2 .

(2.21)

This prior introduces a smoothness constraint to the reconstruction prob-
lem. The degree of smoothness is controlled by the parameter γ. When γ
vanishes the projection equals the one from standard linear reconstruction
[71]. Note that this is a standard prior in first order Tikhonov regulariza-
tion [42, 102]. A visualization of the projection using the inner product of
equation (2.21) can be found in Figure 2.2.

In practice one should consider

f 7→
(
f − f̄

)
1Ω , (2.22)

with f̄ the average of f and Ω denotes the support of f . Then for A =
−γ√−∆

||f − f̄ ||2A = ||f − f̄ ||2L2 + ||Af ||2L2 (2.23)
is minimized resulting in minimal variance reconstruction.

3The operational significance of the fractional operator−
√
−∆, which is the generator

of the Poisson scale space, is explained in detail by Duits et al. [38]. In Fourier space it
corresponds to the multiplicative operator −||ω||.



2.3. Reconstruction from Singular Points 19

g

f

PV,γ=0f

PV,γ=1f

L2 (Rn) f + V⊥

�

γ

f

r

rr r γ = γopt

r

Figure 2.2: Illustration of the metameric class V of images with consistent fea-
tures. For γ = 0 we have an orthogonal projection in L2

(
R2). For γ > 0 this is an

A-orthogonal projection, which is a skew projection in L2
(
R2). The smoothness

of the projection increases with γ > 0.

2.3.3 Implementation

Setting A = −γ√−∆ the A-filter equals

κi = (I − γ2∆)−1ψi = F−1
(
ω 7−→ 1

1 + γ2||ω||2F(ψi)(ω)
)
. (2.24)

The filter shape in the spatial domain is somewhat harder to obtain. For
two dimensions (n = 2) the convolution filter that represents the linear
operator (I − γ2∆)−1 equals

φγ(x, y) = 1
2πγ2K0[

√
x2 + y2

γ
] (2.25)
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with K0 the zeroth order modified Bessel function of the second kind.
This was also noted by Florack, Duits and Bierkens [42] who worked on
Tikhonov regularization and its relation to Gaussian scale space. Notice
that this kernel is singular at the origin. This is caused by the fact that a
first order Sobolev space on R2 is not a reproducing kernel Hilbert space.
By slightly increasing the order of the Sobolev space this inconvenience
could be circumvented [35]. The nature of the singularity is relatively
harmless, however.

The calculation of the Gram matrix Gij (equation (2.13)) is the compu-
tationally hardest part of the reconstruction algorithm. An analytic ex-
pression for this matrix is not available (unless γ = 0 [71]). Therefore the
inner products (κi, κj)A have to be found by numerical integration. By
the Parseval theorem we have (recall equations (2.24) and (2.25))

(κi, κj)A =
( 1

1 + γ2||ω||2 ψ̂i, ψ̂j
)

L2

=
( 1

1 + γ2||ω||2 , ψ̂iψ̂j
)

L2

=
(
φγ , ψi ∗ ψj

)
L2

. (2.26)

In which φγ is given by equation (2.25).

At this point we have not yet specified the ψi filters. Since we are interested
in the properties of singular points in Gaussian scale space we define the
filters as follows.

Definition 4 (Feature Extraction). A filter ψi is a localized derivative
of the Gaussian kernel, recall equation (2.18), at a certain scale. Given
x, y, ξ, η ∈ R and m,n ∈ N0

ψi(x, y)
def= ∂m+nϕs(ξ − x, η − y)

∂xm∂yn
(2.27)

with i def= (m,n, ξ, η, s) ∈ N2
0 × R2 × R+.
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Notice that(
∂m+n

∂xm∂yn
u

)
(ξ, η, s) =

(
∂m+n

∂xm∂yn
ϕs ∗ f

)
(ξ, η)

=
∫
f(x, y)

(
∂m+n

∂xm∂yn
ϕs

)
(ξ − x, η − y) dxdy

=
(
ψi, f

)
= (ψi, f)

(2.28)

since ψi = ψi. So the differential structure at a point in scale space can be
described by a set of linear functionals on the image f .

Applying Definition 4 to equation (2.26) reveals that the inner products in
the Gram matrix can be expressed as a Gaussian derivative of the spatial
representation of φγ . Note that this can be exploited for any operator that
one chooses to use as a regularizer.

The singularity of φγ(x) at the origin gives rise to numerical problems.
The Fourier representation φ̂γ(x) does not have a singularity, therefore the
Fourier representation of the operator is sampled and after that a discrete
inverse Fourier transform is applied to it.

At this point we could construct the Gram matrix and obtain the solution
of our reconstruction problem, according to equation (2.17)

g = Gijcjκi . (2.29)

Instead, in order to improve accuracy, we rewrite our problem in the fol-
lowing manner,

g = G̃ij c̃j κ̃i , (2.30)

with , G̃ij = Gij√
Gii
√
Gjj

(no summation convention), c̃j = 1√
Gjj

cj and

κ̃i = 1√
Gii
κi. This way the condition number of the matrix to be inverted,

C =
√
µ1
µn

, (2.31)

with µ1 ≥ µ2 ≥ . . . ≥ µn > 0 its eigenvalues, can be controlled. Since the
condition number solely depends on the largest and the smallest eigenvalue
we can easily minimize equation (2.31) by setting the diagonal of this
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matrix to unity, as is expressed in equation (2.30). In matrix notation we
note that (underscore denotes vectorial representation)

(Sκ)T (SGS)−1 Sc = κTG−1c , (2.32)

where we used ST = S, with

Sij =


1√
Gii

if i = j

0 if i 6= j
, (2.33)

κ = (κ1, . . . , κN )T and c = (c1, . . . , cN )T .

2.3.4 Richer Features

Obtaining a visually appealing reconstruction from singular points can be
achieved by selecting an “optimal” space for projection. This approach is
discussed above. Another way to enhance the quality of the reconstruction
is by using more information about the points that are used for reconstruc-
tion, i.e., by using richer features. In the standard case only up to second
order differential structure was used. In our experiments also higher order
differential properties of the singular points were taken into account. This
has the side effect that the Gram matrix will be harder to invert when
more possibly dependent properties are used.

2.4 Evaluation

To evaluate the suggested prior and the proposed reconstruction scheme
reconstructions from singular points of different images are performed.
The singular points are obtained using ScaleSpaceViz [69] (available on
the web), which is based on a zero-crossings method. After the singular
points are found the unstable ones are filtered out by applying a threshold
on the amount of structure that is present around a singular point. The
amount of structure can be found by calculating the “differential quadratic
total variation norm” or “deviation from flatness”

tv = σ4Tr (H2) (2.34)
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that was proposed by Platel et al. [93]. Here H represents the Hessian
matrix and σ represents the scale at which the singular point appears.
The reconstruction algorithm is implemented in Mathematica [119].

The images that are chosen to evaluate the performance of the reconstruc-
tion algorithm are those used by Kanters et al. and Lillholm et al. for the
evaluation of their reconstruction algorithms [71, 79], Lena’s eye and MR
brain. The size of the former image is 64 × 64 pixels and the size of the
latter image is 128×128 pixels. The pixel values of these images are integer
valued ranging from 0 to 255.

2.4.1 Qualitative Evaluation

First we study reconstruction from singular points taking into account up
to second order derivatives of the image at the locations of the singular
points. Figure 2.3 shows the reconstruction from 31 singular points of
Lena’s eye. These points are selected using a tv-norm of 32. Note that
the tv-norm scales with the square of the image range. The first image
in the upper row displays the image from which the singular points were
obtained. Successive images are reconstructions from these points with an
increasing γ. The second image in the first row shows a reconstruction with
γ = 0, which equals the reconstruction by Kanters et al. [71, 70], and the
first picture in the second row depicts the reconstruction with a minimal
relative L2-error. The same convention is used in the reconstruction from
55 singular points of MR brain that is displayed in Figure 2.4. The singular
points of this image were acquired using a tv-norm of 128. Figure 2.3 shows
the “fill-in effect” of the smoothing prior. The reconstruction with the
smallest relative L2-error is visually more appealing than the images with
a smaller γ. A reconstruction with γ = 250 lacks details that were visible in
the other reconstructions. This happens because the Grammatrix is harder
to invert when dependent basis functions are used. With an increasing
γ the kernels become wider and thus more dependent on one another.
The reconstructions of MR brain show “leaking” edges. Because the prior
smoothes the image the very sharp edges of this image are not preserved
and consequently the leaking effect appears.
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Figure 2.3: Reconstruction from 31 singular points of Lena’s eye with up to second
order features. The upper row shows the original image and reconstructions with
γ = 0 and γ = 5. The second row shows reconstructions with γ = 22, γ = 50 and
γ = 250. The first image in the second row shows the reconstruction with the
lowest relative L2-error.

To investigate the influence of enrichment of the features the same ex-
periments are repeated but up to fourth order derivatives are taken into
account in the features. The results for the reconstruction from the sin-
gular points of Lena’s eye can be found in Figure 2.5 and the results for
the reconstruction from the singular points of MR brain are depicted in
Figure 2.6. In both cases the images show more detail and are visually
more appealing than their second order counter parts. The reconstruction
of the MR brain image still shows leakage, but this effect is reduced when
compared to second order reconstruction. Inspection of Figures 2.3,2.4,2.5
and 2.6 shows that, although the reconstructions are still far from optimal,
remarkably few singular points are involved relative to the total number
of pixels.
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Figure 2.4: Reconstruction from 55 singular points of MR brain with up to second
order features. The upper row shows the original image and reconstructions with
γ = 0 and γ = 3. The second row shows reconstructions with γ = 7, γ = 50 and
γ = 250. The first image in the second row shows the reconstruction with the
lowest relative L2-error.

2.4.2 Quantitative Evaluation

In order to verify the quality of the reconstructions of both images under
a varying γ the relative L2-error4,

L2-error = ||f − g||L2

||f ||L2
, (2.35)

of the reconstructed images is calculated. Figure 2.7 shows four graphs
depicting this error for both second order and fourth order reconstruction
of Lena’s eye and MR brain. All graphs show that an optimal value exists
for the γ parameter. This can be explained by the fact that the Gram
matrix is harder to invert with increasing γ due to increasing correlation
among the filter cf. equation (2.26). Because of that dependent equations
will be removed during the Singular Value Decomposition, which is used
to obtain the inverse of the Gram matrix. This leads to a reconstruction
with less detail and thus a larger L2-error. The reconstructions of the

4An exposition of several alternative measures that can be used to asses the recon-
struction quality can be found in [68].
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Figure 2.5: Reconstruction from 31 singular points of Lena’s eye with up to fourth
order features. The upper row shows the original image and reconstructions with
γ = 0 and γ = 4. The second row shows reconstructions with γ = 19, γ = 50 and
γ = 250. The first image in the second row shows the reconstruction with the
lowest relative L2-error.

MR brain image show an increasing L2- error with an increasing γ. This
error becomes even larger than the L2-error of the reconstruction with
γ = 0. This can be attributed to the sharp edges of the head that are
smoothed and thus show leakage into the black surroundings of the head.
The background clearly dominates the contribution to the L2-error. The
reconstruction of Lena’s eye does not suffer from this problem because of
its smoothness.

2.5 Conclusions & Recommendations

We proposed a linear reconstruction method that leaves room for selection
of arbitrary priors as long as the prior is a norm of Sobolev type. This
greatly reduces the complexity of the reconstruction algorithm compared
to non-linear methods.

We select one possible prior characterized by a free parameter γ that aims
for a smooth reconstruction. This provides a control parameter for select-
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Figure 2.6: Reconstruction from 55 singular points of MR brain with up to fourth
order features. The upper row shows the original image and reconstructions with
γ = 0 and γ = 4. The second row shows reconstructions with γ = 8, γ = 50 and
γ = 250. The first image in the second row shows the reconstruction with the
lowest relative L2-error.

ing different metameric reconstructions, i.e., reconstructions all consistent
with the prescribed constraints. Comparisons with standard linear recon-
struction as done by Kanters et al. [71] show it is possible to improve the
reconstruction quality while retaining linearity. Reconstruction from a se-
lection of singular points of the MR brain image proves to be more difficult
than reconstruction of smoother images like Lena’s eye. The problem, that
shows up as “leaking” edges, is reduced by taking higher order differential
structure into account in the reconstruction algorithm. When the γ param-
eter is increased basis functions get more dependent on each other. This
leads to a harder to invert Gram matrix and consequently to a reduction
of detail in the reconstruction.

Both, taking a γ > 0 and taking higher order features into account, lead to
visually more appealing images and a smaller L2-error when compared to
standard linear reconstruction. It remains an open question how to select
an optimal γ.

Future work will include the use of anisotropic diffusion depending on the
local image orientation and investigation of so called flux features.
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Figure 2.7: The relative L2-error of the reconstructions from 31 singular points
of Lena’s eye (upper row) and 55 singular points of MR brain (lower row). The
first column shows the L2-error for varying γ when second order reconstruction
is used, i.e., up to second order derivatives are taken into account in the features.
The second column displays fourth order reconstruction. The minimal relative
L2-errors of the reconstructions of Lena’s eye (γ = 22 and γ = 19) are larger
than those of MR brain (γ = 7 and γ = 8). This suggests, in order to reduce
the “fill-in effect” that causes this difference for the optimal value of γ, the use of
anisotropic diffusion (which will be addressed in future work).
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Abstract. The reconstruction problem is usually formulated as a varia-
tional problem in which one searches for that image that minimizes a so
called prior (image model) while insisting on certain image features to be
preserved. When the prior can be described by a norm induced by some
inner product on a Hilbert space, the exact solution to the variational
problem can be found by orthogonal projection. In previous work we con-
sidered the image as compactly supported in L2(R2) and we used Sobolev
norms on the unbounded domain including a smoothing parameter γ > 0
to tune the smoothness of the reconstructed image. Due to the assumption
of compact support of the original image, components of the reconstructed
image near the image boundary are too much penalized. Therefore, in this
work we minimize Sobolev norms only on the actual image domain, yield-
ing much better reconstructions (especially for γ � 0). As an example we
apply our method to the reconstruction of singular points that are present
in the scale space representation of an image.

3.1 Introduction

One of the fundamental problems in signal processing is the reconstruction
of a signal from its samples. In 1949 Shannon published his work on signal
reconstruction from its equispaced ideal samples [97]. Many generalizations
[90, 104] and applications [77, 20] followed thereafter.

Reconstruction from differential structure of scale space interest points,
first introduced by Nielsen and Lillholm [86], is an interesting instance
of the reconstruction problem, since the samples are non-uniformly dis-
tributed over the image they were obtained from and the filter responses of
the filters do not necessarily coincide. Several linear and non-linear meth-
ods [86, 64, 76, 79] appeared in literature which all search for an image
that (1) is indistinguishable from its original when observed through the
filters the features were extracted with, and (2) simultaneously minimizes
a certain prior. If such a prior is a norm of Sobolev type on the unbounded
domain one can obtain visually attractive reconstructions while retaining
linearity, as we have shown in earlier work [64, 35]. However, boundaries
often cause problems to signal processing algorithms (see, e.g., [83, Chapter
7.5] or [27, Chapter 10.7]) and should be handled with care.
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Figure 3.1: The left image shows a reconstruction from differential structure ob-
tained from the right image using the unbounded domain reconstruction method
as presented in our previous work [64]. The upper circle in the right image shows
a detail of an area near the center of the image and the circle on the right shows
a corresponding area near the boundary of the image. One would expect that
the same details would appear in both circles. However, this is not the case since
kernels that are associated to image-features partly lay outside the image domain
and are, as a consequence, penalized by the energy minimization methods that
are defined on the unbounded domain. This is illustrated by a marked circle,
placed on top of the input image that is displayed on the right.

The problem that appears in the unbounded domain reconstruction method
is illustrated in Figure 3.1. In this figure the left image is a reconstruction
from differential structure obtained from a concatenation of (mirrored) ver-
sions of Lena’s eye. The input image is depicted on the right of Figure 3.1
and is still considered as a compactly supported element in L2

(
R2), as re-

quired in our previous work [64]. So the mirroring has nothing to do with
boundary conditions. In this particular case we observe that our previous
work shows limitations. If the reconstruction method on the unbounded
domain would work properly, details that appear in the center of the im-
age are also expected to appear at the corresponding locations near the
boundary of the image. This is, however, not the case. To clarify this ob-
servation we depicted two magnifications of corresponding positions in the
image. The upper circle in Figure 3.1 contains a magnification of a part
taken from the center of the reconstructed image. This will henceforth be
called “magnification a”. The circle on the right contains a magnification
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of a corresponding patch near the boundary and is referred to as “magni-
fication b”. Note that magnification a contains details that magnification
b does not contain.

This problem can be attributed to the fact that kernels, associated to the
image-features, partly lay outside the image domain and are “penalized” by
the energy minimization methods on the unbounded domain. As a result
the reconstructed image shows defects, in particular near the boundary.
Even kernels that are attached to features close to the center of the image
are unnecessarily suppressed by the energy minimization formulated on
the unbounded domain. So the reconstruction depicted in magnification
a still suffers from a boundary problem, although less visible than the
reconstruction of magnification b.

A first rough approach to tackle this problem could be to extend the image
symmetrically in all directions and cut out the center after reconstruction.
This results in an increase in computation time and it still does not solve
the problem in a rigorous manner. Instead, in this article we solve this
problem by considering bounded domain Sobolev norms. An additional
advantage of our method is that we can enforce a much higher degree of
regularity than the unbounded domain counterpart. Furthermore, we give
an interpretation of the 2 parameters that appear in the reconstruction
framework in terms of filtering by a low-pass Butterworth filter. This
allows for a good intuition on how to choose these parameters.

3.2 Theory

In order to avoid the problem discussed in the introduction and illustrated
in Figure 3.1 we restrict the reconstruction problem to the domain Ω ⊂ R2

that is defined as the support of the image f ∈ L2
(
R2) from which the

features {cp(f)}Pp=1, cp(f) ∈ R are extracted. Let the L2 (Ω)-inner product
on the domain Ω ⊂ R2 for f, g ∈ L2 (Ω) be given by

(f, g)L2(Ω) =
∫
Ω

f(x)g(x)dx . (3.1)

A feature cp(f) is obtained by taking the inner product of the pth filter
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ψp ∈ L2 (Ω) with the image f ∈ L2 (Ω),

cp(f) = (ψp, f)L2(Ω) . (3.2)

We define an image g ∈ L2 (Ω) to be equivalent to the image f if they
share the same features, {cp(f)}Pp=1 = {cp(g)}Pp=1, which is expressed in
the following equivalence relation for f, g ∈ L2 (Ω):

f ∼ g ⇔ (ψp, f)L2(Ω) = (ψp, g)L2(Ω) for all p = 1, . . . , P. (3.3)

Next, we introduce the Sobolev space of order 2k on the domain Ω,

H2k (Ω) = {f ∈ L2 (Ω) | |∆|kf ∈ L2 (Ω)} , k > 0 . (3.4)

The completion of the space of 2k-differentiable functions on the domain
Ω that vanish on the boundary of its domain ∂Ω is given by

H2k
0 (Ω) = {f ∈ H2k (Ω) | f |∂Ω = 0} , k > 1

2 . (3.5)

Now H2k,γ
0 (Ω) denotes the normed space obtained by endowing H2k

0 (Ω)
with the following inner product,

(f, g)H2k,γ
0 (Ω) = (f, g)L2(Ω) + γ2k

(
|∆| k2 f, |∆| k2 g

)
L2(Ω)

= (f, g)L2(Ω) + γ2k
(
|∆|kf, g

)
L2(Ω)

,
(3.6)

for all f, g ∈ H2k
0 (Ω) and γ ∈ R+.

We want to find the solution to the reconstruction problem, which is the
image g of minimal H2k,γ

0 -norm that shares the same features with the
image f ∈ H2k,γ

0 (Ω) from which the features {cp(f)}Pp=1 were extracted.
The reconstructed image g is found by an orthogonal projection, within
the space H2k,γ

0 (Ω), of f onto the subspace V spanned by the filters κp
that correspond to the ψp filters,

arg min
g∼f
||g||2H2k,γ

0 (Ω) = PV f , (3.7)

as shown in previous work [64]. The filters κp ∈ H2k,γ
0 (Ω) are given by

κp =
(
I + γ2k|∆|k

)−1
ψp . (3.8)
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Figure 3.2: The filter response of a Butterworth filter, cf. eq. (3.11). On the left,
γ is kept constant and the filter responses for different k > 0 are shown. On
the right, the order of the filter, 2k, is kept constant and the filter responses for
different γ > 0 are shown.

As a consequence (κp, f)H2k,γ
0 (Ω) = (ψp, f)L2(Ω) for all f and p = 1, . . . , P .

Here we assumed that f ∈ H2k (Ω). However, it suffices to take f ∈ L2 (Ω)
if ψ satisfies certain regularity conditions. The interested reader can find
the precise conditions and further details in [35].

The two parameters γ and k that appear in the reconstruction problem,
allow for an interesting interpretation. If Ω = R, the fractional operator(
I + γ2k|∆|k

)−1
can be written as(

I + γ2k|∆|k
)−1

f = F−1
(
ω 7→ (1 + γ2k|ω|2k)−1 (Ff) (ω)

)
(3.9)

for all f ∈ H2k and ω ∈ R. Here F : L2(R) → L2(R) denotes Fourier
transformation, which is defined almost everywhere as

(Ff) (ω) = 1√
2π

∞∫
−∞

f(x)e−iωxdx . (3.10)

Therefore it is equivalent to filtering with the classical low-pass Butter-
worth filter [19] of order 2k and cut-off frequency ω0 = 1

γ . The Fourier
transform of this filter is defined as

B2k

(
ω

ω0

)
= 1

1 + | ωω0
|2k . (3.11)

The filter response of the Butterworth filter is shown in Figure 3.2. One
can observe the order of the filter controls how well the ideal low-pass filter
is approximated and the effect of γ on the cut-off frequency.
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Figure 3.3: From left to right plots of the graph of x 7→ G(x,y), isocontours
{x ∈ R2|G(x,y) = c} for various c > 0, and isocontours of its Harmonic conjugate

H(x,y) = −1
2π arg

(
sn(x1+ix2,k̃)−sn(y1+iy2,k̃)
sn(x1+ix2,k̃)−sn(y1+iy2,k̃)

)
; x1 runs along the horizontal axis

whereas x2 runs along the vertical axis. In the upper row (y1, y2) = (0, π), and in
the bottom row (y1, y2) = (1, 0.4). To keep log(z) = log(|z|) + i arg(z) =

∫ z
1

1
ξdξ

single valued, we apply a branch-cut on the negative real axis. The thick lines in
the x1x2-plane are mapped to the negative real axis, so here the graph of H(·,y)
is discontinuous (the graph has a jump).

3.2.1 Spectral Decomposition

In this section we set k = 1 and investigate the Laplace operator on the
bounded domain: ∆ : H2

0 (Ω)→ L2 (Ω). This is a bounded operator, since
||∆f ||L2(Ω) ≤ 1||f ||H2

0(Ω) for all f ∈ H2
0 (Ω), and its right inverse is given by

the minus Dirichlet operator:

Definition 5 (Dirichlet Operator). The Dirichlet operator D is given by

g = Df ⇔
{

∆g = −f
g|∂Ω = 0 (3.12)

with f ∈ L2 (Ω) and g ∈ H2
0 (Ω).
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The Green’s function G : Ω× Ω→ R of the Dirichlet operator is given by{
∆G(x, ·) = −δx
G(x, ·)|∂Ω = 0 (3.13)

for fixed x ∈ Ω. On the domain1 Ω = [−a, a] × [0, b] the closed form
solution is given by2 (see Appendix B.1)

Ga,b(x,y) = (3.14)

− 1
2π log

∣∣∣∣∣∣∣
sn(x1

z(1,k̃)
a + i x2

z(1,
√

1−k̃2)
b , k̃)− sn(y1

z(1,k̃)
a + i y2

z(1,
√

1−k̃2)
b , k̃)

sn(x1
z(1,k̃)
a + i x2

z(1,
√

1−k̃2)
b , k̃)− sn(y1

z(1,k̃)
a + i y2

z(1,
√

1−k̃2)
b , k̃)

∣∣∣∣∣∣∣ .
Here x = (x1, x2),y = (y1, y2) ∈ Ω, k̃ ∈ R is determined by the aspect
ratio of the rectangular domain Ω , sn denotes the Jacobi-elliptic function
[52], [117, Chapter XXII], and

z(1, k̃) =
1∫

0

dt√
1− t2

√
1− k̃2t2

. (3.15)

In Appendix B.1 we derive eq. (3.14), and show how to obtain k̃. Figure 3.3
shows a graphical representation of this non-isotropic Green’s function for
a square domain (k̃ ≈ 0.1716). Notice this function vanishes at its bound-
aries and is, in the center of the domain, very similar to the isotropic
fundamental solution on the unbounded domain [33, 85]. In Appendix B.2
we put a relation between the fundamental solution of the Laplace oper-
ator on the unbounded domain and the Green’s function on the bounded
domain with Dirichlet boundary conditions. In terms of regularization
this means the Dirichlet operator smoothes inwards the image but never
“spills” over the border of the domain Ω.

When the Dirichlet operator, as defined in Definition 5, is expressed by
means of its Green’s function, which is presented in eq. (3.14),

(Df) (x) =
∫
Ω

G(x,y)f(y)dy, f ∈ L2 (Ω) ,Df ∈ H2
0 (Ω) (3.16)

1This domain is chosen in order to simplify the notation in Appendix B.1, where
conformal mapping is used to obtain eq. (3.14).

2Our solution is a generalization of the solution derived by Boersma et al. in [13].
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one can verify it extends to a compact, self-adjoint operator on L2 (Ω).
As a consequence, by the spectral decomposition theorem of compact self-
adjoint operators [121], we can express the Dirichlet operator in an or-
thonormal basis of eigenfunctions. The normalized eigenfunctions fmn
with corresponding eigenvalues λmn of the Laplace operator ∆ : H2

0 (Ω)→
L2 (Ω) are given by

fmn(x, y) =
√

1
ab

sin(nπx
a

) sin(mπy
b

) (3.17)

λmn = −
((

nπ

a

)2
+
(
mπ

b

)2
)
, (3.18)

(x, y) ∈ Ω with Ω = [0, a] × [0, b]3 and m,n ∈ N. These functions can be
found by the method of separation, [75]. Since ∆D = −I, the eigenfunc-
tions of the Dirichlet operator coincide with those of the Laplace operator,
eq. (3.17), and its corresponding eigenvalues are the inverse of the eigen-
values of the Laplace operator, eq. (3.18).

3.2.2 Scale Space on the Bounded Domain

The spectral decomposition which is presented in the previous subsection
by eqs. (3.17) and (3.18), will now be applied to the construction of a scale
space on the bounded domain. We will follow the second author’s previ-
ous work [37] on scale spaces on the bounded domain. Here we recall from
[37] that Neumann boundary conditions are required in order to maintain
most scale space axioms, [38]. However, here we shall first consider Dirich-
let boundary conditions. In Section 3.2.4 we will also consider Neumann
boundary conditions. Before we show how to obtain a Gaussian scale space
representation of an image on the bounded domain we find, as suggested
by Koenderink [74], the image h ∈ H2 (Ω) which is the harmonic extension
of f |∂Ω. So it is the solution to{

∆h(x, y) = 0 for all x, y ∈ Ω
h(x, y) = f(x, y) for all x, y ∈ ∂Ω . (3.19)

Now f̃ = f − h vanishes at the boundary ∂Ω (so this requires Dirichlet
boundary conditions in scale space) and can serve as an initial condition

3This domain is chosen in order to facilitate the readability of the notation of the
spectral decomposition.



38 Chapter 3. Linear Reconstruction on the Bounded Domain

for the heat equation on the bounded domain. A practical method for
obtaining h on an arbitrarily shaped domain, is suggested by Georgiev [50]
and a fast method on a rectangular domain is proposed by Averbuch et
al. [5]. Now f̃ can be expressed in the orthogonal basis:

f̃ =
∑

m,n∈N
(fmn, f̃)L2(Ω)fmn , (3.20)

which effectively exploits the sine transform.

The (fractional) operators that will appear in the construction of a Gaus-
sian scale space on the bounded domain can be expressed as

|∆|kfmn = |λmn|k fmn , (3.21)
e−s|∆|fmn = esλmnfmn . (3.22)

We also note that the κp filters, defined in eq. (3.8), are readily obtained
by application of the following identity(

I + γ2k|∆|k
)−1

fmn = 1
1 + γ2k |λmn|k

fmn . (3.23)

Consider the Gaussian scale space representation4 on bounded domain Ω
(see [37])

uΩ
f̃
(x, y, s) =

∑
m,n∈N

esλmn(fmn, f̃)L2(Ω)fmn(x, y) (3.24)

where the scale parameter s ∈ R+. It is the unique solution to
∂u
∂s = ∆u
u(·, s)|∂Ω = 0 for all s > 0
u(·, 0) = f̃

. (3.25)

By straightforward computation one has
∆uΩ

f̃
(x, y, s) =

∑
m,n∈N

esλmn(fmn, f̃)L2(Ω)∆fmn(x, y)

=
∑

m,n∈N
λmne

sλmn(fmn, f̃)L2(Ω)fmn(x, y) (3.26)

= ∂s
∑

m,n∈N
esλmn(fmn, f̃)L2(Ω)fmn(x, y)

= ∂su
Ω
f̃
(x, y, s) .

4The framework in this paper is readily generalized to α-scale spaces in general (see,
e.g., [37]) by replacing (−λmn) by (−λmn)2α.
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The filter φp that measures differential structure present in the scale space
representation uΩ

f̃
of f̃ at a point p with coordinates (xp, yp, sp), such that(
DnpuΩ

f̃

)
(xp, yp, sp) =

(
φp, f̃

)
L2(Ω)

, (3.27)

is given by (writing multi-index np = (n1
p, n

2
p))

φp(x, y) =
∑

m,n∈N
espλmn (Dnpfmn)(xp, yp) fmn(x, y) , (3.28)

where we note that d
dx sin(x) = cos(x) = sin(x+ π

2 ) and

(Dnpfmn) (xp, yp) =
√

1
ab

(
mπ

b

)n2
p
(
nπ

a

)n1
p

sin
(
mπyp
b

+π

2 n
2
p

)
sin
(
nπxp
a

+π

2 n
1
p

)
, (3.29)

x = (x, y) ∈ Ω, xp = (xp, yp) ∈ Ω and np = (n1
p, n

2
p) ∈ N× N. Here we use

notation φp for the filters that measure features of the type presented in
eq. (3.27). However, we stress that this is just one particular case of the
filters ψp that are used to measure the general features, cf. eq. (3.2).

3.2.3 The Solution to the Reconstruction Problem

Now that we have constructed a scale space on the bounded domain and
shown how to measure its differential structure we can express the solution
to the reconstruction problem (recall eqs. (3.7) and (3.8)) in terms of eigen-
functions and eigenvalues of the Laplace operator. To this end we recall
that V = span{κq|q ∈ 1, . . . , P} and we apply the orthogonal projection
operator PV : H2k,γ

0 (Ω)→ V to f̃ :

PV f̃ =
P∑

p,q=1
Gpq(κp, f̃)H2k

0 (Ω)κq

=
P∑

p,q=1
Gpq(φp, f̃)L2(Ω)κq

=
P∑

p,q=1
Gpqcp(f̃)κq , (3.30)
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where Gpq are components of the inverse of the Gram matrix. This implies
GprGrq = δpq , with Gpq = (κp, κq)H2k,γ

0 (Ω). The filters κp satisfy

κp(x, y) =
∑

m,n∈N

espλmn

1 + γ2k|λmn|k (Dnpfmn)(xp, yp) fmn(x, y) . (3.31)

It can indeed be verified by direct computation that

P2
V = PV , P∗V = PV , R(PV ) = V , (3.32)

so PV is indeed the orthogonal projection onto V . The projection that is
made explicit in eq. (3.30) is, due to the Pythagoras theorem, the unique
solution to the optimization problem

arg min
g∼f̃
||g||2H2k,γ

0 (Ω) = arg min
g∼f̃
|| g − PV f̃︸ ︷︷ ︸

∈V ⊥
||2H2k,γ

0 (Ω) + ||PV f̃︸︷︷︸
∈V
||2H2k,γ

0 (Ω) ,

(3.33)
which was introduced in eq. (3.7).

In order to compute the projection in eq. (3.30) we apply a singular value
decomposition (SVD) [94, Chapter 2.9] to guarantee well-posedness of our
algorithm. We briefly outline the application of the SVD to the projection
in eq. (3.30). Let the columns of the matrix V̂ be composed of the eigenvec-
tors {vi}Pi=1 of GTG, where G = [Gpq]Pp,q=1, with corresponding eigenvalues
σ2
i , (σ1 > σ2 > . . .). We define D = diag{σi} and U = G V̂ D−1. This

implies UT = U−1 and (GTG)−1GT = V̂ D−1UT , from which we deduce
that

PV f̃ =
P∑
q=1

∑
i∈I

 P∑
p=1

upi cp(f̃)
σi

 vqi κq (3.34)

with ui the ith column of U and upi the pth element of the vector ui. The
set I is defined as I = {i ∈ 1 . . . P | σiσ1

≥ tolerance}, thus directions corre-
sponding to eigenvalues σi such that σi

σ1
is smaller than a given tolerance

are removed from the projection.

3.2.4 Neumann Boundary Conditions

The axioms that naturally lead to α-scale spaces [38] cannot all be main-
tained in case of the bounded domain. One has to drop the axiom of
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translation invariance. This can be observed from Figure 3.3: the Green’s
function of the Laplace operator on the bounded domain deforms when it
is moved closer to the boundary. In order to maintain the other axioms
such as gray value invariance and increase of entropy, Neumann bound-
ary conditions should be chosen [37]. Imposing zero Neumann boundary
conditions coincides with the symmetric extension of the image at the
boundaries and periodic boundary conditions on the extended domain. In
this case the eigenvalues λmn (3.18) are maintained, the eigenfunctions are
given by

fmn(x, y) =
√

1
ab(1 + δm0)(1 + δn0)

cos(nπx
a

) cos(mπy
b

) , (3.35)

where m,n ∈ N. We note that again:

|∆|kfmn = |λmn|kfmn . (3.36)

When the eigenfunctions in eq. (3.24) are replaced by the eigenfunctions
in eq. (3.35), eq. (3.24) is the unique solution to the heat equation

∂u
∂s = ∆u
∂u(·,s)
∂n |∂Ω = 0 for all s > 0

u(·, 0) = f̃

, (3.37)

where n is the outward normal of the image boundary ∂Ω.

When Neumann boundary conditions other than zero are required, we
proceed in a similar fashion as proposed in Section 3.2.2. In this case,
however, we have to take care that Green’s second identity,∫

Ω

(h∆f − f∆h)dx =
∫
∂Ω

(
h
∂f

∂n − f
∂h

∂n

)
dσ(x) (3.38)

with dσ(x) a boundary measure and x ∈ Ω, is not violated. As a conse-
quence, we cannot find an h ∈ H2 (Ω) such that{

∆h = 0
∂h
∂n |∂Ω = ∂f

∂n
, (3.39)

holds, since ∫
Ω

∆hdx =
∫
∂Ω

∂h

∂ndσ(x) =
∫
∂Ω

∂f

∂ndσ(x) . (3.40)
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In order to solve this problem we introduce a constant source term in (3.39)
and find instead an h such that{

∆h = K
∂h
∂n |∂Ω = ∂f

∂n
, (3.41)

with K = 1
|Ω|
∫
∂Ω

∂f
∂ndσ(x) and |Ω| the area of the domain. An efficient

method to solve h from eq. (3.41) based on the method by Averbuch [5]
can be found in [120]. Now f̃ = f − h has zero normal derivatives at the
boundary ∂Ω and can serve as an initial condition for the heat equation
that is presented in eq. (3.37).

3.2.5 Singular Points

The theory presented in the previous subsections is applicable to generic
linear features, cf. eq. (3.2). In Section 3.4 we will apply our reconstruction
method to image reconstruction from differential properties of so called
singular points of a scale space representation of an image. Therefore we
will briefly summarize how to obtain the locations of these points. A non-
Morse critical point of a scale space representation of an image, to which
we will henceforth refer to as a singular point, is defined as follows:

Definition 6 (Singular Point). A singular point (x, y, s) ∈ R2 × R+ of
a scale space representation uΩ

f (x, y, s) of the image f is defined by the
following equations, in which ∇ denotes the spatial gradient operator:{

∇uΩ
f (x, y, s) = 0

det∇∇TuΩ
f (x, y, s) = 0 .

(3.42)

See [26, 44] for further details, and [51] for a general introduction to
catastrophe theory. Figure 3.4 illustrates the set of singular points for
a typical image. Solutions of eq. (3.42) can be found by a zero-crossings
method [81, 69]. Given an initial approximate location of a singular point,
(xa, ya, sa), we can refine its position in scale space to a corrected position,
(xc, yc, sc), by calculating (xc, yc, sc) = (xa + δx, ya + δy, sa + δs), where δx

δy
δs

 = (M(xa, ya, sa))−1
[

g(xa, ya, sa)(
det∇∇TuΩ

f

)
(xa, ya, sa)

]
, (3.43)
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and where

M =
[
∇∇TuΩ

f w
zT c

]
, (3.44)

g(x, y, s) = ∇uΩ
f (x, y, s) , w = ∂sg , (3.45)

z(x, y, s) = ∇ det∇∇TuΩ
f (x, y, s) , c(x, y, s) = ∂s det∇∇TuΩ

f (x, y, s) .
(3.46)

Notice that all derivatives are taken in the point (xa, ya, sa). This proce-
dure is repeated in order to obtain a more accurate location of a singular
point. For further details we refer to [44, 92]. In general, images are not
determined by their singular points. Consider for example the class of
images

f(x, y) = fmn(x, y) , (3.47)
whose bounded domain scale space representations are given by

uΩ
f (x, y, s) = esλmnfmn(x, y) . (3.48)

These scale space representations do not contain any singular points. How-
ever, scale space representations of natural images do contain singular
points attached to generic topological transitions [26]. If one endows these
points with suitable attributes one can obtain a reconstruction that is vi-
sually close to the initial image [64].

3.3 Implementation

The implementation of the reconstruction method that was presented in a
continuous Hilbert space framework is completely performed in a discrete
framework in order to avoid approximation and truncation errors due to
sampling. Here we shall make use of a discrete sine transform (rather than
truncated Fourier series) and its inverse, which are exact on the grid.

First we introduce the discrete sine transform FS : ł2(IDN ) → ł2(IDN ) on a
rectangular domain IDN = {1, . . . , N − 1} × {1, . . . ,M − 1}

(FSf) (u, v) = − 2√
MN

M−1∑
i=1

N−1∑
j=1

sin
(
iuπ

M

)
sin
(
jvπ

N

)
︸ ︷︷ ︸

(ϕi⊗ϕj)(u,v)

f(i, j) , (3.49)
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with (u, v) ∈ IDN . Notice that this unitary transform is its own inverse and
that

(ϕi, ϕj)ł2(IDN ) = δij , (3.50)

so {ϕi ⊗ ϕj | i = 1, . . . ,M − 1
j = 1, . . . , N − 1 } forms an orthonormal basis in l2(IDN ).

The Gaussian scale space representation uI
D
N
f (i, j, s) of an image f ∈ l2(IDN )

introduced in the continuous domain in eq. (3.24) now reads

u
IDN
f (i, j, s) =

(
es∆f

)
(i, j)

= − 2√
MN

M−1∑
u=1

N−1∑
v=1

f̂(u, v)e
−s
(
u2
M2 + v2

N2

)
π2

(ϕu ⊗ ϕv) (i, j)

(3.51)

where f̂(u, v) = (FSf) (u, v). Differential structure of order np = (n1
p, n

2
p) ∈

N×N at a certain position (ip, jp) ∈ IDN and at scale sp ∈ R+ is measured
by (

Dnpu
IDN
f

)
(ip, jp, sp) = − 2√

MN

M−1∑
u=1

N−1∑
v=1

f̂(u, v)e
−sp
(
u2
M2 + v2

N2

)
π2

(
uπ

M

)n1
p
(
vπ

N

)n2
p

sin
(
ipuπ

M
+ π

2n
1
p

)
sin
(
jpvπ

N
+ π

2n
2
p

)
.

(3.52)

The filters φp, with p = (ip, jp, sp,np) a multi-index, are given by

φp(i, j, s) = − 2√
MN

M−1∑
u=1

N−1∑
v=1

e
−sp
(
u2
M2 + v2

N2

)
π2

(ϕu ⊗ ϕv) (i, j)

(
uπ

M

)n1
p
(
vπ

N

)n2
p

sin
(
ipuπ

M
+ π

2n
1
p

)
sin
(
jpvπ

N
+ π

2n
2
p

) (3.53)

and the filters κp corresponding to φp read

κp(i, j, s) = − 2√
MN

M−1∑
u=1

N−1∑
v=1

e
−sp
(
u2
M2 + v2

N2

)
π2

1 + (πγ)2k
(
u2
M2 + v2

N2

)k (ϕu ⊗ ϕv) (i, j)

(
uπ

M

)n1
p
(
vπ

N

)n2
p

sin
(
ipuπ

M
+ π

2n
1
p

)
sin
(
jpvπ

N
+ π

2n
2
p

)
.

(3.54)
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An element Gpq = (φp, φq)l2(IDN ) of the Gram matrix can, because of the
orthonormality of the transform, be expressed in just a double sum,

Gpq = − 2√
MN

M−1∑
u=1

N−1∑
v=1

e
−(sp+sq)

(
u2
M2 + v2

N2

)
π2

1 + (πγ)2k
(
u2
M2 + v2

N2

)k (3.55)

(
uπ

M

)n1
p
(
vπ

N

)n2
p

sin
(
ipuπ

M
+ π

2n
1
p

)
sin
(
jpvπ

N
+ π

2n
2
p

)
(
uπ

M

)n1
q
(
vπ

N

)n2
q

sin
(
iquπ

M
+ π

2n
1
q

)
sin
(
jqvπ

N
+ π

2n
2
q

)
.

In order to gain accuracy we implement eq. (3.55) by summing in the
reverse direction and multiplying by γ2k. Then we compute

g̃ =
P∑

p,q=1
Gpqγ2kcp(f)φq (3.56)

and find the reconstructed image g by filtering g̃ by a discrete version of
the 2D Butterworth filter of order 2k and with cut-off frequency ω0 = 1

γ .

The implementation was written using the sine transform as defined in
eq. (3.49) where we already explicitly mentioned that the transform can
be written as

(FSf) (u, v) = − 2√
MN

M−1∑
i=1

N−1∑
j=1

(ϕi ⊗ ϕj) (u, v)f(i, j) . (3.57)

Now we define the cosine transform, FS : ł2(INN ) → ł2(INN ), on a rectan-
gular domain, INN = {0, . . . , N − 1} × {0, . . . ,M − 1}, in a similar manner

(FCf) (u, v) =
M−1∑
i=0

N−1∑
j=0

(ϕ̃i ⊗ ϕ̃j) (u, v)f(i, j) , (3.58)

where

(ϕ̃i ⊗ ϕ̃j) (u, v) = cos
(
π(i+ 1

2)u
M

)√
2− δu0
M

cos
(
π(j + 1

2)v
M

)√
2− δv0
N

(3.59)
and (u, v) ∈ INN . These cosine basis functions {ϕ̃i⊗ ϕ̃j | i = 0, . . . ,M − 1

j = 0, . . . , N − 1 }
form an orthogonal basis in l2(INN ) and can thus be used to transform the
reconstruction method that was explicitly presented for the Dirichlet case
into a reconstruction method based on Neumann boundary conditions.
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3.4 Experiments

We evaluate the reconstruction method by applying it to the problem that
was presented in the introduction. The upper row of Figure 3.5 shows
from left to right: the image from which the features were extracted, a
reconstruction by the unbounded domain method [64] (parameters: γ =
50, k = 1), and a reconstruction by the newly introduced bounded domain
method using Dirichlet boundary conditions (parameters: γ = 50, k = 1).
Features that were used are up to second order derivatives measured at the
singular points (see Section 3.2.5) of the scale space representation of the
original image f . One can clearly see that the structure that is missing in
the middle image (cf. Figure3.1) does appear when the bounded domain
method is used (top-right image in Figure 3.5).

The visual quality of the reconstruction in the top-right image in Figure 3.5
is not appealing. In order to obtain a visually more appealing reconstruc-
tion one could, like in our previous work on image reconstruction [64],
endow the feature points with higher order differential structure. Another
possibility is to select a different set of features. We proceed with the latter
approach.

Singular points of a scale space representation of an image tend to catch
blob-like structures, whereas singular points of the scale space represen-
tation of the Laplacian of an image (henceforth called Laplacian singular
points) are more likely to catch information about edges and ridges in the
image. This is so because the Laplacian tends to act as an edge detector.
Furthermore, the number of singular points that manifest themselves in
the scale space of an image is much smaller than the number of Laplacian
singular points of an image. If more information about the image is used
by the reconstruction algorithm, e.g., in the form of more features, one
can expect to obtain a more appealing reconstruction. This motivates us
to reconstruct from the properties of Laplacian singular points instead of
singular points.

The bottom row of Figure 3.5 shows reconstructions from up to second
order differential structure obtained from the scale space representation of
f , evaluated at the locations of the singular points of the scale space repre-
sentation of the Laplacian of f . On the left the unbounded domain method
was used with γ = 100 and k = 1, this leads to a reconstructed signal that
has “spilled” too much over the border of the image and therefore is not as
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sharp as the reconstruction obtained by our newly proposed method using
Dirichlet boundary conditions (parameters: γ = 100 and k = 1). Due to
this spilling, the Gram matrix of the unbounded domain reconstruction
method is harder to invert since basis functions start to become more and
more dependent. This problem gets worse when γ increases. Our bounded
domain method is immune to this problem as long as the parameter k is
not chosen too high.

In order to quantify the observation that the Gram matrix is harder to
invert when γ gets larger, we applied both the reconstruction method
presented in this paper and the unbounded domain method [64] to the
reconstruction from up to second order derivatives measured at the sin-
gular points of the scale space representation of Lena’s eye. Lena’s eye is
the left-most image in Figure 3.6 and has dimensions of 64 × 64 pixels.
We fixed k = 1 and set the tolerance of the singular value decomposition
(SVD) algorithm that was used to compute the inverse of the Gram ma-
trix (see Section 3.2.3, eq. (3.34)) to 10−7. The percentage of features
that were removed by the SVD algorithm as a function of γ is displayed in
Figure 3.7. From this figure we can observe that the unbounded domain
method breaks down for γ � 0, whereas the method that is presented in
this paper is much more robust. Even for γ � 0 barely any features are
removed by the thresholding step in the SVD algorithm.

If the order of the Sobolev space k is chosen too high, our method also
breaks down. Figure 3.8 shows several reconstructions from up to second
order differential structure taken at the locations of the singular points
of Barbara’s face using Dirichlet boundary conditions. The image from
which the features were obtained is the right-most image in Figure 3.6 and
has dimensions of 128 × 128 pixels. From top to bottom the parameter
k = {0.5 + ε, 1.0, 1.5, 2.0, 2.5} (introduced in eq. (3.4)), which controls the
order of the Sobolev space we are projecting in is varied. From left to
right the parameter γ = {1, 4, 16, 64, 256, 1024} (introduced in eq. (3.6)),
which controls the importance of smoothness is varied. One can clearly
see the effect of the parameters. We will interpret the results in terms
of the low-pass Butterworth filter introduced in eq. (3.11). When k is
increased the order of the filter increases and consequently approximates
the ideal low-pass filter more closely. In the bottom row of Figure 3.8
(k=2.5) the filter is too sharp (i.e., it approximates the ideal low-pass
filter too closely) which results in a reconstruction that does not satisfy all
features. This effect is even visible when γ = 1. Increasing γ corresponds to
decreasing the cut-off frequency of the filter, which smoothes the “bumpy”
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features that are most apparent in the top-most sub-images of Figure 3.8.
If k = 1 increasing γ does not cause problems for the inversion of the Gram
matrix (and consequent loss of features). This can also be observed from
Figure 3.7. It does have a smoothing effect on the reconstructed image.
Therefore it is preferred to use a γ � 0.

3.5 Conclusion

In previous work we considered the image as compactly supported in
L2(R2) and we used Sobolev norms on the unbounded domain including a
smoothing parameter γ > 0 to tune the smoothness of the reconstructed
image. Due to the assumption of compact support of the original image
components of the reconstructed image near the image boundary are too
much penalized. Therefore we proposed to minimize Sobolev norms only on
the actual image domain, yielding much better reconstructions (especially
for γ � 0). We give a closed form expression for the Green’s function
of the Dirichlet operator in the spatial domain and put a relation be-
tween the fundamental solution of the Laplace operator on the unbounded
domain and the Green’s function on the bounded domain with Dirichlet
conditions. Both feature extraction and the reconstruction method are
formulated on the bounded domain in terms of the eigenfunctions and cor-
responding eigenvalues of the Laplace operator on the bounded domain:
∆ : H2

0 (Ω)→ L2 (Ω). By changing the eigenfunctions the Dirichlet bound-
ary conditions can be interchanged with Neumann boundary conditions.
The implementation is done completely in the discrete domain and is exact
on the grid, avoiding truncation or approximation errors. This is achieved
by making use of fast discrete sine or discrete cosine transforms.

We also showed an interpretation for the parameter γ and the order of the
Sobolev space k in terms of filtering by the classical Butterworth filter.
In future work we plan to exploit this interpretation by automatically
selecting the order of the Sobolev space.
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Figure 3.4: A visualization of the “deep structure” of a Gaussian scale space
representation of an image. The gray paths represent critical paths (paths of
vanishing gradient), a red ball shows the location of a singular point on a critical
path. The surfaces show the iso-surfaces given by ∂uΩ

f (x,y,s)
∂x = 0, ∂uΩ

f (x,y,s)
∂y = 0

and det∇∇TuΩ
f (x, y, s) = 0, which are used in the calculation of the position of

a singular point. Critical paths are found by intersecting the surfaces that satisfy
∂uΩ

f (x,y,s)
∂x = 0 and ∂uΩ

f (x,y,s)
∂y = 0. Singular points are found by intersecting the

critical paths with the surface that satisfies
(
det∇∇TuΩ

f

)
(x, y, s) = 0. The image

in this figure was provided by dr. B. Platel, Eindhoven University of Technology,
department of Biomedical Engineering.
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Figure 3.5: Top left: The image f from which the features were extracted. Top
center and right: reconstruction from second order structure of the singular points
of f using the unbounded domain method [64] (parameters: γ = 50, k = 1) and the
bounded domain method (parameters: γ = 50, k = 1). Bottom row: unbounded
domain (left) and bounded domain (right) reconstruction from up to second order
differential structure obtained from the scale space representation of f , evaluated
at the locations of the singular points of the Laplacian of f . The parameters
for the reconstruction algorithm are k = 1 and γ = 100. The latter value of γ
results in a blurred reconstruction for the unbounded domain method, whereas
the bounded domain method does produce a visually appealing reconstruction
(lower right) of the image that is shown in the upper left corner of this figure.
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Figure 3.6: Input images that were used in the experiments. The left image shows
Lena’s eye, which is an image patch of 64×64 pixels. On the right Barbara’s face
is shown. This is an image patch of 128× 128 pixels.
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Figure 3.7: The percentage of features dropped by the singular value decompo-
sition (SVD) algorithm that is used for the inversion of the Gram matrix as a
function of γ. The γ axis is sampled logarithmically. Features used are up to
second order derivatives measured at the singular points of the scale space rep-
resentation of Lena’s eye (see Figure 3.6). The SVD tolerance is set to 10−7 and
k = 1 for both the bounded domain and the unbounded domain method.
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Figure 3.8: Reconstructions from second order differential structure taken at
the locations of the singular points of the scale space representation of Bar-
bara’s face using Dirichlet boundary conditions. From top to bottom k =
{0.5 + ε, 1.0, 1.5, 2.0, 2.5} and from left to right γ = {1, 4, 16, 64, 256, 1024}. The
image from which the features were obtained is shown in Figure 3.6.
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Abstract. We propose an iterative approximate reconstruction method
where we minimize the difference between reconstructions from subsets of
multi-scale measurements. To this end we interpret images not as scalar-
valued functions but as sections through a fibred space. Information from
previous reconstructions, which can be obtained at a coarser scale than the
current one, is propagated by means of covariant derivatives on a vector
bundle. The gauge field that is used to define the covariant derivatives
is defined by the previously reconstructed image. An advantage of using
covariant derivatives in the variational formulation of the reconstruction
method is that with the number of iterations the accuracy of the approxi-
mation increases. The presented reconstruction method allows for a recon-
struction at a resolution of choice, which can also be used to speed up the
approximation at a finer level. An application of our method to reconstruc-
tion from a sparse set of differential features of a scale space representation
of an image allows for a weighting of the features based on the sensitivity
of those features to noise. To demonstrate the method we apply it to the
reconstruction from singular points of a scale space representation of an
image.

4.1 Introduction

Reconstruction from signal samples is a long standing problem in signal
and image analysis [97]. We present a method for the approximation of
a signal or image from its generalized samples, i.e., the samples are given
on a non-equidistant grid and were obtained by means of spatially varying
filters. Variational reconstruction of non-equidistant image samples has re-
cently become of interest to the image compression community [49] where
significant gains in reconstruction quality have been obtained by intro-
ducing anisotropic non-linear regularization strategies. In the scale space
community a general interest in reconstruction from generalized samples
has been there for quite some time [86, 79, 64, 62, 43, 63].

We propose a method that produces an image that approximately satisfies
all features. Features that are more robust to perturbations of the source
image are given a higher weight, which steers the reconstruction method
such that those features are better approximated than those that are more
sensitive to noise. This leads to a more robust reconstruction method
compared to interpolating methods.
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A gauge field is introduced by means of covariant derivatives on a vector
bundle. This way a model of the to be reconstructed image can be in-
corporated in the energy functional which is minimized to find a suitable
reconstruction. Using this gauge field we can construct a coarse-to-fine
image reconstruction method. A coarse-to-fine approach naturally leads
to a more efficient algorithm in terms of memory consumption and com-
putational efficiency.

In Section 4.2 we will briefly introduce the image reconstruction problem.
Section 4.3 describes the approximation approach and its discretization,
Section 4.4 shows how to incorporate a gauge field into the reconstruction
method. We conclude the paper by presenting the coarse-to-fine recon-
struction algorithm and applying it to the reconstruction from singular
points of a scale space representation of an image.

4.2 Image Reconstruction

In the reconstruction problem we aim for a reconstruction from a set of
linear functionals on an image. These functionals represent measurements
on the image and are henceforth called features. More rigorously: a feature
di ∈ R of an image f ∈ L2(R2) measured with a filter ψi ∈ L2(R2) is given
by

di = (ψi, f)L2 , (4.1)

i = 1, . . . , P in which (·, ·)L2 denotes the L2 inner product. In general the
set of features do not describe the input image f unambiguously (they do
not constitute a frame [34]), and there is need for a model to which the
reconstruction should adhere. When such a model can be described by a
(semi-)norm the reconstruction can be obtained directly by means of an
orthogonal projection onto the features [64].

Nielsen and Lillholm [86, 79] proposed to find a reconstruction from its
features using a nonlinear regularization term (model). They first search
for a reconstruction that satisfies all features using a linear method and,
starting from this reconstruction, subsequently apply a gradient descent
that is constrained to be orthogonal to the metameric class [f] :

[f ] = {g ∈ L2(R2) | (ψ, f)L2 = (ψ, g)L2} . (4.2)
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This so called observation-constrained evolution ensures that the features
are interpolated. When measurements are contaminated by noise approx-
imation is often favored over interpolation. In the following we will not
discuss the interpolation but approximation of a set of features {di}Pi=1
that were obtained from a source image by the filters {ψi}Pi=1.

4.3 Approximation

Instead of searching for a signal that interpolates the given features one
can try to find a signal that approximates the features. In the case of noisy
measurements the latter approach is often preferred. We now aim for the
function g ∈ H1(R2) that minimizes

E(g) =
P∑
i=1

((g, ψi)L2 − di)2︸ ︷︷ ︸
data term

+λ2

∫
R2

||∇g||2dV
︸ ︷︷ ︸

regularization term

, (4.3)

where λ ∈ R+ a parameter that controls the quality of the approximation.
As λ tends to 0 the approximation will approach the interpolation of the
features. The minimizer of this linear functional can be found by finding
the unique g that solves the following Euler equation:

(
P∑
i=1

ψi ((ψi, g)L2 − di)
)
− λ∆g = 0 . (4.4)

The parameter λ takes into account each feature with the same weight.
This is not desirable when the features are not normalized and even after
normalization one can improve on the selection of the weights. We allow
for these improvements by introducing P extra parameters (which we will
call feature weights), αi ∈ R+, i = 1 . . . P , that will be set to a fixed value
based on the properties of the features. In case of reconstruction from
differential features of a scale space representation of an image, which is
the main motivation for our method, we can select the newly introduced
parameters based on the noise propagation in the scale space representation
of an image. The global parameter λ can be absorbed by these parameters
but will be maintained in our formulation for the sake of clarity. For fixed
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αi we now search for the g that satisfies

arg min
g∈L2(R2)

E(g) = arg min
g∈L2(R2)

P∑
i=1

αi ((g, ψi)L2 − di)2 + λ

2

∫
R2

||∇g||2dV . (4.5)

In the next section we will discuss how the feature weights can be selected.

4.3.1 Noise Propagation

In order to be able to select sensible values for the αi parameters that
appear in eq. (4.5), we need to make some assumptions on the noise and
the set of filters {ψi}Pi=1 that are used to extract the measurements. With
regard to the noise we assume additive zero-mean white Gaussian noise
which has a correlation distance of τ pixels. In recent work about stability
of toppoints [6] (which are singular points of a Gaussian scale space rep-
resentation of an image) this was found to be a sensible assumption. In
our application we will reconstruct from differential structure taken from
the Gaussian scale space representation of the input image f , therefore
we assume that the set of filters {ψi}Pi=1 consists of Gaussian kernels or
derivatives thereof.

The idea now is to construct the weights αi according to the sensitiv-
ity of their associated differential features to noise. In order to estimate
the sensitivity of a feature di of the image f that is contaminated by ad-
ditive noise we can adopt work on noise propagation in scale space by
Blom [11]. He proposes to compute at a certain scale t > 0 the momenta
M2
mx,my ,nx,ny = 〈Nmx,my , Nnx,ny〉 of derivatives of orders mx,my, nx, and

ny of the fiducial noise function N . He assumes only the covariance matrix
〈N2〉 of the noise to be given. In case the correlation distance τ is much
smaller than the scale t,

M2
mx,my ,nx,ny ' 〈N2〉

(
τ

2t

)(−1
4t

) 1
2 (mx+my+nx+ny)

Qmx+nxQmy+ny ,

(4.6)

with

Qn =
{

(n+ 1)!! if n even
0 if n odd . (4.7)
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Features that are sensitive to perturbations on the source image f should
influence the final result less than features that are relatively insensitive
to these perturbations. Therefore we compute αi from eq. (4.6) such that

αi ∝M−2
nix,n

i
y ,n

i
x,n

i
y

(4.8)

at scale ti. The parameters nix, niy, and ti are the derivative order in the
x direction, the derivative order in the y direction and the scale of the ith
filter ψi. Here we stress that these estimations are based on the assumption
that the filters are partial derivatives of a Gaussian. We furthermore ensure
that ∑P

i=1 αi = 1, which essentially makes αi independent of the value of
〈N2〉 and τ .

4.3.2 Discretization

We can try to solve an approximation to g by discretizing eq. (4.4) (aug-
mented with the feature weights) or discretize the energy functional in
eq. (4.5), and thereafter finding a discrete minimizer of the discretized en-
ergy. These two approaches can be equivalent for a slick choice of so called
test functions that are involved in the former method. We will proceed by
elaborating on directly discretizing the energy.

To solve g from eq. (4.5) we will approximate g by a β-spline of order n:

βn(x) = F−1
(
ω 7→ (eiω/2 − e−iω/2)n+1

(iω)n+1

)
(x) , (4.9)

where F−1 denotes inverse Fourier transformation. Equality (4.9) is equiv-
alent to the (n+ 1)-fold convolution of the β-spline of order 0

β0(x) =


1 −1

2 < x < 1
21

2 |x| = 1
2

0 otherwise
; (4.10)

a rectangle. Further details concerning β-splines can be found in, e.g.,
[103]. It was shown in the context of optic flow [78] and registration [101]
that such an approach has computational advantages over a finite difference
approach. Arigovindan et al.[2, 1] showed good results in his application



4.3. Approximation 59

of this approach to (a multi-grid scheme for) image and vector field in-
terpolation. Moreover it allows for a coarse-to-fine implementation in an
elegant way. Key to the latter advantage is the 2-scale relation

βn
(
x

2j
)

=
∑
k∈Z

2−n
(
n+ 1
k

)
βn
(

x

2j−1 − k
)
. (4.11)

The n-th order β-spline approximation of g in two spatial dimensions at
resolution a > 0, is given by

g̃a(x, y) =
M−1∑
l=0

N−1∑
k=0

ck,lβ
n(x
a
− k)βn(y

a
− l) , (4.12)

with ck,l, x, y ∈ R, βn(·) the central β-spline of order n ∈ N, resolution pa-
rameter a, and N,M ∈ N correspond to the width and height of the image
in pixels. Notice this is a representation of the image in the continuous
domain and that g̃a ∈ Cn(R2), i.e., n-times continuously differentiable.

The regularization term in eq. (4.5),
∫
R2 ||∇g||2dxdy, can be approximated

with the help of eq. (4.12) by
∞∫
−∞

∞∫
−∞
||∇ga(x, y)||2dxdy = (4.13)

2∑
i=1

M−1∑
l,n=0

N−1∑
k,m=0

ck,lcm,n

 ∞∫
−∞

∂βn

∂xi

(
xi
a
− k

)
∂βn

∂xi

(
xi
a
−m

)
dxi


 ∞∫
−∞

βn
(
x1−i
a
− l
)
βn
(
x1−i
a
− n

)
dx1−i

 ,

where (x1, x2) correspond to (x, y) in eq. (4.12). When we consider the
integrals in the previous equations we notice that it can be expressed by a
convolution:
∞∫
−∞

∂βn

∂x

(
x

a
− k

)
∂βn

∂x

(
x

a
−m

)
dx = −a

∞∫
−∞

∂βn

∂u
(u)∂β

n

∂u
((m−k)− u) du .

(4.14)

This is easily verified by substitution of integration variable (u = x
a − k)

and noting that βn(x) = βn(−x) for all x ∈ R. We furthermore note that
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a derivative of a central β-spline of degree n is again a linear combination
of β-splines at the expense of lowering its degree to (n− 1)

∂

∂x
βn(x) = βn−1 (x+ 1/2)− βn−1 (x− 1/2) . (4.15)

Notice this identity is readily obtained from eq. (4.9).

As a result we can write eq. (4.13) in matrix-vector notation as
∞∫
−∞

∞∫
−∞
||∇ga(x, y)||2dxdy = ~cTR~c , (4.16)

with ~c = {ci}(M−1)(N−1)
i=0 and

R =
{
aβ2n(n− l)

}M−1

n,l=0
⊗
{
−a∂β

2n

∂x
(m− k)

}N−1

m,k=0
+

{
−a∂β

2n

∂y
(n− l)

}M−1

n,l=0
⊗
{
aβ2n(m− k)

}N−1

m,k=0
. (4.17)

We will express the inner product in the data term in equation (4.5) in
terms of β-splines as well. This leads to an expression similar to eq. (4.14),

(ga, ψi)L2(R2) = (−1)ni+mi
N−1,M−1∑
k,l=0

ck,l(βn ∗ ψi)(k − xi, l − yi) , (4.18)

where (xi, yi) and (ni,mi) are the location and differential order of the ith
filter ψi respectively. In contrast to the discretization of the regularization
we will not derive a closed form expression for this convolution but we will
approximate the β-spline in eq. (4.18) by a Gaussian. Here we use the
observation in [106] that

βn(x) ∼=
√

6
π(n+ 1)e

− 6x2
(n+1) . (4.19)

The data term can be expressed in matrix-vector notation by

Edata(~c) = ||S~c− ~d||2 , (4.20)
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where S = {(βn ∗ ψi)(k − xi, l − yi)}(N−1)(M−1),P
k,l=0,i=1 and ~d = {di}Pi=1.

Now we can write the minimizer of equation (4.5) in matrix-vector notation
as (

STS + λR
)

c = STd . (4.21)

This linear system of equations can be solved using a conjugate gradient
(CG) method [7]. In case the matrix S is sparse it is beneficial to apply
a multi-grid method [15]. Mainly due to the non-sparseness of S, the
conjugate gradient method is preferred. Notice that, in this specific case,
R can be expressed as a convolution. For large images it is not feasible to
explicitly compute STS, therefore we compute the matrix vector product
ĉ = STSc that appears in a conjugate gradient iteration by first evaluating
c̃ = Sc and thereafter evaluating ĉ = ST c̃.

4.4 Adaptation to a Gauge Field

In the previous sections we used a very simple model as a regularization
term. For several applications it would be beneficial if we were able to
introduce a more sophisticated model of the image we want to reconstruct.
Feature based image editing [68] and optic flow estimation [43, 63] are
applications that potentially have great benefit of such a refinement. Re-
cently an image in-painting method was introduced that achieves a model
refinement by means of covariant derivatives on a vector bundle that are
guided by a user selectable gauge field [50]. We will adapt a similar ap-
proach.

The basic idea is to replace the gradient that appears in the regularization
term of eq. (4.5) by a covariant derivative DAh that is biased by a gauge
field h ∈ H2(R2). To this covariant derivative the gauge field h should be
“invisible”, i.e DAhh = 0. If we were able to put h to be the original image
f the approximation would exactly produce f again.

To this end we interpret f not as a scalar function but as a section through
a fibred space E = R2 × R+. Heuristically this means that we rescale
intensity by a spatially varying factor, the unit section σ. Thus we consider
fσ instead of f to model intensity values in the image (the latter is a special
case in which σ(~x) = (~x, 1) ∀~x ∈ R2). This implies that when we consider
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derivatives, we need to account for the spatial variability of σ. In the
next subsection we will introduce to this end a connection on a vector
bundle. There, we will also make the heuristic description of our approach
presented in the beginning of this section a bit more rigorous.

For the reader who is not familiar with the concept of vector bundles it
could be useful to take notice of Fig. 4.1 before reading the next subsec-
tion, since it aids in developing the right geometrical interpretation of the
presented material.

4.4.1 Connections on Vector Bundles

Consider a vector bundle (E, π,M), with total space E = R2 × R+, base
space M = R2, and projection π : E → M . π projects a point in E (a
point in M augmented with an intensity L ∈ R+) to M in the following
manner

π(x, y, L) = (x, y) . (4.22)

L amounts to a certain physical quantity such as luminous intensity, which
is expressed in candela (cd). Next we define a section s : M → E such
that π ◦ s = idM , where idM denotes the identity map on M . We define
the association of a section σf with unique image f ∈ L2(R2) as

f ↔ σf ⇔ ∀(x,y)∈R2 σf (x, y) = (x, y, f(x, y)) . (4.23)

The multiplication of such a section σf by an image g is given by

gσf = σfg . (4.24)

Let σ̃ denote the unit section σ̃(x, y) = (x, y, L0), with L0 a fixed luminous
intensity unit (e.g. 1cd).

We want to define a connectionD over the space of sections Γ(E) on E. Let
L (Γ(TM),Γ(E)) denote the space of linear operators that map a section
of a tangent bundle on M to a section of a vector bundle. Here we stress
that a section of a tangent bundle, V ∈ Γ(TM), is just a vector field on
M . A map

D : Γ(E)→ L (Γ(TM),Γ(E)) (4.25)
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is a connection on a vector bundle iff it possesses the following properties,
cf. [67], pp.106. In the following we will use standard notation DV σ =
(Dσ) (V ).

1. D is tensorial in V :

DV+Wσ = DV σ +DWσ for V,W ∈ Γ(TM), σ ∈ Γ(E) (4.26)
DfV σ = fDV σ for f ∈ C∞(M,R), V ∈ Γ(TM) . (4.27)

2. D is R-linear in σ:

DV (σ + τ) = DV σ +DV τ for V ∈ Γ(TM), σ, τ ∈ Γ(E) (4.28)

and it satisfies the Leibniz product rule:

DV (fσ) = V (f)σ + fDV σ for f ∈ C∞(M,R) . (4.29)

Suppose we have a section D on a vector bundle. Then it must satisfy the
four properties (eqs. (4.26) to (4.29)) mentioned above. Therefore we must
have the following identity

Dσ(X)(c(t)) = D(zσ̃)(X)(c(t))

= X|c(t)(z)σ̃ +
2∑
i=1

z(c(t))ċi(t)D∂xi
σ̃ (4.30)

for all sections σ = zσ̃, and vector fields X = ∑2
i=1 ċ

i∂xi . Here c : (0, 1)→
M is a smooth curve on M , ċi(t) = 〈dxi, ċ(t)〉 i = 1, 2, with ċ(t) = d

dtc(t),
and z ∈ C∞(M,R) an arbitrary image. By {dxi}2i=1 = {dx, dy} we denote
the dual frame in the cotangent bundle T ∗M .

For each i = 1, 2 D∂xi
σ̃ should be a section on the vector bundle. Such a

section can be identified with a function

Ai : M → R (4.31)

by eq. (4.23) , i.e.,

D∂xi
σ = σAi = Aiσ̃ . (4.32)
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Substituting eq. (4.32) into eq. (4.30) yields

Dσ(X)(c(t)) =
2∑
i=1

(
ċi(t)∂xi(z)(c(t)) + z(c(t))ċi(t)Ai(c(t))

)
σ̃ . (4.33)

So each connection is parameterized by the co-vector field A = ∑2
i=1Aidxi.

At this point we still have a degree of freedom, namely we still can select
a specific co-vector field. In our application we want a certain image h to
be “invisible” so for a fixed h we select A = Ah such that(

DAh(σh)
)

= 0 , (4.34)

i.e., DAh
ċ (σh) = 0 for all curves c, holds for a specific image h. Here we

made the dependence of D on Ah explicit in the superscript notation (in
the previous equations we left it out in order to facilitate readability).
Given the requirement of eq. (4.34) we explicitly calculate(

ċi(t)(∂xih)(c(t)) + h(c(t))ċi(t)Ai(c(t))
)
σ̃ = 0 σ̃ (4.35)

for all curves c : (0, 1)→M

⇔ (∇h)(c(t)) + h(c(t))A(c(t)) = 0 (4.36)

⇔ Ah(c(t)) = −
2∑
i=1

∂xi logh(c(t)) dxi ∀h>0 . (4.37)

Which gives us an expression for Ah (eq. (4.37)) provided h is strictly
positive. This is a limitation of our method. However, for a system that
observes physical quantities this is a realistic assumption.

From the previous derivations we conclude that applying a covariant deriva-
tive that is gauged by an image h to an image f amounts to(

DAh(σf )
)

(ċ) =
(
ċ(f) +

2∑
i=1

Aiċ
if

)
σ̃ =

(
ċ(f)−

2∑
i=1

((∂xi logh)ċif)
)
σ̃

(4.38)

=
(
ċ(f)− f

h
ċ(h)

)
σ̃ .

Here we used the following short notation:

ċ(f) =
2∑
i=1

ċi∂xi(f) = (ċ(t) · ∇f) (c(t)) = d
dtf(c(t)) . (4.39)
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Note that eq. (4.38) can be rewritten as

∀c:(0,1)→M :
(
DAhσf (ċ(t))

)
(c(t)) = σ̃ (df + fAh) (ċ(t)) , (4.40)

i.e., DAh (fσ̃) = σ̃ (df + fAh). When we identify σf = fσ̃ ↔ f this
simplifies to

DAhf = (d+Ah)f , (4.41)

in which Ahf is a multiplication.

The calculation of a covariant derivative as described in eq. (4.38) allows
for a geometrical interpretation. A visualization thereof, which is depicted
in Fig. 4.1, will be described next. We stipulate this is a specially crafted
example since there is only structure present in one single direction. There-
fore we only have to construct a visualization for the calculation of a co-
variant derivative in the direction that is labelled by x in the figure. The
derivative in the direction that is labelled by y simply vanishes.

On the base spaceM a curve c : (0, 1)→M is drawn. We want to calculate
the covariant derivative of the section σf at the point that corresponds to
c(t) on the base space. The covariant derivative is gauged by the gauge field
h. Therefore another section, σh, is depicted in the figure. The gradient of
σh at the point σh(c(t)) in total space E is depicted by a line, labelled A,
through σh(c(t)) and σh(c(t+ε)). The line labelledD visualizes in a similar
manner the gradient of σf at σh(c(t)). On the left side it is shown how the
gradient of A is attenuated by the fraction of the values of σf (c(t)) and
σh(c(t)). The value of this attenuated directional derivative is added to
the directional derivative of σf at σf (c(t)) in the upper left of the figure to
finally produce the result of eq. (4.38). To clarify the attenuation process
we added Fig. 4.2 where the relevant lines are labeled the same as their
corresponding lines in Fig. 4.1.

In essence the energy functional for which we search a minimizer stays the
same as the one for which a minimizer is sought in eq. (4.5). We merely
change the notion of a gradient, which is adapted to a gauge field h, the
resulting energy functional now reads

E(g) =
P∑
i=1

αi ((g, ψi)L2 − di)2 + λ

2

∫
R2

||DAhg||2dV , (4.42)
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{

{{

{

ċ(f)|c(t)
ċ(f)− fh ċ(h)|c(t)

f
h ċ(h)|c(t)
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c(0)
ċ(0)

c(t)c(t+ǫ) M
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↓ π
σh(c(0))

σh(c(t))σh(c(t+ǫ))

σf (c(t))
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E

DC

A

x
y

Figure 4.1: A visualization of the calculation of a covariant derivative as described
in eq. (4.38). The base spaceM corresponds to R2 and total space E corresponds
to R2 × R+. We refer to the text right after eq. (4.41) for an explanation of this
figure.

where DAh is the covariant derivative or equivalently a linear connection
acting on an image as in eq. (4.41). The norm in eq. (4.42) is defined as
follows

||DAhg|| = ||(d+Ah)g|| =
√√√√ 2∑
i=1

(
∂g

∂xi
+ gAih

)2
. (4.43)

4.5 Multi-Scale Approximate Reconstruction
from Singular Points

We will apply the gauged reconstruction of eq (4.42) to the reconstruction
from singular points of a Gaussian scale space representation uf of an
image f , with uf the unique solution to{

∂uf
∂s = ∆uf
uf (·, 0) = f

. (4.44)

Singular points (x, y, s) ∈ R2 × R+ of uf are those points satisfying{
∇uf (x, y, s) = 0

det∇∇Tuf (x, y, s) = 0 . (4.45)
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{

}

{

}
1

A

B

C

h(c(t))

f(c(t))

ċ(h)
f
h ċ(h)

Figure 4.2: Visualization of the amplification of ċ(h) by f(c(t))
h(c(t)) . This image clari-

fies the congruence relations that are used in Fig. 4.1.

For more information about catastrophe theory in general, its application
in scale space theory and the calculation of the locations of singular points
we refer to [51, 26, 44, 69]. A filter ψi corresponding to a derivative at a
certain position in the scale space of an image is given by

ψi(x, y) = (2si)
ni+mi

2
∂ni+mi

∂(xniymi)
1

4πsi
e
− ((x−xi)

2+(y−yi)
2)

4si , (4.46)

where we used natural derivatives1 [80] as proposed by Lindeberg. Here
we used multi-index notation i = (xi, yi,mi, ni, si). A singular point is
encoded by storing the second order derivative jet for each singular point
location.

The discretization proposed in section 4.3.2 allows for a reconstruction at
a certain resolution a > 0. We will select scales {2j}Jj=0. First we find all
features which can be approximated well at the coarsest resolution J , i.e.,
those features for which

||ψi − PVaψi|| < ε , (4.47)

where PVa denotes the L2-projection onto the set Va = {βn(xa − k)βn(xa −
l)|k, l ∈ Z} and ε > 0 a small constant. For an efficient method to obtain
an approximation of this error we refer to [12]. Next we compute a recon-
struction at resolution J using a constant gauge field h. Then, for each
scale j = J − 1 . . . 0 we find the gauge field by application of the two scale
relation (see eq. (4.11)) to the reconstructed image at scale j+1. In order

1In image processing the term natural derivative is used to denote this particular
scaling of a Gaussian derivative.
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Figure 4.3: From left to right, (1) the source image “trui”, (2) reconstruction
at resolution 65×65 pixels from 84 feature points, (3) reconstruction from 226
feature points at 129×129 pixels and gauged by the image on its left, (4) recon-
struction from 727 feature points at 257×257 pixels and gauged by the image on
its left, (5) same reconstruction as the image on the left but not gauged, and (6)
reconstruction from all 1070 feature points, no gauge field. The features are up
to second order differential structure obtained from the scale space representation
of the source image at its singular point positions.

to reduce memory consumption and gain computational efficiency we leave
out all features that were used in a coarser scale reconstruction than the
current one such that those features are only implicitly encoded (via the
gauge field) in the reconstruction algorithm.

See the caption of Figure 4.3 for a description of the experiments we con-
ducted. Comparing the fourth and fifth image shows that features which
are not directly encoded are passed by the gauge field (lower resolution
images). In fact the difference between the two reconstructions is quite
striking. We furthermore note that memory requirements and the com-
putational complexity for the algorithms to produce these two images are
equivalent. When the features of all 1070 singular points are directly used
(right most image in Figure 4.3) the visual quality is more appealing.
The memory requirements are however much larger. We also mention the
method of feature selection for the next level is quite crude and can be
improved by incorporating, e.g., a feedback loop. These are possibilities
for future exploration which are allowed by the presented framework.

4.6 Conclusions

We introduced a coarse-to-fine image reconstruction method that approx-
imates a set of generalized samples that are weighted according to their
noise robustness. Information from a coarse resolution reconstruction is
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passed to a finer resolution level by means of a gauge field. To this end
we considered the image not as a scalar function but as a section through
a fibred space. Application of the newly proposed method to the recon-
struction from singular points of a scale space representation of an image
shows the feasibility of the method.
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5Left-Invariant Reassignment on the Heisenberg
Group
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5.1 Introduction

The Gabor transform was first proposed in 1964 in a discrete setting
[48, 100]. Later it was formulated in a continuous setting [56] showing
its close resemblance to the short-time Fourier transform. In the mid
1970’s Kodera et al. [73] noticed the need for a further enhancement of the
spectrogram that is obtained from the short-time Fourier transform of a
signal by taking its squared modulus. They noticed that, due to the un-
certainty principle, there is always a tradeoff between time and frequency
resolution in the short-time Fourier transform (or as they call it: moving-
window method). As a result the spectrogram shows a “blurred” version
of the true spectral density. The modified moving-window method they
propose as a solution to this problem indeed sharpens the spectrogram and
thereby increases its readability. However, their modification only handles
the square modulus of the short-time Fourier transform of a signal and
loses the phase information. Therefore it is not possible to reconstruct the
signal from its modified moving-window method representation; it is not
invertible. The improvements of the method by Auger and Flandrin [3]
yielded computational advantages but still lacked the property of invert-
ibility.

The first method that does have the invertibility property is an applica-
tion of reassignment to the continuous wavelet transform [28]. A method
called differential reassignment was later developed by Chassande-Mottin
et al. [23, 22]. This method produces a vector field along which the spectro-
gram is continuously deformed, whence the term differential reassignment.
A group-theoretical interpretation of the latter method can be found in
[29].

We show how reassignment can be interpreted on the full Weyl-Heisenberg
group. To this end we add an extra dimension to the conventional Ga-
bor transform and analyze what operators can be applied to our Gabor
transform of a signal. The operators that are shown to be suitable for
the construction of partial differential equation (PDE) based methods are
then mapped back to the conventional Gabor transform. These operators
are subsequently used to implement a convection process on the transform
domain. Discretization of the reassignment method is done by identifying
a discrete group for which the corresponding operators are derived and
which allows for an exact implementation on a discrete grid. Based on
these discrete operators we identify a discrete window which allows an ac-
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curate implementation of the reassignment method. We furthermore show
that a reassigned version of a Gabor transform can be obtained by means
of a morphological erosion operation.

5.2 Gabor Transforms

In order to obtain local frequency information of a signal f : Rd → C, d ∈ N
one usually employs a continuous Gabor transform Gψf : Rd×Rd → C
defined by

(Gψf) (x, ω) =
∫
Rd

f(ξ)ψ(ξ − x)e−2πi(ξ−x)·ωdξ . (5.1)

Here ψ : Rd → C is the analysis window. Another convention for the
continuous Gabor transform one often encounters is the following one:

(Gψf) (x, ω) =
∫
Rd

f(ξ)ψ(ξ − x)e−2πiξ·ωdξ . (5.2)

The definition in eq. (5.1) amounts to a shifted modulation factor and
the one in eq. (5.2) amounts to a modulation factor that is fixed. If one
is only interested in the modulus of the transformed signal, such as the
spectrogram, the choice of convention is of no importance.

If ||ψ||2 = 1, then for all f ∈ L2(Rd), by the results in [54], it follows that

||Gψf ||2 = ||f ||2 . (5.3)

As a result we find for all f, g ∈ L2(Rd)

(Gψf,Gψg)L2(Rd) = (f, g)L2(Rd) . (5.4)

So the inverse transform can be obtained by noting that

(f,G∗ψGψg)L2(Rd) = (f, g)L2(Rd) , (5.5)

for all f, g. So G−1
ψ = G∗ψ.
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We will use yet another definition of the continuous Gabor transform for
reasons that will become apparent later on. In our definition of the con-
tinuous Gabor transform of a signal Wψf : Rd×Rd×(R/N)→ C, we intro-
duce one extra variable compared to the more conventional definitions in
eqs. (5.1) and (5.2):

(Wψf) (x, ω, s) = e−2πi(s+x·ω
2 )
∫
Rd

f(ξ)ψ(ξ − x)e−2πi(ξ−x)·ωdξ , (5.6)

where x, ω ∈ Rd, and s ∈ R/N. We note that

(Gψf) (x, ω) = (Wψf) (x, ω, s = −x · ω2 ) (5.7)

and

(Gψf) (x, ω) = (Wψf) (x, ω, s = x · ω
2 ) . (5.8)

Since Wψ only adds a modulation component, i.e., e−2πi(s+x·ω
2 ), in front of

Gψ, we can reconstruct in the following manner

f(ξ) =
(
W∗ψ ◦Wψf

)
(ξ) (5.9)

=
1∫

0

∫
Rd

(Wψf) (x, ω, s)ψ(ξ − x)e2πi(s−x·ω2 +ξ·ω)dxdωds . (5.10)

Notice that we chose to integrate over s even though the integrand does not
depend on it. However, as soon as an operator Ψ is applied in the Gabor
domain the effective operatorW∗ψ ◦Ψ◦Wψ reasonably requires integration
over s.

To get more insight into these transforms consider a translation operator
associated to the time variable x ∈ Rd acting on a signal,

(Tx′f) (x) = f(x− x′) , (5.11)

and a translation operator associated to the frequency variable ω ∈ Rd,

(Mωf) (x) = e2πiω·xf(x) , (5.12)

which is a modulation. It is easy to verify that these operators do not
commute, i.e.,

TxMω = e2πix·ωMωTx , (5.13)
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and, as a result,

(MωTx)(Mω′Tx′) = e2πix·ω
′Mω+ω′Tx+x′ . (5.14)

The continuous Gabor transform in eq. (5.1) can be expressed in terms of
these time and frequency-shift operators,

Gψ(f)(x, ω) =
∫
Rd

f(ξ)MωTxψ(ξ)dξ . (5.15)

We must however conclude from eq. (5.14) that this transform is not fully
covariant with respect to these time and frequency shifts of the input signal.
Notice the absolute value of this transform is covariant with respect to
translations and modulations. Apparently time and frequency translations,
that form the domain of the continuous Gabor transform parameterized
by R2d, do not form a group. They however do, as noted in the context of
reassignment by Daudet et al. [29], form a 2d+ 1-dimensional group: the
Weyl-Heisenberg group. Hence the occurrence of s ∈ R in eq. (5.6). We
elaborate on this in the next section.

5.3 The Weyl-Heisenberg Group

For simplicity we consider d = 1, and consider the Heisenberg group H3
that is parameterized by the group elements g = (x, ω, s) ∈ R3 with group
product

gg′ = (x, ω, s)(x′, ω′, s′) = (x+ x′, ω + ω′, s+ s′ + 1
2(ωx′ − xω′) ) ,

(5.16)

group inverse g−1 = (−x,−ω,−s), and unit element e = (0, 0, 0). The
Haar measure dµH3(g) that is associated to the group, i.e., the measure
that is invariant under group translations, is the conventional Lebesgue
measure: dµH3 = dxdωds.

The Schrödinger representation U : H3 → B (L2(R2)
)
, which is a mapping

from Heisenberg group elements to bounded linear operators on L2(R2), is
given by

Ug=(x,ω,s)ψ(ξ) = e2πi(s+ω·ξ−
x·ω

2 )ψ(ξ − x) = e2πisMω
2
TxMω

2
ψ(ξ) (5.17)
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with ψ ∈ L2(R). One can verify this is a unitary irreducible representation
of H3 [53, Chapter 9]. This means that using this representation the
group product, cf. eq (5.16), the identity element and group inverse of the
Heisenberg group are preserved.

Using eq. (5.17) the continuous Gabor transform, recall eq. (5.6), can be
expressed as follows

(Wψf) (g) = (Ugψ, f)L2(R) = e−2πi(s+x·ω
2 )
∫
Rd

f(ξ)ψ(ξ − x)e−2πi(ξ−x)·ωdξ

(5.18)

for all f ∈ L2(R) and g = (x, ω, s) ∈ H3. The group structure that is
thus put on the domain of the continuous Gabor transform will show to
be crucial for the reassignment method, and in fact for many other signal
processing methods.

To get a periodic phase we now consider the reduced Heiseberg group
Hr = H3/{0}×{0}×Z, where we have divided out the kernel of Hr,
{(0, 0, t) | t ∈ Z}. We now identify Hr with R2 × T and denote group
elements by g = (x, ω, z) with z = e2πis. As a consequence we have

(Wψf) (x, ω, z) = z−1 (Wψf) (x, ω, 1) (5.19)

for all f, ψ ∈ L2(R). The closure of all continuous Gabor transforms in
L2(Hr) is defined by the function space

H = {F : Hr → C | F (p, q, z) = z−1F (p, q, 1) ,

F (·, ·, z) ∈ L2(R2) for all z ∈ T
}
. (5.20)

Clearly Wψf ∈ H for all f, ψ ∈ L2(R).

5.3.1 Differential Operators on the Weyl-Heisenberg Group

The reassignment procedure should be covariant with respect to transla-
tions and modulations of the signal. This constraint was also suggested
in the context of reassignment in [29]. In order to ensure covariance it is
natural to study how operators on the continuous Gabor transform of a
signal relate to operators on the signal itself. To this end we first introduce
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the left-regular and right-regular representations of functions φ ∈ L2(Hr),
which are given by

(Lgφ) (h) = φ(g−1h) , g, h ∈ Hr (5.21)
(Rgφ) (h) = φ(hg) , g, h ∈ Hr (5.22)

respectively. A vector field X on Hr is called left-invariant when

(XLgφ) = Lg (Xφ)⇔ ∀h∈Hr : XhLgφ = Xg−1hφ (5.23)

for all smooth functions φ :Hr → C, and g, h ∈ Hr. We consider these
vector fields to construct operators Φ : H → H on Gabor transforms
since their left-invariance ensures that the corresponding operator Υψ on
the signal f ∈ L2(R) is covariant with respect to group translations, i.e.,
translations and modulations of the signal (recall eq. (5.17))

∀g∈Hr Φ ◦ Lg = Lg ◦ Φ⇔ ∀g∈Hr Υψ ◦ Ug = Ug ◦Υψ , (5.24)

with

Υψ = (Wψ)∗ ◦ Φ ◦Wψ : L2(R)→ L2(R) , (5.25)

and ψ ∈ L2(R). This can be easily verified by noticing that

Wψ ◦ Ug = Lg ◦Wψ ∀g∈Hr and W∗ψ ◦ Lg = Ug ◦W∗ψ ∀g∈Hr . (5.26)

This allows us to consider left-invariant operators on the Gabor domain
of which the equivalent covariant counterparts would be highly non-trivial
on the signal domain. Therefore we proceed to construct the left-invariant
vector fields for the specific case of Hr.

Let us take a basis {A1, A2, A3} = {∂x, ∂ω, ∂z} attached to the unit element
e = (0, 0, 0) ofHr for the Lie-algebra Te(Hr) equipped with the Lie product

[A,B] = lim
t→0

(
a(t)b(t)a−1(t)b−1(t)− e

t2

)
, (5.27)

with a and b smooth curves in Hr through the unit element such that
their tangent vector at the unit element equals A and B respectively. Here
we used shorthand notation for partial derivatives, e.g., ∂x is shorthand
notation for ∂

∂x . One can verify that the only non-vanishing product of
elements of this basis is [A1, A2] = −A3.
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Any tangent vector τ at the origin can be written as

τ =
3∑
i=1

aiAi , (5.28)

where ai ∈ R , (i = 1, 2, 3) represent the coordinates of the tangent vector.
Now we can identify a left-invariant vector field X(τ) that is associated to
such a tangent vector τ at the origin. Let t 7→ γ(t) be a smooth curve in
Hr such that γ(0) = 0 and γ̇(0) = τ (here we used γ̇(t) to denote d

dtγ(t)).
Now we define, following [98, Chapter XII],(

X(τ)φ
)

(h) = dR(τ)φ(h) = d
dtφ(h · γ(t))|t=0 , (5.29)

with h ∈ Hr and φ a sufficiently smooth function on Hr. One can verify
that (

X(τ)Lgφ
)

(h) = d
dtLgφ(h · γ(t))|t=0 (5.30)

= d
dtφ(g−1h · γ(t))|t=0 =

(
X(τ)φ

)
(g−1h) , (5.31)

which shows X(τ) is indeed left-invariant. This construction follows di-
rectly from the fact that Rg ◦ Lh = Lh ◦ Rg for all g, h ∈ Hr. We further-
more note that (

X(τ)φ
)

(h) =
(
X(τ)Lhφ

)
(0) , (5.32)

for all h so X(τ)
h can always be identified with X(τ)

e by means of Lh.

After application of eq. (5.29) to γ(t) = τt for (recall eq. (5.28)) ai =
1, aj = 0 i 6= j with respectively i = 1, 2, 3 we obtain the following
left-invariant vector fields:

A1|gφ =
(

(∂x + ω

2 ∂s)φ
)

(g)

A2|gφ =
(

(∂ω − x

2∂s)φ
)

(g) (5.33)

A3|gφ = (∂sφ) (g)

for all g = (x, ω, e2πis) ∈ Hr and φ ∈ L2(Hr). It is easy to verify that all
their commutators [Ai,Aj ] = AiAj −AjAi vanish except for

[A1,A2] = −A3 = −[A2,A1] . (5.34)
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In principle we are now set to construct left-invariant operators by means
of linear combinations of the left-invariant vector fields that were obtained
in eq. (5.33). However, we will postpone this until after the introduction
of phase-space.

5.3.2 Phase-Space

The previous section outlined how to perform operations on H such that
their net effect on the signal is covariant with respect to translations and
modulations. It would however be very practical if we were able to link the
previous construction to the range of Gψ, R(Gψ) = {Gψf | f ∈ L2(R)} since
this would both decrease the dimensionality of the problem at hand and
give a direct connection to established methods from literature. To this
end we identify H with L2(R2) by means of the operator S : H → L2(R2)
which is defined by

(SF ) (x, ω) = F (x, ω, e−πix·ω) = eπix·ωF (x, ω, 1) (5.35)

for all F ∈ H. The space where S maps to is called phase-space. The
inverse of this operator is given by(

S−1F̃
)

(x, ω, z) = z−1e−πix·ωF̃ (x, ω) (5.36)

for all F̃ ∈ L2(R2). Here we used a tilde to emphasize that F̃ lives in
phase-space. This convention will be used throughout the remainder of
this text. Recall that z = e2πis so applying S to an element of H amounts
to taking the section s(x, ω) = −x·ω

2 . We furthermore note that

Gψ = S ◦Wψ . (5.37)

Now let the phase-space equivalent of the left-invariant operator Φ, Φ̃ :
L2(R2)→ L2(R2), be defined by conjugation of Φ with S:

Φ̃ = S ◦ Φ ◦ S−1 . (5.38)

Using eq. (5.25) and eq. (5.37) we now have

Υψ = (Wψ)∗ ◦ Φ ◦Wψ

= (S ◦Wψ)−1 ◦ Φ̃ ◦ (S ◦Wψ) (5.39)
= (Gψ)∗ ◦ Φ̃ ◦ Gψ .



80 Chapter 5. Left-Invariant Reassignment on the Heisenberg Group

So left-invariant operators on H can be directly translated to operators on
phase-space such that the effective result on the signal is translation and
modulation covariant.

Next consider the phase-space equivalents of the left-invariant vector fields
on H which are presented in eq. (5.33),(

Ã1U
)

(x, ω) =
(
S ◦ A1 ◦ S−1U

)
(x, ω) = ((∂x − 2πiω)U) (x, ω)(

Ã2U
)

(x, ω) =
(
S ◦ A2 ◦ S−1U

)
(x, ω) = (∂ωU) (x, ω) (5.40)(

Ã3U
)

(x, ω) =
(
S ◦ A3 ◦ S−1U

)
(x, ω) = (−2πiU) (x, ω)

for all smooth functions U : R2 → C and all x, ω ∈ R. The vector fields
Ã1 and Ã3 are not very practical for direct discretization because of the
multiplication operators that appear in their definitions. However, the
way we obtained them, viz. by conjugation with S, will prove useful in the
discretization we propose later on.

5.4 Cauchy-Riemann Equations
and Window Selection

Up until now we were not very specific about the selection of the window
function ψ that is used to obtain a continuous Gabor transform Wψ of a
signal f . It is of great importance from a practical point of view to select
a proper window. There are many reasons to prefer different windows
over a Gaussian window as was initially proposed by Gabor [48]. Harris
published a paper that summarizes properties of a substantial collection of
windows [55]. Despite all considerations in [55] that mostly speak against
a Gaussian window function we still stick to the Gaussian because such a
window makes the continuous Gabor transform of a signal into an analytic
function [22, Chapter 3],[29, 48]. Indeed, if the window function is given
by

ψ(ξ) = e−πξ
2 (5.41)

then for f ∈ L2(R) the continuous Gabor transform of Wψf satisfies

(A2 + iA1)Wψf = 0 . (5.42)



5.4. Cauchy-Riemann Equations and Window Selection 81

On phase space we observe that since Gψf = S ◦Wψf ,(
Ã2 + iÃ1

)
Gψf = 0 (5.43)

also holds, with Ã1 and Ã2 as defined in eq. (5.40). These relations make
the Gaussian window to be preferable since it allows us to relate derivatives
of the phase to derivatives of the modulus of a continuous Gabor transform.
Using such a construction, branch-cuts in the phase can be avoided which
otherwise would have to be tackled by means of a cumbersome phase-
unwrapping procedure.

Let Wψf = |U |eiΩ with ψ as defined in eq. (5.41), with U = Wψf , and
Ω = arg{Wψf}, then by eq. (5.42)

(A2 + iA1)
(
|U |eiΩ

)
= 0⇔ A1Ω = A2|U |

|U | and A2Ω = −A1|U |
|U | . (5.44)

One can indeed compute derivatives of the phase by only considering the
amplitude and derivatives thereof.

A phase-space equivalent of eq. (5.44) cannot be obtained by just replacing
A1 ← Ã1 and A2 ← Ã2 since the multiplication operator that appears in
Ã1 does not satisfy the chain rule. Substituting the definition of the left-
invariant vector fields as given in eq. (5.40) into eq. (5.43) and denoting
Gψf = |Ũ |eiΩ̃, Ũ = Gψf , and Ω̃ = arg{Gψf} gives(

∂ω|Ũ | − |Ũ |∂xΩ̃ + 2πω|Ũ |+ i|Ũ |∂ωΩ̃ + i∂x|U |
)
eiΩ̃ = 0 . (5.45)

Hence we conclude,

Ã2Ω̃ = −∂x|Ũ ||Ũ | , (5.46)

B̃1Ω̃ = Ã2|Ũ |
|Ũ | (5.47)

are satisfied with

B̃1Ω̃ = ∂xΩ̃− 2πω . (5.48)

Notice that by using eq. (5.23) one can verify that B̃1 ◦ arg is rather than
B̃1 a left-invariant vector field.
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Now consider the dilation of the window function. To this end we introduce
the dilation operator Da : L2(R)→ L2(R) which is given by

(Da(f)) (x) = 1√
a
f(x/a) (5.49)

for f ∈ L2(R) and a > 0 and define a scaled version of the window ψ as

ψa(ξ) = e−π(
ξ
a)

2
. (5.50)

Now

(Gψaf) (p, q) =
(√

aGψD 1
a
f
)

(x
a
, aω) . (5.51)

with ψ = ψa=1. By eq. (5.43) and eq. (5.40) we have

(
∂ω′ + i(∂x′ − 2πiω′)

) (GψD 1
a
f
)

(x′, ω′) = 0 . (5.52)

Then by the substitution x′ = x
a and ω′ = aω(1

a
∂ω + i(a∂x − 2πiaω)

)
(Gψaf) (x, ω) = 0 . (5.53)

So the left-invariant vector fields that satisfy the Cauchy-Riemann relations
when a window ψa is used in the continuous Gabor transform are given by

Ãa1 = aÃ1 and Ãa2 = a−1Ã2 . (5.54)

One can verify that Aa1 = aA1 and Aa2 = a−1A2 also hold. Furthermore
notice that such a scaling also implies that derivatives on the scaled phase
Ωa can be related to derivatives on de scaled modulus |Ua| via

A1Ωa = a−2A2|Ua|
|Ua| (5.55)

A2Ωa = −a2A1|Ua|
|Ua| (5.56)

with (Wψaf) = |Ua|eiΩa . In the next section the left-invariant vector fields
and the just described Cauchy-Riemann relations will be used to define a
convection process on the continuous Gabor transform of a signal.
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5.5 Reassignment

The first reassignment methods [73, 3] transform the spectrogram |Gψf |
into a, in a practical sense, more desirable counterpart in a single step.
Later on differential reassignment methods were proposed [23, 22, 29].
These methods perform a deformation of the spectrogram that is guided
by some vector field that depends on the spectrogram itself. Differential
reassignment1 is the preferred method for us since we already obtained the
tools to perform operations on phase-space such that the net effect on the
signal is group-translation covariant.

Let us define a convection process onH such that the net effect of the signal
is (i) translation and modulation covariant and (ii) phase invariant. The
latter constraint was introduced in the context of reassignment by Daudet
et al. [29] and aims to preserve phase information. This phase information
is well known to be carrying much of the signal information [88] and should
be handled with care. In order to define a phase invariant convection
process we restrict the convection to go along equi-phase isophotes. To
this end we introduce a vector vU along the equi-phase isophotes of the
continuous Gabor transform of a signal Ua =Wψaf = |Ua|eiΩa ∈ H :

vUa = (−A2Ωa,A1Ωa)T , (5.57)

and define a convection process and its initial condition as follows{
∂tW (g, t) = −C (W (·, t)) (g)
W (g, 0) = Ua(g) , (5.58)

with g ∈ Hr, convection time t > 0 and with either

C (W (·, t)) = vUa · ~AW (·, t) (5.59)

or

C (W (·, t)) =
(
a2 (∂x |W (·, t)|)2

|W (·, t)| + a−2 (∂ω |W (·, t)|)2
|W (·, t)|

)
eiΩ

a
. (5.60)

The left-invariant gradient of W (·, t) is given by

~AW (·, t) = (A1W (·, t),A2W (·, t))T . (5.61)
1Differential reassignment is a popular term in signal processing for adaptive convec-

tion on Gabor transforms.
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Notice that the first approach, i.e., eq. (5.59), at t = 0 yields

C(|Ua|eiΩa) = (−A2ΩaA1|Ua|+A1ΩA2|Ua|) eiΩa , (5.62)

and by using the Cauchy-Riemann relations eqs. (5.55) and (5.56) that
hold because of the specific choice of the window function we have

C(|Ua|eiΩa) =
(
a2 (∂x|Ua|)2

|Ua| + a−2 (∂ω|Ua|)2
|Ua|

)
eiΩ

a
, (5.63)

which is clearly phase invariant. As a result eq. (5.59) and eq. (5.60) are
the same for t = 0. However, since the Cauchy-Riemann relations are not
maintained over time the approaches are essentially different. The fact
that the Cauchy-Riemann relations do not hold over time directly follows
from the preservation of phase and the non-preservation of amplitude.

With respect to the first approach we mention again that the phase is main-
tained by the convection process so for a practical implementation one can
obtain vUa at t = 0 from the modulus by means of eqs. (5.55) and (5.56).
The second approach can be computed in three steps:

1. Store the phase of the initial condition.

2. Apply an erosion to the logarithm of the modulus of the initial con-
dition.

3. Exponentiate the result that was obtained in step 2 and restore the
phase that was stored in step 1.

We note that eq. (5.60) reduces in step 2 to

∂t log |W (x, ω, s, t)| = a2 (∂x log |W (x, ω, s, t)|)2 + a−2 (log |W (x, ω, s, t)|)2
(5.64)

on the modulus. Under the substitution u = log |W | we arrive at{
∂tu(x, ω, t) = a2 (∂xu(x, ω, t))2 + a−2 (∂ωu(x, ω, t))2
u(x, ω, 0) = log |Ua|(x, ω) . (5.65)

Such an erosion equation is often encountered in mathematical morphol-
ogy [108, 110]. It is solved by a morphological convolution

u(x, ω, t) = (|Ua| 	 bt) (x, ω) = inf
(x′,ω′)∈R2

{|Ua|(x, ω)− bt(x′ − x, ω′ − ω)
}

(5.66)
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using a quadratic structuring element bt(x, ω) = −a−2x2+a2ω2

4t , t > 0 [110,
17, 45, 18]. Here we used that |Ua| is independent of s.

On phase-space we obtain equivalent convection equations by conjugation
with S, whence we have{

∂tW̃ (x, ω, t) = −C̃
(
W̃ (·, t)

)
(x, ω)

W̃ (x, ω, 0) = Ũa(x, ω)
. (5.67)

with Ũa = |Ũa|eiΩ̃a = Gψaf and

C̃
(
W̃ (·, t)

)
= −Ã2Ω̃aÃ1W̃ (·, t) + B̃1Ω̃aÃ2W̃ (·, t) . (5.68)

Using the Cauchy-Riemann relations for the initial condition on phase
space we observe that the phase-space counterpart of eq. (5.60) reads

C̃
(
W̃ (·, t)

)
=

a2

(
∂x
∣∣∣W̃ (·, t)

∣∣∣)2∣∣∣W̃ (·, t)
∣∣∣ + a−2

(
∂ω
∣∣∣W̃ (·, t)

∣∣∣)2∣∣∣W̃ (·, t)
∣∣∣

 eiΩ̃a , (5.69)

and hence we conclude that the second approach on phase-space is solved
in the same manner as its counterpart on the full group.

The left-invariant convection process on phase-space that makes use of
eq. (5.68) was also suggested by Daudet et al. [29]. They did however not
provide a computational scheme to implement that convection process.
Here the results from the previous sections turn out to be crucial. We
stress that the developments in the previous sections are essential for a
correct implementation of that convection scheme. In the next section
we will provide a sound discretization scheme for this convection process
where we will essentially follow the same process as before but now for a
discrete group.

5.6 Discretization

In this section a discretization of the aforementioned reassignment con-
struction will be presented. First the discretization of the continuous Ga-
bor transform will be considered. To this end the integrals in eq. (5.6) are
replaced by a Riemann sum. We will use the nomenclature that is used in
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the review paper of Bölcskei et al. [14]. Such a discretization leads to the
discrete Gabor transform(
WD

~ψa
~f
)

[l,m, k] = e
−2πi( k

Q
−mlL2M ) 1

N

N−1∑
n=0

~ψca[n− lL]~f [n]e−
2πinm
M , (5.70)

where we used a D to emphasize this is a discrete transform. Further-
more brackets are used to denote a discrete index. In this transform
L,K,N,M,Q ∈ N, k = 0, . . . , Q − 1, l = 0, . . . ,K − 1, m = 0, . . . ,M − 1
and L = N

K . We also introduce the oversampling factor P = M
L = KM

N .
This discrete transform transforms a periodic signal that is sampled us-
ing N samples onto a discrete grid containing M frequency bands and
K samples in the time direction. The discrete signal ~f = {~f [n]}N−1

n=0 =
{f( nN )}N−1

n=0 ∈ CN is a sampled version of the continuous signal. The dis-
crete kernel, which should be N -periodic, is given by

~ψca =
{
~ψca[n]

}N−1

n=−(N−1)
=
{
e−

π(|n|−bN−1
2 c)2

N2a2

}N−1

n=−(N−1)
∈ C2N−1 . (5.71)

Here we already explicitly used a discretization of ψa that appeared in
eq. (5.50). The shift of bN−1

2 c is introduced for notational convenience.
For Riemann-integrable f compactly supported on [0, 1] and the continuous
counterpart of ~ψca we have on the interval [−1, 1],
(
WD

~ψa
~f
)
[l,m, k] = e

−2πi( k
Q
−mlL2M ) 1

N

N−1∑
n=0

e−
π(|n−lL|−bN−1

2 c)2

N2a2 f( n
N

)e−
2πinm
M

= e
−2πi( k

Q
−ml2P ) 1

N

N−1∑
n=0

e−πa
−2(| n

N
− l
K
|− 1

N
bN−1

2 c)2
f( n
N

)e−
2πi(K/P )nm

N

→ e
−2πi( k

Q
−ml2P )

1∫
0

f(ξ)e−πa−2(|ξ− l
K
|− 1

2 )2
e−2πiξKm

P dξ (5.72)

as N →∞. Here we identified x = l
K , ω = mK

P and s = k
Q . When N →∞

we keep K and P fixed, so M → ∞ resulting in a continuous frequency
spectrum.

The cyclic discrete Gabor transform can also be written in a similar form
to eq. (5.18), where the Schrödinger representation of the Weyl-Heisenberg
group is explicitly used, viz.(

WD
~ψ
~f
)

[l,m, k] =
(
UD[l,m,k] ~ψ, ~f

)
l2(I)

, (5.73)
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where I = {0, . . . , N−1}, the discrete inner product for ~f = {~f [n]}N−1
n=0 , ~g =

{~g[n]}N−1
n=0 ∈ CN is given by

(
~f,~g
)
l2(I)

= 1
N

N−1∑
n=0

~f [n]~g[n] , (5.74)

and (
UD[l,m,k] ~ψ

)
[n] = e

2πi
(
k
Q
−ml2P

)
e

2πinm
M ~ψ[n− lL] . (5.75)

To find a group product for the discrete group for which UD[l,m,k] is a rep-
resentation we calculate for all ~ψ ∈ l2(I),(

UD[l′,m′,k′]UD[l,m,k] ~ψ
)

[n] =

e
2πi
(
k′
Q
−m′l′2P

)
e

2πinm′
M e

2πi
(
k
Q
−ml2P

)
e

2πi(n−l′L)m
M ~ψ[n− (l + l′)L]

=e
2πi
(
k+k′
Q

+ Q
2P

(m′l−l′m)
Q

− (m+m′)(l+l′)
2P

)
e

2πin(m+m′)
M ~ψ[n− (l + l′)L]

=
(
UD[l+l′ (mod K),m+m′ (mod M),k+k′+ Q

2P (m′l−l′m) (mod Q)]
~ψ

)
[n] (5.76)

where we note that M
L = P and we introduce the additional constraints

Q
2P , L even and K

2P = N
2M ∈ N in order to stay on the discrete grid in the

k direction. For the rest of this text we will assume all these constraints,
which are of almost no burden for practical applications, are satisfied. If
the following discrete group product is associated to the discrete reduced
Heisenberg group hr = {[l,m, k] | l = 0, . . . ,K−1 , m = 0, . . . ,M−1 , k =
0, . . . , Q− 1}

[l′,m′, k′][l,m, k] = [l + l′ (mod K),m+m′ (mod M),

k + k′ + Q

2P (m′l − l′m) (mod Q)] (5.77)

one can see that hr is a suitable group for the domain of the discrete cyclic
Gabor transforms. Indeed,(

UD[l′,m′,k′]UD[l,m,k] ~ψ
)

[n] =
(
UD[l′,m′,k′][l,m,k] ~ψ

)
[n] (5.78)

is satisfied for all ~ψ ∈ l2(I).
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5.6.1 Discrete Left-Invariant Vector Fields

The reassignment method that corresponds to eq. (5.59) in Section 5.5
heavily depends on the left-invariant vector fields that were presented in
Section 5.3.1. One should therefore take care to carefully construct these
vector fields in the discretization of the method. Failure of doing so would
result in a method that is not covariant with respect to translations or
modulations of the input signal, which is highly undesirable. Straight-
forward discretization of the vector fields in eq. (5.33) does not suffice.
Therefore we took care in the beginning of this section to introduce a dis-
crete group that corresponds to the continuous group Hr for which we can
compute the discrete counterparts of the vector fields that are presented
in eq. (5.33). We will now follow a similar construction as was used on Hr,
viz. taking the derivative of the right-regular representation, to obtain the
discrete left-invariant vector fields. Here we recall that such operators are
indeed left-invariant since left and right-regular actions commute.

In the discretized algorithm an upwind scheme will be employed that uses
both forward and backward finite differences. Therefore we will calculate
both the forward and backward discrete left-invariant vector fields on dis-
crete Gabor transforms. The forward discrete left-invariant vector fields
AD+
i i = 1 . . . 3, where the + superscript to D is used to emphasize the

fact that the finite difference operator is taken in the forward direction,
are given by (cf. eq. (5.77))

(
AD+

1 WD
~ψ
~f
)

[l,m, k] =

(
WD

~ψ
~f
)

[[l,m, k][1, 0, 0]]−
(
WD

~ψ
~f
)

[l,m, k]
K−1

=
e−

πimL
M

(
WD

~ψ
~f
)

[l + 1,m, k]−
(
WD

~ψ
~f
)

[l,m, k]
K−1 (5.79)

(
AD+

2 WD
~ψ
~f
)

[l,m, k] =

(
WD

~ψ
~f
)

[[l,m, k][0, 1, 0]]−
(
WD

~ψ
~f
)

[l,m, k]
NM−1

=
e
πimL
M

(
WD

~ψ
~f
)

[l,m+ 1, k]−
(
WD

~ψ
~f
)

[l,m, k]
NM−1 (5.80)

(
AD+

3 WD
~ψ
~f
)

[l,m, k] =

(
WD

~ψ
~f
)

[[l,m, k][0, 0, 1]]−
(
WD

~ψ
~f
)

[l,m, k]
Q−1

= Q
(
e−

2πi
Q − 1

)(
WD

~ψ
~f
)

[l,m, k] , (5.81)

for all ~f ∈ CN , ~ψ ∈ CN and [l,m, k] ∈ hr. We note that this are just finite
differences using right-shifts on hr. Notice this is the discrete equivalent of
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eq. (5.29). The backward discrete left-invariant vector fieldsAD−i i = 1, 2, 3
are obtained in a similar fashion. These vector fields are given by

(
AD−1 WD

~ψ
~f
)

[l,m, k] =

(
WD

~ψ
~f
)

[l,m, k]− eπimLM

(
WD

~ψ
~f
)

[l − 1,m, k]
K−1 (5.82)

(
AD−2 WD

~ψ
~f
)

[l,m, k] =

(
WD

~ψ
~f
)

[l,m, k]− e−πimLM

(
WD

~ψ
~f
)

[l,m− 1, k]
NM−1 (5.83)(

AD−3 WD
~ψ
~f
)

[l,m, k] = Q
(
1− e 2πi

Q

)(
WD

~ψ
~f
)

[l,m, k] . (5.84)

Centered discrete left-invariant vector fields can be obtained by averaging
the corresponding forward and backward left-invariant vector fields. Notice
these operators are exact on hr and no interpolation is needed. It can be
shown that for N →∞ they converge to their continuous counterparts [40].

5.6.2 Phase-Space

To obtain a dimension reduction we introduce a discrete version of S (recall
eqs. (5.35) and (5.18)), SD : R

(
WD

~ψ

)
→ l2({0, . . . ,K−1}×{0, . . . ,M−1}).

Clearly this mapping maps a discrete Gabor transform to its phase space
representation

(
GD~ψ ~f

)
[l,m] = 1

N

N−1∑
n=0

~ψ[n− lL]~f [n]e−
2πi(n−l)m

M (5.85)

and is given by
(
GD~ψ ~f

)
[l,m] =

(
SDWD

~ψ
~f
)

[l,m] =
(
WD

~ψ
~f
)

[l,m,− lmQ2P ] . (5.86)

Its inverse is given by(
WD

~ψ
~f
)

[l,m, k] =
(
(SD)−1GD~ψ ~f

)
[l,m, k] = e

−2πi( k
Q

+ lmL
2M )

(
GD~ψ ~f

)
[l,m] .
(5.87)

Using this mapping, namely via conjugation, the discrete left-invariant
vector fields on phase space, ÃD+

i and ÃD−i i = 1, 2, 3, can be obtained from
the discrete left-invariant vector fields that were obtained in the previous
subsection. The forward discrete left-invariant vector fields on phase space
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are (
ÃD+

1 GD~ψ ~f
)

[l,m] =
(
(SD) ◦ AD+

1 ◦ (SD)−1GD~ψ ~f
)

[l,m]

=
e−

2πimL
M

(
GD~ψ ~f

)
[l + 1,m]−

(
GD~ψ ~f

)
[l,m]

K−1 (5.88)(
ÃD+

2 GD~ψ ~f
)

[l,m] =
(
(SD) ◦ AD+

2 ◦ (SD)−1GD~ψ ~f
)

[l,m]

=

(
GD~ψ ~f

)
[l,m+ 1]−

(
GD~ψ ~f

)
[l,m]

NM−1 (5.89)(
ÃD+

3 GD~ψ ~f
)

[l,m] =
(
(SD) ◦ AD+

3 ◦ (SD)−1GD~ψ ~f
)

[l,m]

= Q
(
e
− 2πi

Q − 1
) (
GD~ψ ~f

)
[l,m] (5.90)

for all ~f ∈ CN and ~ψ ∈ CN and [l,m] ∈ {0, . . . ,K − 1}×{0, . . . ,M − 1}.
The backward discrete left-invariant vector fields are computed in the same
manner and read

(
ÃD−1 GD~ψ ~f

)
[l,m] =

(
GD~ψ ~f

)
[l,m]− e 2πimL

M

(
GD~ψ ~f

)
[l − 1,m]

K−1 (5.91)

(
ÃD−2 GD~ψ ~f

)
[l,m] =

(
GD~ψ ~f

)
[l,m]−

(
GD~ψ ~f

)
[l,m− 1]

NM−1 (5.92)(
ÃD−3 GD~ψ ~f

)
[l,m] = Q

(
1− e 2πi

Q

) (
GD~ψ ~f

)
[l,m] (5.93)

for all ~f ∈ CN and ~ψ ∈ CN and [l,m] ∈ {0, . . . ,K−1}×{0, . . . ,M−1}. Now
formally on phase-space one should still adhere to the restrictions that were
posed on L,K,M and Q earlier in this section, otherwise the left-invariant
vector fields do not correspond to an underlying discrete group. However
in practice these restrictions can be violated since the k direction is not
visible to the operators that act on phase-space.

5.6.3 Discrete Cauchy-Riemann Equations and SampledWin-
dows

It was pointed out in Section 5.4 that the selection of a certain windowing
function ψ ∈ L2(R) for the continuous Gabor transform leads to favorable
properties of such a transform. Namely derivatives of the phase can be
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Figure 5.1: The relative error εa that shows how well the Cauchy-Riemann rela-
tions hold for central discrete left-invariant vector fields on the Gabor transform
of a chirp signal as a function of a for a practical range of a. The analysis window
that is used to obtain the Gabor transform of a chirp signal is a sampled version
of the window function that is optimal for the continuous case.

related to derivatives of the amplitude, cf. eqs. (5.42) and (5.43). To quan-
tify how well these relations hold in the discrete setting we sample ψa in
eq. (5.50) as in eq. (5.71) and use it to obtain a discrete Gabor transform
of an arbitrary signal ~f . Next we verify to which extent(

a−1ÃD2 + aiÃD1
) (
GD~ψa ~f

)
= 0 (5.94)

holds as a function of scale a > 0. Here ÃDi = 1
2

(
ÃD+
i + ÃD−i

)
, i = 1, 2

denotes a discrete left-invariant central finite difference operator. The
scaling directly corresponds to the scaling in the continuous case. The
relative error as a function of a,

εa(~f) =
||
(
a−1ÃD2 + aiÃD1

) (
GD~ψa ~f

)
||2

||~f ||2 , (5.95)

is depicted in Figure 5.1. To produce this figure we have taken ~f to be a
sampled version of a linear chirp function such that there are responses for
large frequency and time ranges in the discrete Gabor transform that is
used in the error measure. The measured errors are rather large, especially
for relatively large or small a. A graph of several sampled windows for dif-
ferent values of a together with sampled windows that do satisfy eq. (5.94)
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exactly can be found in Figure 5.2. From this figure one can clearly see
that taking too few samples relative to the scale a as well as a too large
a relative to the number of samples N used in the discretization lead to
numerical problems.

Even for an optimal a in the example of Figure 5.1, i.e., that a that corre-
sponds to the smallest εa, the relative error is not satisfactory. Therefore
we proceed by finding a kernel such that the Cauchy-Riemann relations do
hold in the specific case of discrete left-invariant centered differences. To
this end a linear system of equations for a scale a of interest is numerically
solved. The obtained solution now serves as the window function for the
discrete Gabor transform.

To compute an optimal window one can, because of linearity and left-
invariance, consider the transform of ~δn = {δ0n}N−1

n=0 , with δij the Kro-
necker delta function (δij = 1 if i = j, 0 otherwise), and optimize for that
function. So we search for ~ψda such that(

a−1ÃD2 + aiÃD1
) (
GD~ψda

~δn
)

= 0 , (5.96)

which leads to(
a−1ÃD2 + aiÃD1

)( 1
N
~ψda[−lL]e

2πilm
M

)
=

M

2aN2
~ψda[−lL]e2πilm

L
M

(
e2πil

L
M − e−2πil L

M

)
+ i

aK

2N e2πilm
L
M

(
~ψda[−(l + 1)L]− ~ψda[−(l − 1)L]

)
(5.97)

= 1
N
e2πilm

L
M

(
M

aN
sin(2πl L

M
)~ψda[−lL]

+ aK

2
(
~ψda[−(l + 1)L]− ~ψda[−(l − 1)L]

))
= 0 .

This should hold for all l = 0, . . . ,K − 1 and m = 0, . . . ,M − 1, but since
the m variable only appears as a modulation factor it suffices to solve the
system for all l and a fixed m. In order to exclude the trivial solution
~ψda = 0 the constraint

l=K−1∑
l=0

~ψda[l] = 1 (5.98)
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is also included. This system of equations can be represented using a tridi-
agonal matrix in which also the cyclic boundary conditions are expressed.
Such a system of equations is easily solved [99]. Windows we calculated
for different values of a can be found in Figure 5.2. A graph of the relative
errors (5.95) made using these windows is not presented since the errors
are close to machine precision. For example, for a = 1

8 the relative error
is of the order 10−18 in our implementation. We do however notice that
the forward and backward discrete left-invariant finite differences do not
satisfy the discrete Cauchy-Riemann equations when the optimized win-
dow for central differences is used. A graph of the errors made when using
either forward or backward differences can be found in Figure 5.3. These
errors overlap due to symmetry.

5.6.4 Discrete Reassignment on Phase-Space

The discrete Gabor transforms we used in our implementation of the re-
assignment algorithm are based on the Zak transform. Such algorithms
are known for their computational efficiency. Since this is well established
theory but still necessary for a self-contained presentation of our work we
refer to Appendix C.1 in which the diagonalization of the frame operator
that appears in the discrete Gabor transform and the construction of the
synthesis windows that are used in the reconstruction are addressed. One
should be aware that the discrete synthesis windows are, in contrast to
the continuous windows, not just the complex conjugated versions of the
analysis windows.

For the discrete implementation of the reassignment procedure on phase
space we will use an upwind scheme [84, 96, 89]. Such schemes are often
used in mathematical morphology [109, 16]. A favorable property of this
scheme is that it does not introduce new maxima during computation. We
do note however that the scheme suffers from numerical blurring, which can
be overcome [16, 84] at the expense of other imperfections such as phase
errors and under and overshoot. The morphological convolution that was
used in the erosion process (see Section 5.5) is trivially discretized and will
not be elaborated on.

The vector field ~vD along which the convection will take place is calcu-
lated using finite differences, where we make use of the Cauchy-Riemann
relations, i.e., the vector field at grid position (l,m) ∈ {0, . . . ,K − 1} ×
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{0, . . . ,M − 1} and time t > 0 is given by

~vD =
(
a2

2K
((

log |W̃D|
)

[l + 1,m]−
(
log |W̃D|

)
[l − 1,m]

)
,(

log |W̃D|[l,m+ 1]− log |W̃D|[l,m− 1]
))

(5.99)

with W̃D[l,m, 0] =
(
GD~ψ ~f

)
[l,m]. Recall this vector field points in a direc-

tion that is orthogonal to the gradient of the phase. Using

z+(φ)[l,m, t] = max{φ[l,m, t], 0} (5.100)

and

z−(φ)[l,m, t] = min{φ[l,m, t], 0} (5.101)
(5.102)

a decision is made between forward and backward derivatives per position
[l,m] and convection time grid point t. In the time direction we simply
apply a forward Euler method with time step τ . Denoting ~vD = (vD1 , vD2 )
this gives an expression for for the reassigned discrete Gabor transform at
time t+ τ based on W̃D at time t:

W̃D[l,m, t+ τ ] = W̃D[l,m, t] (5.103)

−τ
((
z+(vD1 )[l,m, t]

(
ÃD−1

)
[l,m, t]z−(vD1 )[l,m, t]

(
ÃD+

1
)

[l,m, t]
)

+
(
z+(vD2 )[l,m, t]

(
ÃD−2

)
[l,m, t] + z−(vD2 )[l,m, t]

(
ÃD++

2

)
[l,m, t]

))
.

Notice the calculations are done on the complex valued discrete Gabor
transform and not just on its modulus. The reassignment process could be
implemented on the modulus only, as we suggested in the erosion scheme.
We chose however to implement it this way so we can verify our discretiza-
tion scheme and show the feasibility of the proposed method that acts on
the full Gabor transform and not just its modulus.

5.7 Evaluation

To evaluate the proposed methods we apply both reassignment schemes
to the reassignment of a linear chirp that is multiplied by a modulated
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Gaussian and is sampled using N = 128 samples. The input signal is an
analytic signal so it suffices to show its Gabor transform from 0 to π. A
visualization of this complex valued signal can be found in Figure 5.4. For
all experiments we have set the grid parameters K = M = N = 128, which
implies P = 128 and L = 1. The scale of the window functions is set to
a = 1

6 .

Figure 5.5 shows several reconstructions of the reassigned Gabor trans-
forms that are shown in Figure 5.6. To produce the left most column of
Figure 5.5 the window ~ψca was used and to produce the right most col-
umn ~ψda was used as a window. The top row in this figure corresponds to
the PDE based convection scheme and the bottom row corresponds to the
erosion scheme.

The reassigned Gabor transforms in Figure 5.6 are obtained by, from top
to bottom, the PDE scheme using ~ψca, the PDE scheme using ~ψda, the
erosion scheme using ~ψca and finally the erosion scheme using ~ψda. The time
parameter to produce Figures 5.5 and 5.6 is set to t = 0.1 and the time step
for the PDE based method is set to τ = 10−3. The signals are scaled such
that their energy equals the energy of the input signal. This is needed to
correct for the numerical diffusion the discretization scheme suffers from.
Reassignment should only reassign “time frequency particles”, therefore
we argue it is justified to compare the methods in such a way that the
energy appears to be conserved.

Clearly the reassigned signals resemble the input signal quite well. There
is a difference between the reconstructions of the Gabor transforms using
different windows that were reassigned by the erosion based method. To
study the differences Figure 5.7 shows the modulus of the input signal
together with the moduli of the reconstructed reassigned signals that were
produced using the erosion method. From this figure we conclude that it
is preferable to use ~ψca as a window in order to better preserve the signal.
Numerical results support this observation. We also notice from Figure 5.6
the erosion method is sensitive to the selection of the window function.

Table 5.7 shows the relative errors of the complex valued reconstructed
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signal ε1, and the relative error of its modulus ε2, i.e.,

ε1 =
||~u− ~v||2l2(I)
||~u||2l2(I)

, (5.104)

ε2 =
|| |~u| − |~v| ||2l2(I)
||~u||2l2(I)

(5.105)

with ~u the sampled input signal and ~v the reconstructed reassigned signal.
The table also includes one extra experiment, where the convection time for
the PDE scheme using ~ψda is set to t = 0.16. As can be seen in Table 5.7 the
PDE scheme using ~ψda as a window gives less signal distortion then when
~ψca is used. We can however not compare the erosion and PDE schemes
directly since they are essentially different methods. Figure 5.6 shows the
PDE scheme sharpens the Gabor transform of the signal much more slowly
then the erosion scheme. To compare both methods we included the last
experiment in the table where we stopped the convection when it reached
an error that is comparable to the error produced by the erosion scheme
using ~ψca as window. A visualization of the modulus of reassigned Gabor
transform with t = 0.16 and window ~ψda can be found in Figure 5.8.

The PDE scheme performs best when the window ~ψda is used and the
erosion scheme performs better when the window ~ψca is used. Erosion
leads to sharper reassigned Gabor transforms compared to the reassigned
Gabor transforms that are obtained using a the PDE scheme where both
schemes show a comparable error. Furthermore one should note that the
implementation of the erosion scheme is much easier and also much faster
than the PDE scheme. Because of the separability of the erosion kernel it
is also trivial to compute the erosion in a parallel fashion.

5.8 Conclusions

We showed how to reassign a Gabor transform of a signal using left-
invariant derivatives. This lead to two left-invariant methods that are
effectively covariant with respect to translations and modulations of the
input signal. By directing the convection process that is used to deform
the signal in the Gabor domain in a direction that is orthogonal to the left-
invariant gradient of its phase, the methods are also phase invariant. This
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ε1 ε2 t

Erosion ~ψca 2.4110−2 8.3810−3 0.1
Erosion ~ψda 8.2510−2 7.8910−2 0.1
PDE ~ψca 2.1610−2 2.2110−3 0.1
PDE ~ψda 1.4710−2 3.3210−4 0.1
PDE ~ψda 2.4310−2 6.4310−3 0.16

Table 5.1: The first column shows ε1, the relative error of the complex valued
reconstructed signal compared to the input signal. In the second column ε2 can
be found which represents the relative error of the modulus of the signals. The
rows show the methods that were used in the reassignment of the chirp signal.
Parameters involved are grid constants K = M = N = 128, window scale a = 1

8
and the convection time t = 0.1. The time step for the forward Euler method is
set to τ = 10−3 if applicable. PDE means the upwind scheme that is presented
in Section 5.6.4 is used and erosion means the morphological erosion method that
is presented Section 5.5 is used in the computations.

leads to two methods that, in contrast to the representation of the signal
in the Gabor domain, only slightly change the signal itself. Thus the reas-
signment method can be used the produce a more localized time-frequency
representation of the original input signal.

To compute the gradient of the phase, Cauchy-Riemann relations are used
that only hold when a specific window is used. A discretization of this win-
dow is proposed which ensures the Cauchy-Riemann relations are main-
tained in the discrete setting. The alternative discretization, straight for-
ward sampling of the window that was derived in the continuous case, does
not maintain the discrete Cauchy-Riemann relations.

We furthermore identify a discrete group that corresponds to the continu-
ous one in order to discretize the left-invariant vector fields that are used
in the reassignment method. This leads to discrete left-invariant vector
fields that are used in the implementation of the PDE based reassignment
scheme. This also allows us to correctly implement a method that was
only theoretically presented in [29].

Next to the PDE based convection scheme we also propose a method that
can be implemented by means of a morphological erosion operation on
the logarithm of the modulus of the Gabor transform of a signal. Such
an erosion method has the advantage it can be implemented using a fast
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separable scheme. It also produces sharper reassignments compared to the
PDE scheme.

Experiments show that for the erosion scheme the best window is a sampled
version of the window that is optimal in the continuous case and for the
PDE scheme the newly derived window gives better performance.
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Figure 5.2: From top to bottom the sampled continuous windows and the discrete
windows that are optimized for central discrete left-invariant vector fields using
parameter a set to 1

4 ,
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Figure 5.3: The relative error εa that shows how well the Cauchy-Riemann re-
lations hold for forward and backward discrete left-invariant vector fields on the
Gabor transform of a chirp signal as a function of a for practical range of a. The
analysis window that is used to obtain the Gabor transform of a chirp signal is
an optimal window for central discrete left-invariant vector fields.
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Figure 5.4: On top a chirp signal that is multiplied by a modulated Gaussian
is shown. The bottom image shows the modulus of the Gabor transform of the
complex valued signal that is shown on top. Parameters for the transform are
K = M = N = 128 and a = 1

6 . As a window ~ψda was used.
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Figure 5.5: Reconstructions of the reassigned Gabor transforms of the signal that
is depicted in Figure 5.4. The left column is produced using ~ψca as window and the
right column is produced using ~ψda as window. The top row was produced using
the PDE based method and the bottom row was produced using the erosion based
method. Parameters involved are grid constants K = M = N = 128, window
scale a = 1

6 time step τ = 10−3 and the convection time t = 0.1.
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Figure 5.6: The moduli of the reassigned Gabor transforms that correspond to the
signals in Figure 5.5. From top to bottom the PDE scheme using ~ψca, the PDE
scheme using ~ψda, the erosion scheme using ~ψca and finally the erosion scheme
using ~ψda are shown. Parameters involved are grid constants K = M = N = 128,
window scale a = 1

6 time step τ = 10−3 and the convection time t = 0.1.
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Figure 5.7: The modulus of the input signal together with the moduli of the
reconstructed reassigned signals that were produced using the erosion method
using ~ψda and ~ψca as a window.
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Figure 5.8: The modulus of the reassigned Gabor transform that corresponds
to the experiment listed in the bottom most row of Table 5.7 (t = 0.16,τ =
10−3,window: ~ψd

a= 1
6
). This figure should be compared to the third image in

Figure 5.6.
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6.1 Introduction

In Chapter 5 we showed how one can enhance an over-sampled Gabor
transform of a signal, in the sense that it is easier to interpret, such that the
corresponding action in the signal domain is close to the identity operation.
The machinery that was presented in that chapter can also be used for
enhancement in the Gabor domain such that the represented signal itself
is enhanced. By using operators on the domain of Gabor transforms that
are left-invariant the corresponding enhancement operator on the signal
domain will be translation and modulation covariant.

Enhancement of signals via processing in transform domains is not new.
Thresholding of wavelet coefficients [32], which is also called wavelet shrink-
age, is common practice for de-noising of, e.g., images. Yu et al. [122]
noticed that in case of audio de-noising, which is often done using over-
sampled Gabor transforms, artifacts arise when simple thresholding oper-
ations are performed. Those artifacts are known as “musical noise” [21].
In [122] it is shown that it is beneficial to apply a block based thresholding
method, thus adapting the attenuation factor based on information in the
direct neighborhood of the coefficients to be thresholded. Thresholding
methods produce satisfying results because they apply phase-covariant op-
erators in the transform domain. That is, wavelet shrinkage is, like the
reassignment methods that were presented in the previous chapter, both
phase-invariant and phase-covariant. Those methods however do not take
advantage of the group structure that is present on the domain of Gabor
transforms and can only handle local spatial and frequency information in
a crude manner, i.e., by block thresholding.

Another popular method for the enhancement of images is the applica-
tion of a diffusion process to the image to be enhanced, where the amount
of diffusion is adapted to the local structure of the image. Perona and
Malik [91] proposed such a method. Their method inhibits diffusion near
edge-like structures. As a result edges are preserved but homogeneous
areas are smoothed. Following the general idea in [91], where isotropic
non-linear diffusion is applied, many other researchers proposed diffusion
processes that also incorporate the local direction of the structure, result-
ing in truly anisotropic diffusion processes [87, 25, 113]. Weickert [114]
proposed coherence enhancing diffusion, where he steers the diffusion in
the direction of flow-like structures. The diffusion based methods however
cannot take advantage of transform domain representations, in which local
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structure is “pried apart” into distinctive constituents. For example, the
superposition of two tones (sinusoids of different frequency) gets separated
in the Gabor domain while in the spatial domain alone they heavily in-
terfere. We also note that for a very artificial case wavelet shrinkage and
non-linear adaptive diffusion on the image domain can be related to each
other [116, 115].

Combining the two approaches (transform domain processing and adap-
tive diffusion) can be very advantageous. Franken and Duits [46, 47, 39]
recently showed that the enhancement of crossing elongated structures can
indeed be done using such an approach and has advantages compared to
coherence enhancing diffusion on the image domain. Their method is able
to handle crossing structures that are, like the example of the superim-
posed sinusoids, segregated in the transform domain where the diffusion is
applied. Compared to thresholding methods the combined approach gives
the advantage that one can incorporate local information in the processing.
For the general theory about scale spaces on Lie groups we refer to [36].

We will first briefly summarize the method of coherence enhancing diffu-
sion on images before we show how to extend it to the domain of Gabor
transforms. In order to gain computational efficiency we map, as we did
in the case of reassignment, the left-invariant vector fields and induced
evolutions onto phase space.

6.2 Non-Linear Anisotropic Diffusion on R2

The basic idea of coherence enhancing diffusion [114] is that one finds the
solution to the scale space representation uf (~x, t) that corresponds to the
evolution equation{

∂tuf (~x, t) = ∇~x · (C(uf )(~x, t)∇~xuf ) (~x, t)
uf (~x, 0) = f(~x) (6.1)

for a given time t > 0 and ~x ∈ R2. Here ∇~x denotes the spatial gradient
operator, and C : L2(R2×R+)→ C1(R2×R+) is a function that represents
the local conductivity and depends on the local structure of the solution.

Weickert proposed to use the structure tensor [10, 72, 58] to steer the
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diffusion process. The structure tensor is given by

Jρ,σ(uf )(~x, t) =
(
Gρ ∗

(
(∇~x(uf (·, t) ∗Gσ)) (∇~x(uf (·, t) ∗Gσ))T

))
(~x)
(6.2)

where Gσ(~x) = 1
4πσ2 e

− ||~x||22σ2 is a normalized Gaussian kernel. The two
parameters involved, σ and ρ, appear in the convolution with Gσ and
the convolution with Gρ. The first parameter, σ, ensures that the spatial
gradient is less sensitive to small structures which are regarded as noise and
the second parameter, ρ, reflects the scale of the structure to be measured.
In practice ρ is usually larger than σ. The eigenvectors ~e1(~x, t) and ~e2(~x, t)
that correspond to the eigenvalues λ1(~x, t) ≥ λ2(~x, t) of the structure tensor
Jρ,σ point orthogonal to the local structure and along the local structure,
respectively.

Now the idea is to only apply a little amount (ε > 0) of isotropic diffusion
when λ1(~x, t) ≈ λ2(~x, t) and otherwise mainly diffuse in the direction of
the structure. This can be attained by setting the conductivity in eq. (6.1)
as follows

C (uf ) (~x, t) = εI + (1− ε)e−
c

(λ1(~x,t)−λ2(~x,t))2 ~e2(~x, t)~eT2 (~x, t) , (6.3)

where we used the same function as was proposed in [114] to steer the
amount of diffusion in the direction that corresponds to the smallest eigen-
value of the structure tensor. Here the most sensitive parameter c > 0 is
introduced, which can be thought of as some sort of threshold. If the lo-
cal anisotropy |λ1(~x, t) − λ2(~x, t)| � c there will be unit diffusion in the
direction of ~e2(~x, t) and only a small amount of diffusion orthogonal tot
that direction. If |λ1(~x, t)−λ2(~x, t)| ≈ 0 there will only be a little isotropic
diffusion. In the next section we will describe how the method of coherence
enhancing diffusion which we applied on the additive group (R2,+) can be
applied to Gabor transforms.

6.3 CED on the Weyl-Heisenberg Group

Conventional coherence enhancing diffusion inhibits diffusion when there
is not much structure present. In case of diffusion on the Gabor domain
we still want to apply diffusion, since small structures are likely to be
noise and it is beneficial to remove them. So on the Gabor domain we will
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always apply a certain amount of diffusion, but when structure is present
only diffusion tangent to the structure will take place while orthogonal to
this structure it is inhibited. With this modification the alternative to
equation (6.1) can now be formulated as

∂tuf (~x, t) =
(
∇~x · S ·

(
1− (1− ε)e− c

(λ1−λ2)2. 0
0 1

)
· S−1 · ∇~x (uf (·, t))T

)
(~x)

= (∂u, ∂v)
(

1− (1− ε)e− c
(λ1−λ2)2. 0

0 1

)(
∂u
∂v

)
uf (~x, t)

uf (~x, 0) = f(~x) ,
(6.4)

with t > 0, ~x ∈ R2 and a matrix S = (~e1|~e2) that maps the standard basis
into the basis of the local eigenvectors ~e1 and ~e2 of the structure tensor
Jρ,σ. Here we introduced gauge coordinates (∂u, ∂v) = (∂x, ∂y) · S that
align with the eigenvalues of the structure tensor and thus with the local
structure. In the next section we will discuss the alignment of the diffusion
along the gauge coordinates in more detail.

6.3.1 Principal Diffusion Directions on Hr

The convection that was described in the previous chapter takes place
in the direction ∂u that is adapted to the local structure of the Gabor
transform of the signal. This direction was chosen to be aligned with equi-
phase lines of the Gabor transform of the signal to be reassigned. Now our
goal is to design a non-linear anisotropic diffusion scheme which adapts
the amount and direction of the diffusion based on the local structure
in the Gabor domain. This diffusion should take place in a direction ∂v
that is orthogonal to the direction the convection would take place in. A
visualization of this idea can be found in Figure 6.1. From a physical point
of view there is the problem that derivatives in the frequency direction and
derivatives in the spatial direction cannot be related to each other since
they have different physical dimensions. Therefore we have to introduce a
parameter such that this problem can be solved. In order to talk about
orthogonality we introduce a metric tensor G : Hr×H×H → C that acts
on elements of H ⊂ T (Hr), with H = span{∂u, ∂v} = span{A1,A2} (see
Figure 6.1),

Gβ = β4dA1 ⊗ dA1 + dA2 ⊗ dA2 (6.5)

where the positive parameter β has the dimension length−1. To fix the
parameter β we consider the Cauchy-Riemann relations that arise when a
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A1|g

A2|g

A3|g

∂u|g

∂v|g

Hg ⊂ Tg(Hr)

Hg
= spa

n{A1|g,
A2|g}

Figure 6.1: A visualization of the directions ∂u|g and ∂v|g in which the diffusion
takes place. Convection, as described in the previous chapter takes place in the
direction ∂u|g diffusion in that direction is attenuated when structure is present at
the corresponding location. The diffusion is confined to Hg = span{A1|g,A2|g}.

specific window is chosen for the Gabor transform. Recall that this window
depends on the parameter a. If we choose β = 1

a we have

G−1
β= 1

a

(d log |Ua|,PH∗dΩa) = 0 , (6.6)

with

dΩa =
3∑

i=1
AiΩadAi , (6.7)

and

PH∗dΩa =
2∑

i=1
AiΩadAi . (6.8)
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Here PH∗ is the orthogonal projection on the dual space H∗ of the hori-
zontal part H = span{A1,A2} of the tangent space, and Ua = |Ua|eiΩa =
Wψaf , cf. eq. (5.6) and eq. (5.50). Using Gβ with β = 1

a we have the
geometric understanding that normal vectors dΩ|g0 to equi-phase surfaces
{g ∈ Hr | Ωa(g) = Ωa(g0)} are Gβ-orthogonal to the normal vectors d|Ua| |g
of surfaces of constant amplitude {g ∈ Hr | |Ua(g)| = |Ua(g0)|} in the Ga-
bor transform of a signal. These are the principal directions for which the
amount of diffusion will adaptively be adjusted.

6.3.2 Non-Linear Diffusion on Hr

At this point we can express coherence enhancing diffusion on Hr where
we keep the diffusion in Hg, so the A3 component is kept to 0, i.e.,
∂tW (x, ω, s, t) =

(
(β−2A1,A2) · S ·D · S−1

(
β−2A1W
A2W

))
(x, ω, s, t)

= (∂u, ∂v) D
(
∂u
∂v

)
W (x, ω, s, t)

W (x, ω, s, 0) = (Wψaf) (x, ω, s)

,

(6.9)

with (x, ω, s) ∈ Hr and t > 0 and

D =
(

1− (1− ε)e−
c

(λ1−λ2)2. 0
0 1

)
. (6.10)

Here the normalized left-invariant vector fields on R2, {∂x, ∂y}, were re-
placed by the left-invariant vector fields on Hr, {β−2A1,A2}, and the nor-
malization Gβ

(
β−2A1, β−2A1

)
= Gβ (A2,A2) = 1 was used. The structure

tensor on Hr, which we will apply to the modulus of W , now reads

Jρ,σ(|W |)(x, ω, s, t) = (6.11)(
Gρ ∗

((
β−2∂x(|W |(·, s, t) ∗Gσ)
∂ω(|W |(·, s, t) ∗Gσ)

)(
β−2∂x(|W |(·, s, t) ∗Gσ)
∂ω(|W |(·, s, t) ∗Gσ)

)T))
(x, ω, s, t)

with Gσ(x, ω) = β2

2πσ2 e
−β4x2+ω2

2σ2 . Because the left-invariant derivatives are
applied to the modulus, Jρ,σ is independent of s. Furthermore notice that
A1|Wψf | = ∂x|Wψf | and A2|Wψf | = ∂ω|Wψf | was used. The eigenvector
that corresponds to the smallest eigenvalue of Jρ,σ points in the direction
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of constant amplitude, ∂v, and the eigenvector that corresponds to the
largest eigenvalue of Jρ,σ points in the direction of constant phase, ∂u.
This is however only the case because of the Cauchy-Riemann equations
that only hold for the initial condition. To keep this relation valid one can
project W in every diffusion step such that it is again a Gabor transform
of a signal.

6.3.3 Non-Linear Anisotropic Left-Invariant Diffusion on
Phase-Space

Although the diffusion in eq. (6.9) only takes place in the planes
{span{∂u|g, ∂v|g | g ∈ Hr} it is still a process that takes place on the full
group. To define the diffusion process on phase-space one can again apply
the S mapping that is described in Section 5.3.2. Thus Ãi = S ◦ Ai ◦ S,
i = 1, 2, S ◦ Wψf = Gψf and because |Wψf |(·, s) = |Gψf | for all s we
have that {S ◦ ∂u ◦ S−1,S ◦ ∂v ◦ S−1} = {∂ũ, ∂ṽ}. This gives the following
diffusion equation on phase-space


∂tW̃ (x, ω, t) =

(
(β−2Ã1, Ã2) · S ·D · S−1

(
β−2Ã1W̃
Ã2W̃

))
(x, ω, t)

= (∂ũ, ∂ṽ) D
(
∂ũ
∂ṽ

)
W̃ (x, ω, t)

W̃ (x, ω, 0) = (Gψaf) (x, ω)

,

(6.12)

for all x, ω ∈ R and t > 0 and D as define in eq. (6.10). If the diffu-
sion tensor is not updated, i.e., S ◦ Jρ,σ(S−1|Gψf |) is used to obtain the
eigenvalues and eigenvectors for the conductivity on phase-space, then

∂tW (x, ω, s, t) = (∂u, ∂v)D
(
∂u
∂v

)
W (x, ω, s, t)⇔

∂t
(
S−1W̃

)
(x, ω, s, t) = (∂u, ∂v)D

(
∂u
∂v

)(
S−1W̃

)
(x, ω, s, t)⇔ (6.13)

∂t
(
S−1W̃

)
(x, ω, s, t) = (∂u, ∂v)S−1D S

(
∂u
∂v

)(
S−1W̃

)
(x, ω, s, t)
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for all (x, ω, t) ∈ Hr, t > 0 and D as defined in eq. (6.10). Now by
application of S on both sides we see that this implies

∂tW̃ (x, ω, t) = (∂ũ, ∂ṽ)D
(
∂ũ
∂ṽ

)
W̃ (x, ω, t) (6.14)

on phase space for (x, ω) ∈ R2, t > 0 and vice versa provided that
W (·, ·, ·, t) stays in H (recall eq. (5.20)) so we can relate W̃ (x, ω, t) to
W (x, ω, s, t) via S. This is the case since W(·, ·, ·, 0) ∈ H and the operator
in the diffusion equation is a composition of Ai : H → H, with i = 1, 2,
and multiplication operators M : H → H of the form

(MF ) (x, ω, s) = M(x, ω)F (x, ω, s) . (6.15)

We furthermore notice that the eigenvalues and corresponding eigenvectors
of the structure tensor on Hr, Jρ,σ(|Wψf |), are equivalent to the ones of
the structure tensor on phase space, S ◦ Jρ,σ(S−1|Gψf |). Now by the
uniqueness of the solutions W of eq. (6.9) and W̃ of eq. (6.12), which are
unique because of the choice that the conductivity solely depends on the
initial condition, we have

W̃ (·, ·, 0) = Gψf = S ◦Wψf = S ◦W (·, ·, ·, 0)
⇒ ∀t≥0 : W̃ (·, ·, t) = S ◦W (·, ·, ·, t) . (6.16)

So one might as well obtain the solution to eq. (6.9) for a given time t by
calculating S−1 ◦ W̃ (·, t), which is a 2D problem instead of a 3D one.

6.4 Evaluation

We implemented the diffusion process using a basic Euler-forward method
in the time direction and discrete left-invariant central differences in the
space and frequency direction. The discrete group and the corresponding
discrete left-invariant derivatives are described in Section 5.6.

To evaluate the diffusion method we apply the nonlinear diffusion method
to the Gabor transforms of the signals that are shown in Figure 6.2. To
obtain the noisy signals we added zero-mean white Gaussian noise with a
variance that is a quarter of the maximum signal amplitude to both the
complex and real parts of the signals. The noisy signals are depicted in
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Figure 6.3. We used the numerically optimized window ψda that is given in
Section 5.6.3 to compute the Gabor transforms of the signals using window
scale a = 1

6 so β = 6, grid constants K = M = N = 128, which implies
L = 1, P = 128. The parameters for the diffusion process are, the time
step in the Euler-forward method τ = 0.1, total diffusion time t = 30,
regularization scales ρ = 2, σ = 0.25 and parameters for the nonlinear
penalization function ε = 10−4, c = log 1.01. Clearly the noise is removed
from the signal, also enhancement can be observed since the top most
signal in Figure 6.4 has a slightly larger support in time compared to the
reference signal that is displayed in Figure 6.2

6.5 Conclusions

We showed that it is possible to enhance signals by means of nonlinear
anisotropic left-invariant diffusion on the domain of Gabor transforms. In
order to gain computational efficiency we map the left-invariant vector
fields, which guarantee translation and modulation covariance, and the
induced evolutions on phase space. This reduces the complexity by one
dimension while retaining the non-commutative structure on the Heisen-
berg group. The theory we derived in the continuous domain is mapped
to the discrete domain by replacing the continuous group by a discrete
group yielding discrete left-invariant vector fields that allow for an exact
implementation on the grid.
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Figure 6.2: The reference signals to which noise is added. Top most a signal
with a small support is shown. On the bottom a visualization of a chirp whose
amplitude is modulated by a Gaussian is depicted.
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Figure 6.3: Noisy versions of the signals in Figure 6.2.
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Figure 6.4: Enhanced versions of the signals that are depicted in Figure 6.3.
Parameters involved are window scale a = 1

6 , grid constantsK = M = N = 128,
timestep τ = 0.1, diffusion time t = 30, regularization parameters ρ = 2, σ = 0.25
and parameters for the nonlinear penalization function ε = 10−4 and c = log 1.01.
These parameter settings imply that P = 128 , L = 1 and β = 6.



118



7Summary and Future Research



120 Chapter 7. Summary and Future Research

7.1 Representation and Manipulation of Images
Based on Linear Functionals (Summary)

The reconstruction of a signal from its samples is one of the fundamental
problems in signal processing. It deserves and receives much attention from
the scientific community. In this thesis we consider a general case of the
sampling problem. We aim to reconstruct an image from a set of samples
that are irregularly spaced and obtained by means of linear functionals
on the image. As an application we reconstruct a candidate image from
differential structure that is obtained from a scale space representation of
an image at the locations of certain interest points. The locations of these
points are not arbitrary, but induced by the structure of the image.

In addition to the reconstruction of images we describe the enhancement
of time-frequency representations. Both the time-frequency representation
of the signal and the signal itself are enhanced. The enhancements are
achieved by applying a convection process and a diffusion process to the
Gabor transform of the signal, respectively. These evolution processes
should be translation and modulation covariant on the signal domain.
To achieve this the corresponding operator on the time-frequency domain
must be left-invariant. This means that the operator should commute
with the left-regular representation of the Heisenberg group. This part is
a specialization of a more general theory on scale spaces on Lie groups.

Chapter 2 presents a linear reconstruction method that searches for an
image that is indistinguishable from its original when observed through
the filters the features were extracted with, and simultaneously minimizes
a certain prior. This prior should be a norm that is induced by an inner
product. We show that by using a Sobolev norm visually appealing re-
constructions can be obtained by means of orthogonal projections in the
corresponding Sobolev space. In this chapter the domain of definition of an
image is taken to be all of Rn, i.e. boundary conditions are de-emphasized.

A similar method to the one that is presented in Chapter 2 is described
in Chapter 3. There we formulate the reconstruction problem for the
bounded domain. This overcomes problems that appear on the unbounded
domain when much regularization is used. The implementation of the
method is done in the discrete domain and is exact on the grid such that
approximation and truncation errors are avoided.
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In Chapter 4 the reconstruction problem is casted into an approximation
problem. Features are not interpolated as in the previous two chapters
but are rather approximated. The approximation framework admits a
coarse-to-fine reconstruction method that uses a gauge field to propagate
information from reconstructions at a coarse resolution to a reconstruction
at a finer level of resolution. To allow for a gauge field an image is not
interpreted as a scalar function, but as a section through a so-called fibred
space.

Enhancement of time-frequency representations of signals, which is also
called reassignment, is discussed in Chapter 5. We show that Gabor trans-
forms of signals can be considered as functions on the Weyl-Heisenberg
group. In order to define operators on the domain of Gabor transforms
that are translation and modulation covariant on the signal domain we
construct left-invariant vector fields. Using these vector fields we define an
adaptive convection process on Gabor transforms that are phase-invariant.
This leads to a time-frequency representation of the signal that is easier to
interpret. In order to discretize the method we identify a discrete group for
which we obtain the discrete left-invariant vector fields. This discretiza-
tion ensures that the method is confined to the given discrete grid, thus
avoiding interpolation.

In Chapter 6 we apply the theory that was developed in Chapter 5 to the
construction of left-invariant nonlinear anisotropic diffusion processes on
Gabor transforms. As a result an enhancement of the signal is obtained.
Our method can be beneficial compared to thresholding methods since it is
able to take local information into account. Nonlinear diffusion schemes on
the signal domain do have this advantage, but lack the ability to separate
time-frequency structures.
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7.2 Future Research

In this section we will give a short and non-exhaustive list of possible areas
of future research. An interesting open research problem is the adaptation
of the methods that are presented in Chapter 2 and Chapter 3 for the
interpolation of vector or tensor fields. Furthermore the application of
gauge fields to image sequence analysis should be considered.

The reconstructions from features obtained at the locations of singular
points of Gaussian scale space representations of images contain spurious
singular points, i.e. singular points appear in the scale space representation
of the reconstructed image that were not present in the scale space repre-
sentation of the original image. It would be interesting if one could devise a
reconstruction method that guarantees that no new singular points are in-
troduced in the scale space representation of the reconstructed image. Pos-
sible directions are the introduction of different features. Another possibil-
ity could be the adaptation of the method that is presented in Chapter 4.
Here a feedback loop could be introduced such that unwanted singularities
can be (iteratively) suppressed. An adaptation of the coarse-to-fine recon-
struction method such that nonlinear partial differential equations (PDE’s)
are used for regularization is feasible. A longer-term research goal could
be video and image compression based on singular points although it will
be very hard to compete with state of the art compression schemes.

Reassignment via left-invariant vector fields does not provide a perfect
representation of the signal. Elimination of the errors that are introduced
by the reassignment method should thus be subject of further research.
One of the first things to address would be phase-covariant reassignment
that does not leave the phase untouched for every time-frequency location.
With respect to the diffusion processes, audio applications should be con-
sidered. The diffusion process still depends on many parameters and is
dependent on the diffusion time itself. Automatic determination of these
parameters would be of great interest. On can also think of combining
the convection and diffusion process. Furthermore the adaptation of the
method to enhance images can be considered. The presented theory is also
applicable to other groups such as the affine group, which is related to the
wavelet transform.
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A.1 Simple Alternative Approach to Theorem 2.2.2

Recall that V is the span of the filters κi. Then

V ⊥ = {f ∈ L2(R2) | (κi, f)A = 0 ∀ i = 1, . . . , N } (A.1)

On the space of images L2(R2) we define the following equivalence relation:

f ∼ g ⇔ (κi, f)A = (κi, g)A ∀ i = 1, . . . , N , (A.2)

i.e. two images are equivalent if they share the same set of features. As a
result the equivalence class [f ] of representant f is given by

[f ] = {g ∈ L2(R2) | f ∼ g} = f + V ⊥ . (A.3)

Next we show that the unique element g within [f ] that minimizes the
energy E[g] = ‖g‖2A is given by the A-orthogonal projection of f on V ,
PV f :

min
g∈[f ]
‖g‖2A = min

g∈[f ]
‖g−PV f +PV f‖2A = min

g∈[f ]
‖g−PV f‖2A+‖PV f‖2A (A.4)

and this equals ‖PV f‖2A only in the case g = PV f . Notice with respect to
the last equality (equation (A.4)) the Pythogoras theorem has been used,
which can be applied since (g − PV f) = (g − PV g) ∈ V ⊥ and PV f ∈ V .
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sn(z, k̃) χ(z) = z−sn(y1+iy2,k̃)
z−sn(y1+iy2,k̃)

sn(x1+ix2,k̃)−sn(y1+iy2,k̃)
sn(x1+ix2,k̃)−sn(y1+iy2,k̃)

Figure B.1: Mapping from a square (top left) to the upper half space in the
complex plane (bottom) followed by a mapping to the disc (upper right). The
concatenation of the two mappings (from top left to top right) is used to obtain the
Green’s function of the Dirichlet operator. In this particular example a = 1,b = 2,
and (y1, y2) = (0, 1).

B.1 Green’s Function of the Dirichlet Operator
on a Rectangle

The Green’s function G : Ω × Ω → R of the Dirichlet operator D (recall
Definition 5) can be obtained by means of conformal mapping1. A visu-
alization of the mappings used to arrive at the solution can be found in
Fig. B.1.

To this end we first map the rectangle to the upper half space in the
1Our solution is a generalization of the solution derived by Boersma et al. in [13].
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complex plane. By the Schwarz-Christoffel formula the derivative of the
inverse of such a mapping is given by

dz

dw
= −C 1

k̃
(w − 1)−

1
2 (w + 1)−

1
2 (w − 1

k̃
)−

1
2 (w + 1

k̃
)−

1
2

= C
1√

1− w2
1√

1− k̃2w2
, (B.1)

where C ∈ R+ and w(±1/k̃) = ±a+ ib. As a result

z(w, k̃) = C

w∫
0

dt√
1− t2

√
1− k̃2t2

⇔ w(z) = sn( z
C
, k̃), (B.2)

where sn denotes the Jacobi-elliptic function [52], [117, Chapter XXII].
We have sn(0, k̃) = 0, sn(±a, k̃) = ±1, sn(±a + ib, k̃) = ±(1/k̃) and
sn(i(b/2), k̃) = i/

√
k̃, where the elliptic modulus k̃ is given by

(b/a)z(1, k̃) = z(1,
√

1− k̃2). (B.3)

We note that for every fraction b/a ∈ R+ there is a unique k̃ that sat-
isfies eq. (B.3). For example, in case of a square b/a = 2 we have k̃ ≈
0.1715728752. The reader must be aware that k̃ is a function of the aspect
ratio b/a.

For the moment we assume

a = z(1, k̃) (B.4)

and
b = z(1,

√
1− k̃2) , (B.5)

which implies C = 1. The next step is to map the half plane onto the unit
disk B0,1 = {x ∈ R2 | ‖x‖ ≤ 1}. This is easily done by means of a linear
fractional transform

χ(z) = z − sn(y1 + i y2, k̃)
z − sn(y1 + i y2, k̃)

. (B.6)

To this end we notice that |χ(0)| = 1 and that the mirrored points sn(y1 +
i y2, k̃) and sn(y1 + i y2, k̃) are mapped to the mirrored points χ(sn(y1 +
i y2, k̃)) = 0 and χ(sn(y1 + i y2, k̃)) =∞.
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Now define F : C→ C and F : Ω→ B0,1 by

F = χ ◦ sn(·, k̃), i.e. F (x1 + i x2) = sn(x1+i x2,k̃)−sn(y1+i y2,k̃)
sn(x1+i x2,k̃)−sn(y1+i y2,k̃)

F(x1, x2) = (Re(F (x1 + i x2)), Im(F (x1 + i x2)))T ,
(B.7)

then F is a conformal mapping of Ω onto B0,1 with F(y) = 0. As a result
we have by the Cauchy-Riemann equations

∆F(x) = |F′(x)|−1∆x, (B.8)

where the scalar factor in front of the right Laplacian is the inverse Jaco-
bian:

|F′(x)|−1 = (det F′(x))−1

=
((

∂F1
∂x1

(x)
)2

+
(
∂F2
∂x1

(x)
)2)−1

(B.9)

= |F ′(x1 + ix2)|−1,

for all x = (x1, x2) ∈ Ω.

Now G̃(u,0) = −1
2π log ‖u‖ is the unique Green’s function with Dirichlet

boundary conditions on the disk B0,1 with singularity at 0 and our Green’s
function is given by Ǧ = G̃ ◦ F, i.e.

Ǧ(x,y) = − 1
2π log |(χ ◦ sn(·, k̃))(x1 + i x2)|

= − 1
2π log

∣∣∣∣∣sn(x1 + i x2, k̃)− sn(y1 + i y2, k̃)
sn(x1 + i x2, k̃)− sn(y1 + i y2, k̃)

∣∣∣∣∣ . (B.10)

In eqs. (B.4) and (B.5) we assumed a certain scaling of a and b such that
C = 1. To obtain the Green’s function for the correctly scaled domain
we can simply apply an isotropic scaling to the Green’s function found in
eq. (B.10). Hence we obtain for the Green’s function Ga,b : Ω× Ω→ R of
the Dirichlet operator D,
Ga,b(x,y) = (B.11)

− 1
2π log

∣∣∣∣∣∣∣
sn(x1

z(1,k̃)
a + i x2

z(1,
√

1−k̃2)
b , k̃)− sn(y1

z(1,k̃)
a + i y2

z(1,
√

1−k̃2)
b , k̃)

sn(x1
z(1,k̃)
a + i x2

z(1,
√

1−k̃2)
b , k̃)− sn(y1

z(1,k̃)
a + i y2

z(1,
√

1−k̃2)
b , k̃)

∣∣∣∣∣∣∣ .
(B.12)
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Here we applied the following mappings: x1 7→ x1sn(1,k̃)
a , x2 7→ x2sn(1,

√
1−k̃2)

b ,

y1 7→ y1sn(1,k̃)
a , and y2 7→ y2sn(1,

√
1−k̃2)

b . This is an isotropic scaling be-
cause of eq. (B.3).

B.2 The Green’s Function on the Unbounded
Domain as a Limit of the Dirichlet Kernel

Next we shall put a relation between the fundamental solution of the
Laplace operator on the unbounded domain and the Green’s function on
the bounded domain with Dirichlet conditions (i.e. the impuls response of
the Dirichlet operator) on the square, i.e. b = 2a. Here we shall rewrite
the solution eq. (B.11) for b = 2a as follows

Ga,b=2a(x,y) = − 1
2π log |φ(βz)−φ(βv)|+ 1

2π log |φ(βz)−φ(βv)|, (B.13)

where z = x1 + ix2 and v = y1 + iy2 and φ(βz) = sn
(
z(1,k̃)
a (x1 + ix2), k̃

)
,

β = z(1,k̃)
a > 0. We recall that k̃ is the unique solution of eq. (B.3) with

b = 2a. Furthermore, we note that φ(v) = φ(v) for all v ∈ C.

By taking the limit a → ∞ and b = 2a → ∞ in the rectangular case we
arrive at the Dirichlet problem on the upper plane {(x1, x2) ∈ R2 | x2 > 0}.
It is well-known, see eg. [75], that the solution of this problem is given
by a superposition of two fundamental solutions (the Green’s function of
the Laplace operator on R2). In this case one fundamental solution is
centered with plus sign at (y1, y2) and one fundamental solution is centered
at (y1,−y2) with negative sign. This is based on the well-known Schwarz
principle and the fact that the difference of these fundamental solutions
is zero at the boundary so that the Dirichlet condition is satisfied. In the
field of electro-magnetics this result is obvious since the electric potential
due to a negative charge at (y1, y2) cancels out to the electric potential due
to a positive charge at (y1,−y2). From this observation we should get

lim
a→∞Ga,b=2a(x,y) = − 1

2π log |z − v|+ 1
2π log |z − v| , (B.14)

which we shall verify next.
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The mapping φ : [−a, a]+i[0, b]→ C is analytic and by means of the mean-
value theorem there exist ξ1z,β ∈ Bβv,β|z−v| = {w ∈ C | |w−βv| < β|z−v|},
ξ2z,β ∈ Bβv,β|z−v|. Therefore we have

φ(z) = φ(w) + φ′(ξ1z ) (z − w) and φ(z) = φ(w) + φ′(ξ2z ) (z − w) (B.15)

so that we have

lim
a→∞Ga,b=2a(x,y) = − 1

2π

(
log

∣∣∣∣∣φ′(ξ1z )φ′(ξ2z )

∣∣∣∣∣+ log |z − v| − log |z − v|
)
,

(B.16)
where we recall that β =

(
z(1,k̃)
a

)
. As a→∞, i.e. β → 0, it follows by the

continuity of z 7→ φ′(z) that log
∣∣∣φ′(ξ1

z)
φ′(ξ2

z)

∣∣∣→ log 1 = 0, from which the result
in eq. (B.14) follows.
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C.1 Diagonalization of the Gabor
Frame Operator

In our implementation we used fast algorithms for the discrete Gabor trans-
form as well as for the calculation of the synthesis windows. The tool for
such fast algorithms is the Zak transform [123] which was introduced in
the signal processing community by A.J.E.M. Janssen [59, 61],cite[Chapter
1]Feichtinger1998 and [60] as referred to in e.g. [14]. There exists a vast lit-
erature on the subject of fast transforms. Methods based on IIR filters are
prosed [9], as well as methods using the discrete Zak transform [59, 4]. Zak
transform based methods are proposed for rational oversampling [8] and
even for Gabor transforms on non-separable time-frequency grids [111].
For a good review on the discrete Zak transform and its application to dis-
crete cyclic Gabor transforms we refer to [14] and the references therein.

In a similar manner to eq. (5.73) the discrete Gabor transform can be
written by means of a discrete inner product(

GD~ψ ~f
)

[l,m] =
(
UD[l,m, k = − lmQ2P ]~ψ, ~f

)
l2(I)

, (C.1)

with l = 0, . . . ,K − 1, and m = 0, . . . ,M − 1. We abbreviate the vectors
UD[l,m, k = − lmQ

2P
~ψ as ~ψlm. If the inner products of the elements of the

set {~ψlm}l=K−1,m=M−1
l=0,m=0 with any band limited signal ~f completely describe

that signal it is called a frame [34]. Clearly this depends on K and M and
the window ~ψ. For the case of the discrete Gabor transform necessary
conditions for these parameters are given by Daubechies in [27]. A short
exposition of frame theory can be found in [83, Chapter 5].

Next we consider the frame operator F : l2(I)→ l2(I),

(
F~f
)

[n] =
K−1∑
l=0

M−1∑
m=0

(
~ψlm, ~f

)
l2(I)

~ψlm[n] (C.2)

with n ∈ I. If {~ψlm}l=K−1,m=M−1
l=0,m=0 constitutes a frame there exist Riesz-

bounds A,B > 0 such that

A||~f ||l2(I) ≤
K−1∑
l=0

M−1∑
m=0
|
(
F~f, ~f

)
l2(I)
|2 ≤ B||~f ||l2(I) (C.3)
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so F is bounded and F−1 exists. Because of linearity of the inner product
we have F∗ = F and

f = F−1Ff =
K−1∑
l=0

M−1∑
m=0

(
~ψlm, ~f

)
l2(I)

F−1 ~ψlm , (C.4)

so the synthesis window F−1 ~ψlm can be obtained from the analysis window
~ψlm by applying the inverse of the frame operator. Since F is self-adjoint
on a finite dimensional vector space it has an orthonormal basis of eigen
vectors. The discrete Zak-transform is an expansion into this orthonormal
basis (see e.g. [14]) and is given by(

ZD ~f
)

[n, k] = (~unk, ~f)l2(I) (C.5)

with

~unk[n′] = 1√
K
~v[n′ − n]e

2πik
N

(n′−n), (C.6)

~v[n] = ∑∞
l=−∞ δ[n − lL], n ∈ {0, . . . , L − 1} and k ∈ {0, . . . ,K − 1}. We

recall that N = KL. Using this decomposition the frame operator can be
expressed in diagonal form

F =
(
ZD

)−1 ◦ Λ ◦ ZD (C.7)

with a diagonal matrix Λ that contains the eigen values

λnk = L
P−1∑
p=0

∣∣∣∣(ZD ~ψ) [n, k − pN
M

]
∣∣∣∣2 (C.8)

and where the oversampling factor P = M/L is integer valued. Using this
decomposition the synthesis window is obtained by

F−1 ~ψ =
L−1∑
n=0

K−1∑
k=0

λ−1
nk (~unk, ~ψ)l2(I)~unk . (C.9)

We also note that the Zak transform can be implemented efficiently by
means of fast Fourier transforms.



134



Bibliography

[1] M. Arigovindan. Variational Reconstruction of Vector and Scalar
Images from Non-Uniform Samples. PhD thesis, Ecole
Polytechnique Fédérale de Lausanne, Lausanne, Switserland, 2005.

[2] M. Arigovindan, M. Sühling, P. Hunziker, and M. Unser.
Variational image reconstruction from arbitrarily spaced samples:
A fast multiresolution spline solution. IEEE Transactions on Image
Processing, 14(4):450–460, April 2005.

[3] F. Auger and P. Flandrin. Improving the readability of
time-frequency and time-scalerepresentations by the reassignment
method. IEEE Transactions on Signal Processing, 43(5):1068–1089,
May 1995.

[4] L. Auslander, I.C. Gertner, and R. Tolimieri. The discrete Zak
transform application to time-frequency analysis and synthesis of
nonstationary signals. IEEE Transactions on Signal Processing,
39(4):825–835, April 1991.

[5] A. Averbuch, M. Israeli, and L. Vozovoi. A fast Poisson solver of
arbitrary order accuracy in rectangular regions. SIAM Journal of
Scientific Computing, 19(3):933–952, May 1998.

[6] E. Balmashnova. Scale-Euclidean invariant object retrieval. PhD
thesis, Eindhoven University of Technology, Eindhoven, The
Netherlands, 2007.

[7] R. Barret, M. Berry, T.F. Chan, and et al. Templates for the
solution of linear systems: Building blocks for iterative methods.
Society for Industrial and Applied Mathematics, 1994.

[8] M.J. Bastiaans and M.C.W. Geilen. On the discrete Gabor
transform and the discrete Zak transform. Signal Processing,
49(3):151–166, 1996.

[9] A. Bernardino and J. Santos-Victor. Fast IIR isotropic 2-D complex
Gabor filters with boundary initialization. IEEE Transactions on
Image Processing, 15(11):3338–3349, November 2006.

[10] J. Bigün and G.H. Granlund. Optimal orientation detection of
linear symmetry. In Proceedings of the ICCV, pages 433–438, 1987.



136 Bibliography

[11] J. Blom. Topological and Geometrical Aspects of Image Structure.
PhD thesis, University of Utrecht, Utrecht, The Netherlands, 1992.

[12] T. Blu and M. Unser. Quantitative Fourier analysis of
approximation techniques: Part I: Interpolators and projectors.
IEEE Transactions on Signal Processing, 47(10):2783–2795,
October 1999.

[13] J. Boersma, J.K.M. Jansen, F.H. Simons, and F.W. Sleutel. The
SIAM 100-dollar, 100-digit challenge: Problem 10. SIAM News,
January 2002. http://www.win.tue.nl/casa/meetings/special
/siamcontest/problem10.pdf.

[14] H. Bölcskei and F. Hlawatsch. Discrete Zak transforms, polyphase
transforms, and applications. IEEE Transactions on Signal
Processing, 45(4):851–866, April 1997.

[15] W.L. Briggs, V.E. Henson, and S.F. McCormick. A Multigrid
Tutorial. Society for Industrial and Applied Mathematics, 2000.

[16] M. Brueß and J. Weickert. A shock-capturing algorithm for the
differential equations of dilation and erosion. Journal of
Mathematical Imaging and Vision, 25(2):187–201, 2006.

[17] B. Burgeth and J. Weickert. An explanation for the logarithmic
connection between linear and morphological systems. In Scale
Space Methods in Computer Vision, 4th International Conference,
Scale Space 2003, Lecture Notes in Computer Science, pages
325–339, Berlin, 2003. Springer Verlag.

[18] B. Burgeth and J. Weickert. An explanation of the logarithmic
connection between linear and morphological system theory.
International Journal of Computer Vision, 64(2/3):157–169,
September 2005.

[19] S. Butterworth. On the theory of filter amplifiers. Wireless
Engineer, 7:536–541, 1930.

[20] J.E. Candes, J. Romberg, and T. Tao. Robust uncertainty
principles: Exact signal reconstruction from highly incomplete
frequency information. IEEE Transactions on Information Theory,
52(2):489–509, February 2006.



Bibliography 137

[21] O. Cappeé. Elimination if the musical noise phenomenon with the
ephraim and mallah noise suppressor. IEEE Transactions on
Speech and Audio Processing, 2(2):345–349, April 1994.

[22] E. Chassande-Mottin. Méthodes de réallocation dans le plan
temps-fréquence pour l’analyse et le traitement de signaux non
stationnaires. PhD thesis, Université de Cergy-Pontoise, France,
1998.

[23] E. Chassande-Mottin, I. Daubechies, F. Auger, and P. Flandrin.
Differential reassignment. Signal Processing Letters, IEEE,
4(10):293–294, October 1997.

[24] P. Christian Hansen, J.G. Nagy, and D.P. O’Leary. Deblurring
Images. Fundamentals of Algorithms. Society for Industrial and
Applied Mathematics, 2006.

[25] G.H. Cottet and L. Germain. Image processing through reaction
combined with nonlinear diffusion. Mathematics of Computation,
61(204):659–673, October 1993.

[26] J. Damon. Local Morse theory for solutions to the heat equation
and Gaussian blurring. Journal of Differential Equations,
115(2):368–401, January 1995.

[27] I. Daubechies. Ten Lectures on Wavelets, volume 61. CBMS-NSF
Regional Conference Series in Applied Mathematics, 8 edition,
1992.

[28] I. Daubechies and S. Maes. A nonlinear squeezing of the continuous
wavelet transform based on auditory nerve models. In A. Aldroubi
and M. Unser, editors, Wavelets in Medicine and Biology, pages
527–546. CRC Press, 1996.

[29] L. Daudet, M. Morvidone, and B. Torrésani. Time-frequency and
time-scale vector fields for deforming time-frequency and time-scale
representations. In M. Unser, editor, Proceedings of the SPIE
conference, Denver, pages 2–15, 1999.

[30] N.G. de Bruĳn. Uncertainty principles in Fourier analysis. In Oved
Shisha, editor, Inequalities: proceedings of a symposium held at
Wright-Patterson air force base, Ohio, pages 57–71, New York,
August 1967. Academic Press.



138 Bibliography

[31] N.G. de Bruĳn. A theory of generalized functions, with
applications to Wigner distribution and Weyl correspondence.
Nieuw Archief voor Wiskunde, 21(3):205–280, 1973.

[32] D.L. Donoho and I.M. Johnstone. Adapting to unknown
smoothness via wavelet shrinkage. Journal of the American
Statistical Association, 90(432):1200–1224, December 1995.

[33] J. Duchon. Splines minimizing rotation-invariant semi-norms in
Sobolev spaces. Springer Verlag, 1977.

[34] R.J. Duffin and A.C. Schaeffer. A class of nonharmonic Fourier
series. Transactions of the American Mathematical Society,
72(1):341–366, January 1952.

[35] R. Duits. Perceptual Organization in Image Analysis. PhD thesis,
Eindhoven University of Technology, 2005.
http://www.bmi2.bmt.tue.nl/Image-
Analysis/People/RDuits/THESISRDUITS.pdf.

[36] R. Duits and B. Burgeth. Scale spaces on lie groups. In Scale Space
and Variational Methods in Computer Vision: Proceedings of the
First International Conference, SSVM 2007, Ischia, Italy, volume
4485 of Lecture Notes in Computer Science, pages 300–312, Berlin,
2008. Springer Verlag.

[37] R. Duits, M. Felsberg, L.M.J. Florack, and B. Platel. α scale spaces
on a bounded domain. In L. Griffin and M. Lillholm, editors, Scale
Space Methods in Computer Vision, 4th International Conference,
Scale Space 2003, pages 494–510, Isle of Skye, UK, June 2003.
Springer.

[38] R. Duits, L.M.J. Florack, B.M. ter Haar Romeny, and J. de Graaf.
On the axioms of scale space theory. Journal of Mathematical
Imaging and Vision, 20:267–298, 2004.

[39] R. Duits and E.M. Franken. Left-invariant parabolic evolutions on
SE(2) and contour enhancement via invertible orientation scores -
Part II: Nonlinear left-invariant diffusions on invertible orientation
scores. Quarterly on Applied Mathematics of the American
Mathematical Society, 2009.

[40] R. Duits, H. Führ, and B.J. Janssen. Left invariant evolution
equations on Gabor transforms. CASA report 9, Eindhoven



Bibliography 139

University of Technology, Eindhoven, The Netherlands, February
2009.

[41] R. Duits, B.J. Janssen, F.M.W. Kanters, and L.M.J. Florack.
Linear image reconstruction from a sparse set of α-scale space
features by means of inner products of Sobolev type. In
O. Fogh Olsen, L.M.J. Florack, and A. Kuĳper, editors, Deep
Structure, Singularities and Computer Vision, volume 3753 of
Lecture Notes in Computer Science, pages 96–111. Springer Verlag,
2005.

[42] L.M.J. Florack, R. Duits, and J. Bierkens. Tikhonov regularization
versus scale space: A new result. In Proceedings of the 11th
International Conference on Image Processing (ICIP 2004),
Singapore, volume 1, pages 271–274, October 2004.

[43] L.M.J. Florack, B.J. Janssen, F.M.W. Kanters, and R. Duits.
Towards a new paradigm for motion extraction. In A. Campilho
and M. Kamel, editors, Image Analysis and Recognition, Third
International Conference, ICIAR 2006, volume 4141 of Lecture
Notes in Computer Science, pages 743–754, Berlin, September
2006. Springer Verlag.

[44] L.M.J. Florack and A. Kuĳper. The topological structure of
scale-space images. Journal of Mathematical Imaging and Vision,
12(1):65–79, February 2000.

[45] L.M.J. Florack, R. Maas, and W.J. Niessen. Pseudo-linear
scale-space theory. International Journal of Computer Vision,
31(2/3):247–259, April 1999.

[46] E.M. Franken. Enhancement of Crossing Elongated Structures in
Images. PhD thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, December 2008.

[47] E.M. Franken and R. Duits. Crossing-preserving
coherence-enhancing diffusion on invertible orientation scores.
International Journal of Computer Vision, 2009.

[48] D. Gabor. Theory of communication. Journal of the Institution of
Electrical Engineers, 93(22):429–457, November 1946.

[49] I Galic, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, and H. Seidel.
Image compression with anisotropic diffusion. Journal of
Mathematical Imaging and Vision, 31(2-3):255–269, July 2008.



140 Bibliography

[50] T. Georgiev. Relighting, retinex theory, and perceived gradients. In
Proceedings of Mirage 2005, March 2005.

[51] R. Gilmore. Catastrophe Theory for Scientists and Engineers.
Dover Publications, New York, 1993. Originally published by John
Wiley & Sons, New York, 1981.

[52] I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and
Products. Academic Press, Boston, fifth edition, 1994. (Edited by
A. Jeffrey.).

[53] K. Gröchenig. Foundations of Time-Frequency Analysis.
Birkhauser, first edition, 2001.

[54] A. Grossmann, J. Morlet, and T. Paul. Transforms associated to
square integrable group representations. i. general results. Journal
of Mathematical Physics, 26(10):2473–2479, April 1985.

[55] F.J. Harris. On the use of windows for harmonic analysis with the
discrete fourier transform. Proceedings of the IEEE, 66(1):51–83,
January 1978.

[56] C.W. Helstrom. An expansion of a signal in gaussian elementary
signals. IEEE Transactions on Information Theory, 12:81–82,
January 1966.

[57] T. Iĳima. Basic theory on normalization of a pattern (in case of
typical one-dimensional pattern). Bulletin of Electrical Laboratory,
26:368–388, 1962.

[58] B. Jähne. Digital Image Processing. Springer, fifth edition, 2002.

[59] A.J.E.M. Janssen. The Zak transform: A signal transform for
sampled time-continuous signals. Philips Journal of Research,
43(1):23–69, 1988.

[60] A.J.E.M. Janssen. Duality and biorthogonality for discrete-time
Weyl-Heisenberg frames. Technical Report 002/94, Philips
Natuurkundig Laboratorium, 1994.

[61] A.J.E.M. Janssen. The duality condition for weyl-heisenberg
frames. Technical report, Philips Natuurkundig Laboratorium,
1996.



Bibliography 141

[62] B.J. Janssen, R. Duits, and B.M. ter Haar Romeny. Linear image
reconstruction by Sobolev norms on the bounded domain. In
F. Sgallari, A. Murli, and N. Paragios, editors, Scale Space and
Variational Methods in Computer Vision, volume 4485 of Lecture
Notes in Computer Science, pages 55–67. Springer Verlag, June
2007.

[63] B.J. Janssen, L.M.J. Florack, R. Duits, and B.M. ter Haar Romeny.
Optic flow from multi-scale dynamic anchor point attributes. In
A. Campilho and M. Kamel, editors, Image Analysis and
Recognition, Third International Conference, ICIAR 2006, volume
4141 of Lecture Notes in Computer Science, pages 767–779, Berlin,
September 2006. Springer Verlag.

[64] B.J. Janssen, F.M.W. Kanters, R. Duits, L.M.J. Florack, and B.M.
ter Haar Romeny. A linear image reconstruction framework based
on Sobolev type inner products. International Journal of Computer
Vision, 70(3):231–240, 2006.

[65] P. Johansen, M. Nielsen, and O.F. Olsen. Branch points in
one-dimensional gaussian scale space. Journal of Mathematical
Imaging and Vision, 13(3):193–203, 2000.

[66] P. Johansen, S. Skelboe, K. Grue, and J.D. Andersen. Representing
signals by their top points in scale-space. In Proceedings of the 8th
International Conference on Pattern Recognition, pages 215–217,
1986.

[67] J. Jost. Riemannian Geometry and Geometric Analysis. Springer,
Berlin, fourth edition, 2005.

[68] F.M.W. Kanters. Towards Object-based Image Editing. PhD thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands,
February 2007.

[69] F.M.W. Kanters, L.M.J. Florack, R. Duits, and B. Platel.
Scalespaceviz: Visualizing α-scale spaces. Demonstration software,
2004. http://bmia.bmt.tue.nl/people/FKanters
/Software/ScaleSpaceViz.html.

[70] F.M.W. Kanters, L.M.J. Florack, R. Duits, and B.M. ter
Haar Romeny. Scalespaceviz: alpha-scale spaces in practice.
Pattern Recognition and Image Analysis, 17(1):106–116, 2007.



142 Bibliography

[71] F.M.W. Kanters, B. Platel, L.M.J. Florack, and B.M. ter
Haar Romeny. Image reconstruction from multiscale critical points.
In L. Griffin and M. Lillholm, editors, Scale Space Methods in
Computer Vision, 4th International Conference, Scale Space 2003,
volume 2695 of Lecture Notes in Computer Science, pages 464–478.
Springer Verlag, June 2003.

[72] M. Kass and A.P. Witkin. Analyzing oriented patterns. Computer
Vision Graphics and Image Processing, 37(3):362–385, March 1987.

[73] K. Kodera, C. de Villedary, and R. Gendrin. A new method for the
numerical analysis of non-stationary signals. Physics of the Earth
and Planetary Interiors, 12:142–150, August 1976.

[74] J.J. Koenderink. The structure of images. Biological Cybernetics,
50:363–370, 1984.

[75] E. Kreyszig. Advanced Engineering Mathematics. Wiley, ninth
edition, 1993.

[76] J. Kybic, T. Blu, and M. Unser. Generalized sampling: a
variational approach – part I: Theory. IEEE Transactions on
Signal Processing, 50:1965–1976, August 2002.

[77] J. Kybic, T. Blu, and M. Unser. Generalized sampling: a
variational approach – part II: Applications. IEEE Transactions on
Signal Processing, 50:1977–1985, August 2002.

[78] G. Le Besnerais and F. Champagnat. B-Spline image model for
energy minimization-based optical flow estimation. IEEE
Transactions on Image Processing, 15(10):3201–3206, 2006.

[79] M. Lillholm, M. Nielsen, and L.D. Griffin. Feature-based image
analysis. International Journal of Computer Vision, 52(2/3):73–95,
2003.

[80] T. Lindeberg. Scale-Space Theory in Computer Vision. The Kluwer
International Series in Engineering and Computer Science. Kluwer
Academic Publishers, 1994.

[81] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. Computer Graphics,
21(4):163–169, 1987.



Bibliography 143

[82] S. Mallat. Zero-crossings of a wavelet transform. IEEE
Transactions on Information Theory, 37(4):1019–1033, July 1991.

[83] S. Mallat. A wavelet tour of signal processing. Academic Press,
1998.

[84] R.M.M. Mattheĳ, S.W. Rienstra, and J.H.M. ten Thĳe
Boonkkamp. Partial Differential Equations, Modeling, Analysis,
Computation. Monographs on Mathematica Modeling and
Computation. Society for Industrial and Applied Mathematics, first
edition, 2005.

[85] J. Meinguet. Multivariate interpolation at arbitrary points maded
simple. Journal of Applied Mathematics and Physics (ZAMP),
30:292–304, 1979.

[86] M. Nielsen and M. Lillholm. What do features tell about images?
In Scale-Space and Morphology in Computer Vision: Proceedings of
the Third International Conference, pages 39–50. Springer Verlag,
2001.

[87] M. Nitzberg and T. Shiota. Nonlinear image filtering with edge and
corner enhancement. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 14(8):826–833, August 1992.

[88] A.V. Oppenheim and S.L. Jae. The importance of phase in signals.
Proceedings of the IEEE, 69(5):529–541, May 1981.

[89] S. Osher and J.A. Sethian. Fronts propagating with
curvature-dependent speed: Algorithms based on Hamilton-Jacobi
formulations. Journal of Computational Physics, 79:12–49, 1988.

[90] A. Papoulis. Generalized sampling expansion. IEEE Transactions
on Circuits and Systems, 24:652–654, 1977.

[91] P. Perona and J. Malik. Scale-Space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(7):629–639, July 1990.

[92] B. Platel. Exploring the Deep Structure of Images. PhD thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands,
2007. http://yp.wtb.tue.nl/pdfs/8198.pdf.



144 Bibliography

[93] B. Platel, F.M.W. Kanters, L.M.J. Florack, and E.G. Balmachnova.
Using multiscale top points in image matching. In Proceedings of
the 11th International Conference on Image Processing (ICIP
2004), Singapore, pages 389–392, 2004.

[94] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling.
Numerical Recipes in C. Cambridge University Press, second
edition, 1988.

[95] R.W. Rodieck. The First Steps in Seeing. Sunderland: Sinauer
Associates, 1998.

[96] E. Rouy and A. Tourin. A viscosity solutions approach to
shape-from-shading. SIAM Journal of Numerical Analysis,
29(3):867–884, June 1992.

[97] C.E. Shannon. Communication in the presence of noise. In Proc.
IRE, volume 37, pages 10–21, January 1949.

[98] E.M. Stein. Harmonic Analysis: Real-Variable Methods,
Orthogonality and Oscillatory Integrals. Number 43 in Princeton
Mathematical Series. Princeton University Press, Princeton, second
edition, 1993.

[99] C. Temperton. Algorithms for the solution of cyclic tridiagonal
systems. Journal of Computational Physics, 19(3):317–323,
November 1975.

[100] M.E. Testorf, J. Ojeda-Castaneda, and A.W. Lohmann, editors.
Selected Papers on Phase-Space Optics, volume MS181 of SPIE
Milestone Series. The Society of Photo-Optical Instrumentation
Engieers, Bellingham, Washington USA, 2006.

[101] P. Thevenaz, U.E. Ruttimann, and M. Unser. A pyramid approach
to subpixel registration based on intensity. IEEE Transactions on
Image Processing, 7(1):27–41, January 1998.

[102] A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-Posed Problems.
John Wiley & Sons, New York, 1977.

[103] M. Unser. Splines: A perfect fit for signal and image processing.
IEEE Signal Processing Magazine, 16(6):22–38, November 1999.

[104] M. Unser. Sampling—50 Years after Shannon. Proceedings of the
IEEE, 88(4):569–587, April 2000.



Bibliography 145

[105] M. Unser and A. Aldroubi. A general sampling theory for nonideal
acquisition devices. IEEE Transactions on Signal Processing,
42:2915–2925, November 1994.

[106] M. Unser, A. Aldroubi, and M. Eden. On the asymptotic
convergence of B-Spline wavelets to Gabor functions. IEEE
Transactions on Information Theory, 38(2):864–872, March 1992.

[107] M.A. van Almsick. Context Models of Lines and Contours. PhD
thesis, Eindhoven University of Technology, Eindhoven, The
Netherlands, 2007.

[108] R. van den Boomgaard. Mathematical Morphology: Extensions
Towards Computer Vision. PhD thesis, University of Amsterdam,
Amsterdam, 1992.

[109] R. van den Boomgaard. Numerical solution schemes for
continuous-scale morphology. In M. Nielsen, P. Johansen, O.F.
Olsen, and J. Weickert, editors, Scale-Space Theories in Computer
Vision: Second International Conference, volume 1682 of Lecture
Notes in Computer Science, pages 199–210, Berlin, 1999. Springer
Verlag.

[110] R. van den Boomgaard and A. Smeulders. The morphological
structure of images: The differential equations of morphological
scale-space. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16(11):1101–1113, November 1994.

[111] A.J. van Leest. Non-separable Gabor Schemes: Their Design and
Implementation. PhD thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, January 2001.

[112] A.O. Warburton. Analyses of musical classics: Book 2. Longman,
London, 1967.

[113] J. Weickert. Anisotropic Diffusion in Image Processing. ECMI.
Teubner, Stuttgart, January 1998.

[114] J. Weickert. Coherence-enhancing diffusion filtering. International
Journal of Computer Vision, 31(2/3):111–127, 1999.

[115] M. Welk, G. Steidl, and J. Weickert. Locally analytic schemes: A
link between diffusion filtering and wavelet shrinkage. Applied and
Computational Harmonic Analysis, 24:195–224, 2008.



146 Bibliography

[116] M. Welk, J. Weickert, and G. Steidl. From tensor-driven diffusion
to anisotropic wavelet shrinkage. In H. Bischof, A. Leonardis, and
A. Pinz, editors, Proceedings of ECCV 2006, volume 3951 of
Lecture Notes in Computer Science, pages 391–403, Berlin, 2006.
Springer Verlag.

[117] E.T. Whittaker and G.N. Watson. Modern Analysis. Camebridge
University Press, 4 edition, 1946.

[118] A.P. Witkin. Scale-space filtering. In Proceedings of the
International Joint Conference on Artificial Intelligence, pages
1019–1022, Karlsruhe, Germany, 1983.

[119] S. Wolfram. Mathematica: A System for doing Mathematics by
Computer. Addison-Wesley, second edition, 1991.

[120] K. Yamatani and N. Saito. Improvement of DCT-based
compression algorithms using Poisson’s equation. IEEE
Transactions on Image Processing, 15(12):3672–3689, December
2006.

[121] K. Yosida. Functional Analysis. Springer Verlag, Berlin, sixth
edition, 1980.

[122] G. Yu, S. Mallat, and E. Barcy. Audio denoising by time-frequency
block thresholding. IEEE Transactions on Signal Processing,
56(5):1830–1839, May 2008.

[123] J. Zak. Finite translation in solid state physics. Physical Review
Letters, 19:1385–1397, 1967.



Samenvatting (Summary in Dutch)

De reconstructie van een signaal uit een aantal monsterwaarden is een
fundamenteel probleem in het vakgebied der signaalverwerking. Het zoge-
noemde reconstructieprobleem verdient en krĳgt veel aandacht van de
wetenschappelĳke gemeenschap. In dit proefschrift wordt een algemene
vorm van dit probleem behandeld. We trachten een beeld te reconstrueren
dat is bemonsterd op een onregelmatig rooster en waarbĳ de monster-
waarden zĳn verkregen middels lineaire functionalen op het bronbeeld. Als
applicatie reconstrueren we een beeld uit haar differentiaal structuur die
verkregen is uit de schaalruimterepresentatie van het bronbeeld. Hiertoe
restricteren we de bemonstering tot bepaalde punten die afhangen van de
structuur van het bronbeeld.

Naast het reconstrueren van beelden beschrĳven we ook hoe tĳd-frequentie
representaties van signalen kunnen worden bewerkt. De voorgestelde be-
werkingen dienen een tweetal doelen. Namelĳk, het verbeteren van de lees-
baarheid van tĳd-frequentie representaties van signalen, en het ontruisen
van signalen waarvan we de tĳd-frequentie representatie verkregen hebben.
De verbeteringen worden respectievelĳk bewerkstelligd middels het uitvo-
eren van een convectie en een diffusieproces op een tĳd-frequentie repre-
sentatie van een signaal dat verkregen is door de Gabor getransformeerde
van het signaal te berekenen. Om deze evolutieprocessen translatie en
modulatie covariant te laten zĳn op het signaaldomein voeren we de evo-
lutieprocessen uit door middel van links-invariante operatoren in het tĳd-
frequentie domein. Dit wil zeggen dat de te gebruiken operatoren dienen te
commuteren met de links-reguliere representaties van de Heisenberg groep.
Dit deel van het proefschrift is een verfijning van een meer generieke theorie
die schaalruimten op Lie groepen beschrĳft.

In Hoofdstuk 2 wordt een lineaire reconstructiemethode beschreven. Deze
methode produceert een beeld uit een aantal monsterwaarden die verkregen
zĳn met behulp van een aantal filters. Wanneer men het gereconstrueerde
beeld opnieuw bemonstert met diezelfde filters dan kan er op grond van
de nieuwe monsterwaarden geen onderscheid gemaakt worden tussen het
gereconstueerde beeld en het bronbeeld. Omdat er verschillende beelden
bestaan die deze eigenschap bezitten wordt er een uniek beeld gekozen dat
een zeker model zo goed mogelĳk benadert. Dit model dient een door een
inproduct geïnduceerde norm te zĳn zodat de reconstructie middels een
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projectie kan worden verkregen. We laten zien dat, wanneer er voor een
Sobolev norm gekozen wordt, men visueel aantrekkelĳke reconstructies kan
verkrĳgen. In dit hoofdstuk wordt verondersteld dat het domein van het
beeld de gehele Rn beslaat. Er wordt derhalve geen aandacht besteed aan
de randvoorwaarden.

Hoofdstuk 3 beschrĳft een reconstructiemethode die vergelĳkbaar is met de
methode die wordt beschreven in Hoofdstuk 2. Nu nemen we de begrensd-
heid van het beeld echter wel in acht. Dit heeft als voordeel dat de pro-
blemen, die optreden in het onbegrensde domein wanneer veel regularisatie
wordt toegepast, kunnen worden vermeden. De implementatie van de
methode wordt geheel in het discrete domein beschreven en is exact op
een regelmatig rooster. Approximatie- en truncatiefouten treden door deze
aanpak niet op.

De bovengenoemde reconstructiemethoden interpoleren de gegeven
monsterwaarden. In Hoofdstuk 4 wordt een methode beschreven die deze
waarden juist approximeert. De approximatiemethode stelt ons in staat
een grof-naar-fijn reconstructiemethode te formuleren die informatie op
grove resolutie naar een fijnere resolutie propageert middels een ĳkveld.
Om een ĳkveld te kunnen gebruiken wordt het beeld niet beschouwd als een
scalar functie maar als een sectie door een zogenoemde gefiberde ruimte.

Het verbeteren van de leesbaarheid van een tĳd-frequentie representatie
van een signaal wordt ook wel “hertoekenning” (Engels reassignment) ge-
noemd. Dit onderwerp wordt besproken in Hoofdstuk 5. Daar laten
we zien dat de Gabor getransformeerde van een signaal gezien kan wor-
den als een functie op de Weyl-Heisenberg groep. Met behulp van links-
invariante vectorvelden definiëren we operatoren op het domein van Gabor
getransformeerden van signalen. De resulterende operatoren gebruiken we
vervolgens om een adaptief convectieproces op de Gabor getransformeerde
van een signaal te definiëren dat zowel translatie- als modulatiecovariant
is op het signaaldomein. Dit proces leidt tot een gemakkelĳker interpre-
teerbare tĳd-frequentie representatie van het te analyseren signaal. Om
een computerimplementatie te kunnen maken identificeren we allereerst
een discrete groep waarvoor we de discrete links-invariante vectorvelden
berekenen. Met behulp van deze discrete vectorvelden maken we vervolgens
een implementatie die gerestricteerd is tot een discreet rooster waardoor
we interpolatiefouten kunnen vermĳden.
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In Hoofdstuk 6 passen we de in Hoofdstuk 5 ontwikkelde theorie toe op
het ontruisen van signalen. Dit wordt gedaan door een links-invariant
niet-lineair anisotroop diffusieproces uit te voeren op de Gabor getrans-
formeerde van een signaal. Door de gemodificeerde tĳd-frequentie repre-
sentatie terug te transformeren naar het signaaldomein verkrĳgt men een
ontruiste versie van het bronsignaal. Onze methode is prefereerbaar boven
de meer conventionele drempelmethoden omdat het in staat is rekening te
houden met lokale informatie. Niet-lineaire diffusiemethodes op het sig-
naal hebben dit voordeel ook maar deze zĳn niet in staat verschillende
tĳd-frequentie structuren te separeren.
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