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HIF E 12, 8093 Zürich, Switzerland

Abstract

We simulate particles suspended in a fluid by means of the lattice-Boltzmann method and its
extension to particle suspensions as introduced by Ladd et al. in order to study transport phe-
nomena and structuring effects of particles in the vicinity of sheared rigid walls. We find that a
particle free region arises near walls, which has a width depending on the shear rate and the particle
concentration. The wall causes the formation of parallel particle layers at low concentrations, where
the number of particles per layer decreases with increasing distance to the wall. These findings are
in good agreement with a phenomenological theory of Muckenfuß and Buggisch. We also study the
velocity distributions of suspended particles which turn out to be non-Gaussian, but exponential.

1 Introduction

If one adds a fluid to dry granular materials, the
behaviour of the mixture can change dramati-
cally with a host of unexpected phenomena arising.
Some common particle-fluid mixtures are ubiqui-
tous in our daily life and include the cacao drink
which keeps separating into its constituents, tooth
paste and wall paint which are mixtures of finely
ground solid ingredients in fluids or blood which
is made up of red and white blood cells suspended
in a solvent. It is important for industrial applica-
tions to obtain a detailed knowledge of those sys-
tems in order to optimize production processes or
to prevent accidents.
Long-range fluid-mediated hydrodynamic interac-
tions often dictate the behavior of particle-laden
flows. A typical example is the objective of the
current work: due to external shear forces, a parti-
cle concentration gradient orthogonal to the shear
plane arises which might generate an overall par-
ticle drift orthogonal to the flow direction. This
particle drift might cause inhomogeneities in the
suspension causing the phenomenon of pseudo wall
slip to arise and a particle free region near the wall
forms.
Most analytical results for the particle scale be-

havior of suspensions have been obtained for vis-
cous flow (Re=0). For large systems, scientists
aim at an average, continuum description of the
large-scale behavior. However, this requires time-
consuming and sometimes very difficult experi-
mental measurements of phenomenological quan-
tities such as the mean settling speed of a suspen-
sion, the stress contributions in the system of the
individual components (solid and fluid) as func-
tions of, e.g., the solid volume fraction of the con-
stituents.
Computer simulation methods are indispensable
for many-particle systems and various simulation
methods have been developed to simulate particle-
fluid mixtures. All of them have their inher-
ent strengths but also disadvantages. For ex-
ample, simplified brownian dynamics does not
contain long-ranged hydrodynamic interactions
among particles at all [17]. Brownian dynamics
with full hydrodynamic interactions utilizes a mo-
bility matrix which is based on tensor approxima-
tions which are exact in the limit of zero reynolds
number and zero particle volume fraction [31, 2].
However, the computational effort scales with the
cube of the particle number due to the inversion
of matrices. Pair-drag simulations [23] include hy-
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drodynamic interactions in an approximative way.
They have focused on suspensions with high den-
sities (up to 50 %) of uncharged spherical colloidal
particles. Stokesian dynamics has been presented
by Bossis and Brady in the 80s and applied by
many authors [12,1,38,18]. However, this method
is limited to Reynolds numbers close to zero and
the computational effort is very high for dynami-
cal simulations. Even with today’s powerful com-
puters it is not possible to study the dynamics of
more than a few hundred particles. The method
is still widely used due to its physical motivation
and its robustness, but is complicated to code.
Boundary-element methods are more flexible than
Stokesian dynamics and can also be used to simu-
late non-spherical or deformable particles, but the
computational effort is even higher [24, 22]. All
these methods assume that hydrodynamic inter-
actions being fully developed and that the dynam-
ics of the fluid and of the solved particles can be
treated as fully separated. In reality, this is not
the case. Hydrodynamic interactions are time de-
pendent due to local stresses at the fluid-particle
interfaces. A number of more recent methods at-
tempt to describe the time dependent long-range
hydrodynamics properly with the computational
effort scaling linearly with the number of parti-
cles. These include recent mesoscopic methods
like dissipative particle dynamics [9,8], the lattice-
Boltzmann method [7,22,20,21,29,19], or stochas-
tic rotation dynamics [25, 26, 15]. However, for
small Reynolds numbers, the computational gain
of these methods is lost due to the additional ef-
fort needed to describe the fluid motion. Finite
element or finite difference methods need a proper
meshing of the computational domain which is
not trivial for complicated boundary conditions
as in the case of dense suspensions. Therefore,
many authors only simulated a limited number of
static configurations rather than the full dynam-
ics of the system. Advances in remeshing tech-
niques as well as more powerful computers have
allowed to overcome these problems. Also, in or-
der to avoid remeshing at all, uniform grids can be
used [10, 35]. These methods are flexible and ro-
bust. They can properly treat non-Newtonian ef-
fects and incorporate inertia, but are complicated
to code. For a more detailed description of the
simulation methods, experiments or theoretical ap-
proaches not addressed in this paper, the reader is
referred to one of the various books on colloid sci-
ence [36, 27, 34, 16].
Here, the lattice Boltzmann method and its exten-

sion to particle suspension as introduced by Ladd
is a very good candidate to study the dynamics of
glass spheres in a sugar solution [19]. The method
is easy to code and has been applied to suspensions
of spherical and non-spherical particles by various
authors.
For industrial applications, systems with rigid
boundaries, e.g., a pipe wall, are of particular in-
terest since structuring effects might occur in the
solid fraction of the suspension. Such effects are
known from dry granular media resting on a plane
surface or gliding down an inclined chute [30, 37].
In addition, the wall causes a demixing of the solid
and fluid components which might have an un-
wanted influence on the properties of the suspen-
sion. Near the wall one finds a thin lubrication
layer which contains almost no particles and causes
a so-called “pseudo wall slip”. Due to this slip the
suspension can be transported substantially faster
and less energy is dissipated.
We expect structuring close to a rigid wall at much
smaller concentrations than in granular media be-
cause of long-range hydrodynamic interactions. In
[19], we study these effects by the means of particle
volume concentrations versus distance to the wall.
Recently, we have started to study the behavior of
particle-laden flows close to a wall in more detail
with focussing on the velocity distributions.

2 The simulation method

The lattice-Boltzmann method is a simple scheme
for simulating the dynamics of fluids. By in-
corporating solid particles into the model fluid
and imposing the correct boundary condition at
the solid/fluid interface, colloidal suspensions can
be studied. Pioneering work on the develop-
ment of this method has been done by Ladd et
al. [20, 21, 22] and we use their approach to model
sheared suspensions near solid walls.
The lattice-Boltzmann (hereafter LB) simulation
technique which is based on the well-established
connection between the dynamics of a dilute gas
and the Navier-Stokes equations [6]. We consider
the time evolution of the one-particle velocity dis-
tribution function n(~r, ~v, t), which defines the den-
sity of particles with velocity ~v around the space-
time point (~r, t). By introducing the assumption
of molecular chaos, i.e., that successive binary col-
lisions in a dilute gas are uncorrelated, Boltzmann
was able to derive the equation for n named after
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him [6]

∂tn + ~v · ∇n =

(

dn

dt

)

coll

, (1)

where the left hand side describes the change in
n due to collisions. The LB technique arose from
the realization that only a small set of discrete ve-
locities is necessary to simulate the Navier-Stokes
equations [11]. Much of the kinetic theory of di-
lute gases can be rewritten in a discretized version.
The time evolution of the distribution functions n
is described by a discrete analogue of the Boltz-
mann equation [22]:

ni(~r + ~ci∆t, t + ∆t) = ni(~r, t) + ∆i(~r, t) , (2)

where ∆i is a multi-particle collision term. Here,
ni(~r, t) gives the density of particles with veloc-
ity ~ci at (~r, t). In our simulations, we use 19 dif-
ferent discrete velocities ~ci. The hydrodynamic
fields, mass density ̺, momentum density ~j = ̺~u,
and momentum flux Π, are moments of this ve-
locity distribution ̺ =

∑

i ni , ~j = ̺~u =
∑

i ni~ci,
Π =

∑

i ni~ci~ci . Following the popular approach of
Bhatnagar, Gross and Krook, we use a linear colli-
sion operator, where the local particle distribution
relaxes to an equilibrium state neq

i at a single rate
τ [3]

∆i = −
1

τ
(ni − neq

i ) . (3)

The kinematic viscosity is given by ν = (2τ−1)/6.
To simulate the hydrodynamic interactions be-
tween solid particles in suspensions, the lattice-
Boltzmann model has to be modified to incorpo-
rate the boundary conditions imposed on the fluid
by the solid particles. Stationary solid objects are
introduced into the model by replacing the usual
collision rules (Equation (3)) at a specified set of
boundary nodes by the “link-bounce-back” colli-
sion rule [29]. Since the velocities in the lattice-
Boltzmann model are discrete, boundary condi-
tions for moving suspended particles cannot be im-
plemented directly. Instead, we can modify the
density of returning particles in a way that the
momentum transferred to the solid is the same
as in the continuous velocity case. This is imple-
mented by introducing an additional term ∆b in
(2) [20]. To avoid redistributing fluid mass from
lattice nodes being covered or uncovered by solids,
we allow interior fluid within closed surfaces. Its
movement relaxes to the movement of the solid
body on much shorter time scales than the char-
acteristic hydrodynamic interaction [20]. If two

particles are in near contact, the fluid flow in the
gap cannot be resolved by LB. For particle sizes
used in our simulations (R < 5a), the lubrication
breakdown in the calculation of the hydrodynamic
interaction occurs at gaps less than 0.1R [29]. This
effect “pushes” particles into each other and can
be avoided by applying a lubrication correction
method described in [29].
The particle position and velocity is calculated us-
ing Newton’s equations

~a =
1

m
~F = ~̇v, ~v = ~̇r. (4)

The force ~F is obtained from the calculation of
the particle-fluid coupling and the lubrication cor-
rections. Then, the equations are discretized and
integrated using the Euler-Cromer method. The
velocity ~vn+1 and position ~rn+1 for the time step
n + 1 are obtained by utilizing the velocity, posi-
tion and force from time step n as well as the time
step ∆t = 1 and particle mass m.

~vn+1 = ~vn +
~fn

m
∆t (5a)

~rn+1 = ~rn + ~vn+1∆t (5b)

The same method is applied to particle rotation,
with position replaced by angles, velocity by angu-
lar velocity, force by torque and mass by moment
of inertia.

3 Simulations

The purpose of our simulations is the reproduc-
tion of rheological experiments on computers. We
simulate a representative volume element of the ex-
perimental setup of Buggisch et al. [32, 4, 5, 13, 14]
and compare our calculations with experimentally
accessible data, i.e., density profiles, time depen-
dence of shear stress and shear rate. We also get
experimentally inaccessible data from our simula-
tions like translational and rotational velocity dis-
tributions, particle-particle and particle-wall inter-
action frequencies. The experimental setup con-
sists of a rheoscope with two spherical plates,
which distance can be varied. The upper plate
can be rotated either by exertion of a constant
force or with a constant velocity, while the com-
plementary value is measured simultaneously. The
material between the rheoscope plates consist of
glass spheres suspended in a sugar-water solution.
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The radius of the spheres varies between 75 and
150µm. For our simulations we assume an average
particle radius of 112.5µm. The density and vis-
cosity of the sugar solution can also be changed.
We simulate only the behavior of a representative
volume element which has the experimental sepa-
ration between walls, but a much lower extension
in the other two dimensions than the experiment.
In these directions we employ periodic boundary
conditions for particles and for the fluid.
Shearing is implemented using the “link-bounce-
back” rule with an additional term ∆b,i at the wall
in the same way as already described for moving
particles.
To compare the numerical and experimental re-
sults, we need to find characteristic dimensionless
quantities of the experiment which then determine
the simulation parameters. For this purpose we
use the ratio of the rheoscope height and the par-
ticle size λ, the particle Reynolds number Re and
the volume fraction of the particles φ. The simula-
tion results are provided with units by calculating
the length of the lattice constant a and the dura-
tion of one time step as described in [19].

4 Results

Figure 1 shows a snapshot of a suspension with
50 spheres after 5772500 time steps which are
equivalent to 729 s. Gravity ~g acts in vertical
direction and points to the bottom of the sys-
tem. The particles feel a gravitational accelera-
tion g = 0.8 m/s2, have a mass m = 7.7 · 10−8 kg,
a Reynolds number Re = 4.066875 · 10−4, and a
radius R = 1.125 · 10−4 m. The system size is
1.83 · 10−3 × 1.83 · 10−3 × 3.375 · 10−3 m which cor-
responds to a lattice size of 32 × 32 × 59. The
density of the fluid is set to ̺f = 1446 kg

m3 and its
viscosity is η = 450 mPa · s. The walls at the top
and the bottom are sheared with a relative velocity
vs = 3.375 · 10−2 m/s. Figure 1 is a representative
visualization of our simulation data and demon-
strates that after the system has reached its steady
state, all particles have fallen to the ground due to
the influence of the gravitational force. Most of
the simulation volume is free of particles.
For a quantitative characterization of structuring
effects, we calculate the particle density profile of
the system by dividing the whole system into lay-
ers parallel to the walls and calculating a partial
volume Vij for each particle i crossing such a layer
j. The scalar Vij is given by the volume fraction

Figure 1: A snapshot of a suspension with 50 spheres. This
figure is a typical example of a system that has reached a
steady state: all particles have fallen to the ground leaving
most of the simulation volume being free of particles [19].

of particle i that is part of layer j:

Vij = π

(

R2
(

Rmax
ij − Rmin

ij

)

−
1

3

(

Rmax
ij − Rmin

ij

)

)

(6)
If the component ri,z perpendicular to the wall of
the radius vector ~ri of the center of sphere i lies
between rmin

j and rmax
j , we have:

r
min/max
j = (j ∓

1

2
)∆Lz ∓ R, (7)

R
min/max
ij =

{

∓R if ri,z ∓ R < r
min/max
j

r
min/max
j − ri,z else

Finally, the sum of all weights associated with a
layer is divided by the volume of the layer

φj =
1

Lx · Ly · ∆Lz

N
∑

i=1

vij, ∆Lz =
Lz

M
, (8)

with Lx, Ly being the system dimensions be-
tween periodic boundaries, Lz the distance be-
tween walls, M the number of layers, and ∆Lz

the width of a single layer.
Density profiles calculated by this means for sys-
tems with two different shear rates γ = 10 s−1

and γ = 1 s−1 are presented in Fig. 2. All other
parameters are equal to the set given in the last
paragraph. The peaks in Fig. 2 demonstrate that
at certain distances from the wall the number of
particles is substantially higher than at other posi-
tions. The first peak in both figures is slightly be-
low one particle diameter, which can be explained
by a lubricating fluid film between the first layer
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Figure 2: Density profiles from simulations with two differ-
ent shear rates γ = 10 s−1 (a) and γ = 1 s−1 (b) and other
parameters being equal to those given in Fig. 1. (a) shows
five peaks with separations of about one particle diame-
ter, depicting the formation of particle layers. The number
of particles per layer is decreasing with increasing distance
to the wall, and the change in particle numbers is caused
by gravity which is directed perpendicular to the wall at
z = 0. Although we used the same gravity and particle
numbers, there are only three peaks in (b) and their width
is higher than in (a), demonstrating that the structuring
effects strongly relate to the shear rate.

and the wall which is slightly thinner than one par-
ticle radius. Due to the small amount of particles,
time dependent fluctuations of the width of the
lubricating layer cannot be neglected and a calcu-
lation of the exact value is not possible. The five
peaks in Fig. 2a have similar distances which are
equal to one particle diameter. These peaks can
be explained by closely packed parallel layers of
particles. Due to the linear velocity profile in z-
direction of the fluid flow, every layer adopts the
local velocity of the fluid resulting in a relative ve-
locity difference between two layers of about 2Rγ.
These layers stay stable in time with only a small
number of particles being able to be exchanged
between them. Figure 2b only shows three peaks
with larger distances than in Fig. 2a. However,
the average slope of the profile is identical for both
shear rates. For smaller shear rates, velocity dif-
ferences between individual layers are smaller, too.

As a result, particles feel less resistance while mov-
ing from one layer to another. Every inter-layer
transition distorts the well defined peak structure
of the density distribution resulting in only three
clearly visible peaks in Fig. 2b. With changing
time, the first peak stays constant for both shear
rates. The shape, number and position of all other
peaks is slightly changing in time. We have com-

po
si

tio
n

wall

particle concentration

Simulation
Model

Figure 3: Density profiles from our simulations in compari-
son to data from the phenomenological theory of Muckenfuß
and Buggisch.

pared our results to the phenomenological theory
of Muckenfuß and Buggisch [33,14,28] as shown in
figure 3 and find a good quantitative agreement.
We are currently investigating the occurrence of
non-Gaussian velocity distributions of particles for
higher particle densities and higher shear rates.
For this, improvements of the method are manda-
tory in order to prevent instabilities of the simu-
lation. By utilizing an implicit scheme for the up-

b)a)

c) d)

Figure 4: A snapshot of a suspension with 768 spheres after
6.25 million timesteps and varied shear rate used to gain
statistics of particle velocity distributions. Shear rates are
vs=0.010 (a), vs=0.014 (b), vs=0.02 (c), vs=0.03 (d) (in
lattice units). It can be observed that the height of the
occuring sedimentation layer depends on the shear rate.
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date of the particle velocities [22, 29] we are able
to overcome artefacts caused by numerical inac-
curacies at high volume fractions or shear rates.
Figure 4 shows snapshots of a system contain-
ing 768 particles after 6.25 million timesteps for
variuous shear rates (vs=0.010 (a), vs=0.014 (b),
vs=0.02 (c), vs=0.03 (d)) and a gravitaional force
of -0.72·10−4 (in lattice units). The lattice size is
80x10x60 and the upper and lower wall are sheared
while all other boundaries are periodic. One can
clearly observe a dependence of the height of the
sedimentation layer on the shear rate, i.e., with
increasing shear rate, the height of the sediment
increases. We are interested in the velocity dis-
tributions of the particles for different simulation
parameters. Figure 5 shows the non-normalized
probability distribution function (PDF) for the
particle velocities in vertical direction. These dis-
tribution functions have been obtained by aver-
aging over all particle velocities at all simulation
timesteps. The plots correspond to the snapshots
in figure 4. A non-Gaussian behavior of the dis-
tributions can be observed, i.e., the tails are ex-
ponential and we have shown that they scale as

f(v) = A/vs · exp(−v/(B · vs)), (9)

where v denotes the particle velocity and A=250,
B=0.00385 are constants. A large number of simu-
lations has been performed in order to understand
the dependence of the velocity distributions on the
simulation parameters. We have not only varied
the shear rate, but also the gravitational force and
the particle count. It is found that similar laws as
given by equation 9 can be found. However, the
values for A and B do not always stay constant. It
is a current matter of investigation to understand
the origin of these velocity distributions and the
dependence of the fit parameters A and B on the
simulation parameters.

5 Conclusions

We successfully applied the lattice Boltzmann
method and its extension to particle suspensions to
simulate transport phenomena and structuring ef-
fects under shear near solid walls. We adopted the
simulation parameters to the experimental setup
of Buggisch et al. and are able to obtain not
only qualitatively comparable results, but also val-
ues that quantitively correspond to experimentally
measured parameters and their phenomenological
theory. We have shown that the density profile has

-0.0015 -0.001 -0.0005 0 0.0005 0.001 0.0015

velocity v

0.01

0.1

1
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10000

P
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F
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a.
u.

)

vx=0.010
vx=0.014
vx=0.020
vx=0.030

Figure 5: Probability distribution function of the particle
velocity in vertical direction. The data corresponds to the
snapshots in figure 4. The tails are exponential and follow
a law as given by equation 9.

several peaks, confirming the formation of particle
layers. We have also shown the occurrence of a
“pseudo-wall-slip” of particles, exhibited by a par-
ticle free fluid layer near the wall.
The velocity distributions of the particles show ex-
ponential tails and we have shown that they scale
with the shear rate, gravitational force and the
number of particles in the system.
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