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Abstract

A system architecture is selected in the early design phases of a product. A trade-off is made
between the most important architectural views during this selection process. The required
system functionality is realized in an architecture which is maintainable, extendible, manu-
facturable, testable, integratable, etc., etc. This work investigates how an architecture can be
selected, such that it is testable and integratable. The elements of an architecture which is
suitable for testing and integration are introduced first. These elements are: components,
interfaces between components and a layering.

The division of the system into components determines the how the system can be integrated
and how many integration steps are required. Next to that, not all components need to be
selected for system level integration and testing. Some, low-risk, components are integrated
and tested on a lower level or not tested at all. The selection of components to be considered
for integration and testing also influences which interfaces are considered.

The selection of an interface infrastructure influences integration and testing, next to the
interfaces which result from component and interface selection. The interface infrastructure
can reduce or increase the number of interfaces in the system. An interface infrastructure
could also introduce that specific connectors need to be developed resulting in additional risk
and more required testing.

And finally, a layering defines how the system, consisting of components and interfaces, is
clustered. This layering reduces the complexity of the system and therefore the complexity
of the integration and test plan. The layering for integration and testing can be defined
fairly late in the development process just before integration and testing begins. Next to that,
the layering for integration and testing can be different than the normal organizational or
functional layerings of a system. More layerings can be defined and used next to each other.
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Introduction

System architecting [1] is the process of creating an architecture for a system. The resulting
architecture is a trade-off between the most important architectural views, like functional-
ity, maintainability, extendability, etc. A list of these architectural views, so called quality
attributes, that need balancing is given in the ISO-9126 standard [2]. Two of these quality at-
tributes are testability and manufacturability. Testability fits within our definitions and defines
if a system is well testable or not. Manufacturability in the context of ISO-9126 is a much
broader term than the term integratability”, which we prefer. Only a limited number of ar-
chitectural views is considered when an architecture and design are defined. Testability and
integratability are often not the most important views that are considered. Consequently, the
resulting architecture does not reflect testability and integratability very well. Two solutions
exist for this problem. The first solution defines integratability and testability as the most
important architectural views of a system and the entire system architecture and design are
centered around this view. Although, this solution results in a system that is designed for
integration and testing, it requires a specific business case where this is beneficial. For most
systems, integration and testing are not the most important architectural views.

The second solution uses an existing architecture, design and resulting integration and test
sequence. The architecture and design are then improved based on the performance of the
integration and test sequence. This, more iterative, solution is the basis for this paper. The
structure of this report is as follows. First, definitions of an ‘architecture’ are discussed in
Section|2. Then, Section 5 defines methods and guidelines for the selection of components,
interfaces and layerings. These guidelines are illustrated with example systems. Conclusions
are given in Section 9.

Architectures

According to the Oxford English Dictionary, the term ‘Architecture’ is defined as: 1) the art or
practice of designing and constructing buildings, 2) the style in which a building is designed
and constructed, 3) the complex structure of something. The first definition describes the
process of designing buildings, or systems, also called architecting in [3]. The second definition
reflects the most commonly known definition of an architecture that is the style of a building.
The, most relevant, third definition broadens the second definition, such that it is applicable
to complex structures of ‘something’. If we start with the first, building oriented, definition,
then we see that the low-level components of most buildings are equal. For instance, bricks,
mortar, nails and glue are used to build any type of house. The architectural ‘style’ defines if
a building is functional and beautiful.

For systems, as defined as ‘something’ in the third definition, the same holds. The compo-
nents (bricks) can be defined for a family of systems. This is also the case for the interfaces
(mortar, nails, glue, etc.). Complex manufacturing machines are also built up using com-
ponents and interfaces. The style, if applied to these systems determines if the system is
functional and beautiful. The style determines how the components interact and are able to
function together. The architectural style also determines how well the system can be split
up into smaller sub-systems and how well this work-break-down-structure can be communi-
cated and maintained throughout the development process: the beauty of the architecture.
The architectural style also determines how well the system can be split up into smaller sub-
systems and how well this work-break-down-structure can be communicated and maintained
throughout the development process: the beauty of the architecture.

"The word integratability is first used by SUN microsystems to indicate the easy integration capabilities of the
Java™ platform. The word integratability is not defined in a dictionary at this moment. Other words describing
integratability could be synthesizability or assembleability. Both words have different meanings in different domains
and are also not defined in a dictionary.



System integration model

The system integration models describe a system. These models are used for sequencing
and improvement in the integration and test planning method. The architecture of a system
consists of components and interfaces. Both the components and interfaces are represented
by the system integration model.

The system integration models should fulfill the input-output requirements of the integration
and test-diagnose-fix tasks. The output of an integration and test-diagnose-fix task is the
input of the next task. Integration and test-diagnose-fix tasks are combined into integration
and test sequences. For instance, an assembly task can be followed by another assembly task
or altest-diagnose-fix task. A component in the system integration model that is the output
of the assembly task should be of the same type as the input of the next task.

System integration models should enable performance modeling of the integration and test
sequence. Analyzing the performance of an integration and test sequence is one of our goals.
Therefore, the integration models should support this goal.

System integration models should support abstraction if a system contains many components
and interfaces. Integration and test sequencing is a problem for large systems in particular.
These systems consist of many components and interfaces. The integration and test models
should support the combination of smaller models into large models, such that large systems
can be modeled easily.

The system integration model [A is modeled as a five-tuple containing: models of the
components in the systemT', models of the interfaces in the system|XF, the relation between
the components and interfaces R, x,, a so-called layering L and the objective and constraints
of the integration and test sequence W Thus,|A = (T,|XF| R,, XF,Z,’O—bjb, where[Tlrepresents
a set of component models|y} The elements of the system integration model are described
in detail below.

The component model

A component in the system is modeled as a system test model | Dlintroduced in Section 4, and
properties: [y = (D,@gev)| Ciev). The system test model [D describes the component in terms of
test cases and fault states and is described in Section|4. The duration and cost of developing a
component y|is modeled as @ge,|and|Cy, respectively. The development duration is modeled
as the duration between the start of the integration and test sequence and the moment that
component development is ready. The end moment defines when the integration and test
sequence can progress. The cost of development can also be modeled. This cost is added to
the overall cost of the integration sequence. Often, the cost is set to o, because only the cost
of integration and test tasks is of interest when integration and test sequences are analyzed
and compared and not the cost of developing a module that is just an offset in the total cost.

The interface model

An interface is also modeled as a system test model. The duration and cost of developing the
interface is also taken into account. The interface is modeled as a triple: | Xr|= (D,/@4er} Caer)-
The interface risk is modeled explicitly. Even for interfaces with very low failure probabilities
and risk, the risk needs to be modeled. The combined risk of many low risk interfaces results
in an overall, system level, remaining risk that could be too high. The low risk interfaces
are also modeled by explicitly modeling the interfaces. Note that a broad multi-disciplinary
definition of interfaces is considered.

System integration model



Relationship between components and interfaces

The relationship between components and interfaces is modeled as a set of triples that
contain the models of two components and their interface R, x, C I' x Xr x I, which is a
set of triples representing the connections that can be made between the components in the
system. Two components can be connected by two or more interfaces. This is modeled either
as separate relations or by combining the system test models of the interfaces into a single
model. The interfaces between one component and many other components are modeled as
separate relations.

Layering

The minimal set of models that is required to create integration and test sequences consists
of the component model, the interface model and the model of the relationship. The model
of the relationship between components is used to obtain the sequence. In this way, any com-
bination of tasks can be made. The number of sequences obtained using these five tasks and
the component models is infinite, because of the possibly infinite combinations of disassem-
bly and assembly tasks, the copy task and the repeatable test-diagnose-fix tasks. Even if the
copy and disassembly tasks are not taken into account and it is assumed that test-diagnose-fix
are not repeated, then the number of possible sequences leading to a complete and tested
system is huge for systems with many components and interfaces. The number and type of
possible sequences can be constrained by using layering.

For this reason, a layering L in the system, consisting of sets of components [T} is defined:
L C P(). The relation between the components in the groups and between the groups
are derived using the component-interface relation|R, x,. A set of components in a layering
can contain a component that is also present in another set of components. In other
words, sets of components can overlap. A layering is often used to describe a functional
clustering opposed to the hierarchical or mechanical clustering. The physical components
can contribute to one or more of these functional clusters. In this way, functional integration
and test sequences can be derived from the system integration model.

Objectives and constraints

The objective for an integration and test sequence describes whether the resulting system
should be integrated and tested quickly (T), cheaply (C) or with a high quality (Q). The con-
straints of the integration and test sequence describe if the executed integration and test
sequence should not exceed a fixed duration, a fixed cost level or a risk level. Objectives and
constraints are both expressed in terms of time, cost and remaining risk. The time, cost and
remaining risk objectives are described relative to each other, such that it is indicated which
objective is most important. The constraints of an integration and test sequence determine
the limits that may not be exceeded. A constraint on duration means that the sequence should
be finished at a certain deadline. A constraint on cost means that a certain cost level may not
be exceeded and a constraint on quality means that the integration and test sequence should
lead to a certain quality level. The objectives of a complete integration and test sequence are
described in a similar fashion.

System test models

Components and interfaces in a system are modeled as a system test model. A system test
model describes a component or interface as a combination of possible fault states, test cases,
the coverage of the test cases on the fault states and the properties of the fault states and test
cases. In this section, the system test model is described in detail. The practical implication



4.1

of every modeling element is discussed. The model completeness is described and stepwise
improvement of the model is explained.

The test cases, fault states and their properties are modeled as a so called system test
model. The system test model is a ten-tuple consisting of those elements that are rel-
evant for a test-diagnose-fix task. The ten-tuple is derived from a basic system test
model used by [4] for sequencing diagnosis tasks. Boumen [5] uses a system test model,
based on the basic test model, for probabilistic test sequencing. The basic test model
is defined as D = (T,S,C P, Ry). Our system test model D is defined as a ten-tuple

(T. S, (Cr, 1), (Cp» @), (CF @), (Car» @aF), P, I, U, Rys), where:
« T is a finite set of k tests.
+ Sis a finite set of [ fault states.
« Cr: T — R* gives for each test in T the associated cost of performing that test.
« o1 : T — R* gives for each test in T the associated duration of performing that test.
« Cp: T — R* gives for each test in T the associated cost of diagnosing the failed test.

« ¢p: T — R* gives for each test in T the associated duration of diagnosing the result of
the test if the result is fail.

« Cp: S — R* gives for each fault state which is to be fixed the cost of fixing that fault
state.

« ¢r : S — R* gives for each fault state in S the associated duration of developing a fix
for the fault state.

« Car : S — R* gives for each fault in S the associated cost of applying the fix on the
system under test.

« @ar: S — R* gives for each fix which is to be applied the associated duration.

« P: S — [o..1] gives for each fault state in S the a priori probability that the fault state is
present, which is the probability that a certain fault is present.

« Impact can be a value relative to each fault state or a specific value related to a property
of the system under test.I : S — R gives for each fault state in S the impact of the fault
state if the fault state exists in the system under test. Impact can be a value relative to
each fault state or a specific value related to a property of the system under test.

« U: S — [o.1] gives for each fault state in S the uncertainty that the fault state is
present, which is 100% if no test case has been executed that covers the fault state.

« Ry : T'x S — [o..1] gives for each test ¢ and fault state s the coverage of the test ¢ on fault
state s.

Fault states

Fault states describe possible faults in the system, including the associated failure probability
and impact. Fault states are assumed to be independent of each other. Additional proper-
ties are modeled per fault state, like the uncertainty about the fault state (used for reliability
qualification), the duration and cost of fixing the fault state and the duration and cost of
applying the fix on the system under test. A set of fault states can be modeled as a single
combined fault state with adjusted properties [6] for the combined fault state, like for in-
stance a higher failure probability. A broad definition of fault states is used when modeling a
system. Fault states could be based on existing requirements, known failures from previous
system releases, failure mode effect analysis (FMEA/FMECA) [7], expert knowledge and even
more detailed fault state sources like manufacturing failure databases or static code analysis
tools for software systems.

System test models
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4.3

4.4

4.5

4.6

Test cases

The detailed test procedure is a valuable source to determine the coverage of the test case.A
test case is described in terms of its coverage on the defined fault states. The coverage of the
test case on the fault states determines the capability of the test case on system level. Note
that the detailed test procedure is a valuable source to determine the coverage of the test case.
The other properties that are modeled for a test case are execution duration, execution cost,
diagnosis duration and cost. A set of test cases can be modeled as a single test case with a
higher coverage, a longer duration and higher cost.

Coverage

The coverageis modeled as the probability that a test case ¢t can detect a fault state s. The
coverage of a test case on a fault state can be estimated by counting for a test case how many
of the functions are covered by the test case. This number of covered functions divided by the
total number of functions in the system that this test case covers, such that the coverage is
calculated. The coverage is used to determine the reduction of the failure probabilities of the
fault states that are covered by a test case when the test case passes.

Uncertainty

The uncertainty is defined as the so-called subjective uncertainty [8] and describes the lack
of knowledge about the system. This lack of knowledge is a property of the analyst that
analysis the task or integration and test task. The stochastic uncertainty,
which is another definition of uncertainty that is often used, is a property of the system
itself and describes the variability of the behavior of a system. The stochastic uncertainty of
a|test-diagnose-fix task (or a complete integration and test sequence) is measured in terms of
the performance indicators: duration, cost and remaining risk. The subjective uncertainty is
used in the reliability test planning method.

Risk

Our measure for product (or system) quality is risk. The risk that is present in a system is the
sum of the risk of the fault states that are possibly in the system. The risk that a fault state is
in the system is defined as the product of the probability that the fault state is in the system
and the impact of the fault state when it is present: R(s) = P(s)I(s) [9—11]. Since fault states are
assumed to be independent, the risk of all fault states in the system can be added such that

the system risk is obtained: R = > R(s).
seS
The required probability can be estimated or obtained from historical data.The required prob-

ability, a property of the product, can be estimated or obtained from historical data. The re-
quired impact value is not a property of the product. The impact of the presence of a fault
state is estimated, in case the fault state occurs after the (integration) and test sequence is
finished. If the product is delivered to customers once the integration and test sequence is
finished, then the impact for customers is estimated. If the product is released for the next
task in the integration and test sequence, then the impact for the remainder of the integration
and test sequence is estimated.

The impact of a number of fault states in a system must be estimated in relation to each other.
For instance, if a system is modeled for overlay testing, then the impact of all fault states in
the system should be modeled in terms of overlay [nm)]. In this way, test cases can be selected
that reduce the overlay risk as much as possible.

Example telephone system

As an example, a test model is defined for a common telephone. The telephone consists of
a handset, a cable and a device. Each of these modules can contain a fault. The interfaces
between the modules can also contain a fault. Hence, in total, 5 fault states are defined.
Additionally, 6 test cases are defined covering the 5 fault states. A graphical view of the
telephone is given in Figuret.

The set of five possible fault states in the telephone is: S = {s;, s,, 55, 54, 55}



Figure 1: Telephone system

« s, the device contains a fault

« s, the cable contains a fault

+ s; the handset contains a fault

« s, the interface between the cable and the device contains a fault

« s; the interface between the handset and the cable contains a fault
The set of six tests is defined to cover these fault states is: T = {to, t;, t,, t5, t,, t5 }.

« 1, tests the complete phone system

« t, tests the device

« t, tests the cable

« t; tests the handset

« t, tests the device and the cable

+ t5 tests the handset and the cable

A matrix representation of the system test model D, including the properties per fault state
and test, is given in Table|1| The coverage of a test case on a fault state is placed in the matrix.

S / T to t; t, t; t4 tS P I U CF Pr CAF PAF
$$/{02 o5 o o 03 o |100%|7|LO| 2 | 2 1 I
5,02 o o5 o0 03 03|10%|5|Lo| 2 | 2 I I
$5/02 o o o5 o0 03|10%|3|10]| 2 | 2 I 1
s4/02 o o o 03 o |%|3|L0| 2 |2 I I
ss|oc2 o o o o o3|10%|3|L0| 2 |2 I I

Cr| 3 I 1 I 2 2
er| 6 2 2 2 4 4
Cp 3 1 1 1 2 2
¢p | 10 I 1 I 6 6

Table 1: A test model for the telephone example

Components, interfaces and a layering are the elements of an architecture that are relevant for
integration and testing. The remainder of this section describes how components, interfaces
and a layering can be selected such that they are suitable for integration and testing.

System test models



Selection of a suitable set of components

A suitable set of components, in the context of integration and testing, means that the com-
ponents are integratable and testable. The aspects that influence the integratability and testa-
bility of an architecture are the number of components and the size of the components. The
break-down of the system into components determines how many components need to be
integrated. Not all components need to be taken into account for the system level integration
and test sequence. Small risk, low-level components could be ignored in the system level
integration and test sequence. It is then assumed that these components are integrated and
tested on sub-system level. How to select the number of components suitable for integration
and testing is discussed below.

The number of components in the system determines how many integration tasks are re-
quired to build the complete system. More integration tasks could lead to longer integration
and test sequences, depending on the possible parallelism in the sequence. An example
system is broken down into nine components in Figure 2(a) and into five components in
Figure|2(b). The resulting integration sequences for the nine and five component system are
depicted in Figure 3 and Figure|4 respectively. The number of assembly tasks in the sequence
of the nine-component system is larger and therefore probably takes more time, depending
on the duration of the individual tasks.

1 2 3 - [ 5
! P BB

4 5 6 [ 5
C| =D

(a) Example system split up  (b) Example system split up
into nine components into five components

Figure 2: An example system split up into nine and five components

Figure 3: Integration sequence of the system depicted in Figure[2(a)

Splitting up a system into more components leads to longer integration sequences. A small
number of components results in components that are too complex, too large, hence contain
too much risk. Higher risk results in lengthy and costly test-diagnose-fix tasks, because the
risk in the system needs to be reduced. Exclusion of risk can be done in two ways. First,
passed test cases reduces the risk in the system because it is proven, by a passed test case, that
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Develop
D

Develop
A

Assemble
[D-A7]

Develop
C

Assemble
[C-D’,’A-C]

Develop
B

Assemble
['D-B’, 'A-B’]
Assemble
['D-97]
Develop
9

Figure 4: Integration sequence of the system depicted in Figure(2(b)

some risk is not in the system. Second, failed test cases result in a diagnosis of the failure
and a fix of the fault. Fixing a failure also reduces the risk, so does the diagnosis that a fault
is not in the system. Both ways of reducing risk cost more time/money when the risk in the
system is high. Consequently, a suitable number of components is a balancing act between
the number of components to select and the size of the resulting integration sequence. Some
guidelines for this balancing act are given below.

Guidelines for selecting components

Selecting the number of components to accommodate the integratability and testability is
a balancing act. An algorithm that determines the optimal integration and test sequence,
given the components and interfaces is NP-hard [12, 13]. Comparing a number of component
selections is therefore also NP-hard. Nevertheless, some guidelines for component selection
are given below. The first guideline is most important, the other guidelines are exceptions on
the first guideline.

« The risk of a component should guide the split up of a component. High risk com-
ponents should be split up to accommodate: parallel integration, parallel testing and a
shorter test-diagnose-fix task because less faults are found.

« Parallel integration and testing is only beneficial when the resulting integration and test
sequence has a shorter duration than the original sequence. The resulting integration
and test sequence can be longer in one of the following cases:

— The development duration of both new components is longer, because additional
time is spent on interface definition and development. This can be the case if two
development groups are involved and/or the interface decisions are more difficult
to make.

— The assembly of the two components is difficult (because the interface agree-
ments are more difficult to make).

— The combination of components and interfaces is the risky part of the develop-
ment, while the individual components are relatively simple. The additional par-
allel|test-diagnose-fix tasks have no benefit in this case, because reducing the risk
is done in the last test-diagnose-fix task and is therefore on the critical path in the
integration and test plan.

- Splitting up components is only beneficial if the interfaces between the new compo-
nents ‘allow’ splitting up these components. The properties of interfaces that ‘allow’
splitting up components are:

— The number of (different) interfaces between the split up components should
not increase, because the increase in interfaces could result in an increase of the
duration of the assembly phase.

— The interface risk after splitting up a component into two components should be
low. A component split-up that results in high risk interfaces results in a longer

9 Selection of a suitable set of components



6.1

10

test phase after assembly. Examples of high risk interfaces after component split
up are interfaces that are to be developed newly, because of the component split
up, or interfaces with extreme requirements in terms of speed, tolerance, etc.

Selection of a suitable set of interfaces

Two approaches can be followed to select the suitable (integratable/testable) set of interfaces.
The first approach is directly related to the selection of components, while the second ap-
proach involves the selection of a different interface paradigm. The first approach is a result of
the component selection as discussed in the previous section. Splitting up components leads
in general to more interfaces. E.g. dividing a single component with two external interfaces
into two components leads to at least one additional interface between the two components.
The selection criteria for suitable interfaces are similar for component selection in this set-
ting. Dividing a component into two smaller components reduces the risk in the component.
Testability is increased by reducing the number of interfaces, interface usage and reducing
the risk involved with this type of interfaces. Integratability is increased by reducing the time
required to connect, disconnect and reconnect two components to each other, i.e., the as-
sembly time and cost are minimal. Dividing the component into two smaller components
with (too) many interfaces between these components increases the risk, because of possible
problems with definition, implementation and utilization of these interfaces.

The second approach involves the selection of a different interface paradigm that increases the
integratability and testability. Testability is increased by reducing the number of interfaces,
interface usage and reducing the risk involved with this type of interfaces. Integratability is
increased by reducing the time required to connect, disconnect and reconnect two compo-
nents to each other, i.e., the assembly time and cost are minimal.

Example: A mechanical interface in the ASML wafer scanner

An example of a mechanical interface in an ASML wafer scanner that is specially chosen to
increase the testability and integratability is the so called ‘cable slab’ between the body of the
wafer scanner and a wafer stage. Figure[5 depicts the mechanical interface. The wafer stage is

Figure 5: Cable slab

a sub-system of the wafer scanner, that needs to move in six degrees of freedom. Any contact
of the wafer stage with the environment (the body) results in vibrations in the wafer stage
system resulting in overlay and imaging problems. The required power, signal and airflow



7.1

11

to control and move the wafer stage is supplied via the ‘cable slab’. A special interface has
been designed such that the stage can easily be replaced and tested. A specially designed
interface imposes additional risk, because no common-of-the-shelf (COTS) interface is used.
Additional ‘cable slab’ and sub-system testing was required for the ‘cable slal’, while the cable
slab itself reduced risk of overlay and imaging problems on system level. The cable slab is
an example of an interface where additional time and cost is spent to reduce the higher level
system risk.

Next, some guidelines for selecting an interface paradigm are given. An interface paradigm
that is suitable for integration and testing:

« reduces the number of interfaces or the risk involved with interfaces,
- reduces the bandwidth used by the interfaces,
- reduces the assembly or disassembly duration and cost,

- improves the testability and diagnosability by adding additional measurement capabil-
ities,

- improves the ability to assemble and disassemble components.

Selection of a suitable set of layerings

Components and interfaces are the only elements that are necessary to create an integration
and test plan. However, the number of possible integration and test plans increases dramati-
cally when the number of components (and interfaces) increases. The selected layering for a
system reduces the complexity of creating an integration and test plan. The functional and or-
ganizational layering can differ from the layering that is chosen for the benefit of integration
and testing. The functional and organizational layering can differ from the layering that is
chosen for the benefit of integration and testing. Selecting a layering suitable for integration
and testing means that the set of components and interfaces are grouped such that a good
integration and test sequence can be created.

Example: Layering a car axle

An example car axle with wheels is depicted in Figure|6 and modeled as a four component
architecture, depicted in Figure[7} The architecture consists of two wheels (W, and W,) and
two steering knuckles (SK; and SK,). The axle itself is modeled as the interface between the
two steering knuckles. The functional layering for this system could be defined as a layer for

Figure 6: Example car axle system

each side of the car as depicted in Figure|8(a). An organizational layering could be grouped

Selection of a suitable set of layerings
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Figure 7: Car axle architecture

according to the two competences involved in this system: wheels and steering knuckles.
The organizational layering is depicted in Figure [8(b). The integration sequences for the

Competence: steering knuckles

— —
-— -—
Left wheel Right wheel Competence: wheels
(a) Functional layering of the car axle (c) Organizational layering of the car
system axle system

Figure 8: Two layerings of the car axle system

functional and organizational layering have a different duration, assuming that assembling
each interface costs the same time in this example. Figure|g|depicts the resulting integration
sequence for the layering according to the competence. The first two assembly tasks assemble
a wheel and a steering knuckle. The last assembly task assembles both wheels and steering
knuckles with their common interface, the axle. A total of four interfaces is created. However,
the first two interfaces are created in parallel. If the creation duration of each interface is one
time unit, then the total duration of this sequence is three time units.

The integration sequence according to the organizational axis is depicted in Figure 10. Now,
the steering knuckles are assembled first, followed by an assembly of the wheels to the steer-
ing knuckles. The duration of this integration sequence is four time units, assuming again
that the creation of each interface costs one time unit and testing is not taken into account.
This example does not include test-diagnose-fix tasks. It is assumed that the components
are available at the start of the integration sequence. Development durations and cost of
components need to be taken into account as well as the test-diagnose-fix|tasks.

Some guidelines are given such that a suitable layering can be chosen.
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Figure 9: Integration sequence of the axle according to the functional layering
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Develop
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Figure 10: Integration sequence of the axle according to the organizational layering

« The layering chosen during design of the system is not necessarily the best layering for
integration and testing.

- Selecting a new layering for integration and testing can be done late in the process. See
the next sub-section for details.

- If all possible sequences of components and interfaces that are able to form a system
are considered, the optimal sequence can be selected. However, this approach makes
planning an integration and test sequence for large systems complex and time consum-
ing. To reduce this complexity, layering can be applied.

- Take the interfaces between components into consideration when choosing a layering.
A layering that divides the system, such that the integration and test sequence can be
executed as much as possible in parallel is beneficial.

« Layers containing components that are not connected result in less optimal integration
and test plans.

[llustration: TWINSCAN wafer scanner integration

The TWINSCAN™ wafer scanner platform of ASML was designed and developed from 1997
onwards. In 2000-2001, the first TWINSCAN™ systems were shipped to customers. The
initial design was set up such that the (relatively large) sub-systems are easily recognizable
within the system and that these sub-systems are evolvable. The sub-systems are recognizable
for the purpose of system level training and understandability. Evolvability was important for
the purpose of creating a platform that served as a basis for the quick development of new
system types. The technical design and layering was centered around the most important
aspect of the TWINSCAN™ system at that time: productivity.

The TWINSCAN™ system was designed using a sub-system oriented architecture/layering.
The system level specifications were broken down into sub-system level specifications and so

[llustration: TWINSCAN wafer scanner integration
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on. The sub-systems could be identified easily in the system architecture. This architecture
was suitable for breaking the high level problem into smaller problems and for managing
this work-break-down structure.

However, system level integration requires cooperation of all sub-systems, such that the sys-
tem function, run production, could be performed. A single sub-system contributes to the
performance of many other sub-systems that together result in a system level performance.
‘Life-of-a-wafer’ describes in terms of sub-functions how production is run on a wafer scan-
ner. The sub-systems in the wafer scanner contribute to one or more of the sub-functions in
the ‘Life-of-a-wafer’ process.The goal at integration time, is to combine all these sub-systems,
with their individual performance requirements, into a complete and performing system.
Around one year before the first shipment, the intended function, run production, of the
wafer scanner was split up in around 15 sub-functions. These functions were related to each
other by a process description called ‘life-of-a-wafer’. ‘Life-of-a-wafer’ describes in terms of
sub-functions how production is ran on a wafer scanner. The sub-systems in the wafer scanner
contribute to one or more of the sub-functions in the ‘Life-of-a-wafer’ process. The focus
during integration and testing shifted from sub-system development to sub-function and
function integration and qualification. The integration and test sequence reflected this new
layering, because milestones for these functions were planned and function owners were
assigned.

Shifting from a sub-system development approach to sub-function integration, a new layer-
ing was not an easy task. Many developers were convinced or forced to use the ‘new’ way-
of-working. Functional milestones did not seem like progress for upper management and
customers who wanted to see the results in terms of throughput, overlay or imaging perfor-
mance. However, the developed systems were shipped on time and a record breaking number
of additional system types were shipped in the next year. Furthermore, the system reliability
and availability was brought to the required levels twice as fast if compared with the previous
platform. Afterward, it can be concluded that changing the layering very late in the process,
with the purpose of creating a better integration and test plan, was successful for the TWIN-
SCAN™ platform.

Conclusions

The selection of an architecture that is suitable for testing and integration is important, be-
cause this choice influences the integration and test sequences that can be created. By this
selection, the performance of an integration and test sequence is influenced. Often, a single
architecture is considered for a system under test. Testability and integratability aspects are
balanced together with other architectural aspects. A suitable architecture for integration and
testing is chosen, if testability and integratability are aspects of high importance. Otherwise,
the resulting architecture leads to a sub-optimal integration and test sequence. Selecting an
architecture that is suitable for integration and testing requires a component selection, an
interface selection and a selection of layers.

Component selection is a balancing act between the number of selected components and
the risk of these components. Selecting too many components leads to a large integra-
tion and test sequence, while selecting too few components results in an integration and
test sequence with too much risk in the individual components and long and unpredictable
test-diagnose-fix tasks. Component selection determines what level of abstraction is used for
the system. Consequently, an integration and test sequence is obtained with more or fewer
integration tasks.

Interface selection is related to component selection, because the selection of components
determines what interfaces are selected. Interface selection by selecting a different interface
paradigm could reduce the number of interfaces and the interface usage. Additionally, se-
lecting an interface that does not fit in the interface paradigm could increase the number of
interfaces and the usage of the interfaces.

Component and interface selections are, in principle, the only required aspects to consider



for a suitable integration and test architecture. The components and interfaces are the inputs
for the integration and test planning process. However, the number of possible integration
and test sequences for real life systems is large. Selecting a layering for a system reduces
the number of possible integration and test sequences that are to be considered. Therefore,
layering is an important selection mechanism.

Component, interface and a layering can be selected late in the development process, when
the system architecture does not change because of the selection. Additionally, selecting
a different interface paradigm should be done as early as possible, because a change in the
interface paradigm often requires that the individual components need to be changed as well.
Implementing a new interface paradigm could introduce additional risk. The additional risk
can be minimized by selecting an implementation of the interface paradigm that is stable
already.

15 Conclusions
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