

Predictable design for real-time systems

Citation for published version (APA):
Florescu, O. (2007). Predictable design for real-time systems. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Electrical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630368

DOI:
10.6100/IR630368

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR630368
https://doi.org/10.6100/IR630368
https://research.tue.nl/en/publications/08453510-0983-4c43-a15e-401c3cdd1143

Predictable Design for Real-Time Systems

Predictable Design
for

Real-Time Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van

de Rector Magnificus, prof.dr.ir. C.J. van Duijn,
voor een commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen op

dinsdag 4 december 2007 om 14.00 uur

door

Oana Florescu

geboren te Constanta, Roemenië

Dit proefschrift is goedgekeurd door de promotor:

prof.dr. H. Corporaal

Copromotor:

dr.ir. J.P.M. Voeten

c© Copyright 2007 by O. Florescu. All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written per-
mission from the copyright owner.

Printed by: Universiteitsdrukkerij Technische Universiteit Eindhoven

Cover design: Emil Onea, Romania

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Florescu, Oana

Predictable design for real-time systems / by Oana Florescu. - Eindhoven : Technische
Universiteit Eindhoven, 2007.

Proefschrift. - ISBN 978-90-386-1654-4

NUR 992

Trefw.: real-time computers / systeemanalyse / software-ontwikkeling ; prototypes.

Subject headings: real-time systems / hardware-software codesign / software prototyping.

Every day you may make progress. Every step may be fruitful. Yet there will
stretch out before you an ever-lengthening, ever-ascending, ever-improving path.
You know you will never get to the end of the journey. But this, so far from dis-
couraging, only adds to the joy and glory of the climb.

Sir Winston Churchill (1874 - 1965)

To Vali,
with all my love

This work has been carried out as part of the Boderc project under the
responsibility of the Embedded Systems Institute. This project has been
partially supported by the Dutch Ministry of Economic Affairs under the
Senter TS program.

Advanced School for Computing and Imaging

This work has been carried out in the ASCI graduate school. ASCI disser-
tation series number 153.

The longest part of the journey is said to be the passing of the gate.

Marcus Terentius Varro (116 BC - 27 BC)

Abstract

Predictable Design for Real-Time Systems

The complexity of real-time embedded systems has motivated the research on
frameworks and techniques to structure and automate their design process. Having
such frameworks is especially important for embedded and safety-critical systems
which are hard to design correctly within tight time-to-market constraints. Design
methodologies reduce the risk of expensive design iterations by supporting design-
ers in constructing models. Software/Hardware Engineering (SHE) is a general-
purpose system-level design methodology that enables analysis of both functional
correctness and performance properties. By using SHE, the designer is assisted
in constructing models and applying analysis techniques with various guidelines
and modelling patterns. A key feature of SHE is its foundation on formal meth-
ods, which ensures that the obtained analysis results are unambiguous. SHE also
includes guidelines and techniques for automatic synthesis of real-time control soft-
ware, which is again based on formal methods to ensure that properties in a model
(including timing related properties) are preserved in the software realisation. This
thesis contributes to both the modelling and analysis phase of the design, as well as
to the correct synthesis towards an efficient software implementation of a system.

To ensure the correctness and the performance properties of real-time embedded
systems, early evaluation of their properties is needed. To achieve this, we have de-
veloped a set of language-independent modelling patterns to enable easy creation
of models for design space exploration. The modelling patterns cover typical real-
time system components as they are considered in classical scheduling theory, such
as periodic and aperiodic tasks, computation and communication resources, input
event generators, and output event collectors. Furthermore, we have designed a
Pattern-based system Description Language (PDL) which can be used to describe
a real-time system in terms of the patterns needed and the values of their param-
eters. This language is easy to use and it does not require knowledge of any of
the modelling languages typically used for analysis of real-time systems. Its main
advantage is that it enables automatic generation of models in different modelling
languages. As an example, we present an implementation of the modelling patterns
in the general purpose formal modelling language called Parallel Object Specifica-
tion Language (POOSL), which is underlying the SHE methodology, together with a
tool that translates a PDL description into a POOSL model. Due to the expressive-
ness of the POOSL language, the models generated are appropriate for both hard
and soft real-time systems as they enable analysis of both worst-case and average
case behaviour of a system, ensuring a correct dimensioning of the final product.

ii

To implement a concurrent real-time system from a model in a “correct” way,
it is important to understand the relation between the properties of the model and
of its corresponding implementation. In this thesis, we present a mathematically
proved correct mechanism of determining the time deviation between a model and
its corresponding realisation based on which we can predict the properties of the re-
alisation of the system. Moreover, we have defined a notion of distance as a metric
to express the observable property preservation between a model and a realisation
of the system. We propose an approach to calculate an upper-bound on the size of
this distance in order to predict the observable properties of the realisation based on
those of the model. Furthermore, we show that this upper-bound can be decreased
by imposing priority on the execution of the observable actions over the execution
of the unobservable ones. Based on this result, we have extended an existing model
synthesis approach to generate from a model an implementation with stronger ob-
servable property preservation.

By means of a realistic case study, we show how the contributions brought by this
thesis can be applied for the model-driven design of a real-time system that ensures
the control of a printer paper path. With this case study, we show how the system
can be modelled using the modelling patterns, how its real-time properties can be
derived and analysed and how predictions about the properties of the realisation on
a target platform can be made. The synthesis of the system yields a realisation that
preserves these properties and ensures a correctly running system.

Contents

Abstract iii

1 Introduction 1

1.1 Embedded Real-Time Systems Design 2

1.2 Software/Hardware Engineering . 4

1.2.1 Modelling and Analysis Phase 5

1.2.2 Synthesis Phase . 7

1.2.3 Related Research . 8

1.3 Problem Statement and Research Contributions 10

1.4 Thesis outline . 11

2 Educational Example 15

2.1 Motion Control System Description . 15

2.2 High-Level System Model . 16

2.3 Adding Details to the System Model . 19

2.4 A More Detailed Model of the System 21

2.5 Synthesis Model of the System . 24

2.6 Summary . 27

3 Pattern-Based Modelling of Real-Time Systems 29

3.1 Modelling Approaches for Real-Time Systems 30

3.2 Related Research . 32

3.3 The Library of Modelling Patterns . 34

3.4 UML Profile for POOSL Modelling Language 37

3.5 POOSL Modelling Patterns Library . 38

3.5.1 Application Model . 38

3.5.2 Platform Model . 43

3.5.3 Environment Model . 48

3.5.4 Mapping Model . 51

3.6 Model Generation Based on Patterns . 51

iv Contents

3.7 Summary . 55

4 Analysis Approach for Dimensioning of Real-Time Systems 57

4.1 Model Analysis . 58

4.2 Case Study: A Distributed In-Car Radio Navigation System 60

4.2.1 The Model of the In-Car Radio Navigation System 61

4.2.2 Analysis of the System Behaviour 63

4.3 Case Study: The Low-Level Control of a Printer Paper Path 68

4.3.1 The Model of the Paper Path Low-Level Control 68

4.3.2 Platform Dimensioning of the Paper Path Low-Level Control . 70

4.4 Summary . 71

5 Proximity Between Model and Realisation 73

5.1 Preliminaries . 73

5.2 Representation of System Behaviour . 74

5.3 POOSL Model Synthesis Strategy . 78

5.4 Determining the Proximity Between Model and Realisation 79

5.4.1 Definition of Distance Between Paths 79

5.4.2 Calculating the Distance Between Model and Realisation 84

5.5 Execution Time Accuracy Impact on Distance 87

5.6 Finite Time Computation of Distance . 88

5.6.1 Preliminaries . 88

5.6.2 Finite Extended Timed Labelled Transition System 91

5.7 Algorithm for Computing the Distance Between Model and Realisation 93

5.8 Simulation-Based Estimation of the Distance Between Model and Re-
alisation . 95

5.9 Summary . 97

6 Predictable Real-Time Systems Synthesis 99

6.1 Real-Time Properties . 99

6.1.1 Timed State Sequences . 100

6.1.2 Interpretation of MTL Logic . 102

6.1.3 Preservation of Properties . 103

6.2 Distance Reduction from Model to Realisation 105

6.2.1 New Proximity Metric Between Model and Realisation 106

6.2.2 Reduction of a Timed Labelled Transition System 109

6.2.3 Changing Action Ordering . 112

6.3 Improved POOSL Model Synthesis Strategy 113

Contents v

6.4 Experimental Results . 113

6.5 Related Research . 117

6.6 Summary . 118

7 Case Study 121

7.1 Printer Paper Path System Description 121

7.2 Analysis Model of the Paper Path . 122

7.3 Predicting Properties of the Paper Path 126

7.4 Synthesis of the Paper Path Model . 129

7.5 Summary . 130

8 Conclusions and Outlook 131

8.1 Summary of Research Contributions . 131

8.2 Future Research . 132

A Sequences of Elements 135

Bibliography 143

Samenvatting 151

Acknowledgements 153

About the Author 155

vi Contents

1
Introduction

An embedded system is a special-purpose information processing system completely
encapsulated by the device it controls, which is also called an embedding sys-
tem [25]. Usually, embedded systems have a fixed functionality and operate au-
tonomously. Physically, this type of systems ranges from portable devices, such as
MP3 players, to large stationary installations, like traffic lights or factory controllers.

Typically, embedded systems are reactive systems that are in continuous interac-
tion with their physical environment to which they are connected through sensors
and actuators. Due to the intrinsic concurrent nature of the different mechanical, elec-
trical and optical devices in the environment, an embedded system is made of a large
number of parallel processes to control them. Besides the concurrency, another con-
sequence of their reactive nature is the timeliness. Embedded systems must run at
a pace determined by their environment. The result of this is that many embedded
systems must meet real-time constraints, i.e. they must react to stimuli within a certain
time interval dictated by the environment. In safety-critical applications, such as a
power plant or an aircraft control, it has to be ensured that no timing requirement
is broken as this might have catastrophic consequences. These systems are called
hard real-time systems [20]. However, there are systems, like video and audio en-
coders, that are considered to run correctly even though some timing requirements
are occasionally broken. Although meeting the timing requirements is desirable for
performance reasons, breaking them does not have catastrophic consequences for
such systems. Therefore, for a cost-effective realisation of the product as perceived
by the consumer [86]1, a certain percentage of allowed missed timing requirements
is typically established. Such systems are called soft real-time systems [20].

As not only the correctness of the computations but also the timeliness of the

1For instance, a consumer might choose to purchase a $50 video player that happens to drop single
frames under rare circumstances than a $200 system verified and certified never to drop frames.

2 Introduction

computed results of the whole embedded system are of major concern, the design
of embedded real-time systems is inherently difficult. Additionally, the increasing
demand for more functionality and tighter requirements on performance, time-to-
market, cost and energy consumption of the final product constrain and complicate
the design even more. Therefore, the main question regarding the design of embed-
ded real-time systems is:

How to adequately predict and guarantee the properties of the final product according to the
requirements and under tight time-to-market, cost and energy consumption constraints?

The contributions brought by this thesis address several aspects of this problem as
it will be shown later in this chapter. This introductory chapter presents the char-
acteristics of embedded real-time systems design and the open issues from previous
research work. We first discuss basic notions of embedded real-time systems de-
sign in section 1.1, followed by the key elements of the design methodology used
throughout this work in section 1.2. The problem statement and the research contri-
butions brought by this thesis are presented in section 1.3, whereas the thesis outline
is given in section 1.4.

1.1 Embedded Real-Time Systems Design

The increasing complexity of embedded real-time systems, the growing implemen-
tation costs and the tight time-to-market constraints have motivated research on
methodologies to structure and automate their design process. Such design method-
ologies intend to reduce and, eventually, to even eliminate, the risk of expensive
design iterations by supporting designers in constructing models. A model is an
abstract representation of a system that enables the analysis of a proposed design
solution before its actual realisation into hardware and software. Often, a number of
design alternatives are proposed for realising the desired functionality of the system
ranging from different partitioning of the components to using different algorithms.
A design is said to be correct when all its functional and timing-related requirements
are satisfied. Other requirements, like cost, energy consumption or performance
properties like latency or throughput, are considered non-functional requirements.
A correct design that satisfies also the non-functional requirements is called a feasible
design [90]. The design process structures the search for a feasible design.

A common approach for managing the complexity of designing embedded real-
time systems is to distinguish a number of design phases. Consecutive design phases
focus on finding answers to questions of how to realise the functionality such that
the desired non-functional requirements are also satisfied. This implies the need for
exploring different design alternatives and decide which one is more likely to lead
to a final product that satisfies all the requirements [44]. Analysis of models helps in
understanding the consequences of different decisions before getting to the expense
and trouble of actually building the system according to them. By choosing a certain
alternative, the model of the system is refined by fixing a number of details about the
final product that will not be changed later in the design process. While increasing
the number of details, the level of abstraction decreases and the designer gets closer
to a realisation of the system. When enough details are fixed, the design methodology

Embedded Real-Time Systems Design 3

should assist the designer in synthesising the hardware and/or software components
of the final product.

Idea of a product

Correct design space

Feasible
design spaceProduct

realisation

L
ev

el
 o

f
d

et
ai

ls

L
ev

el
 o

f a
b

st
ra

ct
io

n

Exploration of
alternatives

Exploration of
alternatives

S
 y

n
th

es
is

Figure 1.1: Trajectory towards a product realisation

Figure 1.1 shows the trajectory from an idea of a product towards a realisation
as an abstraction pyramid like the one presented in [64]. The pyramid illustrates the
process of exploring alternatives, making decisions and adding details in order to
obtain a feasible design. One important aspect that the picture emphasises is that
decisions made in early phases of the design process, namely high in the pyramid,
can have a large impact on the final realisation of the product by pruning away a
large part of the design space. For example, in [82] it is shown that wrongly choos-
ing between a time-driven and an event-driven implementation of the control algo-
rithms in a high-tech system, such as an airplane, an industrial plant or a copier, may
strongly influence the performance and/or the cost of the final product in a negative
way. Figure 1.1 visualises how the first exploration of alternatives chooses a solution
that reduces substantially the accessible part of the feasible design space. By fixing
more and more details of the design, the number of reachable feasible solutions is
reduced to, eventually, one, which will be the synthesised product realisation.

The aim of a real-time system design is to fill the gap between requirements and
realisation. Due to the increasing complexity of systems, this gap has widened. Since
a code-centric, trial-and-error approach is too much time-consuming and not effi-
cient for complex systems, designers resort to a multi-phase design process. Consec-
utive design phases are concerned with finding solutions for how to realise (parts
of) the functionality of the system such that the requirements can be satisfied. Pre-
dictability of the design process refers to the capability of making design decisions at
a certain design phase that will hold in later phases as well. Since the early phases
involve little information about the system, it is a challenge to ensure that early de-
sign decisions are valid for the realisation of the system. Between consecutive design
phases, the design process needs to support correctness preservation, ensuring that the
properties at a certain stage are preserved in subsequent stages.

4 Introduction

Figure 1.2: The internals of a complex real-time high-tech system [73]

The design process of real-time systems is made more difficult by two character-
istics that are crucial to these systems: concurrency and timeliness. Figure 1.2 shows
the internals of a large printer/copier machine from Océ Technologies BV, Nether-
lands, which is a complex high-tech real-time system consisting of a large number of
mechanical, electrical and optical components that need to be controlled by software
under different timing requirements. Due to the reactive nature of such systems
and to the intrinsic concurrent nature of the controlled devices in the physical en-
vironment, real-time systems are typically composed of a set of parallel processes.
Although it is possible to design a sequentialised real-time process to control all the
parallel physical components in the environment, such a design would be difficult to
understand, to maintain, to improve or even to extend to a whole family of products.
This is especially true for systems with hundreds of concurrent processes each with
its own functionality, timing constraints and intricate dependencies on other pro-
cesses. Moreover, timeliness is a characteristic that contributes, besides the function-
ality, to the correctness of the system. The dependencies between processes in the
system make very difficult to establish real-time requirements per process. Ensur-
ing that decisions made along the design process preserve and guarantee the timing
properties of a real-time system is of uttermost importance.

1.2 Software/Hardware Engineering

As mentioned earlier, the purpose of design methodologies is to structure the design
process from early phases, by enabling the construction of models suitable for anal-
ysis and exploration of the design space, and towards the system realisation, by as-

Software/Hardware Engineering 5

sisting the synthesis of hardware and software. The Software/Hardware Engineer-
ing (SHE) is a system-level design methodology introduced in [97] and developed
at the Eindhoven University of Technology. The SHE methodology distinguishes a
modelling and analysis phase from a synthesis phase of the final product. The mod-
elling and analysis phase covers the construction and the refinements of models for
the purpose of analysis and exploration of the design space. The synthesis phase is
concerned with the direct transformation of a model into hardware and/or software
components.

1.2.1 Modelling and Analysis Phase

Figure 1.3 depicts the framework for exploring design alternatives with SHE as
shown in [91], which can be applied at different levels of abstraction. The mod-
elling and analysis phase of the design process consists of three stages: formulation,
formalisation and evaluation.

Concepts & Requirements

Informal
Model
(UML)

Required
Properties

(UML or text)

Formal
Model

(POOSL)

Monitors
(POOSL)

Requirements
Satisfied

Formulation

Evaluation

FormalisationValidation Formalisation

Milestone A

Milestone C

Milestone B

F
o

rm
u

la
tio

n
F

o
rm

a
lis

a
tio

n
E

va
lu

a
tio

n

Yes

No

Figure 1.3: The modelling and analysis phase of the design process

The design of a system starts with brainstorm-sessions on concepts for realising
the requested functionality. Additionally, a set of requirements that are to be satisfied
by the final product is identified. The formulation stage is concerned with structuring
this creative process and with documenting the results. SHE uses object-oriented
analysis and design techniques in combination with several guidelines for applying
them in the context of embedded real-time systems [97]. The concepts for realising
the required functionality are formulated in an informal model expressed in the Uni-

6 Introduction

fied Modelling Language (UML) [81]. Moreover, the requirements to be satisfied are
formulated as required properties that represent the design issues to be addressed.
The result of the formulation stage is a structured (but informal and non-executable)
specification of the design concepts and requirements using schematic diagrams, like
UML diagrams, possibly annotated using for example the profile for Schedulability,
Performance and Time [75] or even plain text.

To enable rigorous analysis of real-time systems models, the formalisation stage of
the SHE methodology is concerned with developing formal representations of both
the informal model and the required properties delivered at milestone A. Based on a
UML profile for SHE [90], the informal UML model is formalised into an executable
model expressed in the formally defined Parallel Object-Oriented Specification Lan-
guage (POOSL) [97]. POOSL consists of a small set of very expressive primitives able
to capture concurrency, time, communication, probabilistic distribution and hierar-
chical structure of a system. To formally express the required properties of a system,
real-time temporal logics, such as MTL [59], are used to specify real-time correctness
properties. An example of a correctness property is: if two successive sensors in the
paper path of a copier machine are triggered within 2 ms, the motor that drives the
paper needs to be slowed down with 20%. Moreover, to specify time related per-
formance metrics, such as long-run time-averages, like the expected occupancy of a
buffer in a system, and long-run time variances, like the variance of the occupancy
of a buffer, temporal reward functions [100] are used. Based on this formalisation of
the required performance properties, monitors can be constructed, also in POOSL,
to extend the formal model in such a way that they do not affect the properties of
the system [90]. The term validation in figure 1.3 refers to the process of checking
that the formal model and the monitors properly reflect the informal model and its
required properties. The validated and documented formal model and monitors
represent the deliverables at milestone B.

In the evaluation stage, the properties expressed by the monitors are actually
checked against the formal model. Verification of the correctness properties is based
on the model checking techniques presented in [41], whereas the evaluation of per-
formance metrics relies on Markov chain based analysis techniques as documented
in [90]. Both verification and performance analysis are made possible, as indicated
in figure 1.4, by the formal semantics of POOSL, which is based on a mathematical
structure called timed probabilistic labelled transition system. The formal seman-
tics also enables unambiguous platform-independent simulation of a POOSL model
guided by mathematical rules. Hence, unambiguous results are ensured in case of
both exhaustive and simulation-based analysis. Moreover, the mathematical defi-
nition of the language facilitates the automation of the analysis techniques in tools.
Based on the analysis results, the designer can conclude whether the requirements
are satisfied. If so, the deliverable at milestone C documents the analysis results as
a starting point for more detailed design which will iterate through the steps in fig-
ure 1.3 again. Otherwise, the deliverable C contains the reasons for not satisfying the
requirements and the previous design concepts and requirements need to be revised.

The flow of steps for the modelling and analysis phase is rather general and can
be further detailed depending on the application domain by means of additional
guidelines. An example of such a guideline is the Y-chart approach from [57] that
separates the model of the application from the model of the hardware platform on

Software/Hardware Engineering 7

Formal
Semantics
Timed Probabilistic
Labelled Transition

System

POOSL
Model

Simulation

Formal
Verification

Model Checking

Performance
Analysis
Markov Chain

Property
Preserving Code

Generation

Formal
Semantics
Timed Probabilistic
Labelled Transition

System

POOSL
Model

SimulationSimulationSimulation

Formal
Verification

Model Checking

Formal
Verification

Model Checking

Formal
Verification

Model Checking

Performance
Analysis
Markov Chain

Performance
Analysis
Markov Chain

Performance
Analysis
Markov Chain

Property
Preserving Code

Generation

Correctness
Preserving
Synthesis

Figure 1.4: The influences of the formal semantics of POOSL

which it is executed. In [99] it is shown how this approach can be integrated in the
design flow of SHE. Another example is the set of guidelines given in [90] for ade-
quately extending POOSL models with monitors in order to evaluate various prop-
erties of a system. These guidelines include extending existing object classes with
methods or attributes and creating new object classes to collect and process informa-
tion. However, these guidelines assume rather good knowledge and understanding
of the POOSL modelling language. Additionally, the formalisation stage of SHE is
currently accomplished by hand. Hence, this process is tedious and error-prone.
Therefore, more general guidelines are needed in order to alleviate and ultimately to
automate the formalisation stage of SHE to enable easy and correct construction of
models for real-time systems.

1.2.2 Synthesis Phase

After a number of iterations through the three steps of the modelling and analy-
sis phase, a POOSL model can be refined to a level such that it describes the real-
time system in full functional detail. At this point, the SHE methodology assists
the synthesis of the final implementation according to the flow in figure 1.5. SHE
uses formal correct-by-construction approaches, enabled by the formal semantics of
the POOSL modelling language, to support the synthesis phase of the design pro-
cess. This phase improves the reliability of the implementation and also reduces the
design time by minimising verification and test efforts.

Currently, SHE supports only synthesis of real-time control software on single
processor platforms using the techniques developed in [51] which are enabled by
the formal semantics of POOSL as shown in figure 1.4. The basic idea is to exe-
cute a POOSL model in its real-time environment while interacting with this envi-
ronment. POOSL models are typically closed in the sense that they often include
a representation of the environment of the system. In order to synthesise the con-
trol software, this environment model together with the monitors, which may have
been added previously for the purpose of analysis, must be discarded [51] as seen
in figure 1.5. The interactions between the software model and the environment are

8 Introduction

S
yn

th
es

is

Formal Model (POOSL)

System Environment Monitors

System Interface

Realisation

Figure 1.5: The synthesis phase of the design process

realised through device drivers that are implemented in C++ code. The deliverables
of this phase in the design flow of SHE are the realised system accompanied with
documentation of all interfaces to its environment.

Formally, the synthesis approach is based on a metric that characterises the dis-
tance between a model and its implementation. The required real-time properties
of the system, expressed as MTL [59] formulas and satisfied by the formal model,
are guaranteed to be preserved up to the distance between the model and the imple-
mentation. However, these techniques do not cover the synthesis of software with
data-intensive computations. Moreover, synthesis of software on distributed plat-
forms as well as synthesis of hardware are topics for future research.

1.2.3 Related Research

One of the main industrially applicable approaches for the design of embedded real-
time systems is based on SystemC [54], which is an extension of the C++ language
with classes that enable the modelling of such systems. This extension provides
support for modelling concurrent behaviour, a notion of time-sequenced operations,
extra data types for describing hardware, structural hierarchy and simulation sup-
port. Although this expressive language is largely used in industry and it has been
adopted as an IEEE standard, SystemC does not enable rigorous, mathematically
based analysis and synthesis of models. Hence, a number of design iterations are
typically required to ensure that the final system fulfills the requirements, although
guarantees for this cannot be provided.

In the context of design methodologies, the Unified Modelling Language
(UML) [81] has been adopted as the standard facility for constructing models. UML
has proved to be suitable for modelling functional aspects of a system and extensions
are defined to it to provide a standardised way of denoting timing aspects for real-
time systems [75]. Nevertheless, application of mathematical analysis techniques
remains complicated due to the difficulty of relating formal techniques to UML dia-
grams [50]. Moreover, due to the lack of a standard formal semantics, a clear relation
between the properties of a UML model and of its generated implementation cannot

Software/Hardware Engineering 9

be established. Hence, properties of the system implementation cannot be predicted
from the model.

Based on UML, a couple of approaches to support the design of embedded real-
time systems were developed. As an example, the Real-Time Object-Oriented Mod-
elling (ROOM) method [84] has a platform-dependent semantics and, hence, the sim-
ulation of a model depends on the target platform on which it is executed, and an
accurate analysis of the timing behaviour of a system cannot be performed [53]. The
generation of the software implementation from a ROOM model is based on a vir-
tual machine that runs on top of the target platform. The virtual machine is linked
to a service library to enable the interaction of the model with the environment. Due
to the platform-dependent semantics, it is not possible to predict and to guarantee
appropriately the properties of the final product using this design methodology.

Another UML-based design approach, TAU2 [88] from Telelogic relies on the con-
cept of virtual time whose progress is not directly affected by the progress of the
physical time. In this way, the semantics of real-time systems models is well-defined
in a platform-independent way and enables a reliable way of models analysis. How-
ever, TAU2 does not have a reliable synthesis mechanism to guarantee the preserva-
tion of the model-verified properties in the implementation. During automatic code
generation, the timing expressions rely on an asynchronous timer mechanism pro-
vided by the underlying platform and thus, all expressions referring to some amount
of time will refer to at least that amount of time. Timing errors are accumulated dur-
ing the execution and this leads to timing and even to functional failures [53].

Rhapsody [87], the industry leading model-driven design framework for embed-
ded real-time systems, is another design methodology from Telelogic. Rhapsody is
based on SysML [76], an extension made for UML with the intention to unify the di-
verse modelling languages used in system engineering. Being UML-based, SysML
also lacks the formal semantics, which makes Rhapsody not appropriate for rigorous
analysis and mathematically proved correct synthesis.

As the expressiveness and the formal semantics of the modelling language ap-
pear to be important ingredients for the success of a design methodology for real-
time systems, a number of formal frameworks have been developed based on differ-
ent mathematical structures, such as timed automata [9], time process algebra [71],
real-time calculus [102].

Modular Performance Analysis (MPA) [102] is a design approach based on the
real-time calculus which enables the calculation of hard upper and lower bounds of
the system performance. However, these bounds are in general conservative because
the models are quite abstract and do not cover aspects like probabilistic distribution
in the behaviour of a system. Such an aspect makes the analytical calculation of
performance properties very difficult and time-consuming. Additionally, MPA is
only meant for modelling and analysis phase of the design process, thus it does not
provide the means to derive from a model its corresponding realisation.

TIMES [7] is a methodology for the design of embedded real-time systems based
on timed automata. The important characteristics of real-time systems, such as con-
currency and timing, can be captured in timed automata models which can be rig-
orously analysed. Because the analysis technique is based on exhaustive checking
of all possible behaviours of a system, potential variations in the system behaviour

10 Introduction

are ignored and only worst-case situations are considered. Hence, the scope of this
design methodology is mainly the hard real-time systems domain. When the anal-
ysis results confirm the fulfillment of the system requirements, automatic synthesis
of C-code [12] on a BrickOS [2] platform guarantees the preservation of the model
properties in the implementation.

The examples that we have presented in this section as related research on de-
sign methodologies for embedded real-time systems, for which table 1.1 gives an
overview, show a glimpse of the large effort that has been done in this area. More
examples and a more detailed comparison of design methodologies can be found in
several surveys, such as [104] and [18]. Each design approach has its own strong as
well as weak points, either that they refer to the semantics of the language, to the
possibility of a rigorous analysis, or to the existence of a correctness preserving syn-
thesis mechanism. For these reasons, none of the existing design methodologies has
become the design methodology that offers a complete flow from an idea of a product
to its correct realisation for a large class of real-time systems and in a predictable
way.

SystemC ROOM TAU2 Rhapsody MPA TIMES SHE
Expressivity yes no no no no yes yes

Platform-Independent no no yes yes yes yes yes
Semantics

Formal Semantics no no yes no yes yes yes
Rigorous Analysis no no yes no yes yes yes

Correctness Preserving no no no no - yes yes
Synthesis

Target Realisation C++ C, C++, C, C++ C, C++ - C C++
Language Java Java, Ada

Table 1.1: Overview of several design methodologies

1.3 Problem Statement and Research Contributions

In the beginning of this introductory chapter, we have posed a problem that has been,
as shown in the previous section, the topic of much research in the past years. This
thesis contributes to different aspects of the Software/Hardware Engineering design
methodology to offer the designer a fairly complete design flow, based on formal
methods, that is able to predict and to guarantee both functionality and timing prop-
erties in the realisation of real-time systems under tight time-to-market, cost and
energy consumption constraints. The research contributions brought by this thesis
are the following:

Language-independent modelling patterns. To ensure the correctness and the per-
formance properties of real-time systems, models of such systems should be
derived and evaluated from early phases of the design process. To alleviate
this process, we have developed a set of modelling patterns to enable easy
creation of models for exploration of different design alternatives. The mod-
elling patterns act as parameterisable templates that cover components, such as
tasks, resources, input/output devices, that are typical for a large class of real-
time systems. They enable the modelling of systems according to the Y-chart

Thesis outline 11

approach [57]. These patterns have the potential to be used in any existing de-
sign methodology and we present an implementation of them in POOSL as a
library. The POOSL library of modelling patterns enlarges the set of guidelines
for the use of the SHE methodology in the design of a large class of real-time
systems, covering control-dominated and control with data-intensive compu-
tations systems that can be deployed on RISC-like processors [47].

Automatic model generation. To describe a real-time system in terms of the pat-
terns needed and the values of their parameters, we have designed a Pattern-
based system Description Language (PDL). This language is easy to use and it
does not require knowledge of any of the modelling languages typically used
for analysis of real-time systems. Its main advantage, besides simplicity, is that
it enables automatic generation of models in different modelling languages. In
this thesis, we present a tool that translates a PDL description into a POOSL
model based on the POOSL library of modelling patterns. Due to the expres-
siveness of the POOSL language, appropriate models of real-time systems can
be generated and the analysis techniques associated to the SHE methodology
enable predictions of the properties of the final product realisation as well as
appropriate design decisions making.

Property preservation prediction. To synthesise a model of a real-time system in
a “correct” and “efficient” way, it is important to understand the relation be-
tween the properties of the model and of its corresponding implementation.
The techniques developed in [51] characterise the preservation of properties in
the synthesis phase based on a metric to measure the distance between a model
and its implementation. In this thesis, we propose a mechanism to determine
this distance directly from a model, before actually going through the synthesis
phase of the SHE methodology. This approach has the potential to avoid de-
sign iterations that are caused by successively obtaining large distances during
synthesis.

Correct and efficient real-time model synthesis. To be able to apply the synthesis
phase of the SHE methodology to a larger class of real-time systems, including
those with data-intensive computations, we have refined the metric on which
the techniques presented in [51] are based. The newly defined metric discrim-
inates between what it is observed from the environment of the system and
what it is not. By adopting this discrimination, the model synthesis mech-
anism that we have improved is able to yield real-time software implemen-
tations correctly and efficiently, strongly preserving the properties, for both
control-dominated and control with data-intensive computations systems.

1.4 Thesis outline

This thesis in structured in eight chapters, as shown in figure 1.6.

Chapter 2: Educational Example. An educational example is presented in order to
emphasise the issues in the design of real-time systems.

12 Introduction

3. Pattern-Based
Modelling of

Real-Time
Systems

6. Predictable Real-Time
Systems Synthesis

5. Proximity
Between

Model and
Realisation

4. Analysis
Approach for
Dimensioning
of Real-Time

Systems

1. Introduction

2. Educational Example

7. Case Study

8. Conclusions and Outlook

Figure 1.6: Outline of the thesis

Chapter 3: Pattern-Based Modelling of Real-Time Systems. A set of language-
independent modelling patterns is presented. This chapter is based on the
work entitled “Reusing Real-Time Systems Design Experience Through Mod-
elling Patterns” that won the Best Paper Award at the 9th Forum on Speci-
fication and Design Languages (FDL) [38] and was invited as a book chap-
ter in “Advances in Design and Specification Languages for Embedded Sys-
tems” [39].

Chapter 4: Analysis Approach for Dimensioning of Real-Time Systems. The
analysis approach and the design space exploration of models for real-time
systems are discussed in this chapter based on two realistic case studies.
Earlier results on this topic have been published with the title “Probabilistic
Modelling and Evaluation of Soft Real-Time Embedded Systems” in the pro-
ceedings of the 6th Embedded Computer Systems: Architectures, Modelling,
and Simulation (SAMOS) [33].

Chapter 5: Proximity Between Model and Realisation. This chapter describes an
approach for evaluating the real-time properties of a system and how strong
they can be preserved in the realisation. Earlier work on this topic, “Error
Estimation in Model-Driven Development for Real-Time Software”, has been
published in the proceedings of the 7th Forum on Specification and Design
Languages (FDL) [35].

Chapter 6: Predictable Real-Time Systems Synthesis. Improvements on the effi-
ciency of an existing model synthesis mechanism are discussed in this chap-
ter which is based on some early ideas presented in “Property-Preservation

Thesis outline 13

Synthesis for Unified Control- and Data-Oriented Models”, a chapter in the
book “Applications of Specification and Design Languages for SoCs” [36], and
on the paper “Strengthening Property Preservation in Concurrent Real-Time
Systems” published in the proceedings of the 12th IEEE International Con-
ference on Embedded and Real-Time Computing Systems and Applications
(RTCSA) [34].

Chapter 7: Case Study. A case study illustrating the various steps of our design
methodology and the improvements brought by our contributions is pre-
sented.

Chapter 8: Conclusions and Outlook. Conclusions are drawn in this chapter and
future research ideas, some of which have already been started to be applied
as continuation for this work, are discussed.

In addition, appendix A provides the mathematical foundation for the formalisation
presented in chapter 5.

14 Introduction

2
Educational Example

To illustrate the steps of the model-driven design trajectory of the SHE methodology,
in this chapter we present an educational case study. First, section 2.1 describes
the system and its requirements. Different levels of abstraction of the model of the
system, from a highly abstract to a synthesisable model, are presented in sections 2.2
to 2.5. The summary of the chapter is given in section 2.6.

2.1 Motion Control System Description

The setup of a simple motion control system that is taken as educational case study
is depicted in figure 2.1. The system is made of two rotation units, each driven by a
motor. The velocity of the first motor is changed from time to time while the motor
is running. The second motor runs at constant velocity as long as the first one does
the same. When the velocity of the first motor increases or decreases, so does the
velocity of the second motor. If the velocity of the second motor gets above a certain
limit, this motor stops and the first motor is communicated to do the same. Such a
system is representative, for example, for the control of a part of a printer paper path
where several motors must be controlled concurrently and their velocities, which
depend on one another, must ensure the arrival of the sheets of paper within certain
time frames at certain points.

In the setup of the system, for the interface between the computer that ensures the
control and the motion system, we used a TUeDACS [1] data acquisition system that
couples to the computer via the PCMCIA 20 Mbit/s serial link. It operates in real-
time, without buffering of data, and provides a fast link to the computer. Moreover,
the operating system running on the laptop is RTAI/Fusion Linux [5], a hard real-
time extension to the Linux kernel that provides the features of an industrial-grade

16 Educational Example

real-time operating system, seamlessly accessible from the powerful and sophisti-
cated GNU/Linux environment.

sensors signal

actuator
signal

actuator signal

rotation unit 1

controlinterface

rotation unit 2

Figure 2.1: The setup of the case study

In our setup, each rotation unit is made of two masses connected through a flex-
ible shaft. One mass is excited by a motor, while the other is excited by the rotation
of the first mass via the shaft. The movement of each motor, and accordingly of each
of the first masses, follows a linear law, r(t) = v * t, where the position r is given as a
function of the velocity v and the current time t. The initial velocity of both motors
is 20 rotations/s. When the velocity of the first motor is increased, the velocity of
the second motor doubles its current value. When the velocity of the first motor is
decreased, the velocity of the second motor is decreased with one third of its current
value. If the velocity of the second motor increases to more than 45 rotations/s, then
it stops.

The purpose of this educational case study is to obtain a realisation of the system
in a model-driven way. This realisation must ensure that the velocities of the motors
change as described above and the motors stop when one of them reaches a certain
velocity value. Moreover, the stability of the two rotating devices must be achieved.
The controller of each of the two devices was designed with the help of the control
engineers from the Dynamics and Control Technology group within Eindhoven Uni-
versity of Technology [67]. A sampling frequency of 1000 Hz for the first motor and
of 500 Hz for the second motor were chosen. Based on the work presented in [24], it
could be established that a timing accuracy of 0.1 ms for each controller is sufficient
to guarantee the stability of the closed loop system. Hence, the time interval between
the reading of a sensor signal and the writing to an actuator is [0.9, 1.1] ms for the
first motor and [1.9, 2.1] ms for the second motor.

2.2 High-Level System Model

To model the system, we need to identify its so-called players as it was shown in [52].
In our system, the players are the two rotation units. The first rotation unit starts ro-
tating with some initial velocity, after which the velocity is increased and decreased

High-Level System Model 17

alternatively. The second rotation unit needs to adapt its velocity depending on the
first rotation unit in the following way: it starts with its initial velocity which is dou-
bled when the first unit accelerates or it is reduced with one third when the first unit
decelerates.

Figure 2.2: The high-level model of the case study

A high-level model of the system specified in POOSL using the SHESim en-
vironment is presented in figure 2.2. RotationUnit_1 corresponds to the first
device, whereas RotationUnit_2 corresponds to the second device. Messages
containing information referring to changes in the velocity of the first motor
flow from RotationUnit_1 to RotationUnit_2 along a POOSL communica-
tion channel denoted with velocityChange in the figure. A message is sent by
RotationUnit_2 to RotationUnit_1 along channel stop to notify it when the
second motor stops. The POOSL specification of each of the methods of the two
POOSL processes is given in figures 2.3 and 2.4 respectively.

RotationUnit_1 needs to ensure the rotation of its corresponding motor as
well as to notify RotationUnit_2 about changes of the velocity. Moreover, it must
be able to receive the notification from the second rotation unit when it stops. To
specify this, we use the par-and-rap POOSL statement which indicates which are
the two parallel activities of RotationUnit_1 in the Init method, which is the
initialisation method for process RotationUnit_1.

Each of the activities of RotationUnit_1, Rotate and AcknowledgeStop, is
modelled as a separate method as depicted in figure 2.3. Method Rotate models
the way the velocity of the first motor changes. In a real printer paper path, sensors
would trigger when a sheet of paper passes by a certain position. Because the paper
needs to have a certain timing, it can be detected if it is late or early and the veloc-
ity is increased or decreased respectively to certain values. Because in this simple
example we do not have triggers from sensors, we use a simple scheme of changing
the velocity of the motor: alternation of the two values the velocity can have every 2
units of time that correspond to 2 s. The velocity is first doubled and then halved al-

18 Educational Example

Init()()
v := 20;
par
Rotate()()

and
AcknowledgeStop()()

rap.

Rotate()()
delay 2;
[v != 0] v := v*2;
[v != 0] out!change(v);
delay 2;
[v != 0] v := v/2;
[v != 0] out!change(v);
Rotate()().

AcknowledgeStop()()
in?stop {v := 0}.

Figure 2.3: POOSL specification of the methods of RotationUnit_1

ternatively under the condition that the motor is running. This condition is specified
using the guard [v! = 0] enforcing that the speed is not zero in order to change it. The
specification of method Rotate also shows that each time the velocity is changed, a
message change is sent on the out port if the motor is not stopped. This condition is
implemented using the same guard [v! = 0]. The message contains the new value of
the motor velocity, change(v). Method AcknowledgeStop specifies the waiting
of a message stop. After receiving such a message, the velocity turns to zero, which
means the motor stops running. The call of AcknowledgeStop finishes, whereas
Rotate blocks because the condition of the guard [v! = 0] is false, thus it cannot
proceed. In this way, RotationUnit_1 stops.

Init()()
v := 20;
x_prev := 0;
par
RotateAndChange()()

and
CommunicateStop()()

rap.

RotateAndChange()() | x : Integer |
in?change(x);
if (x_prev < x) then v := v*2
else v := v-v/3
fi;
x_prev := x;
RotateAndChange()().

CommunicateStop()()
[v > 45] out!stop;
v := 0.

Figure 2.4: POOSL specification of the methods of RotationUnit_2

In a similar manner, RotationUnit_2 needs to ensure the rotation of its motor
as well as to get notifications from RotationUnit_1 about changes of the velocity.
Moreover, it must be able to send a notification to the first rotation unit when it stops.
To specify this, we use the par-and-rap POOSL statement which indicates which are
the two parallel activities of RotationUnit_2 as indicated in the specification of
the initialisation method Init.

The POOSL specifications of the methods Init, RotateAndChange and
CommunicateStop are presented in figure 2.4. Method CommunicateStop en-
sures that the moment when the velocity of the second motor increases to a value
larger than 45, a message stop is sent to the first rotation unit and the velocity be-
comes zero, meaning that the motor stops. Method RotateAndChange enables this
second rotation unit to change the velocity of its motor as soon as it is notified that
the first motor changed its velocity. If the velocity of the first motor has increased

Adding Details to the System Model 19

High-level
control

Low-level
control

Figure 2.5: A refined model of RotationUnit_1

from the last communication then the velocity of the second motor doubles its cur-
rent value. If the velocity of the first motor has decreased, the velocity of the second
motor decreases with one third of its current value. The current value of the velocity
of the first motor is kept for later comparison in the instance variable x_prev.

With such a model, it can be analysed if and when the system stops. The analysis
shows that the first motor changes its velocity 3 times and it stops at time 6, which
corresponds to 6 s after the system starts. Moreover, from the model we can also see
that the second motor is able to immediately follow the changes in the velocity of the
first one.

2.3 Adding Details to the System Model

A mechatronic system is built with the contributions of several disciplines: software,
control and mechanical engineering. Each of these disciplines tackles problems re-
lated to different parts of the system. Moreover, they also interact with each other
to fulfill the functionality of the system as a whole. Software engineering mainly
addresses the high-level control of the system, which plans actions for the physi-
cal elements of the system. Control engineering deals with the low-level control
of the system, which derives stable and optimal control algorithms for the physical
elements. Mechanical engineering applies principles of physics to implement the

20 Educational Example

physical elements. When a high-level control unit generates an action for a physical
element, the action is interpreted by a corresponding control algorithm in a low-level
control unit. For example, when a high-level unit issues a command "motor 1: start
to move", this action is actually connected to a low-level control loop which ensures
that the physical motor starts to move according to a predefined motion profile.

To specify the interactions between different disciplines, we use a more detailed
model. For design consistency, the detailed model is obtained by enhancing the
high-level model of the system discussed in section 2.2, but by keeping the same
observable behaviour. In this way the properties analysed for the high-level model
can be preserved in the detailed model. A refinement of the model is built by split-
ting each of the players in two kinds of processes which correspond to the high-level
control and the low-level control, as it was shown in [52]. The refinement of the
RotationUnit_1 is depicted in figure 2.5. To simplify the analysis of the inter-
actions between different disciplines, the behaviour of the low-level control unit is
specified at a discrete event level of abstraction. This allows the major interactions
between disciplines to be analysed in a simple model. Moreover, the model provides
also a framework for later integration of the continuous time behaviour in a straight-
forward way. In the rest of this section, we use RotationUnit_1 to illustrate the
refinement of the model.

Init()()
v := 20;
motor!start(v);
par
Rotate()()

and
AcknowledgeStop()()

rap.

Rotate()()
delay 2;
[v != 0] v := v*2;
[v != 0] out!change(v);
[v != 0] motor!continueWith(v);
delay 2;
[v != 0] v := v/2;
[v != 0] out!change(v);
[v != 0] motor!continueWith(v);
Rotate()().

AcknowledgeStop()()
in?stop {v := 0};
motor!stop.

Figure 2.6: POOSL specification of the Rotation behaviour in RotationUnit_1

The refined model of RotationUnit_1, depicted in figure 2.5, contains the
Rotation POOSL process, which models the high-level control, and the Motor
POOSL process, which models the low-level control. The behaviour of Rotation
is an extension of the behaviour of RotationUnit_1 that was presented in fig-
ure 2.3 by adding the interactions to the other disciplines. The refinements of
RotationUnit_1 process, as shown in figure 2.6, are made to all its methods.
In method Init, a message start is sent to the low-level control on port motor
to start the rotation of the motor. In Rotate, a continueWith command is sent
to the low-level control when the motor needs to change its velocity, whereas in
AcknowledgeStop, a message stop is sent when the motor has to stop.

The low-level control is modelled with the Motor process, whose methods spec-
ifications are depicted in figure 2.7. The Init method starts with the receiving of a
start message containing the velocity with which the motor should start rotating.
The discrete event behaviour of the low-level control of the motor is modelled by

A More Detailed Model of the System 21

Init()() |x : Integer|
motor?start(x);
v := x;
DiscreteBehaviour()().

DiscreteBehaviour()() |x : Integer|
sel
motor?stop;
v := 0;

or
motor?continueWith(x);
v := x;
DiscreteBehaviour()()

les.

Figure 2.7: POOSL specification of the Motor behaviour in RotationUnit_1

method DiscreteBehaviour which either receives a stop message and stops the
motor, or receives messages of continuation, continueWith, containing the value
of the velocity the motor should have.

2.4 A More Detailed Model of the System

In the first two stages of the modelling activity, we could only reason about the qual-
itative properties of the system which are the fact that the motors change their ve-
locities one based on the other and that the system stops eventually. Since timing
information is present in the model of the high-level control units, we could also
analyse at what moment in time the system stops, as shown in section 2.2. However,
we also need to analyse the stability of the system. Therefore, the continuous time
behaviour of the system is of interest to our analysis and hence, we need to incor-
porate timing information for the low-level control and to reason about the timing
properties satisfied by the model.

The timing information for the low-level control is added by incorporating the
control loop into the model. The control loop is a periodic activity that is needed for
controlling the physical device, the actual motor. To specify the interactions between
the low-level control and the physical device, we refine the model of the system by
splitting each rotation unit into three kinds of processes corresponding to the high-
level control, the low-level control and the physical device. Figure 2.8 depicts the
refined model of RotationUnit_1 containing Rotation, the high-level controller
whose behaviour remains unchanged, Motor, the low-level controller to which we
add the control loop, and MotorActor, the physical device. Since the physical de-
vice will not be synthesised as software and to simplify the analysis, its behaviour is
specified at a discrete event level of abstraction.

The Motor process describing the low-level control unit incorporates the contin-
uous time behaviour by specifying a separate activity, ContinuousBehaviour, in
parallel with the discrete one, DiscreteBehaviour, as shown in figure 2.9. The
process method ContinuousBehaviour models the control loop and the interac-
tion of the low-level controller with the physical device. Typically, the body of a
control loop contains the reading of the current position of the encoder of the mo-
tor, some calculations based on the value read which are meant to compensate for
the error that occurred, a delay until the next period of time, and the sending of
the position correction information to the actuator of the motor. As it can be seen
in figure 2.9, we have grouped together in method FeedbackController all the

22 Educational Example

High-level
control

Low-level
control

Physical
device

Figure 2.8: A more detailed model of RotationUnit_1

activities that take place in a period of time, which are the writing of the previously
calculated value, the reading of a new value and the control algorithm, and we used
the par-and-rap POOSL statement to denote that exactly after a period of time equal
to 0.001 s this behaviour repeats. Since this model emphasised the structure of a
typical periodic task in real-time systems, this specification represents a modelling
pattern for periodic tasks. A set of such modelling patterns for different types of
tasks as well as resources of real-time systems is presented in chapter 3.

Control algorithms are typically designed using commercial tools, such as
Simulink [89] and 20-sim [6]. To provide a natural integration of them in the de-
tailed model of a system specified in POOSL, they are represented by data methods.
Later on, these methods will be replaced by actual algorithms during system synthe-
sis. To model the communication to the physical device for reading the encoder and
writing to the actuator of the motor, read and write messages are exchanged over
the control channel that connects Motor and MotorActor processes. Method
controlAlgorithm(position,v) of the data object motor, which is instanti-
ated in the Init method, models the control algorithm that calculates the compen-
sation of the error in the rotation of the motor. The value of the delay that elapses
before the correction information is sent to the motor represents the period of the
control loop that was designed by the control engineers to ensure the control stabil-
ity.

The physical device, the actual motor that is rotating, is modelled by

A More Detailed Model of the System 23

Init()()
motor?start(x);
v := x;
calculated_position := 0.0;
motor := new MotorController();
par
DiscreteBehaviour()()

and
ContinuousBehaviour()()

rap.

DiscreteBehaviour()() |x : Integer|
sel
motor?stop;
v := 0;

or
motor?continueWith(x);
v := x;
DiscreteBehaviour()()

les.

ContinuousBehaviour()()
par
FeedbackController();

and
delay 0.001;
ContinuousBehaviour()()

rap.

FeedbackController()() |position : Real|
ctrl!write(calculated_position);
ctrl?read(position);
calculated_position := motor controlAlgorithm(position, v).

Figure 2.9: POOSL specification of the Motor behaviour in the detailed model

Init()()
position := 0.0;
Run()().

Run()() |new_position, position : Real|
ctrl?write(new_position);
position := new_position;
ctrl!read(position);
Run()().

Figure 2.10: POOSL specification of the MotorActor behaviour

MotorActor POOSL process, presented in figure 2.10, which is a discrete event
approximation of the actual behaviour of the motor. MotorActor receives from the
low-level controller messages on port ctrl containing correction data for its posi-
tion, ctrl?write(new_position), and is able to send back messages containing
its current position, ctrl!read(position). Since the model of the MotorActor
will not be synthesised in software, we specified it in a very simple way such that
we can analyse the interactions with the low-level controller.

With such a model of the system, which contains timing information, it can be
analysed which actions are taken at which moments in time. For example, we can
determine the time interval between the reading from and the writing to a physical
device, which is 1 ms for the first rotation unit and 2 ms for the second rotation unit,
satisfying the timing requirements for the stability of the system. Since the actions
specified in the model do not take model time, it would be interesting to determine
how large the inevitable time deviation between the model and its realisation on a
target platform would be. Chapter 5 presents how the value of the time deviation
can be calculated from a model based on the values of the worst-case execution times
of all its actions on the desired target platform. By determining the value of the time
deviation from the model, we can predict how well the realisation of the system
will preserve the properties analysed in the model. Nevertheless, we can also gener-
ate the realisation and measure its time deviation directly on the target platform to
check if the requirements of the system are satisfied by the realisation, as we show
in section 2.5.

24 Educational Example

Depending on the requirements of the system, it might be that for some real-time
systems other properties might also be interesting to analyse. For example, if dead-
lines are specified for each task, then the schedulability of the system needs to be
analysed in order to check if all tasks meet their respective deadlines. In chapter 4,
we present an approach for analysing different timing aspects of a system, such as
schedulability, end-to-end delay, task jitter, based on which an appropriate dimen-
sioning of its target platform can be looked for.

2.5 Synthesis Model of the System

When the model has sufficiently many details describing the behaviour of a system,
it is desirable to directly generate from such a model its implementation that can
run on a certain target platform. This implementation is important to have the same
properties as those analysed in the model. As we can only generate the implemen-
tation of that part of the model that represents the software, those parts of the model
that represent anything else but software are removed from the model, as shown in
figure 2.11.

Figure 2.11: The synthesis model of RotationUnit_1

The interactions between software and the other disciplines, which represent its
environment, need to be replaced with the actual implementation of the commu-
nication between them. In our motion control system, this communication is rep-
resented by the reading of data from the encoder of a motor, data needed by the
control algorithm to calculate the correction data, and the writing of the correction
data to the actuator of the motor. The reading is modelled in the continuous be-
haviour of the Motor process as receiving a message on the control channel from
the MotorActor process, whereas the writing is modelled as sending a message
along the same channel. As the environment of the software is removed from the
model, MotorActor is no longer present, hence the control channel is also not

Synthesis Model of the System 25

Init()()
motor?start(x);
v := x;
calculated_position := 0.0;
motor := new MotorController();
par
DiscreteBehaviour()()

and
ContinuousBehaviour(0.0)()

rap.

DiscreteBehaviour()() |x : Integer|
sel
motor?stop;
v := 0;

or
motor?continueWith(x);
v := x;
DiscreteBehaviour()()

les.

ContinuousBehaviour()()
par
FeedbackController();

and
delay 0.001;
ContinuousBehaviour()()

rap.

FeedbackController()() |position : Real|
motor write(calculated_position);
motor read(position);
calculated_position := motor controlAlgorithm(position, v).

Figure 2.12: POOSL specification of the Motor behaviour in the synthesis model

present. The communication to the physical device is replaced in the Motor pro-
cess with calls to data methods as shown in figure 2.12. During synthesis, these data
methods will be replaced by C++ functions, so-called primitive methods, that can be
invoked from the C++ code derived from the POOSL model. The C++ implementa-
tion of the primitive method corresponding to the action of writing to the actuator
is provided in figure 2.13. Besides the communication to the environment, the con-
trol algorithms that have been developed using tools specific to the control systems
domain are now inserted in the synthesis model as primitive methods as well.

void WRITE (PD_DAS *pd)
{

/* write the data to the actuator via TUeDACS API */
TD_DAC_WRITE_CHAN(pd–>u , pd–>channel , pd–>link , TD_DIRECT);

}

Figure 2.13: The C++ implementation of the data method WRITE

For the interface between the computer, which is running a 1.4 GHz PentiumM
processor, and the motion system, we used a TUeDACS [1] data acquisition sys-
tem that couples to the computer via the PCMCIA 20 Mbit/s serial link. It operates
in real-time, without buffering of data, and provides a fast link to the computer.
Moreover, the operating system running on the laptop is RTAI/Fusion Linux [5], a
hard-real-time extension to the Linux kernel.

By using Rotalumis-RT, the tool for code generation from POOSL models, C++
code is synthesised from the model and it is linked to its corresponding primitive
methods. As a model is an abstract representation of a system, actions are con-
sidered instantaneous, whereas in reality they cannot be like that. Therefore, some
deviations with respect to timing occur between a model and its realisation. Mea-
surements of the generated implementation of our case study showed a maximum

26 Educational Example

deviation of 0.221 ms from the model. Figure 2.14 shows how the measured time
deviation is used to determine the time interval between the reading of the encoder
and the writing to the actuator, which is [0.558., 1.442] ms for the first motor and
[1.558, 2.442] ms for the second motor. This deviation does not comply with the tim-
ing accuracy with which the control algorithms have been designed. Hence, this
realisation cannot ensure the stability of the control of the physical devices.

To avoid the trouble of synthesising a model and discovering that its realisation
does not satisfy the timing requirements of the system, in chapter 5 we present an an-
alytical approach for determining the time deviation before synthesising the model.
As this time deviation is computed directly from the model, this approach can save
design cycles by avoiding designers to get into the trouble of actually building a
wrong system. If the time deviation is too large such that the realisation of the sys-
tem cannot satisfy the timing requirements, changes of the model can be made, e.g.
choosing a faster processor, and the time deviation is calculated again. This proce-
dure is repeated until the obtained time deviation ensures that the realisation of the
system satisfies the requirements.

In the analytical approach for determining the time deviation between model and
realisation presented in chapter 5, no distinction is made between the actions per-
formed by the system. A system usually has two types of actions: observable actions,
which are actions that a user can “see” by interacting with the system, and unobserv-
able actions, which are actions internal to the system that a user cannot “see”. For
example, in the simple motion control system considered here as an educational ex-
ample, the observable actions are the reading of the encoders and the writing to the ac-
tuators, whereas all the other activities of the system are unobservable actions. Chap-
ter 6 presents an improvement of the synthesis mechanism based on the discrimina-
tion between observable and unobservable actions in a system. This improvement is
achieved by imposing higher priority on the execution of the observable actions over
the unobservable ones. Correspondingly, the analytical approach for computing the
time deviation before synthesising the model can give smaller values, whereas the
code generation tool based on this mechanism is able to decrease the time deviation
between model and realisation. Using this improved synthesis technique, which will
be explained in detail in chapter 6, the time deviation for the motion control system
decreased to 0.037 ms. This value ensures that the time interval between the reading
of a sensor signal and the writing to an actuator is [0.926, 1.074] ms for the first mo-
tor and [1.926, 2.074] ms for the second motor, satisfying the timing requirements for
stability.

t1 t2t1-d t2-dt1+d t2+d

Time

t2-t1+2*d

t2-t1-2*d

Figure 2.14: The influence of a time deviation of d units of time on the time interval
between two actions that occur at t1, respectively at t2 in the model

Summary 27

2.6 Summary

This chapter has presented a simple case study to illustrate the steps taken in the
model-driven design trajectory of the SHE methodology. Moreover, we have pointed
out the contributions of this thesis, their position along the trajectory and their mo-
tivation. The approach starts with a simple, abstract model of the system, which is
gradually refined until a complete specification that meets the requirements of the
system is obtained. Using a code generation tool, C++ code is synthesised and exe-
cuted on the target platform.

28 Educational Example

3
Pattern-Based Modelling of Real-Time

Systems

Conservative assumptions about systems, e.g. that each task runs for its worst-case
execution time, are suitable when analysing hard real-time systems. However, they
are often too restrictive when analysing soft real-time systems as they lead to over-
dimensioned and expensive products. For these systems a certain percentage of
deadline misses is usually affordable. Hence, instead of a binary answer regard-
ing the schedulability of such a system, a more interesting metric is the degree to
which the system meets the timing requirements. For this, an appropriate model
that expresses realistically the behaviour of a soft real-time system, including all
its possible variations, should be built and analysed. In this chapter, we present
a modelling approach that is suitable for both hard and soft real-time systems in
the areas of control-dominated and control with data-intensive computations appli-
cations. This modelling approach enables analysis of both schedulability for hard
real-time systems as well as the degree to which the timing requirements are met for
soft real-time systems.

Furthermore, to alleviate the process of modelling, we also present a set of
language-independent modelling patterns to enable easy creation of models suited
for design space exploration. The modelling patterns cover typical system compo-
nents as they are considered in classical scheduling theory, such as different types
of tasks, resources, input event generators, and output collectors. The easiness of
the modelling process is ensured by the Pattern-based system Description Language
(PDL) that enables a textual specification of a system in terms of its components and
their parameters.

This chapter is organised as follows. Section 3.1 introduces the issues of the cur-
rently used modelling approaches for real-time systems. Related research work is

30 Pattern-Based Modelling of Real-Time Systems

discussed in section 3.2. The set of modelling patterns that we developed is intro-
duced in section 3.3. Section 3.4 is a brief presentation of the UML profile for POOSL
modelling language that will be used throughout the chapter, whereas section 3.5
presents each pattern and its POOSL implementation. The PDL language and the
construction of a model from the patterns are discussed in section 3.6. A summary
of the chapter is given in section 3.7.

3.1 Modelling Approaches for Real-Time Systems

Research in the area of real-time systems has emerged from the need to design, anal-
yse and predict the behaviour of safety critical applications as power plant control,
aircraft control or accurate printer/copier machines [65], [20]. Hence, most of the
work has focussed on hard real-time systems analysis to ensure that no timing re-
quirement is broken as this might have catastrophic consequences. The way to meet
all the timing requirements and thus, to ensure that the system is schedulable, is to
make conservative assumptions about the system, e.g. that each task runs for its
worst-case execution time. However, these assumptions are too conservative for soft
real-time systems, which are considered to run correctly even if some timing require-
ments are occasionally broken [21]. For systems like audio and video encoders, it is
more interesting to know the degree to which a system meets its timing requirements
rather than the binary answer that the system is schedulable or not.

The most common, industrially applied, approach for the design of soft real-time
systems is to consider the system as having hard constraints and to analyse its worst-
case behaviour, such as shown in [102]. This approach is usually taken because the
analysis techniques for hard real-time systems are very well established and widely
known. Its obvious drawback is that it leads to an over-dimensioned and expen-
sive product. Another approach is to distinguish among the tasks of the system the
“more important” from the “less important” ones. The level of importance of a task
is usually given by its occurrence rate or by the nature of the tasks in the system that
depend on it. In such a system, high priorities are assigned to the important tasks
and low priorities to the less important ones, whereas the execution time of each
task is assumed to be constant and equal to its worst-case value [20]. This approach
ensures the schedulability of the important tasks while providing good average re-
sponse times for the less important ones. The main reason for both these approaches
of not being suitable for soft real-time systems is that they cannot properly take into
account all kinds of variations and that they always assume worst-case situations.

Usually, the execution time of a task depends on a large number of factors. For
example, the amount of input data to be processed in a task at a time determines
the instruction load imposed on the platform by the task at that time. Moreover, the
amount and type of data may vary, as it is for example the case for differently coded
MP3 audio samples, as well as the data occurrence rate, such as input events trig-
gered by sensors placed in the environment. All these varying factors introduce vari-
ation in the execution time of the task. Another factor that influences the task execu-
tion time is the type and throughput of the processing unit on which the task runs.
Additionally, cache memory behaviour, pipeline stalls, network load and operat-
ing system overhead are other platform-dependent influencing factors that may also

Modelling Approaches for Real-Time Systems 31

vary. Considering the intricate influences of all these factors on the execution time of
a task, an analysis based on the worst-case behaviour leads to an over-dimensioned
and expensive system a customer might not want to pay for [86]. For instance, a
consumer might prefer to purchase a $50 video player that happens to drop single
frames under rare circumstances over a $200 system verified and certified never to
drop frames.

Based on the general-purpose formally defined modelling language POOSL, we
present in this chapter a modelling approach which is appropriate for both hard and
soft real-time systems. Thanks to the expressiveness of the language, many of the
possible variations that may occur in a real-time system can be taken into account,
such as for example the tasks input data, which can be modelled to be periodic or
sporadic, with or without jitter, the instruction load, described with an arbitrary
probability distribution function, as well as the platform-dependent factors. A model
with fixed, worst-case values, is a special case of the stochastic model that we present
here. Although an analysis approach based on a worst-case situation model yields
a product that is guaranteed to fulfil all the timing requirements, it is likely that
the product is expensive and the occurrence of its worst-case behaviour has a small
probability. When the timing requirements are not hard, it is more appropriate to
consider for analysis a model of the realistic, average case behaviour of the system,
which may lead to a cheaper architecture.

Additionally, based on the observation that system models are built from simi-
lar components, in this chapter we present an easy way to build models that enable
the exploration of the design space of real-time systems. The easiness of model con-
struction is achieved by using a set of modelling patterns. These patterns represent a
simple and highly abstract way to specify parameterisable components of real-time
systems. The idea of deriving patterns was driven by the fact that real-time systems
are composed from typical components like tasks, resources and input/output de-
vices. Each time the design of a new product starts, such commonly encountered
components are designed from scratch although similar systems were developed in
the past. The modelling patterns represent frozen knowledge derived from past ex-
perience. They give guidance to build models for new systems and alleviate the
modelling process.

Library of
modelling
patterns

PDL
system
model

Generated model
for analysis

Generate
model

Figure 3.1: Pattern-based model generation

To enable easy use of the patterns we conceived the Pattern-based system De-
scription Language (PDL) to specify models based on the modelling patterns. This

32 Pattern-Based Modelling of Real-Time Systems

language is independent from the target modelling language and lets one indicate
the patterns that are needed to develop a system model and the values of their pa-
rameters. Based on an implementation of the modelling patterns in a certain target
language and the PDL specification of a system, a model aimed for analysis can be
automatically generated in that target modelling language as shown in figure 3.1.

3.2 Related Research

The concept of patterns has been long known as solutions to commonly encountered
design problems. The famous publication on design patterns [40] discusses software
design patterns, focussing for example on how to create a factory of objects, or how
to iterate over a set of elements. With the development of real-time systems, design
patterns were also needed for dealing with issues like concurrency, resource sharing,
or distribution, which are discussed in [28]. In a similar manner, modelling patterns
are solutions for modelling commonly encountered system components. As an ex-
ample, in [45], the authors propose such patterns to deal with the complexity of Petri
nets models of systems by reusing structures expressing expert modelling experience
at a higher level of abstraction than the basic elements.

The patterns presented in this chapter alleviate the process of modelling embed-
ded real-time systems. Each of the typical components of these systems, such as
tasks, schedulers and resources, is characterised by a set of parameters that capture
its important aspects as they are perceived in classical scheduling theory [20]. For
each such component we have developed a pattern which is a parameterisable tem-
plate. In this chapter we present an implementation of these patterns in the formally
defined modelling language POOSL.

Models of embedded systems are built to analyse their properties and to make
design decisions. Analysis of system models is hence an important phase in the de-
sign of a new product. The use of techniques for performance analysis and design
space exploration enables prediction about the properties of the final product and
of the meeting of its requirements. In the past decades, an impressive amount of
work has been carried out in the area of schedulability analysis for meeting hard
real-time requirements (e.g. [65], [20], [17]) focussing on worst-case execution and
making conservative assumptions about the system. However, as it is also shown
in [90] and [66], not so much work addresses the analysis of systems which are still
considered correct even with occasional failures of meeting some timing require-
ments.

To make models more suitable for systems with less restrictive timing constraints,
in [21] the authors propose an elastic task model that enables tasks with periodic
behaviour to change their execution rate to provide different quality of service. Al-
though this is a relaxation from the Liu and Layland [65] type of model, systems
typically exhibit more variations than just in their execution rate. Moreover, the pe-
riodic task model is not suitable for systems that are triggered by events from the
environment as these are aperiodic by nature.

In [13], the authors extend the classical rate monotonic scheduling policy of [65]
with an admittance controller to handle tasks with stochastic execution times. Their

Related Research 33

approach is limited though to rate monotonic analysis and assumes the presence of
an admission controller at run-time. In [8], the focus is on how to schedule both hard
and soft real-time tasks on the same processor. The performance analysis method
proposed there is used for assessing the constant bandwidth server scheduling pol-
icy and is restricted to the scope of their assumptions (uni-processor architecture,
constant bandwidth server scheduling policy and combined hard and soft real-time
tasks with stochastic parameters).

In [61], Lehoczky models task sets as a Markovian process. The advantage of
this approach is that it is applicable to arbitrary scheduling policies. The process
state space is the vector of lead-time (the time left until the deadline). Because this
space is potentially infinite, the author analyses it in heavy traffic conditions, which
reduces the state space. However, the heavy traffic theory fails to apply smoothly
to real-time systems. One of the causes is that the heavy traffic phenomenon can be
observed only for processor load close to 1, which leads to large (infinite) queues of
ready tasks and to systems with large latency. This leads to a large deadline miss
ratio and limits the applicability of such an approach in real-time systems.

In [58], the authors considered applications implemented on multi-processor
platforms and modelled them as queueing networks. The underlying mathematical
model is the continuous time Markov chain. The authors restrict the task execution
times to exponentially distributed ones which reduces the complexity of the analysis.
The tasks are considered to be scheduled according to a FIFO policy.

In [66], the authors present an analytical approach for obtaining the expected
deadline miss ratio of an application. Considering that task execution times are
given as generalised probability distribution functions, their approach is limited to
periodic tasks, uni-processor architectures and non-preemptive scheduling policies.

The analysis techniques discussed so far are based on analytical computation of
the performance of a system and they are exhaustive in the sense that all possible
behaviours of the system are taken into account. To avoid the state space explosion
problem, the models they can handle have a number of restrictions as it was shown:
either the tasks are periodic, or their execution times are exponentially distributed, or
the scheduling is limited to a certain policy. For this reason, these techniques target
specific applications and are not suitable for a larger class of systems that include
soft real-time systems as well.

On the other hand, there are also analysis techniques based on simulation of mod-
els. They allow the investigation of a limited number of all the possible behaviours
of the system. To be able to interpret the results obtained, the simulation-based tech-
niques typically require their models to be amenable to mathematical analysis as it
is shown in [90]. An example of such a simulation method is Spade [64] that uses
Kahn process networks [55] which is a timeless computational model suitable for
media-processing application domain. A separate model of the target architecture
is built based on a library of generic parameterisable building blocks. The applica-
tion and the architecture models are co-simulated using the trace-driven simulation
technique and performance metrics are collected. These metrics include resources
utilisations, amount of workload on processors, number of deadlines missed, or
amount of data to be transferred over the busses. Different mappings of applica-
tion onto architecture may yield different results and the best mapping and the most

34 Pattern-Based Modelling of Real-Time Systems

suitable architecture can be chosen. Nevertheless, in this methodology, as well as
in other related methodologies like Artemis [77] and Pamela [98], the model of the
system is deterministic and assumes worst-case execution times of tasks in the ap-
plication model. Possible run-time variations caused by cache and pipeline effects
or operating system overhead, as well as data-dependent execution time of tasks are
abstracted from. Hence, over-dimensioning of the system might occur because of
these reasons. A similar modelling approach is taken in Metropolis [15] which is a
system design environment based on a meta-model with formal semantics that en-
ables simulation, formal analysis and synthesis of models. A separate specification,
which abstracts from time, of the functional and architecture models is realised and
the mapping between the two enables analysis of performance metrics. Aspects like
timing or energy consumption are analysed based on annotations of events that oc-
cur in the system. As these annotations are fixed, variations of various aspects of the
model caused by input jitter, system latencies or operating system overhead cannot
be taken into account.

To overcome the above restrictions, we propose a modelling approach that en-
ables construction of realistic models applicable to a large class of systems and which
is based on the concepts of the formally defined modelling language POOSL [78].
Both periodic and event-driven tasks can be modelled such that their execution times
may depend on the input data according to a given probability distribution, which
can be selected from normal, uniform, discrete, exponential and Bernoulli distribu-
tions. Moreover, any scheduling policy, from both preemptive and non-preemptive
categories, can be chosen for scheduling tasks onto the resources of the target multi-
processor architecture. The variations in the execution times of tasks caused by cache
or pipeline effects, or operating system overhead, can also be taken into account. As
the application area for this type of modelling includes embedded systems that in-
teract with physical devices, the environment is modelled as an approximation of its
continuous time behaviour. Due to the semantics of the language, analytical com-
putation of the properties of a real-time system is possible [90]. However, the type of
models that we shall present, though compact, incorporate stochasticity. Next to the
traditional state space explosion problem, this is an additional reason for which the
exhaustive analysis is sacrificed in favour of simulation-based estimations. Never-
theless, the accuracy of the obtained results can be determined.

3.3 The Library of Modelling Patterns

One of the approaches for modelling a real-time system in order to analyse its
performance and to explore its design space is the Y-chart scheme, introduced
in [57]. This scheme makes a distinction between applications (the required func-
tional behaviour) and platforms (the infrastructure used to perform this functional
behaviour). Moreover, as real-time systems are typically reactive systems, mean-
ing that there is a continuous interaction with the outside world, in [37] we added
the model of the environment to the Y-chart scheme, as depicted in figure 3.2. The
design space can be explored by evaluating different mappings of application onto
platform.

To reduce the amount of time needed to construct models for design space ex-

The Library of Modelling Patterns 35

Application
model

Platform
model

Mapping

Analysis

Modify
application

Modify
platform

Modify
mapping

Environment
model

Figure 3.2: Y-chart scheme

ploration of real-time systems, we propose a set of modelling patterns that are highly
abstract models of components commonly encountered in such systems. Such com-
ponents are: tasks, resources and input/output devices. Each component is charac-
terised by a set of parameters. These patterns enable the specification of a system
by indicating what its components and the values of their parameters are, indepen-
dent of a target modelling language. Moreover, the patterns allow automatic gen-
eration of a model into a specific language provided an implementation of them in
that language, enabling the analysis of the system to benefit from the strengths of
the techniques associated to that particular language. The modelling patterns act
like templates that can be applied in many different situations by setting the appro-
priate values of their parameters. These modelling patterns emerged from previous
experience with modelling of real-time systems (see [37], [32], [96]). The library of
patterns contains templates for different types of tasks, resources, schedulers and
input and output devices, which are presented in table 3.1 and reflect the modelling
approach assumed by the classical scheduling analysis [20]. The table shows the Y-
chart component to which each of these patterns belongs, the name of the pattern
and its parameters. A description of each of the modelling patterns and their param-
eters is given in section 3.5 together with their implementation in POOSL.

Periodic Input
Event Generator

Aperiodic
Task

Output
Collector

Mapping
Monitor

Scheduler

Resource
Energy
Monitor

Aperiodic
Task

Figure 3.3: Example of system model built from patterns and their interconnections

As an example of how the patterns are used for modelling a real-time system,
a simplified version of a radio system in which a user turns a knob to change the
audio volume is considered. Figure 3.3 shows the modelling patterns required to
model the system and their interconnections. The application part is made of two
tasks that are supposed to handle the events coming from the environment and to
ensure the changing in the volume. The tasks are mapped onto a resource and they
are dispatched on it by a scheduler. The patterns used for modelling the system are:

36 Pattern-Based Modelling of Real-Time Systems

System Pattern Name Parameters Names and Explanations
Application Periodic Task T period

Model D deadline
Offset initial offset
BCLoad best-case processor load
WCLoad worst-case processor load
LoadDistrib load distribution
Iterations number of execution iterations
Priority task priority
Latency activation latency
OutEvent output to another task

Aperiodic Task Trigger triggering event
D deadline
BCLoad best-case processor load
WCLoad worst-case processor load
LoadDistrib load distribution
Priority task priority
Latency activation latency
OutEvent output to another task

Platform Computation/Communication Throughput bits/intructions per time unit
Model Resource InitialLatency latency induced by platform effects

FixedLatency if the latency has a fibed value or not
IdlePower idle power consumption
NominalPower nominal power consumption
Monitored the energy is monitored or not

Scheduler Policy scheduling policy
Monitored the scheduling is monitored or not

Mapping Monitor Accuracy analysis desired accuracy
Energy Monitor -

Environment Periodic Input Type event type
Model Event Generator Size bit size of the generated information

T generation period
Offset initial offset
Jitter maximum jitter

Sporadic Input Type event type
Event Generator Size bit size of the generated information

Stream generation distribution
LowT lower-bound of the distribution
UpT upper-bound of the distribution

Output Collector Type accepted event type
Accuracy analysis desired accuracy

Table 3.1: Modelling patterns

• a periodic input event generator that models the knob;

• two communicating aperiodic tasks, one triggered by the events from the en-
vironment and the second one sending the output to the environment;

• an output collector that models the speaker from which the user can notice the
changes in the audio volume;

• a scheduler to dispatch the ready task onto the resource;

• a mapping monitor to analyse the schedulability of the system;

• a resource on which the application runs;

• an energy monitor to analyse the energy consumption.

The arrows in the picture indicate the interconnections of the components in the
model in order to analyse various properties such as schedulability, deadline miss
ratio, or energy consumption.

To enable an easy specification of a model in terms of the patterns needed, inde-
pendent of a target modelling language, we have developed the Pattern-based sys-
tem Description Language (PDL). This language is based on the Extensible Markup

UML Profile for POOSL Modelling Language 37

<system>
<environment>

<PeriodicInputEvent Name="KNOB” Type="KNOB” Size=”1” T=”1/32" Offset=”0" Jitter=”0">
<OutputCollector Name="SPEAKER” Type="EVENT” Accuracy=”0.95">

</environment>
<application>

<AperiodicTask Name="TASK1" Trigger=”KNOB” D="6" BCLoad=”90" WCLoad=”110"
LoadDistrib=”Uniform” Priority=”1" Latency=”0.1" OutEvent=”EVENT”>

<AperiodicTask Name="TASK2" Trigger=”EVENT” D="6" BCLoad="90" WCLoad=”120"
LoadDistrib=”Uniform” Priority=”2" Latency=”0.2" OutEvent=”EVENT”>

</application>
<platform>

<Resource Name="CPU" InitialLatency="0.1" FixedLatency= “false” Throughput="1000"
IdlePower=”0" NominalPower=”0.0069” Monitored=”true”>

<Scheduler Policy=”EDF" Monitored=”true”>
<MappingMonitor Accuracy=”0.95">

</Resource>
</platform>
<mapping>

<map TaskName="TASK1" ResourceName="CPU">
<map TaskName="TASK2" ResourceName="CPU">

</mapping>
</system>

Figure 3.4: PDL specification of the simplified radio system

Language (XML) [4] notation to indicate which are the necessary patterns for mod-
elling the system and to set their parameters. The structure and the semantics of the
XML file is based on the Y-chart scheme parts, environment, application, platform
and mapping as it can be seen in figure 3.4 that shows the PDL model of the simpli-
fied version of the radio. The semantics of the language is explained in more detail
in section 3.6.

Besides the fact that the modelling patterns encapsulate experience with mod-
elling of real-time systems that can be used in future products development, they
also offer the access of designers to modelling languages and analysis tools and tech-
niques with which they do not have much experience. The modelling patterns can
be implemented in different modelling languages and provided an automatic model
generation tool, a designer can benefit from the expressiveness of that language and
the strengths of its analysis techniques in the design of the product.

3.4 UML Profile for POOSL Modelling Language

The Parallel Object-Oriented Specification Language (POOSL) lies at the core of the
Software/Hardware Engineering (SHE) system-level design methodology. Intro-
duced in [97] as an object-oriented extension of the Calculus of Communicating Sys-
tems (CCS) [68], POOSL has been later extended with real-time in [41] and probabil-
ities in [93] to become a very expressive formal modelling language. The language
contains a set of powerful primitives to describe concurrency, probabilistic distribu-
tions, synchronous communication, timing and functional features of a system into
a single executable model. Its formal semantics is based on timed labelled transition
systems [83]. This mathematical structure guarantees a unique and unambiguous

38 Pattern-Based Modelling of Real-Time Systems

interpretation of POOSL models. Hence, POOSL is suitable for specification and,
subsequently, verification of correctness and evaluation of performance for real-time
systems.

<<class>>
ClassName

<<attributes>>
Attribute:Type

<<methods>>
Method():Type

<<process>>
ProcessName

<<instantiation parameters>>
Parameter:Type

<<instance variables>>
Variable:Type

<<methods>>
Method()()

<<initial method call>>
InitialMethod()()

<<messages>>
portIn?message
portOut!message

Figure 3.5: UML class vs. POOSL process class diagram

POOSL consists of a process part and a data part. The process part is used to spec-
ify the behaviour of active components in the system, called processes. The data part
is based on traditional concepts of sequential object-oriented programming and it is
used to specify the information that is generated, exchanged, interpreted or modified
by the active components. With the acknowledgment of UML [74] as the standard
modelling language, a UML profile for SHE has been presented in [90] that slightly
adapts the UML notations for exploitation in the context of the SHE methodology. As
an example, figure 3.5 presents the relation between the UML class and the POOSL
process class symbols. The name compartment of the class symbol for a POOSL
process class is stereotyped with «process» instead of «class» like in UML. The
«attributes» of a process class include «instantiation parameters» and
«instance variables». The former allow parameterising the behaviour of a
process at instantiation, whereas the latter represent the process internally needed
variables. The behaviour of each process is described by «methods». The start
behaviour of a process is specified by its «initial method call». The last com-
partment of the process class symbol expresses the fact that in hardware/software
systems the exchange of information is not always directly related to invoking cer-
tain behaviour. «messages» can be sent, using !, and received, using ?, by different
communicating processes in the system.

3.5 POOSL Modelling Patterns Library

The description of each of the modelling patterns presented in table 3.1 is given in the
rest of this section together with its POOSL implementation. The section is organised
based on the Y-chart scheme parts: the application part model is presented in subsec-
tion 3.5.1, the platform part model is discussed in subsection 3.5.2, the environment
model is shown in subsection 3.5.3 and the model of the mapping in subsection 3.5.4.

3.5.1 Application Model

The application part of the Y-chart models the functional behaviour of a real-time
embedded system which is implemented through a number of tasks that may com-

POOSL Modelling Patterns Library 39

municate with each other. A task is a piece of code that can be executed many times
with different input data. Task activations can be periodic (time-driven), occurring
at regular intervals equal to the task period, or aperiodic (event-driven), waiting for
the occurrence of a certain event. There are three types of uncertainties that may af-
fect a task: the activation latency, the release jitter and the output jitter. These types
of uncertainties are depicted in figure 3.6 with respect to a reference time which rep-
resents the time shown by a perfect clock. We define and explain the causes of each
uncertainty:

• The activation latency represents the latency between the moment when the task
should be ready for execution and the moment the task actually becomes ready
for execution. This latency is caused, for example, by the inaccuracies of the
processor clock that might drift from the reference time because of temperature
variations. For event-driven tasks, the performance of the runtime system,
which cannot continuously monitor the environment for events, influences the
moment when the task becomes ready.

• The release jitter is the latency between the moment when the task is ready
for execution and the moment when the scheduler dispatches it for execution.
This latency is caused by the operating system overhead and the interference
of other tasks that, depending on the scheduling mechanism, may impede the
newly activated task to start immediately its execution.

• The output jitter is the variation between the earliest and the latest moment
when a task finishes its execution. The output jitter is caused by the cumulated
interference of other tasks in the system, the scheduling mechanism that may
allow preemption of the executing task, the variation of the activation latency
and even of the execution time of the task itself, which may depend on the
input data.

In classical real-time scheduling theory [20], the release jitter and, to some extent,
the output jitter1 can be computed, but the activation latency is usually ignored,
assuming a perfect platform. However, there are systems, like for example those
that realise the low-level control of mechanical devices, for which the effect of this
latency might be significant because their timing requirements are in the same range
of values as the activation latency. Therefore, the task modelling patterns that we
present in this chapter overcome this problem and take it into account.

Besides time uncertainties, figure 3.6 shows also an important parameter for real-
time tasks: the deadline. The deadline represents the moment in time before which
the task is supposed to finish its execution. For critical systems like power plants
or aircrafts control, missing a deadline might lead to a catastrophe, whereas for an
audio/video encoder/decoder this is not the case and a certain ratio of misses is
usually allowed.

The model of a task incorporates its activation, whether it is periodical or event-
driven, the latencies that might occur, the communication with other tasks in the
system and the deadline that needs to be met. The details of the computations that

1In classical scheduling theory, the output jitter can be computed without taking into account possible
variations of the execution time of a task nor its dependencies on the input data.

40 Pattern-Based Modelling of Real-Time Systems

Reference
Time

Activation
request

BEHAVIOUR

Ready for
execution

Deadline

release
jitterlatency

Starts
execution output

jitter

Figure 3.6: Real-time task parameters

are performed by the task are abstracted from and only the load, which is the number
of instructions that need to be performed in the computation, is specified. The two
task patterns that we have conceived are visualised using the POOSL process class
diagrams in figure 3.7. The parameters, as specified in table 3.1, can be found in the
«instantiation parameters» compartment of each pattern.

<<process>>
PeriodicTask

<<instantiation parameters>>
T:Real
D:Real
Offset:Real
BCLoad:Integer
WCLoad:Integer
LoadDistrib:String
Iterations:Integer
Priority:Integer
Latency:Real
OutEvent:String

<<instance variables>>
load:Distribution
ltcy:Distribution
releaseJitter:Real
outputJitter:Real
finishTime:Real
minFinishTime:Real

<<methods>>
Init()()
Periodic()()
Behaviour()()

<<initial method call>>
Init()()

<<messages>>
out!output
toPlatform!schedule
fromPlatform?executed

<<process>>
AperiodicTask

<<instantiation parameters>>
Trigger:String
D:Real
BCLoad:Integer
WCLoad:Integer
LoadDistrib:String
Priority:Integer
Latency:Real
OutEvent:String

<<instance variables>>
load:Distribution
ltcy:Distribution
releaseJitter:Real
outputJitter:Real
finishTime:Real
minFinishTime:Real

<<methods>>
Init()()
Aperiodic()()
Behaviour()()

<<initial method call>>
Init()()

<<messages>>
in?event
out!output
toPlatform!schedule
fromPlatform?executed

Figure 3.7: Application modelling patterns

Periodic Task. The periodic task pattern is to be used whenever an independent
periodic task is required. Its parameters are the period T, the relative deadline D,
the initial Offset in case the task does not start at time zero, the processor load,
which represents a certain distribution, selected with LoadDistrib, between a best-
case (BCLoad) and a worst-case (WCLoad) value of the number of instructions the
task imposes on a target processor and which can be obtained based on previous
experience, the number of Iterations for the case the task is not infinitely running,
the Priority, the activation Latency, and potentially an OutEvent in case the
result of the computations of the current task has to be sent to another task in the
system.

POOSL Modelling Patterns Library 41

Aperiodic Task. The aperiodic task pattern should be applied for the specification
of a task triggered by an event from the environment or by a message from another
task in the system. Its parameters are the Trigger of the task, the relative deadline
D, the LoadDistrib between BCLoad and WCLoad, the Priority, the activation
Latency, and potentially an OutEvent in case the result of the computations of the
current task has to be sent to another task in the system.

Init()()
load := new (Distribution) ofType(LoadDistrib) withParameters(BCLoad, WCLoad);
ltcy := new (Distribution) ofType("Uniform") withParameters(0, Latency);
outputJitter := 0;
minFinishTime := 0;
delay Offset;
Periodic()().

Figure 3.8: POOSL specification of the Init method for the periodic task

Each of these two patterns has three methods. The method that is called to ini-
tialise the instance variables and to start the behaviour of a task is Init. The POOSL
specification of the Init method for the periodic task pattern is given in figure 3.8.
The data class object load is an instantiation of the data class representing the type
of distribution specified by LoadDistrib. A uniform distribution is desired as a
model of the activation latency because any value in the chosen interval has the
same probability of occurrence. Hence, the data object ltcy is instantiated from the
class representing a uniform distribution in [0,Latency]. In the ideal situation, the
activation Latency is zero and no latency would be introduced in the activation of
the task. If Latency > 0, a value in [0,Latency] is generated based on the uni-
form distribution and the actual activation moment drifts from the reference time
with ±Latency. Hence, for a periodic task, the actual activation of the task hap-
pens somewhere in the interval [0,Latency]∪ [n ∗ T− Latency, n ∗ T+ Latency],
Latency < T, n ∈ N+. The other instance variables, which are meant for the moni-
toring of the task, are set to zero.

Besides the method that is initially called, two more methods are specified. One is
called Periodic, respectively Aperiodic, and contains the specification of the task
according to the type of triggering it has, such as waiting for the next period, respec-
tively for the next incoming event, to be activated. The other method, Behaviour,
contains the specification of the actual computation the task needs to perform. In
the templates provided with our library, the specification of the actual behaviour of
a task is empty for two reasons. The first one is that it depends on the application
what a task is supposed to compute, hence the designer who is using this library has
to supply the right specification if needed. The second reason is that for the type of
analysis we are interested in at a high-level of abstraction, which will be discussed
in chapter 4, the actual computation performed by a task is not important and it can
be left out.

In the POOSL implementation of the patterns library that we present in this chap-
ter, the desired timing behaviour of a task can be completely decoupled from its ac-
tual timing behaviour. For a periodic task (see figure 3.9.a), the par-and-rap POOSL
statement indicating parallel composition in Periodic, is used to decouple the task
period from its real activation moment. The par branch is used to execute the actual
Behaviour, possibly with activation latency, while the and branch is used to deter-
mine the next period by delaying exactly T units of time and then recursively calling

42 Pattern-Based Modelling of Real-Time Systems

Periodic()() |lat : Real|
if (Iterations != 0) then

par
lat := 2*ltcy sample();
delay T-Latency+lat;
Behaviour(D+Latency, lat)()

and
delay T;
if (Iterations != -1) then
Iterations := Iterations-1 fi;

Periodic()()
rap

fi.

a) Periodic task

Aperiodic()() |lat : Real, ev : Event|
in?event(ev |

ev getEventType() = Trigger);
par
par
lat := ltcy sample()
delay lat;
Behaviour(D, lat, ev)(ev)

and
delay D
rap;
if OutEvent != "" then

out!output(ev) fi
and
Aperiodic()()

rap.

b) Aperiodic task

Figure 3.9: POOSL specification of the application modelling patterns

itself. The actual deadline of the current activation of the task is D+Latency−lat
and is given split as two parameters to the Behaviour method call. Furthermore,
the execution of the periodic task is modelled to be finite (if Iterations > 0) or
infinite (if Iterations = −1).

The event-driven tasks are activated at the arrival of a message of type Trigger
on the port in (see figure 3.9.b). For this reason, there is no need to express a cer-
tain number of iterations if the execution of an aperiodic task is not infinite, as it
is blocked/stopped anyway waiting for an event to occur. Task activation latency
is possible to occur because it might take a while before the system acknowledges
the occurrence of an event in the environment and wakes up the corresponding
task. Usually, an aperiodic task is required to output the result of its computation
(out!output) before some deadline D. If Behaviour does not finish by that time,
the output is postponed, causing output jitter. During simulation, the designer is
informed about such situations and the output jitter for each type of task can be
calculated.

Behaviour(deadline:Real, latency:Real)() |req : Request, tstart, tstop : Real|
tstart := currentTime;
req := new Request();
req setReleaseTime(tstart);
req setReleaseJitter(-1);
req setDeadline(deadline-latency);
req setLoad(load sample());
req setPriority(Priority);
toPlatform!schedule(req);
fromPlatform?executed();
if OutEvent != "" then out!output(new Event() setType(OutEvent)) fi;
tstop := currentTime;
releaseJitter := req getReleaseJitter();
finishTime := tstop - tstart;
if (minFinishTime > finishTime) then minFinishTime := finishTime fi;
outputJitter := finishTime - minFinishTime.

Figure 3.10: POOSL specification of the Behaviour method of the periodic task

As mentioned above, for analysis purposes, the specification of the Behaviour
of a task does not need to contain the actual computations the task needs to execute,
but mainly to enable analysis of the instruction load imposed on the platform and the
schedulability of the task. Therefore, the implementation of the Behaviour method
for the periodic task may look like the one shown in figure 3.10. A timestamp is
taken when the task is ready to start its execution and a Request data object is built
encapsulating the characteristics of the task: release time, deadline, load, which is
taken as a sample from its probability distribution, and priority. The release jitter
is currently set to -1 to indicate that the task is not yet dispatched to a resource. To

POOSL Modelling Patterns Library 43

model the load distribution, the POOSL library offers uniform, normal, exponential,
discrete uniform and Bernoulli distributions [90]. In a model of a hard real-time
system, the values of both BCLoad and WCLoad are equal to the worst-case number
of instructions the task may have. The Request data class is discussed in more detail
in subsection 3.5.2. The platform is informed of the need to execute the newly created
request and the notification of finished execution is waited for. If an event should be
produced at the end of the execution in order, for example, to trigger another task in
the system, a message is sent on the out port containing a data object Event which
will be discussed in subsection 3.5.3. Once the execution is finished, the output jitter
is calculated, based on the initialisation of minFinishTime to zero in the Init
method, and it can be used for analysis.

3.5.2 Platform Model

The platform on which tasks run can be described as a collection of computation and
communication resources that are able to provide the capacity to perform the desired
functional behaviour. The modelling patterns we have conceived for describing the
platform part of the Y-chart model of a system provide a unified way of specifying
communication and computation resources by exploiting their common character-
istics. This modelling approach is possible at a high-level of abstraction as there is
no large conceptual difference between a processor and a bus: they both receive re-
quests, execute them (either by transferring the bits of a message or executing the
instructions of an algorithm) and send back a notification on completion. As a re-
source is typically shared, a scheduler is needed to arbitrate the access to a resource.

Figure 3.11 visualises the POOSL process class diagrams of the platform mod-
elling patterns: the Scheduler, the Resource, the MappingMonitor and the
EnergyMonitor.

Scheduler. The Scheduler modelling pattern is to be used for the modelling of
a simple operating system that ensures the scheduling of the tasks on a resource
according to a certain scheduling policy. The scheduler has two parameters, one
that represents the name of the scheduling policy desired to be used on a certain
resource, and the other one that selects if the scheduling is monitored or not. The
scheduler also has two methods, Init, to instantiate the scheduling policy based on
the Policy name, and Schedule, to receive and dispatch scheduling requests.

Resource. The Resource modelling pattern is to be used when a computation
(RISC-like processor [47]) or communication (bus) component needs to be modelled
in the system. A resource is characterised by a Throughput, which is the number
of instructions a processor can execute per time unit or the transfer bit rate on a bus,
an InitialLatency, which models the operating system overhead and hardware
induced delays due to cache misses and/or pipeline stalls or the communication pro-
tocol overhead, a boolean parameter called FixedLatency to select a fix or variable
initial latency, a NominalPower and an IdlePower consumption, and a boolean
parameter called Monitored to select if the energy consumption of the resource has
to be monitored or not. At the initialisation of the system, method Init is called for
each resource to instantiate the overhead data object as a uniform distribution in

44 Pattern-Based Modelling of Real-Time Systems

<<process>>
Scheduler

<<instantiation parameters>>
Policy:String
Monitored:Boolean

<<instance variables>>
scheduling:SchedulingPolicy

<<methods>>
Init()()
Schedule()()

<<initial method call>>
Init()()

<<messages>>
fromTask?schedule
toMonitor!schedule
toResource!execute
fromResource?stopped
toResource!preemption
toMonitor!executed
toTask!executed

<<process>>
Resource

<<instantiation parameters>>
Throughput:Integer
InitialLatency:Real
FixedLatency:Boolean
IdlePower:Real
NominalPower:Real
Monitored:Boolean

<<instance variables>>
overhead:Distribution
utilisation:Real
utilisationRatio:Real

<<methods>>
Init()()
ResourceRun()()

<<initial method call>>
Init()()

<<messages>>
sch!stopped
sch?execute
sch?preemption
energy!startConsuming
energy!stopConsuming

<<process>>
MappingMonitor

<<instantiation parameters>>
Accuracy:Real

<<instance variables>>
deadlineMissRatio:LongRunSampleAverage
tasksStatus:Dictionary

<<methods>>
Init()()
Estimate()()

<<initial method call>>
Init()()

<<messages>>
fromSch?executed
fromTask?schedule
sch?executed
sch!schedule

<<process>>
EnergyMonitor

<<instantiation parameters>>
<<instance variables>>

energy:Real
power:Real
peakPower:Real
prevTime:Real

<<methods>>
Init()()
Consume()()

<<initial method call>>
Init()()

<<messages>>
fromResource?startConsumption
fromResource?stopConsumption

Figure 3.11: Platform modelling patterns

[0,InitialLatency] if FixedLatency is false, to set the utilisation to zero and to
send the value of the IdlePower to an energy monitor if the energy consumption is
monitored. This means that as soon as the system starts its execution, even though
there might be resources not used yet, they consume a certain amount of energy
already.

Mapping Monitor. The MappingMonitor modelling pattern is to be used when
one is interested in the analysis of how often deadlines are missed on a certain re-
source. The parameter of this pattern is the desired Accuracy in the estimation of
the deadline miss ratio.

Energy Monitor. The EnergyMonitor modelling pattern is to be used when one
is interested in monitoring the energy consumption in a certain configuration of the
platform of the system. This monitor models a battery from which energy in drained.
There is only one such monitor in a system and all the resources must be connected
to it. The pattern has no parameter.

In the rest of this subsection, the POOSL implementation of each of the platform
modelling patterns is presented in detail.

In order to schedule the requests on a shared resource, one of the available
scheduling policies must be instantiated. The scheduling policies are implemented
as POOSL data classes that derive the SchedulingPolicy abstract class as shown

POOSL Modelling Patterns Library 45

+scheduleRequest(in req : Request) : SchedulingPolicy
+hasHighestPriority(in req : Request) : bool
+update(in req : Request) : SchedulingPolicy
+removeRequest(in req : Request) : Request

#reqList

SchedulingPolicy

EDF RMA FCFS ...

+setReleaseTime() : Request
+getReleaseTime() : float
+setReleaseJitter() : Request
+getReleaseJitter() : float
+setDeadline() : Request
+getDeadline() : float
+setLoad() : Request
+getLoad() : long
+setPriority() : Request
+getPriority() : int

-releaseTime
-releaseJitter
-deadline
-load
-priority

Request

Figure 3.12: UML diagram for scheduling policies

scheduleRequest(req : Request): SchPolicy | i, j : Integer |
i := 1;
while(req getDeadline() > reqList get(i) getDeadline()) do
i:=i+1

od;
reqList insert(i, req);
return self.

Figure 3.13: EDF scheduling policy

in figure 3.12. The available policies include both preemptive (e.g earliest deadline
first, rate monotonic) and non-preemptive (e.g. first come first served) scheduling
algorithms known from classical scheduling theory [20]. The methods of each of
these data classes require as parameter a data object of type Request, containing
the information needed for scheduling: release time, deadline, and priority. Addi-
tionally, a Request object has two more parameters: the load of the request (number
of instructions of a task / length of a message) and the release jitter that is computed
at the time the request is dispatched to a resource. Such an object is created by the
Behaviour method of each task and sent to the scheduler at each task activation.

The method that ensures the actual scheduling of a task is
scheduleRequest(req). Its specification for the earliest deadline first (EDF)
policy is given in figure 3.13. The current request req is placed in the list reqList
of already scheduled requests based on the value of its deadline.

The method hasHighestPriority(req) returns true or false if the current re-
quest has the highest priority or not. In case of a non-preemptive scheduling, the
method hasHighestPriority(req) returns false if there is a task already being
executed. Upon preemption of a request, the update(req) method updates the
information about the req in the scheduler list. removeRequest(req) is called
upon completion of a request to remove it from the scheduler list and returns the
next request to be scheduled if there is one or nil otherwise.

Figure 3.14 shows the POOSL specification of the Schedule method of the
scheduler pattern. The data object scheduling is an instance variable instantiated
from one of the scheduling policies data classes according to the name Policy set
as parameter of the pattern. The core of the scheduler pattern relies on the non-
deterministic choice between receiving scheduling requests from newly activated
tasks or messages to be sent (the outer sel branch) and notifications from the plat-
form about completed requests (the or branch). The newly activated request is
scheduled according to the chosen policy by calling the scheduleRequest(req).

46 Pattern-Based Modelling of Real-Time Systems

Schedule()() | req, oldreq : Request |
sel
fromTask?schedule(req);
scheduling scheduleRequest(req);
if (scheduling hasHighestPriority(req) == true) then

sel
toResource!execute(req);
if (req getReleaseJitter() == -1) then
req setReleaseJitter(currentTime - req getReleaseTime()) fi

or
toResource!preemption;
fromResource?stopped(oldreq);
toResource!execute(req);
if (req getReleaseJitter() == -1) then
req setReleaseJitter(currentTime - req getReleaseTime()) fi;

scheduling update(oldreq)
les

fi;
Schedule()()

or
fromResource?stopped(oldreq);
toTask!executed;
if (Monitored == true) then toMonitor!executed(oldreq) fi;
req := scheduling removeRequest(oldreq);
if (req != nil) then toResource!execute(req) fi;
Schedule()()

les.

Figure 3.14: POOSL scheduling pattern method specification

If req has the current highest priority, it is sent to the resource for being immediately
handled (the inner sel branch). As the resource might already be running another
request, the corresponding or branch models the situation when the old request is
preempted and rescheduled (update(oldreq)). As soon as a request is dispatched
to a resource, its release jitter is computed if it just starts its execution. In the outer
or branch, the scheduler receives completed requests from the resource and removes
them from the ready list by calling removeRequest(oldreq), which also returns
the next scheduled request, if there is one.

Figure 3.15 presents the model of the ResourceRun method of the resource
(which can be a RISC-like CPU or a bus) which receives execution requests from
the scheduler. Immediately after receiving a new request, if the resource is supposed
to be monitored for energy consumption (Monitored is true), it announces the en-
ergy monitor that it will start consuming more energy according to the difference
between the NominalPower and the IdlePower given as parameters. Before the
actual execution of the task, the resource has an initial latency that models, in case
of a CPU, the context switch that proceeds the execution of a newly scheduled task
for saving the status of the previous task and loading the current task, and in case
of a bus, the time it takes for the first bit of the message to be transferred, which de-
pends mostly on the communication protocol used. For an average case analysis of
the system, a uniform distribution overhead between zero and InitialLatency
is considered to model the operating system overhead and the possible delays in-
duced by hardware effects. For a worst-case analysis of the system, the parameter
FixedLatency needs to be set to true and the fixed value of the InitialLatency
is used. It is important to note that the initial latency of a bus usually has a constant
value, thus the value of FixedLatency parameter should be true to model a bus.
After the initial delay, the resource lets the time pass according to the execution time
associated to the request. The execution time is computed based on the load of the
request (representing either the number of instructions of a task or the length of a
message) and the Throughput of the resource, which is the second parameter of
the pattern.

The core concept behind the presented modelling pattern for a resource is the

POOSL Modelling Patterns Library 47

ResourceRun()() | req: Request, loadLeft, tstart, tstop : Integer |
sch?execute(req);
if (Monitored == true) then energy!startConsuming(NominalPower-IdlePower) fi;
if (FixedLatency == true) then delay InitialLatency
else delay overhead sample() fi;
tstart := currentTime;
abort

delay req getLoad() / Throughput
with sch?preemption;
if (Monitored == true) then energy!stopConsuming(nominalPower-idlePower) fi;
tstop := currentTime;
utilisation := utilisation + (tstop - tstart);
utilisationRatio := utilisation / currentTime;
loadLeft := req getLoad() - (tstop - tstart) * Throughput;
req setLoad(loadLeft);
sch!stopped(req);
ResourceRun()().

Figure 3.15: POOSL resource pattern method specification

possibility of the language to express the breaking of the execution, needed if the
scheduling mechanism allows preemption. In POOSL, this can be modelled with
the abort statement. Once a preemption message is received by the resource, the
execution of the current request is stopped and its remaining execution time (actually
the remaining load) is computed and updated (req setLoad(loadLeft)) and the
request is sent back to the scheduler. Preemption is usually the case for computation
resources, and less common for communication. Nevertheless, as preemptions and
their associated latencies (like context switches) might have a large influence, for
example on the finishing time and the output jitter of a task, they must be taken into
account. As soon as the current request finishes the execution or it is preempted,
a stopConsuming message is sent to the energy monitor if the energy needs to
be monitored to announce the drop in energy consumption from NominalPower to
IdlePower. Moreover, the utilisation of the resource, which is the total amount
of time the resource was active, is updated, as well as the utilisationRatio,
which represents the ratio of the active time of the resource from the total time the
system was active.

The energy monitor pattern presented in figure 3.11 has no parameters. It models
a battery that receives startConsumption and stopConsumption notifications
from the resources in the system. This pattern has two methods. Init is the method
called at the initialisation of the POOSL process EnergyMonitor to set to zero all
the instance variables and call the Consume method. The POOSL implementation of
the latter method is given in figure 3.16. The method Consume models the receiving
of announcements from each of the communication and computation resources in
the system of either starting or stoping using a certain amount of power. As soon as
a startConsuming message is received, the value of the already consumed energy
is updated based on the amount of time elapsed from the last change in the power
drained and the value of this power. The level of power consumption is increased
with the value requested by the calling resource and, if needed, the value of the
peakPower is updated. When a stopConsuming message is received, the value of
the consumed energy is updated as well as the value of the currently drained power.

The last pattern that belongs to the platform model in table 3.1 is the mapping
monitor, visualised as a POOSL process class diagram in figure 3.11. To decide
whether a certain mapping is suitable or not, a mapping monitor can track the
missed deadlines and calculate the deadline miss ratio for each resource in the sys-
tem. Based on such information, a bottleneck resource might be identified in order to

48 Pattern-Based Modelling of Real-Time Systems

Consume()() | p : Real |
sel
fromResource?startConsuming(p);
energy := (currentTime - prevTime) * power + energy;
power := power + p;
if (power > peakPower) then peakPower := power fi;
prevTime := currentTime

or
fromResource?stopConsuming(p);
energy := (currentTime - prevTime) * power + energy;
power := power - p;
prevTime := currentTime

les;
Consume()().

Figure 3.16: POOSL energy monitor pattern method specification

Estimate()() |req : Request, deadline : Real|
sch?executed(req);
deadline := req getDeadline();
if (deadline < currentTime) then
deadlineMissRatio rewardRC(1, true);

else
deadlineMissRatio rewardRC(0, false)

fi;
deadlineMissRatio log()

if (Accuracy != 0) then
if (deadlineMissRatio accurate() == false)
then Estimate()() fi

fi.

Figure 3.17: POOSL mapping monitor pattern method specification

replace it or to change the mapping. The parameter of the mapping monitor pattern
is the desired accuracy of the results. This parameter is useful when it is desired for
the simulations to be run until the accuracy of the results is obtained. Moreover, the
pattern has two methods: Init and Estimate. The method Init initialises a data
object deadlineMissRatio for estimating the deadline miss ratio. This object is an
instantiation of the LongRunSampleAverage data class that provides support for
analysing performance metrics during simulations, as described in [90]. The method
Estimate, depicted in figure 3.17, models that the mapping monitor receives noti-
fications from the scheduler with the executed requests and checks for each of them
if the deadline was met. To estimate the probability of missing a deadline for the
system under analysis, the data method rewardRC is called with parameter 1 to
register the occurrence of deadline miss events. Otherwise, the method rewardRC
is called with parameter 0 if the deadline is met. If a certain accuracy of the esti-
mations is desired, then the value of the Accuracy parameter differs from zero and
the simulation of the model is run until the data method accurate() returns true,
meaning that the estimation of the deadline miss ratio is accurate.

3.5.3 Environment Model

The model of the environment is composed of input event generators and output
collectors, as shown in figure 3.18. The input event generators model the generation
of environmental Events having an arrival pattern which can be chosen among peri-
odic, periodic with jitter, or sporadic with a certain distribution of occurrence. These
events trigger the activation of tasks in the application model and are collected by
output collectors which model the output devices in the environment. The collector
accepts events of a certain Type exiting the system and monitors their end-to-end
delay. If a certain accuracy of the simulation-based analysis results is desired, its
value should be set in the instantiation parameter Accuracy.

POOSL Modelling Patterns Library 49

<<process>>
PeriodicInputEventGenerator

<<instantiation parameters>>
Type:String
Size:Integer
T:Real
Offset:Real
Jitter:Real

<<instance variables>>
jitDistrib:Distribution

<<methods>>
Init()()
Generate()()

<<initial method call>>
Init()()

<<messages>>
out!event

<<process>>
SporadicInputEventGenerator

<<instantiation parameters>>
Type:String
Size:Integer
Stream:String
LowT:Real
UpT:Real

<<instance variables>>
genStream:Distribution

<<methods>>
Init()()
Generate()()

<<initial method call>>
Init()()

<<messages>>
out!event

<<process>>
OutputCollector

<<instantiation parameters>>
Type:String
Accuracy:Real

<<instance variables>>
endToEndDelay:LongRunSampleAverage
maximumEndToEndDelay:Real

<<methods>>
Init()()
Collect()()

<<initial method call>>
Init()()

<<messages>>
in?event

Figure 3.18: Environment modelling patterns

In the rest of this subsection, we will present first the data class Event and then
the modelling patterns needed for modelling the environment and their POOSL
specifications.

An Event is a data object generated by an input event generator and fed to the
application part of the Y-chart model. As tasks triggered by events typically per-
form some computations and send the results as messages to other tasks, in our
model we consider that an object Event travels in this way through the system col-
lecting timestamps when it is generated, releaseTime, and when it is collected,
finishTime, such that the end-to-end delay can be determined. Besides the times-
tamps, an Event also has a type based on which a task coupled to a number of
input generators can choose the events it accepts. Moreover, an Event might have a
certain size if it is supposed to carry information through the system.

+setReleaseTime() : Event
+setFinishTime() : Event
+getEndToEndDelay() : double
+setEventType() : Event
+getEventType() : String
+setSize() : Event
+getSize() : long

-releaseTime
-finishTime
-type
-size

Event

Figure 3.19: UML diagram for Event data class

50 Pattern-Based Modelling of Real-Time Systems

For the modelling patterns to describe the environment of a system, we have
conceived two types of input event generators, periodic (with and without jitter)
and sporadic, and an output collector.

Periodic Input Event Generator. The PeriodicInputEventGenerator mod-
elling pattern is to be used for modelling a device in the environment that period-
ically generates input events for the application part of the system. The periodic
input generator resembles in some sense the periodic task. To obtain a perfectly
periodic input stream, the value of Jitter must be set to zero. Otherwise, based
on jitDistrib, which is an instance of a uniform distribution between zero and
Jitter, a certain variation with maximum ±Jitter around each period T is gen-
erated. This models certain inaccuracies of the physical devices which may cause
these variations. A new Event is created with the same type as the Type of the
event generator and the release time timestamp. If the generation of events starts
with a certain Offset, a value different than zero must be specified for this param-
eter.

Sporadic Input Event Generator. The SporadicInputEventGenerator mod-
elling pattern is to be used for modelling a device that generates input events spo-
radically. In case of a sporadic input event generator, a minimum inter-arrival time
between events is ensured by the fact that the genStream distribution has this value
as its LowT, whereas the UpT can be set to infinity. By sampling the generation dis-
tribution, a minimum LowT units of times is ensured between two consecutively
generated events.

The POOSL specification of how the events are gener-
ated by the PeriodicInputEventGenerator and by the
SporadicInputEventGenerator can be seen in figure 3.20.

Generate()() |j : Real|
par
j := 2*jitDistrib sample();
delay T-Jitter+j;
out!event(new Event()

setEventType(Type)
setReleaseTime(currentTime))

and
delay T;
Generate()()

rap.

a) Generate method for PeriodicInputGenerator

Generate()()
while (true) do
delay genStream sample();
out!event(new Event()

setEventType(Type)
setReleaseTime(currentTime))

od.

b) Generate method for SporadicInputGenerator

Figure 3.20: POOSL specification of the input generators

Output Collector. The OutputCollector models a device in the environment
that collects messages from the application. The POOSL specification of the be-
haviour of the output collector is presented in figure 3.21. The endToEndDelay data
object is an instance of the LongRunSampleAverage performance monitor data
class and it evaluates the average end-to-end delay by collecting the value of the end-
to-end delay of each event that arrives at the OutputCollector. This evaluation,
performed using the data method rewardBM , uses the batch-means technique to es-
timate the average value (see [90]). The accurate method checks if the currently
obtained accuracy of the estimation meets the desired Accuracy set as parameter
of the pattern. Whenever an event of the desired Type is collected, its finishing time
is timestamped and its calculated end-to-end delay contributes to the estimation of

Model Generation Based on Patterns 51

the end-to-end delay in the system for that type of events. Moreover, the maximum
value of this delay is also collected. The output collector finishes, and so does the
simulation, when the desired accuracy of the results is obtained.

Collect()() |ev : Event|
while((endToEndDelay accurate() == false) do
in?event(ev | ev getEventType() = Type);
ev setFinishTime(currentTime);
NominalEndToEndDelay rewardBM(ev getEndToEndDelay());
if (ev getEndToEndDelay() > maximumEndToEndDelay) then
maximumEndToEndDelay := ev getEndToEndDelay()

fi
od;
NominalEndToEndDelay log().

Figure 3.21: POOSL specification of the output collector

3.5.4 Mapping Model

The mapping stage of a Y-chart based model is realised in POOSL using communi-
cation channels that directly link POOSL processes that represent tasks to POOSL
processes that model resources. According to the desired mapping in the system,
each task is linked to a certain processor. As communicating tasks may be mapped
onto different CPUs, the messages that are sent from one to the other must be trans-
ferred over a communication bus. In order to completely decouple the application
from the architecture, in such a situation, a so-called communication task is inserted
in the model and it is mapped onto the bus, as indicated by TASKB in the example
from figure 3.22. This task behaves like an infinite buffer at the application level,
getting the message from the sending task and making it available to the receiving
task. The behaviour method of this type of task consists in communicating to the
underlying resource, the bus, the size of the message and the deadline for its trans-
mission, and waiting for the confirmation of this being done. In fact this is the same
behaviour the software tasks are doing, only that they send to CPUs the number of
instructions they need to execute. That is why a CPU and a bus can be modelled
with the same pattern at the level of abstraction assumed in this work. To model the
communication task, an aperiodic task is used. If this task is automatically inserted
in the model, its deadline is set to zero in order to get high priority in case a priority-
based scheduling is used for the bus. Adding this task to the application model does
not change the model of computation. In a usual task-to-task communication on
the same CPU, the sending task does not block if the receiving one is always able
to receive the message. As an aperiodic task is modelled to be able to receive any
message the moment it becomes available, this so-called communication task does
not affect the sending task. On the other hand, a receiving task is able to retrieve the
message from the buffer as soon as the transfer over the bus has finished, without
any further stalling.

3.6 Model Generation Based on Patterns

To build a model of a real-time system in order to analyse it and to explore its design
space, its components that correspond to the modelling patterns described in the pre-
vious section must be identified as well as their parameters. The use of the Pattern-

52 Pattern-Based Modelling of Real-Time Systems

TASK
1

CPU1 CPU2BUS

TASK
2

a) System model

CPU1 CPU2BUS

TASK
1

TASK
B

TASK
2

Battery

SCH1 SCH2SCHB

MM1 MMB MM2

b) Generated system model

Figure 3.22: System model vs. generated model based on modelling patterns

based system Description Language (PDL) enables easy construction of models. The
modelling of a system based on identifying the necessary patterns and setting their
parameters is alleviated by the Extensible Markup Language (XML) [4]-based syn-
tax of PDL. The structure and the semantics of the XML file is defined based on the
Y-chart scheme parts, application, platform, environment and mapping, and covers
the names and the parameters of the patterns. Figure 3.23 shows an example of such
a model for a simple producer-consumer-like system shown in figure 3.22.a.

The application part of the system is identified with the <application>
and </application> tags and contains instantiations of the periodic and aperi-
odic tasks patterns. To instantiate a task, a tag named either PeriodicTask or
AperiodicTask is specified. Within such a tag, all the parameters of that type of
task are enumerated and a value is given to each of them.

The platform model is delimited by the <platform> and </platform> tags
and a list of the resources needed falls in between using a tag named Resource. For
each declared resource, its scheduler and, if required, its mapping monitor are spec-
ified. If the scheduler parameter Monitored is set to false and a mapping monitor
is specified, or if the scheduler parameter Monitored is set to true but a mapping
monitor is not specified, an error is signaled by the model generation tool.

The mapping of the application on the platform is specified between <mapping>
and </mapping> tags. Each task, identified based on the name of the object that
instantiates it, is mapped onto a resource, which is identified also based on its corre-
sponding object name.

When two tasks that communicate with each other are mapped onto different
resources, the communication task between them, which can be automatically gen-
erated by the tool if it is not specified in the application model, is mapped on the bus
that links the two required resources, as figure 3.22.b shows. TASKB is the name of
the object that instantiates the communicating task that acts like a buffer and handles
the transmission of the message over the BUS.

Moreover, we can model the environment of a system in case there are tasks
that are triggered by events outside the application model. The tags used to specify
this part of the Y-chart model are <environment> and </environment>. Each
generator of events in the environment is specified to generate events of a certain
Type. The matching between an input generator and an aperiodic task triggered

Model Generation Based on Patterns 53

<system>
<application>

<PeriodicTask Name="TASK1" T=”6" D="6" Offset=”0" BCLoad=”90"
WCLoad=”110" LoadDistrib=”Uniform” Iterations=”10" Priority=”2"
Latency=”0.1" OutEvent=”EVENT”>

<AperiodicTask Name="TASK2" Trigger=”EVENT” D="6" BCLoad="90"
WCLoad=”110" LoadDistrib=”Uniform” Priority=”1" Latency=”0.2">

</application>
<platform>

<Resource Name="CPU1" InitialLatency="0.1" FixedLatency=”false”
Throughput="1000" IdlePower=”0" NominalPower=”0.0069”
Monitored=”true”>
<Scheduler Policy=”EDF" Monitored=”true”>
<MappingMonitor Accuracy=”0.95">

</Resource>
<Resource Name="CPU2" InitialLatency="0.1" FixedLatency=”false”

Throughput="1000" IdlePower=”0" NominalPower=”0.0045”
Monitored=”true”>
<Scheduler Policy="EDF" Monitored=”true”>
<MappingMonitor Accuracy=”0.95">

</Resource>
<Resource Name="BUS" InitialLatency="0.1" FixedLatency=”true”

Throughput="1000" IdlePower=”0" NominalPower=”0”
Monitored=”true”>
<Scheduler Policy="FCFS" Monitored=”true”>
<MappingMonitor Accuracy=”0.95">

</Resource>
</platform>
<mapping>

<map TaskName="TASK1" ResourceName="CPU1">
<map TaskName="TASK2" ResourceName="CPU2">

</mapping>
</system>

Figure 3.23: Producer-consumer system model specification based on modelling pat-
terns

by the events generated by it is based on this Type which is a string identifying the
name of the event.

The steps made by the model generation tool in order to obtain a model in a de-
sired target language, for which there exists an implementation of the modelling pat-
terns, from the model specified in the Pattern-based system Description Language
(PDL) are shown in figure 3.24. First, from the PDL model the tool identifies which of
the patterns from the library are needed and instantiates the required objects. For the
communication tasks which are not present in the PDL model, it is checked whether
instantiations of their corresponding patterns are required and what their param-
eters would be. Once all the necessary objects are instantiated, the model in the
desired target language is ready. In case the target language is POOSL, a model in
the format needed for the fast simulation engine, Rotalumis, is obtained. Figure 3.25
gives the graphical representation of the generated POOSL model for the producer-
consumer-like system presented in figure 3.22.

The analysis of the POOSL model may lead to changes in the application model,
like splitting or combining of tasks, in the platform model, such as choosing faster

54 Pattern-Based Modelling of Real-Time Systems

Instantiate the required
objects from the library

Modelling patterns library
implemented in target language

PDL specification of
the system

Model in target
language ready

Identify and instantiate the
additionally needed objects (e.g.

communication tasks)

Figure 3.24: Flow for generation of a model from patterns

or slower resources, or even in the mapping, by choosing a different assignment of
tasks onto resources. Any of these possible changes can be done easily at the level
of the PDL model, by adjusting the values of the parameters of patterns, adding
or removing model components, or changing the mapping. This activity takes only
minutes and the POOSL model can be immediately generated for the new configura-
tion of the system. In chapter 4, by means of two case studies, we present guidelines
for how to explore the design space exploration of an embedded real-time system
based on such a model.

Figure 3.25: Generated POOSL model for the producer-consumer-like system

Summary 55

3.7 Summary

In this chapter, we have presented a set of modelling patterns suitable for mod-
elling real-time systems. We have discussed each of these patterns and we have pro-
vided an implementation of them in the general-purpose formally defined Parallel
Object-Oriented Specification Language (POOSL). The use of such patterns enables
the automatic generation of models in different modelling languages. Hence, the
patterns have the potential of offering the designers access to tools and techniques
with which they are not familiar and enable them to use their strengths in modelling
and analysing different properties of the system.

The patterns that we presented in this chapter were designed for soft real-time
systems, as they capture many of the variations that appear in the behaviour of a
system, from the load of a task to the varying overhead induced by the operating
system and the hardware effects. However, these patterns can be used for the mod-
elling of hard real-time systems as well, enabling worst-case analysis. This is possible
by using the same values for both best-case and worst-case load of a task, and fixed,
worst-case values for the initial latency of the resources. An example of such a model
is given in chapter 4. An important observation we need to make is that the kind of
modelling that we present in this thesis assumes that the tasks are implemented in
software and we do not deal with hardware-mapped tasks.

Regarding the completeness of the modelling patterns library, as the case stud-
ies in chapter 4 show, these patterns can be used for applications in the areas of
control-dominated systems as well as in control with data-intensive computations
applications. The patterns show to be general enough since we were able to use the
same patterns for case studies in different application domain areas. Extensions to
the library are being worked on [92] to make the patterns also applicable to multime-
dia applications, for which a scenario-based analysis may be required [42], in which
tasks may have multiple inputs and/or outputs, or they might be deployed on more
complex platforms (e.g. using VLIW processors [31] and network-on-chip [85]).
Moreover, a modelling pattern for a CPU separated from the one for a bus could
be developed in order to provide designers with a model that captures in more de-
tail the characteristics and the behaviour of a processor (e.g. pipelining or multiple
instruction issue).

56 Pattern-Based Modelling of Real-Time Systems

4
Analysis Approach for Dimensioning of

Real-Time Systems

In the previous chapter, we have presented a modelling approach, based on mod-
elling patterns, that can be applied for both hard and soft real-time systems in the ar-
eas of control-dominated and control with data-intensive computations applications.
We have also presented an implementation of the patterns in POOSL that serves as
input for the automatic model generation tool. In this chapter, we discuss the analy-
sis approach for a suitable dimensioning of a system based on the generated POOSL
model. Figure 4.1 depicts the steps of the modelling and analysis approach that en-
able design space exploration of a system. The first part of the diagram, namely the
generation of the model is the same as the one depicted in figure 3.1. The diagram
is extended with activities regarding the analysis of the model and decisions with
respect to changes in the model of the system, such as values of parameters (e.g. for
increasing or decreasing the performance of a resource), different mapping of tasks
onto resources, or different scheduling policies, for exploration of the design space.

Library of
modelling
patterns

PDL
system
model

Generated model
for analysis

Generate
model

Collected
results

Analyse
model

Make decisions and
explore the design space

Figure 4.1: Pattern-based model generation and analysis flow

The chapter is structured as follows. Section 4.1 describes the analysis approach
and the properties that can be analysed on a POOSL model built as presented in
chapter 3 and discusses how design space exploration can be realised. Two case

58 Analysis Approach for Dimensioning of Real-Time Systems

studies are presented in this chapter. Section 4.2 presents the analysis and dimen-
sioning of a soft real-time system, whereas section 4.3 presents the analysis of a hard
real-time system. A summary of the chapter is given in section 4.4.

4.1 Model Analysis

In this section, we present the system properties that can be analysed from a POOSL
model built using on the modelling patterns shown in chapter 3. By using a
MappingMonitor, presented in section 3.5.2, for the mapping of tasks on each of
the resources, CPUs and buses, in the system, the property that the application is
schedulable on the chosen platform can be checked. The deadlines missed are mon-
itored and the deadline miss ratio is estimated. A system is fully schedulable if no
deadline is missed. If deadlines are missed, at the end of the simulation, the deadline
miss ratio is checked against the requirements. If the requirements are fulfilled, the
application-to-platform mapping is acceptable.

For control-dominated systems, such as systems that control the behaviour of
physical devices in the environment, requirements might be set with respect to re-
lease and output jitter of task. For this, the Behaviour method of each task moni-
tors these parameters, in the way presented in figure 3.10, and they can be checked
against the requirements.

For soft real-time systems with streams of messages flowing through the appli-
cation, an important property to analyse is the end-to-end delay of a message that
traverses the system. Usually, the end-to-end delay is given as a requirement, and the
design of the system must ensure its satisfaction. For this, the OutputCollector,
presented in subsection 3.5.3, is used. It contains a LongRunSampleAverage per-
formance monitor to estimate the average value of the end-to-end delay of the sys-
tem. Moreover, it also keeps the maximum value of the end-to-end delay encoun-
tered during simulation. If the end-to-end delay requirements are met, then the
given configuration is a good candidate for the realisation of the system.

Although it is desired to run simulations of models until the accuracy of the es-
timation of each desired property is achieved, sometimes it might take a very long
time to obtain that. Since a number of parameters are monitored, like the deadline
miss ratio for each resource and the end-to-end delay, it might be that some of them
are estimated with their desired accuracy, but the others not. As an example, a dead-
line miss might be a rare event and a very long simulation needs to be performed to
estimate this parameter with its desired accuracy. A solution to save simulation time
is the following. The simulation is run until the desired accuracy of the end-to-end
delay of the system is obtained. All the values obtained for the end-to-end delay are
plotted in a histogram showing for each value how many times it appeared during
simulation. This histogram is fitted into a known distribution, most likely the nor-
mal distribution because of the central limit theorem [3], as shown in the case study
in section 4.2. Based on the mathematical rules corresponding to this distribution, it
can be determined what the likeliness of deadline misses is.

Applying known types of distribution curves over the obtained simulation re-
sults provides an abstract model of the timing behaviour of the software part of a

Model Analysis 59

complex system. It can be further used as input for multi-disciplinary models that
are aiming at trade-offs across the disciplines involved in complex machines, like
mechanical, electrical, optical and software engineering.

Besides schedulability and end-to-end delay, other important properties of a sys-
tem are the resource utilisation, which is monitored by the ResourceRun method of
each computation and communication resource, and the energy consumption, which
is monitored by the Consume method of the energy monitor pattern and which
might be given as a requirement of the system. Even if the energy consumption
is not a requirement but an objective, if all the task deadlines are met and the end-to-
end delay of the system is within the requirements but the resources are used very
little, it is likely that a platform of less performance might still meet the functional
and non-functional requirements while reducing the cost, usually a critical aspect of
a system. However, the cost depends on both the price of the resource components
of the system as well as on their induced energy consumption. Hence, it might be
that cheap resources are used, but which consume considerable amounts of energy,
whereas somewhat more expensive components might compensate by consuming
less energy. Hence, a trade-off between cost and energy consumption is required
among the configurations analysed to ensure the system meets all the other non-
functional and functional requirements. The steps for analysing and dimensioning
of soft real-time systems are summarised in figure 4.2.

Build
system
model

Modelling
patterns

System
properties

Generate
histograms

reduce performance
of the platform

Deadline
misses?

NO

YESsimulate Fit
distribution

curve

Calculate
miss rate

Within
req.?

NO

YES

increase performance
of the platform

OK

Energy/
cost

within
req.?

YES

NO

choose different
platform

Figure 4.2: Flow of the steps in the analysis approach for soft real-time systems

In this chapter, we present the analysis approach by means of two case stud-
ies. Extensions of the technique to ensure automatic design space exploration are
also possible and they are left as future research. Work in this direction has already
been done at the University of Limerick, Ireland, [72] in the area of design space
exploration for network processors. The authors incorporate in their analysis multi-
objective evolutionary algorithms in order to automatically explore the design space.
Such techniques can also be incorporated in our approach to automatically generate
and analyse the design space for soft real-time systems.

60 Analysis Approach for Dimensioning of Real-Time Systems

DB

MMI

RADNAV

Figure 4.3: Distributed in-car radio navigation system

4.2 Case Study: A Distributed In-Car Radio Navigation
System

The first case study is inspired by a system architecture definition study for a dis-
tributed in-car radio navigation system. Such a system usually executes a number of
concurrent applications that share a common platform. Each of the applications typ-
ically has a number of individual performance requirements that need to be met by
the platform. During the system definition phase, several candidate platform archi-
tectures might be proposed and need to be evaluated. Typical questions to answer
are: (i) does the platform meet the performance requirements of all the applications;
(ii) how robust is the platform with respect to changes in the application and/or
input data parameters; (iii) is there a platform with cheaper and less powerful com-
ponents to save cost but still meet the performance criteria of all applications?

The purpose of this case study is to show how our proposed analysis approach
can be applied in practice, the type of results that can be obtained and what their
accuracy is, as well as the suitability of our technique for soft real-time systems. The
in-car radio navigation system has been previously modelled and analysed in [102]
using Modular Performance Analysis, and in [46] using timed automata. As both
these techniques are suited for hard real-time systems, the analysis results for di-
mensioning the system were over-conservative, as it was discussed in [32]. Since
this system is not a safety critical system, but it allows 5% deadline miss ratio, it was
very interesting for us to see the results that the average case analysis of the system
can reveal.

We first describe in subsection 4.2.1 the system components and its model based
on the modelling patterns presented in chapter 3. The analysis and the dimensioning
of the platform on which the system should run are discussed in subsection 4.2.2.

Case Study: A Distributed In-Car Radio Navigation System 61

4.2.1 The Model of the In-Car Radio Navigation System

An overview of the system is depicted in figure 4.3. It has three clusters of func-
tionality: the man-machine interface (MMI) handles the interaction with the user;
the navigation functionality (NAV) deals with route-planning and navigation guid-
ance; the radio (RAD) is responsible for basic tuner and volume control, as well as
receiving traffic information from the network. For this system, three possible ap-
plication scenarios are identified: the change volume (VOL) scenario allows users
to change the volume; the change address (ADDR) scenario enables route planning
by looking up addresses in the maps stored in the database; in the handle network
messages (TMC) scenario the system needs to handle the navigation messages re-
ceived from the network. Each of these scenarios is described by a UML message
sequence diagram, shown in figures 4.4, 4.5 and 4.6. These diagrams are annotated
with information about the event rates, message sizes and task loads. The order of
magnitude of the numbers shown in the diagrams is realistic. During the design, the
system architect tries to improve their accuracy by using for example better estima-
tion technique on details of the design, such as worst-case execution time analysis or
by performing measurements on existing similar systems.

Figure 4.4: Change volume scenario

62 Analysis Approach for Dimensioning of Real-Time Systems

Figure 4.5: Change address scenario

The scenarios of the in-car radio navigation system have the property that they
can occur in parallel. Navigation messages received from the network may be pro-
cessed while the user changes the volume or enters an address to look it up in the
database. However, VOL and ADDR scenarios cannot occur in parallel because both
of them share a common resource, the rotary button.

Figure 4.7 presents five potential platforms for the deployment of the system.
These platforms are similar to those typically used for automotive applications. The
figure shows the architecture of each of the five platforms, together with the capaci-
ties of the communication and computation resource units and their nominal power
consumption. The order of magnitude of these numbers is correct as they are taken
from the data sheets of several commercially available automotive CPUs.

The information that we have at this moment is enough to build the model of
the system. For the application part, we only need to use the AperiodicTask pat-
tern as all tasks are triggered by either a system input event or a message coming
from another task. To build the PDL description of the system, we derive the values
of the modelling patterns parameters from the information provided by the UML
sequence diagrams. As we did not have any information about how the loads of
the tasks vary, we assumed that the tasks loads vary uniformly between the given

Case Study: A Distributed In-Car Radio Navigation System 63

Figure 4.6: Handle TMC messages scenario

best-case and worst-case values. This probability distribution is especially difficult
to analyse because it generates a large state space, which makes it very interesting.
In [90], it is shown that for small models, analytical computation of the model prop-
erties is possible. However, this is not the case in our system as the in-car navigation
system is too complex to be analysed in this way. The input event streams were
modelled as periodic with jitter, the value of the jitter being considered as half of the
period value to ensure a variation that is large enough. Moreover, for each task that
is triggered by an event from the environment, we assumed to have an activation
latency of 10% from the event rate in order to cover for typical latencies propagated
in such systems. Furthermore, for the modelling of the platform part of the system,
we used all the modelling patterns presented in table 3.1: Resource, Scheduler,
MappingMonitor and EnergyMonitor. For the computational resources we con-
sidered to have a variational initial latency. As this latency models the operating sys-
tem overhead as well as architecture characteristics effects (e.g. cache, pipeline) that
by far are not constant, we considered a uniform variation with a worst-case value
of 1000 instructions translated into execution time based on the MIPS rate. The order
of magnitude of this value is in-line with the characteristics of the platforms and the
typical operating systems that can run on such processors. The scheduling policy of
each resource is preemptive priority-based.

4.2.2 Analysis of the System Behaviour

After deriving the POOSL model of the in-car radio navigation system, we have run
simulations and analysed the results. Figure 4.8 shows the maximum value of the

64 Analysis Approach for Dimensioning of Real-Time Systems

(A)

(E)
(D)(C)

(B)

22 MIPS

113 MIPS 11 MIPS

72 kbps

22 MIPS

113 MIPS 11 MIPS

72 kbps 57 kbps

260 MIPS 22 MIPS

72 kbps

113 MIPS 130 MIPS

72 kbps

260 MIPS

MMI

RAD

NAV

MMI

RADNAV

MMI

RAD

NAV

MMI

RADNAV

MMI

RADNAV

0.03328 mW

4.5 mW 0.00416 mW

0.03328 mW

4.5 mW 0.00416 mW

0.03328 mW55 mW 4.5 mW 6.9 mW 55 mW

Figure 4.7: Platforms proposed for analysis

end-to-end delay observed during simulations on each of the proposed platforms
for each configuration of scenarios, whereas a similar chart is shown in figure 4.9 for
the estimated average value of the end-to-end delay. In all the simulations run, no
deadline miss was reported, which is also proved by the obtained maximum delays
that are smaller than the requirements. The maximum end-to-end delay of ADDR
scenario obtained on platform A has the same value as the one for platform B as
ADDR uses only NAV and MMI processors which are linked on both architectures
with the same type of bus. The maximum end-to-end delay for VOL scenario is
only a little larger on B than on A because the bus over which the messages are
transferred between MMI and RAD is slower. In case of the TMC scenario, the even
larger value of the end-to-end delay on B is explained by the need of an additional
task that runs on MMI to ensure communication between NAV and RAD. When two
scenarios are run in parallel, the same observations hold for platforms A and B. With
respect to platforms C, D and E, the values obtained for the end-to-end delay of each
combination of scenarios are much smaller which leads us to the conclusion that the
platforms are over-dimensioned.

With respect to the estimations of the average end-to-end delays, we need to
mention that we have run continuously our simulations until an accuracy of 95% of
the results was obtained. For most of the scenarios, the simulations length is given in
tenth of minutes. But when scenarios with timing requirements in different ranges,
like VOL that gets an event every 1/32 of a second and TMC that gets an event every
three seconds, run concurrently, the length of the simulation was measured in hours.

Another property of the system that can be checked during the simulations is
the resources utilisation in each of the architecture configurations proposed. The
results depicted in table 4.1 confirm our assumptions about the over-dimensioned
platforms. The MMI processor, which is the same in platforms A, B and C is the most
heavily used, up to 89% in platform B when an additional communication task needs
to run on it. The other processors are less utilised, especially in platforms C, D and E
where their MIPS rate is quite high. Moreover, we checked the power consumption
of the system in each of the possible configurations. Figure 4.10 visualises the power

Case Study: A Distributed In-Car Radio Navigation System 65

Maximum Observed End-To-End Delay [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

ADDR VOL TMC ADDR+TMC TMC+ADDR VOL+TMC TMC+VOL

A

B

C

D

E

Figure 4.8: Comparison of maximum end-to-end delay on all platforms

consumption normalised to the largest value obtained for all possible scenarios and
platforms configurations. It turned out that C, D and E are also the most power
hungry platforms.

Arch. CPU1 CPU2 CPU3 BUS1 BUS2
A MMI: 88% NAV: 6% RAD: 32% 3% -
B MMI: 89% NAV: 6% RAD: 32% 1% 4%
C NAV+RAD: 20% MMI: 88% - 3%
D NAV: 6% MMI+RAD: 18% - 1% -
E NAV+RAD+MMI: 10% - - - -

Table 4.1: Worst-case resources utilisations in each platform configuration

As a soft real-time system that allows 5% deadline miss ratio, the in-car radio
navigation system might be deployed on a cheaper architecture, that would also
consume less energy, while still providing the desired quality of service. However,
if a future development of a line of products of this kind is foreseen, a dimensioning
of the system suitable for the current product might not be that desirable. Usually
it is better in such cases to fix a platform on which also the next versions of the
application could be deployed as well. Hence, this platform needs to be performant
enough to accommodate the features of the coming products.

Nevertheless, in this subsection, we show how a designer can dimension a sys-
tem for the current requirements of the application. Due to the large difference be-
tween the requirements and the observed maximum end-to-end delay of each sce-
nario, as well as based on the insight in the power consumption and utilisation of the
resources, we can reason about possible platform performance reductions to reduce
costs.

As the previous experiments indicate platform A as the most utilised and still
consuming little power, we have used it as an example for how it can be dimensioned
to suit even better the requirements of the system:

• MMI - The utilisation of this processor is quite high, namely 88%. The periods

66 Analysis Approach for Dimensioning of Real-Time Systems

Average End-To-End Delay [s]

0

0.05

0.1

0.15

0.2

ADDR VOL TMC ADDR+TMC TMC+ADDR VOL+TMC TMC+VOL

A

B

C

D

E

Figure 4.9: Comparison of average end-to-end delay on all platforms

Measured Other active Average end-to-end delay Maximum observed end-to-end delay
scenario scenario [ms] [ms]
ADDR - 134.12 270.81
VOL - 45.31 55.92
TMC - 318.59 361.13

ADDR TMC 134.12 270.81
TMC ADDR 349.71 496.03
VOL TMC 46.57 74.73
TMC VOL 838.32 1056.06

Table 4.2: End-to-end delays for combinations of scenarios on platform A

and loads of the tasks mapped on this processor do not leave much room for
the decrease of its capacity.

• NAV - This processor is used 6%. The simulation results for scenarios ADDR
and TMC showed a difference of 120 ms and 730 ms respectively between the
worst-case delays obtained and the requirements. This leads to the conclusion
that considerable reduction of the capacity of this CPU can be achieved. We
assume a reduction to 40 MIPS.

• RAD - The utilisation of this processor is 32%. The analysis showed a differ-
ence of 150 ms for VOL between the maximum delay and the deadline. As
there is a large potential for capacity reduction, we reduce this CPU to 5 MIPS.

• BUS - The utilisation of the bus is very low, only 3%. Therefore, we do not
expect the communication to be a bottleneck once the performance of the CPUs
is reduced. However, as we did not have details about the communication link
used and its power consumption, reducing the throughput of the bus would
influence only the end-to-end delay.

With this new configuration for architecture A, we resumed our simulations and
the results obtained for the average and maximum end-to-end delays are given in
table 4.2. By the time the simulations were stopped because of achieving the de-
sired accuracy of the estimations for the end-to-end delays, which was of 95 %, the

Case Study: A Distributed In-Car Radio Navigation System 67

Normalised Power Consumption

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ADDR
VOL

TM
C

ADDR+T
M

C

TM
C+A

DDR

VOL+
TM

C

TM
C+V

OL

A

B

C

D

E

Figure 4.10: Normalised power consumption for all combinations of scenarios

monitoring of the deadline miss ratio did not achieve its accuracy. To obtain accu-
rate estimations of them, the simulation time should have been very long, thus we
stopped it without these estimates to meet their accuracy criterion. We decided to
stop simulations based on the accuracy of the average delay as the deadline miss is
not a frequent event. To estimate with more precision its value and to determine if
the system meets the requirements, we have plotted all the end-to-end delay values
obtained during the simulation as a distribution histogram. Each histogram, as the
one depicted in figure 4.11, shows on the horizontal axis the rate of occurrence of
each value. According to the central limit theorem [3] in probability theory, due to
the uniformly distributed loads of the tasks and to the fact that tasks in different
scenarios are independent, the sum of their delays, which is the end-to-end delay
of a scenario, has approximately a normal distribution. Therefore, over the distribu-
tion histogram obtained from a simulation, a normal distribution curve is fitted. The
curved line in figure 4.11 shows such a distribution curve fitted over the histogram
of the TMC scenario. The mean value parameter (µ) of the resulted normal distribu-
tion is 838, which represents the estimated average end-to-end delay. The resulted
standard deviation (σ2) is 3953. From such curves, the rate of deadline misses can be
deduced, based on their characteristics. For example, the deadline for TMC, which
is 1000 ms, can be found between two and three standard deviations from the mean
value. Thus, the probability of missing the deadline is less than 5%, which means
the requirements are met. By accepting misses of deadlines, the designer of a system
should also think of ways to back-up such situations. For our case study, this could
mean leaving the radio volume as it was or dropping out the network message that
could not be handled timely.

68 Analysis Approach for Dimensioning of Real-Time Systems

650 700 750 800 850 900 950 1000 1050
0

1

2

3

4

5

6

x 10
−3

End−to−end delay HandleTMC [ms]

D
en

si
ty

 [%
]

End−to−end delay distribution HandleTMC with ChangeVolume

Figure 4.11: Handle TMC scenario end-to-end results fitted in a normal distribution

4.3 Case Study: The Low-Level Control of a Printer Pa-
per Path

The second case study is inspired by a system architecture exploration for the control
of the paper path of a printer. The high-level view of the system model, visualised
using the SHESim tool, is given in figure 4.12. Printing requests come from the user
and arrive at the high-level control (HLC) of the machine which computes which
activities need to take place and when in order to accomplish the user request. The
HLC tasks activate the tasks representing the low-level control (LLC) of the physical
components of the paper path, like motors, sensors and actuators.

As HLC tasks are soft real-time, whereas LLC tasks, whose model is presented
in figure 4.13, are hard real-time, a rather natural solution was to consider a dis-
tributed architecture. LLC can be assigned to dedicated processor(s) and connected
through a network to the general-purpose processor that runs HLC. Under these cir-
cumstances, the problem was mainly to find an economical architecture for LLC, whose
task parameters are shown in table 4.3.

4.3.1 The Model of the Paper Path Low-Level Control

The main activity of LLC software is to process the stream of data read from sensors
and feed it back in the system. For the models of the periodic tasks of type T1, T3
and T4, considering the characteristics of the network links, we took into account
an activation latency of up to 10% of their period. Both tasks of type T2 and T5
are event-driven. Tasks T2 are activated based on notifications from HLC, whereas

Case Study: The Low-Level Control of a Printer Paper Path 69

Figure 4.12: High-level printer control POOSL model

Figure 4.13: POOSL LLC model

70 Analysis Approach for Dimensioning of Real-Time Systems

Task No. of Load T D
type Instantiations [ms] [ms]
T1 3 3200 2 2
T2 8 1200 - 2
T3 1 2000 2 2
T4 3 800 0.66 0.1
T5 4 160 - 0.064

Table 4.3: LLC task parameters

tasks T5 are triggered by events from the physical components in the environment.
Therefore, a model of the PhysicalComponents was needed, for which we considered
event streams with a uniform distribution in [1, 20] ms.

4.3.2 Platform Dimensioning of the Paper Path Low-Level Control

Given the frequency of events and the task execution times, we have analysed three
commercially available low-end processors, a 40 MIPS, a 20 MIPS and a 10 MIPS,
and compared their utilisations under different schedulers. Figure 4.14 presents the
results obtained using the earliest deadline first scheduling algorithm. Although the
10 MIPS processor seems to be used the most efficiently (close to its maximum ca-
pacity), the analysis of the model showed that there were missed deadlines; thus this
processor is not a good candidate since the system is a hard real-time one. For the
other two candidate processors, all deadlines are met and there were no deadlocks
detected in the system. Due to the fast execution engine Rotalumis, tens of hours of
system behaviour could be covered in less than one minute simulation time. More-
over, the analysis of the model gave the values of the maximum release jitter, respec-
tively output jitter of the tasks (for the simulation on the 20 MIPS processor they are
shown in table 4.4) which could be checked against the expected margins of errors
of the environment control design.

Although the patterns presented in chapter 3.3 were developed mainly for mod-
elling of soft real-time systems, this case study shows that they can successfully be
applied for the modelling of hard real-time systems as well. Moreover, the tools
and the analysis techniques associated to the POOSL modelling language are able to
handle the analysis of such systems as well.

MAX

MAX

AVG

AVG

MAX

AVG

0

20

40

60

80

100

120

40 MIPS 20 MIPS 10 MIPS

W
o

rk
lo

ad
 [

%
]

Figure 4.14: CPU workload comparison

Summary 71

Task type Release jitter Output jitter
[ms] [ms]

T1 0.466 1.852
T2 0.466 1.852
T3 0.414 1.884
T4 0.042 0.128
T5 0.472 1.094

Table 4.4: Tasks jitter on the 20 MIPS processor

4.4 Summary

In this chapter, we have presented an analysis approach for dimensioning real-time
systems in the areas of control-dominated and control with data-intensive compu-
tations applications. Two industrial case studies, the low-level control of a printer
paper path and an in-car radio navigation system, are presented and the results of
their analysis are discussed.

The in-car radio navigation system is a soft real-time system that has been previ-
ously analysed in [102] and [46] using techniques suitable for hard real-time systems.
By using the modelling patterns presented in chapter 3.3 and the analysis tools as-
sociated to the POOSL language, we have successfully performed an average case
analysis of the system. The results obtained helped us in finding a better dimension-
ing of the target platform, reducing the performance of the original platform with
more than 50%.

Although the modelling and analysis approach that we have discussed is this
thesis is targeted mainly towards soft real-time systems, with the case study of the
low-level control of a printer paper path, we have shown that it can successfully be
applied to hard real-time systems as well. By using our proposed analysis technique,
we were able to determine a suitable platform for the deployment of the low-level
control of the paper path that ensures the meeting of the deadlines and low task jitter.

72 Analysis Approach for Dimensioning of Real-Time Systems

5
Proximity Between Model and Realisation

A key aspect in the predictable design of real-time systems is to understand the re-
lation between the properties of a model and of its corresponding implementation.
After presenting in the previous chapters some means for easily building appropri-
ate models of real-time systems and for analysing their performance properties, in
this chapter we introduce an approach to predict the properties of a realisation based
on those of the model.

The chapter is organised as follows. Section 5.1 introduces some mathematical
notations that are needed throughput the chapter. Section 5.2 presents the mathemat-
ical model used for representation of real-time systems behaviour. The strategy for
synthesising a POOSL model is discussed in section 5.3. In section 5.4, we present an
approach for determining the proximity between a model and its realisation based
on the exact execution times of its actions. Section 5.5 discusses the impact of the
accuracy of the values of the execution times on the calculated distance, whereas
section 5.6 provides the necessary and sufficient conditions such that this calcula-
tion can be done in finite time. The algorithm for calculating the distance is given
in section 5.7 and a corresponding simulation approach to estimate it is presented in
section 5.8. Section 5.9 gives the summary of the chapter.

5.1 Preliminaries

In this section, we define a notion of sequence of elements from a given set that we
shall use throughout the chapter.

Definition 5.1 Given a set of elements V , we denote with v ∈ V n a sequence of n elements
v = v1v2 . . . vn where v1, v2, . . . vn ∈ V . The number of elements of the sequence represents

74 Proximity Between Model and Realisation

the length of the sequence. The i-th element of the sequence v ∈ V n is given by vi, where
1 ≤ i ≤ n. The empty sequence is denoted with <>, whereas the sequence made by a single
element u ∈ V is denoted with <u>.

Definition 5.2 Given two sequences v ∈ V n and w ∈ V m, their concatenation, denoted
with v.w, is a sequence u ∈ V n+m where ui = vi for 1 ≤ i ≤ n and un+i = wi for
1 ≤ i ≤ m.

5.2 Representation of System Behaviour

To properly reason about the properties of a system, an abstract, mathematical model
of it is needed. A common abstract representation of the behaviour of embedded
systems is a graph structure regarding a system as an entity having some internal
state, represented by a node. This entity is able, depending on its state, to engage
in transitions, represented by edges, leading to other states (nodes). A graph struc-
ture defines a set of traces, each of them representing a possible execution of the
system. Both the nodes and the edges of such a graph can be annotated with specific
information to facilitate the analysis of the system properties [69].

There are two ways to annotate a graph structure such that it represents the un-
timed behaviour of a system. One is to annotate the nodes (the states) with atomic
propositions. The other is to annotate the edges (the state transitions) with actions. A
graph structure with node annotations is often formalised as a Kripke structure [60],
whereas a graph structure with edge annotations is formalised as a labelled transi-
tion system [68]. A comparison of these formalisations can be found in [26]. Such
a graph structure provides information about the sequences of states or state transi-
tions of the system, but nothing about the time at which transitions take place.

To analyse the timing behaviour of a system based on a graph structure, tim-
ing information has to be attached to it. A few examples include timed Muller
automata [9], which annotate edges with timing constraints, timed automata [10],
which annotate nodes with timing constraints, and timed labelled transition systems,
which consider the progress of time as a special type of action and correspondingly
annotate edges. An example of timed labelled transition system is timed CCS [22].

As the semantics of the POOSL modelling language is based on timed labelled
transition systems, in the following we present the characteristics of this mathemat-
ical structure in this context needed to understand the remainder of this thesis.

Definition 5.3 A timed labelled transition system is a 6-tuple:

T = (S, sI , Act, T+, { a

Act
// ⊆ S × S | a ∈ Act}, { t

T+
// ⊆ S × S | t ∈ T+})

consisting of a countable set S of states, an initial state sI , a set Act of actions, a positive
time domain T+ which is included in the set of real positive numbers R+ ∪ {∞}, a family
of action transition relations a

Act
// ⊆ S × S, and a family of time transition relations

t

T+
// ⊆ S × S.

Representation of System Behaviour 75

An action transition s1
a

Act
// s2 denotes a possible transition of the system from

state s1 to state s2 by performing action a. A time transition s1
t

T+
// s2 denotes

a transition of the system from state s1 to state s2 by letting an amount t > 0 of

time pass. The time transition relation s1
t

T+
// s2 holds if in state s1 the model

can delay for t units of time and after that it behaves as state s2. Time transitions
follow the concepts presented in [101]. The basic idea is that a process only has time
transitions for maximal durations of time it wants to delay, which is called maximal
progress, where (for reasons of compositionality) it is implicitly understood that it is
also willing to delay for shorter durations of time. In the remainder, we often leave
out the subscript identifying the transition relation as being the action transition
relation or the time transition relation. It will be clear from the label (being from
either Act or T+) which relation is intended.

Phase 2
Time

Phase 2
Time

Phase 1
Action

Phase 1
Action

Model Time

Phase 1
Action

Figure 5.1: Two phase execution model

As concurrency is an important aspect of real-time systems, the interleaving se-
mantics has been adopted in many formal frameworks to model simultaneous ac-
tions. In this model, parallel execution of two actions, a||b, is represented by a non-
deterministic choice between two sequential actions a followed by b (i.e. a; b), and
b followed by a (i.e. b; a). The interleaving semantics facilitates sequential analysis
of concurrent behaviours [14]. Under the choice of interleaving semantics, the tim-
ing behaviour of a concurrent system is often formalised by a two phase execution
model based on action urgency [70]. As depicted in figure 5.1, the state of the system
changes either by asynchronously executing simultaneous atomic actions without
passage of time (phase 1), or by letting time pass synchronously for all the compo-
nents of the system when no action can be performed (phase 2). As soon as an action
becomes available, the first phase is resumed.

Example 5.1 For a system consisting of two independent parallel components P (fig-
ure 5.2.a) and Q (figure 5.2.b), assuming that the environment is always willing to par-
ticipate in the communication with these components, the timed labelled transition system of
the system P ||Q is shown in figure 5.2.c. Actions in1, in2, out1 and out2 represent commu-
nication with the environment, whereas computation1 and computation2 represent some
internal calculations. In the resulting timed labelled transition system, all possible ordering
of the executions of actions are taken into account, e.g. it can be either in1, computation1,
in2, computation2 . . ., or in1, in2, computation1, computation2 . . . and so on. Note that

76 Proximity Between Model and Realisation

Q1 Q2

in2

Q3

computation2

Q4

2

P1 P2

in1

P3

computation1

P4

1

P5

out1

S1 S2

in1

S3

computation1

S4

in2

S5

computation2

S6

1

S7

out1

c) Timed labelled transition system for P || Q

a) Timed labelled transition system for P b) Timed labelled transition system for Q

in2 S13 computation1

in2

computation2

computation1S14

Q5

out2

S10

S11

out2

1

S15

in1

S16

computation2

in1

S8

computation1in1

S9

out1

S12

out2

out1

Figure 5.2: Timed labelled transition systems

due to action urgency, as component P outputs its result every 1 unit of time, whereas com-
ponent Q needs to output its result every 2 units of time, P performs twice its behaviour
while Q performs once.

For POOSL, process execution trees (PETs) are used for representing the timed
labelled transition system of the model. The state of each POOSL process is repre-
sented by a tree structure, where each leaf is a statement and internal nodes represent
compositions of their children. For example, figure 5.3.a shows the POOSL specifi-
cation of the system consisting of the two parallel processes P and Q whose timed
labelled transition systems are depicted in figure 5.2. The PETs of P ||Q are shown in
figure 5.3.b. During the evolution of the system, the PETs send action requests and/or
time delay requests to the scheduler. The PET scheduler, whose behaviour is described
by the algorithm in figure 5.4, asynchronously grants all eligible atomic actions until
there are no other actions available at the current model time moment. The inter-
nal state of each PET is dynamically changed according to the choices made by the
PET scheduler and new requests may be sent to the scheduler. When no action is
possible, based on the shortest delay request, time passes synchronously for all PETs
until an action becomes eligible again. The value of the variable modelTime is up-
dated based on the value of the granted delay. More details about PETs can be found
in [94]. The correctness of PET with respect to the semantics of the POOSL language
was formally proved in [41].

Definition 5.4 A path through a timed labelled transition system T is a 2-tuple:

P = (s, γ)

where:

• s ∈ Sn is a finite sequence of states s1, s2, . . . sn;

Representation of System Behaviour 77

Process P:

Init()
 in1 ? input;
 computation1()();
 delay 1;
 out1 ! output;
 Init()().

Process Q:

Init()
 in2 ? input;
 computation2()();
 delay 2;
 out2 ! output;
 Init()().

PET Scheduler

;

;

P

;

in1 ? input

computation1

delay 1

out1 ! input

;

;

Q

;

in2 ? input

computation2

delay 2

out2 ! input

root root

a) POOSL processes b) Process Execution Trees

;

Init()()

;

Init()()

Figure 5.3: The P ||Q system in POOSL

PETSCHEDULER(LIST actions, LIST delays)

1 modelTime← 0
2 while (true)
3 do while (actions NOTEMPTY())
4 do actions GETASYNCHRONOUSLY()–>GRANT();
5 if (delays NOTEMPTY())
6 then modelTime←modelTime + delays GETSMALLEST()–>AMOUNTOFTIME();
7 continue;
8 else DEADLOCK();
9 return

Figure 5.4: The PET scheduler

• γ ∈ (Act ∪ T+)n−1 is a finite sequence of transitions γ1, γ2, . . . γn−1

with the property that ∀i, 1 ≤ i ≤ n, si
γi // si+1. The length of the path is the length of

its sequence of states.

For the convenience of reading, a path can also be written in the form:

P = s1
γ1 // s2

γ2 // s3 . . . sn−1

γn−1 // sn.

Example 5.2

s1
in1 // s2

computation1// s3
in2 // s4

computation2// s5
1 // s6

out1 // s7
in1 // s8

computation1// s9
1 // s10

out1 // s12
out2 // s1

(5.1)

is a path through the timed labelled transition system presented in figure 5.2.c. Another

78 Proximity Between Model and Realisation

possible path is

s1
in1 // s2

in2 // s10
computation1// s4

computation2// s5
1 // s6

out1 // s7
in1 // s8

computation1// s9
1 // s10

out2 // s11
out1 // s1

(5.2)

Definition 5.5 Given a timed labelled transition system T , a path P = (s, γ) is a cycle
through the transition system if s is of the form s = s1s2 . . . sn where s1 = sn.

Definition 5.6 Given a timed labelled transition system T , a path P = (s, γ) is a simple
cycle through the transition system if s is of the form s = s1s2 . . . sn where s1 = sn and
∀i, j, 1 ≤ i < n and 1 ≤ j < n, si 6= sj for i 6= j.

Example 5.3 Both paths 5.1 and 5.2 are simple cycles through the transition system from
figure 5.2.c.

Definition 5.7 Given a timed labelled transition system T , the behaviour of the system
is the set B(T) of all possible paths through T starting from the initial state sI , B(T) =
{P | P = (s, γ), where s1 = sI}.

5.3 POOSL Model Synthesis Strategy

In this section, we present a model synthesis approach for models expressed in the
Parallel Object-Oriented Specification Language (POOSL). Rotalumis is a tool that
takes a POOSL model and generates the executable code for the target platform.
As discussed in section 5.2, the timed labelled transition system of each process in
a POOSL model is represented using process execution trees (PETs). Each PET in
the model is directly translated into a C++ structure whose behaviour is the same
as described above. As a result, the generated implementation exhibits exactly the
same behaviour as the model, if interpreted in model time domain. On the other
hand, the implementation of a system needs to interact with the outside world and
its behaviour has to be interpreted in physical time domain. Since the progress of
model time is monotonicly increasing, which is consistent with the progress of phys-
ical time, the action order observed in model time domain is consistent with that in
physical time. That is, the scheduler of PETs ensures that the implementation always
has the same event order as observed in the POOSL model.

To obtain the same (or similar) quantitative timing behaviour in the physical time
as in the model time, the PET scheduler synchronises the model time with the phys-
ical time during execution, as shown in figure 5.5. Considering the overhead of the
PET scheduler, this ensures that an execution path observed in physical time domain
is always as close as possible to a path observed in model time. As shown in [51],
the smaller the distance in time between the corresponding paths in model and in
realisation, the stronger the properties are preserved. Hence, it is very important to
be able to determine at design time the size of this distance to be able to predict the
properties of the final system.

Determining the Proximity Between Model and Realisation 79

PETSCHEDULERROTALUMIS(LIST actions, LIST delays)

1 modelTime← 0
2 startTime← READPHYSICALTIME()
3 while (true)
4 do while (actions NOTEMPTY())
5 do actions GETASYNCHRONOUSLY()–>GRANT();
6 if (delays NOTEMPTY())
7 then modelTime←modelTime + delays GETSMALLEST()–>AMOUNTOFTIME();
8 /* synchronisation between model and physical time */
9 if modelTime > READPHYSICALTIME() - startTime

10 then wait_until modelTime == READPHYSICALTIME() - startTime;
11 continue;
12 else DEADLOCK();
13 return

Figure 5.5: The PET scheduler in Rotalumis

5.4 Determining the Proximity Between Model and Re-
alisation

As a model is an approximation of the system realisation with respect to time, we
will characterise the proximity between a model and its corresponding realisation as
a distance in time. For this, in subsection 5.4.1 we define the distance between a path
in the model and its corresponding path in the realisation based on a time labelling.
Moreover, in subsection 5.4.2 we propose a way to easily calculate the distance along
all the paths in the system in order to determine the proximity between the model
and its realisation.

5.4.1 Definition of Distance Between Paths

In order to determine the timing distance between a path in the model and the cor-
responding path taken in the realisation of the system, we need to first characterise
a path in time.

Definition 5.8 A labelling in model time of a path P = (s, γ) from a timed labelled

transition system T = (S, sI , Act, T+, { a

Act
// ⊆ S × S | a ∈ Act}, { t

T+
// ⊆

S × S | t ∈ T+}) is a 3-tuple:
LM(P) = (s, tM , γ)

where:

• s ∈ Sn is a finite sequence of states starting with the initial state of the transition
system, s1 = sI ;

• tM ∈ R+n is a finite sequence of model time labels;

• γ ∈ (Act ∪ T+)n−1 is a finite sequence of transitions

with the following properties:

80 Proximity Between Model and Realisation

• ∀i, 1 ≤ i < n, si
γi // si+1;

• tM1 = 0;

• ∀i, 1 ≤ i < n, tMi+1 = tMi if γi ∈ Act;

• ∀i, 1 ≤ i < n, tMi+1 = tMi + γi if γi ∈ T+.

A labelling of a path in model time describes the timing behaviour of the system
in model time. The label of a state is the model time at which the transition leaving
from it occurs. For the easiness of reading, we sometimes use the following notation:

LM(P) = s1(tM1)
γ1 // s2(tM2) . . . sn−1(tMn−1)

γn−1 // sn(tMn
)

Example 5.4 If we consider path 5.1 from example 5.2, the timing behaviour of the system
based on this path is given by the following labelling:

s1(0) in1 // s2(0)
computation1// s3(0) in2 // s4(0)

computation2// s5(0)

1 // s6(1) out1 // s7(1) in1 // s8(1)
computation1// s9(1)

1 // s10(2) out1 // s12(2) out2 // s1(2)

(5.3)

Because a model is an approximation of the actual timing behaviour of a system,
in reality it is not possible to execute action transitions in zero time as formalised in
the semantics of the model. To take this into account, we define a function on the
set of action transitions of the system that gives the value of the execution time of
each action on a target platform. Moreover, we assume that the execution time of an
action incorporates the overhead of the execution engine that executes the model of
the system in real-time. This overhead is induced by the PETs who need to change
their internal states according to the choices made by the scheduler.

Definition 5.9 Given a timed labelled transition system T = (S, sI , Act, T+, { a

Act
// ⊆

S × S | a ∈ Act}, { t

T+
// ⊆ S × S | t ∈ T+}), let

ExecT ime : Act → R+

be a function that associates to each action transition labelled γ ∈ Act a positive real number
representing the exact amount of time it takes to execute the action transition on a target
platform.

Using the function that gives the execution time of actions in a system, we can
now define a labelling of a path based on both the model time and the physical time.
By labelling each state of a path with both the model time at which a transition can
be made from it and the physical time at which the transition is actually made, one
can describe the timing behaviour of the realisation of a system. By characterising
the timing behaviour of both the model and the realisation of a system, we will be
able to define and to determine the distance in time between them.

Determining the Proximity Between Model and Realisation 81

Definition 5.10 Given a path P = (s, γ) from a timed labelled transition system T , a
labelling of it in model time LM(P) = (s, tM , γ) and a function ExecT ime : Act → R+,
the labelling of the path P in both model and physical time is a 4-tuple:

LExecTime
MP (P) = (s, tM , tP , γ)

where:

• s ∈ Sn is a finite sequence of states starting with the initial state of the transition
system s1 = sI ;

• tM ∈ R+n is a finite sequence of model time labels;

• tP ∈ R+n is a finite sequence of physical time labels;

• γ ∈ (Act ∪ T+)n−1 is a finite sequence of transitions

with the following properties:

• ∀i, 1 ≤ i ≤ n, si
γi // si+1;

• tM1 = 0;

• ∀i, 1 ≤ i < n, tMi+1 = tMi
if γi ∈ Act;

• ∀i, 1 ≤ i < n, tMi+1 = tMi
+ γi if γi ∈ T+;

• tP1 = 01;

• ∀i, 1 ≤ i < n, if γi ∈ Act then tPi+1 = tPi + ExecT ime(γi);

• ∀i, 1 ≤ i < n, if γi ∈ T+ then tPi+1 = tPi if tMi+1 < tPi ;

• ∀i, 1 ≤ i < n, if γi ∈ T+ then tPi+1 = tMi+1 if tMi+1 ≥ tPi .

From the definition, it is obvious that the model time label is either the same or
lags behind the physical time label, namely that tMi

≤ tPi
. The labelling in physical

time of a path is based on the synthesis mechanism for POOSL models presented in
section 5.3. The value of the physical time label for a state depends on the type of
transition that leads to that state. If it is an action transition, the physical time label
is determined based on the label of the previous state and the execution time of the
action transition, tPi+1 = tPi

+ ExecT ime(γi). Therefore, it is clear that it will be
larger than its corresponding model time label. If it is a time transition, based on the
synthesis mechanism for POOSL models, a synchronisation of the model time with
the physical time is realised. If the time delay is not large enough to compensate for
the execution times of the actions that happened after the last time transition in the
path, it means that tPi

> tMi+1 . Then, no time delay is taken in physical time and the
physical time label of the state is copied from the previous state, tPi+1 = tPi

. If the
time delay is large enough to compensate for the execution times of the actions that

1For sake of simplicity but without loss of generality, we consider that a physical clock starts counting
when the execution of the system begins.

82 Proximity Between Model and Realisation

happened after the last time transition in the path, it means that tPi ≤ tMi+1 . Then,
an amount of time delay is taken in physical time until model time and physical time
are synchronised. The physical time label of the state is set to the value of the model
time label of the same state, tPi+1 = tMi+1 .

For the easiness of reading, we often use the following notation for a path labelled
with both model time and physical time:

LExecTime
MP (P) = s1(tM1 , tP1)

γ1 // s2(tM2 , tP2) . . . sn−1(tMn−1 , tPn−1)
γn−1 // sn(tMn

, tPn
)

Example 5.5 For path 5.3 of example 5.4 which is labelled in model time, we assume the
following execution times for the different actions:

• ExecT ime(in1) = 0.01;

• ExecT ime(in2) = 0.01;

• ExecT ime(computation1) = 0.12;

• ExecT ime(computation2) = 0.16;

• ExecT ime(out1) = 0.01;

• ExecT ime(out2) = 0.01.

The labelling in both model time and physical time that results is:

s1(0, 0) in1 // s2(0, 0.01)
computation1// s3(0, 0.13) in2 // s4(0, 0.14)

computation2// s5(0, 0.30) 1 // s6(1, 1) out1 // s7(1, 1.01) in1 // s8(1, 1.02)
computation1// s9(1, 1.14) 1 // s10(2, 2) out1 // s12(2, 2.01) out2 // s1(2, 2.02)

(5.4)

Based on the labelling in both model time and physical time, we can now define
the distance between model and realisation along a path.

Definition 5.11 Given a path P = (s, γ) of length n through a timed labelled transition
system T and its labelling LExecTime

MP (P) = (s, tM , tP , γ) based on a function ExecT ime :
Act → R+, the distance between the timing behaviour of the model and of the reali-
sation along this path is given by:

dExecTime(P) = max
1≤i≤n

(tPi
− tMi

).

Example 5.6 The distance between model and realisation along path 5.4 in example 5.5 is:

dExecTime(P) = max{0− 0, 0.01− 0, 0.13− 0, 0.14− 0, 0.30− 0, 1− 1, 1.01− 1,

1.02− 1, 1.14− 1, 2− 2, 2.01− 2, 2.02− 2} = max{0, 0.01, 0.13, 0.14,

0.30, 0, 0.01, 0.02, 0.14, 0, 0.01, 0.02} = 0.30

Determining the Proximity Between Model and Realisation 83

However, the labelling with both model time and physical time is not very con-
venient for calculating the distance between model and realisation because both the
model time and the physical time keep increasing. Therefore, we define a new la-
belling of a path in which the difference between the values of the model time label
and the physical time label of a state are connected immediately.

Definition 5.12 Given a path P = (s, γ) through a timed labelled transition system T and
a function ExecT ime : Act → R+, a time difference labelling of it is a 3-tuple:

LExecTime(P) = (s, d, γ)

where:

• s ∈ Sn is a finite sequence of states starting with the initial state of the transition
system s1 = sI ;

• d ∈ R+n is a finite sequence of labels;

• γ ⊆ (Act ∪ T+)n−1 is a finite sequence of transitions

where

• d1 = 0;

• ∀i, 1 ≤ i < n, if γi ∈ Act then di+1 = di + ExecT ime(γi);

• ∀i, 1 ≤ i < n, if γi ∈ T+ then di+1 = di
.γi, where . is the monus function [62]

which is defined as di+1 = max(di − γi, 0).

Example 5.7 The time difference labelling of path 5.1 from example 5.2 using the execution
times of actions from example 5.5 is:

s1(0) in1 // s2(0.01)
computation1// s3(0.13) in2 // s4(0.14)

computation2// s5(0.30) 1 // s6(0) out1 // s7(0.01) in1 // s8(0.02)
computation1// s9(0.14) 1 // s10(0) out1 // s12(0.01) out2 // s1(0.02)

(5.5)

Lemma 5.1 Given a path P = (s, γ) of length n through a timed labelled transition system
T and its time difference labelling LExecTime(P) = (s, d, γ) based on a function ExecT ime :
Act → R+, the distance between the timing behaviour of the model and of the realisation
along this path is:

dExecTime(P) = max
1≤i≤n

(di).

Proof Let LExecTime
MP (P) = (s, tM , tP , γ) be the labelling of path P in both model

time and physical time. Using definitions 5.10 and 5.12, we are going to show by
induction that ∀i, 1 ≤ i ≤ n, di = tPi

− tMi
.

Case 1. Let i = 1. Then di = 0 = tPi − tMi .

Case 2. Let i > 1 and assume di = tPi
− tMi

. Then

84 Proximity Between Model and Realisation

• if γi ∈ Act, di+1 = di + ExecT ime(γi) = tPi − tMi + ExecT ime(γi) = tPi+1 −
tMi+1 ;

• if γi ∈ T+,

di+1 = di
.
γi =

{
di − γi, if di > γi

0, if di ≤ γi

=
{

tPi
− tMi

− γi, if tPi
− tMi

> γi

0, if tPi − tMi ≤ γi

=
{

tPi
− tMi

− γi, if tPi
> tMi

+ γi

0, if tPi ≤ tMi + γi

=
{

tPi
− tMi+1 , if tPi

> tMi+1

tMi+1 − tMi+1 , if tPi ≤ tMi+1

=
{

tPi+1 − tMi+1 , if tPi
> tMi+1

tPi+1 − tMi+1 , if tPi ≤ tMi+1

Then di+1 = tPi+1 − tMi+1 .
2

Considering the time difference labelling of states along a path in a system, the
time deviation between model and realisation is given by the label with the largest
value observed along a path.

Definition 5.13 Given a timed labelled transition system T =

(S, sI , Act, T+, { a

Act
// ⊆ S × S | a ∈ Act}, { t

T+
// ⊆ S × S | t ∈ T+})

and a function ExecT ime : Act → R+, the distance between the timing behaviour of
the model and that of the realisation is given by:

dExecTime(T) = sup{dExecTime(P) | P is a path of T starting in sI}.

The distance between a model and its realisation represents an upper-bound of
all the distances along all possible paths P starting in the initial state of the system,
P ∈ B(T). As there can be infinitely many possible paths, we need to use the supre-
mum instead of the maximum for the definition of the distance. This distance repre-
sents the key ingredient in determining the relation between the properties analysed
in the model and their preservation in the realisation. In [51], it is shown that the
properties of the model are preserved (also called weakened) in the realisation up to
their distance dExecTime(T). Hence, the calculation of the distance between a model
and its realisation onto a certain target platform is crucial for predicting the proper-
ties of the realisation before actually building it.

5.4.2 Calculating the Distance Between Model and Realisation

Typically a timed labelled transition system has infinitely many paths. Therefore,
lemma 5.1 for determining the distance between a model and a realisation along a
path is not directly suitable to compute this distance for all the paths in the system.

Determining the Proximity Between Model and Realisation 85

To efficiently compute this distance, we define an extended timed labelled transition
system based on which we can determine the distance between model and reali-
sation without identifying all the individual paths. This extended timed labelled
transition system is built using the technique of time difference labelling of states
given by definition 5.12.

Definition 5.14 Given a timed labelled transition system

T = (S, sI , Act, T+, { a

Act
// ⊆ S × S | a ∈ Act}, { t

T+
// ⊆ S × S | t ∈ T+})

and a function ExecT ime : Act → R+, the extended timed labelled transition system
is a 6-tuple:

EExecTime(T) = ((S ×R+), (sI , 0), Act, T+, { a

Act
// E ⊆ (S ×R+)× (S ×R+) |

a ∈ Act}, { t

T+
// E ⊆ (S ×R+)× (S ×R+) | t ∈ T+}).

Action transition (s1, d1)
a

Act
// E (s2, d2) holds iff:

• s1
a

Act
// s2 in T ;

• d2 = d1 + ExecT ime(a).

Time transition (s1, d1)
t

T+
// E (s2, d2) holds iff:

• s1
t

T+
// s2 in T ;

• d2 = d1
. t.

The reader may have noticed that, according to the definition, the state space
S ×R+ of an extended timed labelled transition system is not countable. However,
it is not difficult to prove that the collection of states that are reachable from the initial
state (sI , 0) is countable [100].

Example 5.8 The extended timed labelled transition system for the example in figure 5.2.c
is depicted in figure 5.6. As a remark, it is possible that multiple copies of a state from the
original transition system to appear in the extended timed labelled transition system with
different time difference labels, as it is the case with states s1, s2, s3, s4, s5, s13, s14, s15, s16

in figure 5.6.

Using the extended timed labelled transition system, the following theorem over-
comes the problem of taking each individual path of the system into account for
determining the distance between a model and its realisation from definition 5.13.

86 Proximity Between Model and Realisation

S1
0

S2
0.01

in1
S3

0.41

computation1
S4

0.42

in2
S5

0.92

computation2
S6
0

1
S7

0.01

out1

in2 S13
0.02

computation1

in2

computation2

computation1S14
0.52

S10
0

S11
0.01

out2

1

S15
0.01

in1

S16
0.51

computation2

in1

S8
0.02

computation1in1
S9

0.42

out1

S12
0.01

out2
out1

S1
0.02

S2
0.03

in1
S3

0.43

computation1
S4

0.44

in2
S5

0.94

computation2

1

in2 S13
0.04

computation1

in2

computation2

computation1S14
0.54

S15
0.03

in1

S16
0.53

computation2

in1

Figure 5.6: Extended timed labelled transition system

Theorem 5.2 Let T be a timed labelled transition system whose initial state is sI and let
EExecTime(T) be its corresponding extended timed labelled transition system whose initial
state is (sI , 0). Then:

dExecTime(T) = sup{d | (s, d) is a state in EExecTime(T) reachable from (sI , 0)}.

Proof By definition 5.13,

dExecTime(T) = sup{dExecTime(P) | P is a path of T starting in sI}.

Therefore, we need to show that

sup{d | (s, d) is a state in EExecTime(T) reachable from (sI , 0)} =

sup{dExecTime(P) | P is a path of T starting in sI}.

For any extended state (s, d) reachable from (sI , 0) in EExecTime(T), there exists a
path EExecTime(P) = ((s, d), γ) of length n such that (s, d)1 = (sI , 0) and (s, d)n =
(s, d). By the construction of the extended timed labelled transition system, there
exists a corresponding path P in T from sI to s such that the time difference label of
s is d. From lemma 5.1, d ≤ dExecTime(P). Hence

sup{d | (s, d) is a state in EExecTime(T) reachable from (sI , 0)} ≤
sup{dExecTime(P) | P is a path of T starting in sI}.

The other way around, for any path P = (s, γ) starting in the initial state sI of
T , there exists a corresponding path EExecTime(P) = ((s, d), γ) in EExecTime(T) starting

Execution Time Accuracy Impact on Distance 87

in (sI , 0). Then, for any state s reachable from sI through a path P in T there exists
a corresponding extended state (s, d) in EExecTime(T) reachable from (sI , 0) through
path EExecTime(P). Since dExecTime(P) is equal to the time difference label of one of the
states in s, we have that

{dExecTime(P) | P is a path of T starting in sI} ⊆
{d | (s, d) is a state in EExecTime(T) reachable from (sI , 0)}.

Hence
sup{dExecTime(P) | P is a path of T starting in sI} ≤

sup{d | (s, d) is a state in EExecTime(T) reachable from (sI , 0)}.

In this way, we proved that

dExecTime(T) = sup{d | (s, d) is a state in EExecTime(T) reachable from (sI , 0)}.
2

Based on theorem 5.2, the distance between a model and its realisation is the
upper-bound on the value of all the labels of states reachable from the initial state in
the extended timed labelled transition system.

5.5 Execution Time Accuracy Impact on Distance

In section 5.4, we have presented an approach for determining the distance between
a model and its realisation using the exact execution times of actions on the desired
target platform. However, in practice, we do not have such values, and most of the
time we need to resort to (sometimes rough estimations of) the worst-case execution
times that can be obtained using methods like [63] and [43]. In the rest of this section,
we show that by using the worst-case execution time of actions, the distance between
model and realisation increases compared to the situation when the exact execution
times of actions are used. This aspect is important because if by using the worst-case
execution times of actions the distance decreased, the actual distance between model
and realisation would be larger than the one calculated. Hence, the properties of the
realisation would not be correctly predicted from the model.

Theorem 5.3 Given a timed labelled transition system T and two functions ExecT ime1 :
Act → R+ and ExecT ime2 : Act → R+ with ExecT ime1(γ) = ExecT ime2(γ)
for any γ ∈ Act \ {a} and ExecT ime1(a) < ExecT ime2(a) for some a ∈ Act, then
dExecTime1(T) ≤ dExecTime2(T).

Proof Assume there exists some s, s
′ ∈ S such that s

a // s
′

and
on any path from sI to s there is no occurrence of a. Then there ex-

ists some d1, d
′

1 such that (s, d1)
a // E (s

′
, d

′

1) in EExecTime1(T) and some

d2, d
′

2 such that (s, d2)
a // E (s

′
, d

′

2) in EExecTime2(T). Since a does not oc-
cur in the path from sI to s, then by definition 5.14 d1 = d2. More-
over, d

′

1 = d1 + ExecT ime1(a) and d
′

2 = d2 + ExecT ime2(a) = d1 +

88 Proximity Between Model and Realisation

ExecT ime2(a) > d1 + ExecT ime1(a) = d
′

1. Hence, by theorem 5.2,
dExecTime1(T) = sup{d | (s, d) is a state in EExecTime1(T) reachable from (sI , 0)} ≤
sup{d | (s, d) is a state in EExecTime2(T) reachable from (sI , 0)} = dExecTime2(T).

2

Corollary 5.4 Given an extended timed labelled transition system, the largest distance be-
tween model and realisation is obtained when the execution time of each action is equal to its
worst-case execution time.

This result gives us the possibility of safely using the worst-case execution times
of actions, which are typically available at least as estimations, for calculating an
upper-bound on the distance from model to realisation. Hence, we are not restricted
to determining exact execution times of actions which in general is not possible.
Moreover, we are sure that the value obtained for the distance is not an optimistic
one and in fact, the real value will always be smaller.

5.6 Finite Time Computation of Distance

By theorem 5.2, we have that the distance between a model and its realisation is an
upper-bound on the labels of all the states in the extended timed labelled transition
system. If the timed labelled transition system has infinitely many states, then ob-
viously, its extended timed labelled transition system also has infinitely many states
and the distance cannot be computed in finite time. However, when the timed la-
belled transition system is finite in the number of states and transitions, it is not im-
mediately obvious if its corresponding extended timed labelled transition system is
also finite. In the rest of this section, we show that when the timed labelled transition
system is finite, which is generally the case for real-time systems, if the resulting ex-
tended timed labelled transition system is infinite, then the distance between model
and realisation is infinite. We also provide the necessary and sufficient conditions
for the extended timed labelled transition system to be finite and the computation of
the distance to be done in finite time.

We first present in subsection 5.6.1 some mathematical notations and results
needed to understand the main result presented in subsection 5.6.2. Then, we prove
a theorem which is the foundation for building an algorithm to calculate the distance
between model and realisation.

5.6.1 Preliminaries

Definition 5.15 Given a timed labelled transition system T =

(S, sI , Act, T+, { a

Act
// ⊆ S × S | a ∈ Act}, { t

T+
// ⊆ S × S | t ∈ T+})

and a function ExecT ime : Act → R+, let L : Act ∪ T+ → R be a function on the labels
of the transitions in T such that:

L(γ) =
{

ExecT ime(γ), γ ∈ Act;
−γ, γ ∈ T+.

Finite Time Computation of Distance 89

Let P = (s, γ) be a path through T . The sequence of numbers along the path, denoted
by P ∈ Rn−1, is defined as P =<L(γ1)> . <L(γ2)> . . . <L(γn−1)>.

Example 5.9 For the execution time function defined in example 5.5 and path 5.1 of exam-
ple 5.2, the sequence of numbers along it is:

<0.01>.<0.12>.<0.01>.<0.16>.<−1>.<0.01>.<0.01>.

<0.12>.<−1>.<0.01>.<0.01>

Definition 5.16 Given a sequence x ∈ Rn, the sum operation over the sequence
∑

x is
defined recursively as follows:

•
∑

<>= 0

•
∑

(x. <y>) = max(
∑

x + y, 0), y ∈ R

Lemma 5.5 Given two sequences x ∈ Rn and y ∈ Rm, the sum of the elements of the
concatenated sequence x.y ∈ Rn+m is

∑
(x.y) =

∑
(<

∑
x> .y).

Proof Please find the proof in appendix A lemma A.3.
2

Lemma 5.6 Given a timed labelled transition system T , let P = (s, γ) be a path of length n
in T and P be the sequence of numbers along P . Given a function ExecT ime : Act → R+,
let EExecTime(T) be the extended timed labelled transition system where d1 is the label of state
s1, respectively dn of sn. Then, dn =

∑
(<d1> .P).

Proof By the construction of EExecTime(T), for any 1 < i ≤ n we have:

di+1 =
{

di + ExecT ime(γi) if γi ∈ Act
di

.γi = max(di − γi, 0) if γi ∈ T+

= {by definition 5.15}
{

di + Pi if Pi ≥ 0;
max(di + Pi, 0) if Pi < 0.

Hence, di+1 = max(di + Pi, 0) for all 1 < i ≤ n. Moreover, by definition 5.16, we
have that di+1 =

∑
(<di> . <Pi>). By substitution and using lemma 5.5, we obtain

dn =
∑

(<d1> .P).
2

Lemma 5.7 Given x ∈ Rn and a ∈ R, then
∑

(<a> .x) ≤ a +
∑

x if a ≥ 0.

Proof Please find the proof in appendix A lemma A.6.
2

Theorem 5.8 Let x ∈ Rn and let y ∈ Rn be any permutation of x such that for some m,
1 ≤ m ≤ n + 1, ti ≥ 0 for all 1 ≤ i < m and ti < 0 for all m ≤ i ≤ n. Then

∑
y ≤

∑
x′

for any permutation x
′

of x.

90 Proximity Between Model and Realisation

Proof Please find the proof in appendix A theorem A.9.
2

Definition 5.17 For a sequence x ∈ Rn, the smallest value of the sum over any permutation
of x is denoted with ↓x.

Theorem 5.9 Let x ∈ Rn and let y ∈ Rn be any permutation of x such that for some m,
1 ≤ m ≤ n + 1, ti < 0 for all 1 ≤ i < m and ti ≥ 0 for all m ≤ i ≤ n. Then

∑
y ≥

∑
x′

for any permutation x
′

of x.

Proof Please find the proof in appendix A theorem A.10.
2

Definition 5.18 For a sequence x ∈ Rn, the largest value of the sum over any permutation
of x is denoted with ↑x.

Theorem 5.10 Consider a timed labelled transition system T such that ↓C = 0 for every
simple cycle C in T . Then for any a ≥ 0 and any cycle Q in T , the following are true:

1. ↓Q = 0;

2.
∑

(<a> .Q) ≤ max(a,
∑
{↑ C | C is a simple cycle in Q});

3. for any prefix Q′ of Q,
∑

(<a> .Q′) ≤ max(a,
∑
{↑ C | C is a simple cycle in Q}) +∑

{↑ C | C is a simple cycle in Q}.

Proof Please find the proof in appendix A theorem A.12.
2

Lemma 5.11 Let L be a finite set of rational numbers, L ∈ Q, and let S be any set of finite
sequences of numbers from L. Then the set K = {

∑
x | x ∈ S} is finite iff sup(K) is a finite

number.

Proof “⇒”

If K is finite, then it is obvious that there exists some m ∈ Q+ such that
∑

x ≤ m for
all x ∈ S. Hence, sup(K) = m, meaning that K is bounded.

“⇐”

Assuming K is bounded, there exists some m ∈ Q+ such that
∑

x ≤ m for all x ∈ S.
Moreover, as any number in L is fromQ, for any l ∈ L we can write l = p

q . Because L

is finite, there exists N ∈ N the least common multiplier of all denominators q such
that N · l ∈ Z for all l ∈ L.

We define KN = {N ·
∑

x | x ∈ S}. By construction, KN is a set of natural
numbers because N ·

∑
x ∈ N for each x ∈ S.

We build a function F : K → KN such that F (
∑

x) = N ·
∑

x. Because for
any

∑
x1,

∑
x2 ∈ K, we have that

∑
x1 6=

∑
x2, then F (

∑
x1) 6= F (

∑
x2), thus F

Finite Time Computation of Distance 91

is bijective. Since K is bounded, KN is also bounded and sup(KN) = N · m. But
by construction KN is a set of natural numbers and there exists a finite number of
natural numbers smaller or at most equal to N ·m.

Hence, KN is finite and because of the one to one mapping of its elements to the
elements of K, K is also a finite set.

2

As an observation, lemma 5.11 is not true if the set L contains also numbers from
R \ Q. To show that, let us assume a set L = {Π,−1} where Π ∈ R \ Q. Moreover,
let S = {xi | i ∈ N}, where x1 =<Π> . <−1> . <−1> . <−1> and xi =<Π>
. . . <Π> . <−1> . . . <−1> such that <Π> occurs i times and < −1 > occurs biΠc
times. By construction, each xi is a finite sequence whose length is i + biΠc. Thus, S
is an infinite set of finite sequences of numbers from L. Moreover,

∑
xi = iΠ−biΠc,

hence K = {
∑

xi | xi ∈ S} = {iΠ− biΠc | i ∈ N}. Because iΠ− biΠc ∈ (0, 1) for any
i ∈ N, K is bounded.

Now we are going to show that K is infinite. Assume that K is finite and hence
there exists some i and j, i > j such that iΠ − biΠc = jΠ − bjΠc. So we have that
(i− j)Π = biΠc−bjΠc. As it can be seen, biΠc−bjΠc ∈ N, whereas (i− j)Π ∈ R\Q.
This means that K is an infinite set.

5.6.2 Finite Extended Timed Labelled Transition System

In this subsection we provide the necessary and sufficient conditions for an extended
timed labelled transition system to be finite. We show that if a finite timed labelled
transition system has a simple cycle for which the sum over the sequence of num-
bers along it is positive, then the corresponding extended timed labelled transition
system is infinite and the distance between model and realisation is also infinite.

Theorem 5.12 Let T be a timed labelled transition system which is finite in the number of
states and transitions and let ExecT ime : Act → Q+ be the function for the execution
times of actions. Then, the extended timed labelled transition system EExecTime(T) is infinite
iff there exists a simple cycle C in T such that ↓ C > 0.

Proof “⇒”

Assume that for any simple cycle C in T , ↓ C = 0. Moreover, assume that the
extended timed labelled transition system EExecTime(T) is infinite. We shall prove the
theorem by deriving a contradiction.

Since T is finite, there exists at least one state that appears with infinitely many
different time difference labels in EExecTime(T). Let S be the set of finite sequences
along all the paths in EExecTime(T) starting in its initial state. By lemma 5.6, the set
K = {

∑
x | x ∈ S} is the set of state labels in EExecTime(T). Since EExecTime(T) is

infinite, K is infinite as there are infinitely many state labels in EExecTime(T) and by
lemma 5.11, K is unbounded.

Assume any infinite path P through EExecTime(T). Then it contains a state s in-
finitely many times. Consider s(1) the first occurrence of state s in P . Then the

92 Proximity Between Model and Realisation

sequence of states until the first occurrence of s in the path is of the form:

s1 . . . s1s2 . . . s2s3 . . . sms(1)

where for any i 6= j, si 6= sj 6= s, and sj . . . sj represents a sequence of zero or
more states that appear between the first and the last occurrence of sj in P . If for
some 1 ≤ j ≤ m we have sjsij

sij+1 . . . sij+nj
sj , then for any ij ≤ l ≤ ij + nj

and for any k < j, sl 6= sk. By definition 5.15, the sequence along this path is
Q = Q1.u1.Q2.u2 . . .Qm.um where for any 1 ≤ k ≤ m Qk corresponds to path Qk

with state sequence sksik
. . . sik+nk

sk, u1 corresponds to path u1 with state sequence
s1s2, for any 1 < k < m uk corresponds to path uk with state sequence sksk+1, and
um corresponds to path um+1 with state sequence sms(1). By construction, Qk is a
cycle and because for any simple cycle C in T , ↓ C = 0, then theorem 5.10 can be
applied. Moreover, u = u1.u2. . . . um.

Let Q′ be any prefix of Q. Then Q′ = Q1.u1.Q2.u2 . . . uk−1.Q
′
k for some

Q′

k a prefix of the cycle Qk. Then
∑
Q′ =

∑
(Q1.u1.Q2.u2 . . . uk−1.Q

′
k) ≤

{by theorem 5.9}
∑

(u−.Q1.Q2 . . .Qk−1.Q
′
k.u+) ≤

∑
(Q1.Q2 . . .Qk−1.Q

′
k.u+), where

u− represents the sequence of negative numbers from u and u+, respectively,
the sequence of non-negative numbers. By theorem 5.10(2) and taking a = 0,∑
Q′ ≤

∑
(<max(0,

∑
{↑ C | C is a simple cycle in Q1})> .Q2 . . .Qk−1.Q

′
k.u+) ≤∑

(<max(0,
∑
{↑ C | C is a simple cycle in Q})> .Q2 . . .Qk−1.Q

′
k.u+). Let us de-

note with m =
∑
{↑ C | C is a simple cycle in Q}. Then

∑
Q′ ≤

∑
(<max(0,m)>

.Q2 . . .Qk−1.Q
′
k.u+) =

∑
(<m> .Q2 . . .Qk−1.Q

′
k.u+) ≤ {by induction}

∑
(<m>

.Q′
k.u+) ≤ {by theorem 5.10(3)}

∑
(<max(m,m) + m> .u+) =

∑
(<2m> .u+) ≤

{by lemma 5.7}2m +
∑

u+.
∑

u+ is finite because by construction,
∑

u+ ≤ |S| ·
max{ExecT ime(γ) | γ ∈ Act}, where |S| is the number of states in T . We denote
with M =

∑
u+. Hence, Q′ ≤ 2m + M which means that the value of the label of

any state in path Q′
is bounded.

As s occurs infinitely often in P , assume s(i) is its i-th occurrence, i > 1. We de-
note with z the sequence of numbers along the path from s(1) to s(i) which is a cycle.
Then, the labels of states along this path are given by

∑
(Q1.u1.Q2.u2 . . .Qm.um.z′),

where z′ is any prefix of z. Then
∑

(Q1.u1.Q2.u2 . . .Qm.um.z′) ≤
∑

(<2m + M>

.z′) ≤ {by theorem 5.10(3)}max(2m + M,m) + m ≤ 3m + M . Hence, the label of
any state s(i) is bounded by 3m + M . Since we showed above that K is unbounded,
we have just proved that any element of K is actually bounded, thus we have a
contradiction.

“⇐”

If C = (s, γ) is a simple cycle in T with the sequence of states of the form
s1s2 . . . sks1 and the sequence of transition labels γ1γ2 . . . γk, then there exists a path
in EExecTime(T) such that

(s1, d1)
γ1 // E (s2, d2)

γ2 // E . . . (sk, dk)
γk // E (s1, dk+1).

By lemma 5.6, dk+1 =
∑

(<d1> .C). By theorem 5.8, we have that the smallest
value of this sum is obtained when all the non-negative numbers are on the left

Algorithm for Computing the Distance Between Model and Realisation 93

side of the sequence and the negative ones on the right. By the construction of C
from definition 5.15, this translates into having all the action transitions one after
each other at the beginning of the path and the time transitions one after each other
in the second half of the path. Thus, the smallest value of dk+1 is obtained when
there exists 1 ≤ m ≤ k + 1 such that for all 1 ≤ j < m, γj ∈ Act and for all
m ≤ j ≤ k, γj ∈ T+ for which we can write C = CAct.CT+ . Then dk+1 =

∑
(<d1>

.C) =
∑

(<d1> .CAct.CT+) = {by lemma 5.5}
∑

(<
∑

(<d1> .CAct)> .CT+). Since by
construction CAct is made of non-negative numbers, then

∑
(<d1> .CAct) = d1 +∑m−1

j=1 ExecT ime(γj). Moreover, since ↓ C > 0, by definitions 5.16 and 5.17 we have
that

∑m−1
j=1 ExecT ime(γj) >

∑k
j=m γj .

By definition 5.16, dk+1 =
∑

<d1 +
∑m−1

j=1 ExecT ime(γj)> .CT+) = d1 +∑m−1
j=1 ExecT ime(γj) −

∑k
j=m γj > d1. Thus, no matter the order of the transitions

in the simple cycle C, in the extended timed labelled transition system dk+1 > d1

always and state s1 appears infinitely many times with different labels. Hence, the
extended timed labelled transition system is infinite.

2

Based on this theorem, we have the means to check if we are able to traverse
the extended timed labelled transition system and determine the size of the distance
between model and realisation. If a simple cycle of positive cost is found in the orig-
inal transition system, then we have an infinite extended timed labelled transition
system and the distance between model and realisation is infinite.

5.7 Algorithm for Computing the Distance Between
Model and Realisation

To calculate the distance between a model and its realisation on a target plat-
form, given the timed labelled transition system and the worst-case execution
times of each of its actions, the algorithm in figure 5.7 can be used. The al-
gorithm is based on theorems 5.2, 5.3 and 5.12. The input of the method
CALCULATEDISTANCEMODELTOREALISATION is the initial state of a finite timed
labelled transition system. The algorithm assumes that any state of the transition
system has incorporated into it the transitions leaving from it and any transition
knows its source state and its destination state. Moreover, an action transition has
incorporated into it the worst-case execution time of the action it represents. The
output of the algorithm is the distance between the model and the realisation of the
system, which is denoted with ε.

By calling method EXISTSSIMPLECYCLEWITHPOSITIVECOST, the algorithm first
identifies all the simple cycles in the system and checks if the execution times of
actions along each such cycle are not compensated by the time delays. In [80] it is
shown that the complexity of finding all cycles in a graph is O((n+ l)(c+1)) where n
is the number of nodes in the graph, l is the number of edges and c is the number of

cycles. In the worst-case, in [80] it is shown that a graph can have c =
∑n

i=2(
n
i)(i−

94 Proximity Between Model and Realisation

1)! > (n − 1)!, where (n
i) represents the number of subsets of i elements from the

set of n elements. As the cost of every simple cycle is computed and in the worst-case
the length of a cycle is n the number of states in the transition system, the complexity
of EXISTSSIMPLECYCLEWITHPOSITIVECOST is O((n + l)n(c + 1)).

CALCULATEDISTANCEMODELTOREALISATION(STATE sI)

1 if EXISTSSIMPLECYCLEWITHPOSITIVECOST() == true
2 then ε←∞
3 else ε← 0
4 statesSet ← {(sI , 0)}
5 while (statesSet .HASUNVISITEDSTATES())
6 do (s, d)← statesSet .GETANUNVISITEDSTATE()
7 (s, d).VISITED()
8 for each transition t leaving from s in T
9 do if t is action transition

10 then ε← max(ε, d + t .wcet)
11 statesSet ← statesSet ∪ {(t .destination, d + t .wcet)}
12 else statesSet ← statesSet ∪ {(t .destination, d . t .duration)}
13 return ε

Figure 5.7: Algorithm to calculate distance between model and realisation

If such a simple cycle with positive cost exists, then the distance between model
and realisation denoted with ε is inifinite. In case no such cycle is found, the distance
between model and realisation is initialised with zero. The set statesSet of states of
the extended timed labelled transition system starts being built from the initial state
of the original transition system with label zero. Afterwards, as long as there are
unvisited elements in statesSet, checked with HASUNVISITEDSTATES method, each
one is considered. GETANUNVISITEDSTATE is a heuristic method that returns such
an unvisited state. All the transitions departing from the corresponding state in the
original transition system is taken into account. Each transition is assumed to con-
tain information about its duration, if it is a time transition, respectively worst-case
execution time, if it is an action transition, and the destination state in the original
system. A state in the extended transition system is created from the destination
state and the duration, respectively worst-case execution time, of the transition. A
set union operation is performed between the set containing the new state and the
set of states already built. If the state is indeed a new state, the union operation also
sets it as an unvisited state. The value of ε is updated based on the labels of the newly
discovered states of the extended timed labelled transition system. When there are
no more states to visit, the algorithm returns the value found for the distance be-
tween model and realisation as the maximum of all the state labels. For the system
given as example in figure 5.2.c, the result returned by the algorithm is 0.32.

If the extended timed labelled transition system is finite, the complexity of
the algorithm for calculating the distance between a model and its realisation is
O(n + l + l2), where n is the number of states in the original timed labelled tran-
sition system and l is the number of its transitions. This complexity is due to
the fact that we take all the states and transitions of the original transition sys-
tem and for each transition we might create a new state in the extended transi-
tion system. Hence we have l more states from which we have at most l transi-
tions. Because there is no simple cycle of positive cost, we have at most one copy

Simulation-Based Estimation of the Distance Between Model and Realisation 95

of each state along any simple cycle. Hence, the overall complexity of the algorithm
CALCULATEDISTANCEMODELTOREALISATION is O((n + l)n(c + 1) + n + l + l2).

5.8 Simulation-Based Estimation of the Distance Be-
tween Model and Realisation

Due to the complexity of the algorithm presented in section 5.7, it might be the case
that the extended timed labelled transition system is finite but it takes a very long
time (e.g. several hours) to compute the distance between the model and its realisa-
tion. Therefore, we have conceived a corresponding simulation approach in order to
estimate this distance.

The mechanism that we propose involves a modelling approach similar to the
one presented in chapter 3. As we are interested in the synthesis of the software part
of a system and in the strength of the preservation of its properties, the Y-chart-based
model is chosen because of its separation of the application, which is the counterpart
of the timed labelled transition system, the platform and the environment parts. This
separation allows us to take directly into account the action transitions in the model
of the software of the system as they influence the distance from model to realisation.

The application part of the system is modelled as tasks that communicate with
each other and that may be triggered by events from the environment. These tasks
correspond to the concurrent processes from which the system is made and for which
we showed in section 5.2 how the timed labelled transition system is built. Where
applicable, namely for data-intensive kind of systems, the modelling patterns pre-
sented in section 3.5.1 can be used, with a little adaptation as seen in figure 5.8.
However, the simulation-based approach for the estimation of the distance between
model and realisation is applicable to any kind of system, even if the modelling pat-
terns do not apply. As shown in the adapted specification of the aperiodic task in
figure 5.8, the main ingredient of the approach is the decoration of any action that
in the final product is executed on a processor. The decoration consists in building
a Request data object that incorporates information, such as the load imposed on
the processor, about the specific action. The Request object is sent to the processor
and in this way the execution of the action is simulated. An important remark is that
braces, { and }, are used to ensure that once the action is executed in the model, the
request is also sent to the platform in an atomic operation.

The platform part models the execution of the actions specified in the application
model and that in the final product are computations executed on a processor. As
the synthesis approach presented in section 5.3 is possible only on a single proces-
sor, the platform model contains one computational resource and no communica-
tion resource. The specification of each of the methods of the POOSL process class
Resource is shown in figure 5.9. This class differs from the modelling pattern pre-
sented in section 3.5.2. From the semantics of the model, the execution of actions is
atomic and any interleaving of parallel actions is allowed. Hence, a scheduler, as the
one described in section 3.5.2, is not needed for scheduling the actions that occur at
the same time in the model. Moreover, the model of the processor does not need to
take into account the energy consumption, as that is not the goal of the analysis, nor

96 Proximity Between Model and Realisation

Aperiodic()() |lat : Real, ev : Event, req : Request|
{in?event(ev | ev getEventType() = Trigger);
req := new Request(“recv”);
cpu!execute(req)};
par
par
lat := ltcy sample()
delay lat;
Behaviour(D, lat, ev)(ev)

and
delay D

rap;
{out!output(ev);
req := new Request(“send”);
cpu!execute(req) }

and
Aperiodic()()

rap.

Figure 5.8: Model of an aperiodic task in the application part

the operating system overhead or effects caused by for example cache or pipeline,
because they are assumed to be incorporated in the worst-case execution time.

Init()() | |
epsilon := 0;
buffer := new Queue init();
par
ReceiveRequests()()

and
HandleRequests()()

rap.

ReceiveRequests()() | req: Request |
task?execute(req);
buffer put(req);
ReceiveRequests()().

HandleRequests()() | req: Request |
req := buffer remove();
delay req getLoad() / throughput;
if epsilon < currentTime - req getRequestTime()
then epsilon := currentTime - req getRequestTime() fi;

task!stopped(req)
HandleRequests()().

Figure 5.9: Model of the processor

The model of a computation resource differs also in other ways from the one
specified as a modelling pattern. An instance variable epsilon is added for keep-
ing the estimation of the distance between the application model and its realisation.
epsilon is set to zero in the initialisation of the process object, which is done by
the Init method, and its value is updated during the simulation of the model. In
order to preserve the timing semantics of the application part of the system, the
resource part of the model is supposed to not interfere with the moments in time
when the actions should occur. Because the resource is supposed to simulate the
execution of these actions, it has to be able to receive requests even when it is busy
with another action. Therefore, the parallel composition ensures that the resource
is doing both receiving of requests, ReceiveRequest, and handling/executing the
requests, HandleRequest. Once an action transition is taken in the application part,
its execution request is also received by the resource and the behaviour of the task is

Summary 97

not affected by the synchronous communication. A buffer is declared as a queue in
which (potentially infinitely many) requests are placed and from which they are re-
trieved by the HandleRequest method for their execution in order to establish the
distance between the application model and its realisation on the target platform.
After the execution of each action, the value of epsilon is updated; when the sim-
ulation stops it will contain the maximum timing deviation obtained between the
model time and the physical time along the path taken by the simulation engine.

An important remark is that if the timed labelled transition system is determin-
istic, hence only one path is possible through it, and it is finite, the result of the
estimation obtained from simulation is the same as the one obtained by analytical
computations, as it was the case of the example shown throughout this chapter. Oth-
erwise, the value of the estimation of the distance is smaller or at most as large as the
distance calculated using the analytical approach.

5.9 Summary

In this chapter, we have presented an analytical approach for determining the dis-
tance between a model and its realisation on a target platform before actually obtain-
ing this realisation. As the distance can be obtained from the model of the system
and based on estimations of the worst-case execution times of its actions, this ap-
proach saves design cycles, avoiding designers to get into the trouble of actually
building a wrong system. The value of this distance is important as it is a measure of
how well the properties specified and analysed in the model can be preserved in the
realisation. Since in this chapter we proved when the distance between model and
realisation can be computed in finite time assuming that the worst-case execution
times of actions are rational numbers, as future research we aim to investigate if the
same result holds when these are real numbers.

98 Proximity Between Model and Realisation

6
Predictable Real-Time Systems Synthesis

An important ingredient of a design methodology for real-time systems is the syn-
thesis step to obtain a “correct” realisation of a system from a model that is analysed
and verified. In this chapter, we present an improvement on the efficiency of the
model synthesis approach in the Software/Hardware Engineering design method-
ology.

The chapter is organised as follows. Section 6.1 discusses the formalisation of
real-time properties and property preservation. Section 6.2 presents an approach for
reducing the distance between a model and its realisation. The improvement of the
POOSL model synthesis strategy based on this approach is discussed in section 6.3.
Experimental results are presented in section 6.4, whereas related research is given
in section 6.5. A summary of the chapter is given in section 6.6.

6.1 Real-Time Properties

The target of the design process of a real-time system is to obtain a product that
possesses certain properties that meet the system requirements. The purpose of the
analysis is to show what the properties of the system are and to check if they are
preserved along the different stages of the design process. Properties are often for-
malised in certain mathematical frameworks. Temporal logics are a class of math-
ematical frameworks widely used for the formalisation of real-time properties [16].
Based on the trace structures on which the logics can be applied, temporal logics
are classified into linear-time, such as LTL [56], and branching-time logics, such as
CTL [29] and CTL* [23]. These logics are used for the formalisation of qualitative
properties, referring to the states of a system or the ordering of the actions observed.

As timing is a critical aspect of real-time systems, qualitative temporal logics

100 Predictable Real-Time Systems Synthesis

were extended by attaching time bounds to express quantitative real-time proper-
ties. Such quantitative real-time properties include minimal, maximal and exact
time-distance between two actions, and periodicity of an action. Examples of tempo-
ral logics to formalise qualitative real-time properties are MITL [10], which is a time-
bounded extension of LTL, and RTCTL [30], which is real-time CTL. Detailed surveys
on extending temporal logics with time-bounds can be found in [10] and [11].

In this thesis, the analysis of real-time properties does not consider branching
structures. Following the work presented in [51], we use a linear-time temporal logic
for their formalisation, namely MTL [59]. MTL formulas have the following syntactic
forms:

ϕ ::= p | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 ∪I ϕ2 | ϕ1 ∨I ϕ2 (6.1)

where p is an atomic proposition and the time-bound I is an interval of non-negative
reals that takes one of the following forms: ∅, [a, a], [a, b], [a, b), (a, b], (a, b), [a,∞) and
(a,∞), where a < b for a, b ∈ R+. MTL formulas are interpreted over sequences of
timed states, which can be derived from the paths defined in chapter 5.

In the rest of this section, we first define the encoding of a timed state sequence
from a path in subsection 6.1.1. Then we briefly present the interpretation of MTL
formulas in subsection 6.1.2, whereas subsection 6.1.3 discusses the prediction of
properties preservation along timed labelled transition systems.

6.1.1 Timed State Sequences

Definition 6.1 A complete path through a timed labelled transition system T =

(S, sI , Act, T+, { a

Act
// ⊆ S × S | a ∈ Act}, { t

T+
// ⊆ S × S | t ∈ T+}) is a

2-tuple:
P = (s, γ)

where:

• s is a finite or countably infinite sequence of states s1, s2, . . .;

• γ is a finite or countably infinite sequence of transitions γ1, γ2, . . .

with the property that for any i ≥ 1 with si ∈ s, either there exists γi ∈ Act ∪ T+ and

si+1 ∈ S such that si+1 ∈ s, γi ∈ γ and si
γi // si+1 or si is a state from which the path

cannot be extended anymore, and then it is the last state in s.

A finite path is a complete path that cannot be extended anymore.

Definition 6.2 Let Prop be a set of atomic propositions. A state of a system can be inter-
preted as a subset of Prop which contains precisely the propositions that hold in that state.

Definition 6.3 A timed state sequence is a 2-tuple:

τ = (σ, I)

where:

Real-Time Properties 101

• σ is a finite or countably infinite sequence of states σi ⊆ Prop;

• I is a finite or countably infinite sequence of non-negative time intervals, where Ii is
of the form [l(Ii), r(Ii)) or [l(Ii), r(Ii)] or [l(Ii),∞) and it represents the duration of
state σi.

For two consecutive states σi and σi+1, their corresponding time intervals Ii and Ii+1 are
adjacent, meaning that r(Ii) = l(Ii+1).

A trace in the behaviour of a system can be represented by either a timed state se-
quence or a path. Since the formalisation of real-time properties preservation which
we use in this thesis is based on timed state sequences [51], we need to encode a
timed state sequence from a path, as it is shown in [26]. The following definition
gives this encoding.

Definition 6.4 Given a complete pathP = (s, γ) through a timed labelled transition system

T = (S, sI , Act, T+, { a

Act
// ⊆ S×S | a ∈ Act}, { t

T+
// ⊆ S×S | t ∈ T+}), a time

labelling LT (P) = (s, t, γ) and a set of atomic propositions Prop = {Pγ | γ ∈ Act} where
Pγ is the atomic proposition “γ is observed”, a timed state sequence τ(P,T) = (σ, I) encoded
from P has the following properties:

• σ is a finite or countably infinite sequence of states such that:

– for any i ≥ 1 σi = ∅ iff γi ∈ T+, where ∅ is a state at which no atomic
proposition is observed (i.e. no action takes place);

– for any i ≥ 1 σi = {Pγi
} iff γi ∈ Act;

– when P is finite, σn = ∅ where n is the length of P ;

• I is a finite or countably infinite sequence of non-negative time intervals such that:

– for any i ≥ 1 Ii = [ti, ti+1) iff γi ∈ T+;

– for any i ≥ 1 Ii = [ti, ti+1] iff γi ∈ Act;

– when P is finite, In = [tn,∞) where n is the length of P .

An important remark we need to make is that, by construction, the states of a
timed state sequence do not correspond to the states of the timed labelled transition
system, but to its action transitions. The reason for this is that the real-time properties
of a system are related to the action transitions. Another remark is that because of
maximal progress for time transitions in a timed labelled transition system, there are
no two adjacent states σi and σi+1 in σ such that σi = σi+1 = ∅.

Example 6.1 For cycle 5.1 from example 5.2 and the set of atomic propositions Prop =
{Pin1, Pin2, Pout1, Pout2, Pcomputation1, Pcomputation2}, the timed state sequence derived is:

τ(P,M) = ({Pin1}, [0, 0])({Pcomputation1}, [0, 0])({Pin2}, [0, 0])({Pcomputation2}, [0, 0])
(∅, [0, 1))({Pout1}, [1, 1])({Pin1}, [1, 1])({Pcomputation1}, [1, 1])

(∅, [1, 2))({Pout1}, [2, 2])({Pout2}, [2, 2]) . . .

102 Predictable Real-Time Systems Synthesis

From the labelling in both model and physical time of the same cycle using the ex-
ecution time function from example 5.5 and the set of atomic propositions Prop =
{Pin1, Pin2, Pout1, Pout2, Pcomputation1, Pcomputation2}, the timed state sequence that can
be derived based on the physical time labels is:

τ(P,P) = ({Pin1}, [0, 0.01])({Pcomputation1}, [0.01, 0.13])({Pin2}, [0.13, 0.14])
({Pcomputation2}, [0.14, 0.30])(∅, [0.30, 1))({Pout1}, [1, 1.01])({Pin1}, [1.01, 1.02])

({Pcomputation1}, [1.02, 1.14])(∅, [1.14, 2))({Pout1}, [2, 2.01])({Pout2}, [2.01, 2.02]) . . .

As states may have attached singular time intervals (a time interval with a single
point), at any moment in time the system may be in a number of different states,
σk+1, σk+2 . . . σk+m ⊆ Prop. We denote with τ(t, i), t ∈ R+, i > 0 the state σk+i

which is i-th state among σk+1, σk+2 . . . σk+m.

6.1.2 Interpretation of MTL Logic

The interpretation of MTL formulas over a timed state sequence as shown in [51] is
given below. If τ = (σ, I) is a timed state sequence and t ∈ Ij in I , then (τ, 〈t, i〉)
represents a suffix of τ . This suffix is made of a sequence of states and a sequence of
corresponding time intervals. The state sequence is formed by the states in σ starting
with some σj which is the i-th state among the states in which the system can be at
time t. The sequence of intervals starts with [t, r(Ij)) where r(Ij) is the right-side of
Ij .

Definition 6.5 Let ϕ be an MTL formula and let τ be a timed state sequence derived from
a path through a timed labelled transition system. The interpretation of ϕ over (τ, 〈t, i〉) is
given as follows:

• (τ, 〈t, i〉) |= p iff p ∈ τ(t, i);

• (τ, 〈t, i〉) |= ¬p iff p /∈ τ(t, i);

• (τ, 〈t, i〉) |= ϕ1 ∨ ϕ2 iff (τ, 〈t, i〉) |= ϕ1 or (τ, 〈t, i〉) |= ϕ2;

• (τ, 〈t, i〉) |= ϕ1 ∧ ϕ2 iff (τ, 〈t, i〉) |= ϕ1 and (τ, 〈t, i〉) |= ϕ2;

• (τ, 〈t, i〉) |= ϕ1∪I ϕ2 iff there exists some t2 ∈ I and some j such that (τ, 〈t+t2, j〉) |=
ϕ2 and for any 0 ≤ t1 < t2 (τ, 〈t + t1, k〉) |= ϕ1 for all possible k;

• (τ, 〈t, i〉) |= ϕ1 ∨I ϕ2 iff for any t2 ∈ I and some j, either (τ, 〈t + t2, j〉) |= ϕ2 or
there exists some 0 ≤ t1 < t2 (τ, 〈t + t1, k〉) |= ϕ1 for all possible k.

We use (τ, 〈l(I1), 1〉) |= ϕ (in short τ |= ϕ) to denote that the timed state sequence τ satisfies
the MTL formula ϕ.

This definition shows that the interpretation of ¬, ∨ and ∧ is the same as in tra-
ditional logics [79]. The satisfaction of formula ϕ1 ∪I ϕ2 means that up to some time
t2 ∈ I , ϕ1 is satisfied, and afterwards ϕ2 is. The satisfaction of formula ϕ1 ∨I ϕ2

Real-Time Properties 103

true T ≡ p ∨ ¬p
false F ≡ p ∧ ¬p
eventually ♦Iϕ ≡ T ∪I ϕ
always �Iϕ ≡ F ∨I ϕ
implication ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2

Table 6.1: Syntactic abbreviations

means that either for all t2 ∈ I , ϕ2 is satisfied, or there is some point in time when ϕ1

is. In case I is [0,∞), we omit the time-bound I of the operator. Table 6.1 presents
some syntactic abbreviations commonly used.

Example 6.2 Assume that the system in figure 5.2.c has the following set of atomic propo-
sitions: Prop = {Pin1, Pin2, Pout1, Pout2, Pcomputation1, Pcomputation2}, where we denote
with Pγ the atomic proposition that action “γ is observed”. Then, using the execution time
function from example 5.5, some MTL properties of the system are:

�(Pin1 → ♦[0.80,1]Pout1); (prop1)

�(Pin1 → ♦[0,0.17]Pcomputation1); (prop2)

�(Pin2 → ♦[1.85,2]Pout2); (prop3)

�(Pin2 → ♦[0,0.13]Pcomputation2). (prop4)

6.1.3 Preservation of Properties

Since a real-time system can be viewed as a set of timed state sequences, the sat-
isfaction of its real-time properties can be formally defined using the linear trace
interpretation of MTL. The formal definition follows.

Definition 6.6 Let ϕ be a real-time property expressed as an MTL formula. A real-time
system satisfies ϕ iff for all timed state sequences τ in the behaviour of the system, τ |= ϕ.

Definition 6.7 Let P = (s, γ) be a complete path through a timed labelled transition sys-
tem, let LM(P) = (s, tM , γ) be a model time labelling of it and ϕ be an MTL formula. Then
P satisfies ϕ in model time, denoted with P |=M ϕ, iff τ(P,M) |= ϕ.

Definition 6.8 Let P = (s, γ) be a complete path through a timed labelled transition sys-
tem, and given a function ExecT ime : Act → R+ let LExecTime

MP (P) = (s, tM , tP , γ) be the
labelling of P in both model and physical time and let ϕ be an MTL formula. Then P satisfies
ϕ in physical time, denoted with P |=P ϕ, iff τ(P,P) |= ϕ.

Given an MTL formula ϕ, we denote with ϕε an ε-weakening of it. In [51], a
weakening function over MTL formulas Rε(ϕ) is defined as follows.

Definition 6.9 A weakening function Rε : MTL → MTL, where ε ∈ R+, is recursively
defined as:

• Rε(p) = p;

104 Predictable Real-Time Systems Synthesis

• Rε(¬p) = ¬p;

• Rε(ϕ1 ∨ ϕ2) = Rε(ϕ1) ∨Rε(ϕ2);

• Rε(ϕ1 ∧ ϕ2) = Rε(ϕ1) ∧Rε(ϕ2);

• Rε(ϕ1 ∪I ϕ2) = Rε(ϕ1) ∪I′ Rε(ϕ2) where l(I
′
) = max(0, l(I) − ε) and r(I

′
) =

r(I) + ε;

• Rε(ϕ1 ∨I ϕ2) = Rε(ϕ1) ∨I′ Rε(ϕ2) where l(I
′
) = l(I) + ε, r(I

′
) = r(I)− ε and if

l(I
′
) > r(I

′
) then I

′
= ∅.

Definition 6.10 Let τ1 = (σ1, I1) and τ2 = (σ2, I2) be two timed state sequences. The
distance between them is defined as:

D(τ1, τ2) =
{

supi≥1(|l(I1i)− l(I2i)|), if σ1 = σ2

∞, otherwise. (6.2)

where l(Ii) denotes the left-hand side of an interval Ii.

Based on this distance metric, in [51] it is shown that if τ1 satisfies a property ϕ,
τ1 |= ϕ, then τ2 satisfies a 2∗D(τ1, τ2)-weakening of ϕ, denoted with τ2 |= ϕ2∗D(τ1,τ2).
However, the distance metric between corresponding paths in the model and in the
realisation of a system is the same as the distance metric between the timed state
sequences derived from those paths as we are going to show here. Based on this we
are able to establish a property preservation relation between model and realisation
along a complete path through a timed labelled transition system.

Lemma 6.1 Given a complete path P = (s, γ) through a timed labelled transition system T
and a function ExecT ime : Act → R+, let LExecTime

MP (P) = (s, tM , tP , γ) be the labelling of
P in both model and physical time. Then D(τ(P,M), τ(P,P)) = dExecTime(P).

Proof By definition 6.4 of the encoding of a complete path into a timed state se-
quence, τ(P,M) = (σM , IM) and τ(P,P) = (σP , IP) have the same sequence of states.
Hence, σM = σP . Moreover, for any i ≥ 1, if γi ∈ Act then IMi = [tMi, tMi+1] and
IPi = [tPi, tPi+1], whereas if γi ∈ T+ then IMi = [tMi, tMi+1) and IPi = [tPi, tPi+1).
Then1

D(τ(P,M), τ(P,P)) = sup
i≥1

(|l(IMi)− l(IPi)|) = sup
i≥1

(|tMi − tPi|) =

= sup
i≥1

(tPi − tMi) = dExecTime(P).

2

Theorem 6.2 Let P = (s, γ) be a complete path through a timed labelled transition system.
Given an execution time function ExecT ime : Act → R+ and an MTL formula ϕ, then
P |=P ϕ2∗dExecTime(P) if P |=M ϕ.

1Since the path may be infinite, the max in definition 5.11 is replaced with sup.

Distance Reduction from Model to Realisation 105

Proof By definition 6.7, P |=M ϕ implies that τ(P,M) |= ϕ. By the property preser-
vation between timed state sequences proved in [51], τ(P,P) |= ϕ2∗D(τ(P,M),τ(P,P)).
Since by lemma 6.1, D(τ(P,M), τ(P,P)) = dExecTime(P), we have that τ(P,P) |=
ϕ2∗dExecTime(P) which means, by definition 6.8, that P |=P ϕ2∗dExecTime(P).

2

With this theorem, we have shown that the results regarding property preserva-
tion between timed state sequences are applicable to paths as well. If a real-time
property is satisfied along a path in a timed labelled transition system, a two times
the distance between model and realisation along the path weakening of the prop-
erty is satisfied by the corresponding path in the realisation of the system. Based on
this result, we can also prove the property preservation between model and realisa-
tion for a timed labelled transition system.

Definition 6.11 Let T be a timed labelled transition system and ϕ be an MTL formula.
Then T satisfies ϕ in model time, denoted with T |=M ϕ, iff for any complete path P from
T , P |=M ϕ.

Definition 6.12 Let T be a timed labelled transition system and ϕ be an MTL formula.
Then T satisfies ϕ in physical time, denoted with T |=P ϕ, iff for any complete path P from
T , P |=P ϕ.

Theorem 6.3 Let T be a timed labelled transition system. Given an execution time function
ExecT ime : Act → R+ and an MTL formula ϕ, then T |=P ϕ2∗dExecTime(T) if T |=M ϕ.

Proof The proof is similar to the one for theorem 6.2.
2

Based on this result, given a timed labelled transition system, we can derive its
properties and we can predict the preservation of them between model and realisa-
tion based on the distance between the timing behaviour of the system in the model
and in the realisation.

6.2 Distance Reduction from Model to Realisation

Usually, the real-time properties of a system are related to what a user can see by
interacting with it. The actions performed by the system that a user can “see” are
called observable actions. To express the property preservation between model and
realisation, we need to consider the observable behaviour of the system which is de-
fined with respect to an observer. Depending on what properties are of interest, at a
coarse level of granularity, an observer can “see” the inputs and the outputs of the
whole system. At a finer level of granularity, properties related to the communica-
tion taking place between the components of the system might also be interesting.
In that case, these communication actions are considered observable. However, typ-
ically the computations that different components of the system perform are consid-
ered internal, and thus not observable. In this work, we assume that based on the
properties of interest for a system, the designer defines which actions are considered
observable and respectively unobservable.

106 Predictable Real-Time Systems Synthesis

Example 6.3 Among the properties presented in example 6.2, properties (prop1) and (prop3)
are real-time properties referring to observable actions of the system. Actions computation1
and computation2 are internal computations and they cannot be observed from the outside
of the system. If we consider the timed labelled transition system in figure 5.2.c and the
execution time function given in example 5.5, based on the value of the calculated distance
between model and realisation, we can predict that the weakening of the properties in the
realisation is 0.32. However, when we look carefully at the ordering of the observable and
the unobservable actions in each path of the system, we notice that before any time transition
there is always an unobservable action. Since these unobservable actions are taken into ac-
count in the calculation of the distance between model and realisation, they in fact weaken
the prediction of the observable properties of the system.

The distance metric together with the synthesis approach that we have presented
so far in this thesis do not distinguish between the observable and the unobservable
actions, although the unobservable actions might weaken the prediction of the prop-
erty preservation. In this section, we present an approach to make better predictions
about the preservation of properties.

In subsection 6.2.1, we introduce a new metric to characterise the preservation
of observable properties. Subsection 6.2.2 discusses a reduction of a timed labelled
transition system that enables stronger properties preservation in the realisation of a
system, whereas subsection 6.2.3 presents an approach for generating such a reduced
timed labelled transition system.

6.2.1 New Proximity Metric Between Model and Realisation

In the model synthesis approach presented in chapter 5 section 5.3, the proximity
metric considers that all actions, both observable and unobservable, affect the pre-
diction of the properties preservation between model and realisation. Both types of
actions are considered equally important and the synthesis mechanism treats them
accordingly. Thus, it is possible that the observable properties get unnecessarily
weakened. Therefore, we define a new proximity metric based on the separation of
observable and unobservable actions to express observable property preservation.

Definition 6.13 Let P = (s, γ) be a complete path through a timed labelled transition
system whose set of actions is Act = ObsAct ∪ UnobsAct, where ObsAct is the set of
observable actions and UnobsAct is the set of unobservable actions. Given the labelling
of P in both model and physical time LExecTime

MP (P) = (s, tM , tP , γ) based on a function
ExecT ime : Act → R+, the observable distance between the timing behaviour of the
model and of the realisation along this path is given by:

d∗ExecTime(P) = sup
1≤i,γi∈ObsAct

(tPi+1 − tMi+1).

Example 6.4 The observable distance between model and realisation along cycle 5.1 in ex-
ample 5.2, based on the execution time function from example 5.5, is:

d∗(P) = sup{0.01 , 0.14 , 0.01 , 0.02 , 0.01 , 0.02 , 0.03 , 0.16 , 0.01 , 0.02 , . . .} = 0.16

Distance Reduction from Model to Realisation 107

By definition, the observable distance along a path is a measure of how much
the finishing time of the execution of observable actions deviates in the realisation
from the model. This metric has the potential of improving the prediction of the
observable property preservation as we show below.

Lemma 6.4 Given a complete path P through a timed labelled transition system and an
execution time function ExecT ime : Act → R+, the observable distance between the timing
behaviour of the model and of the realisation along this path is at most as large as the distance
given by definition 5.11:

d∗ExecTime(P) ≤ dExecTime(P).

Proof The proof comes directly from the definitions of the distance and of the
observable distance, based on the observation that the observable actions in a timed
labelled transition system are a subset of the set of all actions.

2

In order to use the observable distance metric for the prediction of the observable
properties preservation, we need to define a new encoding of a timed state sequence
from a complete path.

Definition 6.14 Let P = (s, γ) be a complete path through a timed labelled transition
system whose set of actions is Act = ObsAct ∪ UnobsAct, where ObsAct is the set
of observable actions and UnobsAct is the set of unobservable actions. Given a time la-
belling LT (P) = (s, t, γ) and a set of atomic propositions Prop = {Pγ | γ ∈ ObsAct}
where Pγ is the atomic proposition “γ is observed”, an observable timed state sequence
τ∗(P,T) = (σ, I) encoded from P has the following properties:

• σ is a finite or countably infinite sequence of states such that:

– for any i ≥ 1 σi = {Pγk
} iff there exists some k with γk ∈ ObsAct and for any

l < k with γl ∈ ObsAct there exists some j < i such that σj = {Pγl
};

– σ1 = ∅, where ∅ is a state at which no atomic proposition is observed, iff there ex-
ists some j such that γ1, γ2 . . . γj ∈ T+ ∪UnobsAct and either γj+1 ∈ ObsAct
or the length of γ is j;

– for any i > 1 σi = ∅, where ∅ is a state at which no atomic proposition is
observed, iff

∗ there exists some k with σi−1 = {Pγk
} and some j such that

γk+1, γk+2 . . . γk+j ∈ T+ ∪ UnobsAct and either γk+j+1 ∈ ObsAct or
the length of γ is k + j;

∗ there exists some k such that σi−1 = {Pγk
} and for all j > k γj ∈ T+ ∪

UnobsAct;

• I is a finite or countably infinite sequence of non-negative time intervals such that:

– for any i ≥ 1 Ii = [tk, tk+1] iff there exists some k with γk ∈ ObsAct;

– I1 = [t1, tj+1] iff there exists some j such that γ1, γ2 . . . γj−1 ∈ T+∪UnobsAct,
γj ∈ UnobsAct and γj+1 ∈ ObsAct;

108 Predictable Real-Time Systems Synthesis

– I1 = [t1, tj+1) iff there exists some j such that γ1, γ2 . . . γj−1 ∈ T+∪UnobsAct,
γj ∈ T+ and γj+1 ∈ ObsAct;

– I1 = [t1,∞) iff all γj ∈ γ, γj ∈∈ T+ ∪ UnobsAct;

– for any i > 1 Ii = [tk+1, tk+j+1] iff there exists some k and j such that
γk, γk+j+1 ∈ ObsAct, γk+1, γk+2 . . . γk+j−1 ∈ T+ ∪ UnobsAct and γk+j ∈
UnobsAct;

– for any i > 1 Ii = [tk+1, tk+j+1) iff there exists some k and j such that
γk, γk+j+1 ∈ ObsAct, γk+1, γk+2 . . . γk+j−1 ∈ T+ ∪ UnobsAct and γk+j ∈
T+;

– for some i ≥ 1 Ii = [tk+1,∞) iff there exists some k such that γk ∈ ObsAct and
for all j > k, γj ∈ T+ ∪ UnobsAct.

Example 6.5 For cycle 5.1 from example 5.2 and the set of atomic propositions Prop =
{Pin1, Pin2, Pout1, Pout2}, the observable timed state sequence derived from it is:

τ∗(P,M) = ({Pin1}, [0, 0])(∅, [0, 0])({Pin2}, [0, 0])(∅, [0, 1))({Pout1}, [1, 1])({Pin1}, [1, 1])

(∅, [1, 2))({Pout1}, [2, 2])({Pout2}, [2, 2]) . . .

Lemma 6.5 Given a complete path P = (s, γ) through a timed labelled transition system T
and a function ExecT ime : Act → R+, let LExecTime

MP (P) = (s, tM , tP , γ) be the labelling of
P in both model and physical time. Then D(τ∗(P,M), τ

∗
(P,P)) = d∗ExecTime(P).

Proof The proof comes from definitions 6.10, 6.13 and 6.14.
2

Since we are interested in the preservation of the observable properties, we need
to define the notion of a path satisfying an observable property based on the encod-
ing of the path into an observable timed state sequence.

Definition 6.15 Let P = (s, γ) be a complete path through a timed labelled transition sys-
tem, let LM(P) = (s, tM , γ) be the model time labelling of it and ϕ be an MTL formula.
Then P |=M ϕ iff τ∗(P,M) |= ϕ.

Definition 6.16 Let P = (s, γ) be a complete path through a timed labelled transition sys-
tem, and given a function ExecT ime : Act → R+ let LExecTime

MP (P) = (s, tM , tP , γ) be the
labelling of P in both model and physical time and let ϕ be an MTL formula. Then P |=P ϕ
iff τ∗(P,P) |= ϕ.

Theorem 6.6 Let P = (s, γ) be a complete path through a timed labelled transition system.
Given an execution time function ExecT ime : Act → R+ and an MTL formula ϕ, then
P |=P ϕ2∗d∗ExecTime(P) if P |=M ϕ.

Proof The proof follows from definitions 6.15, 6.16 and lemma 6.5.
2

Distance Reduction from Model to Realisation 109

Definition 6.17 Given a timed labelled transition system T =

(S, sI , Act, T+, { a

Act
// ⊆ S × S | a ∈ Act}, { t

T+
// ⊆ S × S | t ∈ T+})

and a function ExecT ime : Act → R+, the observable distance between the timing
behaviour of the model and that of the realisation is given by:

d∗ExecTime(T) = sup{d∗ExecTime(P) | P is a complete path of T starting in sI}.

Theorem 6.7 Let T be a timed labelled transition system. Given an execution time function
ExecT ime : Act → R+ and an MTL formula ϕ, then T |=P ϕ2∗d∗ExecTime(T) if T |=M ϕ.

Proof The proof is similar to the one for theorem 6.6.
2

By lemma 6.4 and theorem 6.7, we obtain that the observable distance metric
introduced in this section enables a better prediction of the observable properties
preservation in the context of the current synthesis approach.

6.2.2 Reduction of a Timed Labelled Transition System

In this subsection, we are going to show how the preservation of the observable
real-time properties of a system can be strengthened in its realisation by building a
reduced timed labelled transition system. We first define a reduced timed labelled
transition system and then we prove that the observable properties are preserved
stronger by the realisation of this transition system compared to the original one.

Definition 6.18 Given a timed labelled transition system

T = (S, sI , Act, T+, { a

Act
// ⊆ S × S | a ∈ Act}, { t

T+
// ⊆ S × S | t ∈ T+}),

a reduced timed labelled transition system is a 6-tuple:

R(T) = (SR, sRI , ActR, T+R, { a

ActR
// R ⊆ SR × SR | a ∈ ActR},

{ t

T+R
// R ⊆ SR × SR | t ∈ T+R})

where sRI = sI , SR = S, ActR ⊆ Act, T+ = T+R, a

ActR
// R ⊆ a

Act
// , and

t

TR+
// R ⊆ t

T+
// , such that for any s ∈ S with γ1, γ2 . . . γn ∈ Act ∪ T+ transi-

tions departing from s in T there exists at least one transition γ ∈ ActR ∪ T+R departing
from s in R(T) such that γ = γi for some 1 ≤ i ≤ n.

In other words, a reduced timed labelled transition system keeps at least one
transition departing from each state in the original timed labelled transition sys-
tem. By construction, the relation between a reduced timed labelled transition

110 Predictable Real-Time Systems Synthesis

system and its corresponding original timed labelled transition system is a strong

timed simulation [68]. It means that for any s1, s2 ∈ SR with s1
γ // R s2, where

γ ∈ ActR ∪ T+R, we also have s1
γ // s2. Hence, any path in the reduced timed

labelled transition system is a path in the original timed labelled transition system.
Moreover, there exists at least one complete path in T that can be found in R(T).

Theorem 6.8 Given a timed labelled transition system T , let R(T) be its reduced timed
labelled transition system and let ϕ be an MTL formula. Then R(T) |=M ϕ if T |=M ϕ.

Proof By definition, T |=M ϕ iff for all paths P in T , P |=M ϕ. By construction of
the reduced timed labelled transition system, any path PR in R(T) is also a path in
T . Hence, for all paths PR, PR |=M ϕ which implies that R(T) |=M ϕ.

2

Since we showed that a reduced timed labelled transition system R(T) satisfies
the same properties as the original one T , we can also establish a relation between
the prediction of property preservation based on T and the one based on R(T).
Given an execution time function ExecT ime : Act → R+ and an MTL formula ϕ,
T |=M ϕ implies that T |=P ϕε where ε = 2∗d∗ExecTime(T). Moreover, by theorem 6.8,
R(T) |=M ϕ, which implies that R(T) |=P ϕεR where ϕεR = 2 ∗ d∗ExecTime(R(T)).
Since by construction the set of all paths in R(T) is a subset of all paths in T ,
d∗ExecTime(R(T)) ≤ d∗ExecTime(T). Hence, εR ≤ ε, as visualised in figure 6.1.

T R(T)

T R(T)

M

φε

ε ε <= ε

M

P P

φ
φ

φε

Figure 6.1: Strengthening prediction of property preservation

In order to increase the chances of obtaining a smaller distance between a model
and its realisation, we can build the reduced timed labelled transition system in the
following way. Given a timed labelled transition system

T = (S, sI , Act = ObsAct ∪ UnobsAct, T+,

{ a

Act
// ⊆ S × S | a ∈ Act}, { t

T+
// ⊆ S × S | t ∈ T+}),

the reduced timed labelled transition system is a 6-tuple:

R(T) = (SR, sRI , ActR = ObsActR ∪ UnobsActR, T+R,

{ a

ActR
// R ⊆ SR × SR | a ∈ ActR}, { t

T+R
// R ⊆ SR × SR | t ∈ T+})

Distance Reduction from Model to Realisation 111

where sRI = sI , SR = S, ActR ⊆ Act, T+ = T+R, a

ActR
// R ⊆ a

Act
// , and

t

TR+
// R ⊆ t

T+
// , such that for any s ∈ S with γ1, γ2 . . . γn ∈ Act∪T+ transitions

departing from s in T :

• if some γi, γi+1 . . . γi+m ∈ ObsAct with 1 ≤ i ≤ n −m, then γi, γi+1 . . . γi+m ∈
ObsActR are transitions departing from s in R(T);

• else, if some γi, γi+1 . . . γi+m ∈ UnobsAct with 1 ≤ i ≤ n − m, then
γi, γi+1 . . . γi+m ∈ UnobsActR are transitions departing from s in R(T);

• else, n = 1 and γ1 ∈ T+, then γ1 is a transition departing from s in R(T).

With this construction, we impose priority of the execution of the observable ac-
tions over the unobservable actions, which can lead to a smaller time deviation be-
tween model and realisation, as shown in the example below.

S15
in1

S11

out1

S12

out1
out2

b) Reduced timed labelled transition system

computation1

S1 S2

in1

S3 S4

in2

S5

computation2

S6

1

S7

out1

in2

S10

1

S8

computation1in1

S9

computation1S14

S13in2

out2computation2

S1 S2

in1

S3

computation1

S4

in2

S5

computation2

S6

1

S7

out1

a) Timed labelled transition system

in2 S13 computation1

in2

computation2

computation1S14

S10

S11

out2

1

in1

S16

computation2

in1

S8

computation1in1

S9

out1

S12

out2 out1

S15

Figure 6.2: Example of building a reduced timed labelled transition system

Example 6.6 For the timed labelled transition system from figure 5.2.c, depicted again in
figure 6.2.a, the corresponding reduced timed labelled transition system is given in fig-
ure 6.2.b. The observable distance between model and realisation along the original timed
labelled transition system based on the execution time function from example 5.5 is 0.20,
whereas the observable distance along the reduced timed labelled transition system using the
same function is 0.04.

112 Predictable Real-Time Systems Synthesis

6.2.3 Changing Action Ordering

In this subsection, we present an algorithm that, given a timed labelled transition
system, builds a reduced timed labelled transition system based on the observations
made in the previous subsection. For this reduced timed labelled transition system
we have shown that it might enable a stronger property preservation between model
and realisation.

As already discussed in chapter 5, process execution trees (PETs) are used for rep-
resenting the timed labelled transition system of a model in POOSL. The state of each
POOSL process is represented by a tree structure, where each leaf is a statement and
internal nodes represent compositions of their children. During the evolution of the
system, the PETs send action requests and/or time delay requests to the scheduler. To
discriminate between observable and unobservable actions, the PETs send observable
action requests and unobservable action requests. By imposing priority on the execu-
tion of the observable actions, the PET scheduler, whose behaviour is described by
the algorithm in figure 6.3, asynchronously grants all eligible atomic observable ac-
tions. When there are no more observable actions available, unobservable actions
are granted until an observable one becomes eligible or until there are no more un-
observable actions either. In this way, the scheduler ensures action urgency based on
a two-level priority scheme. The internal state of each PET is dynamically changed
according to the choices made by the PET scheduler and new requests may be sent
to the scheduler. When no action of any kind is possible, based on the shortest de-
lay request, time passes synchronously for all PETs until an action becomes eligible
again. The value of the variable modelTime , which keeps track of the model time, is
updated based on the value of the granted delay.

PETSCHEDULER(LIST observableActions, LIST unobservableActions, LIST delays)

1 modelTime← 0
2 while (true)
3 do while (observableActions NOTEMPTY())
4 do observableActions GETASYNCHRONOUSLY()–>GRANT();
5 if (unobservableActions NOTEMPTY())
6 then unobservableActions GETASYNCHRONOUSLY()–>GRANT()
7 else
8 if (delays NOTEMPTY())
9 then modelTime←modelTime + delays GETSMALLEST()–>AMOUNTOFTIME();

10 else DEADLOCK();
11 return

Figure 6.3: The PET scheduler

From such a reduced timed labelled transitions system, we can build the cor-
responding extended timed labelled transition system in the way shown in defini-
tion 5.14. From this one, we can calculate the observable distance between model
and realisation as the upper-bound on the labels of the states, reachable from the
initial state, in which the system can arrive by performing an observable action tran-
sition. With a small modification, the algorithm presented in figure 5.7 to determine
the distance between model and realisation can be used to calculate the observable
distance as well. The change consists in updating the value of ε only when observ-
able action transitions are encountered in the transition system. The algorithm is

Improved POOSL Model Synthesis Strategy 113

CALCULATEOBSERVABLEDISTANCEMODELTOREALISATION(STATE s0)

1 if EXISTSELEMENTARYCYCLEWITHPOSITIVECOST() > 0
2 then ε← ⊥
3 else ε← 0
4 statesSet ← ∅
5 statesSet ← statesSet ∪ {(s0, 0)}
6 while (statesSet .HASUNVISITEDSTATES())
7 do (s, d)← statesSet .GETANUNVISITEDSTATE()
8 for each transition t leaving from s in T
9 do if t is observable action transition

10 then ε← max(ε, d + t .EXECTIME)
11 if t is action transition
12 then statesSet ← statesSet ∪ {(t .destination, d + t .wcet)}
13 else statesSet ← statesSet ∪ {(t .destination, d . t .duration)})
14 return ε

Figure 6.4: Algorithm to calculate observable distance between model and realisa-
tion

depicted in figure 6.4 and has the same complexity as the one in figure 5.7. For the
system given in figure 6.2.a, the algorithm determined that the size of the observable
distance between model and realisation is 0.04.

6.3 Improved POOSL Model Synthesis Strategy

Based on the mechanism of strengthening the observable property preservation that
we have discussed in section 6.2, we have extended the PET scheduler in Rotalumis
such that it can cope differently with observable and unobservable actions and it can
enforce urgency on the execution of observable actions. With a proper design time
annotation of the model of a real-time system, observable and unobservable action
requests that arrive at the scheduler are placed into different lists. Whenever observ-
able actions are available for execution, they are granted by the PET scheduler. When
no observable action is eligible, an unobservable action request is granted, and then
the observable action requests list is checked again. The algorithm for the extended
PET scheduler of Rotalumis is presented in figure 6.5. When no action request of any
kind is available, the smallest time transition in the system is granted. Model time
passes synchronously for all PETs, whereas physical time is synchronised with the
model time. When some action becomes eligible again, the algorithm is resumed. In
this way, a realisation of the system is built by always choosing the path that con-
tains eligible observable actions in front of unobservable actions. Besides generating
a realisation of the system, the algorithm also determines the value of the observable
distance, which is updated in the variable called epsilon.

6.4 Experimental Results

To illustrate the improvement that can be obtained in the strength of property preser-
vation of a system by using the approach proposed in this chapter, we considered a
very simple motion control system that is an instantiation of the timed labelled tran-

114 Predictable Real-Time Systems Synthesis

PETSCHEDULERROTALUMIS(LIST observableActions, LIST unobservableActions, LIST delays)

1 modelTime← 0
2 startTime← READPHYSICALTIME()
3 epsilon← 0
4 while (true)
5 do while (observableActions NOTEMPTY())
6 do observableActions GETASYNCHRONOUSLY()–>GRANT();
7 if (an observableAction was granted) && (epsilon < READPHYSICALTIME() - modelTime)
8 then epsilon← READPHYSICALTIME() −modelTime
9 if (unobservableActions NOTEMPTY())

10 then unobservableActions GETASYNCHRONOUSLY()–>GRANT()
11 else
12 if (delays NOTEMPTY())
13 then modelTime←modelTime + delays GETSMALLEST()–>AMOUNTOFTIME()
14 /* synchronisation between model and physical time */
15 if modelTime > READPHYSICALTIME() - startTime
16 then wait_until modelTime == READPHYSICALTIME() - startTime;
17 continue
18 else DEADLOCK()
19 return

Figure 6.5: The PET scheduler in Rotalumis

sition system shown in figure 5.2. The system is made of two independent rotation
units that do not interact with each other and whose controllers, designed by con-
trol engineers, run at different frequencies, 1000 Hz, respectively 500 Hz. The setup
of the system is the same as the one for the educational example in chapter 2, as
depicted in figure 6.6.

sensors signal

actuator
signal

actuator signal

rotation unit 1

controlinterface

rotation unit 2

Figure 6.6: The motion system setup

An analysis model of the motion system is shown in figure 6.7. The con-
trol part of the system is made of two parallel processes, MotorController_1
and MotorController_2, whereas the environment consists of Motor_1 and
Motor_2. The code shown in figure 6.7 is the POOSL model for each
MotorController. The method controlAlgorithm models the actual control
algorithm for a motor. From the design of the system, ControllerPeriod, which
is an instantiation parameter of each process, is 1 ms for the first motor and 2 ms for
the second one.

Experimental Results 115

Motor_1
sensor actuator

Motor_2
sensor actuator

MotorController_1
in out

MotorController_2
in out

Environment

MotorController()()

 in ? sensorInput(data);

 controlAlgorithm(data)();

 delay ControllerPeriod;

 out ! actuatorOutput(data);

 MotorController()().

Figure 6.7: Model of the system

As discussed in the educational example, to ensure the stability of the control
of the two motors system, two required real-time properties must be satisfied. For
the first motor, the message actuatorOutput must always be sent between 0.9 and
1.1 ms after the message sensorInput is received. The MTL formula correspond-
ing to this property is:

�(p1 → ♦[0.9,1.1]q1)

where p1 represents the receiving of sensorInput message and q1 the sending of
actuatorOutput message for the first motor. For the second motor, with similar
notations, the property that needs to be satisfied is:

�(p2 → ♦[1.9,2.1]q2).

Since the model is very simple, we could manually check that the control part in the
model satisfies �(p1 → ♦[1,1]q1) and �(p2 → ♦[2,2]q2).

MotorController_1 MotorController_2

MotorController()()

 in ? sensorInput(data);

 controlAlgorithm(data)();

 delay ControllerPeriod;

 out ! actuatorOutput(data);

 MotorController()().

DAS readSensor(data);

DAS writeActuator(data);

Figure 6.8: Synthesis model of the system

To enable automatic generation of the implementation of the control part of the

116 Predictable Real-Time Systems Synthesis

system from the model, a synthesis model was developed. In this model, the envi-
ronment part was removed and all the communication with the environment was
replaced with a synthesisable interface. The model presented in figure 6.8 shows
how the communication with the environment model was replaced with calls to the
readSensor and writeActuator methods from a data class called DAS (Data
Acquisition System). This data class provides only virtual methods for the synthesis
model. Its actual implementation for the communication with the real motors via
the TUeDACS device is provided with Rotalumis in C++ code (figure 6.9 shows as
an example the readSensor method). The implementation of the interface should
not be blocking because its timing behaviour can affect the deviation between model
and implementation.

void READSENSOR ()
{

/* read the sensor data via TUeDACS API */
TD_ENC_READ_CHAN(&pd–>y , pd–>channel , pd–>link , TD_DIRECT);

}

Figure 6.9: The C++ implementation of READSENSOR

First, we have synthesised the model of the motor controllers using the synthesis
approach presented in section 5.3, which treats with no distinction the observable
and the unobservable actions. We have measured the time deviations obtained in
the implementation for several hours of continuous behaviour and the maximum
deviation was 0.213 ms. This implies that the weakening of the real-time properties
in the realisation of the system is 0.426 ms and these properties are:

�(p1 → ♦[0.574,1.426]q1);
�(p2 → ♦[1.574,2.426]q2).

Thus, they do not meet the requirements. This large weakening explains the unstable
behaviour of the system that could be noticed during execution. A possible solution
to obtain a smaller time deviation would be to use a processor of a higher frequency.

MotorController_1 MotorController_2

MotorController()()

[obs] DAS readSensor(data);

[uobs] controlAlgorithm(data)();

 delay ControllerPeriod;

[obs] DAS writeActuator(data);

 MotorController()().

Figure 6.10: Annotated synthesis model

Related Research 117

The solution that we have chosen for decreasing the distance was to use in a sec-
ond experiment the synthesis approach presented in this chapter. We have labelled
each action in the model, as shown in figure 6.10, such that Rotalumis could iden-
tify which is considered observable or unobservable. Actions like reading from the
sensor and writing to the actuator are observable activities of the system, whereas
the control algorithm computation is unobservable from outside the system. During
several hours of continuous behaviour, the maximum obtained observable distance
between the model and the generated implementation was 0.037 ms. Thus the prop-
erties satisfied by the implementation are:

�(p1 → ♦[0.926,1.074]q1);
�(p2 → ♦[1.926,2.074]q2).

They fulfill the requirements. Hence, the control strategy designed is implementable
using the proposed approach.

From this experiment, we could observe how significant the impact of the new
synthesis approach on the strength of property preservation may be. In our case,
the time deviation decreased with 80% as the computations were much more time-
intensive than the reading and the writing actions.

6.5 Related Research

The timing semantics based on the two phase execution framework that treats sys-
tem functionality and time progress in an orthogonal way, namely, system actions
are timeless (without any time progress) and the time progress is actionless (with-
out preforming any action), is commonly adopted in design languages. Variations
of this semantics have been used in different formal frameworks to model and anal-
yse real-time systems, such as timed automata [9], time process algebra [71] and
real-time transition systems [49]. Recently, this semantics is also integrated into de-
sign languages, such as SDL-2000 supported by TAU2 [88], or POOSL supported
by SHE [41]. However, in current practice, the automatic generation of implemen-
tations from models lacks sufficient support to bridge the gap between the timing
semantics of the modelling language and of the implementation language. As a re-
sult, the properties of the implementation cannot be deduced from the properties of
the model. As an example, in the automatic implementation of an SDL-2000 model,
the timing expressions rely on an asynchronous timer mechanism provided by the
underlying platform. Hence, all expressions referring to some amount of time will
refer to at least that amount of time. Timing errors are accumulated during execution,
and this leads to timing failures and even functionality failures [53].

As shown in this thesis, the automatic generation of an implementation from a
POOSL model overcomes the timing issue by the synchronisation of the model time
with the physical time. By keeping an upper-bound on the time deviation between
model and implementation, properties of the implementation can be predicted from
the properties of the model.

One of the formal approaches widely used for modelling and analysis of real-time
systems is timed automata. TIMES [7] is a tool for design of real-time systems models

118 Predictable Real-Time Systems Synthesis

based on timed automata that can describe concurrency and synchronisation of peri-
odic, sporadic, preemptive or non-preemptive real-time tasks with or without prece-
dence constraints. An automaton is schedulable if there exists a scheduling strategy
such that all possible sequences of events accepted by the automaton are schedulable
(all associated tasks can be computed within their required deadlines). From such a
real-time system model, the TIMES compiler generates a scheduler, based on fixed
priority assignment, and computes the worst-case response time for all tasks. For
this, it relies on synchrony hypothesis, assuming that the time for handling system
functions on the target platform can be ignored compared with the execution times
and deadlines of tasks which are considered pre-specified. This issue may be over-
come by integrating the ε-hypothesis in their code generation. Moreover, the type
of real-time properties TIMES focusses on refer to deadlines of tasks, which is at a
coarser level of granularity than the properties we are are looking at for preserving
in the implementation.

A relaxation of the synchrony hypothesis is proposed in [27] where the notion
of Almost ASAP semantics was introduced for timed automata. This semantics al-
lows a certain time-bound, which is a parameter of the model, for the reaction of
a system, preventing the need for instantaneous reaction to events as imposed by
the synchrony hypothesis. The Almost ASAP semantics is useful when modelling
real-time controllers and its idea is in-line with the ε-hypothesis that we use. It was
shown that control strategies modelled with this semantics are robust and imple-
mentable. However, our approach differs from theirs in the sense that we look for an
implementation that has the smallest time deviation from the model, whereas they
set a requirement on the deviation and give a solution that satisfies it.

In [48], a programming model for real-time embedded controllers called Giotto
is presented. Giotto is a methodology designed specifically for embedded control
software development. Giotto is an embedded software model that can be used to
specify a solution to a given control problem independent from a target platform.
However, it is closer to executable code than to a mathematical model. Giotto is
restricted to periodic non-preemptive real-time control tasks. For model synthesis,
worst-case execution times of all tasks on the target CPU have to be provided, to-
gether with a jitter tolerance of the model. The Giotto compiler determines a sched-
ule of the tasks that realises the execution on the target platform conforming to the
tolerance. Moreover, Giotto can be seen as an intermediary step between mathemat-
ical models like timed automata and real execution code.

Compared with Giotto, our approach is fully based on a mathematical structure,
the timed labelled transition system, and on a metric to express property preserva-
tion. During automatic code generation and execution, the time deviation (which is
equivalent with the jitter tolerance) between the implementation and the model is
determined for that specific target platform.

6.6 Summary

In this chapter, we have shown how the strength of observable property preser-
vation for concurrent real-time systems can be improved. We defined a notion of
distance that abstracts away from the internal unobservable actions. This distance

Summary 119

was used as a metric to express the strength of observable property preservation
between model and realisation. We proved that an implementation in which observ-
able action transitions can be taken before unobservable transitions has a smaller
distance to the model than any other implementation of the same model. Moreover,
we have incorporated this result into an existing predictable development method.
By the means of a motion control system case study, we showed that the proposed
approach improved the strength of property preservation with 80% and succeeded
in generating an implementation that fulfilled the requirements.

With the discrimination between observable and unobservable actions that we
introduced in this chapter, we open up for future research the possibility of using
various scheduling policies, especially preemptive ones, for the execution of the un-
observable actions. In order to do this, we need to formalise the dependencies be-
tween actions in a system and to rigourously define how these dependencies can be
exploited for further improving the efficiency of the synthesis phase.

120 Predictable Real-Time Systems Synthesis

7
Case Study

In this chapter we present the model-driven design of the control of a printer paper
path. The purpose of this case study is to illustrate the application of the various
contributions brought by this thesis on a realistic system. Section 7.1 describes the
setup of the system and discusses the system requirements. Section 7.2 presents the
analysis model of the system based on modelling patterns, whereas section 7.3 deals
with the prediction of the real-time properties preservation in the realisation of the
system. Section 7.4 presents the synthesis of the printer paper path model and a
summary of the chapter is given in section 7.5.

7.1 Printer Paper Path System Description

An experimental paper path of a printer has been designed and built at the Dynam-
ics and Control Technology group within Eindhoven University of Technology [67].
A detailed description of the design for the setup is given in [103]. The setup of
the system is depicted in figure 7.1. It consists of a paper input tray connected to a
motor, denoted with PIM, and a paper path with five pinches, each connected via a
gear belt to a motor, denoted with M1 to M5. Whereas in real printer paper paths
aluminium plates are used to guide the sheets through the paper path, in the ex-
perimental setup thin steel wires are used to prevent the sheets from dropping out
of the path and to be able to visually observe the sheets when they are transported.
The paper path is designed for A4 sheets travelling in landscape orientation from
left to right. There are four optical sensors, denoted with S1 to S4, installed along
the path, each of which can be used to detect the presence of a sheet of paper. The
setup is connected to a PC-based control system. This system consists of a 1.8 GHz
Pentium4 host computer running RTAI/Fusion Linux [5] and three TUeDACS USB
I/O devices [95].

122 Case Study

Figure 7.1: Photo of the experimental paper path setup

The experiment considered for case study is to drive sheets of paper through
the paper path realising a throughput of 12 pages per minutes, which is a typical
throughput for home and office printers. To achieve such a transportation rate, the
velocity of a sheet of paper was calculated to be 70 mm/s and the distance between
two travelling sheets is 140 mm. These parameters ensure that a sheet of paper exits
the paper path every 5 s. When a late sheet is detected along its transportation,
the velocity of the transportation is increased to 80 mm/s. A sheet is considered
late if the distance between it and the previous sheet is more than 210 mm. The
controllers of the motors were designed by control engineers [19] and a sampling
frequency of 500 Hz was chosen, which is ten times higher than the typical motor
control bandwidths. Based on the work presented in [24], it could be established
that a timing accuracy of 0.1 ms for each controller is sufficient to guarantee the
stability of the closed loop system. Hence, the time interval between the reading of a
sensor signal and the writing to an actuator is required to be within [1.9, 2.1] ms for
each motor.

The purpose of this case study is to use a model-driven approach to obtain the
software part of this system. The software implementation must ensure a correctly
running system based on the design made by the control and mechanical engineers.
This means that the stability of the system must be ensured as well as the desired
throughput must be achieved without paper jams. Moreover, given the configura-
tion of the setup, the use of only one optical sensor, the first one in the row, S1, for
the detection of a late sheet was considered enough in order to correct the velocity
of a late sheet by accelerating the last four motors in the paper path.

7.2 Analysis Model of the Paper Path

In order to analyse the properties of the system, we need to construct a model of it
and hence, we first identified its players in a similar way we did in chapter 2. In this
system, there is only one player, the so-called paper path controller, that ensures the
control of the whole paper path and coordinates the activities of all devices. Hence,
we had to go a step further and build a model of the system that takes into account

Analysis Model of the Paper Path 123

the various disciplines involved in such a system, software, control and mechanical
engineering, as depicted in figure 7.2. A high-level controller supervises the low-
level controllers and checks for every sheet of paper that passes by the optical sensor
if it is in time or it is late. In case the sheet is late, it sets the velocities of motors
M2, M3, M4 and M5 to a higher value to compensate for the lateness of the sheet.
There are six low-level controllers in the system, one for each motor in the paper
path, PIM, M1, M2, M3, M4, and M5. They are provided with information by the
high-level controller regarding the velocity they should run with. The environment
models the physical devices that are controlled by the low-level controllers, namely
the six motors, and the optical sensor which is used by the high-level control to check
the presence of sheets of paper.

HighLevelController

PIM

Environment (sensors/motors)

readSensor

M1 M2 M3 M4 M5

accelerate/decelerate

Figure 7.2: Refined model of the paper path system

The high-level controller makes decisions based on the timing of the sheets of
paper. When sensor S1 triggers because it detects a sheet of paper, the high-level
controller can determine if the sheet is late or in time. In the synthesis model of
the system, the environment would be removed and the communication to it would
be replaced with primitive data methods. Hence, a primitive method implemented
in C++ would actually perform the reading from the optical sensor. Because of the
synthesis mechanism that transforms the whole model into a single process running
on a target processor, this method must be non-blocking. Therefore, the detection
of a sheet passing by the sensor must be based on polling the information from the
sensor. When the sensor detects a sheet, it will trigger. Hence, in the implementation
of the system we must make sure that while a sheet passes by the sensor, the high-
level controller tries to read at least once the sensor information. Moreover, to detect
as early as possible that a sheet is going to arrive late, it must read the sensor often
enough. Based on this reasoning, we decided to implement the high-level controller
as a task that periodically polls the sensor and makes decisions based on the infor-
mation it gets, setting the right values of the velocities of motors 2, 3, 4 and 5. Hence,
the periodic task modelling pattern, presented in section 3.5.1, can be directly used
for the model of the high-level controller.

Regarding the low-level controllers, as it can be seen in figure 7.2, PIM and M1 are
independent tasks that control their corresponding motors. M2, M3, M4 and M5 can
receive commands from the high-level controller for accelerating or decelerating. In
essence, all these controllers are identical except for their reference velocities. Hence,
we decided to model them in the same way and to implement the control algorithms

124 Case Study

such that they read their corresponding velocities from some shared memory area
to which the high-level controller has writing access. Thus, there will be no explicit
interaction between the high-level controller and the low-level controllers. This de-
cision implies that the low-level controllers can also be modelled as periodic tasks
using the corresponding modelling pattern.

Table 7.1 presents the values of the periodic task modelling pattern parameters
for each instantiation. As it takes 3 s for a sheet of paper to cross the optical sensor
and a late sheet must be detected as early as possible, we have chosen that the high-
level controller polls the optical sensor every 0.5 s. The initial offset of the high-level
controller task is equal to the time is takes for the first sheet to arrive at the sen-
sor. The low-level controllers start immediately, without any offset, and their period
is 2 ms because the control algorithms were designed for a sampling frequency of
500 Hz. The loads imposed by the computations of each of these tasks on the plat-
form are determined based on measurements of their worst-case execution times on
the 1.8 GHz Pentium4 and on the assumption of a throughput of 2 billions of in-
structions per second for the processor. Moreover, since we run our experiments
in a laboratory with a stable environment, with no sudden changes in the tempera-
ture, we assumed no drifts of the processor clock, thus no activation latency for the
periodic tasks.

Task Period Deadline Offset Load Iterations Latency Priority
[ms] [ms] [ms] [instr.] [ms]

HighLevelController 500 500 2285 1100000 -1 0 1
PIM 2 2 0 480000 -1 0 2
M1 2 2 0 480000 -1 0 2
M2 2 2 0 480000 -1 0 2
M3 2 2 0 480000 -1 0 2
M4 2 2 0 480000 -1 0 2
M5 2 2 0 480000 -1 0 2

Table 7.1: Parameters of tasks

As mentioned earlier, the target platform for our experiments is a Pentium4 pro-
cessor at 1.8 GHz. To model it, we have used the resource modelling pattern pre-
sented in section 3.5.2. The value of the throughput of the resource was taken as
2 billions of instructions per second. For our analysis, we assumed to have only this
application running on the machine since this would be the case in a real printer. The
initial latency of the resource, which models the context switch time between tasks,
was considered zero because of the POOSL synthesis mechanism that creates only
one task from the entire application.

To analyse schedulability of the system, a scheduler has also been modelled for
dispatching the tasks onto the resource. The scheduling policy chosen was non-
preemptive priority-driven, as it can be seen in figure 7.3. Since the requirement of
the system is to have no paper jams and the design realised by control engineers must
ensure that, we had to check if the system is schedulable or not on the desired target
platform. The simulation of the model showed that all deadlines of the system are
met. This means that all the tasks are able to accomplish their computations before
their respective deadline. This information is helpful for a coarse-grain reasoning
about the properties of the system. However, we need to determine if the system can
actually run correctly, meeting the timing requirements that can ensure the stability
of the motors. For this, we need a finer-grain analysis of the system, looking closer
to the actions that each task has to perform.

Analysis Model of the Paper Path 125

<system>
<application>

<PeriodicTask Name="HighLevelController" T=”500" D="500" Offset=”2285"
BCLoad=”1100000" WCLoad=”1100000" LoadDistrib=”Uniform”
Iterations=”-1" Priority=”1" Latency=”0">

<PeriodicTask Name="PIM" T=”2" D="2" Offset=”0" BCLoad=”480000"
WCLoad=”480000" LoadDistrib=”Uniform” Iterations=”-1"
Priority=”2" Latency=”0">

<PeriodicTask Name="M1" T=”2" D="2" Offset=”0" BCLoad=”480000"
WCLoad=”480000" LoadDistrib=”Uniform” Iterations=”-1"
Priority=”2" Latency=”0">

<PeriodicTask Name="M2" T=”2" D="2" Offset=”0" BCLoad=”480000"
WCLoad=”480000" LoadDistrib=”Uniform” Iterations=”-1"
Priority=”2" Latency=”0">

<PeriodicTask Name="M3" T=”2" D="2" Offset=”0" BCLoad=”480000"
WCLoad=”480000" LoadDistrib=”Uniform” Iterations=”-1"
Priority=”2" Latency=”0">

<PeriodicTask Name="M4" T=”2" D="2" Offset=”0" BCLoad=”480000"
WCLoad=”480000" LoadDistrib=”Uniform” Iterations=”-1"
Priority=”2" Latency=”0">

<PeriodicTask Name="M5" T=”2" D="2" Offset=”0" BCLoad=”480000"
WCLoad=”480000" LoadDistrib=”Uniform” Iterations=”-1"
Priority=”2" Latency=”0">

</application>
<platform>

<Resource Name="CPU" InitialLatency="0" FixedLatency=”true”
Throughput="2000000000" IdlePower=”0" NominalPower=”0”
Monitored=”false”>
<Scheduler Policy=”NPPrio" Monitored=”true”>

</Resource>
</platform>
<mapping>

<map TaskName="HighLevelController" ResourceName="CPU">
<map TaskName="PIM" ResourceName="CPU">
<map TaskName="M1" ResourceName="CPU">
<map TaskName="M2" ResourceName="CPU">
<map TaskName="M3" ResourceName="CPU">
<map TaskName="M4" ResourceName="CPU">
<map TaskName="M5" ResourceName="CPU">

</mapping>
</system>

Figure 7.3: Paper path model specification based on modelling patterns

126 Case Study

7.3 Predicting Properties of the Paper Path

The analysis model of the controllers discussed in section 7.2 is based on the periodic
task modelling pattern that describes a task in a very abstract way, incorporating its
type of activation, its load and its timing requirements. To check what are the prop-
erties of the system and to analyse how strongly they can be preserved in the imple-
mentation, we need more details about the behaviour of each task. For example, we
need to identify what are the actions in the behaviour of a task and to distinguish
which are observable and which are unobservable.

Figure 7.4 depicts the timed labelled transition system of the high-level controller.
The transition system reflects the periodic task pattern in the sense that it shows to
have a periodic behaviour with a period of 500 ms. Moreover, it shows that the ac-
tivity realised by the high-level controller and modelled in an abstract way with the
Behaviour method of the modelling pattern is that of checking the optical sensor
and making decisions with respect to the velocity with which the motors should run.

S1 S2

Offset

S3

500

checkSensorMakeDecisions

Figure 7.4: Timed labelled transition system of the high-level controller

Figure 7.5 depicts the timed labelled transition system of a low-level controller.
This transition system also reflects the periodic task pattern in the sense that it shows
a periodic behaviour with a period of 2 units of time, representing 2 ms which is
the period of all the low-level controllers. It means that this transition system is
the same for each of the low-level controllers, PIM, M1, M2, M3, M4 and M5. The
behaviour of each low-level controller is decomposed into three main actions. The
action of writing represents the writing to an actuator of a pre-computed value that
is supposed to correct the position of the motor. The action of reading represents
the reading of the current position of the motor from its encoder. Both reading and
writing actions represent communication to the environment which is supposed to
happen at precise moments in order to ensure the correctness and the stability of the
control algorithm. The third action performed by a low-level controller is the actual
control algorithm.

S1 S2

read

S3

controlAlgo

S4

2

write

Figure 7.5: Timed labelled transition system of a low-level controller

Based on the timed labelled transition systems of the high-level and the low-level

Predicting Properties of the Paper Path 127

controllers, the timed labelled transition system corresponding to the paper path
control can be derived. Although each of the transition systems has a small number
of states, due to the interleaving of the parallel actions, the resulting timed labelled
transition system has one million of states. Therefore, we cannot show it in a figure.
Nevertheless, from it we can derive the properties of interest, whose preservation
we want to obtain as strong as possible in the realisation of the system. Using the
MTL formulas notation, these properties are:

�(readPIM → ♦[2,2]writePIM);
�(read1 → ♦[2,2]write1);
�(read2 → ♦[2,2]write2);
�(read3 → ♦[2,2]write3);
�(read4 → ♦[2,2]write4);
�(read5 → ♦[2,2]write5);

meaning that a read action is always eventually followed by a corresponding write
action after exactly 2 ms.

Action Worst-case execution time [us]
checkSensorMakeDecisions 550

read 3
write 3

controlAlgo 234

Table 7.2: Worst-case execution times of actions

To predict the properties of the realisation of the paper path on the target plat-
form, we need to determine the largest possible time deviation between the model
and its realisation on our desired target platform. Since there is no cycle with positive
cost in the transition system, we used the algorithm presented in section 5.7. The cal-
culation of the time deviation is based on the measurements on the target platform
of the worst-case execution times of all the actions given in table 7.2. Because of the
large number of states in the timed labelled transition system, it took several hours
to determine the largest possible time deviation, which is 1.990 ms. This means that
the properties of the realisation of the system would be:

�(readPIM → ♦[0,5.98]writePIM);
�(read1 → ♦[0,5.98]write1);
�(read2 → ♦[0,5.98]write2);
�(read3 → ♦[0,5.98]write3);
�(read4 → ♦[0,5.98]write4);
�(read5 → ♦[0,5.98]write5).

Because the system is deterministic, the simulation-based estimation of the time de-
viation, which only investigates one path of the system, also gives the same value but
in much shorter time (in the order of minutes). The properties predicted for the real-
isation of the system do not satisfy the timing requirements that can ensure stability.
However, when we computed the time deviation between model and realisation, we
considered that all the actions of the system are observable and hence those that are
actually unobservable weaken the prediction of properties preservation.

128 Case Study

Figure 7.6 depicts the timed labelled transition system of the high-level controller
in which the action of checking the sensor and making decisions is labelled as an
unobservable action, i.e. [uobs], as it is not important at what moment precisely
it takes place, but it needs to be finished before the deadline of the task, which is
the beginning of the next period. Moreover, figure 7.7 depicts the timed labelled
transition system of a low-level controller in which its actions are also labelled. The
action of writing as well as the action of reading represent communication to the
environment which is supposed to happen at precise moments in order to ensure
the correctness and the stability of the control algorithm. Hence, they are labelled as
observable, i.e. [obs]. The control algorithm is considered an internal computation
as its only timing requirement is to be finished before the next period.

S1 S2

Offset

S3

500

checkSensorMakeDecisions
[uobs]

Figure 7.6: The timed labelled transition system of the high-level controller

S1 S2

read
[obs]

S3

controlAlgo
[uobs]

S4

2

write
[obs]

Figure 7.7: The timed labelled transition system of a low-level controller

By constructing the reduced timed labelled transition system using this discrim-
ination between observable and unobservable actions, the number of states in the
resulting system is smaller by a factor of five compared to the original system. By
using the algorithm presented in figure 6.4, the value determined to be the largest
possible time deviation between model and realisation is 0.036 ms. This means that
the properties of the realisation of the system would be:

�(readPIM → ♦[1.928,2.072]writePIM);
�(read1 → ♦[1.928,2.072]write1);
�(read2 → ♦[1.928,2.072]write2);
�(read3 → ♦[1.928,2.072]write3);
�(read4 → ♦[1.928,2.072]write4);
�(read5 → ♦[1.928,2.072]write5).

These properties satisfy the requirements of the system and the realisation was found
suitable to ensure the stability of the system.

Synthesis of the Paper Path Model 129

double vPIM, v1, v2, v3, v4, v5;
int pages = 0, counter = 0;
void PDM_CHECKSENSORMAKEDECISIONS ()
{

/* read from the sensor device */
READ(fd , buf , 1);
/* if the sensor did not trigger, buf[0] == ’n’ or else buf[0] == ’y’ */
/* counter keeps track for how long the sensor did not trigger */
if (buf[0] ==’n’) counter++;
/* when a new page is detected, the number of pages passing by is incremented */
if (buf[0] == ’y’ && counter > 0)
{
counter = 0;
pages++;

}
/* if more than 3 s have passed by with no paper then the motors are accelerated */
if (counter >= 6 && pages >= 2)
{
v2 = V_HIGH;
v3 = V_HIGH;
v4 = V_HIGH;
v5 = V_HIGH;
pages = 0;

}
else
/* the deceleration is done after a number of pages passed by */
if(pages >= 2)
{
v2 = V_NORMAL;
v3 = V_NORMAL;
v4 = V_NORMAL;
v5 = V_NORMAL;
pages = 0;

}
}

Figure 7.8: The C++ implementation of the data method CHECKSENSORMAKEDECI-
SIONS

7.4 Synthesis of the Paper Path Model

To synthesise the model of the paper path, the actual implementation of the methods
that realise the communication with the environment, as well as the control and the
decision making algorithms has to be provided in C++. These so-called primitive
methods are invoked as data methods from the POOSL model.

As an example, figure 7.8 presents the implementation of the decision making
algorithm for the high-level controller. The method first checks the sensor if it cur-
rently detects a sheet or not. If no sheet is detected, then a counter is incremented
to determine for how long there was no sheet detected. The distance between two
sheets of paper travelling through the paper path should be 140 mm. Since the veloc-
ity of the transportation is 70 mm/s, it means that in the ideal situation the distance
in time between two consecutive sheets is 2 s. If the value of the counter is 6, then no
sheet has been detected in a time interval of [2.5, 3] s since the last sheet has passed,
as it is explained in figure 7.9. In this case, motors M2, M3, M4 and M5 are accel-
erated in order to compensate for the lateness of the sheet. Besides detecting what
is the distance in time from the last observed sheet, we also take into account the
number of pages that have been seen. To avoid changing the velocities of the motors

130 Case Study

sheet 1

sheet 2 < 3 s

t t + 0.5 t + 1 t + 1.5 t + 2 t + 2.5 t + 3 Time [s]

y n n n n n n

>= 2.5 s

Sensor read value

Figure 7.9: Sheet lateness interval

too often, we allow them to run with constant velocities for as long as at least two
pages travel through the system.

The model of the paper path has been synthesised using the improved synthesis
mechanism presented in chapter 6. While the experiment was running, the time
deviation was recorded by the synthesis tool. The largest value obtained as the time
deviation was 0.023 ms. This value is smaller than the one computed in section 7.3
because in reality the execution times of actions did not always have the worst-case
value. Hence, the properties satisfied by the realisation of the system are:

�(readPIM → ♦[1.954,2.046]writePIM);
�(read1 → ♦[1.954,2.046]write1);
�(read2 → ♦[1.954,2.046]write2);
�(read3 → ♦[1.954,2.046]write3);
�(read4 → ♦[1.954,2.046]write4);
�(read5 → ♦[1.954,2.046]write5).

With this case study we have shown that the control strategy of the printer paper
path is implementable using our model-driven design approach.

7.5 Summary

In this chapter, we have presented the model-driven design of a printer paper path.
With this case study we have demonstrated the application of the contributions
brought by this thesis to a realistic system. We have used the modelling patterns
to obtain a high-level model of the system and to analyse its schedulability. More-
over, we have estimated the distance between the model and the realisation of the
system on the target platform based on measurements of the worst-case execution
times of its actions. Using the synthesis approach presented in chapter 6, we man-
aged to obtain an implementation of the software part of the system that strongly
preserves the properties analysed in its model.

8
Conclusions and Outlook

The continuously increasing complexity of the embedded real-time systems de-
mands a model-driven design approach that is able to predict and to guarantee the
properties of the final product according to the system requirements and under tight
time-to-market, cost and energy consumption constraints. This thesis brings con-
tributions that address several aspects of this problem in the context of the Soft-
ware/Hardware Engineering design methodology. These contributions represent a
step towards a complete design flow, based on formal methods, for the predictable
design for real-time system. In this chapter, the contributions of this work are sum-
marised and ideas for future research are presented.

8.1 Summary of Research Contributions

To ensure the correctness and the performance properties of real-time embedded
systems, early evaluation of their properties is needed. To achieve this, we have
developed a set of modelling patterns that cover typical components of real-time
systems as they are seen in classical scheduling theory [20]. The modelling patterns
act as parameterisable templates that cover components, such as tasks, resources,
input/output devices, that are typical for a large class of real-time systems, as shown
in chapter 3. The use of these patterns alleviates the process of deriving models for
exploration of different design alternatives. We have shown in chapter 4 that these
patterns can be successfully applied for modelling systems from the areas of control-
dominated and control with data-intensive computations applications. The POOSL
library containing the implementation of the modelling patterns enlarges the set of
guidelines for the use of the SHE methodology in the design of real-time systems.

Since the modelling patterns encapsulate real-time systems modelling experi-

132 Conclusions and Outlook

ence, we have designed the Pattern-based system Description Language (PDL) to
enable easy description of systems without the knowledge of a certain target mod-
elling language. The language is presented in chapter 3 where we also introduce
a model generation tool that takes as input a PDL model and a library containing
the implementation of the patterns in a certain modelling language, and it outputs
the model in that language. Due to the expressiveness of the POOSL language, ap-
propriate models of real-time systems can be generated and the analysis techniques
associated to the SHE methodology enable predictions of the properties of the fi-
nal product realisation as well as appropriate design decisions making, as shown in
chapter 4.

Because a model is just an approximation of a real system with respect to time,
it is important to know how large the time deviation between the model and its im-
plementation would be in order to understand the relation between the properties
of the model and of the implementation. In chapter 5 of this thesis, we have pre-
sented and mathematically proved correct a mechanism to calculate from a model
this time deviation based on worst-case execution times of actions. This approach
has the potential of avoiding design iterations that are caused by successively obtain-
ing large deviations during synthesis. Moreover, we have also developed a matching
simulation-based approach for determining the time deviation between model and
realisation that can be used when the algorithm for the actual calculation takes too
long due to its large complexity.

To be able to ensure the preservation of the observable properties stronger for
systems that contain data-intensive computations which are typically unobservable,
in chapter 6 we have refined the metric that gives the distance between a model
and its realisation. The refined metric discriminates between the actions that are ob-
served from the environment of the system and those that are not. By adopting this
discrimination, we have made the model synthesis mechanism more efficient. The
synthesis step of the SHE methodology is now able to yield real-time software im-
plementations preserving stronger the properties for both control and data-intensive
systems.

By means of a case study, in chapter 7 we show how the contributions brought by
this thesis can be applied for the model-driven design of a system that ensures the
control of a printer paper path. With this case study we show how the system can be
modelled using the modelling patterns, how its real-time properties can be derived
and analysed and how predictions about the properties of the realisation on a target
platform can be made. The synthesis of the system yields a realisation that preserves
these properties and ensures a correctly running system.

8.2 Future Research

We have identified several interesting topics that are worth further research:

Extending the applicability of the pattern-based modelling technique. As it is
currently, the library of modelling patterns can be used for modelling of
control-dominated and control with data-intensive computations real-time
systems and for analysing aspects like their end-to-end delay, schedulability

Future Research 133

or energy consumption. However, there are systems in which instead of
requirements for the end-to-end delay of messages travelling through the
system, specific requirements are given with respect to the throughput, namely
the number of messages that exit the system per time unit. This is the case for
example for streaming-oriented applications, such as audio/video decoders
that are supposed to deliver a certain number of decoded frames per second.
To analyse such systems, an adaptation of the output collector needs to be
done such that it can monitor either the end-to-end delay or the throughput
based on the necessities of the system.

A possible extension of the modelling patterns library is the addition of a mem-
ory unit pattern. Many of the streaming-oriented systems require large mem-
ory space as they operate on large data (e.g. the size of a frame for MPEG 4
video decoder is 4 MB). For such systems it is very important to analyse the
memory needed at runtime such that a good design of the memory layout and
an appropriate choice of sizes and locations of the memory units can be made.
Hence, a model of a memory monitor needs to be incorporated in the library
in order to make it suitable for the analysis of this type of systems as well. The
memory monitor would keep track of the storage space required by various
components in the system. Moreover, it would enable a more accurate anal-
ysis of the end-to-end delay and of the schedulability of the system since the
memory access latencies can be explicitly taken into account.

Another possible extension of the library of modelling patterns is the addition
of a pattern modelling a network-on-chip [85] resource. Such a resource may
contain various processors, memory units, network links and interconnections
and usually requires complex schedulers. As the complexity of integrating
systems keeps growing, a network-on-chip provides enhanced performance
and scalability in comparison with other communication architectures, such
as shared buses. For this reason, applications nowadays are more and more
chosen to be deployed on such architectures. In order to be able to model and
to analyse such a system, a modelling pattern that appropriately captures the
characteristics of a network-on-chip needs to be developed.

Automatic design space exploration. Since we have already automated the mod-
elling step of a model-driven design trajectory, a natural next step would be
the automatic design space exploration of the models created. One possibil-
ity is the use of multi-objective evolutionary algorithms, the way it is shown
in [72] for the case of design space exploration of network processors. The ad-
dition of an automatic design space exploration step increases the potential of
the modelling and analysis approach presented in this thesis of being applica-
ble for large-scale industrial systems due to its easiness of usage and accuracy
of the results based on which appropriate design trade-offs can be made.

Incorporation of scheduling in the synthesis mechanism. Based on the semantics
of a model, the existing synthesis approach within the SHE methodology con-
siders all actions as atomic and executes them accordingly. With the discrim-
ination between observable and unobservable actions that we introduced in
chapter 6, we open up for future research the possibility of using preemptive
scheduling policies for the execution of the unobservable actions. These actions
are typically internal computations that might take a large amount of time and

134 Conclusions and Outlook

that have requirements for their deadline. It might be that during the execu-
tion of a computation, some observable action, independent from the compu-
tation, becomes ready (e.g. two processes become ready for communication).
However, according to the current approach, the execution of the observable
action has to wait for the finishing of the computation, even though they are
independent and hence the computation could be preempted in order to allow
the execution of the observable action. As future research, it is an interesting
challenge to formalise the independence between actions in the system and to
incorporate the preemption of a computation for the atomic execution of an
observable action.

Synthesis of a model for a distributed platform. The current synthesis approach is
able to generate the realisation of a real-time system on a single processor plat-
form using a central scheduler for all the processes of the system. When a
multi-processor architecture is desired for the deployment of the system, the
proposed technique may be inefficient or even unable to ensure the timing and
the ordering of actions as verified in the model. Hence, a technique for auto-
matic and correct synthesis of real-time systems on distributed architectures
remains an interesting research challenge.

A
Sequences of Elements

This appendix presents the proofs for the mathematical results in chapter 5.

Definition A.1 Given a sequence x ∈ Rn, the sum operation over the sequence
∑

x is
defined recursively as follows:

•
∑

<>= 0

•
∑

(x.<y>) = max(
∑

x + y, 0), y ∈ R

Lemma A.1 The sum operation for the elements of a sequence of numbers has the following
properties:

1. It is commutative if the numbers have the same sign: if x · y ≥ 0, then
∑

(<x>.<y>
) =

∑
(<y>.<x>).

2. It is not commutative if the numbers have different signs: if x · y < 0, then
∑

(<x>
.<y>) 6=

∑
(<y>.<x>).

3. It corresponds to the monus operation (see [62]): if x ≥ 0 and y < 0, then
∑

(<x>.<
y>) = x . |y|.

Proof

1. Given x, y ∈ Rwith x · y ≥ 0, there are two cases.

Case 1: Let x ≥ 0 and y ≥ 0. Then∑
(<x>.<y>) = max(

∑
<x>+y, 0) = max(x + y, 0) = x + y and

∑
(<y>.<x>

) = max(
∑

<y> +x, 0) = max(y + x, 0) = x + y.

136 Sequences of Elements

Case 2: Let x < 0 and y < 0. Then∑
(<x>.<y>) = max(

∑
<x>+y, 0) = max(0 + y, 0) = 0 and

∑
(<y>.<x>) =

max(
∑

<y> +x, 0) = max(0 + x, 0) = 0.

2. Given x, y ∈ Rwith x · y < 0, there are two cases.

Case 1: Let x > 0 and y < 0. Then∑
(<x>.<y>) = max(

∑
<x>+y, 0) =

= max(x + y, 0) =
{

x− |y| if x > |y|;
0 if x ≤ |y|.

and ∑
(<y>.<x>) = max(

∑
<y>+x, 0) = max(0 + x, 0) = x

Clearly, x 6= 0 and x 6= x− |y|.
Case 2: Let x < 0 and y > 0. The proof is similar.

3. Given x, y ∈ R with x ≥ 0 and y < 0, then
∑

(<x>.<y>) = max(
∑

<x>
+y, 0) = max(

∑
<x>−|y|, 0) = x . |y|.

2

Lemma A.2 The sum of the elements of a sequence x is a non-negative number,
∑

x ≥ 0.

Proof The proof is by induction on the length of x by using the definition A.1 of
the sum of its elements.

2

Lemma A.3 Given two sequences x ∈ Rn and y ∈ Rm, the sum of the elements of the
concatenated sequence x.y ∈ Rn+m is

∑
(x.y) =

∑
(<

∑
x>.y).

Proof We prove this lemma by induction on the length of y.

Case 1. Let y =<>. Then∑
(x.y) =

∑
(x.<>) =

∑
x =

∑
<

∑
x>=

∑
(<

∑
x>.<>).

Case 2. Let y = y′ .<a> and assume that
∑

(x.y′) =
∑

(<
∑

x>.y′). Then∑
(x.y) =

∑
(x.y′ .<a>) = max(

∑
(x.y′) + a, 0) = max(

∑
(<

∑
x>.y′) + a, 0) =

∑
(<∑

x>.y′ .<a>) =
∑

(<
∑

x>.y).
2

Lemma A.4 Given a sequence x ∈ Rn, then
∑

(<0>.x) =
∑

x.

Proof We prove the lemma by induction on the length of x.

Case 1. Let x =<>. Then∑
(<0>.x) =

∑
(<0>.<>) =

∑
<0>= max(

∑
<> +0, 0) = 0 =

∑
<>=

∑
x.

137

Case 2. Let x = x′ .<x> and assume
∑

(<0>.x′) =
∑

x′ . Then∑
(<0>.x) =

∑
(<0>.x′ .<x>) = {by lemma A.3}

∑
(<

∑
(<0>.x′)>.<x>) =

{by induction}
∑

(<
∑

x′>.<x>) = {by lemma A.3}
∑

(x′ .<x>) =
∑

x.
2

Lemma A.5 Given x ∈ Rn and a, b ∈ R, then
∑

(<a>.x) ≤
∑

(.x) if a ≤ b.

Proof We prove this lemma by induction on the length of x.

Case 1. Let x =<>. Then∑
(<a>.x) =

∑
(<a>.<>) =

∑
<a>=

∑
(<>.<a>) = max(

∑
<> +a, 0) =

max(a, 0).

Similarly,
∑

(.x) = max(b, 0). Because we have a ≤ b, max(a, 0) ≤ max(b, 0).

Case 2. Let x = x′ .<x> and assume that
∑

(<a>.x′) ≤
∑

(.x′). Then∑
(<a>.x) =

∑
(<a>.x′ .<x>) = max(

∑
(<a>.x′) + x, 0) ≤by induction max(

∑
(

.x′) + x, 0) =
∑

(.x). Thus,
∑

(<a>.x) ≤
∑

(.x).
2

Lemma A.6 Given x ∈ Rn and a ∈ R, then
∑

(<a>.x) ≤ a +
∑

x if a ≥ 0.

Proof We prove this lemma by induction on the length of x.

Case 1. Let x =<>. Then∑
(<a>.x) =

∑
(<a>.<>) =

∑
<a>= max(

∑
<> +a, 0) = a ≤ a + 0 = a +

∑
<>=

a +
∑

x.

Case 2. Let x = x′ . and assume that
∑

(<a>.x′) ≤ a +
∑

x′ . Then∑
(<a>.x) =

∑
(<a>.x′ .) = max(

∑
(<a>.x′) + b, 0) ≤ {by induction}max(a +∑

x′ + b, 0) ≤ {because a ≥ 0}a + max(
∑

x′ + b, 0) = a +
∑

(x′ .) = a +
∑

x.
2

Lemma A.7 Let x ∈ Rn and a, b ∈ R. Then
∑

(x.<a>..y) ≤
∑

(x..<a>.y) if
a > 0 and b ≤ 0.

Proof From the definition of the sum over a sequence,
∑

(<
∑

x>.<a>.) =
max(

∑
(<

∑
x>.<a>) + b, 0) = max(max(

∑
x + a, 0) + b, 0). Since

∑
x ≥ 0 and

a > 0, we have
∑

(<
∑

x>.<a>.) = max(
∑

x + a + b, 0).

Using a similar reasoning, we get
∑

(<
∑

x>..<a>) = max(
∑

(<
∑

x>.) +
a, 0) = max(max(

∑
x + b, 0) + a, 0). Because b ≤ 0, we have two cases.

Case 1. If
∑

x+b ≤ 0, then
∑

(<
∑

x>..<a>) = max(a, 0) = a and
∑

x+b+a ≤
a. Thus, max(

∑
x + a + b, 0) ≤ max(a, 0). From this we have that

∑
(<

∑
x>.<a>.<

b>) ≤
∑

(<
∑

x>..<a>).

Case 2. If
∑

x + b > 0, then
∑

(<
∑

x>..<a>) = max(
∑

x + a + b, 0) =
∑

(<∑
x >.< a >.< b >).

138 Sequences of Elements

Hence, in any case
∑

(<
∑

x>.<a>.) ≤
∑

(<
∑

x>..<a>).

We now have
∑

(x.<a>..y) = {by lemma A.3}
∑

(<
∑

x>.<a>..y) =∑
(<

∑
(<

∑
x>.<a>.)>.y) = {by lemma A.5 and the result above}

∑
(<

∑
(<∑

x>..<a>)>.y) = {by lemma A.3}
∑

(x..<a>.y)
2

Lemma A.8 Let x ∈ Rn and a, b ∈ R. Then
∑

(x.<a>..y) =
∑

(x..<a>.y) if
a ≥ 0 and b ≥ 0 or a < 0 and b < 0.

Proof Case 1. Let a ≥ 0 and b ≥ 0. Using the same line of reasoning as in the
proof of lemma A.7,

∑
(<

∑
x>.<a>.) = max(

∑
x + a + b, 0) and

∑
(<

∑
x>.<

b>.<a>) = max(
∑

x + b + a, 0). Thus
∑

(x.<a>..y) =
∑

(x..<a>.y).

Case 2. Let a < 0 and b < 0. Then
∑

(<
∑

x>.<a>.) = max(max(
∑

x +
a, 0)+b, 0) and

∑
(<

∑
x>..<a>) = max(max(

∑
x+b, 0)+a, 0). We distinguish

4 subcases.

Subcase 1. Let
∑

x + a < 0 and
∑

x + b < 0. Then
∑

(<
∑

x>.<a>.) =
max(b, 0) = 0 and

∑
(<

∑
x>..<a>) = max(a, 0) = 0. Hence

∑
(x.<a>.

.y) =
∑

(x..<a>.y) by using lemma A.5 twice.

Subcase 2. Let
∑

x + a < 0 and
∑

x + b ≥ 0. Then
∑

(<
∑

x>.<a>.) =
max(b, 0) = 0 and

∑
(<

∑
x>..<a>) = max(

∑
x+b+a, 0). Because

∑
x+a < 0,

we have
∑

x + a + b < b < 0 and thus
∑

(<
∑

x>..<a>) = 0. Hence∑
(x.<a>..y) =

∑
(x..<a>.y) by using lemma A.5 twice.

Subcase 3. Let
∑

x + a ≥ 0 and
∑

x + b < 0. This subcase is similar to subcase 2.

Subcase 4. Let
∑

x + a ≥ 0 and
∑

x + b ≥ 0. This subcase is similar to subcase 1.
2

Theorem A.9 Let x ∈ Rn and let y ∈ Rn be any permutation of x such that for some m,
1 ≤ m ≤ n + 1, ti ≥ 0 for all 1 ≤ i < m and ti < 0 for all m ≤ i ≤ n. Then

∑
y ≤

∑
x′

for any permutation x
′

of x.

Proof Let x′ be any permutation of x. It is easy to see that y can be derived from x′

by repeatedly swapping two consecutive elements. Either two elements of the same
sign are swapped, keeping the sum invariant according to lemma A.8, or a negative
and a non-negative number are swapped such that the negative number is moved
to the right. In the latter case, the sum is decreased according to lemma A.7. Hence∑

y ≤
∑

x′ .
2

By theorem A.9 and definition 5.17, ↓x =
∑

y where y ∈ Rn is any permutation
of x such that for some m, with 1 ≤ m ≤ n + 1, ti ≥ 0 for all 1 ≤ i < m and ti < 0 for
all m ≤ i ≤ n. Notice that ↓x is uniquely defined in this way. Because if y and y′ are
both permutations satisfying the conditions above, then by theorem A.9,

∑
y ≤

∑
y′

and
∑

y′ ≤
∑

y.

139

Theorem A.10 Let x ∈ Rn and let y ∈ Rn be any permutation of x such that for some m,
1 ≤ m ≤ n + 1, ti < 0 for all 1 ≤ i < m and ti ≥ 0 for all m ≤ i ≤ n. Then

∑
y ≥

∑
x′

for any permutation x
′

of x.

Proof The proof of this theorem is similar to the proof of theorem A.9.
2

By theorem A.10 and definition 5.18, ↑x is uniquely given by
∑

y where y ∈ Rn

is any permutation of x such that for some m, with 1 ≤ m ≤ n + 1, ti < 0 for all
1 ≤ i < m and ti ≥ 0 for all m ≤ i ≤ n. Moreover, we have that ↓x ≤

∑
x ≤↑x.

Lemma A.11 Let x ∈ Rn be a sequence with ↓x = 0. Then for all a ≥ 0,
∑

(<a>.x) ≤
max(a,

∑
x).

Proof Let x1 and x2 be two sequences such that x = x1.x2. Then x1 is called a
prefix of x. From the definition of the sum over a sequence of numbers,

∑
(<a>

.x1) ≥ 0 for any prefix x1 of x. To prove the lemma, we distinguish two cases.

Case 1. Assume
∑

(<a>.x1) > 0 for every prefix x1 of x. Then the sum
∑

(<a>
.x) actually corresponds to the arithmetic sum and since ↓x = 0,

∑
(<a>.x) ≤ a ≤

max(a,
∑

x).

Case 2. Otherwise
∑

(<a>.x1) = 0 for some prefix x1 of x. By lemma A.5,
∑

(<
0>.x1) ≤

∑
(<a>.x1) = 0 and from lemma A.4,

∑
(<0>.x1) =

∑
x1. Hence

∑
x1 =

0.

But then
∑

(<a>.x) =
∑

(<a>.x1.x2) =
∑

(<
∑

(<a>.x1)>.x2) =
∑

(<0>.x2) =∑
(<

∑
x1>.x2) =

∑
(x1.x2) =

∑
x ≤ max(a,

∑
x).

2

Theorem A.12 Consider a timed labelled transition system T such that ↓C = 0 for every
simple cycle C in T . Then for any a ≥ 0 and any cycle Q in T , the following are true:

1. ↓Q = 0;

2.
∑

(<a>.Q) ≤ max(a,
∑
{↑C | C is a simple cycle in Q});

3. for any prefix Q′ of Q,
∑

(<a>.Q′) ≤ max(a,
∑
{↑C | C is a simple cycle in Q}) +∑

{↑C | C is a simple cycle in Q}.

Proof We prove the theorem by induction on the complexity of the cycle Q.

Case 1. Assume Q is a simple cycle. From the hypothesis of the theorem, ↓Q = 0,
thus 1 holds.

Further, by lemma A.11,
∑

(<a>.Q) ≤ max(a,
∑
Q) ≤ max(a, ↑Q) ≤ max(a,

∑
{↑

C | C is a simple cycle in Q}). Thus 2 holds.

By lemma A.6,
∑

(<a>.Q′) ≤ a +
∑
Q′ ≤ a+ ↑Q′ ≤ a+ ↑Q ≤ max(a, ↑Q)+ ↑Q ≤

max(a,
∑
{↑C | C is a simple cycle in Q}) +

∑
{↑C | C is a simple cycle in Q}. Hence 3

also holds.

140 Sequences of Elements

Case 2. Assume Q is a cycle in which the sequence of states from the transition
system is of the form ss1s2 . . . skssk+1 . . . sms with s 6= si for any 1 ≤ i ≤ m. Then Q
can be written as Q = Q1.Q2 where Q1 corresponds to path Q1 with state sequence
ss1s2 . . . sks and Q2 corresponds to path Q2 with state sequence ssk+1 . . . sms.

By construction, Q1 and Q2 both correspond to cycles. Thus, by induction, ↓Q1 = 0
and ↓Q2 = 0. But then we also have that ↓Q = 0 and hence 1 holds.

To show 2 holds, we have
∑

(<a>.Q) =
∑

(<a>.Q1.Q2) =
∑

(<
∑

(<a>.Q1)>
.Q2) ≤ {by induction}

∑
(<max(a,

∑
{↑C | C is a simple cycle in Q1})>.Q2) ≤

max(max(a,
∑
{↑C | C is a simple cycle in Q1}),

∑
{↑C | C is a simple cycle in Q2}) ≤

max(a,
∑
{↑C | C is a simple cycle in Q). Hence 2 also holds.

To prove 3, we need to observe that for a prefix Q′ of Q there are two cases: either
Q′ is a prefix of Q1 or there exists some u such that Q1.u = Q′ .

If Q′ is a prefix of Q1, then
∑

(<a>.Q′) ≤ {by induction}max(a,
∑
{↑

C | C is a simple cycle in Q1}) +
∑
{↑C | C is a simple cycle in Q1} ≤ max(a,

∑
{↑

C | C is a simple cycle in Q}) +
∑
{↑C | C is a simple cycle in Q}. Hence 3 holds.

If Q1.u = Q′ , then u is actually a prefix of Q2. Then
∑

(<a>.Q′) =
∑

(<
a>.Q1.u) = {by lemma A.3}

∑
(<

∑
(<a>.Q1)>.u) ≤ {by induction}

∑
(<

max(a,
∑
{↑C | C is a simple cycle in Q1})>.u) ≤ {by induction}max(max(a,

∑
{↑

C | C is a simple cycle in Q1}),
∑
{↑C | C is a simple cycle in Q2}) +

∑
{↑

C | C is a simple cycle in Q2} ≤ max(a,
∑
{↑C | C is a simple cycle in Q}) +

∑
{↑

C | C is a simple cycle in Q}. Hence 3 holds.

Case 3. Assume Q is a cycle in which the sequence of states from the transition
system is of the form:

st1 . . . t1t2 . . . t2t3 . . . tm . . . tms

where for any i 6= j, ti 6= tj 6= s, and tj . . . tj represents a sequence of zero or more
states that appear between the first and the last occurrence of tj in Q. If for any
1 ≤ j ≤ m we denote with tjsij

sij+1 . . . sij+nj
tj , then for any ik ≤ l ≤ ik + nk and

k < j, sl 6= tj .

Then Q = u1.Q1.u2.Q2 . . .Qm.um+1 where u1 corresponds to path u1 with state
sequence st1, for any 1 ≤ k ≤ m Qk corresponds to path Qk with state sequence
tksik

. . . sik+nk
tk, for any 1 < k ≤ m uk corresponds to path uk with state sequence

tk−1tk, and um+1 corresponds to path um+1 with state sequence tms. By construction,
Qk is a cycle and u is a simple cycle where u = u1.u2. . . . um+1. Hence, ↓Qk = 0 for
all 1 ≤ k ≤ m and ↓u = 0.

↓Q =↓(u1.Q1.u2.Q2 . . .Qm.um+1) =↓(u1.u2um+1.Q1.Q2 . . .Qm) =↓
(u.Q1.Q2 . . .Qm) ≤

∑
(<↓u>.<↓Q1>.<↓Q2> . . . <↓Qm>) ≤ {by lemma A.6} ↓

u+
∑

(<↓Q1>.<↓Q2> . . . <↓Qm>) ≤ . . . ≤↓u+ ↓Q1+ ↓Q2 + . . .+ ↓Qm = 0. Hence,
↓Q ≤ 0. By lemma A.2, ↓Q = 0, thus 1 holds.

To prove 2, by theorem A.10 we have that
∑

(<a>.Q) ≤
∑

(<a>
.u−.Q1.Q2 . . .Qm.u+) where u− represents the sequence of all the negative
numbers from u and u+ represents the sequence of all the non-negative numbers
from u. Thus,

∑
u− = 0 and

∑
u+ is the arithmetic sum of all the numbers in the

sequence. Moreover, we denote with Q′
the cycle with Q′ = Q1.Q2 . . .Qm.

141

Because by lemma A.6,
∑

(<a>.u−) ≤ a +
∑

u− = a, we have
∑

(<a>
.u−.Q1.Q2 . . .Qm.u+) = {by lemma A.3}

∑
(<

∑
(<a>.u−)>.Q1.Q2 . . .Qm.u+) ≤∑

(<a>.Q1.Q2 . . .Qm.u+) ≤ {by induction and by lemmas A.3and A.5}
∑

(<
max(a,

∑
{↑C | C is a simple cycle in Q1})>.Q2 . . .Qm.u+) ≤

∑
(<max(max(a,

∑
{↑

C | C is a simple cycle in Q1}),
∑
{↑C | C is a simple cycle in Q2})>.Q3 . . .Qm.u+) ≤∑

(<max(a,
∑
{↑C | C is a simple cycle in Q1Q2})>.Q3 . . .Qm.u+) ≤ . . . ≤∑

(<max(a,
∑
{↑C | C is a simple cycle in Q′})>.u+) ≤ {because

∑
u+ ≤↑

u and by lemma A.6}max(a,
∑
{↑C | C is a simple cycle in Q′})+ ↑u ≤ max(a,

∑
{↑

C | C is a simple cycle in Q′}) +
∑
{↑C | C is a simple cycle in u} ≤ max(a,

∑
{↑

C | C is a simple cycle in Q}). Hence 2 also holds.

To prove 3, if the prefix of Q is of the form Q′ = u1.Q1.u2.Q2 . . .Qk.u
′
k+1, the

proof is similar to the one for case 2. If the prefix of Q is of the form Q′ =
u1.Q1.u2.Q2 . . . uk.Q′

k, whereQ′

k is a prefix of the cycleQk, then
∑

(<a>.Q′) =
∑

(<
a>.u1.Q1.u2.Q2 . . . uk.Q′

k). Let u = u1 . . . uk. By shifting all the negative numbers
from u to the left and all the non-negative numbers to the right, we obtain by the-
orem A.10 that

∑
(<a>.Q′) ≤

∑
(<a>.u−.Q1.Q2 . . .Qk−1.Q

′
k.u+) where u− repre-

sents the sequence of negative numbers from u and u+, respectively, the sequence of
non-negative numbers.

Because by lemma A.6,
∑

(<a>.u−) ≤ a +
∑

u− = a, we have∑
(<a>.u−.Q1.Q2 . . .Qk−1.Q

′
k.u+) = {by lemma A.3}

∑
(<

∑
(<a>

.u−)>.Q1.Q2 . . .Qk−1.Q
′
k.u+) ≤

∑
(<a>.Q1.Q2 . . .Qk−1.Q

′
k.u+) ≤

{by induction}
∑

(<max(a,
∑
{↑C | C is a simple cycle in Q1Q2 . . .Qk−1})>

.Q′
k.u+) ≤

∑
(<max(max(a,

∑
{↑C | C is a simple cycle in Q1Q2 . . .Qk−1}),

∑
{↑

C | C is a simple cycle in Qk}) +
∑
{↑C | C is a simple cycle in Qk}>

.u+) ≤
∑

(<max(a,
∑
{↑C | C is a simple cycle in Q1Q2 . . .Qk}) +∑

{↑C | C is a simple cycle in Qk})>.u+) ≤ {because
∑

u+ ≤↑
u and by lemma A.6}max(a,

∑
{↑C | C is a simple cycle in Q1Q2 . . .Qk}) +∑

{↑C | C is a simple cycle in Qk}+ ↑u ≤ max(a,
∑
{↑

C | C is a simple cycle in Q}) +
∑
{↑C | C is a simple cycle in Qk}+ ↑u ≤

{simple cycle u does not occur inQk}max(a,
∑
{↑C | C is a simple cycle in Q})+

∑
{↑

C | C is a simple cycle in Qku} ≤ max(a,
∑
{↑C | C is a simple cycle in Q}) +

∑
{↑

C | C is a simple cycle in Q}. Hence 3 also holds.
2

142

Bibliography

[1] TUeDACS, TU/e Data Acquisition and Control System, 2006. http://www.
tuedacs.nl/.

[2] BrickOS, 2007. http://brickos.sourceforge.net/.

[3] Central Limit Theorem, 2007. http://en.wikipedia.org/wiki/
Central_limit_theorem.

[4] Extensible Markup Language, 2007. http://www.w3.org/XML/.

[5] RTAI - the RealTime Application Interface for Linux, 2007. https://www.
rtai.org/.

[6] The 20-sim Homepage, 2007. http://www.20sim.com/.

[7] TIMES Tool, 2007. http://www.timestool.com/.

[8] L. Abeni and G. Buttazzo. QoS Guarantee Using Probabilistic Deadlines. In:
Proceedings of the 11th IEEE Euromicro Conference on Real-Time Systems, pp. 242–
249. IEEE Computer Society Press, Los Alamitos, CA, USA, 1999.

[9] R. Alur and D.L. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126 (2): pp. 183–235, 1994.

[10] R. Alur and T.A. Henzinger. Logics and Models of Real-Time: A Survey.
In: Proceedings of the Real-Time: Theory in Practice, REX Workshop, pp. 74–106.
Springer, Dordrecht, NL, 1992.

[11] R. Alur and T.A. Henzinger. Real-Time Logics: Complexity and Expressive-
ness. Information and Computation, 104 (1): pp. 35–77, 1993.

[12] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES: a Tool
for Schedulability Analysis and Code Generation of Real-Time Systems. In:
Proceedings of the Formal Modeling and Analysis of Timed Systems Workshop, pp.
60–72. Springer, Dordrecht, NL, 2003.

[13] A. Atlas and A. Bestavros. Statistical Rate Monotonic Scheduling. In: Pro-
ceedings of the IEEE Real-Time Systems Symposium, pp. 123–132. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1998.

[14] J.C.M. Baeten. The Total Order Assumption. In: Proceedings of the First North
American Process Algebra Workshop, pp. 231–240. Springer, Dordrecht, NL, 1993.

http://www.tuedacs.nl/
http://www.tuedacs.nl/
http://brickos.sourceforge.net/
http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Central_limit_theorem
http://www.w3.org/XML/
https://www.rtai.org/
https://www.rtai.org/
http://www.20sim.com/
http://www.timestool.com/

144

[15] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: An Integrated Electronic System De-
sign Environment. Computer, 36 (4): pp. 45–52, 2003.

[16] P. Bellini, R. Mattolini, and P. Nesi. Temporal Logics for Real-Time System
Specification. ACM Computing Surveys, 32 (1): pp. 12–42, 2000.

[17] E. Bini, G.C. Buttazzo, and G. Buttazzo. A Hyperbolic Bound for the Rate
Monotonic Algorithm. In: Proceedings of the 13th IEEE Euromicro Conference on
Real-Time Systems, pp. 59–66. IEEE Computer Society Press, Los Alamitos, CA,
USA, 2001.

[18] G. Bosman. A Survey of Co-Design Ideas and Methodologies. Master’s thesis, Vrije
Universiteit Amsterdam, NL, 2003.

[19] B.H.M. Bukkems. Sheet Feedback Control Design in a Printer Paper Path. PhD
thesis, Eindhoven University of Technology, NL, 2007.

[20] G.C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Springer, Dordrecht, NL, 1997.

[21] G.C. Buttazzo, G. Lipari, and L. Abeni. Elastic Task Model for Adaptive Rate
Control. In: Proceedings of the 19th IEEE Real-Time Systems Symposium, pp. 286–
295. IEEE Computer Society Press, Los Alamitos, CA, USA, 1998.

[22] L. Chen. Timed Processes: Models, Axioms and Decidability. PhD thesis, Univer-
sity of Edinburgh, UK, 1993.

[23] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification of Finite-
State Concurrent Systems using Temporal Logic Specifications. ACM Transac-
tions on Programming Languages and Systems, 8 (2): pp. 244–263, 1986.

[24] M.B.G. Cloosterman, N. van de Wouw, W.P.M.H. Heemels, and H. Nijmeijer.
Robust Stability of Networked Control Systems with Time-Varying Network-
Induced Delays. In: Proceedings of the 45th IEEE conference on decision and control,
pp. 4980–4985. IEEE Control Systems Society Press, 2006.

[25] H. Corporaal. Embedded Systems Design. In: Progress. White Papers 2006, pp.
7–28. Utrecht, 2006.

[26] R. de Nicola and F. Vaandrager. Action versus State Based Logics for Transi-
tion Systems. In: Proceedings of the LITP Spring School on Theoretical Computer
Science on Semantics of Systems of Concurrent Processes, pp. 407–419. Springer,
Dordrecht, NL, 1990.

[27] M. de Wulf, L. Doyen, and J.F. Raskin. Systematic Implementation of Real-
Time Models. In: Proceedings of Formal Methods, pp. 139–156. Springer, Dor-
drecht, NL, 2005.

[28] B.P. Douglass. Real-Time Design Patterns: Robust Scalable Architecture for Real-
Time Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

145

[29] E.A. Emerson and E.M. Clarke. Using Branching Time Temporal Logic to Syn-
thesize Synchronization Skeletons. Science of Computer Programming, 2 (3): pp.
241–266, 1982.

[30] E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srinivasan. Quantitative Temporal
Reasoning. Real-Time Systems, 4 (4): pp. 331–352, 1992.

[31] J.A. Fisher and P. Faraboschi. Embedded Computing: A VLIW Approach to Ar-
chitecture, Compilers and Tools. Morgan Kaufmann, San Francisco, CA, USA,
2005.

[32] O. Florescu, M. de Hoon, J.P.M. Voeten, and H. Corporaal. Performance Mod-
elling and Analysis Using POOSL for an In-Car Navigation System. In: Pro-
ceedings of the 12th Annual Conference of the Advanced School for Computing and
Imaging, pp. 37–45, 2006.

[33] O. Florescu, M. de Hoon, J.P.M. Voeten, and H. Corporaal. Probabilistic Mod-
elling and Evaluation of Soft Real-Time Embedded Systems. In: Proceedings
of the Embedded Computer Systems: Architectures, Modeling, and Simulation, pp.
206–215. Springer, Dordrecht, NL, 2006.

[34] O. Florescu, J. Huang, J.P.M. Voeten, and H. Corporaal. Strengthening Property
Preservation in Concurrent Real-Time Systems. In: Proceedings of the 12th IEEE
International Conference on Embedded and Real-Time Computing Systems and Ap-
plications, pp. 106–109. IEEE Computer Society Press, Los Alamitos, CA, USA,
2006.

[35] O. Florescu, J.P.M. Voeten, and H. Corporaal. Property-Preserving Synthesis
for Unified Control- and Data-Oriented Models. In: Proceedings of the Forum on
Specification & Design Languages 2005 (FDL’05), pp. 531–542, 2005.

[36] O. Florescu, J.P.M. Voeten, and H. Corporaal. Applications of Specification and
Design Languages for SoCs, Chapter Property-Preservation Synthesis for Uni-
fied Control- and Data-Oriented Models, pp. 247–262. Springer, Dordrecht,
NL, 2006.

[37] O. Florescu, J.P.M. Voeten, J. Huang, and H. Corporaal. Error Estimation in
Model-Driven Development for Real-Time Software. In: Proceedings of the Fo-
rum on Specification and Design Languages, pp. 228–239, 2004.

[38] O. Florescu, J.P.M. Voeten, M. Verhoef, and H. Corporaal. Reusing Real-Time
Systems Design Experience Through Modelling Patterns. In: Proceedings of the
Forum on Specification and Design Languages 2006, pp. 375–380, 2006.

[39] O. Florescu, J.P.M. Voeten, M. Verhoef, and H. Corporaal. Advances in De-
sign and Specification Languages for Embedded Systems, Chapter Reusing Systems
Design Experience Through Modelling Patterns, pp. 329–348. Springer, Dor-
drecht, NL, 2007.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

146

[41] M.G.W. Geilen. Formal Techniques for Verification of Complex Real-Time Systems.
PhD thesis, Eindhoven University of Technology, NL, 2002.

[42] S.V. Gheorghita, T. Basten, and H. Corporaal. Application Scenarios in
Streaming-Oriented Embedded System Design. In: Proceedings of the Interna-
tional Symposium on System-on-Chip, pp. 175–178. IEEE Press, Piscataway, NJ,
2006.

[43] S.V. Gheorghita, S. Stuijk, T. Basten, and H. Corporaal. Automatic Scenario
Detection for Improved WCET Estimation. In: Proceedings of the 42nd Design
Automation Conference, pp. 101–104. ACM Press, New York, NY, USA, 2005.

[44] M. Gries. Methods for Evaluating and Covering the Design Space During
Early Design Development. Integration, the VLSI Journal, 38 (2): pp. 131–183,
2004.

[45] M. Gries, J. Janneck, and M. Naedele. Reusing Design Experience for Petri Nets
Through Patterns. In: Proceedings of High Performance Computing, pp. 453–458.
Springer, Dordrecht, NL, 1999.

[46] M. Hendriks and M. Verhoef. Timed Automata Based Analysis of Embedded
System Architectures. In: Proceedings of Workshop on Parallel and Distributed
Real-Time Systems, 2006.

[47] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Elsevier Science Publishers Ltd, Essex, UK, 2007.

[48] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: A Time-Triggered Lan-
guage for Embedded Programming. In: Proceedings of First International Work-
shop on Embedded Software, pp. 166–184. Springer, Dordrecht, NL, 2001.

[49] T.A. Henzinger, Z. Manna, and A. Pnueli. An Interleaving Model for Real
Time. In: Proceedings of the 5th Jerusalem Conference on Information Technology,
pp. 717–730, 1990.

[50] J. Hooman, K. Hillel, I. Ober, A. Votintseva, and Y. Yushtein. Supporting UML-
Based Development of Embedded Systems by Formal Techniques. Interna-
tional Journal of Software and Systems Modeling. To appear.

[51] J. Huang. Predictability in Real-Time Software Design. PhD thesis, Eindhoven
University of Technology, NL, 2005.

[52] J. Huang, J.P.M. Voeten, M. Groothuis, J. Broenink, and H. Corporaal. A Model-
Driven Design Approach for Mechatronic Systems. In: Proceedings of the IEEE
International Conference on Application of Concurrency to System Design, pp. 127–
136. IEEE Computer Society Press, Los Alamitos, CA, USA, 2007.

[53] J. Huang, J.P.M. Voeten, A. Ventevogel, and L.J. van Bokhoven. Platform-
Independent Design for Embedded Real-Time Systems. In: Proceedings of the
Forum on Specification and Design Languages, 2003.

[54] Open SystemC Initiative. SystemC 2.1 Language Reference Manual. 2005.

147

[55] G. Kahn. The Semantics of Simple Language for Parallel Programming. In:
Proceedings of IFIP Congress, pp. 471–475, 1974.

[56] H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of
California at Los Angeles, USA, 1968.

[57] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. An Approach
for Quantitative Analysis of Application-Specific Dataflow Architectures. In:
Proceedings of the IEEE International Conference on Application-Specific Systems,
Architectures and Processors, pp. 338–349. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1997.

[58] J. Kim and K.G. Shin. Execution Time Analysis of Communicating Tasks in
Distributed Systems. IEEE Transactions on Computers, 45 (5): pp. 572–579, 1996.

[59] R. Koymans. Specifying Real-Time Properties with Metric Temporal Logic.
Real-Time Systems, 2 (4): pp. 255–299, 1990.

[60] S. Kripke. Semantical Considerations on Modal Logic. Acta Philosophica Fen-
nica, 16 (1963): pp. 83–94, 1963.

[61] J.P. Lehoczky. Real-Time Queueing Theory. In: Proceedings of the 17th IEEE
Real-Time Systems Symposium, pp. 186–195. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1996.

[62] H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation.
ACM SIGACT News, 29 (3): pp. 62–78, 1998.

[63] Y.T.S. Li and S. Malik. Performance Analysis of Real-Time Embedded Software.
Springer, Dordrecht, NL, 1999.

[64] P. Lieverse, P. van der Wolf, K. Vissers, and E. Deprettere. A Methodology for
Architecture Exploration of Heterogeneous Signal Processing Systems. VLSI
Signal Processing Systems, 29 (3): pp. 197–207, 2001.

[65] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming in a
Hard Real Time Environment. Journal of the Association for Computing Machin-
ery, 20 (1): pp. 46–61, 1973.

[66] S. Manolache, P. Eles, and Z. Peng. Schedulability Analysis of Applications
with Stochastic Task Execution Times. ACM Transactions on Embedded Comput-
ing Systems, 3 (4): pp. 706–735, 2004.

[67] Mechanical Engineering Department, Eindhoven University of Technology.
Dynamics and Control Technology, 2007. http://www.dct.tue.nl/.

[68] R. Milner. Communication and Concurrency. Prentice Hall International Series
in Computer Science. Prentice Hall, Englewood Cliffs NJ, 1989.

[69] M. Müller-Olm, D.A. Schmidt, and B. Steffen. Model-Checking: A Tutorial In-
troduction. In: Proceedings of the 6th International Symposium on Static Analysis,
pp. 330–354. Springer, Dordrecht, NL, 1999.

http://www.dct.tue.nl/

148

[70] X. Nicollin and J. Sifakis. An Overview and Synthesis on Timed Process Al-
gebras. In: Proceedings of the 3rd Workshop on Computer-Aided Verification, pp.
376–398. Springer, Dordrecht, NL, 1991.

[71] X. Nicollin and J. Sifakis. The Algebra of Timed Processes ATP: Theory and
Application. Information and Computation, 114 (1): pp. 131–178, 1994.

[72] L. Noonan and C. Flanagan. An Effective Network Processor Design Frame-
work: Using Multi-Objective Evolutionary Algorithms and Object Oriented
Techniques to Optimise the Intel IXP1200 Network Processor. In: Proceedings
of the 2006 ACM/IEEE Symposium on Architecture for Networking and Communi-
cations Systems, pp. 103–112. ACM Press, New York, NY, USA, 2006.

[73] Océ. VarioPrint 2090, 2007. http://www.oce.com/nl/Products/
Scanners/Office+documents/VP2090/default.htm.

[74] OMG. Unified Modeling Language (UML) - Version 1.5. OMG document
formal/2003-03-01, Needham MA, 2003.

[75] OMG. UML Profile for Schedulability, Performance, and Time Specification - Version
1.1. OMG document formal/2005-01-02, Needham MA, 2005.

[76] OMG. Systems Modelling Language (SysML) Specification, 2007. http://
www.sysml.org/specs.htm.

[77] A.D. Pimentel, L.O. Hertzberger, P. Lieverse, P. van der Wolf, and E.F. Depret-
tere. Exploring Embedded-Systems Architectures with Artemis. Computer, 34
(11): pp. 57–63, 2001.

[78] POOSL, 2007. http://www.es.ele.tue.nl/poosl.

[79] A. Prior. Past, Present and Future. Oxford University Press, Oxford, UK, 1967.

[80] E.M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory and
Practice. Prentice Hall College Div, 1977.

[81] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley Longman Ltd, Essex, UK, 1998.

[82] J.H. Sandee. Event-Driven Control in Theory and Practice. Trade-offs in Software
and Control Performance. PhD thesis, Eindhoven University of Technology,
2006.

[83] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, Massachusetts Institute of Technology, USA, 1995.

[84] B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Modeling. John
Wiley & Sons, Inc., New York NY, 1994.

[85] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vencentelli. Addressing the System-on-a-Chip Interconnect
Woes Through Communication-Based Design. In: Proceedings of the 38th Design
Automation Conference, pp. 667–672. ACM Press, New York, NY, USA, 2001.

http://www.oce.com/nl/Products/Scanners/Office+documents/VP2090/default.htm
http://www.oce.com/nl/Products/Scanners/Office+documents/VP2090/default.htm
http://www.sysml.org/specs.htm
http://www.sysml.org/specs.htm
http://www.es.ele.tue.nl/poosl

149

[86] J.A. Stankovic. Strategic Directions in Real-Time and Embedded Systems.
ACM Computing Surveys, 28 (4): pp. 751–763, 1996.

[87] Telelogic. Rhapsody, 2007. http://www.ilogix.com/sublevel.aspx?
id=53.

[88] Telelogic. TAU Generation 2, 2007. http://www.telelogic.com/
products/tau/g2/.

[89] The Mathworks. The Matlab/Simulink Homepage, 2007. http://www.
mathworks.com.

[90] B.D. Theelen. Performance Modelling for System-Level Design. PhD thesis, Eind-
hoven University of Technology, 2004.

[91] B.D. Theelen, O. Florescu, M.C.W. Geilen, J. Huang, P. van der Putten, and
J.P.M. Voeten. Software/Hardware Engineering with the Parallel Object-
Oriented Specification Language. In: Proceedings of the Fifth International Con-
ference on Formal Methods and Models for Codesign, pp. 139–148. IEEE Computer
Society Press, Los Alamitos, CA, USA, 2007.

[92] R. Thus. Generation of Models Based on Modelling Patterns. Master’s thesis, Eind-
hoven University of Technology, NL, 2007.

[93] L.J. van Bokhoven. Constructive Tool Design for Formal Languages: From Seman-
tics to Executing Models. PhD thesis, Eindhoven University of Technology, NL,
2002.

[94] L.J. van Bokhoven, J.P.M. Voeten, and M.C.W. Geilen. Software Synthesis for
System Level Design Using Process Execution Trees. In: Proceedings of the 25th
Euromicro Conference, pp. 463–467, 1999.

[95] R. van de Molengraft, M. Steinbuch, and B. de Kraker. Integrating Experimen-
tation into Control Courses. IEEE Control Systems Magazine, 25 (1): pp. 40–44,
2005.

[96] P. van den Bosch, M. Verhoef, G. Muller, and O. Florescu. Modeling of Hard-
ware Software Performance of High-Tech Systems. In: Proceedings of the Seven-
teenth International Symposium of the International Council on Systems Engineer-
ing, 2007.

[97] P.H.A. van der Putten and J.P.M. Voeten. Specification of Reactive Hard-
ware/Software Systems. PhD thesis, Eindhoven University of Technology, NL,
1997.

[98] A.J.C. van Gemund. Symbolic Performance Modeling of Parallel Systems.
IEEE Transactions on Parallel Distributed Systems, 14 (2): pp. 154–165, 2003.

[99] F.N. van Wijk, J.P.M. Voeten, and A.J.W.M. ten Berg. System Specification &
Design Languages, Chapter An Abstract Modelling Approach Towards System-
Level Design-Space Exploration, pp. 267–282. Springer, Dordrecht NL, 2003.

[100] J.P.M. Voeten. Performance Evaluation with Temporal Rewards. Journal of
Performance Evaluation, 50 (2/3): pp. 189–218, 2002.

http://www.ilogix.com/sublevel.aspx?id=53
http://www.ilogix.com/sublevel.aspx?id=53
http://www.telelogic.com/products/tau/g2/
http://www.telelogic.com/products/tau/g2/
http://www.mathworks.com
http://www.mathworks.com

150

[101] J.P.M. Voeten, M. Geilen, L. van Bokhoven, P. van der Putten, and M. Stevens.
A Probabilistic Real-Time Calculus for Performance Evaluation. Proceedings of
the 11th European Simulation Symposium, pp. 608–617, 1999.

[102] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System Architecture Evalu-
ation Using Modular Performance Analysis: A Case Study. Internation Journal
on Software Tools for Technology Transfer, 8 (6): pp. 649–667, 2006.

[103] G. Witvoet. The Design of an Experimental Paper Path Setup. Technical Report
DCT-2005-141, Eindhoven University of Technology, NL, 2005.

[104] D.H.H. Yoon. A Survey of System Design Methodologies. In: Proceedings of the
International Conference and Workshop on Engineering of Computer-Based Systems,
pp. 392–396. IEEE Computer Society Press, Los Alamitos, CA, USA, 1997.

Samenvatting

Voorspelbaar ontwerpen van tijdkritische systemen

De complexiteit van ingebedde tijdkritische systemen heeft onderzoek naar
raamwerken en technieken voor het structureren en automatiseren van hun ont-
werpproces gemotiveerd. Zulke raamwerken zijn voornamelijk van belang voor
ingebedde en veiligheid-kritieke systemen die moeilijk correct te ontwerpen zijn bin-
nen een beperkte tijd tot introductie op de markt. Ontwerpmethodologiën reduceren
het risico van dure ontwerpherhalingen door het construeren van modellen te onder-
steunen. Software/Hardware Engineering (SHE) is een algemeen toepasbare sys-
teemniveau ontwerpmethodologie die analyse van zowel functionele correctheids-
alsook prestatieëigenschappen mogelijk maakt. Door SHE te gebruiken wordt een
ontwerper geholpen in het construeren van modellen en het toepassen van de ana-
lysetechnieken op basis van verscheidene richtlijnen en modelleringspatronen. Een
belangrijke eigenschap van SHE is dat het gebaseerd is op formele methoden welke
garanderen dat de verkregen analyseresultaten ondubbelzinnig zijn. SHE bevat ook
richtlijnen en technieken voor automatische synthese van controlesoftware voor tijd-
kritische systemen. Ook dit is gebaseerd op formele methoden om te zorgen dat
eigenschappen van een model (met inbegrip van tijdsgerelateerde eigenschappen)
behouden blijven tijdens de softwarerealisatie. Dit proefschrift draagt zowel bij aan
de modelleer- en analysefase van het ontwerp alsook aan de correcte synthese naar
een efficiënte softwareimplementatie van een systeem.

Om de juistheid en prestatie van ingebedde tijdkritische systemen te kunnen
garanderen, is een vroege evaluatie van hun eigenschappen noodzakelijk. Om dit
te bereiken, hebben we een aantal taalonafhankelijke modelleringspatronen ont-
wikkeld die een eenvoudige opbouw van modellen voor ontwerpruimteëxploratie
mogelijk maken. De modelleringspatronen bestrijken typische componenten voor
tijdkritische systemen zoals deze worden beschouwd in klassieke scheduling theo-
rie zoals periodieke en aperiodieke taken, middelen voor berekeningen en com-
municatie, generatoren van inputgebeurtenissen en verzamelaars voor outputge-
beurtenissen. We hebben tevens een patroongebaseerde systeembeschrijvingstaal
(PDL) ontworpen die kan worden gebruikt om een tijdkritisch systeem te beschrij-
ven in termen van de benodigde patronen en de waarden van hun parameters. Deze
taal is makkelijk te gebruiken en vereist geen kennis van welke modelleringstaal
dan ook die typisch voor de analyse van tijdkritische systemen worden gebruikt.
Het belangrijkste voordeel van deze taal is de mogelijkheid tot automatische gene-
ratie van modellen in verschillende modelleringstalen. Als voorbeeld presenteren
we een implementatie van de modelleringspatronen in de algemeen toepasbare
formele modelleringstaal genaamd Parallel Object-Oriented Specification Language

152

(POOSL), welke aan de SHE methodologie ten grondslag ligt, samen met een gereed-
schap dat een PDL beschrijving vertaalt in een POOSL model. Als resultaat van de
expressiviteit van POOSL zijn de gegenereerde modellen geschikt voor zowel hard
als soft tijdkritische systemen aangezien ze analyse van het systeemgedrag zowel in
het slechtste geval alsook in een gemiddelde situatie toelaten, wat de juiste dimen-
sionering van het eindproduct garandeert.

Om de implementatie van een parallel tijdkritisch systeem vanuit een model op
"correcte" wijze uit te voeren, is het belangrijk om te begrijpen wat de relatie is tussen
de eigenschappen van het model en die van z’n bijbehorende implementatie. In
dit proefschrift presenteren we een mechanisme, waarvan mathematisch wordt be-
wezen dat het correct is, om de afwijking in het tijdgedrag tussen een model en z’n
overeenkomstige implementatie te bepalen. Op basis daarvan kunnen we de eigen-
schappen van het gerealiseerde systeem voorspellen. Verder hebben we een me-
triek gedefiniëerd die het behoud van waarneembare eigenschappen tussen model
en realisatie uitdrukt. We stellen een methode voor ter bepaling van een bovengrens
voor deze metriek om zo de waarneembare eigenschappen van een realisatie te kun-
nen voorspellen op basis van het model. Tevens laten we zien dat deze bovengrens
verlaagd kan worden door prioriteit te geven aan het uitvoeren van waarneembare
acties. Op basis van dit resultaat hebben we een bestaande methode voor modelsyn-
these uitgebreid met een sterker behoud van eigenschappen.

Door middel van een praktijkvoorbeeld tonen we hoe de bijdragen van dit proef-
schrift toegepast kunnen worden voor de modelgedreven ontwerpmethode van het
tijdkritisch systeem dat de controle van het doorvoeren van papier in een printer
bewerkstelligt. Met dit voorbeeld laten we zien hoe een systeem kan worden gemo-
delleerd door gebruik te maken van de modelleringspatronen, hoe z’n tijdkritische
eigenschappen kunnen worden afgeleid en geanalyseerd en hoe voorspellingen over
de eigenschappen van de realisatie kunnen worden gedaan. De synthese van het
systeem brengt een implementatie tot stand die deze eigenschappen behoudt en een
correct lopend systeem garandeert.

Acknowledgements

First of all, I would like to thank Prof. Henk Corporaal for giving me the opportunity
of doing my PhD in the Electronic Systems group. Henk is one of the most knowl-
edgeable persons in the field and he provided me with careful guidance along these
four years of research. The many brainstorming sessions that we had in this time
helped me to advance in my research and to improve the results I obtained.

I would like to give my special thanks to Jeroen Voeten for all his support, advice
and suggestions that he gave me in these years. In the beginning of my research, he
helped me in finding my research direction. Along these four years of my PhD study,
we had many interesting discussions and he has always encouraged me in applying
the ideas that I had. Next to being a good supervisor, he was also a pleasant person
to talk to and he gave me nice hints regarding travelling around.

I am grateful to Prof. Ralph Otten, the head of the Electronic Systems group,
and to Marja and Rian, our group secretaries, for their kindness and help that they
have always given me. I would like to thank my former colleagues in the group
for the nice moments we shared: Akash, Amir, Andreas, Arno, Bart Theelen, Bart
Mesman, Benny, Călin, Dominik, Hamed, Jose, Jurjen, Lech, Marc, Mark, Mathias,
Patrick, Peter, Philip, Piet, Sander, Simona, Srinath, Szymon and Twan. I would
like to mention Jinfeng particularly and thank him for the very interesting technical
discussions that we had.

I would also like to thank my former colleagues in the Boderc project: Adriaan,
Anget, Bauke, Björn, Maurice, Erik, Evert, Frans, Gerrit, Heico, Hennie, Jan, Jan-
Mathijs, Jozef, Lou, Marcel, Marieke, Peter van den Bosch, Peter Visser and Zhouri.
They have been nice colleagues and I enjoyed the time spent with them and the
interesting discussions that we had these years. I would particularly like to thank
Marieke for the enjoyable girls-talking lunches that we had together. Special thanks
go to Björn, Jeroen de Best, René and Gerard for their help with the setup of my
case study and for providing me the software package that I needed in order to
implement the case study.

The members of the committee are specially appreciated for reading my thesis,
giving good comments and participating in my defence session.

I wish to thank my friends here in the Netherlands, especially Ramona, with
whom I shared cheerful moments and whose company made life more beautiful.
Moreover, instant messaging and VoIP shortened the distance to all my friends from
home and around the world who always had a smile for me.

My very warm thanks go to my parents who have supported and encouraged
me along the long and difficult path of my studies. They have always believed in me

154

and encouraged me to pursue my dreams. I owe them this achievement.

The last but not the least, my wholehearted thanks go to my beloved husband
Vali who has been by my side in both good and bad times. He both rejoiced with
me at the happy moments, as well as encouraged me to go ahead and pass over the
difficult times. We gave each other the strength and the support to go through this
most challenging period of our life together. Without him, this book would not exist.
With all my love, I dedicate this book to Vali.

Eindhoven, December 2007

Once you have travelled, the voyage never ends, but is played out over and over
again in the quietest chambers, that the mind can never break off from the journey.

Pat Conroy (1945 -)

About the Author

Oana Florescu was born in Constanţa, Romania, on De-
cember 28th, 1978. She graduated from the Computer Sci-
ence and Engineering Department within “Politehnica”
University of Bucharest, in July 2002, as the third out
of about 200 students. She carried out her graduation
project at Motorola DSP R&D Center Romania during a
six-month scholarship. The research of her project was
on analysis of mapping applications on heterogeneous
multi-processor architectures. In July 2003, she graduated
from the Advanced Studies program at the same depart-
ment as the first of her year.

Since September 2002, in parallel with her studies, she has also been working
within the compilers team at Motorola DSP R&D Center Romania. In 2003, she
has been offered a PhD candidate position at Eindhoven University of Technology,
Netherlands. Since September 2003 until September 2007, Oana pursued her PhD
degree in the Electronic Systems group at the Electrical Engineering Department.
The focus of her research was on predictable design of real-time systems within the
Boderc (Beyond the Ordinary: Design of Embedded Real-Time Control) project co-
ordinated by the Embedded Systems Institute. In the summer of 2006, she went
for a three-month internship at IBM Research Laboratory in Zürich, Switzerland. In
October 2007, she returned to Zürich to join Google Inc.

Oana’s personal interests are reading, travelling, dancing, especially Latin
dances, and music, in particular singing. Since September 2005 until July 2007, she
has been a member of the Eindhoven Students Music Association, performing clas-
sical music in the Vokollage choir.

List of Refereed Publications

Book Chapters

• O. Florescu, J.P.M. Voeten, M.H.G. Verhoef and H. Corporaal. Advances in De-
sign and Specification Languages for Embedded Systems, Chapter Reusing Real-
Time Systems Design Experience Through Modelling Patterns, pp 329-348.
Springer, Dordrecht, NL, 2007.

• P. van den Bosch, O. Florescu and M.H.G. Verhoef. Boderc: Model-Based Design
of High-Tech Systems, Chapter Modeling of Performance, pp 103-116. Embed-
ded Systems Institute, Eindhoven, NL, 2006.

156

• O. Florescu, J.P.M. Voeten and H. Corporaal. Boderc: Model-Based Design of
High-Tech Systems, Chapter Model-Driven Design of Real-Time Systems, pp
163-172. Embedded Systems Institute, Eindhoven, NL, 2006.

• O. Florescu, J.P.M. Voeten and H. Corporaal. Applications of Specification and
Design Languages for SoCs, Chapter Property-Preservation Synthesis for Uni-
fied Control- and Data-Oriented Models, pp 247-262. Springer, Dordrecht, NL,
2006.

• J. Huang, J.P.M. Voeten, O. Florescu, P.H.A. van der Putten and H. Corporaal.
Advances in design and specification languages for SoCs, Chapter Predictability in
Real-Time System Development, pp 123-140. Springer, Dordrecht, NL, 2005.

Conferences

• P. van den Bosch, M.H.G. Verhoef, G. Muller and O. Florescu. Modeling of
Hardware-Software Performance of High-Tech Systems. In: Proceedings of the Seven-
teenth International Symposium of the International Council on Systems Engineering,
2007.

• B. Theelen, O. Florescu, M. Geilen, J. Huang, P. van der Putten and J. Voeten.
Software/Hardware Engineering with the Parallel Object-Oriented Specification Lan-
guage. In: Proceedings of the Fifth ACM-IEEE International Conference on Formal
Methods and Models for Codesign, pp 139-148, IEEE Computer Society Press, Los
Alamitos, CA, USA, 2007.

• O. Florescu, J.P.M. Voeten, M.H.G. Verhoef and H. Corporaal. Reusing Real-
Time Systems Design Experience Through Modelling Patterns. In: Proceedings of
the Forum on Specification and Design Languages, pp 375-380, 2006. Best Paper
Award.

• O. Florescu, J. Huang, J.P.M. Voeten and H. Corporaal. Strengthening Property
Preservation in Concurrent Real-Time Systems. In: Proceedings of the 12th IEEE
International Conference on Embedded and Real-Time Computing Systems and Ap-
plications, pp 106-109, IEEE Computer Society Press, Los Alamitos, CA, USA,
2006.

• O. Florescu, M. de Hoon, J.P.M. Voeten and H. Corporaal. Probabilistic Mod-
elling and Evaluation of Soft Real-Time Embedded Systems. In: Proceedings of the
Embedded Computer Systems: Architectures, Modelling, and Simulation, pp 206-
215, Springer, Dordrecht, NL, 2006.

• O. Florescu, M. de Hoon, J.P.M. Voeten and H. Corporaal. Performance Mod-
elling and Analysis Using POOSL for an In-Car Navigation System. In: Proceedings
of the 12th Annual Conference of the Advanced School for Computing and Imaging,
pp 37-45, 2006.

• O. Florescu, J.P.M. Voeten and H. Corporaal. Property-Preservation Synthesis
for Unified Control- and Data-Oriented Models. In: Proceedings of the Forum on
Specification and Design Languages, pp 531-542, 2005.

157

• O. Florescu, J.P.M. Voeten and H. Corporaal. A Unified Model for Analysis of Real-
Time Properties. In: Proceedings of the 1st International Symposium on Leveraging
Applications of Formal Methods, pp 220-227, 2004.

• O. Florescu, J.P.M. Voeten and J. Huang and H. Corporaal. Error Estimation in
Model-Driven Development for Real-Time Software. In: Proceedings of the Forum on
Specification and Design Languages, pp 228-239, 2004.

• S.V. Gheorghita, W.F. Wong and O. Florescu. EPIC − Adaptive EPIC Bridge. In:
Proceedings of the 14th International Conference on Control Systems and Computer
Science, vol. 2, pp 92-97, 2003.

Theses

• O. Florescu. Compiler Optimisations for the PowerPC Architecture. Advanced
Studies Graduation Thesis, “Politehnica” University of Bucharest, RO, 2003.

• O. Florescu. DSP-MCU Bridge, Graduation Thesis, “Politehnica” University of
Bucharest, RO, 2002.

158

	Abstract
	Introduction
	Embedded Real-Time Systems Design
	Software/Hardware Engineering
	Modelling and Analysis Phase
	Synthesis Phase
	Related Research

	Problem Statement and Research Contributions
	Thesis outline

	Educational Example
	Motion Control System Description
	High-Level System Model
	Adding Details to the System Model
	A More Detailed Model of the System
	Synthesis Model of the System
	Summary

	Pattern-Based Modelling of Real-Time Systems
	Modelling Approaches for Real-Time Systems
	Related Research
	The Library of Modelling Patterns
	UML Profile for POOSL Modelling Language
	POOSL Modelling Patterns Library
	Application Model
	Platform Model
	Environment Model
	Mapping Model

	Model Generation Based on Patterns
	Summary

	Analysis Approach for Dimensioning of Real-Time Systems
	Model Analysis
	Case Study: A Distributed In-Car Radio Navigation System
	The Model of the In-Car Radio Navigation System
	Analysis of the System Behaviour

	Case Study: The Low-Level Control of a Printer Paper Path
	The Model of the Paper Path Low-Level Control
	Platform Dimensioning of the Paper Path Low-Level Control

	Summary

	Proximity Between Model and Realisation
	Preliminaries
	Representation of System Behaviour
	POOSL Model Synthesis Strategy
	Determining the Proximity Between Model and Realisation
	Definition of Distance Between Paths
	Calculating the Distance Between Model and Realisation

	Execution Time Accuracy Impact on Distance
	Finite Time Computation of Distance
	Preliminaries
	Finite Extended Timed Labelled Transition System

	Algorithm for Computing the Distance Between Model and Realisation
	Simulation-Based Estimation of the Distance Between Model and Realisation
	Summary

	Predictable Real-Time Systems Synthesis
	Real-Time Properties
	Timed State Sequences
	Interpretation of MTL Logic
	Preservation of Properties

	Distance Reduction from Model to Realisation
	New Proximity Metric Between Model and Realisation
	Reduction of a Timed Labelled Transition System
	Changing Action Ordering

	Improved POOSL Model Synthesis Strategy
	Experimental Results
	Related Research
	Summary

	Case Study
	Printer Paper Path System Description
	Analysis Model of the Paper Path
	Predicting Properties of the Paper Path
	Synthesis of the Paper Path Model
	Summary

	Conclusions and Outlook
	Summary of Research Contributions
	Future Research

	Sequences of Elements
	Bibliography
	Samenvatting
	Acknowledgements
	About the Author

