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Hitting Times and the Running Maximum of Markovian

Growth Collapse Processes

Andreas Löpker∗ and Wolfgang Stadje†

May 11, 2009

Abstract

We consider a Markovian growth collapse process on the state space E = [0,∞)
which evolves as follows. Between random downward jumps the process increases
with slope one. Both the jump intensity and the jump sizes depend on the current
state of the process. We are interested in the behavior of the first hitting time
τy = inf{t ≥ 0|Xt = y} as y becomes large and the growth of the maximum process
Mt = sup{Xs|0 ≤ s ≤ t} as t→∞. We consider the recursive sequence of equations
Amn = mn−1, m0 ≡ 1, where A is the extended generator of the MGCP, and show
that the solution sequence (which is essentially unique and can be given in integral
form) is related to the moments of τy. The Laplace transform of τy can be expressed
in closed form (in terms of an integral involving a certain kernel) in a similar way.
We derive asymptotic results for the running maximum: (i) if m1(y) is of rapid
variation, we have Mt/m

−1(t) d→ 1; (ii) if m1(y) is of regular variation with index
a ∈ (0,∞) and the MGCP is ergodic, then Mt/m

−1(t) d→ Za, where Zα has a
Frechet distribution. We present several examples.

1 Introduction and known results

A Markovian growth collapse process (MGCP) is a Markov process (Xt)t≥0 on the state
space E = [0,∞) with no upward jumps and piecewise deterministic right-continuous
paths. The process Xt increases linearly with slope one between the jumps. Hence it
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can be written in the form

Xt = X0 + t−
Nt∑
k=1

Bk, t ≥ 0

where (Nt)t≥0 is a state-dependent counting process and the downward jump sizesBk > 0
also depend on the current state. MGCPs can be encountered in a large variety of
applications, of which we mention growth population models, risk processes, neuron
firing, and window sizes in transmission control protocols, and have been studied in
[14, 8, 7, 28]. They form a special class of piecewise deterministic Markov processes
[11, 10, 6].

We are interested in the behavior of the first hitting time

τy = inf{t ≥ 0|Xt = y}

of the level y ≥ 0 and in the running maximum process

Mt = sup{Xs|0 ≤ s ≤ t}.

Note that Xτy = Xτy− = y almost surely. The main objective of this paper is to evaluate
the Laplace transform Ee−sτy and the moments of τy for the introduced growth collapse
model, in particular the function m(y) = Eτy, and to derive a quite general result for
the convergence of Mt.

More formally, let T1, T2, . . . denote the times of the successive collapses (jumps) of the
MGCP and let λ(·) be the jump intensity of the process, so that the probability of a
jump during [t, t+ h] given that Xt = x is λ(x)h+ o(h) as h→ 0. The probability of a
jump from x into the set [0, y] is given by µx(y) where µx is the distribution function of
a probability measure on [0, x) for each x ∈ E . We assume that

• λ : E → [0,∞) is locally integrable and
∫∞
0 λ(u) du =∞ so that P(T1 =∞) = 0.

• E(Nt) <∞ for all t ≥ 0.

Let Px and Ex denote conditional probability and expectation given that X0 = x. It is
easy to see that under Px the first hitting time of level y > x has the same distribution as
τy− τ ′x under P0, where τ ′x is independent of τy and has the same distribution as τx. The
process Xt can also be viewed as a regenerative process if we define cycles as the times
between successive visits to some fixed recurrent state z ∈ [0,∞). Let Ck denote the
length of the kth cycle, where the first cycle starts at time C0 = τz. Let Sk =

∑k
i=0Ci

and let K(t) denote the current cycle at time t. Then SK(τy)−1 ≤ τy = SK(τy)−1 + τy,
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where τy is distributed as the first hitting time of level y, starting from z and given that
the process stays above z. Renyi’s theorem states that if µC = E(C1) <∞ then

P(K(τy) = 1)
µC

SK(τy)−1
d→ Z , y →∞,

where d→ denotes weak convergence and Z is an exponential random variable with unit
mean (see the extended version given as Theorem 2.4 in [17]). Let ξi = max{Xt|t ∈
[Si, Si+1]} denote the ith cycle maximum and G(y) = P(ξ1 ≤ y) = 1−P(K(τy) = 1) the
common distribution function of the ξi. If τy is small compared to SK(τy)−1, then we
can expect that

1−G(y)
µC

τy
d→ Z , y →∞. (1)

The fact that this is indeed true if Xt is ergodic is known as Keilson’s theorem [18].
Propositions 2 and 3 in [8] imply that for an MGCP Eτny < ∞ for all y ≥ 0 and all
n ∈ N and that Xt is ergodic if lim supx→∞ λ(x)

∫ x
0 µx(y) dy > 1. Moreover, it can be

shown (see e.g. [3], Proposition 4.1) that the convergence in (1) also holds in expectation
so that

m(y) ∼ µC
1−G(y)

, y →∞. (2)

Consequently, any asymptotic result for the function m is at the same time a result for
the tail of G. It then follows from (1) and (2) that in the ergodic case

τy
m(y)

d→ Z , y →∞. (3)

Clearly Mt ≥ y if and only if τy ≤ t, so that various probabilistic properties of τy can
be expressed in terms of properties of Mt, in particular via the relation P(τy ≤ t) =
P(Mt ≥ y). Clearly maxi≤K(t)−1 ξi ≤ Mt ≤ maxi≤K(t) ξi, and since K(t) ≈ t/µC it is
to be expected that P(Mt ≤ y) is close to G(y)t/µC . Indeed, it is shown in [26] that
supy≥0

∣∣P(Mt ≤ y)−G(y)t/µC
∣∣→ 0 as t→∞. Hence classical extreme value theory for

i.i.d. variables can be applied to find possible limits of the (properly normalized) process
Mt. The following results are known for general regenerative processes (see [26, 2]). Let
~G(t) = inf{x : 1 − G(x) ≤ 1/t}. A function f : [0,∞) → [0,∞) is called regularly
varying if

f (λy)
f (y)

→ λa , y →∞,

for all λ > 0 and we then write f ∈ Ra. Suppose that Xt is ergodic. Then, if 1−G ∈ R−a
for some a > 0, we have

Mt

~G(t/µC)
d→ Za , t→∞, (4)
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where P(Za ≤ x) = e−x
−a

(Frechet distribution). If 1 − G(y) = exp
(
−
∫ y
0 [1/δ(u)]

)
du

for some absolutely continuous function δ > 0 having density δ′(y)→ 0 as y →∞, then

Mt − ~G(t/µC)

δ(~G(t/µC))
d→ ZG , t→∞,

where P(ZG ≤ x) = e−e
−x

(Gumbel distribution).

In this paper we supplement the above known results by the following contributions. In
Section 2 we consider the recursive sequence of equations Amn = mn−1, m0 ≡ 1, where
A is the extended generator of the MGCP, and show that the solution sequence (which
is essentially unique and can be given in integral form) is related to the moments of τy:
we have for example Eτy = m1(y) and Eτ2

y = 2(m1(y)2−m2(y)). The Laplace transform
of τy can be expressed in closed form (in terms of an integral involving a certain kernel)
in a similar way. We also prove the alternative series expansion

1/Ee−sτy =
∞∑
n=0

mn(x)sn, s, x ≥ 0. (5)

Without assuming ergodicity of the MGCP it can be shown (using (5)) that the relation
m2(y) = o(m1(y)) as y → ∞ implies (3). In Section 3 we derive asymptotic results for
the running maximum: (i) if m1(y) is of rapid variation, we have Mt/m

−1(t) d→ 1; (ii)
if m1(y) is of regular variation with index a ∈ (0,∞) and the MGCP is ergodic, then
Mt/m

−1(t) d→ Za. In Section 4 we present several examples. In the case of separable
jump measures (i.e., µx(y) = ν(y)/ν(x) for some function ν(x)) we give various explicit
results on τy. Moreover, we prove that if ν is regularly varying with index b and xλ(x)

tends to some limit a ∈ (b + 1,∞] as x → ∞, then Mt/m
−1(t) d→ Za if a < ∞ and

Mt/m
−1(t) d→ Za if a = ∞. In applications λ(x) is usually nondecreasing, leading to

a = ∞; a typical case is λ(x) = λxβ for some β > 0. If ν(x) = x, a collapse causes
the cut-off of a uniform fraction of the current value, which can be modeled by the
multiplication by a random variable that is uniform on (0, 1). We also present several
closed-form expressions in the general case of jumps generated by multiplication by (0, 1)-
valued random variables. Finally, the results on regularly and rapidly varying functions
that are used throughout are collected in an appendix.

We note that instead of studying models with linear increase, we could also study MGCPs
Yt with a more general deterministic inter-jump behavior, say dYt = r(Yt) dt, where r(x)
is a Lipschitz continuous function. It turns out that we can easily transform Xt into Yt
and vice versa by means of the transformation Xt = θ(Yt), where θ(x) =

∫ x
z 1/r(u) du

measures the time the process Yt needs to increase from 0 to x. It then follows indeed
that dXt = (dθ(Yt)/dt)(dYt/dt) = 1 in between jumps. If τ̂y and M̂t denote the first
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hitting time and the maximum process of Yt, then it is easy to see that τy = τ̂θ−1(y) and
Mt = θ(M̂t).

2 Integral equations and series representations

Our derivations require the notion of the extended generator of the Markov process
Xt. A measurable function f : [0,∞) → [0,∞) belongs to the domain of the extended
generator if the process

Mf
t = f(Xt)−

∫ t

0
g(Xs) ds, t ≥ 0 (6)

is a martingale for some measurable function g : [0,∞) → [0,∞). In this case we write
Af(x) = g(x) and call A the extended generator. Note that A can be multi-valued.

[11] gives broad sufficient conditions for a function to be a member of the domain. Let
Mabs denote the set of absolutely continuous functions f : [0,∞) → [0,∞) with locally
bounded non-negative Lebesgue density f ′(x). If f ∈ Mabs, then f is non-decreasing
and since Xt ≤ t a.s. we have f(Xt) ≤ f(t) a.s., yielding the bound

E
Nt∑
n=0

|f(XTi−)− f(XTi)| ≤ 2f(t)ENt <∞

for all t ≥ 0. It follows from [11], Theorem (26.14), that the functions in Mabs belong to
the domain of the extended generator and that Af(x) is given by

Af(x) = f ′(x)− λ(x)
∫ x

0
(f(x)− f(y)) dµx(y)

which, after applying Fubini’s theorem, can be written as

Af(x) = f ′(x)− λ(x)
∫ x

0
f ′(y)µx(y) dy. (7)

Note that the actual domain of the extended generator may be much larger than Mabs,
but Mabs suffices here, since the relevant functions that appear throughout this paper
belong to Mabs.

In the sequel we need the kernel Ks(x, y) = λ(x)µx(y) + s, where x ≥ y ≥ 0, s ≥ 0, and
its iterates K1

s (x, y) = Ks(x, y) and

Kn
s (x, y) =

∫ x

y
Ks(x, u)Kn−1

s (u, y) du, n ≥ 2.
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It is straightforward to show that

Kn
s (x, y) ≤ (λ(x) + s)

( ∫ x
y (λ(u) + s) du

)n−1

(n− 1)!
(8)

(cf. Lemma 1 in [27]). Hence, the resolvent kernel

Rs(x, y) = 1 +
∞∑
k=1

Kk
s (x, y)

is well-defined and converges for all s ≥ 0 and all x ≥ y ≥ 0. Moreover, it follows from
(8) that

Rs(x, y) ≤ 1 + (λ(x) + s) · exp
( ∫ x

y
(λ(u) + s) du

)
.

Theorem 1. 1. Let m0(x) = 1. For all n ∈ N there exists a unique solution
mn ∈ Mabs of the equation Amn(x) = mn−1(x) with initial condition mn(0) = 0.
Moreover,

mn(y) =
∫ y

0

(
mn−1(x) +

∫ x

0
R0(x, u)mn−1(u) du

)
dx, n ≥ 2. (9)

2. We have Eτy = m1(y), so that m(y) = m1(y), and Var τy = m1(y)2 − 2m2(y).

3. For all s ≥ 0 there is a unique solution ψ(s, ·) in Mabs of the equation Aψ(s, x) =
sψ(s, x) with initial condition ψ(s, 0) = 1. Moreover,

ψ(s, y) = 1 + s

∫ y

0

(
1 +

∫ x

0
Rs(x, u) du

)
dx. (10)

4. The Laplace transform of τy is given by Ee−sτy = 1/ψ(s, y).

Proof. A generator equation Af(x) = z(x) with z ∈Mabs can be written as an integral
equation for the density f ′, namely

f ′(x) = z(x) +
∫ x

0
K(x, y)f ′(y) dy, (11)

where K(x, y) =def K0(x, y) = λ(x)µx(y). Similarly, the equation

Af(x) = sf(x), f(0) = 1,

is equivalent to

f ′(x) = sf(x) +
∫ x

0
K(x, y)f ′(y) dy = s+

∫ x

0
Ks(x, y)f ′(y) dy. (12)
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It is well-known that a solution of (11) is given by

f ′(x) = z(x) +
∫ x

0
R0(x, y)z(y) dy. (13)

and that (12) is solved by

f ′(x) = s
(

1 +
∫ x

0
Rs(x, y) dy

)
. (14)

Note that certainly f ∈Mabs, since f is absolutely continuous and f ′ is locally bounded
and non-negative. The homogeneous equation

h′(x) =
∫ x

0
Ks(x, y)h′(y) dy,

is solved in the set of absolutely continuous functions only by constant functions h. This
is immediate from the fact that iteration yields

|h′(x)| =
∣∣∣ ∫ x

0
Kn
s (x, y)h′(y) dy

∣∣∣
≤ (λ(x) + s)

∫ x

0

( ∫ x
y (λ(u) + s) du

)n−1

(n− 1)!
|h′(y)| dy

for all n ∈ N and hence h′(x) = 0. Consequently, solutions of (11) and (12) are unique
in Mabs, once we specify f(0).

Since m1(x) = 1, it follows that the process U1,t = m1(Xt) − t is a martingale. Now,
since Eτy < ∞ then on {τy > t} we have |U1,t| ≤ t + m1(Xτy) ≤ t + m1(y) = O(t), so
that

E (U1,t; τy > t) = E (U1,t|τy > t) o(1/t)→ 0 (15)

as t → ∞. This justifies optional stopping for the martingale U1,t at time τy (see [15])
and it follows from m1(0) = 0 that m1(y) = m(y) = Eτy.

The integrated process It =
∫ t
0 s d (m(Xs)− s) is also a martingale (see again [15]) and

it follows by partial integration that

It = tm(Xt)− 1
2 t

2 −m2(Xt) +Dt,

where Dt = m2(Xt)−
∫ t
0 m(Xs) ds is the Dynkin martingale of the function m2. Hence

the difference
U2,t = tm(Xt)− 1

2 t
2 −m2(Xt)
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of It and Dt is a martingale, too. Optional stopping, which can be justified as in (15),
leads to

Var τy = Eτ2
y − (Eτy)2 = m(y)2 − 2m2(y),

showing part 2. We now turn to the function ψ. Since Aψ(s, x) = sψ(s, x) with ψ(0, x) =
1, we have

ψ′(s, x) = s+
∫ x

0
Ks(x, y)ψ′(s, y) dy,

which is tantamount to (12). Following the discussion above we conclude that a unique
solution in Mabs exists and ψ(s, ·) is given in terms of the associated resolvent kernel as
in (10), so that part 3 is proved.

It is known that the process e−stψ(s,Xt) is a martingale (see e.g. [15], p.175, or [25]).
Optional stopping at τy, which can be justified as in [19], leads to Ee−sτyψ(s, y) =
ψ(s, 0) = 1, so that part 4 is proved.

Remark. For n = 1 one can prove the equation Am(x) = 1 by an alternative proba-
bilistic reasoning, avoiding the use of martingales. The equation to be solved becomes

m′(y) = 1 + λ(y)
∫ y

0
m′(u)µy(u) du. (16)

Consider the first jump time T1. If T1 ≥ y then τy = y, while if T1 < y then τy is equal
to T1 plus the hitting time of y, starting at XT1 . Hence,

τy
d= y1{T1≥y} +

(
T1 + τ ′y − τ ′′XT1

)
1{T1<y},

where the families (τ ′y)y≥0 and (τ ′′y )y≥0 are independent of each other, both are indepen-

dent of (Xt)t≥0, and τ ′′y
d= τ ′y

d= τy for all y ≥ 0. It follows that

m(y) = y +
E(T1 − τ ′′XT1

;T1 < y)

P(T1 ≥ y)
.

Conditioning on T1 yields

m(y) = y +

∫ y
0

(
t−

∫ t
0 m(u)dµt(u)

)
P(T1 ∈ dt)

P(T1 ≥ y)
.

Using
d

dy
P(T1 ≤ y) = λ(y)P(T1 ≥ y), we obtain (16) after a short calculation.
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Theorem 2. We have the power series representation

ψ(s, x) =
∞∑
n=0

mn(x)sn (17)

for all s ≥ 0 and all x ≥ 0.

Proof. To show (17), we first prove by induction that mn(y) ≤ m(y)n/n!, which is
certainly true for n = 1. Moreover, if the assumption holds for n− 1, then

mn(y) =
∫ y

0

(
mn−1(x) +

∫ x

0
R0(x, u)mn−1(u) du

)
dx

≤
∫ y

0
mn−1(x)m′(x) dx ≤

∫ y

0

m(x)n−1

(n− 1)!
m′(x) dx =

m(x)n

n!
.

It follows that the series in (17) converges for all s ≥ 0 and all x ≥ 0. The function

h(x) =def

∞∑
n=0

snmn(x) ≤ esm(x)

is in Mabs and hk(x) =def
∑k

n=0 s
nmn(x) converges to h(x) pointwise as k →∞. Since

Ahk(x) =
k∑

n=1

snmn−1(x) = s

k−1∑
n=0

snmn(x) = shk(x)− skmk(x),

it follows that |Ahk(x)− shk(x)| ≤ (sm(x))k/k!. In particular, Ahk(x) − shk(x) tends
to zero as k → ∞. Hence, Ah(x) = sh(x) and, by the uniqueness property, ψ(s, x) =
h(x).

The following corollary is needed in the next section.

Corollary 1. The function

s 7→ ψ(s, y)− 1
s

is increasing for all y ∈ [0,∞) and in particular ψ(s, y) ≥ 1 + sm(y).

Proof.
ψ(s, y)− 1

s
=
∑∞

n=1mn(y)sn−1.

The next theorem gives a sufficient criterion for τy/m(y) to be asymptotically exponential
without the assumption of ergodicity.

Theorem 3. If m2(y) = o(m(y)2), then
τy
m(y)

d→ Z as y →∞.
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Proof. We carry out an induction proof to show that mn(y) = o(m(y)n) for all n ≥ 2.
We have m2(y) = o(m(y)2) by assumption. If the assertion is true for n− 1, we obtain,
using the representation (9) and monotonicity of the functions mn(y),

mn(y) =
∫ y

0

(
mn−1(x) +

∫ x

0
R0(x, u)mn−1(u) du

)
dx

≤ mn−1(y)
∫ y

0

(
1 +

∫ x

0
R0(x, u) du

)
dx

= o(mn−1(y))m(y) = o(m(y)n).

It now follows from Theorem 1 that

lim
y→∞

Ee−sτy/m(y) = lim
y→∞

ψ(s/m(y), y)−1 = lim
y→∞

( ∞∑
n=0

sn
mn(y)
m(y)n

)−1
. (18)

Since supymn(y)/m(y)n ≤ 1/n! and limy→∞mn(y)/m(y)n = 0 for all n ≥ 2, we can use
Lebesgue’s convergence theorem and conclude that the right-hand side of (18) tends to
1/(1 + s), as y →∞, i.e., to the Laplace transform of Z. This completes the proof.

3 Asymptotics of the running maximum

We now consider the asymptotic behavior ofMt in two cases: (i)m(x) is regularly varying
and (ii) m(x) is rapidly varying. Assuming ergodicity, case (i) is a straightforward
consequence of known results. Case (ii) is more complicated. Let m−1(t) be the inverse
function of the monotone increasing function m(x).

Theorem 4. If m ∈ Ra for some a ∈ (0,∞) and Xt is ergodic, then

Mt/m
−1(t) d→ Za , t→∞. (19)

Proof. Recall that ~G(t) denotes the generalized inverse function of t 7→ 1 − G(1/t).
According to relation (2) we have [1−G(~G(y))]m(~G(y))→ µC and hence m(~G(y)) ∼ µcy
or

m(y) ∼ µc ~G−1(y) , y →∞.

Consequently, as m ∈ Ra, we have ~G−1 ∈ Ra. It follows that ~G ∈ R1/a and, from
the definition of ~G(t), that 1 − G ∈ R−a. Hence the conditions for convergence in
(4) are fulfilled. Since ~G−1 is increasing and unbounded, a result in [12] implies that
~G(t) ∼ m−1(µct), yielding Mt/m

−1(t) d→ Za as t→∞.
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Theorem 5. If m ∈ R∞, then

E
(( Mt

m−1(t)
)n)→ 1 (20)

for all n ≥ 0. In particular

Mt/m
−1(t) d→ 1 , t→∞. (21)

Proof. We define µn(t) = EMn
t and show that(

m−1(
1
s

)
)−n ∫ ∞

0
e−st dµn(t)→ 1 , s→ 0 (22)

for every n ∈ N. By Karamata’s Tauberian theorem, (22) implies that E(Mn
t ) ∼

(m−1(t))n as t → ∞, and hence we have proved (20). Since the constant moment
sequence obviously satisfies Carleman’s criterion, (19) follows immediately.

To prove (22), let y = m−1(1/s). Then

y−n
∫ ∞

0
e−st dµn(t) = y−n

∫ ∞
0

e−st
d

dt

(
EMn

t

)
dt

= y−n
∫ ∞

0
e−st

d

dt

(∫ ∞
0

nun−1P(Mt > u) du
)
dt

= y−n
∫ ∞

0
nun−1

∫ ∞
0

e−stP(τu ∈ dt) du

= y−n
∫ ∞

0

nun−1

ψ(s, u)
du

= J∞0 (y),

where we define

Jba(y) =def

∫ b

a

nun−1

ψ(1/m(y), yu)
du.

We show that J∞0 (y)→ 1 by dividing the range of integration in three parts:

(A) J∞w (y)→ 0 for any w > 1:
According to Corollary 1 we have ψ(s, y) ≥ 1 + sm(y). Hence,

ψ(
1

m(y)
, uy) ≥ 1 +

m(uy)
m(y)

= 1 +
r(uy)
r(y)

un+1,

where r(x) =def x
n+1m(x) is again rapidly varying. The convergence r(uy)/r(y) → ∞

is uniform for u ≥ w > 1 (see (34) in the Appendix). In particular, for all K > 0 we
ultimately have infu≥w r(uy)/r(y) ≥ K for large y, yielding

J∞w (y) ≤
∫ ∞
w

nun−1

1 + [r(uy)/r(y)]un+1
du ≤

∫ ∞
w

nun−1

1 +Kun+1
du

11



for w sufficiently large, so that J∞w (y) tends to zero as y →∞.

(B) Jw1 (y)→ 0 for any w > 1:
This is clear, since the integrand tends to zero and is uniformly bounded by nwn−1 on
the bounded interval [1, w].

(C) J1
0 (y)→ 1:

Let u ∈ (0, 1) and choose an ε > 0; then it follows from (18) that

lim
y→∞

ψ(
s

m(y)
, yu) = lim

y→∞
ψ(

s

m(yu)
m(yu)
m(y)

, yu) ≤ lim
y→∞

ψ(
ε

m(yu)
, yu) = 1 + ε.

On the other hand, again using Corollary 1,

lim
y→∞

ψ(
s

m(y)
, yu) ≥ lim

y→∞

(
1 + s

m(yu)
m(y)

)
= 1,

and hence J1
0 (y)→

∫ 1
0 nu

n−1 du = 1.

4 Applications to special cases

We have seen that m(y) = E(τy) serves as a normalizing function in (3) (in the ergodic
case) and in Theorem 3, while its inverse m−1(t) plays a similar role in Theorems 4
and 5. Therefore explicit formulas for these functions are of special interest. In several
examples one can compute m(y) via the unique solution in Mabs of the integral equation
given in Theorem 1 for n = 1, which reads as

m′(y) = 1 + λ(y)
∫ y

0
m′(u)µy(u) du. (23)

Similarly we can solve the equations

ψ′(s, y) = sψ(s, y) + λ(y)
∫ y

0
ψ′(s, u)µy(u) du (24)

m′2(y) = m(y) + λ(y)
∫ y

0
m′2(u)µy(u) du (25)

in Mabs to find Ee−sτy = 1/ψ(s, y) and Var τy = m1(y)2− 2m2(y). Let us consider a few
examples.

4.1 Separable jump measures

Suppose that the jump measures µx are given in the form

µx(y) =
ν(y)
ν(x)

, x ≥ y ≥ 0

12



for some non-decreasing function ν : [0,∞)→ [0,∞) (defining 0/0 as 0). We give some
examples at the end of this subsection.

Theorem 6. For an MGCP with µx(y) = ν(x)/ν(y) as above and general intensity
function λ(x), the mean of the first hitting time τy is given in closed form by

m(y) = y +
∫ y

0

λ(x)
ν(x)

∫ x

0
ν(w) exp

( ∫ x

w
λ(v) dv

)
dw dx. (26)

The variance of τy can be computed from (26) and

m2(y) =
∫ y

0

[
m(x) +

λ(x)
ν(x)

∫ x

0
m(w)ν(w) exp

( ∫ x

w
λ(v) dv

)
dw
]
dx. (27)

Proof. Let A ∈Mabs be arbitrary and define z(x) =
∫ x
0 z
′(u) du by setting

z′(y) =def A(y) +
λ(y)
ν(y)

∫ y

0
A(w)ν(w) exp

( ∫ y

w
λ(v) dv

)
dw.

A straightforward calculation yields∫ y

0
ν(u)(z′(u)−A(u)) du =

∫ y

0
λ(u)

∫ u

0
A(w)ν(w) exp

( ∫ u

w
λ(v) dv

)
dw du

=
∫ y

0
A(w)ν(w)

∫ y

w
λ(u) exp

( ∫ u

w
λ(v) dv

)
du dw

=
∫ y

0
A(w)ν(w)

(
exp
( ∫ y

w
λ(v) dv

)
− 1
)
dw

=
∫ y

0
A(w)ν(w)exp

( ∫ y

w
λ(v) dv

)
dw −

∫ y

0
A(u)ν(u) du

=
ν(y)
λ(y)

(z′(y)−A(y))−
∫ y

0
A(u)ν(u) du.

Hence,

A(y) = z′(y)− λ(y)
∫ y

0
z′(u)

ν(u)
ν(y)

du.

Letting A(y) = 1 and A(y) = m(y) we obtain equations (26) and (27), respectively.

Regarding the Laplace transform of τy, the required solution to Af(x) = sf(x) does not
seem easy to find. If all functions involved are smooth enough we can transform the
generator equation into

∂2

∂x2
ψ(s, x)− (s+ ξ(x) + λ(x))ψ′(s, x) + sξ(x)ψ(s, x) = 0, ψ(0, x) = 1, (28)

13



where

ξ(x) =
λ′(x)
λ(x)

− ν ′(x)
ν(x)

.

Fixing s and defining h(x) by ψ(s, x) = eh(x) we arrive at the Riccati equation

h′2(x) + h′′(x)− (s+ ξ(x) + λ(x))h′(x) + sξ(x) = 0, h′(0) = s,

which is difficult to solve in general.

Now we turn to the running maximum. For regularly varying ν(x) we have the following
result.

Theorem 7. Suppose that
lim
x→∞

xλ(x) = a ∈ (1,∞]

and that ν ∈ Rb for some b < a− 1.

(a) If a <∞, then

Mt/m
−1(t) d→ Za−b , t→∞.

(b) If a =∞, then Mt/m
−1(t) d→ 1 as t→∞.

Proof. We have b ≥ 0 because ν(x) is nondecreasing. By Proposition 3 in [8], Xt is
ergodic if lim supx→∞ λ(x)

∫ x
0 µx(y) dy > 1. In our case, for a <∞ this lim sup is given

by

lim sup
x→∞

λ(x)
∫ x

0

ν(y)
ν(x)

dy = lim sup
x→∞

a

xν(x)

∫ x

0
ν(y) dy

= lim sup
x→∞

a

xν(x)
xν(x)
b+ 1

=
a

b+ 1
> 1

(where in we have used Theorem 8, part 1, in the Appendix for the second equality) and
for a =∞ it is infinite. By Theorems 4 and 5, it remains to show that m ∈ Ra−b. This
is done in the following lemma (in which no inequality between a and b is assumed).

Lemma 1. Suppose that ν ∈ Rb for some b < ∞ and that xλ(x) → a ∈ (0,∞]. Then
m ∈ R1∨(a−b).

Proof. If xλ(x)→ a, then λ ∈ R−1 and it follows that

x 7→ λ(x)
ν(x)

exp
( ∫ x

0
λ(s) ds

)
∈ Ra−1−b.
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If b− a ≥ −1, then by Theorem 9 in the Appendix

x 7→
λ(x)exp

( ∫ x
0 λ(s) ds

)
ν(x)

∫ x

0
ν(u)exp

(
−
∫ u

0
λ(s) ds

)
du ∈ R0,

yielding m ∈ R1. If b− a < −1, then
∫∞
0 ν(u)exp

(
−
∫ u
0 λ(s) ds

)
du <∞ and

x 7→
λ(x)exp

( ∫ x
0 λ(s) ds

)
ν(x)

∫ x

0
ν(u)exp

(
−
∫ u

0
λ(s) ds

)
du ∈ R−1−b+a

and m ∈ Ra−b. Note that a − b > 1 implies that y/m(y) → 0. If a = ∞, then
x 7→ ν(x)exp

(
−
∫ x
0 λ(s) ds

)
is slowly varying and x 7→

∫ x
0 ν(u)exp

(
−
∫ u
0 λ(s) ds

)
du is

in R1. Thus m ∈ R∞.

Examples. (A) Renewal age processes. If ν(x) ≡ 1, then µx(y) ≡ 1, i.e., the process
restarts at zero after each jump. This is the age process from renewal theory, where the
renewal epochs have a distribution with density x 7→ λ(x) exp

(
−
∫ x
0 λ(u) du

)
, x ≥ 0.

Note that τy is the first time at which the current lifetime reaches y. Equations (26) and
(27) yield after some further calculations

m(y) =
∫ y

0
exp
( ∫ y

w
λ(v) dv

)
dw

m2(y) =
∫ y

0
(y − w)exp

( ∫ y

w
λ(v) dv

)
dw.

The Laplace transform of τy is given by

Ee−sτy =
(

1 + s

∫ y

0
exp
( ∫ y

u
(λ(w) + s) dw

)
du
)−1

.

This follows immediately from (24) which reads as

ψ′(s, y) = sψ(s, y) + λ(y)(ψ(s, y)− 1).

The case where λ(x) ≡ λ is constant has been discussed in [20].

(B) Coupled intensity rate and jump measure. Let ν(x) = λ(x) for all x ≥ 0. Then we
obtain from (26)

m(y) =
∫ y

0
exp
( ∫ x

0
λ(w) dw

)
dx.

Moreover, it follows from (28) that

∂2

∂x2
ψ(s, x) = (s+ λ(x))ψ′(s, x)
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and thus ψ′(s, x) = s exp
(
sx+

∫ x
0 λ(w) dw

)
. Hence

ψ(s, y) = 1 + s

∫ y

0
exp
(
sx+

∫ x

0
λ(s) ds

)
dx

and thus

Ee−sτy =
(

1 + s

∫ y

0
exp
(
sx+

∫ x

0
λ(s) ds

)
dx

)−1

.

This generalizes the result for the particular case λ(x) = λx and µx(y) = y/x in [8].

4.2 MGCPs with multiplicative jumps

Consider the case where at each jump time the current level of the process is multiplied
by an independent random variable Q having a distribution function F whose support
is contained in [0, 1) (i.e., F (1−) = 1). Due to their importance in applications these
MGCPs have been frequently studied [23, 24, 21, 9, 16, 22, 4, 13, 1]. Clearly µy(u) =
F (u/y) and if we assume that λ(x) ≡ λ, then

m′(y) = 1 + λ

∫ y

0
m′(u)F (u/y) du, (29)

ψ′(s, y) = sψ(s, y) + λ

∫ y

0
ψ′(s, u)F (u/y) du. (30)

Suppose that m(·) and ψ(s, ·) can be expanded into power series: m(x) =
∑∞

k=1 akx
k

and ψ(s, x) =
∑∞

k=1 bkx
k. Then

1 =
∞∑
k=1

akkx
k−1 − λ

∞∑
k=1

θkx
k =

∞∑
k=1

(ak+1(k + 1)− λθkak)xk,

where θk = 1− EQk. Hence,

ak+1 = λ
θk

k + 1
ak , a1 = m′(0) = 1

yielding

m(x) =
1
λ

∞∑
k=1

∏k−1
i=1 θi
k!

(λx)k. (31)

Similarly, the power series of ψ(s, x) satisfies

s

∞∑
k=1

bkx
k =

∞∑
k=1

(bk+1(k + 1)− λθkbk)xk
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which means that

bk+1 =
λθk + s

k + 1
bk , b0 = ψ(s, 0) = 1

and therefore leads to

ψ(s, x) = 1 + s

∞∑
k=1

∏k−1
i=1 (λθi + s)

k!
xk. (32)

The two power series in (31) and (32) obviously have infinite radius of convergence and
satisfy the defining equations in Theorem 1, so that they are indeed the desired solutions.

A more comprehensive treatment of multiplicative MGCPs, including the asymptotic
behavior of m, is given in [21].

Two special cases. (a) The collapse consists of a multiplication by a deterministic
constant q ∈ [0, 1), i.e., F (x) = 1{x≥q}. Then θa = 1−qa and, using the q-series symbols
(q)k =

∏k
i=1(1− qi) and (c; q)k =

∏k−1
i=0 (1− cqi), we obtain

m(x) =
1
λ

∞∑
k=1

(q)k−1

k!
(λx)k

and

ψ(s, x) = 1 +
∞∑
k=1

(λ+ s)k( λ
λ+s ; q)k

k!
xk.

(b) Q = U1/α for some α > 0 and a uniform random variable U on (0, 1). Then

m(x) = αλ−1

∫ λx

0
u−αeu

∫ u

0
tα−1e−t dt du

and

ψ(s, x) = H(α
s

s+ λ
, α; (λ+ s)x).

where H(a, b;x) =
∑∞

k=0

(a)k
(b)k

xk

k!
is a standard hypergeometric function.

4.3 The Cramér-Lundberg model in risk theory

The classical risk-reserve process in the Cramér-Lundberg model is given by

Rt = t−
Nt∑
k=1

Uk
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where the claims Uk are independent, have a common distribution function B, and Nt

is a Poisson process with intensity λ which is independent of the Uk. Let Rt = infs≤tRs
and consider the reflected process

Xt = Rt −Rt.

Xt can be interpreted as a risk-reserve process, where successive ruins are ignored. It is
easy to see that Xt is an MGCP with λ(x) = λ and µy(u) = 1−B(y − u) and

m′(y) = 1 + λ

∫ y

0
m′(u)(1−B(y − u)) du = 1 + (m′ ∗Bλ)(y),

where Bλ(x) = λ
∫ x
0 (1 − B(u)) du and ∗ denotes convolution. In what follows we write

µn =
∫∞
0 un dB(u).

The above renewal equation has the unique solution

m′(x) =
∞∑
k=0

Bk∗
λ (x).

Therefore the asymptotic behavior of m(y) can be deduced from known results in renewal
theory.

Theorem 8. 1. If λµ1 = 1 and µ2 <∞, then m(y) ∼ 1
λµ2
· y2.

2. If 1 < λµ1 <∞ or λµ1 =∞ and
∫∞
0 e−δx dBλ(x) = 1 for some real δ, then

m(y) ∼ eγy

γ2
∫∞
0 ue−γu dBλ(u)

,

where γ > 0 is the solution of
∫∞
0 e−γx dBλ(x) = 1. In this case we have

Mt/m
−1(t) d→ 1.

3. If λµ1 < 1, then m(y) ∼ y

1− λµ1
. In addition, if there is a solution β of the

equation
∫∞
0 eβx dBλ(x) = 1 with

∫∞
0 ueβu dBλ(u) <∞, then | y

1− λµ1
−m(y)| tends to

a constant as y →∞.

Proof. The three cases follow from Propositions 6.1 and 7.2 and Theorem 7.1 in [3].
Note that∫ ∞

0
un dBλ(u) = λ

∫ ∞
0

un(1−B(u)) du =
λ

n+ 1

∫ ∞
0

un+1 dB(u) =
λµn+1

n+ 1
.
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Regarding the Laplace transform of τy, the equation for ψ is given by

ψ′(s, y) = sψ(s, y) + λ

∫ y

0
ψ′(s, y)(u)(1−B(y − u)) du = sψ(s, y) + (ψ(s, ·)′ ∗Bλ)(y)

and does not seem to be solvable in general. However, for the transform

Ψs(t) =
∫ ∞

0
e−txψ(s, dx)

there is a nice explicit formula in terms of the Laplace transform β(t) =
∫∞
0 e−tx dB(x)

of B. We obtain

Ψs(t) = s
Ψs(t) + 1

t
+ λΨs(t)

1− β(t)
t

.

Hence,

Ψs(t) =
s

t− λ(1− β(t))− s
.

5 Appendix: regular and rapid variation

We state here some useful results about regular variation, which are needed in this
paper. For further information regarding regular variation the reader is referred to the
comprehensive monograph [5].

A function f : [0,∞)→ [0,∞) is regularly varying with index a ∈ [0,∞] if for all λ > 0

f (λy)
f (y)

→ λa , y →∞. (33)

In this case we write f ∈ Ra. f is called rapidly varying if a =∞ and slowly varying if
a = 0. The convergence in (33) is uniform for

λ ∈


[c1,∞), c1 > 0 , a < 0

[c1, c2], c1 > 0 , a = 0

(0, c2], c2 > 0 , a > 0

(0, c1) ∪ (c2,∞), c1 < 1 < c2 , a =∞

(34)

f is regularly varying with index a <∞ if and only if f is of the form

f(x) ∼ c · exp
( ∫ x

1
U(w) dw

)
(35)

19



where c > 0 and wU(w)→ a. On the other hand, if

f(x) ∼ c(x) · exp
( ∫ x

1
V (w) dw

)
, (36)

where c(x) is non-decreasing and wV (w) → ∞ as w → ∞, then f is rapidly varying.
For f to be rapidly varying it is sufficient to show that f(λy)/f(y) → ∞ for all λ > 1,
or that

xf ′(x)
f(x)

→∞ , x→∞.

If f ∈ Ra with index a > 0 and is increasing, then its inverse, denoted by f−1, is
regularly varying with index 1/a and vice versa, where we agree to understand 1/∞ = 0
(see [5], Theorems 1.5.12 and 2.4.7). Finally, Karamata’s theorem (see [5], Section 1.6)
clarifies the behavior of the integral of a function in Ra.

Theorem 9. Let f ∈ Ra and F (x) =
∫ x
0 f(w) dw.

1. If f is locally bounded and a > −1, then F (x) ∼ x

a+ 1
f(x).

2. If a = −1 and xf(x) is locally integrable, then x 7→
∫ x
0 f(u) du is slowly vary-

ing and
∫ x
0 f(u) du/(xf(x)) → ∞. If additionally

∫∞
0 f(u) du < ∞, then x 7→∫∞

x f(u) du <∞ is slowly varying.

3. If a < −1, then
∫∞
x f(u) du <∞ for large x and

∫∞
x f(u) du ∼ xf(x)

|a+ 1|
.

4. If a =∞, then F ∈ R∞.
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Ornstein-Uhlenbeck dynamics. Physica A, 334:1–21, 2004.

[15] S.N. Ethier and T.G. Kurtz. Markov Processes. Characterization and Convergence. John Wiley &

Sons, 1986.

[16] F. Guillemin, Ph. Robert, and B. Zwart. AIMD algorithms and exponential functionals. Ann. Appl.

Probab., 14(1):90–117, 2004.

[17] V. Kalashnikov. Geometric Sums: Bounds for Rare Events with Applications: Risk Analysis, Reli-

ability, Queueing. Mathematics and its Applications. Dordrecht, 1997.

[18] J. Keilson. A limit theorem for passage times in ergodic regenerative processes. Ann. Math. Stat.,

37:866–870, 1966.

[19] O. Kella and W. Stadje. On hitting times for compound Poisson dams with exponential jumps and

linear release rate. J. Appl. Probab., 38(3):781–786, 2001.
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