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Introduction

In this paper we describe the use of feedback with respect tot some poly-

nomial matrix constructions.

Consider the following problem

(l ) Given a polynomial rna trix P(A) E ]RCA] pxq (the set of p x q-matrices

with entries in ]R[A] (the set of real polynomials 1n A» such that

q > p and that P( ) has full rank for all A E ¢ (the set of complex

numbers) •

Construct a matrix Q(A) E ]RCA] (q-p)x q such that

(2) [P(A) ]

_ Q(A)

1S unimodular.

Of course this problem has a well-known solution. Algorithms providing us

with Q(A) are mostly based on elementary row (column) operations, reducing

peA) to some simple form. Having obtained such a simple form (for instance

lower triangular, Hermite form(like), Smith form(like» the construction

of Q(A) is straightforward.

Our construction is not based on elementary row (column) operations. We

work on real matrices directly.

One of the main problems concerning the methods based on elementary opera-

tions, which, in turn, are based on the Euclidean algorithm, is their bad

numerical behaviour.
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Our method is based on a numerically reliable method for the construction

of a feedback matrix solving the deadbeat control problem for a generalized

state space system EX
k

+
1

= Ax
k

+ Bu
k

• This method is closely related to [2].

The method we use, also gives the inverse of (2) in a straightforward way.

A number of applications of Q(A) in (1), (2) can be found ~n [I].

Preliminaries

In this section we describe the generalized deadbeat control problem. The

solution of this problem will be needed for the construction of Q(A) in

(I), (2).

This problem is the following

() . () nXn A E lRnxn . nXm3 G~ven E,A,B , E E lR, , B E lR •

mXn
Construct a matrix F E lR such that all generalized eigenvalues of

the pend1 CAE - (A + BF)] are zero.

Observe that for the solvability of (3) we must have that E is regular be-

cause generalized eigenvalues at infinity are not allowed.

This problem is called the generalized deadbeat control problem because it

is a deadbeat control problem for the generalized state space system

0,1,2, •••.

Problem (3) is equivalent to the usual deadbeat control problem for a system

(E-1A,E-1B). However, we will consider (3) because of the possible ill condi-

tioning of E with respect to inversion.
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An equivalent statement for all generalized eigenvalues of [XE - (A+BF)]

being zero is

[E - X(A + BF)] is a unimodular matrix •

This can be seen as follows.

If [E -X(A+BF)] is unimodular we must have that E is regular. Therefore

DE - (A+BF)] does not have generalized eigenvalues at infinity. Now suppose

that DE - (A+BF)] has a nonzero eigenvalue X). Then X) Ex - (A+BF)x = 0 for

some nonzero x E ~n. Therefore Ex - l(A+BF)x = 0, contradicting the unimodu
X

larity of [E - X(A+BF) ]. The other implication can be proved similarly.

Next we consider the solvability of problem (3).

-) -)
It is well-known that there exists a matrix F such that [E A + E BF] is

-)
nilpotent if and only if the noncontrollable eigenvalues of E A (for the

-1 -)
system (E A,E B) are zero. Therefore (3) is solvable of and only if all

generalized eigenvalues Xi of [AE - AJ, such that [AiE - A,B] does not have

full rank, are zero.

An equivalent condition for this is

(4) [E-XA,XBJ

is right invertible for A E ~ (or, equivalently, right invertible over ]R[X]) •

This can easily be seen (remember that E is regular).

We will need a solution for () for the case P(X) = [E-XA,AB]. Therefore,

-1 -)
let F be such that [E A + E BFJ is nilpotent. Such an F exists by the pole

placement theorem because all nonzero eigenvalues of E-1A are controllable

-1 -)
for the system (E A,E B).
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Now we have that

E -:AA

F ~]
~s unimodular because

(5)
E -:AA

F

AB] [I 0]
I -F I [

E - :A (A+BF)

. 0

Here [E -A (A+BF)J ~s unimodular because [I - (E-1A + E-1BF)J is unimodular.

An explicit formula for [E - (A+BF)J- 1 is

Therefore a solution Q(A) to problem (I) for P(A)

Q(A) [F I].

[E - :AA,ABJ ~s

In the next section we will show that problem (1) for general P(A), may be

solved by solving (I) for a pencil [E - AA, ABJ where (E ,A, B) is derived from

P(A) in a straightforward way.

Results

Let PCA) E JR[AJPxq be such that P(A) has rank p for all :A E a: (q > p).

PCA) can be written as

where P. E JRPxq
~

i
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Because P(O) has rank p we have that Po has rank p.

We may assume that

(6) [p , OJ
e

where P is a regular p xp-matrix because we can solve problem (I) for P(>..)e

if we can solve (I) for P(>..)U where U is a regular matrix. Of course U may

be taken to be unitary in order to obtain this particular form for PO.

Next we partition P(>..) as

where

P(>..) n= [pe ' OJ + [Pa J ,Pb 1] A + ••• + [Pan ' Pbn ] A

Pai E m.Pxp , P
bi

E m.px(q-p) for ~ = i, ••• ,n

Consider matrices E, A, B defined by

1 0 -p Pbn

0
an

0 1

(7) E= • A= B=

0 1

0
0

P 1 -p Pble al

It can easily be seen that [E - A.A, AB] has full rank for all A Ea:.

Let F E m.(q-p)xnp be a feedback matrix such that

E - AA

F :]
is unimodular. (See previous section for the existence of F)
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Next we observe that 

r 0 o o o o "Pan I APbn 

AI r -AI 

o 

o 

r "PaZ 

o . . 0 -U Pe+APa11 Arb I 
------------------------------1------

A a-I I AI I o 

o o I F 1 I 

2 n-i+1 Here X.(A) = P . + P . IA + ... + P A for 
~ a~ a,~+ a,n 

The matrices Y.(A) are defined analogously for i 
~ 

Futhermore 

[Xl (A) 'Y
I 

(A)] = P(A) • 

=2, ... ,n. 

2, ... ,n. 

Observe that P{A) is unimodular (because both factors in the left hand side are 

unimodular). 

Let V = [V I ,V2] be a unitary matrix such that 

I 

R 

______________ 1-

FI o 

( «n-I)p+q-p)x(n-l)p 1R«n-l)p+(Q-p)X(q-p») where R is regular \ VI E lR , V
2 

E • 

• P(>,) 
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Then

(8)

o

o

I

U
02

] P(A)

for some polynomial matrix Q(A).

The matrix

- peA) ]

_ Q().)

is unimodular because P(A) is unimodular, R is regular and U is unitary.

This shows that Q().) is a solution to problem (I).

Observe that the degree of Q(A) is less than the degree of P(A)

The inverse of (2) (and also a right inverse of peA»~ can easily be construc-

ted using the polynomial matrix

E -)'A

F

Up to now we have used two unitary tranformations (6), (8) in order to ob-

tain Q(A) where we assumed that F can be computed. If we show that a feed-

back matrix for the generalized deadbeat control problem can be constructed

in a numerically reliable way we will have obtained a reliable method for

the construction of a matrix Q(A) solving problem (I).
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Algorithms

In this section we present a collection of numerically reliable algorithms

for the construction of a feedback matrix F such that [E-A(A+BF)] is uni-

modular (F is a solution to problem (3».

Let (E,A,B) be a matrix triple such that [E - AA,AB] is right invertible over

lR[ A]. Here E E: lR
nxn , A E: lR

nxn , B E: ll~nxm.

Algorithm

i : = 1; n.
l.

:= n; si := I; E.
l.

:= E; A.
l.

:= A; B. := B;
l.

while n. > 0 and s. > 0 and B. ~ 0 do
l. l. ~

begin

Step I: Using a minor modification of the singular value decomposition we

have (some of the zero-matrices may be empty)

0 0 0

B. = U. 0 Dib 0 V:
~ ~ l.

0 0 D.
l.g

where Ui ' Vi are unitary matrices and Dib , Dig are diagonal matrices

together containing the singular values of Bi • D
ib

contains only "bad"

singular values (think of "bad" as lltoo small") and D. contains g.
~g l.

"good" singular values of B. (think of "good" as lliarge enough").
~

We will assume that IIgood II implies positive.

If g.
~

begin

o then

Test whether all generalized eigenvalues of AE. -A. are zero.
l. ~

(this can be done by means of the QZ algorithm) If not all gene-

ralized eigenvalues of AE. -A. are zero we have to define "good" and
l. 1.

"badll differently in order to obtain at least one "good" singular

value. (g. > 0).
l.

end
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Step 2: If g. > 0 the following partioned matrices are computed
~

( - -

~ :::] ]
E.

E
ib

]
A.

A
ib

]l
~a ~a

( T T T), , := U.E.,U.A.,U.B.•
Eif E. Aif

A. ~ ~ ~ ~ ~ ~

~g ~g

Here

o

I~ o D. Jv~19 ~

g.xg.
E lR 1 ~

• € ,
19

g.xg.
A. € lR 1 1 •

19

The dimensions of the other matrices involved are chosen accordingly.

Step 3: If g. > o a unitary matrix W. ~s computed such that
1 1

A.

A
ib J

-X.

A~ ]

1a 1a g.xg. .
W. A. €

lR 1 1

Aif
A. 1 Aif

~g

19 19

0 0 a

F. : = [ 0 , F. ] : = V. 0 0 0
~ 19 ~

0 0
-) -

-D. A.
~g ~g

Now it is clear that

A.

AO ]
- Bib]

A.

:]1a 1a
+ F. .

Aif B. 1 A
if19 - ~g
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Step 4: If g. > 0 a unitary matrix Y. 1.S computed such that
1. 1.

I-E.

E
ib

]

I-E. 0 l
TI 1.a 1.a g.xg.

Y'1
w. ==

1_Eif

E. E m. 1. 1.

1. _ E
if

1. 1.g
E. E, J1.g 1.g

Then we have

T T T TY. U. A. W. + Y. U. BF.1. 1. 1. 1. 1. 1 1
Y~ U~ B) ==1. 1.

for some

*

(n.-g.)x(n.-g.) (n.-g.)x(n.-g.) (n.-g.)xm
-m 1 1. 1.1. A -m 11 1.1. B -m1.1.

Ei+IE.ID. 'i+iE.ID. 'i+IEm..

:== i + 1 •

end (of while-loop)

Observe that

(E i +i , Ai +
l

, Bi + i ) does not depend on F i

(Ei +
l

, Ai +
l

, Bi +
l

) satisfies the solvability condition for (I) with

(E,A,B) == (E. I' A. I' B·+ I )·1.+ 1.+ 1.

for each cycle i of this part of the algorithm.

It will be clear that termination of this while-loop will be obtained after

n cycles at most.

We have termination because n.1. o or s.1.
o or B. == 0 for some i.1.



If n. +11
0

- II -

o we have obtained (after 1
0

cycles)

n I ' ••• , n l· 0; g I ' ••• , g . ; WI"'" W. ; UI ' ••• , U. ; YI ' ••• , Y. ; F I , ••• , F .
10 1 0 1 0 1 0 g 109

(W. and Y. may be taken to be identity matrices).
1 0 1

0

o we have obtained (after i
l

cycles)

1: 1 , ••• ,F.
g 1] , g

n: xm

ElR

such that AE. - A. has generalized eigenvalues equal to zero.
1

1
1

1

o we have obtained (after i
2

- I cycles)

n. xn.
1

2
1

2E. E IR
1

2

such that AE. - A. has generalized eigenvalues equal to zero because
1 2 1

2
(3) is solvable.
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Next we compute unitary matrices X~, ZR, E JRnxn

o o

o o

if n. +1 =
~O

identity

for ~ = i O' iI-I, i 2-1

Here I is the m. x m.
m. ~ ~
~

0, s. I = 0, B. = 0 respectively.
~I+ ~2

matrix; mi n-ni , i = 2, ••• ,L

Th . F E "T[)mxne matr~x .11.\.
g

is formed as follows

F := [ 0
g

i O' Otherwise this

the termination condition

s. I = 0 or B.
1

1
+ 1

2 mxn
In the final step of the algorithm we compute F E lR

where the zero matrix is empty if n. I = 0, for some
1 0+

matrix is a m x n. or m x n. zero matrix depending on
~I ~2

o respectively.

F := F ZT
g ~

end of the algorithm.

In order to prove that the matrix F 1S a solution to problem (3) we observe

that
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AE -A" 0 0
* AEtg 0 0

* AEt_I,1l

0
* * *

AE
lg

eigenvalues equal to zero.

for the termination condition- A. , AE. - A.
1

1
1

2
1

2
o respectively.

Here AE - A = "empty", AE.
1

1
s. 1 = 0, B.

1} + 1 2
that CAE - (A+BF)] only has generalized

n
iO

+1 = 0,

This shows

Therefore [E - A(A+BF)] is unimodular.

Discussion of the algorithms

The algorithm described in the previous section 1n fact represents a collec-

tion of algorithms because any selection policy between "good" and "bad"

with respect to singular values, generally results in a different algorithm.

Concerning termination of the algorithm we observe the following.

If the matrix triple (E,A,B), where E is regular, represents a controllable

-I -I
generalized system (this means that (E A, E B) is controllable) then the

condition B. = 0 will not terminate the while loop because in each cycle we
1
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have that (E.,A.,B.) is controllable.
1. 1. 1.

Controllability of (E,A,B) is not really a restriction because any generali-

zed system (E,A,B) may be transformed (using unitary transformations) into a

generalized system of the form

(10)

*

where (E ,A ,B ) is controllable (E is regular because E is regular).g g g g

Observe that solvability of (3) for (E,A,B) menas that (3) is solvable for

(E ,A ,B ) and that [Eb - AA-] is unimodular.g g g -0

If the matrix triple (E,A,B), where E is regular, represents a controllable

generalized system such that all generalized eigenvalues are non zero (E- 1A

is regular) then the condition n. = 0 for some i will terminate the while
1.

loop.

We may restrict our algorithm to this case because a controllable generalized

system (E,A,B) having some zero generalized eigenvalues can be transformed

into the following form (using the QZ algorithm)

(11)

A
z

o

where the generalized eigenvalues of AE z - Az all are zero and AEn - An only

has non zero generalized eigenvalues. Furthermore it will be clear that

(E ,A ,B ) is controllable.n n n
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If we apply our algorithm to (E ,A ,B ) we will obtain a matrix F such thatn n n n

[O,F J solves (3) for the controllable system (11). A solution to problem (3)n

for the system (10) can be obtained straightforwardly in this case.

We have chosen to describe the algorithm for the general case of a system

(E,A,B), where E is regular such that (3) is solvable, and not only for a

controllable system or even a controllable system having only non zero gene-

ralized eigenvalues because we can deal with a larger class of cases in this

way.

If we take the special version of the algorithm:

"good" "non zero"; "bad" "zero"

we obtain a feedback matrix F such that (E-IA + E-1BF)k o where k satisfies

{ I
-1 -1 I F

k = m~n I F (E A + E BF)

Furthermore F has minimum Frobenius norm (see [3J).

With respect to the numerical properties of the algorithm we observe that the

construction of the matrix F may be postponed (it is not necessary to ca1cug

late F. withinthewhile-loop) until the matrices X n and Zn have been computed.
~g '" "-

This can be seen as follows.

In (9) it can be seen that

A 00
T

+ X
T

BFXi AZ9.. 9.. g a
0

* a
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Then we have

BQ.+I

BR,
F.

19

B.
1

AQ.+I , i

An •
",,1

A•.
1,1

i I, ••• ,R,

which shows that the construction of F = [0 , F n , ••• , F
1

] merely con-
g ""g ,g

sists of solving a set of linear equations.
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Therefore this algorithm has the same numerical behaviour as the algorithms

in [2J and [3J. This shows that the algorithm may be considered to be a nume-

rically reliable algorithm.

Formally this generalized deadbeat control algorithm is not numerically

stable (backward stability). It can be proved, as in [3J, that the feedback

matrix F is an exact solution to the generalized deadbeat control problem

for

(E + oE, A + oA, B + oB)

where

lIoE,oA,oBII = 1/J(E) • <p(IIEII,IIAII,IIBII,IIFII) •

Here ~(E) is of the order of the relative machine precision E and <p is a bi-

linear function in II Ell, II A II , II B II and II F II • (II II is the Frobenius norm).

It can also be proved that, analogously to [4J, that there exists a perturba-

tion OP(A) such that F is an exact solution to the generalized deadbeat con-

trol problem for (E + oE, A + oA, B + oB) where this latter generalized system

is obtained from P(A) + 6P(A) in the same way as (E,A,B) is obtained from

P(A) (this perturbation has the same structure as (E,A,B».

In (8) we obtain a polynomial matrix Q(A) such that there exists a perturba-

tion OQ(A) having the property that

[

- P{A) + oP{A) ]

Q(A) + OQ(A)

1S exactly unimodular. The perturbations OP(A), OQ(A) consist of polynomials

whose coefficients are of the order of E. However, these coefficients are also
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functions of II F II.

The existence of oQ(>") is proved using forward stability analysis and oP(>..)

is obtained using a backward stability argument.

Details of the proof will be omitted.

Observe that the choice of the identity matrix I in

E - AA

F

is an arbitrary one. We could have chosen any regular matrix D instead because

E - >..A

DF

also is unimodular if F is a solution to the generalized deadbeat control

problem.

The choise of a "good" D and the exploitation of the (sometimes existing) free-

dom for F in order to obtain a "good" unimodular matrix

- P(>..) ]

_ Q(>")

is a point of current research.

Examples

The algorithm has been used to compute Q(>") for various matrices P(>..). Here

the coefficients of P(>..) have been chosen uniformly distributed in [-I,IJ .

After having computed Q(>") the determinant of [~~~~~I has been computed for
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A = 0, 0.1, 0.2, ••• ,0.9 • Let d denote the number of digits in the determinant

of the computed unimodular matrix that does not depend on A. The number of rows

of PCA) is p, the number of columns of PCA) is q and the degree of PCA) is n.

The following table shows the "unimodulari ty" of the matrix [~g~J for various

choices of p,q,n. If d is large then the matrix is highly unimodular.

p

3

6

3

10

20

q n d

7 5 11

7 2 9

7 5 8

7 8 9

15 25 9

25 5 9

2 25 8

2 35 7

30 2 8
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