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Chapter 1

Introduction

1.1 Introduction

In most works of fiction, the reader only discovers the true meaning of a novel’s title
after the last page of the book has been read. What you are about to read is not a work
of fiction, but a PhD thesis and the title that has been chosen reflects the aim of this
work. Therefore, contrary to a novel, this first chapter will be devotedto explaining
the aim, and therefore the title, of this work. This aim will serve as a guide throughout
this thesis, as the chapters that follow will reveal increasing amounts of detail.
The approach that will be followed in this chapter is comparable to that of the system
of Google Earth satellites. They can be used to view the entire world and then gradu-
ally zoom in, until they reveal your home and backyard, or your holiday destination.
In a similar way, we will start this chapter by introducing some global issues that are
the driving forces behind the development of new technology of which thiswork is a
small part and by continually zooming in further, we will end up explaining the aim
of this work and stating the contributions of this thesis.

1.2 Towards a brighter future

Two very interesting phenomena are occurring in our society. On the one hand, there
is a desire to eradicate extreme poverty and hunger, while on the other hand, there is
an increased concern for our planet and the need to secure its magnificence for fu-
ture generations. These two phenomena are seemingly conflicting. Indeed, increased
living standards for the poor can be realized by providing access to the technology
that increased the living standards in the West. Providing this access implies an even
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1.2. Towards a brighter future

greater strain on the environment and an increase in our use of natural resources.
Therefore, to realize a brighter future for our planet and its inhabitants we should
increase the living standards of the poor and at the same time decrease ourenviron-
mental footprint. It is this goal that both politicians and scientists set out to achieve.
Politicians set targets, scientists look for ways to achieve these targets. Thisthesis is
about science, not politics, and I hope that it is part of this road towardsa brighter
future.
The first of the United Nation’s eight millennium goals is to ’Eradicate Extreme
Poverty and Hunger’ [58]. According to World Bank figures of 2008,13.6% of the
world population live on less than 1 US dollar a day and 79.7% of the world popu-
lation, excluding industrialized nations, live on less than 10 US dollar a day, which
is the poverty line for industrialized nations [19]. Needless to say, it is imperative to
bridge this poverty gap. At the close of a United Nations (UN) summit in September
2010 a global action plan was launched to achieve this and seven other millennium
goals by 2015. Looking back into history, Western prosperity levels wereraised by
the increase of productivity thanks to industralization. Therefore, the way to eradicate
extreme hunger and poverty globally requires technology that will allow foranother
such increase of productivity.
In parallel to these efforts, due to economic growth in Asian countries like China
and India, but also in Brazil and Russia, the number of people who attain Western
living standards increases steadily, from currenly 600 million people, to 2.5billion
people in the near future. This increase in prosperity has two important implications.
Firstly, increased prosperity implies that less people will be willing to work in health-
threatening production environments. Cheap human labor in countries like China will
be history soon. This will create a problem in the future, since our industrypartially
relies on this cheap human labor. Secondly, our planet does not providesufficient
traditional sources of energy and natural resources to supply 2.5 billionpeople in
the same way it is currently supplying 600 million people. This implies that a new
generation of sustainable technology is needed. This is reflected in Millennium goal
number seven, which is to ’Ensure Environmental Sustainability’ [58].
Meanwhile, in the industrialized world conflicting trends are visible in a similar way.
On the one hand, there is a steady demand from the public for technologicalinno-
vation, while on the other hand, environmental legislation ànd awareness are also
putting demands on the development of future technology. In the Spring of 2010 US
corporation Apple sold 1 million of its iPad devices within the first 28 days of its
release [65]. This is just an example of the continuous pressure on industry to keep
evolving and keep putting innovative products on the market. At the same time gov-
ernments are setting clear targets via environmental legislation. These targetshave
to be met by industry somehow. As an example, in a European Union agreement,
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Chapter 1. Introduction

the Dutch government has pledged that by 2020 14% of the energy consumed in the
Netherlands will be produced by renewable resources [79]. These two developments
put seemingly conflicting demands on industry: to preserve its market shareit has to
keep innovating, while parts of traditional technology can no longer be re-used due to
environmental legislation.
What is needed to build a brighter future is a new generation of technology that is able
to achieve three goals. First is to increase the living standards of people indevelop-
ing nations. Second, to ensure that the living standards of industrialized nations are
preserved. Third, to preserve our planet and its resources for future generations. This
new technology should have no footprint. This means that natural resources should be
fully reused and energy should be supplied from renewable resources. This footprint-
free technology implies that production processes should be run highly automated,
to ensure that they are as efficient as possible and do not rely on manuallabor. De-
velopment of a new generation of technology requires a significant effort in terms of
research and innovation. This thesis forms a small step towards the development of
this new generation technology. The focus of this work has been on efficient operation
of industrial production processes.
Industrial production is largely responsible for the use of our planet’s resources. A
large part of the available energy and natural resources go to manufacturing plants,
ranging from power plants, to manufacturing of electronic devices, to production of
pharmaceutical products etc. As an example, in the Netherlands 55% of the total
energy used in 2009 went to industrial manufacturing, including energy production
facilities. In contrast, only 13% of the total energy was consumed by Dutch house-
holds [78]. Due to the expected shortage of natural resources and thedesire to produce
footprint-free, environmental legislation already pressures the industryinto decreas-
ing its use of energy and natural resources. In the future, this pressure will only
increase. Therefore, it is imperative to develop technology that will allow existing
processes to be operated more efficiently and enable the development of future gener-
ation footprint-free production processes. This work contributes to the development
of this technology. In the next section, we will take a closer look at industrial produc-
tion and the challenges it faces.

1.3 Industrial production

As mentioned above, industrial production is responsible for a large partof the use of
energy and natural resources across the globe. In this section we will explain what we
mean exactly by industrial production and how efficient operation of industrial pro-
duction processes can contribute to the issues of sustainability, eradicationof poverty
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1.3. Industrial production

and technological innovation.
Industrial production is the process of taking a supply, performing some work on it
such that it becomes a product that is either used as supply for another production
process or as an end-product by the consumer. Most products require processing
by different branches of industry before they are finalized. Examplesof industrial
production are numerous, one can consider the production of electricalenergy in a
nuclear power plant, manufacturing of Integrated Circuits such as processors that are
then built into PCs in other facilities, etc.
Development of industrial production has changed western life drasticallysince the
industrial revolution. Through the use of steam power, petrochemical processing and
modern computing power, productivity has risen drastically causing a major increase
in living standards. As mentioned before another new wave of technological innova-
tion is needed to increase prosperity outside of the Western countries as well.
The major challenge that industrial production currently faces is to increase its sus-
tainability. This means two things. Firstly, further automation of existing production
processes. This automation will further decrease the use of scarce natural resources.
Secondly, development of a new generation of production processes that is able to
achieve the global increase in prosperity and is footprint free.
To make the discussion more specific, we divide industrial production processes into
five categories [16]

1. Project: this is a one-of-a-kind product that will likely only be produced once,
such as a large building.

2. Job process: these processes are designed for flexibility. The equipment can
be used for a range of products and the people working in such a process are
usually highly skilled.

3. Batch or Intermittent processing: the equipment in these facilities tends to be
more specialized, but still there is a range of products. Facilities tend to produce
a large number of one product before changing their setup to allow production
of another product. Many products are produced in this way, such as clothing,
pharmaceutical products, glues etc.

4. Repetitive processing: these processes are used to produce a very large volume
of a very limited variety of products. The equipment used is highly specialized,
requiring very little, usually unskilled, manual labor. One can think of robotic
assembly and the production of most consumer electronics.

5. Continuous processingdenotes the situation where production is smooth and
uninterrupted in time, although production rates may vary over time. There is
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Chapter 1. Introduction

Figure 1.1: Cross section of a glass furnace

a constant influx of supplies and a constant output of end result. Examples in-
clude (petro-)chemical processing, industrial distillation, glass production, steel
production and production of electrical energy using steam generators. Contin-
uous processing is generally used to produce large quantities of product per
year.

Some processes may have characteristics from all categories, but nevertheless this
categorization will be useful in our exposition. The remainder of this work considers
efficient operation ofcontinuous processesonly. We will investigate techniques that
allow continuous processes to be operated more efficiently and can at the same time
be used to develop next-generation continuous processes. An example of a continuous
process is now introduced in more detail.

Example 1.3.1(Glass manufacturing). An example of a continuous production pro-

cess is the manufacturing of glass. The process of making glass roughlyconsists of

melting raw materials at high temperature and letting the molten glass circulate and

mix for a while to give it the opportunity to attain certain properties. The glass is then

gradually cooled to proper temperatures at which it can be formed into (intermediate)

products. Figure 1.1 shows a cross section of a glass furnace. There isa continuous

influx of raw materials at the left and a continuous supply of energy through the burn-

ers above the furnace. A glass furnace can be compared to a swimming pool, filled

with molten glass that circulates at approximately1500◦ C. The right part of the fur-

nace is called the working end and the feeder, in this part the cooling of the glass takes

place. Production of glass is very energy-intensive, approximately40% of production

costs are energy costs. Natural gas is burned to produce the heat thatis necessary to

melt the raw materials.
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1.4. Operation of continuous processes

The circulations indicated in Fig. 1.1 are generated by temperature differences. The

quality of the end product is highly dependent on the temperature and velocity profiles

present in the furnace.

1.4 Operation of continuous processes

Operation of continuous industrial processes in a systematic manner requires process
knowledge. Usually this knowledge is available from two sources. The first carrier
of process knowledge is the experience of the process operators. These specialists by
experience instinctively know what will work and what will not work, which situa-
tions should be avoided and how this can be achieved. Mathematical models form the
second source of process knowledge. These models describe the evolution of physi-
cal variables such as temperature, concentration, flow etc. The interaction of physical
principles and chemical reactions, heat transfer and material flows are captured by
these models. The models are usually derived from the laws of physics andare based
on the assumption that energy, mass and momentum are conserved quantities.In all
cases the model describes the evolution of the physical variables over time and for
some processes the evolution of physical variables also varies in space.In the glass
furnace, Example 1.3.1, the temperature and flow profiles vary over time, but also as a
function of the different locations in the furnace. A model of a glass furnace therefore
describes the evolution of temperature over both space and time.
Most of the time, process models are formulated in terms of mathematical expres-
sions. In case of evolution over time only, the mathematical description is often a
collection of ordinary differential equations, describing the change in thephysical
quantities as a function of change of time. In case of evolution over both space and
time, the mathematical equations describe the change in the physical quantities as
both time and space change. This description is therefore usually in terms of Partial
Differential Equations.
Process models are usually generic, yet they are used in different contexts, namely
Research and Development, Production, and Maintenance. They are used in simula-
tion to design and improve understanding of what is happening inside a plant.Process
models are also used for monitoring purposes, to check whether the process is on the
right track. Thirdly, a process model can be used to evaluate differentstrategies for
operation. To make this clearer, recall the glass furnace example. Usually, a furnace
is used to produce a range of products. Say that we are operating a container glass
furnace which is producing brown-colored beer bottles. The next order that needs
to be fulfilled consists of clear marmalade containers. To go from the brown tothe
clear-colored glass, furnace operation has to be adjusted. There aredifferent ways
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Chapter 1. Introduction

to achieve this change in set point and a process model can be used to predict which
strategy will be fastest, or use the least energy.
From a management perspective, a reliable mathematical process model is a useful
tool. Although the practical knowledge of process operators is often indispensable, it
may take years to build that experience and there is no systematic way to transfer this
knowledge from one person to the next. While it may only take a couple of weeks to
get familiar with a mathematical model and to learn how to use and maintain it. Busi-
ness may benefit from relying not only on the knowledge of operators but also using
the knowledge available in process models during day-to-day operation. Furthermore,
mathematical models may give additional insight into production processes, since a
wider variety of scenarios can usually be tested, compared to those that can be exper-
imentally verified. Finally, a mathematical model is an indispensable tool in process
analysis and optimization.
Let’s take a closer look at what one would want to use a process model for from an
operation and control perspective. One would like to use a process model to determine
how to go from the current average operating situation to a desired improved operating
range, realizing a certain set of wishes, such as the shortest time, or the highest energy
efficiency. While such a path is pursued, unexpected occurrences have to be taken into
account and the model should tell us how to achieve our goal given the new situation.
This is exactly the way in which a car navigation system works.

Example 1.4.1(Car Navigation). Consider a car navigation system. The naviga-

tion system uses a GPS signal to determine the car’s current location, saywe are in

Hochstetterstrasse 23, Hemmingen, Germany. The driver enters a desired destina-

tion, say Den Dolech 2, Eindhoven, The Netherlands and a wish. In this case our

driver would like to get to Eindhoven as fast as possible. Let’s say the driver invested

in an expensive navigation system and the maps of all of Europe are available as well

as up-to-date information on traffic jams and construction sites. Given the current

location, the destination and the information on traffic jams, the navigation system

determines which maps to use and what would be the fastest route. It usesthe maps

of Germany and the Netherlands as its model. When a serious traffic jam occurs near

Venlo, the system re-calculates the route to go via Aachen and Maastricht instead of

Venlo.

In case of the glass furnace, the operator would like to use the process models in a way
similar to that of Example 1.4.1. The process model, which in case of the glass furnace
is a set of coupled partial differential equations, is equivalent to the mapsof Europe
in the navigation example. The navigation system was able to determine that it only
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1.5. Extracting information from process models

needed a small part of the maps of Germany and the Netherlands to plan a route. To
go from brown-colored to clear glass, one should be able to extract from the process
models only the trajectories that are relevant to such a color change. Furthermore, if a
disturbance occurs, for example the composition of the raw materials is different from
what was expected, there should be a selection mechanism available to re-calculate
the relevant trajectories. Just in the same way that the navigation system wasable to
re-route in the case of a traffic jam. And finally, similar to the driver’s wish ofgetting
to Eindhoven as fast as possible, the operator of the glass furnace would like to be able
to decide which trajectory will give him the fastest transition from brown-colored to
clear glass.
To summarize, there are a couple of elements that we would like to extract froma
process model in a control context. Given the current state, a desired operating range
and a target, e.g. minimizing energy, we want to select from the model the trajectories
that are relevant, the one that minimizes the cost involved in realizing our target and
we want to be able to do this repeatedly, so that we are able to deal with disturbances
and changing desires. Naturally, in the context of other model purposes, such as
process design or process modeling, the specific elements we wish to extract from the
model may be different. However, the techniques discussed in this work willremain
relevant in these contexts.
Assuming a process model is available, it is not always straightforward to extract the
information that is needed from this model. When dealing with processes where the
physical variables evolve over space and time especially, there are not many tools
available to automatically extract the relevant information within reasonable time.
The difficulty is the following. The mathematical expressions that constitute a pro-
cess model describe all possible trajectories of physical variables suchas temperature
and concentration over space and time, for all possible disturbances. Wesay that the
model describes the global behavior of the process. There exist no mathematical tech-
niques to extract from this generic process model the information that is relevant to
the current operating condition or current trajectory. Ideally, one would like to obtain
from the generic process model a description of those trajectories that are relevant to
the current situation. Unfortunately, the mathematical techniques that are currently
available do not allow this.

1.5 Extracting information from process models

Extracting information from mathematical process models is not straightforward, as
mentioned in the previous section. To explain why this is the case, we explain how
numerical mathematical techniques deal with process models. Given a process model
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that describes the change in the physical variables as a function of the change in
space and time. Information about individual trajectories is obtained by dividing the
global problem into a large number of small problems. These small problems are then
pieced together like a mosaic to form a trajectory of the full system. Unfortunately,
this division into small problems introduces a lot of computational overhead, since
one has to make sure that the individual pieces in the mosaic represent a whole when
combined. All this bookkeeping translates to high computation times. Therefore,
although numerical mathematical techniques are a useful tool to extract information
from process models, in most cases it takes too much time to extract the information.
If the information comes too late it may no longer be relevant. In the car navigation
example the re-route via Aachen and Maastricht is only useful for the driver if this
alternative route is determinedbeforethe driver is stuck in the traffic near Venlo. If he
is already in the middle of this traffic jam, providing an alternative route is useless.
The devil is in the details, as they say, and this is most certainly the case for process
models and the accompanying numerical techniques. The process models contain all
details of all possible trajectories of the process. This is precisely the reason why
most numerical techniques become so computationally complex. The issue is that
we are hardly interested in all of these details. For the glass furnace and the change
from brown-colored to clear glass, the process operators want to usea process model
to determine thedirection in which they should steer the furnace and the details will
be taken care of in another way. The details that are available in the process models
are not of interest in this case. Unfortunately, no method exists yet, that willextract
information from a process model at a certain level of detail.
To explain what we mean by level of detail consider Figure 1.2. In this figure, an
image of a clown is visible. This image was coded in RGB colors and thus consistsof
tree layers. It is possible to infer from each layer individually that a clownis pictured.
However, if we want to see what color eyes this particular clown has, the combination
of the three layers is needed to see that the clown indeed has brown eyes.
In this work, we are looking for automated procedures that are able to decide what
information is relevant at a certain operating point or trajectory. This information
should be extracted from the generic process model into a compact model. This com-
pact model should be accurate for the purpose at hand. The techniques we are looking
for should provide an alternative to existing numerical methods.
If we are able to extract this information from generic process models, industrial pro-
duction processes can be further automated. Based on the information extracted from
compact models, systematic decisions about process operation in the most efficient
manner can be made. This decreases the footprint of currently existing production
processes. Process models describe the interaction of physical mechanisms, if we are
able to extract information about this interaction on different levels of detail,this in-
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(d) Blue Layer

Figure 1.2: The clown image consists of three different layers. Each individual layer

also carries information, independent of the others.
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Chapter 1. Introduction

formation can be used to develop new production processes. This way, information
extracted from process models can contribute towards developing sustainable tech-
nology for the future. Therefore, the techniques developed in this workcontribute
both towards sustainable operation of industrial production processes and towards the
development of next generation production processes.

1.6 Aim and contributions of this work

The premise of this chapter was to explain the title and thus the aim of this work.
Specifically, we will state what is meant byApproximation of multi-variable signals
and systems. Given a mathematical process model, approximation is the process of
extracting certain system trajectories from this model. In this case, the main interest is
in those system trajectories that are relevant to the control objective. Approximation is
the step that neglects the unnecessary detail to obtain only the essence of the process
one is interested in.Multi-variable signals and systemsrefers to the class of process
models that is under consideration. Namely, we consider process models that describe
the evolution of multiple physical quantities, over both space and time. Rephrased,
the aim of this work is to derive mathematical techniques that allow approximation of
multi-variable systems.
The method that has been developed and that is described in this thesis allowsfor such
approximations. It links traditional approximation techniques to concepts from multi-
linear algebra. This way, the approximation method is able to explicitly deal with
multiple physical variables and a spatial-temporal domain. The advantage thatis thus
gained is that it gives extra flexibility in choosing approximation levels in each spatial
variable. Furthermore, the scaling of the physical quantities can be tuned separately.
To make the aim and contributions of this work more specific, some additional con-
cepts have to be introduced. This will be done in the next chapter, which again ends
with a problem statement and contributions of this work.
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Chapter 2

Problem statement

2.1 Introduction

An important class of distributed systems models the evolution of signals that evolve
both in space as well as in time. Examples of such systems can be found in virtu-
ally all engineering disciplines including fluid dynamics, aerodynamics, seismology,
etc. Usually, first-principle models of these systems involve coupled sets of Partial
Differential Equations (PDEs) that are inferred from physical conservation laws.

Today, many commercial and dedicated packages exist that allow an efficient simu-
lation of such models. These numerical tools operate via discretization of the spatial
and temporal domain of the signals via finite elements or finite volumetric elements.
The accuracy of these methods largely depends on the density of the mesh,where
fine meshes need to be generated at spatial locations or temporal instants where large
signal variations occur. By doing so, the system dynamics, representedby the PDE,
are typically located in each and every element in the grid by copying the physical
laws in every element, and describing the interconnections of individual elements and
their neighbors. In this way, the original global problem as described bythe PDE
is translated into a large number of local problems and their interconnections via Fi-
nite Element (FE) or Finite Volume (FV) methods, see Fig. 2.1. Depending on the
specific application, the number of finite elements or finite volumetric elements may
be substantial and easily lead to large-scale models that require the solution of up to
106 − 108 equations at every time step.

The large number of equations that have to be solved for each time-step in FEor FV
methods leads to a number of problems. Most naturally, the sheer number of equa-
tions already makes simulation of FE (FV) models computationally demanding. This
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2.1. Introduction

Figure 2.1: This figure shows the mesh that was generated for the FE modelof a flow

around an obstacle [21]. A global problem is replaced by multiple local problems plus

their interconnections, this introduces computational overhead.

may prevent the models from being used for process monitoring if the simulations
are slower than real-time. Furthermore, the number of equations also implies that
these models are not suitable for model-based control design, since the complexity of
the model is usually a lower-bound for the complexity of the controller. Finally,the
large size of FE (FV) models implies that they are less suitable for analysis of system
properties such as stability, reachability, passivity, etc.

To reduce computation time and to enable the use of model-based analysis and design
tools, it then becomes necessary to construct simplified models that consist of con-
siderably smaller number of equations. These substitute models should be of lower
complexity, yet retain the information that is relevant for simulation, control design,
analysis, etc. The central question then becomes, given the FE model anda desired
objective, how to extract relevant information from the FE model so as to substantially
reduce its complexity. Here, substantial will mean to reduce the number of equations
from 106 − 108 to less than102.

As we shall describe in more detail below, approximation of multi-variable systems
involves both a signal and a system approximation step. Signals that are a function of
multiple variables or indices occur in all fields of science and engineering. Consider
for example measurements of the distribution of temperature across the globe during
a certain period of time. This temperature varies as a function of location and time.
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Chapter 2. Problem statement

Since locations are referenced by three coordinates, the temperature measurements
are indexed by four indices. Three of these indices refer to the location,the fourth
to time. One can come up with scores of examples of signals that are a function of
multiple indices or multiple independent variables.
Generally, it is not the signals themselves one is interested in, but the information
they carry. The global temperature distribution is generally used to derivetemperature
gradients or find out the temperature at specific locations across the globe. This and
other types of information can be extracted from multi-variable signals using analysis
tools. Signal approximation is one of these signal analysis tools.
Formally, signal approximation may be viewed as a low-rank approximation problem.
Whenever the signal under consideration is a function of multiple variables,i.e. a
multi-dimensional signal, low-rank approximations can be obtained via multi-linear
functionals, tensors. We will show that approximation of multi-variablesystemsalso
boils down to low-rank approximation problems. And, for multi-dimensional systems,
the solution of the system approximation problem involves the use of tensors.
The work presented in this thesis builds on previous work in this area, [2, 41, 80]. Here
the aim was to derive approximate models of multi-variable systems with the specific
purpose of deriving models that are suitable for control of large scale processes such
as the glass furnace introduced in Example 1.3.1. As is explained in the references
mentioned, the model of a glass furnace involves a combination of Navier-Stokes
equations [12] and heat transfer in a three-dimensional spatial domain. The premise
of this work is to examine the implications of a Cartesian structure in the spatial
domain on the approximation process.
It is the aim of this chapter to explain the role of multi-linear functionals, tensors, in
low-rank approximation of multi-dimensional signals and systems. We will introduce
the signal and system approximation problems, give a formal problem statement and
provide an overview of the main body of this thesis.

2.2 Signal approximation

Signals that evolve over multi-dimensional domains are the focus of this section. In
general, these signals themselves are not of immediate interest. One is interested in
the information contained in these signals, where the context defines what information
is of importance. Extraction of information from signals then becomes a two-step
process. The first step is to decide which part or property of the signalcontains the
information. The second step is to actually extract this specific part or property.
As an example consider the one-dimensional periodic signal in Example 2.2.1.Sup-
pose that the information of interest is the low-frequent component of the signal. This
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2.2. Signal approximation

information can be extracted by making a signal decomposition in which spectral
components represent the harmonic content of the signal. This is done with classi-
cal Fourier analysis. An approximationwr of the original signalw is obtained by
projection ofw on a subspace spanned by a set of harmonic functions. This projec-
tion is theoperationthat extracts the information fromw. In this case, we obtain the
low-frequent component ofw which is represented bywr.

Example 2.2.1.Consider the approximation of one-dimensional periodic signals. Let

w : X1 → R be of period2π and continuous, i.e.w(x1 + 2π) = w(x1) for all

x1 ∈ X1. Then,w may be approximated by a truncated Fourier series as follows. By

definition, the Fourier series ofw of orderr is the trigonometric series

wr(x1) := a0 +
r∑

k=1

ak cos(kx1) + bk sin(kx1) (2.1)

with coefficientsak andbk given by the Euler formulas [51]

a0 =
1

2π

2π∫

0

w(x1)dx1

ak =
1

2π

2π∫

0

w(x1) cos(kx1)dx1, k = 1, 2, . . .

bk =
1

2π

2π∫

0

w(x1) sin(kx1)dx1, k = 1, 2, . . . .

With this approximation, we have convergence in the sense that

lim
r→∞ ‖w − wr‖ = 0

where‖w − wr‖2 =
∫ 2π

0 | w(x1) − wr(x1) |2 dx1, i.e. convergence in theL2

norm on[0, 2π]. This particular approximationwr ofw can be viewed as a projection

as follows. LetX = L2[0, 2π] and let Xr = span{1, cos(kx1), sin(kx1) | k =

1, . . . , r}. Then we have thatwr = ΠXrw, whereΠXr represents the orthogonal

projection ofw ∈ X ontoXr.

Figure 2.2 shows the approximation of a block signalw, wr, for different values ofr.

Here, complexity ofwr is measured by the number of independent harmonic functions

in Xr. The projection ofw onXr extracts the low-frequent content ofw.
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Figure 2.2: Approximation of a block signal by Fourier Expansions of different or-

ders. From top-left in clockwise order the approximation degrees are 4,8, 20 and

100.

In this work, we focus on extracting information via projection of the originalsignal
on low-dimensional subspaces. This projected signal generally is an approximation of
the original signal. The subspaces that are considered for projection depend entirely
on the context. In Example 2.2.1 we considered harmonic functions for frequency
analysis, but one may also consider subspaces spanned by polynomials etc. In this
thesis, the focus is on low-dimensional subspaces spanned byempirical basis func-
tions. By this we mean that projection spaces are inferred from measured or simulated
data, acquired from the process.

Just like the information contained in a signal depends on the context, the complexity
of a signal depends on the choice of basis functions used to representthe signal. The
complexity may be described by the bandwidth, or rather, more generally speaking,
by the dimension of the span of basis functions that are used to representthe signal.
Such basis functions can be harmonic functions in case of Fourier analysis, but may
also be polynomials, etc. The number of basis functions used to representthe signal
is the rank of the signal in terms of these basis functions. Low-rank approximation
of signals then means representation of the signal with respect to a smaller number of
basis functions. The projected signal is then said to be of lower complexity that the
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2.2. Signal approximation

original.
In general,signal projectionsare defined as follows. Consider a signalw : D → R

n

where the domainD consists of a finite interval[0, L] ⊂ R. Throughout, we consider
the discretized signals only, i.e. we assume that the domainD has been sampled into
a finite set of points, i.e.X = {p(1)

x , . . . , p
(LX)
x } ⊂ D. We assume this discretization

step has already been carried out and that the error introduced by this discretization is
sufficiently small.
Let X be the space of functionsg : RLX → R

n with associated inner product

〈ξ1, ξ2〉 =
LX∑

k=1

〈ξ1(xk), ξ2(xk)〉n (2.2)

where〈·, ·〉n denotes the Euclidean inner product inR
n. Furthermore, let{f (k)} be an

orthonormal basis forX . Then, anyw ∈ X can be expressed as a spectral expansion

w =
∑

k

wkf
(k)

wherewk are called the coefficients ofw with respect to the basis{f (k)} of X . Since
we consider an orthonormal basis{f (k)} of X , the coefficientswk satisfy

wk = 〈w, f (k)〉, k = 1, 2, . . .

and are uniquely determined byw ∈ X and the basis{f (k)}. Let Xr ⊆ X be ther-
dimensional subspaceXr = span{f (1), . . . , f (r)} and letΠXr denote the orthogonal
projection of elements inX ontoXr. Then the approximationwr of w is defined as

wr = ΠXrw =
r∑

k=1

wkf
(k). (2.3)

In this work, we consider subspacesXr that are spanned by empirical basis functions.
By replacing the original signal by one of lower complexity, signal approximation
allows information to be stored in a more compact manner. Furthermore, the low-
complexity replacement signal usually allows for faster computations, for example
in post-processing of signals. Finally, signal approximation may give information
about the phenomena underlying the signal. For example, it may give information
about the system that generated the signal. These underlying phenomenamay be of
lower complexity than the dimension of the original data may imply. Referring to
Example 2.2.1, a question relevant here is how to find the best approximation of a
certain degree of complexity, given the original signal, where ’best’ is measured in
the norm associated withL2[0, 2π].
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(b) Rank-5 Approximation
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(c) Rank-15 Approximation

Figure 2.3: Optimal rank approximation of the clown image. The original image is of

size200 × 300 and the matrix describing it has rank200. In the middle and on the

right two rank approximations of the original image are shown.

We will now consider approximation of two-dimensional signals on finite, discrete do-
mains. Letw : X1×X2 → R be a two-dimensional signal andXk = {p(1)

k , . . . , p
(Lk)
k }

for k = 1, 2. Then, the signal values can be represented by matricesw ∈ R
L1×L2 .

Consider the problem of finding decompositions ofw in terms of rank-one matrices
as follows

w =
∑

k

wkf
(k),

wheref (k) ∈ R
L1×L2 is of rank one. Approximations ofw may be obtained via trun-

cation of this decomposition in terms of rank-one matrices. The degree of complexity
of the approximation is in this case given by the rank of the approximating matrix.
The solution to the question of finding the best rank-k approximation of a matrix, was
presented in [27]. As is discussed in detail in Appendix A.3, the solution to theprob-
lem of optimal rank approximation of matrices can be found via the Singular Value
Decomposition (SVD). An imaging example of optimal rank approximation to matri-
ces is shown in Fig. 2.3. This shows an image which can be represented by a200×300
matrix of rank200. The middle and right of Fig. 2.3 show rank approximations of the
image. These low-rank approximations do not capture all detail of the original, yet it
is clear that one is looking at a (distorted) image of a clown. In the case ofN > 2, i.e.
when considering higher order tensors, the question of optimal rank approximations
becomes much more involved, as we shall see later on.
The signal approximation problem we will consider is the following. We consider
signals that evolve over a multi-dimensional domain of independent variables. To be
more specific, we consider signalsw(p1, . . . , pN ) ∈ R

n with (p1, . . . , pN ) ∈ X =

X1 × · · · ×XN whereXk is a set of finite cardinalityLk, i.e.Xk = {p(1)
k , . . . , p

(Lk)
k }.
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2.3. System approximation

We want to obtain an approximationwr tow such that the error‖w−wr‖ is minimized
in some norm while the structure of the independent variables is kept intact. The
reason this problem is more difficult to solve than the one- or two-dimensionalcase,
is that there are different rank concepts for multi-dimensional signals. Each of these
rank concepts lead to different low-rank approximations. Hence, a method to compute
optimal low-rank approximations to multi-dimensional signals does not yet exist.
The solution strategy to the problem of low-rank approximations to multi-dimensional
signals is the following. We will associate a tensorW with w and determine low
(modal-)rank approximations to this tensor. These approximations define projection
spacesX (rk)

k ⊆ Xk for k = 1, . . . , N , whereX (rk)
k = span{ϕ(1)

k , . . . , ϕ
(rk)
k }. These

projection spaces are then used to define low-rank approximations to the signal w.
This way, an approximationwr of w is defined via an approximationWr of the tensor
W associated withw. Since there may be different generalizations of the rank concept
to tensors, there are also different notions of low-rank approximationsWr of W . The
computation ofWr in a systematic manner is one of the problems considered in this
work.

2.3 System approximation

In mathematical terms, the complexity of a model is usually defined in terms of the
number of coupled first-order differential or difference equations [1]. The accuracy of
a model is usually defined by comparing measured and simulated process datawhere
the same excitation is used for the model and the real process. Naturally, one would
like the accuracy of a process model to be as high as possible. This usuallyincreases
both the cost of obtaining the model and the model complexity.
One would like the complexity of a process model to be as low as possible. This,
because the implications of a high model complexity on model-based control design
and simulation of the model are manifold. The simulation time of high-complexity
models is large. Therefore, it may not be possible to use such a model for simulation
purposes. Furthermore, large simulation times also impede on-line model-basedop-
timization. In most model-based control strategies the complexity of the controlleris
equal to or exceeds the complexity of the process model. This may lead to problems
in the derivation and implementation of such a controller.
There is a clear trade-off between complexity and accuracy. Namely, increased ac-
curacy implies increased complexity and vice versa. However, the situation isnot as
black-and-white as it appears to be. This can be seen when one takes intoaccount
what the process model will actually be used for. Generally, not all aspects of the
process behavior are relevant to the purpose for which the model will beused. For
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example, if one is interested in steady-state process behavior, a model thataccurately
describes not only the steady-state behavior but also the transients basically contains
a lot of details that are not relevant. Another model of significantly lower complex-
ity that accurately predicts steady-state behavior but is less accurate forthe transients
may be a good substitute for its purpose, with lower complexity.
The low-complexity replacement model should satisfy a number of demands:

• The error between the original model and its replacement should satisfy some
upper bound.

• If the replacement model is to be used in a predictive control setting, the com-
putation time of the model should be sufficiently small.

• Qualitative properties of the original model should be preserved as much as pos-
sible in the replacement model. Examples of such properties include symmetry,
dissipativity, stability, conservation of energy, etc.

Several model approximation techniques exist. Techniques that are suitable for linear,
lumped systems include balancing, Hankel norm reduction a and Krylov methods.
Balancing is also applicable to nonlinear lumped systems. The method of Proper
Orthogonal Decompositions (POD) is one of the few model reduction methods that
is suitable for distributed systems. POD is also known under the names of Princi-
pal Component Analysis (PCA) [44] and Karhunen-Loève-Decomposition [56]. The
essence of all of these methods is the same. Namely, they seek to obtain model ap-
proximations via projection of the original (state space) equations onto some lower-
dimensional subspace. This concept of approximation via projection will beintro-
duced for lumped systems in the next subsection first. Then we will extend this
framework to discrete-domain distributed systems.

2.3.1 System approximation via projections

We will consider a special case of approximation through projection, namelythat of
a lumped system in input/state/output-form. This case is generally known and can be
found for instance in [1]. Consider the following system

Σ :=

{

x(t+ 1) = f (x(t), u(t))

y(t) = g (x(t), u(t)) .
(2.4)

Here,x(t) ∈ R
n is the state vector,u(t) is the input andy(t) is the output. We will

derive a Petrov-Galerkin projection for this system. Consider the followingprojection
space

Xr := {x : Z → R
n | x(t) ∈ V}
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2.3. System approximation

hereV ⊂ R
n is a subspace of dimensionr. Furthermore, consider a subspaceW ⊂

R
n of dimensionr and suppose thatV = ImV andW = ImW , whereV andW are

matrices of dimensionn× r.
State approximation will be considered first.Decomposex(t) according to

x(t) = x̂(t)
︸︷︷︸

∈V

+ x̃(t)
︸︷︷︸

∈V⊥

. (2.5)

Here,x̂(t) = ΠXrx(t) is the projection of the state on the lower-dimensional subspace
V andx̃(t) = (I − ΠXr )x(t) = x(t) − x̂(t). x̂(t) is defined by

x̂(t) = ΠXrx(t) (2.6)

= V (V ⊤V )−1V ⊤x(t)
︸ ︷︷ ︸

xr(t)

(2.7)

= V xr(t). (2.8)

wherexr(t) ∈ R
r will be the new state vector.

The residual equation that will be projected isx(t+1)−f(x(t), u(t)) = 0. We define
the following approximate residual projection

〈x(t+ 1) − f(x, u), ξ〉 = 0, ∀ξ ∈ W. (2.9)

Combined with the approximation̂x(t) of x(t) this gives the following reduced order
model

〈x̂(t+ 1) − f(x̂, u), ξ〉 = 0, ∀ξ ∈ W
〈V xr(t+ 1) − f(V xr, u), ξ〉 = 0, ∀ξ ∈ W

〈V xr(t+ 1) − f(V xr, u),Wϕ〉 = 0, ∀ϕ ∈ R
r

〈W⊤V xr(t+ 1) −W⊤f(V xr, u), ϕ〉 = 0, ∀ϕ ∈ R
r.

The last line implies that

W⊤V xr(t+ 1) = W⊤f(V xr(t), u(t)) (2.10)

which defines the approximate model of state dimensiondim(Xr) = r. A Galerkin
projection assumes thatW = V , which leads to the new system̂Σ

Σ̂ =

{

xr(t+ 1) = (V ⊤V )−1V ⊤f(V xr, u)

y(t) = g(V xr, u).
(2.11)
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The crucial question behind this system approximation is the following. Giventhe
systemΣ, how to choose the projection spacesW andXr such that the error between
Σ andΣ̂ is sufficiently small in a suitable norm. All existing model reduction methods
provide a solution strategy to precisely this question and it also this question that will
be considered in this work. The class of systems under consideration in thiswork is
that of distributed systems on discrete domains, defined in Appendix A.2.
Although the state vector of the system̂Σ is of lower dimension than the original
state vector, function evaluations(V ⊤V )−1V ⊤f(V xr, u) in (2.11) still require the
computation off on(V xr, u) which are elements in the original state and input space.
If f is nonlinear, this implies that the computational efficiency ofΣ̂ is hardly improved
with respect to that ofΣ. This problem is addressed in more detail in [3, 17] and in
Chapter 5 of this work.

2.3.2 Approximation of multi-variable systems

The concept of system approximation via projection, as introduced for lumped sys-
tems in the previous section can be formulated for distributed systems as follows.
Consider an arbitrary linear distributed system described by the following Partial Dif-
ference Equation

D(ς1, ς
−1
1 , . . . , ςN , ς

−1
N )w = 0. (2.12)

HereD ∈ R
ℓ×n[ξ1, . . . , ξN , η1, . . . , ηN ] is a real matrix-valued polynomial in2N

indeterminates andςk (ς−1
k ) is the forward (backward) shift operator acting on the

spatial discretization in thekth mode according to Definition A.2.1. The domain
of the signalw, will be denoted byX . Solutionsw to this PDE assume the form
w : X → R

n whereX is a set of finite cardinality, sayLX . This type of system is
formally introduced in Section A.2.
Let Ξ be a set of functionsf : X → R

ℓ equipped with the following bi-linear form

〈ξ1, ξ2〉Ξ =
LX∑

k=1

〈ξ1(xk), ξ2(xk)〉N+1 (2.13)

where〈·, ·〉N+1 denotes the standard Euclidean inner product inR
ℓ. We will first

define aresidual projectionof (2.12) onΞ as

〈D(ς1, ς
−1
1 , . . . , ςN , ς

−1
N )w, ξ〉Ξ = 0, ∀ξ ∈ Ξ. (2.14)

Equation (2.14) will be viewed as a new, and weaker, constraint on the variablew.
Indeed, any solutionw of (2.12) satisfies (2.14), but the converse is obviously not true.
We call (2.14) a residual projection ofD(ς1, ς

−1
1 , . . . , ςN , ς

−1
N )w = 0 ontoΞ. We will
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be especially interested in finite dimensional subspacesΞr of mappingsX → R
ℓ,

say of dimensionr, i.e. Ξr = span{ξ(1), . . . , ξ(r)} with {ξ(ℓ)} a basis ofΞr. The
expression (2.14) then becomes

〈D(ς1, ς
−1
1 , . . . , ςN , ς

−1
N )w, ξ〉Ξ = 0, ∀ξ ∈ Ξr. (2.15)

The system associated with (2.15) is interpreted as the solution setw that satisfies
(2.15).
The residual projection can also be combined with the signal approximation concepts
as given in (2.3). That is, we now consider a projection spaceXr for w and consider
again the PDE (2.12). We will use the approximate residual projection, (2.15) and
substitute into this equation a projected signalwr. This gives

〈D(ς1, ς
−1
1 , . . . , ςN , ς

−1
N )wr, ξ〉Ξ = 0, ∀ξ ∈ Ξr, wr = ΠXrw. (2.16)

This projection method is called aPetrov-Galerkinprojection. Whenever the two
projection spaces are equal, i.e.Xr = Ξr, (2.16) is called aGalerkinprojection.
The question this work deals with is the following. Consider the case that the domain
X of (2.12) has Cartesian structure, i.e.X = X1 × · · · × · · ·XN . Furthermore we
are interested in the case whenXr = Ξr andXr is obtained from data. That is, we
consider the problem of computing empirical projection spaces in case the domainX
has Cartesian structure. The computation of these projection spaces is again a low-
rank approximation problem for a signal (our data) on a Cartesian grid. The solution
of this problem again involves low-rank approximations to tensors, as we shall see in
Chapter 4.

2.4 Problem statement

The aim of this work is to develop numerical techniques for the approximation of
large-scale multi-variable systems, i.e. systems where the evolution of the state isover
both space and time. The techniques that will be developed allow the construction of
low-complexity replacement models from large-scale Finite Element models. These
replacement models can then be used for on-line process monitoring, model-based
control design for example.
This aim translates into signal and system approximation problems, for signalsand
systems defined on multi-dimensional domains. The main body of this thesis consists
of three parts. The common factor between these chapters is that tensors are associated
with multi-dimensional signals on discrete Cartesian grids. These tensors arethen
used to solve the original approximation problems.
The following problem statements can be formulated for each chapter:
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1. Chapter 3 considers the problem of finding low-rank approximations to tensors.
Specifically, we consider the following problems:

(a) Given a tensorW : X1×· · ·×XN → R of modal rankR = (R1, . . . , RN ),
find a tensorWr : X1 × · · · × XN → R of modal rankr = (r1, . . . , rN )
whererk ≤ Rk, k = 1, . . . , N such that the errorW − Wr is minimized
in Frobenius and/or operator norm.

(b) If such a low-rank approximation method is found, what are its properties
and can the error‖W −Wr‖F or ‖W −Wr‖ be characterized?

(c) Derive a method for numerical computation ofWr.

(d) Demonstrate the low-rank approximation method in a numerical example
and compare its performance with existing methods.

2. Chapter 4 considers the problem of finding approximations to systems that
evolve over a multi-dimensional domain. Specifically, we consider a distributed
dynamical systemΣ on a discrete domainX, as in Def. A.2.3. Furthermore, we
assume that the domainX has Cartesian structure, i.e.X = X1 × · · · × XN .
The question that will be addressed in Chapter 4 is that of finding a replacement
modelΣ̂ to Σ via the Galerkin projection method (2.16). The projection spaces
are required to be empirical and have a Cartesian structure.

3. Chapter 5 considers the problem of reconstruction of multi-dimensional signals
that have been sampled on a non-uniform Cartesian grid. Specifically, wecon-
sider signalsw : X → R, whereX = X1 × · · · × XN . The questions that will
be addressed are the following:

(a) Given a subset of sample pointsX0 ⊆ X and the restrictioñw := w|X0 ,
under which conditions is it possible to exactly recoverw from w̃ via a
reconstruction mapR : X0 → X such that‖w −R(w̃)‖ = 0.

(b) In case exact reconstruction is not possible, can we characterizethe error
‖w −R(w̃)‖?

2.5 Reading guide per chapter

This section provides an overview of the contents of the main body of this work
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2.5. Reading guide per chapter

Chapter 3

Chapter 3 considers the problem of finding low-rank approximations to tensors. For
order-2 tensors, matrices, this problem is well understood, see Appendix A.3. Gen-
eralization of these results to higher-order tensors, however, is not straightforward.
Finding tensor decompositions that allow suitable approximations after truncation is
an active area of research [47], to which this chapter contributes in the following way.
The problem of low-rank approximations to tensors is ill-posed, see [26] for a thor-
ough discussion and overview of this issue. Therefore, we consider adifferent rank
concepts, referred to as multi-linear or modal rank, and define a method to obtain
such tensor decompositions. This method will be referred to asTSVD, which is short
for Tensor SVD. The naming of this method is for convenience only, there are many
other SVD-type tensor decomposition methods, of which the HOSVD [24] is themost
known. In Chapter 3 we derive properties of the TSVD and in certain cases we give
error bounds when the method is used for low-rank approximations to tensors. In
Sec. 3.7 we propose an adaptation of the TSVD method that may give better approx-
imation results when not all modal directions are approximated. This adaptationwill
be referred to asdedicated TSVD. In Sec. 3.8 we propose a numerical algorithm for
the computation of the (dedicated) TSVD. With a small adaptation, this algorithm can
also be used to compute successive rank-one approximation to tensors. Finally, in
Sec. 3.9, we include a simulation example which demonstrates the methods proposed
in this work and compares them to a well-known existing method.
Especially in the signal processing community, tensors are commonly viewed as
multi-dimensional arrays. Since changes of coordinate systems are among the most
elementary operations, we believe that it is particularly important to understand ten-
sors as general multi-linear functionals. This is reflected in the way this chapter has
been written. The results in this chapter have been published in [81, 7].

Chapter 4

Chapter 4 considers the problem of finding system approximations. As discussed
in Sec. 2.3, methods for finding system approximations all rely on projection of the
state vector and the system dynamics on low-dimensional subsystems. The method of
Proper Orthogonal Decompositions (POD) is such a model reduction method. POD is
suitable for systems that evolve over multi-dimensional domains. As we will explain
in our review of POD in Chapter 4, the projection spaces that are considered in POD
are empirical projection spaces, derived from measured or simulated data.
Whenever the system domainX is a Cartesian domain, i.e.X = X1 × · · · × XN , ten-
sors can be used to compute the empirical projection spaces. Specifically, measured
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(simulated) data on a Cartesian domain defines a tensor and decompositions ofthe
kind discussed in Chapter 3 can be used to compute projection spaces that are used to
derive the system approximations.
We first introduce the POD method as it is found in literature. Then we incorporate
tensors in the case of a Cartesian structure of the domain. The results of thischapter
have been published in [7, 8].

Chapter 5

Chapter 5 considers the problem of reconstruction and approximation of multi-dimen-
sional signals, but now in the case that these signals are sampled with non-uniformly
distributed sensors. The motivation for this problem statement stems from the Missing
Point Estimation (MPE) method derived in [3]. The MPE technique aims to decrease
the computational cost of the reduced models derived using POD by considering sys-
tem dynamics on a selection of grid-points only. The MPE method was developed for
one-dimensional signals.
Here, we consider multi-dimensional signals on a Cartesian domainX = X1 × · · · ×
XN . Furthermore, we define the restriction of the signalw : X → R to a subset
X0 ⊆ X, as asamplingof w.
The central question of this chapter is that of finding a reconstructionŵ of w from
the sampled signal̃w. We consider a reconstruction mapR and present conditions for
exact reconstruction ofw from w̃. In case that exact reconstruction is not possible,
we derive an expression for the reconstruction error. The results ofthis chapter have
been published in [5].
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Chapter 3

Tensor Decompositions

3.1 Introduction

This chapter proposes techniques to analyze and approximate tensors bylow-rank
approximations. For the matrix case (that is, tensors of order 2), the problem of finding
low-rank approximations is well understood. The solution consists of truncating a
dyadic expansion (i.e., a finite sum of orthonormal rank one matrices) of thematrix,
that is directly inferred from its singular value decomposition [27]. For higher-order
tensors, this problem has been studied by many authors, such as [18, 26, 46, 48, 55,
24]. With the approximation error defined by the Frobenius norm, and with a suitable
notion of tensor rank, it was found that the optimal lower rank tensor approximation
problem is ill-posed in the sense that optimal low rank approximations may fail to
exist or may not be unique. More specifically, the space of rankr tensors is non-
compact and the non-existence of low-rank approximations occurs for many different
ranks and orders, regardless of the norm, see [26] for an overviewof these issues.
The existence, uniqueness and computability of optimal lower rank approximations
of higher order tensors has therefore been recognized as a major problem in numerical
multi-linear algebra.

Within the existing literature, one can distinguish two main classes of tensor decom-
positions. The first one is known as a Tucker decomposition [75] and represents an
orderN tensorT as the product of a core tensor of the same size as the original one
together withN nonsingular matrices whose columns span the domain of each of
the arguments ofT . A special case of this decomposition is the higher order singu-
lar value decomposition (HOSVD) that has been proposed in [24]. The second class
of decompositions amounts to representingT as a linear combination of normalized
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rank-1 tensors (outer-products of norm 1). The latter is usually referred to as aCP
decomposition[15, 37]. Both classes of tensor decompositions have been used for
lower rank tensor approximation. However, neither of these classes provide optimal
low rank approximations as in the matrix case. One can therefore only reachthe con-
clusion that the algebraic and geometric properties of matrices and tensors of order
N > 2 are highly dissimilar.
The purpose of this chapter is to develop a notion of singular decompositionsfor
tensors (TSVD’s) and to study its implication for the problem of finding (optimal)low
rank approximations of tensors. We will do this by introducing a decompositionthat
combines a choice of orthonormal bases in the domain of the tensor with a suitable
truncation of its expansion. In addition, we aim to develop suitable computational
algorithms for the calculation of such decompositions and prove their stability and
convergence properties.
The focus on the topic of singular value decompositions for optimal rank approxima-
tion problems is most natural for a number of reasons. Firstly, the SVD provides a
useful way to numerically implement the algebraic concept of rank of matrices. It is
doing this by quantifying near rank deficiencies or distances to lower rankapproxi-
mations [33]. Secondly, singular vectors define orthonormal bases of both the domain
and codomain of a linear map in such a way that the matrix representation of this
mapping is maximally sparse with respect to these bases. Thirdly, singular values
provide relevant information to analyse invertibility and the numerical conditioning
of matrices and matrix operations. Fourthly, the SVD is well defined by performing
successive rank-one approximations of a matrix.
A widely used generalization of the singular value decomposition to tensors was first
introduced in [24] and is referred to as the higher order singular value decomposition
(HOSVD). This decomposition involves the classical singular value decomposition of
all possible matrix unfoldings of a tensor. In [24, 25] the authors propose an algo-
rithm to construct the HOSVD and derive lower rank approximations by restricting
the domain of the tensor to subspaces spanned by the first few left singular vectors
of all possible matrix unfoldings. This procedure is easy to compute and implement,
but the resulting low order tensors do not optimally approximateT . An upper bound
on the approximation error is derived in [24]. Although the basic idea behind tensor
unfoldings is interesting, at a more fundamental level it involves replacing the multi-
linear structure of a tensor by multiple bi-linear structures and, therefore,hides the
intrinsic multi-linear and algebraic properties of a tensor.
Especially in the signal processing community, tensors are commonly viewed as
multi-linear arrays and tensor operations are carried out with regular matrixmanipula-
tions. Although useful for many applications in signal processing such as[22, 76, 77],
this point of view has serious shortcomings when studying tensors at a morefunda-
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mental algebraic level. Since changes of coordinate systems are among the most
elementary algebraic operations, we believe that it is particularly important to under-
stand tensors as general multi-linear functionals in a coordinate-free algebraic context.
Therefore, a discussion on coordinate-free concepts such as innerproducts, orthog-
onality, contractions, modal ranks and norms of tensors precedes the definition of a
singular value decomposition and aims to provide insight in the true and more subtle
nature of tensors as operators.
This chapter is organized as follows. In Section 3.2 tensors are formally introduced.
We discuss tensor norms and inner products. Section 3.3 introduces the field of tensor
decompositions and gives a short overview of the current state of the field. Sec-
tion 3.4 then formally defines tensor rank and several decompositions related to these
rank concepts. It also gives a formal problem statement for the problemof low-rank
approximation. Section 3.5 defines a new modal rank decomposition method. This
decomposition method will be referred to as TSVD and properties of the decompo-
sition are derived. Section 3.6 gives the low-rank approximation results that can be
achieved with this method. Section 3.7 proposes an adaptation of the TSVD thatmay
yield better approximation results when not all modal directions are approximated.
Section 3.8 presents a numerical algorithm that can be used to compute the TSVD.
This chapter is concluded with a numerical example in Section 3.9 and a number of
conclusions.

3.2 Tensors

An order-N tensoris a multi-linear functional

W : X1 × . . .× XN → R

defined on vector spacesX1, . . . ,XN that are assumed to be finite-dimensional. That
is, W is a linear functional in each of itsN arguments. Elements ofW are spec-
ified by real numberswℓ1···ℓN

whereℓk ranges from 1 till the dimensionLk of Xk,
andk ranges from 1 tillN . Elements ofW are commonly encoded in theN -way
array [[wℓ1···ℓN

]] ∈ R
L1×···×LN which, especially in signal processing, is taken as a

(coordinate-dependent) definition of a tensor [24],[47]. We will referto thek-th argu-
ment ofW as thek-th modeof the tensor and toLk as thek-th mode dimension. The
elementswℓ1···ℓN

representW with respect to a specific collection of bases

{f ℓ1
1 , ℓ1 = 1, . . . , L1}, . . . , {f ℓN

N , ℓN = 1, . . . , LN } (3.1)

of X1, . . . ,XN , respectively, in the sense thatwℓ1···ℓN
=

W (f
ℓ1
1 ,...,f

ℓN
N

)

‖f
(ℓ1)
1 ‖2···‖f

(ℓN )

N
‖2

.
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3.2. Tensors

Throughout, the set of all order-N tensors onX1 × . . .× XN is denoted byTN which
becomes a vector space over the fieldR when equipped with the standard definitions
of addition and scalar multiplication. Precisely, given tensorsV,W ∈ TN and a scalar
α ∈ R, we have the following definitions.

1. Addition:U := V +W is the order-N tensor

U(x1, . . . , xN ) := V (x1, . . . , xN ) +W (x1, . . . , xN ) (3.2)

for all xk ∈ Xk. If V andW are represented with respect to the same sets of
basis functions, with coefficientsvℓ1···ℓN

andwℓ1···ℓN
, the coefficients ofU are

given byuℓ1···ℓN
:= vℓ1···ℓN

+ wℓ1···ℓN
.

2. Scalar multiplication: For anyα ∈ R, U := αW is the tensor

U(x1, . . . , xN ) = αW (x1, . . . , xN ) (3.3)

with xk ∈ Xk, k = 1, . . . , N . If the coefficients ofW arewℓ1···ℓN
, the coeffi-

cients ofU are given byuℓ1···ℓN
:= αwℓ1···ℓN

.

To define approximations to tensors we will need anormon the spaceTN . For this
let ‖ · ‖k denote the induced norm corresponding to the inner product〈·, ·〉k of Xk, i.e.
‖x‖k =

√

〈x, x〉k. We assume this structure fork = 1, . . . , N . The inner productof
two tensorsS, T ∈ TN with elementssk1···kN

andtℓ1···ℓN
, both defined with respect

to the bases (3.1), is given by

〈S, T 〉 :=
∑

k1

· · ·
∑

kN

∑

ℓ1

· · ·
∑

ℓN

sk1···kN
tℓ1···ℓN

〈fk1
1 , f ℓ1

1 〉 · · · 〈fkN

N , f ℓN

N 〉.

It is immediate that the right-hand side of this expression is invariant under unitary
basis transformations (i.e., transformationsQk : Xk → Xk for which‖Qkx‖k = ‖x‖k

for all x ∈ Xk) and soTN becomes a well defined inner product space. The Frobenius
norm of a tensorW ∈ TN is then defined as

‖W‖F :=
√

〈W,W 〉. (3.4)

It is easily seen that ifW is represented by[[wℓ1···ℓN
]] with (3.1) orthonormal bases,

then‖W‖2
F =

∑

ℓ1,...,ℓN
w2

ℓ1···ℓN
.

One may also consider theoperator normof W ∈ TN defined by

‖W‖ := max
xk∈Xk, ‖xk‖k=1

k=1,...,N

|W (x1, . . . , xN )|.
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That is,‖W‖ reflects the maximal amplitude that a tensor can assume when ranging
over the Cartesian product of all unit spheres inXk, k = 1, . . . , N . This norm satisfies
the properties‖W‖ ≥ 0, ‖W‖ = 0 only if W = 0, ‖αW‖ = |α|‖W‖ for any scalar
α ∈ R and‖W + S‖ ≤ ‖W‖ + ‖S‖ for anyS,W ∈ TN . Therefore,TN becomes a
normed linear space when equipped with the operator norm‖ · ‖.
For fixed elementsuk ∈ Xk, k = 1, . . . , N , the functional

U(x1, . . . , xN ) := 〈u1, x1〉1 · · · 〈uN , xN 〉N = ΠN
n=1〈un, xn〉n

defines an order-N tensor which will be denoted byU = u1 ⊗ · · · ⊗ uN . Whenever
non-zero, such a tensor will be referred to as arank-1 tensor. With respect to the
bases (3.1), the elements ofU areuℓ1···ℓN

= uℓ1
1 · · ·uℓN

N whereuℓk

k = 〈uk, f
ℓk

k 〉k

is the coefficient ofuk with respect to the basis vectorf ℓk

k . We have that‖U‖ =
ΠN

k=1‖uk‖k. Every tensor can be represented as a weighted sum of rank-one tensors
as follows

W =

dim(X1)
∑

ℓ1=1

· · ·
dim(XN )
∑

ℓN =1

wℓ1···ℓN
f

(ℓ1)
1 ⊗ · · · ⊗ f

(ℓN )
N (3.5)

We distinguish between different types of orthogonality (cf. [46, 54]) regarding ten-
sors. These distinct orthogonality concepts lead to different types of tensor decompo-
sitions, as will be shown later in this chapter.

Definition 3.2.1. Let U = u1 ⊗ · · · ⊗ uN andV = v1 ⊗ · · · ⊗ vN be two rank-1

tensors.

1. U andV are said to beorthogonal, denotedU ⊥ V , if 〈U, V 〉 =
∏N

k=1〈uk, vk〉k

= 0.

2. They are said to becompletely orthogonal, denotedU ⊥c V , if 〈uk, vk〉k = 0

for all k = 1, . . . , N .

3.2.1 Some additional tensor concepts

A linear mappingG : TN → TM is defined asB := G(A) whereB ∈ TM is the
tensor

B =
∑

m1

. . .
∑

mM

bm1,...,mM
êm1

1 ⊗ . . .⊗ êmM

M

obtained from the coefficientsaℓ1,...,ℓN
of A by

bm1,...,mM
=
∑

ℓ1

. . .
∑

ℓN

gℓ1,...,ℓN ,m1,...,mM
aℓ1,...,ℓN

. (3.6)
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for some collection of coefficientsgℓ1,...,ℓN ,m1,...,mM
. Evidently,G is entirely defined

by the constantsgℓ1,...,ℓN ,m1,...,mM
. In particular, we associate amultiplication tensor

TG ∈ TN+M with G by setting

TG :=
∑

ℓ1

. . .
∑

ℓN

∑

m1

. . .
∑

mM

gℓ1,...,ℓN ,m1,...,mM
eℓ1

1 ⊗ . . .⊗ eℓN

N ⊗ êm1
1 ⊗ . . .⊗ êmM

M .

(3.7)
It is immediate that any suchG is linear in the sense that, forA,B ∈ TN andα, β ∈ R,
we have thatG(αA+ βB) = αG(A) + βG(B).
Eigenvalues and eigentensors of a linear mapG : TN → TN are defined as follows:

Definition 3.2.2 (Eigenvalues and Eigentensors). A nonzero tensorA ∈ TN is an

eigentensorof the linear mapG : TN → TN with correspondingeigenvalueλ ∈ R if

GA = λA.

The concept of positive definiteness for matrices, as discussed here [43], can easily be
extended to mappings between tensors.

Definition 3.2.3 (Positive definite operator). A linear mappingG : TN → TN is

positive definiteif for any0 6= A ∈ TN there holds〈A,GA〉 > 0.

Positive definite mappings between tensors have real eigenvalues:

Theorem 3.2.4.If G : TN → TN is linear and positive definite then all its eigenvalues

are positive.

Proof. For any non-zero eigentensorAi ∈ TN of G with corresponding eigenvalue

λi, we have thatGAi = λiAi. BecauseG is positive definite we have

0 < 〈Ai, GAi〉 = 〈Ai, GAi〉 = 〈Ai, λiAi〉 = λi〈Ai, Ai〉 = λi‖Ai‖2.

Since‖Ai‖ 6= 0, we must have thatλi > 0 for i = 1, . . . , N .

The next section will introduce tensor decompositions. For the remainder ofthis
chapter it is assumed that the reader is familiar with matrix concepts such as rank, the
Singular Value Decomposition and optimal rank approximations to matrices. These
concepts are introduced in Appendix A.3, which can be referred to if necessary.
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3.3 Introduction to Tensor Decompositions

Tensor Decompositions is a discipline of research that strives to develop tools that
allow analysis and approximation of tensors. In this section, we will provide ageneral
introduction to this field.
To explain what is meant bytensor decompositions, consider a tensorW ∈ TN . W
operates on a collection of vector spaces, i.e.W : X1 × · · · × XN → R and is defined
with respect to bases{f (ℓk)

k }dim(Xk)
k=1 , k = 1, . . . , N . A decomposition ofW is implied

or defined by a basis change, such that the representation ofW with respect to these
new basis functions satisfies certain properties. Specifically, we look forsets of basis
functions{ϕ(ℓk)

k }Lk

ℓk=1, k = 1, . . . , N , such that the representation ofW with respect
to the newly defined basis functions, i.e.

W =

dim(X1)
∑

ℓ1=1

· · ·
dim(XN )
∑

ℓN =1

wℓ1···ℓN
ϕ

(ℓ1)
1 ⊗ · · · ⊗ ϕ

(ℓN )
N (3.8)

satisfies certain properties.
Desirable properties of tensor decompositions could be the following

1. Diagonality, the core of the representation ofW in (3.8) is diagonal, i.e.

wℓ1···ℓN
= 0, unlessℓ1 = · · · = ℓN

2. Orthonormality, {ϕ(ℓk)
k }dim(Xk)

k=1 is an orthogonal (orthonormal) basis forXk,
k = 1, . . . , N .

3. Low Approximation Error, the decomposition (3.8) ofW may be used to con-
struct approximations ofW . Specifically, truncations in the summations of
(3.8) result in small approximation errors betweenW and the truncated expan-
sion.

To explain the last item, we will now show how a tensor decomposition (3.8) can be
used to construct approximations to tensors. The way we define these approximations
closely resembles the concepts discussed in Sec. 2.3 where we introducedapproxima-
tions via projection of systems.
Consider a tensorW and its decomposition (3.8) and define an approximation degree
r which is anN -dimensional vector of integersr = (r1, . . . , rN ). As in (3.14) we
define the following subspaces

M(rk)
k = span{ϕ(1)

k , . . . , ϕ
(rk)
k }, k = 1, . . . , N.
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An approximationWr ∈ TN of W is now defined as the restriction

Wr := W |M(r1)
1 ×···×M(rN )

N

. (3.9)

Wr has the following representation

Wr =
r1∑

ℓ1=1

· · ·
rN∑

ℓN =1

wℓ1···ℓN
ϕ

(ℓ1)
1 ⊗ · · · ⊗ ϕ

(ℓN )
N .

The approximation degreer is a measure for the complexity of the approximantWr,
since it indicates how many coefficients and basis elements must be stored to represent
Wr.
Typically, it is not possible to construct tensor decompositions that satisfy all three
properties mentioned. We will now discuss two types of tensor decompositions. The
first generalizes the property of diagonality to tensor decompositions, the second type
generalizes the property of orthogonality.
The first type of tensor decompositions is called theCanonical Polyadic-, or CP-
decomposition. It was first defined in 1927 by Hitchcock [38] and becamebetter-
known when it was defined again in 1970 by Caroll and Chang and Richard Harshman.
In this decomposition, the core[[wℓ1···ℓN

]] of (3.8) is required to be diagonal, i.e.
wℓ1···ℓN

= 0, unlessℓ1 = · · · = ℓN . Then, (3.8) is equivalent to

W =
R∑

ℓ=1

wℓϕ
(ℓ)
1 ⊗ · · · ⊗ ϕ

(ℓ)
N (3.10)

=
R∑

ℓ=1

wℓU(ℓ)

The second type of tensor decompositions that will be examined is theTuckerde-
composition [75]. This decomposition may be used to generalize the orthogonality
property, though orthogonality is not strictly required. In the Tucker decomposition a
tensor is represented as follows

W =

dim(X1)
∑

ℓ1=1

· · ·
dim(XN )
∑

ℓN =1

wℓ1···ℓN
ϕ

(ℓ1)
1 ⊗ · · · ⊗ ϕ

(ℓN )
N . (3.11)

where the basis functions{ϕ(ℓk)
k } may be orthogonal (orthonormal) sets.

Apart from these two general types, other types of tensor decompositions exist. These
methods includeTree-Tuckerdecompositions, in which a tensor is decomposed into a
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tree of order-3 tensors, [60, 62], and block-decompositions [53]. For more informa-
tion on these and other tensor decompositions and the algorithms that may be used to
compute these decompositions, we refer to [47].
Tensor decompositions originated in the field of psychometrics, where they were used
for analysis purposes. Their applications have since been expanded tochemometrics,
signal processing, numerical linear algebra and many more, see [47] and the refer-
ences therein for an overview. An application area that receives a lot of attention lately
is that of using tensors to reduce computation time of multidimensional functions on
discretized grids. In [11] the authors introduce the concepts of separated rank and sep-
arated representations to accelerate computations of multidimensional functionals on
discretized grids. It is their aim to arrive at function approximations, rather than ten-
sor decompositions. Therefore, in the construction of the separated representation, the
authors do not require minimality of rank, nor orthonormality of the decomposition
in whatever sense, nor optimality of the approximation. Since it is ultimately the aim
of this work to construct empirical projection spaces spanned by orthonormal bases,
the work of [11] is not considered further here. In [45] the authors attempt to combine
the strengths of the Tucker and CP decomposition to decrease the time involvedin
computations with function related multidimensional arrays. Numerical algorithms
for tensor decompositions and approximations of Tucker type are presented, with the
additional constraint that the core array is to be represented in a low-rank canonical
format. As an application of tensors to accelerate computation of multidimensional
functions on discretized grids, [36] uses tensors to solve elliptic eigenvalue problems.

3.4 Tensor Decompositions

The aim of this section is to make the tensor decompositions introduced in the previ-
ous section more specific. We will start with a discussion of the rank concepts that
can be defined for tensors. Different rank concepts lead to different tensor decomposi-
tions. We will introduce modal rank decompositions of tensors, which are a subclass
of the Tucker decomposition defined in (3.11). This section concludes with aformal
problem statement for the remainder of this chapter.

3.4.1 Tensor rank and related decompositions

The concept oftensor rankis a highly non-trivial extension of the same concept
for linear mappings and has been discussed in considerable detail in, forexample,
[26, 46, 48, 24, 25, 55]. As with orthogonality in the previous subsections, the dif-
ferent concepts of tensor rank lead to different types of tensor decompositions. The
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3.4. Tensor Decompositions

rank of W ∈ TN , denotedrank(W ), is the minimum integerR such thatW can be
decomposed as in (3.10). By definition, the rank of the zero tensor is 0. [46] also
introduces the concepts of orthogonal and complete orthogonal rank. Theorthogonal
rank andcomplete orthogonal rankof a tensorW is the minimal integerR in decom-
position (3.10) with the additional requirements thatwℓ > 0, ‖Uℓ‖ = 1 andUi ⊥ Uj

(orUi ⊥c Uj) for 1 ≤ i, j ≤ R.
To define themodal rankof a tensorW ∈ TN , we first introduce thek-mode kernel
of W to be the set

kerk(W ) := {xk ∈ Xk | W (x1, . . . , xN ) = 0, ∀xp ∈ Xp, p 6= k}.

The multi-linearity ofW implies thatkerk(W ) is a linear subspace ofXk. Thek-
mode rankof W , is defined by

Rk = rankk(W ) := dim(Xk) − dim(kerk(W )), k = 1, . . . , N,

and is coordinate free generalization of thek-rank in [24]. Note thatrankk(W )
coincides with the dimension of the space spanned by stringing out all elements
wℓ1,...,1,...ℓN

till wℓ1,...,N,...ℓN
(where the indices1, . . . , N are at thekth spot). Finally,

themodal rankof W , denotedmodrank(W ), is the vector of allk-mode ranks, i.e.,
modrank(W ) = (R1, . . . , RN ), Rk = rankk(W ). The modal rank is also referred
to asmulti-linear rank [42].
The rank and modal rank are well defined in that there exist unique numbers R =
rank(W ) andRk = rankk(W ) for anyW ∈ TN . Obviously,rank(U) = rankk(U)
= 1 for a rank-1 tensorU . For W ∈ TN we have thatrankk(W ) ≤ rank(W )
and there exist examples with strict inequality for allk [24, 25]. For order-2 tensors
(matrices) we have thatR = R1 = R2 = rank(W ) and the rank concept coincides
with the usual notion of rank, row-rank or column-rank, of a matrix. The next example
shows that the modal ranks of a tensor need not be the same.

Example 3.4.1.This example is taken from [24]. Consider the tensorW : X1 ×X2 ×
X3 → R, whereXk = R

2, k = 1, 2, 3. The representation ofW with respect to the

standard bases is

w111 = w221 = w112 = 1

w211 = w121 = w212 = w122 = w222 = 0.

The modal rank ofW is given bymodrank(W ) = (2, 2, 1).
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ForW ∈ TN of modal rankmodrank(W ) = (R1, . . . , RN ) the expression

W =
R1∑

ℓ1=1

· · ·
RN∑

ℓN =1

wℓ1···ℓN
ϕ

(ℓ1)
1 ⊗ · · · ⊗ ϕ

(ℓN )
N (3.12)

is called amodal rank decompositionof W whenever

〈ϕ(i)
k , ϕ

(j)
k 〉k =

{

0 if i 6= j

1 if i = j
, for all 1 ≤ i, j ≤ Rk, k = 1, . . . , N.

A modal rank decomposition is therefore a representation ofW with respect to or-
thonormal bases

{ϕ(ℓ1)
1 }L1

ℓ1=1, . . . , {ϕ
(ℓN )
N }LN

ℓN =1 (3.13)

of X1 = R
L1 , . . . ,XN = R

LN , respectively. The modal rank decomposition is a
higher-order extension of the Tucker decomposition introduced in [75] with additional
orthogonality constraints.
Among the different notions of tensor rank that we define here, only the modal rank
can actually be computed for arbitrary order-N tensors. The other rank concepts can
only be determined for small academic examples such as2 × 2 × 2-tensors.

3.4.2 Modal Rank Approximations to Tensors

Since we view tensors as multi-linear functionals, rather than multi-dimensional ar-
rays, we only consider decompositions that can be regarded as basis transformation
of the multi-linear functional. Hence, we focus on modal rank decompositionsof
the form (3.12) and do not take decompositions of the form (3.10) into account. For
order-2 tensors, matrices, modal rank decompositions are equal to the rank decompo-
sitions defined in (3.10) and can be computed via the Singular Value Decomposition
(SVD), see Appendix A.3. Truncation of the SVD of a matrix yields optimal rank
approximations of these matrices, as is discussed in Appendix A.3.
For higher-order tensors the situation is less straightforward. Severalmethods have
been proposed to compute modal rank decompositions for tensors of order N > 2.
Each of these methods generalizes different properties of the matrix SVD.
Consider a tensorW ∈ TN of modal rank(R1, . . . , RN ). We will now demonstrate
how an approximation of this tensor can be computed from its modal rank decom-
position. Using one of the modal rank decomposition algorithms, orthonormal basis
functions{ϕ(ℓk)

k }Lk

ℓk=1 of Xk are computed as in (3.13). These basis functions de-
fine the modal rank decomposition, see (3.12). An approximation ofW of degree
r = (r1, . . . , rN ) can be defined as follows. Define the subspaces

M(rk)
k = span{ϕ(1)

k , . . . , ϕ
(rk)
k }, k = 1, . . . , N (3.14)
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Definition 3.4.2. Given a tensorW ∈ TN . For a vector of integersr = (r1, . . . , rN ),

rk ≤ Rk, k = 1, . . . , N , the modal truncationWr is defined by the restrictionWr :=

W |M(r1)
1 ×···×M(rN )

N

and is represented by the expansion

Wr =
r1∑

ℓ1=1

· · ·
rN∑

ℓN =1

wℓ1···ℓN
ϕ

(ℓ1)
1 ⊗ · · · ⊗ ϕ

(ℓN )
N (3.15)

wherewℓ1···ℓN
:= W (ϕ

(ℓ1)
1 , . . . , ϕ

(ℓN )
N ).

3.4.3 Problem formulation

The problem of finding lower modal rank approximations of a given tensoris the
prime motivation for the remainder of this chapter. A precise formulation is given as
follows.

Problem 3.4.3. LetW ∈ TN be a givenN -order tensor.

P1: Given a vector of integersr = (r1, . . . , rN ), rn ≤ rankn(W ), determine

infmodrank(Wr)=r ‖W − Wr‖ and find, if possible, a tensorWr ∈ TN with

modrank(Wr) = r such that‖W −Wr‖ is minimal.

P2: Given a vector of integersr = (r1, . . . , rN ), rn ≤ rankn(W ), determine

infmodrank(Wr)=r ‖W − Wr‖F and find, if possible, a tensorWr ∈ TN with

modrank(Wr) = r such that‖W −Wr‖F is minimal.

P3: Given an integerr ≤ rankW , determineinfrank(Wr)=r ‖W − Wr‖ and find,

if possible, a tensorWr ∈ TN of rankrank(Wr) = r such that‖W − Wr‖ is

minimal.

P4: Given an integerr ≤ rankW , determineinfrank(Wr)=r ‖W − Wr‖F and find,

if possible, a tensorWr ∈ WN of rankrank(Wr) = r such that‖W − Wr‖F

is minimal.

ForN > 2, Problem P4 has been studied in [46][48][55][26] by introducing orthog-
onal rank-1 tensor decompositions. It was found that the minimum rankr approxi-
mation problem is ill-posed in that optimal lower rank approximations do not needto
exist. In [55] an example is given of a rank 6 tensorW for which infrank(W2)=2 ‖W −
W2‖F = 0, showing that the space of lower rank tensors is not closed. For further dis-
cussions on Problem P4 we refer to [26, 18]. In this work we focus on the problems
P1 and P2.
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Chapter 3. Tensor Decompositions

3.5 TSVD

This section presents a new method to compute modal rank approximations to tensors.
We will first give the definitions of the method, then its properties will be discussed.
The sections that follow this one will state low-rank approximation properties and
give a numerical algorithm to compute the decomposition. The work presentedhere
was published in [81].
Let W ∈ TN be an order-N tensor defined on the finite dimensional vector spaces
X1, . . . ,XN where we suppose thatdim(Xk) = Lk. The singular valuesof W ,
denotedσm(W ), with m = 1, . . . ,K andK = mink modrank(W ) are defined as
follows.
Fork = 1, . . . , N let

S(1)
k := {x ∈ Xk | ‖x‖k = 1}

denote the unit sphere inXk. Define the first singular value ofW by

σ1(W ) := sup
xk∈S(1)

k
,

1≤k≤N

|W (x1, . . . , xN )|. (3.16)

SinceW is continuous and the Cartesian productS(1) := S(1)
1 × · · · × S(1)

N of unit
spheres is a compact set, an extremal solution of (3.16) exists (i.e., the supremum in
(3.16) is a maximum) and is attained by anN -tuple

(x
(1)
1 , . . . , x

(1)
N ) ∈ S(1).

Subsequent singular values ofW are defined in an inductive manner by setting

S(m)
k := {x ∈ Xk | ‖x‖k = 1, 〈x, x(j)

k 〉k = 0 for j = 1, . . . , (m− 1)} (3.17)

for k = 1, . . . , N , and by defining

σm(W ) = sup
xk∈S(m)

k
,

1≤k≤N

|W (x1, . . . , xN )|, m ≤ K. (3.18)

Again, since the Cartesian product

S(m) := S(m)
1 × · · · × S(m)

N

is compact, the supremum in (3.18) is a maximum that is attained by anN -tuple

(x
(m)
1 , . . . , x

(m)
N ) ∈ S(m).
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3.5. TSVD

It follows that the vectorsx(1)
k , . . . , x

(K)
k are mutually orthonormal inXk. If K < Lk

for anyk, then we extend the collection of orthogonal elementsx
(1)
k , . . . , x

(K)
k to a

complete orthonormal basis ofXk. This construction thus leads to a collection of
orthonormal bases

{x(ℓ1)
1 , ℓ1 = 1, . . . , L1}, . . . , {x(ℓN )

N , ℓN = 1, . . . , LN } (3.19)

for the vector spacesX1, . . . ,XN , respectively.

Definition 3.5.1. Thesingular valuesof an order-N tensorW ∈ TN are the numbers

σ1, . . . , σK withK = mink modrankk(W ) defined by(3.16)and (3.18). Thesingu-

lar vectors of orderm are the extremal solutions(x(m)
1 , . . . , x

(m)
N ) in S(m) that attain

the maximum in(3.18). A singular value decomposition(SVD) of the tensorW is a

representation ofW with respect to the basis(3.19), i.e.,

W =
L1∑

ℓ1=1

· · ·
LN∑

ℓN =1

wℓ1...ℓN
x

(ℓ1)
1 ⊗ · · · ⊗ x

(ℓN )
N . (3.20)

TheN -way array[[wℓ1,...,ℓN
]] ∈ R

L1×···×LN in (3.20)is called thesingular value core

of T .

3.5.1 Characterization of singular vectors by duality

This section aims to characterize the singular values and singular vectors oftensors of
any order. The idea of viewing singular values as defined in Definition 3.5.1originates
from [34]. Here, the duality properties have been extended to orderN > 3. Let
L = L1+· · ·+LN and associate with the optimization problem (3.16) the Lagrangian
L1 : RL+N → R by setting

L1(x, λ) := W (x1, . . . , xN ) +
N∑

k=1

1

2
λk(1 − 〈xk, xk〉k).

It has already been argued that anN -tuplex(1) = (x
(1)
1 , . . . , x

(1)
N ) exists that attains

the maximum in (3.16). From the theory of variational analysis [10, 31], onethen
infers the existence of anN -tuple λ(1) = (λ

(1)
1 , . . . , λ

(1)
N ) of Lagrange multipliers

such that
∇L1(x(1), λ(1)) = 0, (3.21)
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where∇L1 denotes the gradient ofL1. Thek-mode Fréchet derivative
∂kW (x1, . . . , xN ) of W at the point(x1, . . . , xN ) is an order-1 tensor (a linear func-
tional) that mapsXk toR and satisfies

∂kW (x1, . . . , xN ) = W (x1, . . . , xk−1, ·, xk+1, . . . , xN )

where the ‘dot’ is at thekth spot. By the multi-linearity of the tensor,
∂kW (x1, . . . , xN ) is independent ofxk ∈ Xk. Hence, rewriting (3.36) for each inde-
pendent modal direction gives thatx(1), λ(1) satisfies, fork = 1, . . . , N ,

W (x
(1)
1 , . . . , x

(1)
k−1, ·, x

(1)
k+1, . . . , x

(1)
N ) = λ

(1)
k 〈·, x(1)

k 〉, (3.22a)

‖x(1)
k ‖k = 1. (3.22b)

It follows thatW (x
(1)
1 , . . . , x

(1)
N ) = λ

(1)
1 = · · · = λ

(1)
N = σ1, i.e., all Lagrange

multipliers coincide. Moreover, (3.37a) implies that for eachk = 1, . . . , N ,

W (x
(1)
1 , . . . , x

(1)
k−1, ξk, x

(1)
k+1, . . . , x

(1)
N ) = 0 whenever〈ξk, x

(1)
k 〉k = 0.

In a similar manner, form > 1 we associate with the optimization problem (3.18) the
LagrangianLm : RL+N+N(m−1) → R defined by

Lm(x, λ, µ) = W (x1, . . . , xN )+

N∑

k=1

1

2
λk(1 − 〈xk, xk〉k) +

N∑

k=1

〈gk(xk), µk〉.

wherexk ∈ Xk, λk ∈ R, µk ∈ R
m−1 andgk : Xk → R

m−1 is given by

gk(ξk) :=







〈ξk, x
(1)
k 〉k

...

〈ξk, x
(m−1)
k 〉k






.

Again, there existN -tuplesx(m), λ(m) andµ(m) that satisfy the stationarity condition

∇Lm(x(m), λ(m), µ(m)) = 0. (3.23)

Rewriting (3.38) for each modal direction gives fork = 1, . . . , N ,

W (x
(m)
1 , . . . , x

(m)
k−1, ·, x

(m)
k+1, . . . , x

(m)
N ) = λ

(m)
k 〈·, x(m)

k 〉 + 〈gk(·), µ(m)
k 〉, (3.24a)

‖x(m)
k ‖k = 1, (3.24b)

gk(x
(m)
k ) = 0. (3.24c)
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This immediately implies thatW (x
(m)
1 , . . . , x

(m)
N ) = λ

(m)
1 = . . . = λ

(m)
N = σm and

we conclude again that, for fixedm, the Lagrange multipliersλ(m)
k coincide and are

equal to themth singular value. Moreover, fork = 1, . . . , N ,

W (x
(m)
1 , . . . , x

(m)
k−1, ξk, x

(m)
k+1, . . . , x

(m)
N ) =

=







0 wheneverξk ⊥ span(x
(1)
k , . . . , x

(m)
k )

µ
(m)
k,j wheneverξk = x

(j)
k , j = 1, . . . ,m− 1

(3.25)

whereµ(m)
k,j is thejth entry in the vectorµ(m)

k .

3.5.2 TSVD properties

The following theorem summarizes a number of properties of the tensor singular value
decomposition.

Theorem 3.5.2. 1. Every tensorW ∈ TN admits a singular value decomposition.

The singular value decomposition(3.20)is an orthogonal decomposition where

the singular values are ordered according toσ1 ≥ σ2 ≥ · · · ≥ σK > 0. Here,

K = mink modrank(T ) and the singular vectors of any orderm satisfy(3.37)

and (3.39).

2. W (x
(m)
1 , . . . , w

(m)
N ) = σm.

3. For all k = 1, . . . , N there holds

W (x
(m)
1 , . . . , x

(m)
k−1, ξ, x

(m)
k+1, . . . , x

(m)
N ) = 0

wheneverξ ⊥ span{x(1)
k , . . . , x

(m)
k }.

4. The singular value core ofW satisfies

|wℓ1···ℓN
| =







σm if ℓ1 = · · · = ℓN = m ≤ K

≤ σm if m = min{ℓ1, . . . , ℓN }
0 if ℓ1 = · · · = ℓN = m > K

0 if ℓk > ℓ1 = · · · = ℓk−1 = ℓk+1 = · · · = ℓN
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5. If L1 = L2 = · · · = LN = L0 then the number of zeros in the singular value

core ofW is at least

N

(
L0(L0 − 1)

2

)

.

6. In the general case, the number of zeros is at least equal to

N∑

k=1

Lk(Lk − 1)

2
.

Proof. The existence of the basis has been proven in the previous subsection. The

ordering of the singular values and the fact that all rank-1 terms in the decomposi-

tion (3.20) are orthogonal is immediate from the definition (3.18). Item 2 follows

from (3.37) and (3.39) and the observation that for fixedm, the Lagrange multipliers

λ
(m)
k coincide withσm (cf. subsection 3.5.1). Item 3 has been derived in (3.25).

Sincewℓ1···ℓN
= W (x

(ℓ1)
1 , · · · , x(ℓN )

N ), it follows that wmm···m = σm whenever

m ≤ mink modrank(W ). This is the first case in item 4. To prove the inequality

in item 4, letm = min{ℓ1, . . . , ℓN } and suppose, without loss of generality, that

ℓN = m. Then, for allvk ∈ S(m)
k , k = 1, . . . , N − 1,

σm = |W (x
(m)
1 , . . . , x

(m)
N )| =

= max
xk∈S(m)

k
k=1,...,N−1

|W (x1, . . . , xN−1, x
(m)
N )| ≥ |W (v1, . . . , vN−1, x

(m)
N )|.

Substitute forvk the singular vectorx(ℓk)
k . Sinceℓk ≥ mwe have thatx(ℓk)

k ∈ S(ℓk)
k ⊆

S(m)
k , i.e.,x(ℓk)

k ∈ S(m)
k . It thus follows that

σm ≥ |W (x
(ℓ1)
1 , . . . , x

(ℓN−1)
N−1 , x

(m)
N )| as claimed. Ifm > mink modrank(W ) then

there existsk ∈ {1, . . . , N} for which k > rankk(W ) = Rk. For thisk we have

x
(m)
k ∈ kerk(W ) and consequently,wk···k = 0. The fourth case in item 4 follows

again from (3.25). Indeed, ifℓk > ℓ1 = · · · = ℓk−1 = ℓk+1 = · · · = ℓN = k then

wℓ1···ℓN
= W (x

(m)
1 , · · · , x(ℓk)

k , · · · , x(m)
N ) and, using orthonormality of the bases,

x
(ℓk)
k ⊥ span(x

(1)
k , . . . , x

(m)
k ) and hencewℓ1···ℓN

= 0 by (3.25). Item 5 follows from

(3.25). Indeed, ifL1 = L2 = · · · = LN = L0 then (3.25) shows that the singular

value core tensor vanishes at(L0 − 1) + (L0 − 2) + · · · + 1 = L0(L0 − 1)/2 entries

in its kth mode. The total number of zero entries of an orderN tensor is therefore
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σ1
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σ3
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Figure 3.1: Visualization of the zero elements in the singular value core of an arbitrary

order-3 tensor of dimensions(3, 3, 3).

≥ NL0(L0 − 1)/2 as claimed. The result for the general case is immediate from this

result.

In words, any tensorW admits an SVD with at mostK = mink modrank(W ) non-
zero singular values. In any singular value decomposition ofW , the ordered singular
values occur on the main diagonal of theN -way array[[wℓ1,...,ℓN

]] of elements of
the tensor. In general, the singular value core tensor has non-zero entries on its non-
diagonal elements. Absolute values of non-diagonal entries are bounded from above
by the singular value of index equal to the smallest integer in the core index. Only if
N = 2 (the matrix case) the singular value core tensor is diagonal. A visualization of
the zero-structure in an order-3 singular value core is given in Figure 3.1.

Example 3.5.3.AnyW ∈ T2 admits a representationW (u, v) = 〈u,Av〉 = 〈A⊤u, v〉
whereA ∈ R

m×n. An SVD ofW is then given by a representation ofW with respect

to the orthonormal bases{u1, . . . , um} and{v1, . . . , vn} that consist of the ordered

columns of the orthogonal matricesU ∈ R
m×m andV ∈ R

n×n that define a (any)

singular value decompositionA = UΣV ⊤ of the matrixA. In particular, by item 4 of

Theorem 3.5.2, the singular value core[[wℓ1ℓ2 ]] ∈ R
m×n ofW coincides withΣ as it

has theK = rank(A) non-zero singular values ofA on its main diagonal and is zero

for all other elements. ForN = 2 a tensor SVD therefore coincides with the matrix
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SVD.

Example 3.5.4.Let the tensorW : X1 × X2 × X3 → R with vector spacesX1 =

X2 = X3 = R
2 have coefficientsw111 = w211 = w112 = 1 andw121 = w221 =

w212 = w122 = w222 = 0 with respect to the standard Euclidean bases onR
2. A

computation of the singular vectors associated withW yields the orthonormal bases











λ√
λ2+1
1√

λ2+1



 ,





1√
λ2+1
−λ√
λ2+1










;

{(

1

0

)

,

(

0

1

)}

;











λ√
λ2+1
1√

λ2+1



 ,





1√
λ2+1
−λ√
λ2+1











of X1, X2 and X3, respectively, whereλ = 1
2 + 1

2

√
5. A representation ofW with

respect to this basis gives the singular value decomposition ofW with singular values

σ1 = λ andσ2 = 0 and singular value core

s111 = σ1, s121 = 0, s112 = 0, s122 = 0,

s211 = 0, s221 = 0, s212 = − λ√
λ2 + 1

, s222 = σ2 = 0.

Note that the singular values are on the ‘main diagonal’ entriess111, s222 of the core,

|s212| ≤ σ1 and that not all off-diagonal entries are zero.

Example 3.5.5.Consider a2 × 2 × 2 tensorW that is represented with respect to the

standard bases inR2 × R
2 × R

2 with the elementsw111 = 2, w222 = 1
2

√
2, w122 =

1
2

√
2 and with all other elements zero. ThenW has singular valuesσ1 = w111 = 2

andσ2 = w222 = 1
2

√
2 and it turns out that the standard basis defines a singular

value decomposition ofW . That is,W is already in SVD form and[[wℓ1ℓ2ℓ3 ]] ∈
R

2×2×2 is the singular value core tensor ofW . Observe thatmodrank(W ) = (2, 2),

rank(W ) = 3, the singular value core is not diagonal and it has5 > 3 = NL(L −
1)/2 zero entries.

3.6 Low rank approximations

In this section we consider low-rank approximations as defined by the modal trun-
cation in Definition 3.4.2. Here, we define subspacesM(rk)

k using the singular vec-

tors defined in Definition 3.5.1 such thatM(rk)
k = span{x(1)

k , . . . , x
(rk)
k } for k =
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3.6. Low rank approximations

1, . . . , N . This specific modal truncation will be referred to using the symbolW ∗
r .

Wr∗ is given by

W ∗
r =

r1∑

ℓ=1

· · ·
rN∑

ℓN =1

wℓ1···ℓN
x

(ℓ1)
1 ⊗ · · · ⊗ x

(ℓN )
N . (3.26)

This section gives some low rank approximation properties that can be derived for the
TSVD. These results have been published in [7] and [81].

3.6.1 Successive rank-1 approximations

The following theorem establishes that modal truncations of rank 1 are optimal solu-
tions to problems P2 and P4.

Theorem 3.6.1.LetW ∈ TN andr = (1, 1, · · · , 1). Then the modal truncationW ∗
r

is a rank-1 tensor inTN that is optimal in the sense that

‖W −W ∗
r ‖F = inf{‖W −W1‖F | W1 ∈ TN has rank 1}

In particular,W ∗
r is an optimal solution to problems P2 and P4. Moreover, the error

‖W −W ∗
r ‖2

F = ‖W‖2
F − σ2

1 whereσ1 is the first singular value ofW .

Proof. LetW1 ∈ TN be an arbitrary rank-1 tensor. ThenW1 can be written asW1 =

λU where0 6= λ ∈ R andU = u1 ⊗ · · · ⊗ uN is a normalized rank-1 tensor in that

‖U‖F = 1. Using the definition of the Frobenius norm, we have

‖W − λU‖2
F = 〈W − λU,W − λU〉 = 〈W,W 〉 − 2λ〈W,U〉 + λ2.

This is a convex function inλ that attains its minimum atλ∗ = 〈W,U〉. But then

‖W − λ∗U‖2
F = 〈W,W 〉 − 2λ∗〈W,U〉 + (λ∗)2 =

= 〈W,W 〉 − 2〈W,U〉2 + 〈W,U〉2 =

= 〈W,W 〉 − 〈W,U〉2 =

= 〈W,W 〉 − |W (u1, · · · , uN )|2

where the last equality follows from Lemma A.4.1. The latter expression showsthat

minimizing ‖W − λ∗U‖F over all rank-1 tensorsU with ‖U‖F = 1 is equivalent to
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Chapter 3. Tensor Decompositions

maximizing |W (u1, · · · , uN )| over all unit vectorsun, ‖un‖n = 1, n = 1, . . . , N .

But this problem is (3.16) and hasU∗ = x
(1)
1 ⊗ · · · ⊗ x

(1)
N as its optimal solution.

Consequently,λ∗ = 〈W,U∗〉 = σ1 and it follows thatW ∗
1 := σ1x

(1)
1 ⊗ · · · ⊗ x

(1)
N is

the optimal rank-1 approximation ofW . The error‖W −W ∗
1 ‖2

F = ‖W‖2
F − σ2

1.

Theorem 3.6.1 is particularly useful to define an algorithm of successiverank-1 ap-
proximations of a given tensorW ∈ TN . Indeed, for givenW ∈ TN , let W ∗

1 :=
W ∗

(1,...,1) denote the optimal rank-1 tensor as defined in Theorem 3.6.1. The error
E1 := W −W ∗

1 then belongs toTN and is minimal in Frobenius norm when ranging
over all tensors of the formW − U ∈ TN with U ∈ TN of rank-1. For successive
values ofm > 1, apply Theorem 3.6.1 to the error tensorEm−1 to defineW ∗

m as
the optimal rank-1 tensor that minimizes the criterion‖Em−1 − U‖F over all rank-1
tensorsU ∈ TN . Then setEm := Em−1 −W ∗

k .

Definition 3.6.2. GivenW ∈ TN , therth order successive rank-1 approximation of

W is the tensor

W (r) := W ∗
1 + · · · +W ∗

r (3.27)

whereW ∗
1 , . . . ,W

∗
r are optimal rank-1 approximations ofW , E1, . . . ,Er−1, respec-

tively, as defined in the previous paragraph.

In this construction, the Frobenius norm of the errorEm = W − W (m) satisfies the
recursion‖Em‖2

F = ‖Em−1‖2
F − σ2

1(Em−1) with ‖E1‖2
F = ‖W‖2

F − σ2
1(W ). In

particular,‖Em‖F ≤ ‖Em−1‖F so that the norm of successive approximation errors
is non-increasing.

Remark 3.6.3. The rank-1 modal truncationW ∗
1,...,1 defined in Theorem 3.6.1 is not

optimal in the induced norm. That is, the rank-1 modal truncation does not solve

problems P1 and P3 forr = (1, . . . , 1).

3.6.2 One modal-rank approximations

The following result establishes a lower bound on the approximation error between a
tensor and its modal truncation when only one modal rank is reduced.

Theorem 3.6.4.LetW ∈ TN have modal rankmodrank(W ) = (R1, . . . , RN ) and

let

r = (R1, · · · , Rk−1, rk, Rk+1, · · · , RN )
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3.6. Low rank approximations

with rk ≤ Rk. Then

‖W −W ∗
r ‖ ≥ σrk+1.

Proof. Without loss of generality assumek = 1 andr1 ≤ R1. DefineE := W −W ∗
r .

Then

E = [W −W ∗
r ]|Mr1

1 ×X2···×XN
+ [W −W ∗

r ]|{Mr1
1 }⊥×X2···×XN

− [W −W ∗
r ]|{0}×X2···×XN

=

= 0 +W |{Mr1
1 }⊥×X2···×XN

− 0

where we used the definition ofW ∗
r , Lemma 3.25, and the fact that,E|{0}×X2···×XN

satisfiesE(0, x2, · · · , xN ) =
∑

ℓ1
· · ·∑ℓN

wℓ1···ℓN
〈eℓ1

1 , 0〉〈eℓ2
2 , x2〉 · · · 〈eℓN

N , xN 〉 =

0. Furthermore, sinceSr1+1
1 × · · · × Sr1+1

N ⊂ [Mr1
1 ]⊥ × X2 × · · · × XN it follows

that

‖E‖ = max
x1∈[Mr1

1 ]⊥

xk∈Xk, ‖xk‖=1
k=1...,N

|W (x1, · · · , xN )|

≥ max
xk∈S(r1+1)

k
k=1,...,N

|W (x1, · · · , xN )| =: σr1+1

Consequently,‖W −W ∗
r ‖ ≥ σr1+1. This yields the result.

The following theorem states that when only one of the arguments of the tensor is
approximated, the approximation error decreases for increasing approximation order.

Theorem 3.6.5. GivenW ∈ TN of modal rankR = (R1, . . . , RN ). Define for

r = (m,R2, . . . , RN ) the approximation errorEm = W −W ∗
r , whereW ∗

r is defined

in (3.26). Then we have‖Em+1‖F ≤ ‖Em‖F .

Proof. Without loss of generality letp = 1. ThenW ∗
r = W |M(k)

1 ×X2×...×XN
with

M(k)
1 = span{ϕ(1)

1 , . . . , ϕ
(k)
1 }. Then

W = W |M(k)
1 ×X2×...×XN

+W |
M(k)

1

⊥

×X2×...×XN

−

W |
(M(k)

1 ×X2×...×XN )
⋂

(M(k)
1

⊥

×X2×...×XN )
.
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Chapter 3. Tensor Decompositions

Since

(M(k)
1 × X2 × . . .× XN )

⋂

(M(k)
1

⊥
× X2 × . . .× XN )

is equal to

(M(k)
1 ∩ M(k)

1

⊥
) × (X2 ∩ X2) × . . .× (XN ∩ XN )

andW |∅×X2×...×XN
= 0, we infer that

Ek = W |M(k)⊥×X2×...×XN
.

SinceM(k)
1 ⊆ M(k+1)

1 and, consequently,M(k)
1

⊥
⊇ M(k+1)

1

⊥
, we conclude

‖Ek+1‖ ≤ ‖Ek‖.

3.6.3 Approximation of diagonalizable tensors

The diagonal of an arbitrary tensorW ∈ TN represented with respect to the bases
(3.1) is given by the elementswℓ1,...,ℓN

with ℓ1 = · · · = ℓN . We will say that a
tensor isdiagonal if only its diagonal elements are nonzero. Whenever a collection
of bases can be found such thatW is diagonal we will say thatW is diagonalizable.
When considering higher-order statistics in the problem of IndependentComponent
Analysis, diagonal tensors are of considerable importance. See, e.g. [20, 23, 18].

Theorem 3.6.6.LetW ∈ TN , then

1. EveryW ∈ T2 is diagonalizable. Moreover, the singular value decomposition

ofW gives a singular value core tensor that is diagonal.

2. ForN > 2 not everyW ∈ TN is diagonalizable. IfW ∈ TN is diagonalizable,

then the singular value core tensor ofW is, in general, not diagonal.

3. IfW is diagonalizable with respect to a collection of orthogonal bases, then the

singular value core tensor ofW will be diagonal.

Proof. 1. EveryW ∈ T2 can be written asW (x1, x2) = 〈x1, Ax2〉 for some

matrix A. Let A = UΣV ⊤ be an SVD ofA. Then the singular value core

tensor ofW is given by the diagonal matrixΣ.

2. A counterexample is given in Example 3.6.7 below.
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3.6. Low rank approximations

3. Suppose thatXk is an orthogonal full rank matrix,k = 1, . . . , N such that

W = W �1X1 · · ·�NXN becomes diagonal. ThenSk := X⊤
k Xk > 0 andQk :=

XkS
1/2
k Πk is unitary for any permutation matrixΠk of dimensionLk × Lk.

Now,W = W �1 Q1 · · · �N QN remains diagonal and the permutation matrices

Πk can be chosen such that the diagonal elements ofW are non-increasing.W

is then the singular value core tensor ofW and the columns ofQk define the

k-mode singular vectors.

Example 3.6.7.An example of the second item of Theorem 3.6.6 is given by the tensor

W defined in Example 3.5.5. As already shown, the singular value core ofW is not

diagonal. However, with respect to the bases

{(

1

0

)

,

(
1
2

√
2

1
2

√
2

)}

,

{(

1

0

)

,

(

0

1

)}

,

{(

1

0

)

,

(

0

1

)}

.

one easily shows thatW admits a diagonal representation with diagonal elements

w111 = 2 andw222 = 1. Hence, a diagonalizable tensor will not necessarily have a

diagonal singular value decomposition.

Theorem 3.6.8. If W ∈ TN is diagonalizable with respect to an orthonormal basis,

then

1. the rank and orthogonal rank ofW are equal.

2. the singular value decomposition ofW is a completely orthogonal rank decom-

position.

3. the singular value decomposition ofW is given by

W =
R∑

k=1

σkx
(k)
1 ⊗ · · · ⊗ x

(k)
N

whereR is equal to the rank ofW . The modal truncationW ∗
r defined in(3.26)

is represented as

W ∗
r =

r∑

k=1

σkx
(k)
1 ⊗ · · · ⊗ x

(k)
N
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and is an optimal rank-r approximation ofW in the sense that

inf
Wr∈TN

modrank(Wr)=r

‖W −Wr‖ = ‖W −W ∗
r ‖ = σr+1.

Moreover,

inf
Wr∈TN

modrank(Wr)=r

‖W −Wr‖2
F = ‖W −W ∗

r ‖2
F =

R∑

k=r+1

σ2
k.

That is, the modal truncationW ∗
r is an optimal solution to problems P1,P2,P3

and P4.

Proof. Item 1 is proven in [46]. For item 2 see [85]. To see item 3, let{xℓk

k }Lk

ℓk=1, k =

1 . . . , N be an orthonormal basis for whichW has a diagonal representation where

the diagonal entriesσk = wk···k are assumed to be ordered in thatσ1 ≥ σ2 ≥ . . ..

The error tensorE := W − W ∗
r is then given byE =

∑K
k>r−

σkw
(k)
1 ⊗ · · · ⊗ w

(k)
N .

This gives‖E‖ = σr−+1 and‖E‖2
F =

∑K
k>r−

σ2
k which are minimal in view of the

ordering of the singular values. See also [85].

3.7 Improved accuracy

One consequence of Definition 3.5.1 is that the computation of the singular vector
x

(m)
k ∈ Xk of orderm not only depends on singular vectorsx(j)

k of order j < m

but also on the singular vectorsw(j)
p for p 6= k and j < m. If modal truncations

in one specific modal direction, say thekth, are searched for, then the coupling of
the constraints in the computation of the singular vectors of orderm may actually
prevent the modal truncationW ∗

r defined in Theorem 3.6.4 to be optimal. A weak-

ening of the constraints on the setS(m)
k in (3.18) may then become an alternative. A

modified singular value decomposition can be obtained by redefining the setS(m)
k for

mink modrank(W ) < m < maxk modrankk(W ) by, for example,

S(m)
k := {x ∈ Xk | ‖x‖k = 1}

and by performing the optimization in (3.18). The construction and propertiesof the
decomposition that is thus obtained form the topic of this section. The results ofthis
section have been published in [7].
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3.7. Improved accuracy

The new construction for decomposing a tensor is as follows. LetW ∈ TN be an
order-N tensor defined on the finite dimensional vector spacesX1, . . . ,XN where we
suppose thatdim(Xn) = Ln. Furthermore, letX ′ := X1×. . .×Xi andX ′′ := Xi+1×
. . . × XN , where0 < i < N . Thededicated singular valuesof W , denoted̂σk(W ),
with k = 1, . . . ,K andK = minp=1,...,i modrank(W ) are defined as follows.
Let

S(1)
k := {x ∈ Xk | ‖x‖k = 1} for k = 1, . . . , i

Sk := {x ∈ Xk | ‖x‖k = 1} for k = i+ 1, . . . , N

denote the unit sphere inXk. Define the first dedicated singular value ofW by

σ̂1(W ) := sup
xk∈S(1)

k
, 1≤k≤i

xk∈Sk, (i+1)≤k≤N

|W (x1, . . . , xN )|. (3.28)

SinceW is continuous and the Cartesian productS(1) = S(1)
1 × · · · × S(1)

i × Si+1 ×
· · · × SN of unit spheres is a compact set, an extremal solution of (3.28) exists (i.e.,
the supremum in (3.16) is a maximum) and is attained by anN -tuple

(ψ
(1)
1 , . . . , ψ

(1)
N ) ∈ S(1).

Subsequent dedicated singular values ofW are defined in an inductive manner by
setting

S(m)
k := {x ∈ Xk | ‖x‖k = 1, 〈x, ψ(j)

k 〉k = 0 for j = 1, . . . , (m− 1)}

for k = 1, . . . , i, and by defining

σ̂m(W ) = sup
xk∈S(m)

k
, 1≤k≤i

xk∈Sk, (i+1)≤k≤N

|W (x1, . . . , xN )|, k ≤ K. (3.29)

Again, since the Cartesian product

S(m) = S(m)
1 × · · · × S(m)

i × Si+1 × · · · × SN

is compact, the supremum in (3.29) is a maximum that is attained by anN -tuple

(ψ
(m)
1 , . . . , ψ

(m)
N ) ∈ S(m).

Note that the set over which the optimization takes place,S(m), is in general a larger
subset of the Cartesian product of unit balls than the setS(m) as originally defined
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in (3.17). It follows that the vectorsψ(1)
k , . . . , ψ

(K)
k are mutually orthonormal inXk,

for k = 1, . . . , i. If K < Lk for any 1 ≤ k ≤ i, then we extend the collection
of orthogonal elementsψ(1)

k , . . . , ψ
(K)
k to a complete orthonormal basis ofXk. This

construction leads to a collection of orthonormal bases

{ψ(ℓ1)
1 , ℓ1 = 1, . . . , L1}, . . . , {ψ(ℓi)

i , ℓi = 1, . . . , Li} (3.30)

for the vector spacesX1, . . . ,Xi, respectively. We will call elements of these orthonor-
mal basesdedicated singular vectorsof the tensorW .
Since there is no construction of orthonormal bases for the vector spacesXi+1, . . . ,
XN , it is not possible nor appropriate to define a singular-value-like decomposition of
the tensor using dedicated singular vectors. Instead, we define adedicated represen-
tationof the tensor, which can be used to define adedicated modal truncation.

Definition 3.7.1. Given an order-N tensorW ∈ TN , withW : X1 × . . .× XN → R.

AssumeX ′ = X1 × . . . × Xi and X ′′ = Xi+1 × . . . × XN . Then, adedicated

representationofW can be defined as a representation ofW with respect to the bases

(3.30)for X ′, where the original bases forX ′′ are kept intact, i.e.

W d =
L1∑

ℓ1=1

· · ·
LN∑

ℓN =1

w̃ℓ1···ℓN
ψ

(ℓ1)
1 ⊗ · · · ⊗ ψ

(ℓi)
i ⊗ f

(ℓi+1)
i+1 ⊗ · · · ⊗ f

(ℓN )
N (3.31)

=
L1∑

ℓ1=1

· · ·
LN∑

ℓN =1

w̃ℓ1···ℓN
Uℓ1···ℓN

. (3.32)

Using this representation ofW , a dedicated modal truncation can be defined.

Definition 3.7.2. Given an order-N tensorW ∈ TN , with dedicated representation

W d and a vector of integersr = (r1, . . . , ri) with rk ≤ Rk for k = 1, . . . , i. Let

M(m)
k = span{ψ(1)

k , . . . , ψ
(m)
k }, k = 1, . . . , i.

withm ≤ Rk. A dedicated modal truncationis then defined by the restrictionW d
r :=

W d|M(r1)
1 ×···M(ri)

i

and is represented by the expansion

W d
r =

r1∑

ℓ1=1

· · ·
ri∑

ℓi=1

Ri+1∑

ℓi+1=1

· · ·
RN∑

ℓN =1

wℓ1···ℓN

ψ
(ℓ1)
1 ⊗ · · · ⊗ ψ

(ℓi)
i ⊗ f

(ℓi+1)
i+1 ⊗ · · · ⊗ f

(ℓN )
N . (3.33)
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The following theorem states some properties of the dedicated representation of a
tensor.

Theorem 3.7.3.ConsiderW ∈ TN .

1. For all 1 ≤ i ≤ N the dedicated representation ofW exists.

2. The dedicated representation is an orthogonal decomposition ofW in the sense

that the rank-one tensorsUℓ1···ℓN
in (3.32)are mutually orthogonal

〈Uℓ1···ℓN
, Uℓ′

1···ℓ′

N
〉 = 0, unlessℓn = ℓ′n, ∀n = 1, . . . , N.

3.

σ̂1 ≥ · · · ≥ σ̂K ≥ 0 (3.34)

4. There exists an orthonormal basis{ψ(1)
n , . . . , ψ

(Ln)
n } of Xn with n > i such

that

W (ψ
(k)
1 , . . . , ξ, . . . , ψ

(k)
i , ψ

(ℓi+1)
i+1 , . . . , ψ

(ℓN )
N ) = 0 (3.35)

for all ξ ⊥ span{ψ(1)
n , . . . ψ

(k)
n }, whereξ is at thenth spot, with1 ≤ n ≤ i.

Proof. Proof of Theorem 3.7.3

1. Since extremal solutions to the optimization problems (3.28) and (3.29) are

guaranteed to exist for any tensorW ∈ TN , also the dedicated representation is

guaranteed to exist.

2. Using Lemma A.4.1 we have

〈Uℓ1···ℓN
, Uℓ′

1···ℓ′

N
〉 =

i∏

n=1

〈ψ(ℓ1)
n , ψ(ℓ′

n)
n 〉

N∏

n=i+1

〈e(ℓn)
n , e(ℓ′

n)
n 〉.

Therefore, the inner product between unequal rank-one tensors iszero when-

ever one of the inner products on the right-hand side is zero. Since the bases are

orthonormal, all rank-one tensors are orthogonal unlessℓn = ℓ′n for 1 ≤ n ≤
N .

3. This is by construction
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4. LetL = L1 + · · · +LN and associate with the optimization problem (3.28) the

LagrangianL1 : RL+N → R by setting

L1(x, λ) := W (x1, . . . , xN ) +
N∑

n=1

1

2
λn(1 − 〈xn, xn〉).

It has already been argued that anN -tuplex(1) = (ψ
(1)
1 , . . . , ψ

(1)
N ) exists that

attains the maximum in (3.28). From the theory of variational analysis [10, 31],

one then infers the existence of anN -tupleλ(1) = (λ
(1)
1 , . . . , λ

(1)
N ) of Lagrange

multipliers such that

∇L1((1), λ(1)) = 0, (3.36)

where∇L1 denotes the gradient ofL1. Then-mode Fréchet derivative

∂nW (x1, . . . , xN ) of W at the point(x1, . . . , xN ) is an order-1 tensor (a linear

functional) that mapsXn toR and satisfies

∂nW (x1, . . . , xN ) = W (x1, . . . , xn−1, ·, xn+1, . . . , xN )

where the ‘dot’ is at thenth spot. By the multi-linearity of the tensor,

∂nW (x1, . . . , xN ) is independent ofxn ∈ Xn. Hence, rewriting (3.36) for each

independent modal direction gives thatx(1), λ(1) satisfies, forn = 1, . . . , N ,

W (ψ
(1)
1 , . . . , ψ

(1)
n−1, ·, ψ

(1)
n+1, . . . , ψ

(1)
N ) = λ(1)

n 〈·, ψ(1)
n 〉, (3.37a)

‖ψ(1)
n ‖ = 1. (3.37b)

(3.37a) implies that for eachn = 1, . . . , N ,

W (ψ
(1)
1 , . . . , ψ

(1)
n−1, ξn, ψ

(1)
n+1, . . . , ψ

(1)
N ) = 0 whenever〈ξn, ψ

(1)
n 〉 = 0.

In a similar manner, fork > 1 we associate with the optimization problem

(3.29) the LagrangianLk : RL+N+i(k−1) → R defined by

Lk(x, λ, µ) = W (x1, . . . , xn) +
N∑

n=1

1

2
λn(1 − 〈xn, xn〉) +

i∑

n=1

〈gn(xn), µn〉.

wherexn ∈ Xn, λn ∈ R, µn ∈ R
k−1 andgn : Xn → R

k−1 is given by

gn(ξn) :=








〈ξn, ψ
(1)
n 〉

...

〈ξn, ψ
(k−1)
n 〉







.
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Again, there existN -tuplesx(k), λ(k) andµ(k) that satisfy the stationarity con-

dition

∇Lk(x(k), λ(k), µ(k)) = 0. (3.38)

Rewriting (3.38) for each modal direction gives, forn = 1, . . . , i, that

W (ψ
(k)
1 , . . . , ψ

(k)
n−1, ·, ψ

(k)
n+1, . . . , ψ

(k)
N ) = λ(k)

n 〈·, ψ(k)
n 〉 + 〈gn(·), µ(k)

n 〉,
(3.39a)

‖ψ(k)
n ‖ = 1, (3.39b)

gn(ψ(k)
n ) = 0. (3.39c)

Now suppose, again forn = 1, . . . , i, thatξ ⊥ span{ψ(1)
n , . . . ψ

(k)
n }. Substitut-

ing ξ for the dotted argument in (3.39a) gives that

W (ψ
(k)
1 , . . . , ξ, . . . , ψ

(k)
i , ψ

(ℓi+1)
i+1 , . . . , ψ

(ℓN )
N ) = 0 (3.40)

for all ξ ⊥ span{ψ(1)
n , . . . ψ

(k)
n }, whereξ is at thenth spot, with1 ≤ n ≤ i.

Remark 3.7.4. Consider a tensorW ∈ TN . Item 4 of Thm. 3.7.3 immediately

yields the following results regarding the zero structure of the dedicated represen-

tation (3.31)ofW

1. The core[[w̃ℓ1···ℓN
]] of the dedicated representation ofW satisfies

w̃ℓ1···ℓN
=







0 if ℓ1 = . . . = ℓN > K

0 if ℓn > ℓ1 = . . . = ℓn−1 = ℓn+1 = . . . = ℓi
(3.41)

2. Consider the case thatL1 = L2 = · · · = LN = L. Then the number of zeros

in the core of the dedicated representation ofW is at least

i

(
L(L− 1)

2

)

.

The following theorem establishes a relationship between the original and dedicated
singular values.
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Theorem 3.7.5.ConsiderW ∈ TN .

1. Both the original and dedicated singular values of a tensor are ordered

σ1 ≥ . . . ≥ σK ≥ 0 (3.42)

σ̂1 ≥ . . . ≥ σ̂K ≥ 0 (3.43)

2. σ1 = σ̂1 and

σ · ϕ(1)
1 ⊗ · · · ⊗ ϕ

(1)
N = σ̂1 · ψ(1)

1 ⊗ · · · ⊗ ψ
(1)
N

3. σ̂2 ≥ σ2

Proof. Proof of Theorem 3.7.5.

1. This is by construction.

2. Since these optimization problems are identical, the first singular value and the

singular vectors that are found will also be identical.

3. This uses the previous part of this theorem. Since the results from the first

optimization are identical, the optimization domainsS(2)
n , n = 1, . . . , N will

be the same for both optimization problems. As the dedicated SVD construction

will incorporate less constraints for the second step, it only takesS(2)
n , n =

1, . . . , i into account and uses the unit sphere for the rest of the vector spaces,

σ̂2 ≥ σ2.

3.8 Algorithms and computational issues

In this section we propose an efficient algorithm for the computation of the TSVD as
defined in Definition 3.5.1 of an arbitrary order-N tensorW ∈ TN . The algorithm
is based on the fixed point properties of a contractive mappingG that is iterated in
a power-type algorithm to compute the singular vectors of orderm and the singular
values as defined in Definition 3.5.1.
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With xk ∈ Xk andσ ∈ R, we denote byx the vectorx = col(x1, . . . , xN , σ) in
R

L1+···+LN +1. To simplify notation, letL = L1 + · · · + LN and define the mapping
G : RL+1 → R

L+1 by

G(x) :=










1
σ ∇1W ( x1

‖x1‖ , . . . ,
xN

‖xN ‖)
...

1
σ ∇NW ( x1

‖x1‖ , . . . ,
xN

‖xN ‖)

W ( x1
‖x1‖ , . . . ,

xN

‖xN ‖)










(3.44)

Here,∇kW (x1, . . . , xN ) = [∂kW (x1, . . . , xN )]⊤ is thek-mode gradient ofW in the
point (x1, . . . , xN ) (i.e., the transpose of then-mode Fréchet derivative ofW ). Then
G(x) is well defined provided thatxk 6= 0 for anyk andσ 6= 0. The following the-
orem relates the fixed points ofG to solutions of the2N equations in the Lagrangian
system (3.37).

Theorem 3.8.1.x∗ is a fixed point ofG if and only ifx∗ = col(x
(1)
1 , . . . , x

(1)
N , σ(1))

satisfies the Lagrangian conditions(3.37)with λ(1)
1 = · · · = λ

(1)
N = σ1.

Proof. Only if: Supposex∗ = col(x1, . . . , xN , σ) is a fixed point ofG. ThenG(x∗)

= x∗ from which it follows thatσ = W ( x1
‖x1‖ , . . . ,

xN

‖xN ‖) and

σxk = ∇kW (x1/‖x1‖, . . . , xN/‖xN ‖) for all x = 1, . . . , N . Consider these equali-

ties forx = 1. Since the1-mode Fréchet derivative

∂1W (x1, . . . , xN ) = W (·, x2, . . . , xN ) it follows that

σ〈v1, x1〉 = W (v1,
x2

‖x2‖ , · · · , xN

‖xN ‖ for all v1 ∈ X1. (3.45)

By takingv1 = x1
‖x1‖ we infer thatσ = σ〈x1/‖x1‖, x1〉 = σ‖x1‖ so that we conclude

that‖x1‖ = 1. In a similar fashion one shows that‖xk‖ = 1 for all k = 1, . . . , N .

This gives (3.37b). But with unit norms, (3.45) readsσ〈·, x1〉 = W (·, x2, . . . , xN )

which is (3.37a) withk = 1. the same argument applies to prove (3.37a) for otherk.

If: Suppose a set ofN vectorsxk ∈ Xk, k = 1, . . . , N satisfies‖xk‖ = 1 and

W (x1, . . . , xk−1, ·, xk+1, . . . , xN ) = σ〈·, xk〉.

Then
1

σ
∇kW (

x1

‖x1‖ , . . . ,
xN

‖xN ‖) =
1

σ
∇kW (x1, . . . , xN ) = xk,

for k = 1, . . . , N , which shows thatx = col(x1, . . . , xN , σ) is fixed point ofG.
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The result of Theorem 3.8.1 gives rise to the following TSVD algorithm for the com-
putation of a singular value decomposition.

INPUT TensorW ∈ TN with k-mode dimensionLk.

DESIRED A singular value decomposition ofW .

Step 0 (Initialization) Set tolerance levelεtol > 0, orderm = 1, andWm = W .

Step 1 Select random elementsx0
k ∈ Xk, k = 1, . . . , N andσ0 with ‖x0

k‖k = 1 and
0 < σ0 < 1. Setx0 := col(x0

1, . . . , x
0
N , σ

0).

Step 2 LetG be defined by (3.44) withW = Wm, and iterate the map

xi+1 = G(xi), i = 0, 1, 2, . . . , i∗ (3.46)

wherei∗ is such that‖xi∗ − xi∗−1‖ < εtol.

Step 3 Write xi∗

= col(x∗
1, . . . , x

∗
N , σ

∗) and define, fork = 1, . . . , N ,

σm = σ∗, x
(m)
k = x∗

k,

X
(m)
k =

(

x
(1)
k · · · x

(m)
k

)

,

Q
(m)
k = I −X

(m)
k [X

(m)
k ]⊤.

Step 4 Define the tensor

Wm+1 = W �1 Q
(m)
1 · · · �N Q

(m)
N

and setm tom+ 1.

Step 5 Repeat Step 1, Step 2, Step 3, Step 4 untilm = K = mink modrank(W ).

Step 6 For everyk for whichK < Lk complementX(K)
k to an orthonormal matrix

X
(Lk)
k .

Step 7 Define
W = W �1 X

(L1)
1 · · · �N X

(LN )
N .

Theorem 3.8.2.Suppose thatG : RL+1 → R
L+1 maps a closed subsetD ⊂ R

L+1

into itself and thatG is contractive onD in the sense that there existsα < 1 such that

‖Gx − Gy‖ ≤ α‖x − y‖ for all x, y ∈ D. Then the iteration(3.46)converges to a

unique fixed pointx∗ ofG in D. In that case, for eachm = 1, . . . ,K the vectorsx(m)
k

with k = 1, . . . , N satisfy the Lagrangian conditions(3.39).
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The statements on the convergence of the iteration (3.46) can be found in [59]. Theo-
rem 3.8.2 states that whenever (3.44) is a contractive mapping on a sufficiently large
closed invariant setD then the iteration (3.46) converges to the solution of the La-
grangian systems (3.37) and (3.39). It is easy to see that contractivity of(3.44) with
W = W1 implies contractivity of (3.44) forW = Wm with m > 1.
In practice it is not trivial to explicitly verify this condition and to find a closed in-
variant regionD that makesG contractive. However, Theorem 3.8.2 promises that
whenever the algorithm converges, it converges to a solution of the Lagrangian sys-
tems (3.37) and (3.39).

Remark 3.8.3. We remark that singular vectors and singular values ofW necessarily

satisfy the Lagrangian systems(3.37) and (3.39). If the Hessian∇2
xL is positive

definite, these conditions are also sufficient in which case one can conclude that the

vectorsx(m)
k with k = 1, . . . , N are indeed the desired singular vectors of orderm

and thatσm is the corresponding singular value.

Remark 3.8.4. An algorithm for the computation of successive rank one approxima-

tionsW (r) of W ∈ TN as defined in Definition 3.6.2 is immediate from Algorithm

TSVD. Indeed, for the computation of a rank-1 optimal approximant, onlysteps 1,2,3

of the TSVD algorithm are relevant. First apply the TSVD algorithm onE0 := W

to result in the optimal approximationW ∗
1 . Then repeat the TSVD algorithm on the

error tensorEm = Em−1 −W ∗
m for m ≤ r to define(3.27).

To investigate convergence properties of the TSVD algorithm further, letGp
W denote

thepth power of the operatorGW , i.e., thepth iterate ofxi+1 = GWxi with initial
conditionx0 in (3.46) satisfiesxp = Gp

Wx0. The following theorem shows conver-
gence of the above sequential series of iterations to the exact singular vectors and
singular values of the tensorW .

Theorem 3.8.5.Suppose thatGW : RL+1 → R
L+1 maps a closed subsetD ⊂ R

L+1

into itself and that

‖Gp
Wx−Gp

W y‖ ≤ αp‖x− y‖, for all x, y ∈ D, p = 1, 2, . . . (3.47)

whereβ =
∑∞

p=1 αp < ∞. Then for everym = 1, . . .K, with

K = mink modrank(W ), the operatorGWm has a unique fixed pointx∗ ∈ D (de-

pending onm) and the iteration(3.46)converges tox∗ as i → ∞. Moreover, every
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iterate establishes the error estimate

‖xi − x∗‖ ≤ β‖xi − xi−1‖, i = 1, 2, . . .

and the componentsϕ(m)
k , k = 1, . . . , N andσm of the fixed pointx∗ are extremal

values of the optimizations(3.16)(if m = 1) and (3.18)(for 1 < m ≤ K).

The proof of the above theorem is an application of Theorem 12.1.1 in [59]combined
with the observation that the inequality (3.47) holds withGW replaced byGWk

with
k > 1 whenever (3.47) forGW = GW1 . In particular, this observation makes the
convergence rateβ independent ofk.
In practice it is not trivial to explicitly verify whetherGW satisfies (3.47) An interest-
ing special case of Theorem 3.8.5 applies to tensorsW for whichGW maps a closed
subsetD ⊂ R

L+1 into itself and is contractive onD in the sense that there exists
α < 1 such that‖GWx−GW y‖ ≤ α‖x−y‖ for all x, y ∈ D. In that case, the result of
Theorem 3.8.5 simplifies to the contraction mapping theorem for nonlinear operators.
Specifically, ifGW is contractive, (3.47) holds withαp = αp andβ = α

1−α defines
the convergence rate. This means that under the contractivity condition ofGW , the se-
quence (3.46) in step 2 of the TSVD algorithm converges to the unique fixedpoint of
GWm in D wheneverx0 ∈ D. More refinements of convergence conditions go in the
direction of transformingGW into G′

W := TGWT−1 where a suitable homeomor-
phismT : RL+1 → R

L+1 is chosen so as to makeG′
W contractive, or, alternatively,

to studyiterated contractionsof the form‖GW (GWx) − GWx‖ ≤ α‖GWx − x‖
whereα < 1 andx ∈ D. We refer to [59] for more details.
Theorem 3.8.5 promises that whenever the algorithm converges, it converges to an
extremal solution to the optimization problems (3.16) and (3.18) that define the sin-
gular value and singular vectors of orderm. Here, by ‘extremal solutions’ we mean
that the fixed points ofGWm satisfy thefirst order necessary conditionsfor the op-
timal solution of the maximization problems formulated in (3.18). Solutions to the
optimization problems (3.16) and (3.18) satisfy these conditions but we can not guar-
antee that the iterated map (3.46) converges to a fixed pointx∗ of GWm that also
satisfies thesufficient conditionsfor the optima. This means that ifGWm is contrac-

tive, the algorithm converges to a fixed pointx∗ = col(ϕ
(m)
1 , . . . , ϕ

(m)
N , σm) where

theN -tuple (ϕ
(m)
1 , . . . , ϕ

(m)
N ) ∈ S(m) and where the gradient of the cost function

|W (x1, . . . , xN )| vanishes in(ϕ(m)
1 , . . . , ϕ

(m)
N ).

Remark 3.8.6. A numerical algorithm for the computation of a dedicated singular

value decomposition requires a minor change to the TSVD algorithm. Indeed, ifW ∈
TN with X ′ = X1×. . .×Xi andX ′′ = Xi+1×. . .×XN . The dedicated singular value
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decomposition in Definition 3.7.1 is numerically calculated from the TSVD algorithm

in which the definition ofQ(m)
k in step 3 is replaced by

Q
(m)
k :=







I − Φ
(m)
k [Φ

(m)
k ]⊤ 1 ≤ k ≤ i

I i+ 1 ≤ k ≤ N
.

Remark 3.8.7. In this section we have derived some convergence properties regard-

ing the TSVD algorithm. When conducting numerical computations of modalrank

approximations to tensors one experiences difficulties due to local optimalpoints. The

reader is referred to [42] for an overview of this phenomenon and its implications. We

did not investigate the implications of local optima for our algorithm.

3.9 Numerical Example

To illustrate the methods discussed in this chapter, we consider a data compression
problem in 3-D imaging1. The data consists of pixel intensities of an MRI scan of
a human head in which each of theL3 slices is an image ofL1 × L2 pixels. The
original MRI scan has dimensionsL1 = 262, L2 = 262 andL3 = 29, consists of
1990676 pixels which corresponds to 2MB of storage. All pixel intensitiesare stored
in anL1 × L2 × L3 tensorW ∈ T3 of modal rankmodrank(W ) = (243, 199, 29).
The 10th slice of the original data is shown in Fig. 3.2. We consider two kinds of ap-
proximations to this data. First, we discuss approximations ofW by tensors of modal
rank r = (r1, r2, r3). Second, we review approximations by tensors of modal rank
r = (r1, r2, L3), i.e., only the first and second mode dimensions are approximated.
For both types of approximations we compare the Higher-Order Singular Value De-
composition (HOSVD) [24], the Tensor SVD as introduced in this chapter and the
method of Successive Rank-one approximations discussed in Section 3.6.1. We aim
for a drastic compression of the data. All simulations discussed in this section have
been carried out with an accuracy setting ofεtol = 1 · 10−6 in the TSVD algorithm.
Implementations of all algorithms use the tensor toolbox for Matlab [4]. More numer-
ical examples can be found in [6].

1The data was obtained from TU/e-BME, Biomedical Image Analysis, in collaboration with

Prof. Dr. med. Berthold Wein, Aachen, Germany
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Figure 3.2: 10th slice of the original data.

3.9.1 Approximations of the form (r1, r2, r3)

Table 3.1 shows the relative approximation errors in Frobenius norm that were ob-
tained with HOSVD, Successive Rank-One and Tensor SVD respectively. From this
it is obvious that HOSVD and Successive Rank-One give comparable approximation
errors and outperform the Tensor SVD. The data compression in these approximations
is substantial. Indeed, the modal rank approximation withr = (10, 10, 10) implies
a core tensor of1000 elements, which is0.05% of the number of entries inW and
therefore amounts to a storage reduction from 2MB to 1KB. Table 3.2 lists the number
of iterationsi∗ required in step 2 of the TSVD algorithm for the computation of the
Tensor SVD and the Successive Rank-one approximations.

Due to space limitations only the number of iterationsi∗ for the first five steps of the
respective algorithms are shown. The number of iterations seems to be increasing
as the algorithm progresses, but this is pure coincidence. The number ofiterations
decreases and increases quite randomly. The time to compute the first five singular
values and sets of singular vectors for this example was74.05 seconds on a1.83 GHz
Intel Duo Processor T2400. The first five successive rank-one approximations have
been computed in46.21 seconds on the same PC.
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Table 3.1: Relative Approximation Error,‖W −Wr‖F

‖W ‖F
.

(r1, r2, r3) HOSVD Succ.R1 TSVD

(1, 1, 1) 0.5181 0.5181 0.5181

(3, 3, 3) 0.2648 0.2647 0.5126

(5, 5, 5) 0.2334 0.2306 0.5108

(7, 7, 7) 0.2111 0.2071 0.4280

(10, 10, 10) 0.1869 0.1857 0.4265

Table 3.2: Number of iterationsi∗ of (3.46).

TSVD Succ. Rank 1

σ1 20 T ∗
1 20

σ2 56 T ∗
2 13

σ3 80 T ∗
3 34

σ4 130 T ∗
4 95

σ5 262 T ∗
5 223

3.9.2 Approximations of the formr = (r1, r2, L3)

In applications it may be desirable to leave the mode rank unchanged for oneor more
modal directions. For example, when considering spatial-temporal data, one may be
interested in approximating spatial information only. To this end, this section gives
simulation results for approximations of the formr = (r1, r2, L3) for the MRI data.
As in the previous section, a comparison is made between the HOSVD, TensorSVD
and the method of successive rank-one approximations. Furthermore, results are also
included for the dedicated Tensor SVD as introduced in Sec. 3.7.
The numerical results of the computation of generic and dedicated singular values can
be found in Table 3.3. From this table it is clear that the generic singular values decay
much faster than the dedicated singular values. This would imply that the generic sin-
gular vectors give better results in approximation. However, examination ofTable 3.4,
which lists the approximation errors, shows that exactly the opposite is the case. Using
the dedicated singular vectors for approximation gives approximation errors that are

74



Chapter 3. Tensor Decompositions

much smaller than those obtained when using the generic singular vectors. A possible
explanation for this is that since the dedicated singular value decomposition uses less
constraints, more information of the original data is captured in the decomposition.
Hence the larger dedicated singular values and the better approximations.

Table 3.3: Generic and dedicated singular values.

σ1 102773.20 σ̂1 102773.20

σ2 5815.49 σ̂2 49916.03

σ3 3265.52 σ̂3 19275.82

σ4 1948.73 σ̂4 11779.07

σ5 1489.41 σ̂5 9920.99

Table 3.4: Relative Approximation Error,‖W −Wr‖F

‖W ‖F
, for approximations of the form

(r1, r2, L3).

(r1, r2) HOSVD Succ. Rank 1 TSVD Dedicated TSVD

(1, 1) 0.5181 0.5181 0.5181 0.5181

(3, 3) 0.2647 0.2646 0.5126 0.2646

(5, 5) 0.2331 0.2305 0.5108 0.2305

(7, 7) 0.2108 0.2069 0.4280 0.2070

(10, 10) 0.1868 0.1856 0.4265 0.1872

Figures 3.3 and 3.4 show the 10th slice of the rank-(10, 10, 29) approximations to
the original data. The figures illustrate the numbers given in Table 3.4. The figures
show clearly that the performance of the HOSVD, successive rank-one approxima-
tions and dedicated TSVD is equivalent for this specific example. All three methods
significantly outperform the TSVD.

3.10 Conclusions

This chapter considered the problem of finding low-rank approximations totensors.
We have formally introduced tensors and tensor concepts in a coordinate-free man-
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Figure 3.3: 10th slice of rank-(10, 10, 29) approximant, computed using HOSVD

(left) and Successive Rank-One approximations (right).
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Figure 3.4: 10th slice of rank-(10, 10, 29) approximant, computed using TSVD (left)

and modified TSVD (right).
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ner. Furthermore, we have given a brief overview of the field of tensordecompositions
and defined the necessary concepts such as tensor rank and low-rank approximations.
Then, we have presented a new method for the computation of modal rank approxima-
tions to tensors. We have given a thorough analysis of the properties of this method,
referred to as TSVD, and presented a number of low-rank approximationresults. We
have defined an adaptation to the TSVD which may give better approximation re-
sults when not all modal directions are approximated. Finally, we have presented
a numerical algorithm to compute the decomposition and analyzed its convergence
properties. The chapter concludes with a numerical example. In the numerical exam-
ple that was presented, the TSVD method was compared to the best-known existing
modal rank approximation method, the HOSVD. The work presented in this chapter
has previously appeared in [81, 7]. In future, a more thorough numerical analysis of
the decomposition method is necessary, specifically with respect to the influence of
local optima [42].
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Chapter 4

Generalization of POD

4.1 Introduction

POD is a model reduction method that is applicable to systems, linear or non-linear,
that evolve both over space and time. Specifically, Galerkin projections areused to
derive approximate models. According to the definition of a Galerkin projection, the
projection spaces for the signal and residual projection are chosen to be equal. The
element that distinguishes POD from other Finite Element methods is the fact that
the projection spaces are computed from measured or simulated process data. POD is
used in many application areas such as fluid dynamics, process control and reservoir
modeling.

As mentioned above, POD is a projection-based method that relies on the computation
of empirical projection spaces from a representative set of measurement or simulation
data. In its classical formulation, the projection spaces are used in a spectral expansion
that separates space and time. No further structure is assumed for the spatial variables.
This makes POD basically a two-variable method since it deals with anND system
by separating time and space. That is, the independent variables are assumed to reside
in a Cartesian product of a temporal and spatial domain.

There are a number of limitations concerning the application of POD to true large-
scale systems. Firstly, due to the Galerkin projection, when POD is applied to non-
linear PDEs the computation time does not decrease significantly. This is because the
original nonlinear equations still have to be evaluated at each time-step. Thisissue
was addressed in [3, 17]. Secondly, in most model reduction applications, a sepa-
ration is made between space and time, but no further structure is assumed for the
spatial domain. In particular, for larger dimensional Euclidean geometries,all spatial
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variables are lumped and this yields a large-dimensional data correlation operatorΦ.
In this way, theND nature of the original problem is replaced by an artificial 2-D
structure with space and time as independent variables. Thirdly, when multiplede-
pendent variables, i.e. multiple physical quantities, are considered, the reduced model
becomes very sensitive to scaling of these dependent variables.
In this chapter we propose an adaptation of POD to deal with the latter two of these
issues. We will assume a more general Cartesian structure for the independent vari-
ables. This allows changes to be made to POD that allow, at least in principle, more
flexibility in defining approximate models.
This chapter is structured as follows. First, we introduce the POD method as itis
currently used. Then, we propose an adaptation which assumes a Cartesian structure
of the independent variables. This allows projection spaces to be computedusing
the tensor decompositions methods discussed in the previous chapter. We discuss
the spectral expansion and Galerkin projection that follow from the assumption of
a Cartesian structure for the independent variables. The method proposed in this
chapter is illustrated using two numerical examples. The material presented in this
chapter was published in [7, 8].

4.2 Proper Orthogonal Decompositions

This section offers a brief introduction to the method of Proper OrthogonalDecom-
positions. More information on this topic can be found in [56, 52, 74].
Consider an arbitrary linear distributed system described by the following Partial Dif-
ference Equation

D(ς1, ς
−1
1 , . . . , ςN , ς

−1
N )w = 0. (4.1)

HereD ∈ R
·×n[ξ1, . . . , ξN , η1, . . . , ηN ] is a real matrix-valued polynomial in2N

indeterminates andςk (ς−1
k ) is the forward (backward) shift operator acting on the

spatial discretization in thekth mode according to Definition A.2.1. The domain of
the signalw, D, is assumed to have a Cartesian structureD = X × T, which is
typically the product of a spatial and a temporal domain. Solutionsw to this PDE
assume the formw : X × T → R where bothX andT are sets of finite cardinality,
sayLX andLT , respectively. Specifically, we considerX = {p(1)

x , . . . , p
(LX)
x } and

T = {p(1)
t , . . . , p

(LT )
t }.

The POD method consists of three steps. First, the signalw is approximated by a
signalwr using a spectral expansion. Second, the reduced model is defined to consist
of the signalswr that satisfy a Galerkin projection. Third, the projection spaces in
this Galerkin projection are empirical projection spaces, i.e. they are computed from
measured or simulated process data.
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Whenevern > 1, two different types of spectral expansions can be found in literature.
These types will be referred to bysingle-variableand lumped-variableexpansions.
In single-variable expansions, each element of the vector-valued signal w is expanded
separately. In lumped-variable expansions, the signalw is expanded as a whole, as
we will show below.

4.2.1 Spectral Expansions

Lumped-variable expansions

Let X be the space of functionsf : X → R
n with the following inner product

〈f, g〉X =
LX∑

k=1

〈f(p(k)
x ), g(p(k)

x )〉 (4.2)

for all f, g ∈ X , where〈·, ·〉 denotes the Euclidean inner product inR
n.

Solutionsw of (4.1) are assumed to satisfyw(·, pt) ∈ X for all pt ∈ T. Let {ϕ
k
, k =

1, 2, . . . , LX} be an orthonormal basis forX . Then, every solutionw to (4.1) admits
a spectral expansion

w(px, pt) =
LX∑

k=1

ak(pt)ϕk
(px).

In this expansion the modal coefficientsak are uniquely determined byak(pt) =
〈w,ϕk〉X for all pt ∈ T. For0 < r < LX , a low-rank approximation tow is defined
by the truncation

wr(px, pt) =
r∑

k=1

ak(pt)ϕk
(px) (4.3)

for all px ∈ X andpt ∈ T.

Single-variable expansions

In single-variable expansions each component ofw is expanded individually. Specif-
ically, for each of the componentswk, k = 1, . . . , n, of w = [w1, . . . , wn]⊤ it is
assumed that, for any time instantpt ∈ T, the component functionwk(·, pt) belongs
to a Hilbert spaceXk of functions mappingX = R

LX to R with the following inner
product

〈f, g〉Xk
=

Lx∑

k=1

f(p(k)
x )g(p(k)

x ), ∀f, g ∈ Xk. (4.4)
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Let ϕ(ℓk)
k : X → R is a (countable) orthonormal set of basis functions ofXk, thenw

admits an expansion of the form

w(px, pt) =







∑

ℓ1
a

(1)
ℓ1

(pt)ϕ
(ℓ1)
1 (px)

...
...

∑

ℓn
a

(n)
ℓn

(pt)ϕ
(ℓn)
n (px)







Here, the coefficients are uniquely determined bya
(k)
ℓk

(pt) = 〈wk(·, pt), ϕ
(ℓk)
k 〉j .

If r = (r1, . . . , rn) is a vector of integers then thetruncated expansionof orderr is
defined by the signalwr(px, pt) whosekth entry is given by the finite expansion

w(k)
r (px, pt) =

rk∑

ℓk=1

a
(k)
ℓk

(pt)ϕ
(ℓk)
k (px).

4.2.2 POD basis choice

POD basis choice for lumped-variable expansions

Clearly, the quality of the reduced order model (4.9) entirely depends on the choice of
basis functions{ϕk}. In the POD method, the orthonormal basis functions{ϕk} of X
are determined empirically, either from measurements or dataw : D → R simulated
from (4.1). This set of measured or simulated data is assumed to contain a collection
of trajectories that is representative of the system dynamics of interest. Specifically,
for a Cartesian domainD = X × T and given dataw : D → R with w(·, pt) ∈ X and
pt ∈ T, the basis functionsϕk are chosen so as to minimize the criterion function

J(ϕ1, . . . , ϕr) :=
LT∑

m=1

‖w(·, p(m)
t ) −

r∑

k=1

〈w(·, p(m)
t ), ϕk〉ϕk‖2 (4.5)

subject to the constraint that

〈ϕk, ϕm〉 =

{

1 if k = m

0 if k 6= m
k,m = 1, . . . , r. (4.6)

Here, the inner product is the inner product of the Hilbert spaceX and the optimiza-
tion is carried out for an arbitrary approximation degreer. The characterization of
the POD basis that follows is valid for arbitrary Hilbert spacesX , that may be infinite
dimensional. This applies to this part of the chapter only.
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Definition 4.2.1 (POD basis or orderr). A POD basis of orderr is defined to be a

collection of functions{ϕ1, . . . , ϕr}, ϕk : X → R
n, that minimizes the criterion(4.5)

subject to the constraint(4.6). Hence, a POD basis of orderr minimizes the total

error
∑

T ‖w − wr‖2 over all rankr approximationswr ofw of the form(4.3).

Definition 4.2.2 (POD basis). Let I be a countable set of indices with cardinality

equal to the dimension ofX . A complete orthonormal basis{ϕk, k ∈ I} of X is said

to be aPOD basisif for all r the collection{ϕ1, . . . , ϕr} is a POD basis of orderr.

The constrained optimization problem (4.5) has an elegant solution in terms of the
data correlation operatorΦ : X → X that is implicitly defined as

〈ψ1,Φψ2〉 :=
LT∑

m=1

〈ψ1, w(·, p(m)
t )〉 · 〈w(·, p(m)

t ), ψ2〉 ψ1, ψ2 ∈ X . (4.7)

Note that,Φ is a well defined linear, bounded, self-adjoint and non-negative operator
onX .

Theorem 4.2.3.Suppose that{ϕk, k ∈ I} is an orthonormal basis ofX and suppose

that the eigenvalues ofΦ are absolute summable. Then{ϕk, k ∈ I} is a POD basis

if and only ifΦϕk = λkϕk, k ∈ I where the eigenvaluesλk are ordered according to

λ1 ≥ λ2 ≥ · · · . Moreover, in that case the error

J(ϕ1, . . . , ϕr) =
∑

k>r

λk

and is minimal for all truncation levelsr > 0.

Hence, the eigenfunctions of the data correlation operator determine the POD basis.

Proof. If eigenvalues ofΦ are absolute summable,Φ is self-adjoint and nuclear. This

means that it admits a representationΦ =
∑N

k=1 λk〈ψk, ·〉ψk where1 ≤ N ≤ ∞, the

eigenvaluesλk are positive, non-increasingly ordered and summable, and the eigen-

functions{ψk, k = 1, . . . , N} are orthonormal inX . Moreover, for any orthonormal
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basis{ϕk, k ∈ I} of X we have

J(ϕ1, . . . , ϕr) =
LT∑

m=1

〈w − wr, w − wr〉

=
LT∑

m=1

〈
∑

k>r

〈w(·, p(m)
t ), ϕk〉ϕk,

∑

k>r

〈w(·, p(m)
t ), ϕk〉ϕk

〉

=
LT∑

m=1

∑

k>r

〈

w(·, p(m)
t ), ϕk

〉

·
〈

w(·, p(m)
t ), ϕk

〉

=
∑

k>r

LT∑

m=1

〈w(·, p(m)
t ), ϕk〉 · 〈w(·, p(m)

t ), ϕk〉

=
∑

k>r

〈ϕk,Φϕk〉.

Now first suppose thatϕk = ψk for k = 1, . . . , N . Then,{ϕk, k = 1, . . . , N} is an

orthonormal set of eigenfunctions ofΦ andJ(ϕ1, . . . , ϕr) =
∑

k>r λk is finite and

minimal for allr by the monotonicity of the sequenceλk. Hence,{ϕk, k = 1, . . . , r}
is a POD basis of orderr for anyr. Second, for any POD basis{ϕk, k ∈ I} the above

expression for the error implies that

J(ϕ1, . . . , ϕr) =
∑

k>r

〈ϕk,
N∑

m=1

λm〈ψm, ϕk〉ψm〉 =
∑

k>r

N∑

m=1

λm〈ϕk, ψm〉2

which is minimal for allr only if 〈ϕk, ψm〉 = δk,m for all integersk,m between 1

andN . But then it is immediate that{ϕk, k = 1, . . . , N} is also a set of orthonormal

eigenvectors ofΦ.

In the finite-dimensional discrete case, the data correlation operatorΦ becomes a
symmetric non-negative definite matrix

Φ = WsnapW
⊤
snap (4.8)

whereWsnap∈ R
LX×LT is a matrix that contains trajectories of the system (4.1) that
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have been obtained either from measurements or simulations.Wsnapis given by

Wsnap= [w(px, p
(1)
t ), · · · , w(px, p

(LT )
t )]

=







w(p
(1)
x , p

(1)
t ) · · · w(p

(1)
x , p

(LT )
t )

...
...

w(p
(LX)
x , p

(1)
t ) w(p

(LX)
x , p

(LT )
t )







POD basis functions can now be computed via the eigenvalue decomposition ofΦ,
i.e. the decompositionΦ = UΛU⊤. Specifically, the eigenvectors ofΦ, stored in the
columns ofU , form the POD basis. These eigenvectors are equal to the left singular
vectors ofWsnap. Consider that the SVD ofWsnap is given byWsnap = UΣV ⊤, then
the following holds

WsnapW
⊤
snap= UΣV ⊤V Σ⊤U⊤

= U
(

ΣΣ⊤
)

U∗

Hence, computation of POD basis functions via the eigenvalues of the correlation ma-
trix is equivalent to computation of the Singular Value Decomposition of the snapshot
matrix.

POD basis choice for single-variable expansions

Similar to the lumped-variable case, for the single variable expansion a data corre-
lation operatorΦk : Xk → Xk is defined for eachk = 1, . . . , n with respect tow
according to

〈ψ1,Φkψ2〉 :=
LT∑

m=1

〈ψ1, wk(·, p(m)
t )〉〈ψ2, wk(·, p(m)

t )〉

for ψ1, ψ2 ∈ Xk. ThenΦk is a well defined linear, bounded, self-adjoint and non-
negative operator onXk. The collection{ϕ(ℓ)

k | ℓ = 1, 2, . . .} of ordered normalized
eigenfunctions ofΦk then defines an orthonormal basis of a subspace inXk. That is,
letϕ(ℓ)

k : X → R be the function that satisfies‖ϕ(ℓ)
k ‖ = 1 and

Φkϕ
(ℓ)
k = λℓϕ

(ℓ)
k

whereλℓ is theℓth largest eigenvalue ofΦk. Then{ϕ(ℓ)
k } is a collection of orthonor-

mal functions provided that the eigenvaluesλℓ are disjoint (for non-disjoint eigenval-
ues the eigenfunctions ofΦk can be chosen to be orthonormal). This specific basis
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is optimal for the given data in the sense that
∑LT

m=1 ‖wk(·, p(m)
t ) − w

(k)
r (·, p(m)

t )‖ is
minimal for all truncation levelsrk and for allk = 1, . . . , n.
SinceX consists ofLX disjoint samples, the spacesXk areLX -dimensional andΦk

is a non-negative definite matrix of dimensionLX × LX defined byΦk = WkW
⊤
k

where[Wk]ℓ1,ℓ2 = wk(p
(ℓ1)
x , p

(ℓ2)
t ) is sometimes referred to as asnapshot matrix

Wk =







wk(p
(1)
x , p

(1)
t ) · · · wk(p

(1)
x , p

(LT )
t )

...
...

wk(p
(LX)
x , p

(1)
t ) wk(p

(LX)
x , p

(LT )
t )






.

POD basis functions can now be computed via the eigenvalue decomposition ofΦk,
or the SVD ofWk, as in the lumped-variable case.

4.2.3 Galerkin projecion

Galerkin projection for lumped-variable expansion

For r > 0, the reduced order model is then defined by the collection of solutions
wr(px, pt) =

∑r
k=1 ak(pt)ϕk(px) that satisfy the Galerkin projection

〈

D(ς1, ς
−1
1 , . . . , ςN , ς

−1
N )wr, ϕ

〉

= 0, ∀ϕ ∈ Xr (4.9)

whereXr is the finite dimensional projection spaceXr = span{ϕ1, . . . , ϕr}. When-
ever the spectral expansion ofwr is substituted in (4.9), (4.9) becomes a system ofr
ordinary difference equations in the modal coefficientsak, k = 1, . . . , r. This reduces
the PDE (4.1) to an approximate model ofr ordinary differential equations.

Galerkin projection for single-variable expansion

In the single-variable case, the reduced model is defined for each row of (4.1) as
follows. Consider a vector of integersr = (r1, . . . , rn). For1 ≤ k ≤ n, the reduced

order model is defined by the collection of solutionsw(k)
r (px, pt) =

∑rk

ℓk=1 a
(k)
ℓk

(pt)ϕ
(ℓk)
k (px) that satisfy

〈[D(ς1, ς
−1
1 , . . . , ςN , ς

−1
N )wr](k), ϕ〉 = 0, ∀ϕ ∈ span{ϕ(1)

k , . . . , ϕ
(rk)
k } (4.10)

Again, the spectral expansion ofwr is substituted in (4.10),this becomes a system of
rk ordinary differential equations ina(k)

ℓk
.
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4.3 Adaptation of POD

The previous section introduced the method of Proper Orthogonal Decompositions as
it can be found in literature. As mentioned in the introduction to this chapter, there are
a couple of issues when applying POD to large-scale systems. Therefore, we describe
an adaptation of the method in this section. Instead of the separation of time and
space, we propose a more general Cartesian structure of the independent variables.
This structure allows to define an alternative spectral expansion, Galerkin projection
and projection basis. Specifically, we assume that the domainX of (4.1) has Cartesian
structureX = X1 × · · · × XN . Furthermore, we assume that eachXk has finite
cardinalityLk, i.e. Xk = {p(1)

k , . . . , p
(Lk)
k } for k = 1, . . . , N and letXk := R

Lk be
equipped with the standard Euclidean inner product. Finally, we assumeY := R

n to
also be equipped with the standard Euclidean product.
The proposed approach can be summarized as follows. The assumption ofa Cartesian
domainX allow a tensorW : X1 × · · · × XN × Y → R to be associated with
the signalw. This also means that we can associate a tensor with the measured or
simulated data that will be used to compute a projection basis. Approximations to
this tensor provide a projection basis for each of the independent variables. This leads
to a spectral expansion which is an alternative to the single- and lumped-variable
expansions introduced in the previous section. Since the spectral expansion and the
projection basis have both changed, an adapted Galerkin projection is needed to be
able to define a reduced model.

4.3.1 Spectral Expansion

The solutionw of the difference equation (4.1) can be viewed as a mappingw :
X1 × · · · × XN → R

n. Therefore, we can define the setŴ of mappingsŴ : X1 ×
· · · × XN → Y. Ŵ is a mapTN → T1 and as described in Section 3.2.1, we can
associate a tensorW ∈ TN+1 with Ŵ and therefore withw. W is a tensorW :
X1 × · · · × XN × Y → R. W is represented with respect to the standard bases as
follows

W =
L1∑

ℓ1=1

· · ·
LN∑

ℓN =1

n∑

ℓN+1=1

wℓ1···ℓN+1
e

(ℓ1)
1 ⊗ · · · ⊗ e

(ℓN+1)
N+1 (4.11)

where the coefficientswℓ1···ℓN+1
are defined as follows

wℓ1···ℓN+1
:= wℓN+1

(p
(ℓ1)
1 , . . . , p

(ℓN )
N ) (4.12)

that is,wℓ1···ℓN+1
takes the value of theℓN+1-th element ofw at grid-point

(p
(ℓ1)
1 , . . . , p

(ℓN )
N ).
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We will work towards a spectral expansion via a basis change for the tensor W as
follows. Consider the following orthonormal bases forX1, . . . ,XN ,Y

{ϕ(1)
1 , . . . , ϕ

(L1)
1 }, . . . , {ϕ(1)

N , . . . , ϕ
(LN )
N }, {ϕ(1)

N+1, . . . , ϕ
(n)
N+1}. (4.13)

We now represent the tensorW with respect to (4.13), which leads to the following
representation

W̃ =
L1∑

ℓ1=1

· · ·
n∑

ℓN+1=1

w̃ℓ1···ℓN+1
ϕ

(ℓ1)
1 ⊗ · · · ⊗ ϕ

(ℓN+1)
N+1 . (4.14)

w̃ℓ1···ℓN+1
denotes the elements ofW with respect to the new bases (4.13), i.e

w̃ℓ1···ℓN+1
:= W (ϕ

(ℓ1)
1 , . . . , ϕ

(ℓN+1)
N+1 )

From now on, we assume thatXN refers to the time variable, which we do not wish
to approximate in the remainder of the model reduction approach. We now define
a spectral expansion forw as follows. Let one component,wk, of the signalw be
defined as follows

wk(k1, . . . , kN ) := W̃ (e
(k1)
1 , . . . , e

(kN )
N , e

(k)
N+1). (4.15)

Now,w is defined as

w(k1, . . . , kN ) =
L1∑

ℓ1=1

· · ·
n∑

ℓN+1=1

w̃ℓ1···ℓN+1
〈ϕ(ℓ1)

1 , e
(k1)
1 〉

· · · 〈ϕ(ℓN )
N , e

(kN )
N 〉







〈ϕ(ℓN+1)
N+1 , e

(1)
N+1〉

...

〈ϕ(ℓN+1)
N+1 , e

(n)
N+1〉






. (4.16)

Now define coefficientsbℓ1···ℓN−1
as follows

bℓ1···ℓN−1
(p

(kN )
N ) :=








b
(1)
ℓ1···ℓN−1

(p
(kN )
N )

...

b
(n)
ℓ1···ℓN−1

(p
(kN )
N )








(4.17)

=
LN∑

ℓN =1

w̃ℓ1···ℓN
〈ϕ(ℓN )

N , e
(kN )
N 〉







〈ϕ(ℓN+1)
N+1 , e

(1)
N+1〉

...

〈ϕ(ℓN+1)
N+1 , e

(n)
N+1〉






. (4.18)
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Then we arrive at the following spectral expansion forw

w(p
(k1)
1 , . . . , p

(kN )
N ) =

L1∑

ℓ1=1

· · ·
LN−1∑

ℓN−1=1

bℓ1···ℓN1
(p

(kN )
N )

〈ϕ(ℓ1)
1 , e

(k1)
1 〉 · · · 〈ϕ(ℓN−1)

N−1 , e
(kN−1)
N−1 〉. (4.19)

So now we have a spectral expansion forw, with vector-valued coefficients and a
scalar basis functions. A rank-r = (r1, . . . , rN−1) approximation ofw is defined by
truncation of the sums in (4.19).

Remark 4.3.1. Due to practical motivations, we have chosen here not to incorporate

approximations in time or the space of dependent variablesY. From a mathematical

point of view it is indeed possible to also approximate time and the space of dependent

variables. One would need to consider the physical significance of suchapproxima-

tions.

4.3.2 Projection basis

Assume a FE solutionwsnapof (4.1) is available. We can associate a tensorWsnap :
X1 × · · · × XN × Y → R with wsnap as outlined above.Wsnap has the following
representation with respect to the standard bases

Wsnap=
L1∑

ℓ1=1

· · ·
n∑

ℓN+1=1

wℓ1···ℓN+1
e

(ℓ1)
1 ⊗ · · · ⊗ e

(ℓN+1)
N+1

wherewℓ1···ℓN+1
takes the value of theℓN+1-th element ofw on the sample point with

index(ℓ1, . . . , ℓN ).
Our aim here is to generalize the idea of a POD basis for spatial domains to a higher
dimensional Euclidean product space. For this, following 3.5.1, the data dependent
tensorWsnapis assumed to be decomposed in SVD from according to (3.20). Let

M(rk)
k = span{ϕ(1)

k , . . . , ϕ
(rn)
k }

for k = 1, . . . , N andrk ≤ Lk define ark-dimensional projection space inXk. Then,
ϕ

(1)
k , . . . , ϕ

(rk)
k form an orthonormal basis ofM(rk)

k . LetW ∗
r be the modal truncation

of Wsnapas defined in Def. 3.4.2. Then, a projection basis can be defined as follows.
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Definition 4.3.2. The vector of integersr = (r1, . . . , rN ) with rn ≤ Rn is said to

achieve a relative approximation errorǫ > 0 if

‖Wsnap−W ∗
r ‖F

‖Wsnap‖F
≤ ǫ (4.20)

In that case, we say that the basis functions{ϕ(1)
k , . . . , ϕ

(rk)
k } for k = 1, . . . , N

constitute a generalized projection basis for the model(4.1) derived from the tensor

Wtextsnap.

4.3.3 Galerkin projection

In the previous subsections a spectral expansion and a projection basishave been
defined. What remains to be done is the definition of a Galerkin projection concept
that fits this framework. To avoid confusion because of complex index-notation, we
restrict the discussion to scalarw, i.e. from now onn = 1. That is, we first consider
the following difference equation

D(ς1, . . . , ςN )w = 0.

Th residual of this difference equation,R := D(ς1, . . . , ςN )w is a signalw : X1 ×
· · · × XN → R. We associate âD with R as follows. LetD̂ : X1 × · · · × XN → R

be represented as

D̂ =
∑

ℓ1

· · ·
∑

ℓN

d̂ℓ1···ℓN
e

(ℓ1)
1 ⊗ · · · ⊗ e

(ℓN )
N . (4.21)

Here, given a point(p(ℓ1)
1 , . . . , p

(ℓN )
N ) in the domainX, coefficientsd̂ℓ1···ℓN

are defined
as

d̂ℓ1···ℓN
= R(ℓ1, . . . , ℓN ) = [D(ς1, . . . , ςN )w](p

(ℓ1)
1 , . . . , p

(ℓN )
N ). (4.22)

That is,d̂ℓ1···ℓN
takes the value of the residual at grid-point(p

(ℓ1)
1 , . . . , p

(ℓN )
N ).

Given sets of projection basis functions
{

ϕ
(ℓk)
k

}rk

ℓk=1
a Galerkin projection of the dis-

crete time modelD(ς1, . . . , ςN )w = 0 is defined as

〈ϕ(k1)
1 , · · · , 〈ϕ(kN−1)

N−1 , D(ς1, . . . , ςN )w〉N−1 · · · 〉1 = 0 (4.23)

for km = 1, . . . , rm andm = 1, . . . , N − 1. Here, the expression of nested inner
products should be interpreted as follows. Firstly,R = D(ς1, . . . , ςN )w is to be
associated with the tensor̂D : X1 × · · · × XN → R as above so that̂DN−1 :=
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〈ϕN−1, D̂〉 becomes a linear functional̂DN−1 : X1 × . . . × XN−2 × XN → R, etc.
Note that theN th independent variable is not projected. Throughout we assume this
independent variable corresponds to time. Equation (4.23) defines a collectionDG of
tensorsD̂G : XN → R defined by

D̂G := D̂(ϕ
(k1)
1 , . . . , ϕ

(kN−1)
N−1 , ·)

=
∑

ℓ1

· · ·
∑

ℓN

d̂ℓ1···ℓN
〈e(ℓ1)

1 , ϕ
(k1)
1 〉 · · · 〈e(ℓN−1)

N−1 , ϕ
(kN−1)
N−1 〉〈e(ℓN )

N , ·〉 (4.24)

for 1 ≤ km ≤ rm, m = 1, . . . , N − 1, see Lemma A.4.1 in the appendix for back-
ground. Now,DG is defined by

DG = {D̂G : XN → R | 1 ≤ km ≤ rm, m = 1, . . . , N − 1}. (4.25)

Equation (4.24) can be simplified by defining

bk1···kN−1ℓN
=
∑

ℓ1

· · ·
∑

ℓN−1

d̂ℓ1···ℓN
〈e(ℓ1)

1 , ϕ
(k1)
1 〉 · · · 〈eℓN−1

N−1 , ϕ
(kN−1)
N−1 〉. (4.26)

This gives
D̂G(·) =

∑

ℓN

bk1···kN−1ℓN
〈e(ℓN )

N , ·〉 (4.27)

Now, we are in a position to define a reduced order model. Given a time instance
t = p

(kN )
N , the reduced model is given by the following equations

DG(p
(kN )
N ) = bk1···kN

= 0 (4.28)

for 1 ≤ km ≤ rm, m = 1, . . . , N − 1. Given the order of the reduced model,
r = (r1, . . . , rN−1), the spectral expansion used forw(p1, . . . , pN ) is given by

w(p
(k1)
1 , . . . , p

(kN )
N ) =

L1∑

ℓ1=1

· · ·
LN−1∑

ℓN−1=1

bℓ1···ℓN1
(p

(kN )
N )

〈ϕ(ℓ1)
1 , e

(k1)
1 〉 · · · 〈ϕ(ℓN−1)

N−1 , e
(kN−1)
N−1 〉. (4.29)

Trajectories of the reduced model are thus formed by the coefficientsbℓ1···ℓN−1
that

satisfy the residuals (4.28) for allt = p
(kN )
N .

Remark 4.3.3. The approach to Galerkin projection presented here is similar for the

casen ≥ 2. That case requires another vector space to be taken into account, butthe

approach remains identical.
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Figure 4.1: First and final time slices of the FE solution of (5.27).

4.3.4 Model reduction of a heat transfer process

Consider the following model of a heat transfer process on a rectangular plate of size
Lx × Ly:

0 = −ρcp
∂w

∂t
+ κx

∂2w

∂x2
+ κy

∂2w

∂y2
. (4.30)

Here,w(x, y, t) denotes temperature on position(x, y) and timet ∈ T := [0, Tf ] and
the rectangular spatial geometry defines the Cartesian productX × Y := [0, Lx] ×
[0, Ly]. The plate is assumed to be insulated from its environment. LetX = L2(X ×
Y) be the Hilbert space of square integrable functions onX×Y and letXr = Xr1 ×Yr2

with Xr1 ⊆ X = L2(X) andYr2 ⊆ Y = L2(Y) be finite dimensional subspaces

spanned byr1 andr2 orthonormal bases functions{ϕ(ℓ1)
1 } and{ϕ(ℓ2)

2 }, respectively.

Solutions of the reduced model are then given by
wr(x, y, t) =

∑r1
ℓ1=1

∑r2
ℓ2=1 aℓ1ℓ2(t)ϕ

(ℓ1)
1 (x) ⊗ ϕ

(ℓ2)
2 (y) with aℓ1ℓ2(t) = [A(t)]ℓ1ℓ2 a

solution of the matrix differential equation

0 = −ρcpȦ+ κxFA+ κyAP. (4.31)

Here,F andP are defined as:

F =






〈ϕ(1)
1 ,ϕ̈

(1)
1 〉 ... 〈ϕ(1)

1 ,ϕ̈
(r1)
1 〉

...
...

〈ϕ(r1)
1 ,ϕ̈

(1)
1 〉 ... 〈ϕ(r1)

1 ,ϕ̈
(r1)
1 〉




; P =






〈ϕ(1)
2 ,ϕ̈

(1)
2 〉 ... 〈ϕ(1)

2 ,ϕ̈
(r2)
2 〉

...
...

〈ϕ(r2)
2 ,ϕ̈

(1)
2 〉 ... 〈ϕ(r2)

2 ,ϕ̈
(r2)
2 〉





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Alternatively,aℓ1ℓ2(t) is the solution of the ordinary differential equation

ρcpȧℓ1ℓ2(t) = κx

r1∑

k1=1

ak1ℓ2(t)〈ϕ̈(k1)
1 (x), ϕ

(ℓ1)
1 (x)〉+

κy

r2∑

k2=1

aℓ1k2(t)〈ϕ̈(k2)
2 (y), ϕ

(ℓ2)
2 (y)〉 (4.32)

for 1 ≤ ℓ1 ≤ r1 and1 ≤ ℓ2 ≤ r2. A FE solution of (5.27) has been computed with
physical and discretization parameters as given in Table 4.1. Time slices, including
the initial condition, of the simulation data can be seen in Fig. 4.1. The boundary con-
ditions are chosen so as to represent that the plate is insulated from its environment.

Table 4.1: PDE Parameter Values

Parameter Value Unit

ρCp 5 J
m3·K

κx 0.5 W
m·K

κy 0.5 W
m·K

Lx 3 m

Ly 4 m

Tf 3.6 s

∆x 0.05 m

∆y 0.05 m

∆t 0.05 s

In this example the original orders(L1, L2, L3) = (61, 81, 72) are reduced to

(r1, r2, L3) where we taker1 = r2. The orthonormal bases{ϕ(ℓ1)
1 } and{ϕ(ℓ2)

2 } have
been computed using Tensor SVD and dedicated Tensor SVD construction, where in
the latter time was not orthonormalized, since these basis functions will not be used
in the reduced model. The first basis functions forX andY computed using Tensor
SVD described in Section 3.5 are shown in Fig. 4.2.
The simulation time of the FE implementation is17.22s, the reduced models have a
simulation time of approximately0.35s. Table 4.2 gives the simulation error of the
reduced model for different model orders. The reduced models weregiven the same
initial condition as the was used to collect the snapshot data. Simulation errorsare
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Figure 4.2:ϕ(1)
1 (left), ϕ(1)

2 (middle) andϕ(1)
1 ⊗ ϕ

(1)
2 (right). These basis functions

were computed using the Tensor Singular Value Decomposition.

given for models that use basis functions computed using TSVD and basis functions
computed using the dedicated construction. As can be seen in Table 4.2 usinga dedi-
cated construction to compute basis functions does not give a more accurate reduced
model for this example.

Table 4.2: Reduced model simulation error results, basis functions were computed

using TSVD (left) and dedicated construction (right).

r ‖W −Wr‖F

‖W ‖F

‖W −W d
r ‖F

‖W ‖F

(2, 2) 0.366 0.366

(3, 3) 0.347 0.336

(5, 5) 0.239 0.205

(7, 7) 0.174 0.162

(10, 10) 0.137 0.079

4.4 Simulation example

The aim of this section is to show how the different options for spectral expansions
introduced in Section 4.2.1 and Section 4.3 perform in a benchmark example. To this
end, we consider their application in the reduced order modeling of a non-isothermal
tubular reactor, where a first order irreversible exothermic reaction takes place [40].
The reactor is illustrated in Figure 4.3. This model has two independent variables,
namely one spatial variable and time, this givesN = 2. The two dependent variables
are temperature and concentration, thereforen = 2.
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reactor
-

-

Ci

Ti

6 6 6

? ? ?

Tj1 Tj2 Tj3

Figure 4.3: Tubular reactor

4.4.1 The model

The jacket temperaturesTj1, Tj2 andTj3 are considered to be three independent in-
puts that serve as control variables. At the inlet side of the reactor, the temperature
and concentration of the reactant are two additional disturbance inputs. The mathe-
matical model of the reactor describes the (normalized) temperatureT (z, t) and the
(normalized) concentrationC(z, t) of the reactant at an arbitrary locationz ∈ [0, 1]
of the reactor and at arbitrary time instantst ≥ 0. The model is given by the partial
differential equations.

∂T

∂t
=

1

Peh

∂2T

∂z2
− 1

Le

∂T

∂z
+ νCeγ(1− 1

T ) + µ(Twall − T )

∂C

∂t
=

1

Pem

∂2C

∂z2
− ∂C

∂z
−DaCe

γ(1− 1
T )

subject to the boundary conditions

atz = 0 :

{
∂T
∂z = Peh(T − Ti)
∂C
∂z = Pem(C − Ci)

atz = 1 :

{
∂T
∂z = 0
∂C
∂z = 0

Here, the wall temperatureTwall is given by

Twall(z, t) =







Tj1(t) if 0 ≤ z ≤ 1/3

Tj2(t) if 1/3 ≤ z ≤ 2/3

Tj3(t) if 2/3 ≤ z ≤ 1

whereTj1, Tj2, Tj3 are the jacket temperatures. The physical parameters of the model
are given in Table 4.3.
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Peh Pem Le Da γ ν µ

5 5 1.0 0.875 15 0.84 13.0

Table 4.3: Physical parameters

Let

w(z, t) :=

(

T (z, t)
C(z, t)

)

, u(t) :=






Tj1(t)
Tj2(t)
Tj3(t)




 , d(t) :=

(

Ti(t)
Ci(t)

)

denote the state, control input and disturbance input of the model, respectively.

4.4.2 The data

A steady state operating condition has been determined for the model by carrying out
an optimization on the three jacket temperaturesu = col(Tj1, Tj2, Tj3) under the as-
sumption that the temperature and concentration inlets are given by the normalized
values of the disturbancesd(t) = col(Ti(t), Ci(t)) = col(1, 1) for t ≥ 0. The op-
timization has been performed by minimizing a criterion function that expresses a
trade-off between a minimal energy consumption in the reactor and a maximal pro-
duction (i.e., a minimum of reactant concentration) under the constraint that the tem-
perature in the reactor does not exceed a certain upper limit [72]. This resulted in
optimal steady state jacket temperatures

u∗ =






T ∗
j1

T ∗
j2

T ∗
j3




 =






0.9970
1.0475
1.0353






and corresponding steady state temperature and concentration profiles
(T ∗(z), C∗(z)) as shown in Figure 4.4.
This optimal steady state operating condition turns out to be asymptotically stable.
However with a very small region of attraction. Indeed, a 3% perturbation on the
steady state inlet temperature or inlet concentration of the reactant brings the state
w(z, t) of the reactor in a periodic limit-cycle.
For this, the spatial configuration of the reactor has been discretized on auniform
spatial grid of 100 points and we applied the method of lines to approximate solutions
of the distributed model by a discrete iteration of the sampled state vector

ŵ(t) := col(T (z1, t), · · · , T (z100, t), C(z1, t), · · · , C(z100, t))

96



Chapter 4. Generalization of POD

0 0.2 0.4 0.6 0.8 1
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16
steady state temperature

tube position

T
e
m

p
e
ra

tu
re

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
steady state concentration

tube position

C
o
n
c
e
n
tr

a
ti
o
n

Figure 4.4: Steady state profiles for temperature and concentration

with the steady state profile as initial condition and with the perturbed inputsTj1(t) =
Tj2(t) = Tj3(t) = 1 and

Ti(t) =

{

1 if t < 5

1.038 if t ≥ 5
, Ci(t) = 1

State dataw(z, t) has been collected on the discretized spatial sampleszi and at 5000
equidistant time samples in the interval0 ≤ t ≤ 20. The evolution over time of
temperature and concentration at pointz = 0.5 can be seen in Fig. 4.7 (left).
All reduced models are derived from snapshot data described in this subsection, the
performance of the reduced models will be evaluated using a validation data set.

4.4.3 Reduced order model performance

To assess the performance of the reduced order models, a data set is generated as
described in Sec. 4.4.2, except for the inlet temperature and inlet concentration, which
are disturbed as follows

Ti(t) =

{
1 if t<4, t>18

1+0.04e0.045(t−4) sin(2(t−4))
+0.01 sin(5(t−4)) if 4≤t≤18

Ci(t) =

{
1 if t<4

1+0.015 sin(5t)+0.02sin(t) if 4≤t≤18
1.02 if t>18

.

Figure 4.7 (right) shows these inlet trajectories.
For this benchmark problem a number of reduced models have been constructed. We
will compare the performance of the single-variable, lumped-variable and tensor ap-
proaches, where in the tensor approach basis functions are generated using both the
Higher Order Singular Value Decomposition (HOSVD) [24] and Successive Rank
One approximations. The orders of the reduced models are chosen to be comparable.
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Figure 4.5: Time evolution of temperature of single-variable reduced model (left) and

lumped-variable reduced model (right).
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Figure 4.6: Time evolution of temperature of tensor-based reduced model with basis

functions computed using HOSVD (left) and tensor-based reduced modelwith basis

functions computed using successive rank-one approximations (right).

For the single-variable approach the order is chosen to be(4, 4), the lumped variable
reduced order model has order8, and both tensor-based reduced order models have
order(4, 4).

Figures 4.5 and 4.6 show the time evolution of temperature at pointz = 0.5 for the
four different reduced models. The time evolution of concentration showssimilar be-
havior for each of the reduced models. The performance of the single-variable reduced
model is inferior to the performance of the other models, see also Table 4.4. This table
gives the relative error of the total signals(z, t) in Frobenius norm and the worst-case
errors of temperature and concentration. The table shows that the performance of the
three remaining reduced models is comparable.
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Table 4.4: Reduced model simulation error results

Method ‖W −Ŵ ‖F

‖W ‖F
‖T − T̂‖∞ ‖C − Ĉ‖∞

Single 0.142 0.43 0.74

Lumped 0.024 0.17 0.19

Tensor - HOSVD 0.027 0.30 0.11

Tensor - Succ. R1 0.029 0.32 0.12

time
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Figure 4.7: Time-evolution of temperature and concentration from snapshot data at

point z = 0.5 (left), inlet temperature and concentration used for reduced model

validation (right).

4.5 Conclusions

This chapter considered the construction of reduced order models for multi-variable
distributed systems. Starting point is the method of Proper Orthogonal Decomposi-
tions. We have introduced a new method for the construction of projection spaces
from measurement or simulation data of these processes, whenever a Cartesian struc-
ture can be assumed for the independent variables. These projection spaces lead to
new construction of spectral expansions and Galerkin projection.The approach allows
inner products for dependent and independent variables to be chosen separately, this
will provide some additional freedom when dealing with scaling problems. Further-
more, in the proposed model reduction scheme reduction levels can be determined for
each independent variable separately.
The tensor-based method has been applied to a tubular reactor example andcompared
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to single-variable and lumped-variable techniques for obtaining reduced order models.
The simulation results in this paper support earlier findings in that the lumped-variable
spectral expansions perform better than single-variable expansions.For this example,
the performance of the tensor-based approach introduced in this paperis comparable
to the performance of the lumped-variable approach. This makes the tensorapproach
an interesting alternative in applications of very high dimensionality, or high number
of physical variables.
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Chapter 5

Reconstruction and

Approximation of

Multidimensional Signals

Described by Proper Orthogonal

Decompositions

This chapter was published as the paper [5].

5.1 Introduction

The question to recover or approximate an unknown analytic function froma number
of measurements has led to a substantial body of literature in the theory of interpo-
lation, identification and function approximation. This problem has been thoroughly
studied in digital signal processing and interpolation theory and its solution is key to
many questions in optimization, estimation, reduction, data compression, information
retrieval, filtering and optimal control. Initiated by the pioneering work of E.T.Whit-
taker [82], Kotelnikhov [49] and Shannon [70], the question of when asignal can
be completely recovered from its samples led to a development of information the-
ory and communication engineering that is nowadays known as sampling theory. See
[84, 57] for some authorative overviews on this development. The decomposition of
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analytic functions in spectral components is key to the understanding of milestone
contributions such as Shannon’s sampling theorem in its many variations.
This chapter considers the problem of reconstruction and approximation of multi-
dimensional signals that are sampled with non-uniformly distributed sensors.More
specifically, we assume signals to be defined on aN -dimensional Cartesian domain
and consider multi-dimensional spectral decompositions by orthonormal functions in
each co-ordinate of the signal domain. Such spectral decompositions arealso called
tensor decompositions as they involve the representation of a multi-linear functional
in terms of orthonormal basis functions. With partial information available on thesig-
nal or the tensor, we address the problem to reconstruct or approximatethe signal (or
tensor) by suitably defining the spectral coefficients of a reconstructedsignal on the
basis of partial information only. Unlike prevailing approaches [84, 64, 57, 14, 63, 73,
35, 32], we will not consider spectral expansions with specific basis functions such
as polynomials, harmonic functions, splines or shifted-modulated Gaussian functions
(Gabor expansions) but, instead, decompose signals (and tensors) in aset ofempiri-
cal basis functions and develop reconstruction strategies by taking appropriate linear
combinations of these functions. See [29] for a similar approach for uniform sampled
signals.
The motivation to consider empirical (or arbitrary orthonormal) basis functions stems
from applications in model reduction where the aim is to find simple substitute mod-
els for complex, large-scale finite element models. The method of Proper Orthog-
onal Decompositions (POD), also known as Principal Component Analysis(PCA)
or the Karhunen-Loève expansion is popular in the fluid dynamics community,and
uses spectral decompositions and Galerkin projections to project the solution of par-
tial differential equations onto a set of basis functions that is derived from empirical
or simulated data [71, 56, 39]. In the POD method, the idea is to determine a set
of empirical basis functions such that the error obtained by projecting simulated or
measured data onto the span of such functions is minimal. This method has led to a
substantial reduction of complexity of large-scale systems in computational fluid dy-
namics and has proven very useful for identifying coherent patterns inturbulent fluids.
See for example [2, 3, 39, 68, 83] for some large-scale POD applications. However,
despite the complexity reduction, the gain in computational speed is rather moderate
for large-scale nonlinear systems due to the high dimensionality of the data. Efforts
to address the problem of high computational cost include trajectory piecewise-linear
approximation schemes [67, 66], spatial-temporal correlation schemes [13], Gappy
POD techniques [30], missing point estimations [3] and the exploitation of symme-
tries [9, 69]. Each of these methods aims to remove latent variables and latentequa-
tions from large systems of differential-algebraic equations.
This chapter will focus on the missing point estimation technique as proposed in[30]
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and further developed in [3, 83]. The technique is based on signal reconstruction prop-
erties from sampled data and is mainly developed for one-dimensional signals. The
purpose of this chapter is to approach this reconstruction problem in a morefunda-
mental way and employ multidimensional spectral analysis for studying reconstruc-
tion and approximation questions. The focus will be on reconstruction schemes for
two-dimensional spectral expansions, with empirical orthonormal basis functions. We
address the problems of exact and approximate reconstruction of sampledsignals and
provide expressions for alias errors and the alias sensitivity.
The chapter is organized as follows. In Section 5.2 we formulate the signal reconstruc-
tion problem that is considered in this chapter. Section 5.3 discusses the conditions
for exact reconstruction of a multidimensional signal from its discrete measurements.
In Section 5.4 we proceed by deriving an expression for the alias errorfor situations
where exact reconstruction is not possible. In Section 5.5, the derivedresults will be
illustrated on a heat transfer model. Conclusions and recommendations for further
research are collected in Section 5.6. The appendix contains a review of some tensor
concepts.

Preliminaries and notation

For a matrixA ∈ R
n×m its transpose is denoted byA⊤. The left- and right inverse

of A are defined byA−L = (A⊤A)−1A⊤ andA−R = A⊤(AA⊤)−1, respectively.
Furthermore, recall that(A−L)⊤ = (A⊤)−R. For a functionf : A → B and a set
A0 ⊆ A, we will denote byf |A0 the restriction off to A0 defined asf |A0(x) = f(x)
for x ∈ A0. If A is a Hilbert space andA0 ⊆ A a subspace, thenΠA0 : A →
A0 denotes the canonical projection ofA onto A0. The operatorcol(·) stacks its
arguments in a vector. The set of positive integers is denoted byZ+.

5.2 Problem formulation

We consider signalsw : D → R defined on aN -dimensional domainD ⊂ R
N

and assume that such signals are continuous on the interior ofD. Following standard
terminology in engineering, for an arbitrary finite set of pointsD0 in D we call the
restrictionw̃ := w|D0 a sampling ofw and refer toD0 as a collection ofsample
points. A central paradigm in digital signal processing deals with the problem of
reconstructing the signalw from its samplesw̃. In its traditional formulation, the
reconstructed signal interpolates the function valuesw̃ on the sample points. In a
more general setting, the reconstructed signal is assumed to belong to a subspace
spanned by a set ofreconstruction functions. See [29, 28]. The reconstructed signal
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ŵ is then selected as a linear combination of reconstruction functions such thatthe
error‖w − ŵ‖ is small or minimal in some norm.
Throughout this chapter, we consider the case where the domainD is a Cartesian
product ofN intervalsXi, i.e.,D = X1 × · · · × XN . The setD0 of sample points is
assumed to have a Cartesian structureD0 = X

0
1 ×· · ·×X

0
N whereX0

i is a finite subset
of Xi. These assumptions allow us to consider multidimensional spectral decomposi-
tions in a natural way as follows. Fori = 1, . . . , N , let Wi = L2(Xi) be the Hilbert
space of square integrable mappingsXi → R with the usual inner product〈·, ·〉i and
norm‖ · ‖i. Similarly, letW := L2(D) be the set of square integrable functions onD.
We assume that the functionw(x1, . . . , xi−1, ·, xi+1, . . . , xN ), viewed as a mapping
from Xi to R, belongs toWi for all choices ofxk ∈ Xk, k 6= i. Because of the
Cartesian structure ofD this is equivalent to saying thatw ∈ W.
If

{ϕ(ℓ1)
1 , ℓ1 ∈ Z+}, . . . , {ϕ(ℓN )

N , ℓN ∈ Z+}

defines a collection of orthonormal bases forW1, . . . ,WN , thenw admits a multidi-
mensional spectral decomposition of the form

w(x1, . . . , xN ) =
∞∑

ℓ1=1

· · ·
∞∑

ℓN =1

aℓ1...ℓN
ϕ

(ℓ1)
1 (x1) · · ·ϕ(ℓN )

N (xN ) (5.1)

where the expansion coefficients are defined according to

aℓ1···ℓN
=

∫

D

〈w,ϕ(ℓ1)
1 (x1) · · ·ϕ(ℓN )

N (xN )〉dx1 · · · dxN

Here, convergence of the series in (5.1) is understood in the strongL2 sense.
Apart from spectral decompositions (5.1), the expansion coefficients also defineten-
sor decompositions. Specifically, atensor decompositionof a multi-linear mapW :
W1 × . . .× WN → R operating on elementswi ∈ Wi, i = 1, . . . , N is defined by

W (w1, . . . , wN ) =
∞∑

ℓ1=1

· · ·
∞∑

ℓN =1

aℓ1,...,ℓN
〈w1, ϕ

ℓ1
1 〉1 · · · 〈wN , ϕ

ℓN

N 〉N . (5.2)

Note thatW is linear in each of its arguments. The Frobenius norm of tensors and
signals is defined in Sec. 3.2 and equals

‖w‖F = ‖W‖F =





∞∑

ℓ1=1

· · ·
∞∑

ℓN =1

a2
ℓ1...ℓN





1/2

.
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Chapter 5. Reconstruction and Approximation of Multidimensional Signals

We will say that the signalw or the tensorW hasfinite or limited bandwidth
(L1, . . . , LN ) if the summation indexℓi in (5.1) or (5.2) ranges from 1 toLi for
i = 1, . . . , N . Clearly, finite bandwidth signals (or tensors) are obtained from (5.1)
(or (5.2)) by projectingw on the span of the firstLi basis functions in theith co-
ordinate direction,i = 1, . . . , N . Evidently, if a signal or a tensor has finite band-
width (L1, . . . , LN ) then it is uniquely defined by theN -way array[[aℓ1...ℓN

]] ∈
R

L1×···×LN .
Let D0 be the set of functionsD0 → R and letD ⊂ W be afinite dimensional
subspace ofW that we refer to as thereconstruction space. The reconstruction of a
sampled signal̃w ∈ D0 is then defined by the signal̂w = R(w̃) where

R : D0 → D

is the reconstruction map. Evidently, for any reconstruction mapR and any signal
w ∈ W, the error‖w −R(w̃)‖F satisfies

‖w −R(w̃)‖F ≥ ‖w − ΠDw‖F

whereΠD is the orthogonal projection ofW ontoD. In words: the projection error
betweenw andΠDw is a lower bound for the error incurred byany reconstruction
map.
In this chapter we investigate a specific reconstruction mapR for multi-variate signals
that admit non-uniformly distributed samples on a Cartesian domain of sample points
D0 and investigate the error‖w−R(w̃)‖F in terms of thealias sensitivity, which will
be defined below. It is assumed that the sampled signal is not corrupted bynoise.
The reconstruction mapR is well understood for signals in one independent variable
(N = 1) and for specific collections of orthonormal basis functions{ϕℓi

i } in L2(Xi),
including harmonic functions, Laguerre polynomials, Chebyshev polynomials, Her-
mite polynomials or Jacobi polynomials [63, 14, 35]. Here we consider arbitrary or-
thonormal bases of the Hilbert spacesWi, sample points that may be non-uniformly
distributed and multi-dimensional spectral decompositions of signals.
In order to expose ideas clearly, we will deal with the two-dimensional (planar) case
whereN = 2. However, generalizations to higher dimensions are obtained in a
straightforward manner. We therefore consider the problem to reconstruct a signal
w : D → R with D = X × Y from its restrictionw̃ on a finite set of sample points
D0 = X0 × Y0. Here,X0 = {x1, . . . , xN } andY0 = {y1, . . . , yM } are non-empty
sets ofN andM distinct samples ofX andY, respectively. We assume thatw(·, y) ∈
X = L2(X) for all y ∈ Y andw(x, ·) ∈ Y = L2(Y) for all x ∈ X. Equivalently, we
assume thatw ∈ L2(D).
To define the finite dimensional reconstruction spaceD, suppose that{ϕk, k ∈ Z

+}
and{ψℓ, ℓ ∈ Z

+} are orthonormal bases forX andY, respectively and letXn =
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5.2. Problem formulation

span(ϕ1, . . . , ϕn) andYm = span(ψ1, . . . , ψm) denote a pair ofn andm dimen-
sional subspaces ofX andY. For 2-D signals, the reconstruction space is then defined
as

D = Dnm = {ŵ | ŵ(·, y) ∈ Xn, ŵ(x, ·) ∈ Ym for all (x, y) ∈ D}.

Furthermore, let
ϕ̃k := ϕk|X0 , ψ̃ℓ := ψℓ|Y0

denote the restrictions of the basis functions toX0 andY0, respectively. The multidi-
mensional spectral expansion (5.1) reads

w(x, y) =
∞∑

k=1

∞∑

ℓ=1

akℓϕk(x)ψℓ(y) (5.3)

where

akℓ = 〈〈w(x, y), ϕk(x)〉X , ψℓ(y)〉Y = 〈〈w(x, y), ψℓ(y)〉Y , ϕk(x)〉X .

The projection ofw ontoDnm is defined by the finite bandwidth(n,m) signal

wnm(x, y) := ΠDnmw =
n∑

k=1

m∑

ℓ=1

akℓϕk(x)ψℓ(y). (5.4)

For a given collection̂akℓ of real valued coefficients we define the reconstructed signal

ŵnm(x, y) :=
n∑

k=1

m∑

l=1

âkℓϕk(x)ψℓ(y), x ∈ X andy ∈ Y. (5.5)

Note thatŵnm belongs toDnm. Conversely, any element ofDnm can be represented
in the form (5.5) for suitable coefficientŝakℓ. Since

‖w − ŵnm‖2
F = ‖w − wnm

︸ ︷︷ ︸

∈D⊥
nm

+wnm − ŵnm
︸ ︷︷ ︸

∈Dnm

‖2
F

= ‖w − wnm‖2
F

︸ ︷︷ ︸

projection error

+ ‖wnm − ŵnm‖2
F

︸ ︷︷ ︸

reconstruction error

(5.6)

it is clear that the reconstruction error is independent of the projection error. The
latter originates in the truncation of the spectral expansion (5.3). The projection error
is determined by the pair(n,m), which is assumed to be fixed. This is visualized in
Figure 5.1
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Projection ReconstructionSampling
w wnm wnm

~
wnm
^

Figure 5.1: Visualisation of signal flow

5.3 Exact reconstruction

In this section we will show that under certain conditions it is possible to exactly
reconstruct a continuous functionw ∈ W from its samplesw̃. We will first de-
fine two bilinear forms needed to compute the expansion coefficientsâkl in (5.5) and
then discuss the conditions for exact reconstruction. We assume that the sets of basis
functions,{ϕk} and{ψℓ} are known. The truncation levelsn andm are given and
constant.
Define:

Φ̃ :=






ϕ1(x1) . . . ϕn(x1)
...

...
ϕ1(xN ) . . . ϕn(xN )




 ∈ R

N×n

and

Ψ̃ :=






ψ1(y1) . . . ψm(y1)
...

...
ψ1(yM ) . . . ψm(yM )




 ∈ R

M×m

i.e., the columns of̃Φ andΨ̃ are sampled basis functions forX andY, respectively.
Define for everyv, w ∈ X andr, s ∈ Y the following bilinear forms:

〈v, w〉N :=
N∑

i,j=1

v(xi)qijw(xj) (5.7)

〈r, s〉M :=
M∑

i,j=1

r(yi)pijs(yj) (5.8)

whereqij is the(i, j)th entry of

Q := (Φ̃−L)⊤(Φ̃−L) (5.9)

andpij is the(i, j)th entry of

P := (Ψ̃−L)T Ψ̃−L (5.10)

The bilinear forms have the following property:
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5.3. Exact reconstruction

Lemma 5.3.1. If Φ̃ has full column rank, i.e.̃Φ is injective, then

〈v, w〉N = 〈v, w〉X

for all v, w ∈ Xn, whereXn = span(ϕ1, . . . , ϕn). If Ψ̃ has full column rank, i.e.̃Ψ

is injective, then

〈r, s〉M = 〈r, s〉Y

for all r, s ∈ Ym, whereYm = span(ψ1, . . . , ψm)

This lemma implies that if̃Φ andΨ̃ have full column rank, the bilinear forms (5.7) and
(5.8) define inner products for the Hilbert spacesXn ⊂ X andYm ⊂ Y. In particular,
from Lemma 5.3.1 it follows that forv, w ∈ Xn the inner product〈v, w〉X can be
computed from samples̃v and w̃. The same goes for computing the inner product
〈r, s〉Y whenr, s ∈ Ym. This means that under certain conditions the inner product of
the infinite dimensional Hilbert spacesX andY can be computed from the sampled
elements that require onlyN orM samples. Note that full column rank ofΦ̃ implies
thatN ≥ n and that full column rank of̃Ψ implies thatM ≥ m.

5.3.1 Conditions for exact reconstruction

Define the expansion coefficientsâkl by setting

âkℓ = 〈〈w(·, ·), ϕk〉N , ψℓ〉M , 1 ≤ k ≤ n, 1 ≤ ℓ ≤ m. (5.11)

These coefficients are actually functions ofw̃ since (5.11) only requires knowledge of
w on the sample pointsD0. This means that the reconstruction mapR : D0 → Dnm

ŵnm(x, y) = R(w̃)(x, y) =
n∑

k=1

m∑

ℓ=1

âkℓϕk(x)ψℓ(y) (5.12)

is well defined.

Theorem 5.3.2.LetX0 = {x1, . . . , xN } beN distinct points inX and

Y0 = {y1, . . . , yM } beM distinct points inY. Furthermore, let{ϕk, k ∈ Z
+} be an

orthonormal basis ofX and {ψℓ, ℓ ∈ Z
+} be an orthonormal basis ofY. Suppose

that Φ̃ has rankn andΨ̃ has rankm. If

w ∈ Dnm = {w | w(·, y) ∈ Xn, w(x, ·) ∈ Ym for all (x, y) ∈ D} (5.13)
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then

ŵnm = R(w̃) = w

whereR is the reconstruction map defined in(5.12). That is,w can be exactly recon-

structed from its samples̃w by the reconstruction map(5.12).

The conditions for exact reconstruction offer an interesting interpretation. The con-
dition (5.13) is a limitation on the bandwidth ofw. Therefore, exact reconstruction
is possible ifw has bandwidth of at most(n,m) in terms of the basis functions for
X andY. Hence, this provides a co-ordinate dependent notion of bandwidth. The
other condition for exact reconstruction concerns the ranks ofΦ̃ andΨ̃ and imply that
necessarily the sample densitiesN ≥ n andM ≥ m need to be sufficiently large.
In other words, the bandwidth ofw may not exceed the number of samples to allow
exact reconstruction. This is an interesting generalization of Shannon’ssampling the-
orem that states that exact reconstruction of a signal from its samples is possible if the
sampling frequencyfs is at least twice as large as the bandwidth of the signal, where
the traditional concept of bandwidth in terms of harmonic functions is used.

5.4 Approximate reconstruction

Naturally, there are cases where (5.13) does not hold. Exact reconstruction is then no
longer possible. In this section we derive expressions for the alias error in these cases.

5.4.1 Alias error in the expansion coefficients

From the definition of the expansion coefficients (5.11) we can derive a connection
between the expansion coefficients of the original signal,akl, and the coefficientŝakl

which are inferred from a sampled signal.

Theorem 5.4.1.Let âkℓ be defined by(5.11)and letakℓ be the expansion coefficients

of a signalw as defined in(5.3). Then:

âkℓ = akℓ + aalias
kℓ , 1 ≤ k ≤ n, 1 ≤ ℓ ≤ m (5.14)

where

aalias
kℓ =

∑

p>n

apℓ〈ϕp, ϕk〉N +
∑

q>m

akq〈ψq, ψℓ〉M

+
∑

p>n

∑

q>m

apq〈ϕp, ϕk〉N 〈ψq, ψℓ〉M (5.15)
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5.4. Approximate reconstruction

The expression (5.15) consists of three terms which offer an interesting interpreta-
tion. The first term represents the alias-error originating from the samplingin X. The
second term represents the alias-error caused by sampling inY, while the third is a
cross-term, originating from sampling in bothX andY. The expression (5.14) consid-
erably simplifies if the signalw is band-limited in either of the coordinatesx and/or
y. Specifically:

Corollary 5.4.2. 1. If w(x, ·) ∈ Ym for all x ∈ X then the alias coefficient be-

comes:

aalias
kl =

∑

p>n

apl〈ϕp, ϕk〉N .

2. If w(·, y) ∈ Xn for all y ∈ Y then the alias coefficient becomes:

aalias
kl =

∑

q>m

akq〈ψq, ψl〉M . (5.16)

5.4.2 The alias error

We showed that in certain casesw can be reconstructed exactly from̃w, i.e. w is
equal to the reconstruction̂w. In this section we examine the alias error when exact
reconstruction is not possible.
The alias-coefficients are linearly dependent on the expansion coefficientsakl, where
k > n andl > m. We define the alias operatorS which maps the expansion coeffi-
cients,{akℓ, (k, ℓ) ∈ Z

2
+} represented byA ∈ ℓ2(Z2

+) in the sense thatakl = A(k, l),
to the corresponding alias error coefficientsaalias

kl . The alias coefficients are stored in
ann×m matrixAalias. ThereforeS : ℓ2(Z2

+) → R
n×m is defined by:

SA := Aalias (5.17)

with Aalias(k, l) = aalias
kl . The operator norm ofS, ‖S‖, is the induced norm

||S|| := sup
06=A∈ℓ2(Z2

+)

||SA||F
||A||F

. (5.18)

Sincew =
∑∞

k=1

∑∞
l=1 aklϕkψl and the basis functions are fixed, we have that:

||S||2 := sup
06=A∈ℓ2(Z2

+)

||SA||2F
||A||2F

= sup
06=w∈L2(X×Y)

||wnm − ŵnm||2F
||w||2F

. (5.19)

Consequently, the operator norm of the alias operator is a measure of the aliasing
error. We will therefore call‖S‖ thealias sensitivity.
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Theorem 5.4.3.The alias sensitivity‖S‖ is given by:

‖S‖ = λ1/2
max(G) (5.20)

whereG is an operatorG : T2 → T2. The coefficients of the tensorTG associated

withG with respect to the standard Euclidean bases are given by:

grsvw =
∑

q>m

〈ψq, ψs〉M 〈ψq, ψw〉M +
∑

p>n

〈ϕp, ϕr〉N 〈ϕp, ϕv〉N

+
∑

p>n

〈ϕp, ϕr〉N 〈ϕp, ϕv〉N

∑

q>m

〈ψq, ψs〉M 〈ψq, ψw〉M (5.21)

for r = 1, . . . , n, s = 1, . . . ,m, v = 1, . . . , n andw = 1, . . . ,m. λmax is the largest

eigenvalue ofG.

Remark 5.4.4. The tensor representation ofG with respect to the standard Euclidean

bases is symmetric in its first and third and in its second and fourth coefficient. That

is, grsvw = gvwrs.

5.4.3 Finite dimensional case

In this section we consider the case whereX andY are finite dimensional and
equipped with the Euclidean inner product. We will assume thatX isK dimensional
with K > n and thatY is L dimensional withL > m. We will derive an expression
for the elementsgrsvw of G with respect to the standard Euclidean bases.
We have definedG to be an operatorG : T2 → T2. In this particular caseG is
a mappingG : R

n×m → R
n×m. As shown in the Appendix,G admits a tensor

representationTG given by

TG =
n∑

r=1

m∑

s=1

n∑

v=1

m∑

w=1

grsvwe
r
n ⊗ es

m ⊗ ev
n ⊗ ew

m (5.22)

The 4-way array representation ofTG with respect to the standard Euclidean bases
will be denoted by[[grsvw]] ∈ R

n×m×n×m. We will now return to the three scenarios
discussed earlier and give an expression for[[grsvw]] for all three scenarios:

Theorem 5.4.5. 1. Ifw(x, ·) ∈ Ym for all x ∈ X then the alias sensitivity is given

by:

‖S‖ = λ1/2
max

{

(Φ̃⊤Φ̃)−1 − I
}

(5.23)
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2. If w(·, y) ∈ Xn for all y ∈ Y then the alias sensitivity is given by:

‖S‖ = λ1/2
max

{

(Ψ̃⊤Ψ̃)−1 − I
}

(5.24)

3. If
{

w(·, y) 6∈ Xn for all y ∈ Y

w(x, ·) 6∈ Ym for all x ∈ X
(5.25)

then the alias sensitivity is given by:

‖S‖ = λ1/2
max([[Gy(s, w) +Gx(r, v) +Gy(s, w)Gx(r, v)]]) (5.26)

whereGy(s, w) is the(s, w)th entry of
{

(Ψ̃⊤Ψ̃)−1 − I
}

andGx(r, v) is the

(r, v)th entry of
{

(Φ̃⊤Φ̃)−1 − I
}

.

Theorem 5.4.6.The operatorG : T2 → T2 as defined in the preceding Theorem is

positive definite.

5.5 Illustrative example

As mentioned in the introduction, the motivation to consider empirical basis func-
tions originates from applications in the field of model reduction. Model reduction
aims to find substitute models for complex, large-scale finite element models. The
often excessive computation and simulation time of such models makes model-based
control design, prediction or real-time monitoring virtually impossible. The method
of Proper Orthogonal Decompositions (POD) is particularly popular in the fluid dy-
namics community and derives low order substitute models from model equations
and an empirical set of basis functions. These basis functions are derived either from
empirical or simulated data. The reduction process is carried out such thatthe er-
ror between the outputs of the original and substitute model is small. The substitute
model is then used for applications such as real-time monitoring.
The theoretical results presented in the preceding section can be used either to reduce
the dimensionality of the substitute model or to asses the effect of different sensor
locations. To show how the theoretical results relate to a real-life example we present
the following two-dimensional heat transfer process:

ρcp
∂w

∂t
(x, y, t) = κx

∂2w

∂x2
(x, y, t) + κy

∂2w

∂y2
(x, y, t) + u(x, y, t) (5.27)
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wherew(x, y, t) denotes the temperature at position(x, y) and at timet of some
medium with heat capacitycp, material densityρ and thermal conductivityκ, κ =
κx = κy. For each time instance, solutions are defined on a closed setD which is
assumed to be a Cartesian productD := X × Y with boundaryΓ := ∂(D). Here,
X = [0, Lx] andY = [0, Ly], whereLx > 0 andLy > 0 denote the length and width
of the medium. The last term in the partial differential equation (5.27),u(x, y, t), is a
heat-source input, which is assumed to be factorized as

u(x, y, t) = s(x, y)v(t)

wheres(x, y) is an indicator function representing the source locations andv(t) is the
time-dependent heat input. The following initial conditions apply

w(x, y, 0) = w0(x, y) (x, y) ∈ D

∂w

∂x

∣
∣
∣
∣
Γ

= γ1(x, y, t) (x, y) ∈ Γ, t ≥ 0

∂w

∂y

∣
∣
∣
∣
Γ

= γ2(x, y, t) (x, y) ∈ Γ, t ≥ 0.

The first initial condition specifies the temperature profile at timet = 0. The other
initial conditions prescribe the boundary conditions. If we consider the heating of
a rectangular (lengthLx = 0.5, Ly = 1 [m]) piece of aluminium, we havecp =

963 J
kg·K , ρ = 2700 kg

m3 andκ = 155.8 W
m·K . The heat source is applied in a rectangular

area in the center of the plate. The initial temperature profile is constant, the boundary
conditions are chosen such that the rectangular plate is insulated from its environment,
i.e. γ1 = γ2 = 0.
The domainsX andY are assumed to be gridded inK andL grid points,{x1, . . . , xK}
and{y1, . . . , yL} with K = 50 andL = 100. Sample points are taken to be the
subsetsX0 ⊂ X andY0 ⊂ Y which consist, respectively, ofN ≤ K andM ≤ L
inhomogeneously distributed points over the rectangular grid, (with a higherdensity
in the vicinity of the heat source, i.e. placing a sample point at each grid pointwhere
the heat source is located and distributing the remaining sample points evenly over
the other gridpoints). Finite element functions{µk ∈ L2(X), k = 1, . . . ,K} and
{νℓ ∈ L2(Y), ℓ = 1, . . . , L} are chosen as the piecewise constant harmonic functions

µk(xℓ) =







1√
Lx

for k = 1
√

2
Lx

cos( (k−1)πxℓ

Lx
) for k > 1

νℓ(yk) =







1√
Ly

for ℓ = 1
√

2
Ly

cos( (ℓ−1)πyk

Ly
) for ℓ > 1

;
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Figure 5.2: First basis functionsϕ1, . . . , ϕ4 (left) andψ1, . . . , ψ4 (right)

To approximate the finite element solution of the PDE (5.27), solutions are repre-
sented in the basis functions according to

wF E(x, y, t) =
K∑

k=1

L∑

ℓ=1

akl(t)µk(x)νℓ(y). (5.28)

Two data-dependent sets of basis functions{ϕk}n
k=1 and{ψl}m

l=1 are determined from
the finite element simulation (5.28). The first 4 basis functions are displayed inFig-
ure 5.2. The sets{ϕk}n

k=1 and{ψl}m
l=1 are orthonormal and span finite dimensional

subspacesXn ⊂ L2(X) andYm ⊂ L2(Y), respectively. An approximate solution is
obtained by truncating the spectral expansion (5.28) as

wnm(x, y, t) =
n∑

k=1

m∑

l=1

akl(t)ϕk(x)ψl(y) (5.29)

with degreesn ≤ N andm ≤ M .

Since all theoretical results in the preceding sections of the chapter concern the re-
construction error, we do not consider the projection error, see also Figure 5.1. We
assume throughout that the projection step is carried out such that the projection error
is small.
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5.5.1 Exact reconstruction

In the exact reconstruction case, the original signal and the reconstructed signal have
the same bandwidth:

w(x, y, t) =
n∑

k=1

m∑

l=1

akl(t)ϕk(x)ψl(y) = wnm(x, y, t)

ŵnm(x, y, t) =
n∑

k=1

m∑

l=1

âkl(t)ϕk(x)ψl(y)

The expansion coefficients in the reconstruction,âkl(t), were determined from the
sampled signal̃w(x, y, t), (x, y) ∈ X0 × Y0 by calculating (5.11). This, in turn,
defines the reconstruction map.

We examined the alias errorealias = ‖wnm − ŵnm‖F and averaged this error over500
time-steps. We give the error for two different combinations ofN andM , see Table
5.1.

Table 5.1: Simulation results for exact reconstruction, non-homogeneously distributed

samples

n m N M Average temperature error

31 61 35 80 1.25 · 10−8

5 50 6 60 1.35 · 10−9

From the lower half of Table 5.1 we can conclude that it is possible to use a much
lower spectral resolution in one dimension, i.e. taken ≪ m, without influencing
the reconstruction error. However, using a much lower spectral resolution in one
dimension may influence the projection error (not shown in Table 5.1). Usinga lower
spectral resolution may be useful in applications where there are more high-frequent
variations in one coordinate direction than in the other.
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5.5.2 Approximate reconstruction

To illustrate the results on approximate reconstruction derived in subsection5.4.3, we
consider bandlimited signals of the form

w(x, y, t) =
n∑

k=1

m∑

l=1

akl(t)ϕk(x)ψl(y) = wnm(x, y, t)

ŵn′m′(x, y, t) =
n′

∑

k=1

m′

∑

l=1

âkl(t)ϕk(x)ψl(y)

wheren′ < n < N andm′ < m < M and whereŵn′m′ is the signalR(w̃) with
w = wnm. This means that reconstructed signal has lower bandwidth than the orig-
inal signal. The expansion coefficients,âkl, of the reconstruction map were defined
and computed in the same way as for exact reconstruction. We consider therelative
Frobenius norm temperature error:

e% = 100 · ‖Wnm − Ŵn′m′‖F

‖Wnm‖F

This error was averaged over500 time-steps. For all simulations the number of sam-
ples were set toN = 35 andM = 80. The sample locations were distributed inho-
mogeneously over the grid, with a higher density in the vicinity of the heat source.
We considered the three different scenarios from Theorem 5.4.5:

1. Scenario I:w(x, ·) ∈ Ym for all x ∈ X.
To simulate this scenario, we fixedm′ = m = 61 and variedn′ from n′ = 1
to n′ = n = 31. The results of this simulation are displayed in Figure 5.3. In
this Figure it is clearly shown that the alias error decreases asn′ increases and
is zero forn′ = 31.

2. Scenario II:w(·, y) ∈ Xn for all y ∈ Y.
For this scenario, we proceeded similarly as in the simulations for scenario
2. n′ = n = 31 remained fixed, whereasm′ was varied fromm′ = 1 to
m′ = m = 61. The results are displayed in Figure 5.3. Again, the alias error
decreases asm′ increases and is zero form′ = 61.

3. Scenario III: there exist(x, y) ∈ X × Y for which

{

w(·, y) 6∈ Xn

w(x, ·) 6∈ Ym

116



Chapter 5. Reconstruction and Approximation of Multidimensional Signals

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

n‘

R
e
la

ti
v
e
 t

e
m

p
e
ra

tu
re

 e
rr

o
r 

(%
)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

m‘

R
e
la

ti
v
e
 t

e
m

p
e
ra

tu
re

 e
rr

o
r 

(%
)

Figure 5.3: Simulation results for scenario1 (left) and scenario2 (right)
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Figure 5.4: First result for scenario3 (left) and second result for scenario3 (right)

For this scenario, simulation results are shown in Figure 5.4. On the left the
alias error is shown for a simulation, wheren′ was fixed at15 andm′ was
varied from1 to 61. On the right, the alias error is shown for a simulation
wherem′ was fixed at30 andn′ was varied from1 to 31. Both Figures show
clearly that a full bandwidth in one dimension is not sufficient for the alias error
to become zero.

5.6 Conclusions

In this chapter we considered the problem to recover or approximate signals defined
on a multi-dimensional domain from non-uniform samples. The domain of the signal
has been assumed to have a Cartesian structure and this coordinate structure has been
used in a multi-dimensional spectral decomposition that uses empirical orthonormal
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basis functions. This means that no assumptions on the structure or analyticityof the
basis functions have been made, other than their orthonormality with respectto the
Hilbert space of square integrable functions. For band-limited signals we showed that
exact recovery of the signal is possible from its samples by introducing a suitable bi-
linear form from which the Fourier coefficients of a reconstruction function have been
inferred. For non-bandlimited signals we derived an explicit alias expression for the
Fourier coefficients of the alias error. We introduced an alias sensitivity operator that
reflects the size of the alias error between signal and reconstruction andcharacterized
the maximum alias sensitivity in terms of the maximal eigenvalue of a suitably defined
tensor operator. It is shown that for planar signals (i.e., signals on a two-dimensional
domain) and for finite dimensional inner product spaces, the alias sensitivity is com-
putable from a matrix eigenvalue decomposition in a number of special cases.

Results in this chapter have been developed primarily for planar signals. However, the
exact reconstruction result stated in Theorem 5.3.2 admits a straightforward general-
ization to signals defined on higher dimensional domains. The same remark applies
to the result of Theorem 5.4.1 on the alias expressions. Theorem 5.4.3 generalizes to
signals onN -dimensional domains by introducing a linear operatorG : TN → TN in
a similar manner as in the proof of Theorem 5.4.3. The alias sensitivity‖S‖ then be-
comes the maximum eigenvalue ofG. An efficient numerical scheme for the compu-
tation of eigenvalues of tensorial operators does not seem to exist and isan interesting
topic of future research.

In this chapter we assumed a Cartesian structure on the domain of the signals.This
assumptions can not be weakened to more general (non-Cartesian) signal domains
without compromising the structure that is assumed in the spectral decompositions
(5.1) of signals or tensors.

The results on the characterization of the alias sensitivity operator can be applied in
an algorithm to optimize the selection of sample points in each coordinate. The alias
sensitivity is then used as a measure to select a suitable set of sample points which
achieve a minimum alias error. See [3] for an application on sample point selection in
computational fluid dynamics models.

5.7 Proofs

Proof. Proof of lemma 5.3.1.

Because of the symmetry in coordinate directions, it suffices to only prove the second

part. Letr, s ∈ Ym. Thenr =
∑m

k=1 akψk ands =
∑m

l=1 blψl, whereak = 〈r, ψk〉
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for k = 1, . . . ,m andbl = 〈s, ψl〉 for l = 1, . . . ,m. Then

〈r, s〉Y = 〈
m∑

k=1

akψk,
m∑

l=1

blψl〉 =
m∑

k=1

akbk = a⊤b

wherea = col(a1, . . . , am) andb = col(b1, . . . , bm). Now use the fact that̃r = Ψ̃a

ands̃ = Ψ̃b. SinceΨ̃ has full column rank,a andb are uniquely determined bỹr and

s̃ and given bya = Ψ̃−Lr̃ andb = Ψ̃−Ls̃. Substitution yields

〈r, s〉Y = a⊤b = r̃⊤ (Ψ̃−L)⊤Ψ̃−L

︸ ︷︷ ︸

P

s̃ = r̃⊤P s̃ = 〈r, s〉M

which gives the result.

Proof. Proof of Theorem 5.3.2.

The assumption (5.13) implies thatakℓ = 0 for k > n andℓ > m. Hence, the signal

w or the tensorW admit representations

w(x, y) =
n∑

k=1

m∑

ℓ=1

akℓϕk(x)ψℓ(y)

W =
n∑

k=1

m∑

ℓ=1

akℓϕk ⊗ ψℓ

where, for1 ≤ k ≤ n and1 ≤ ℓ ≤ m,

akℓ = 〈〈w,ϕk〉X , ψℓ〉Y .

Since both̃Φ andΨ̃ have full rank, Lemma 5.3.1 promises that for all(x, y) ∈ X×Y,

1 ≤ k ≤ n and1 ≤ ℓ ≤ m we have

〈w(·, y), ϕk〉N = 〈w(·, y), ϕk〉X

〈w(x, ·), ψℓ〉M = 〈w(x, ·), ψℓ〉Y .

Using (5.11), this yields that

akℓ = 〈〈w,ϕk〉X , ψℓ〉Y = 〈〈w,ϕk〉N , ψℓ〉M = âkℓ.

But then

ŵnm(x, y) =
n∑

k=1

m∑

ℓ=1

akℓϕk(x)ψl(y) = w(x, y)
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and

Ŵnm =
n∑

k=1

m∑

ℓ=1

akℓϕk ⊗ ψℓ = W

as claimed.

Proof. Proof of Theorem 5.4.1.

Fork = 1, . . . , n we have that

〈w,ϕk〉N =
〈 ∞∑

p=1

∞∑

q=1

apqϕpψq, ϕk

〉

N
=

∞∑

q=1

ψq

∞∑

p=1

apq〈ϕp, ϕk〉N

︸ ︷︷ ︸

akq+
∑

p>n
apq〈ϕp,ϕk〉N

=
∞∑

q=1

ψqakq +
∞∑

q=1

ψq

∑

p>n

apq〈ϕp, ϕk〉N .

Here, in the second equality we used Lemma 5.3.1 which states that〈ϕp, ϕk〉N =

〈ϕp, ϕk〉X = δpk for p ≤ n andk ≤ n. Using this expression together with the or-

thonormality of the basis functions, we obtain that fork = 1, . . . , n andℓ = 1, . . . ,m,

âkl = 〈〈w,ϕk〉N , ψl〉M

= 〈
∞∑

q=1

ψqakq, ψl〉M + 〈
∞∑

q=1

ψq

∑

p>n

apq〈ϕp, ϕk〉N , ψl〉M

=
∞∑

q=1

akq〈ψq, ψl〉M +
∑

p>n

〈ϕp, ϕk〉N

∞∑

q=1

apq〈ψq, ψl〉M

=
m∑

q=1

akq〈ψq, ψl〉M

︸ ︷︷ ︸

akl

+
∑

q>m

akq〈ψq, ψl〉M

+
∑

p>n

〈ϕp, ϕk〉N







m∑

q=1

apq〈ψq, ψl〉M

︸ ︷︷ ︸

apl

+
∑

q>m

apq〈ψq, ψl〉M







.

For the last equality we again used Lemma 5.3.1 to infer that〈ψq, ψl〉M = δql. This

gives that̂akl = akl + aalias
kl with aalias

kl as given in (5.15).
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Proof. Proof of Theorem 5.4.3.

The operator norm of the alias sensitivityS satisfies

‖S‖2 = sup
06=A∈ℓ2(Z2

+

‖SA‖2
F

‖A‖2
F

= sup
06=A,‖A‖F =1

‖SA‖2

= sup
06=A,‖A‖F =1

〈SA, SA〉

= sup
06=A,‖A‖F =1

〈S∗SA,A〉

It follows that‖S‖2 = λmax(S
∗S) = λmax(SS∗), whereλmax is the largest numberλ

of the eigenvalue problem

SS∗Z = λZ.

Here,SS∗ : R
n×m → R

n×m or, equivalently,SS∗ : T2 → T2 with T2 the set of

order-2 tensors onRn × R
m.

SinceS : ℓ2(Z2
+) → R

n×m, its Hilbert adjoint [51] isS∗ : R
n×m → ℓ2(Z2

+) and

defined, for arbitraryA ∈ ℓ2(Z2
+) andB ∈ R

n×m, by the property

〈SA,B〉Rn×m = 〈A,S∗B〉ℓ2(Z2
+).

Using the definition ofS we find

〈SA,B〉 =
n∑

k=1

m∑

l=1

aalias
kl bkl

=
n∑

k=1

m∑

l=1




∑

p>n

apl〈ϕk, ϕp〉N +
∑

q>m

akq〈ψl, ψq〉M

+
∑

p>n

∑

q>m

apq〈ϕk, ϕp〉N 〈ψl, ψq〉M



 bkl

=
∑

p∈Z+

∑

q∈Z+

apq [(S∗B)(p, q)]
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where the(p, q)th entry ofS∗B is

(S∗B)(p, q) =







0 1 ≤ p ≤ n and1 ≤ q ≤ m
∑n

k=1

∑m
l=1 δkp〈ψq, ψl〉Mbkl 1 ≤ p ≤ n, q > m

∑n
k=1

∑m
l=1 δql〈ϕp, ϕk〉Nbkl p > n, 1 ≤ q ≤ m

∑n
k=1

∑m
l=1〈ϕp, ϕk〉N 〈ψq, ψl〉Mbkl p > n, q > m

(5.30)

It remains to obtain a representation forG := SS∗ : T2 → T2 as linear operator on

the set of order-2 tensors onRn × R
m. For this, letTG ∈ T4 be the multiplicative

tensor associated withG (See appendix I).G is then defined by the elementsgrsvw of

TG, which are obtained by evaluating

grsvw = 〈T rs, SS∗T vw〉Rn×m = 〈S∗T rs, S∗T vw〉ℓ2

whereT rs andT vw are rank-1 tensors defined by:

T ij = ei
n ⊗ ej

m (5.31)

where the vectorsei
n andej

m for i = 1, . . . , n andj = 1, . . . ,m form the standard

Euclidean basis forRn andRm. For this, substituteB = T rs in (5.30) to infer that

(S∗T rs)(p, q) =







0 1 ≤ p ≤ n, 1 ≤ q ≤ m

δrp〈ψq, ψs〉M 1 ≤ p ≤ n, q > m

δqs〈ϕp, ϕr〉N p > n, 1 ≤ q ≤ m

〈ϕp, ϕr〉N 〈ψq, ψs〉M p > n, q > m

Hence,

grsvw = 〈S∗T rs, S∗T vw〉ℓ2

=
n∑

p=1

∑

q>m

δrpδvp〈ψq, ψs〉M 〈ψq, ψw〉M

+
∑

p>n

m∑

q=1

δqsδqw〈ϕp, ϕr〉N 〈ϕp, ϕv〉N

+
∑

p>n

∑

q>m

〈ϕp, ϕr〉N 〈ψq, ψs〉M 〈ϕp, ϕv〉N 〈ψq, ψw〉M .

which rewrites as (5.21). This gives the result.
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Proof. Proof of Theorem 5.4.5

1. If dimX = K, the expression (5.21) simplifies to

grsvw =
K∑

p=n+1

〈ϕp, ϕr〉N 〈ϕp, ϕv〉N .

and no longer depends ons andw. The elements of the four-dimensional array

[[grsvw]] can therefore be equivalently represented by two-dimensional array,

the matrixGx ∈ R
n×n, say. DefineΦ̃tail as theN × (K − n) matrix whose

(k − n)th column is the vector of restrictions̃ϕk = ϕk|X0 , n < k ≤ K.

Then, using the orthonormality of the basis{ϕk, k = 1, . . . ,K}, we have that

Φ⊤Φ = ΦΦ⊤ = IK and
(

Φ̃ Φ̃tail

) (

Φ̃ Φ̃tail

)⊤
= IN . (5.32)

With Q the matrix defined in (5.7), this implies that

Gx = Φ̃QΦ̃tailΦ̃
⊤
tailQΦ̃⊤ = Φ̃⊤Q

(

IN − Φ̃Φ̃⊤
)

QΦ̃ =

= Φ̃⊤Φ̃(Φ̃⊤Φ̃)−2Φ̃
(

IN − Φ̃Φ̃⊤
)

Φ̃(Φ̃⊤Φ̃)−2Φ̃⊤Φ̃ =

= (Φ̃⊤Φ̃)−1
(

Φ̃⊤Φ̃ − (Φ̃Φ̃⊤)2
)

(Φ̃⊤Φ̃)−1 =

= (Φ̃⊤Φ̃)−1 − In

where, in the second equality we used that (5.32) implies

Φ̃tailΦ̃
⊤
tail = IN − Φ̃Φ̃⊤. Hence, the alias sensitivity is given by:

‖S‖ = λ
1/2
max(Gx) = λ

1/2
max

{(

Φ̃⊤Φ̃
)−1

− I

}

(5.33)

2. The proof is similar to the previous case.

3. In the third case, the summations in the expression (5.21) forgrsvw run toK or

L. Specifically, the multiplication tensorTG is a sum of three tensors, given by:

G =
∑

r

∑

s

∑

v

∑

w

[Gy(s, w) +Gx(r, v) +Gx(r, v)Gy(s, w)]

er
n ⊗ es

m ⊗ ev
n ⊗ ew

m
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whereGy(s, w) is the(s, w)th entry of(Ψ̃⊤Ψ̃)−1−I andGx(r, v) is the(r, v)th

entry of (Φ̃⊤Φ̃)−1 − I. Hence, the representation ofG with respect to the

standard Euclidean bases,[[grsvw]] ∈ R
n×m×n×m, is given by the four-way

array

[[grsvw]] = [[Gy(s, w) +Gx(r, v) +Gy(s, w)Gx(r, v)]]. (5.34)

The alias sensitivity thus becomes

‖S‖ = λ
1/2
max([[Gy(s, w) +Gx(r, v) +Gy(s, w)Gx(r, v)]]) (5.35)

Proof. Proof of Theorem 5.4.6 We need to show that〈A,GA〉 > 0 for all A ∈
T2, A 6= 0. Since

〈A,GA〉 = 〈A,SS∗A〉Rn×m = 〈S∗A,S∗A〉ℓ2(Z2
+,R) = ‖S∗A‖ ≥ 0

it suffices to prove thatdim(kerS∗) = 0. To see this letB 6= 0 and considerS∗B as

defined in (5.30). SinceB 6= 0, there exists(k̂, l̂) such thatbk̂l̂ 6= 0. Setq = l̂, let

Φ̃tail = [ϕ̃n+1 . . . ϕ̃K ] .

and defineX ∈ R
n×(K−n) to be the matrix whose(k, ℓ)th entry is〈ϕk, ϕℓ+n〉2

N for

1 ≤ k ≤ n and1 ≤ ℓ ≤ K − n. Then

X = Φ̃⊤QΦ̃tailΦ̃
⊤
tailQΦ̃ =

(

Φ̃⊤Φ̃
)−1

− In.

(See the proof of Theorem 5.4.5). Now,X =
(

Φ̃⊤Φ̃
)−1

− In is not equal to

zero unlessX0 = X which is not the case. Therefore, there is ap > n such that

〈ϕp, ϕk̂, 〉N 6= 0. Consequently,ker(S∗) is trivial, which gives the result.
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Chapter 6

Conclusion

Many people find open-ended novels frustrating. After all the time and effort spent
on a story and its characters, one wants to find out what happens and to be left un-
sure is often a disappointment. Unfortunately, it is the nature of science andscientific
communication that both researcher and reader are left with questions. Every scien-
tific publication, be it a research paper or a PhD thesis such as this, is necessarily
open-ended since research generally triggers at least as many questions as it can an-
swer. This also holds for the work described in this thesis. Therefore, this last chapter
serves to give an overview of this work and, more importantly, it points to what has
not been achieved and which new questions have arisen.
The organization of this chapter is as follows. We first give an overview and sum-
marize the most important concepts and results of each chapter. Then, we turn to
the problem statement and discuss the contributions of this work. The elementsof
the problem statement that have not been resolved are also indicated. Thisthen au-
tomatically leads to discussion of future research questions and we end with general
conclusions.

6.1 Overview

The aim of this work has been to develop numerical techniques to extract specific
information from process models. Specifically, we considered problems regarding
approximation of multi-variable signals and systems. In Chapter 2 we argue that these
approximation problems can be phrased as spectral decomposition problemswhere
the notion of spectral content can be (and has been) generalized to different features
of a signal. Since we consider multi-dimensional signals and systems, tensorscan
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6.1. Overview

be used to solve these low-rank approximation problems. Chapter 2 then proceeds to
give the problem statement for this work.
Chapter 3 considers the problem of finding low-rank approximations to tensors. For
order-2 tensors, matrices, this problem is well understood, see Appendix A.3. Gen-
eralization of these results to higher-order tensors, however, is not straightforward.
Finding tensor decompositions that allow suitable approximations after truncation is
an active area of research [47], to which this chapter contributes in various ways.
The problem of low-rank approximations to tensors is ill-posed. Therefore, we have
considered a different rank concept, referred to as multi-linear or modal rank. We de-
fined a new method to obtain modal rank decompositions to tensors. This method has
been referred to asTSVD, which is short for Tensor Singular Value Decomposition.
We have derived properties of the TSVD and in certain cases we have presented error
bounds when the method is used for low-rank approximations to tensors. InSec. 3.7
we have proposed an adaptation of the TSVD method that may give better approxi-
mation results when not all modal directions are approximated. In Sec. 3.8 wehave
presented a numerical algorithm for the computation of the (dedicated) TSVD. With
a small adaptation, this algorithm can also be used to compute successive rank-one
approximation to tensors. Finally, in Sec. 3.9, we have included a simulation exam-
ple which demonstrates the methods proposed in this work and compares them toa
well-known existing method.
The concepts that were introduced and discussed in Chapter 3 were used in a sys-
tem approximation context in Chapter 4. The chapter started with a discussionof the
well-known model reduction method of Proper Orthognal Decompositions (POD).
We have shown how the low-rank approximations to tensors can be used to define
projection spaces in POD. Using these alternative projection spaces leadsto changes
in the spectral decompositions and Galerkin projection, resulting in an adaptation of
the POD method. This adaptation is both a generalization and a restriction. It is a
generalization because it allows POD to be used in a scalable fashion for problems
with an arbitrary number of dependent and independent variables. On the other hand,
it is also a restriction, since the projection spaces used are not ordinary projection
spaces, but ones that have a Cartesian product structure. The modelreduction method
that is obtained by combining the signal and system approximation concepts has been
demonstrated on a benchmark example from chemical engineering. This simulation
example shows that the method is indeed feasible, and that the performance iscom-
parable to existing methods.
Chapter 5 considered the problem of reconstruction and approximation ofmulti-
dimensional signals, if these signals are sampled with non-uniformly distributedsen-
sors. We considered multi-dimensional signals on a Cartesian domain. The central
question of this chapter is that of finding a reconstructionŵ of w from its samples.
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We considered a reconstruction mapR and have presented conditions for exact re-
construction ofw from w̃. In case that exact reconstruction is not possible, we have
derived an expression for the reconstruction error.

6.2 Contributions and future research

The focus of this work has been on low-rank approximations to signals andsystems.
Specifically, the contributions of this work are the following.

• In Chapter 3, we have considered the problem of finding low-rank approxima-
tions to tensors. We have defined a new method for the computation of low
modal rank approximations to tensors, calledTSVD. We have derived proper-
ties of this method and in certain cases provided error bounds when the method
is used for low-rank approximations to tensors. We have also defined an adap-
tation of the TSVD, that may provide increased accuracy when not all modal
directions are approximated. We have derived a numerical algorithm for the
computation of the TSVD and analyzed its convergence properties. With a
small adaptation, this algorithm can also be used to compute successive rank-
one approximations to tensors. The method proposed in this work was com-
pared to existing methods in a simulation example.
Results in this chapter support earlier findings that indicate that most of the
approximation properties of the matrix SVD do not naturally carry over when
generalizing to higher-order tensors. Nevertheless, the coordinate-independent
framework introduced in Chapter 3 provides additional insight into the problem
of low-modal-rank approximations to tensors and underlines the usefulness of
the approach in approximation of multi-dimensional signals.

• In Chapter 4 we have considered the problem of finding approximations to
multi-dimensional systems. We present an adaptation of the method of Proper
Orthogonal Decompositions (POD) for systems whose variables evolve over a
Cartesian domain. We have used tensors to compute empirical projection spaces
that define the reduced models. This leads to a modified spectral expansionand
a more general Galerkin projection. The proposed model reduction methodis
demonstrated in two numerical examples.
This adaptation of POD allows multiple dependent and independent variables
explicitly to be taken into account. Choosing inner products for dependentand
independent variables separately may provide additional degrees of freedom
in dealing with scaling problems. Furthermore, the method allows truncation
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levels for each independent variable to be chosen separately, which mayprove
useful in some applications.

• In Chapter 5 we have considered the problem of reconstruction and approxi-
mation of multi-dimensionalsampledsignals on Cartesian domains. We have
presented conditions for exact reconstruction of such signals from their sampled
versions. Whenever exact reconstruction is not possible, we have characterized
the reconstruction error together with expressions for alias sensitivities.
The results described in this chapter allow the Missing Point Estimation method
introduced in [3] to be extended to Cartesian domains.

The approach detailed in this thesis has been tested on a small-scale benchmark ex-
ample in Section 4.4. However, a lot of work still needs to be done and there are still
a lot of questions to be answered before this approach can be used in anindustrial
context. The main steps that need to be taken are the following.

• The signal approximations considered in this work are all obtained from trun-
cated tensor decompositions. The truncation level is chosen such that a specific
level of accuracy is obtained. Alternatively, one can define a truncationlevel
and then find the best low multi-linear rank approximation as in [42]. In the ma-
trix case these two approaches would lead to the same result, but in the tensor
case these approaches are different. Low multi-linear rank approximationmeth-
ods were not considered in this work but may prove useful for the computation
of projection bases in POD.

• In this thesis we did not focus on the numerical aspects surrounding this work.
Various issues need further attention and research in this context. Firstly,the
computational load and complexity of the algorithms proposed in Chapter 3
methods need to be investigated further. Secondly, the computational load of
the reduced models defined in Chapter 4 needs to be examined. If necessary,
numerical techniques such as Missing Point Estimation [3] and Discrete Empir-
ical Interpolation [17] can be incorporated to improve computational efficiency.

• From a system-theoretic point of view, it is important that model reduction
methods preserve crucial system properties such as stability and dissipativity.
From a physics point of view, it is important that model reduction methods keep
conservation laws, such as conservation of mass, intact. These issues have not
been addressed in this work and it is a very important aspect of future research
to investigate whether it is possible to include mechanisms that include these
properties in the reduced model.
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Chapter 6. Conclusion

• Although the methods presented in this thesis have been tested on small-scale
benchmark examples, exhaustive tests on industrial-scale benchmark models
still need to be carried out.

• The use of tensors in system theoretic questions of signal and system approxi-
mation has resulted in novel insights and novel applications. These involve both
algebraic aspects of tensors, as well as numerical tools for the computation of
basic algebraic concepts such as rank, eigenvalues or decompositions of ten-
sors. A host of research topics in this direction are foreseeable. As anexample,
if we look at the more distant future, it would be very interesting to investigate
whether the concepts discussed in this thesis can be linked to a research topic
from numerical mathematics that is currently receiving a lot of attention. A
number of research teams are working towards using tensors to make computa-
tion of multi-dimensional functions on discretized grids more efficient, see [11],
[36], [61] among others. The methods developed in this area may be combined
with the model reduction method introduced in this work, to provide efficient
algorithms for control and observer design for multi-variable distributed sys-
tems. As an example, [50] discuss Krylov subspace methods for linear systems
with a specific tensor structure. It would be worthwhile to investigate whether
the structure, or a modified version, of the reduced models introduced in this
work allows for specific optimization algorithms that have certain numerical
advantages.

6.3 General conclusions

Although a number of future research directions have been indicated in theprevious
section, this work is a part of developments that lead towards the end goal of further
automation and re-design of industrial production processes. In this section we indi-
cate how the work presented in this thesis contributes to the global issues thathave
been highlighted in Chapter 1.
In Chapters 3 and 4 approximation concepts for multi-dimensional signals andsys-
tems have been discussed and developed. These concepts allow the construction of
low-complexity models of production processes, as described in Chapter 4. Key fea-
ture of these low-complexity models is that they allow extraction of those system
trajectories in a way that is suitable for use in real-time simulation and operation of
these processes. This means that they allow extraction of the system trajectories that
are relevant to process operation. These system trajectories offer insights into the pro-
cess that may not follow from measurements alone. This information can be used for
analysis, optimization and control purposes.
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6.3. General conclusions

The information contained in relevant system trajectories is especially important for
sustainable operation of production processes. It allows the process tobe operated in
such a way that the use of natural resources is limited while at the same time undesired
side-effects are minimized. The use of low-complexity does not end here. They can
also be used in a simulation and design context. The trajectories that are obtained may
assist in process re-design and lead to a next generation of footprint-free technology.
Although these results form only a small element in the evolution towards a more
sustainable and equal society, it is a move in the right direction. Many more ofsuch
small elements and large breakthroughs are needed, but they all contribute towards
building a brighter future. A future where wealth is distributed more equally and our
planet is preserved for future generations.
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Appendix A

Notation and Technicalities

A.1 Notation

A.1.1 Symbols

The following notation is used throughout this work. Lowercase characters, a, are
used to indicate signals and functions. Underlined lowercase characters, a, denote
vector-valued signals and functions. A scalar function ofN variables is denoted by
a(x1, . . . , xN ). A vector-valued function ofN independent variables is denoted by
a(x1, . . . , xN ). Throughoutx1, . . . , xN will be used to indicate independent variables
and may refer to both space and time. Uppercase characters,A, are used to denote
operators such as matrices and tensors. Uppercase calligraphic characters,A, are used
to indicate vector spaces and function spaces. Real and complex characters are dnoted
asR andC and will be identified with their corresponding field. The set of integers
is denoted byZ. Double-barred characters,A, denote intervals in the set of real or
integer numbers. We will denote a projection byΠ and the symbolI refers to the
identity matrix.

A.1.2 Differentiation

The partial differential operator∂
∂xk

will be denoted by∂xk
. For a vector space

X equipped with an inner product we write〈x1, x2〉 to indicate the inner product,
x1, x2 ∈ X . ‖ · ‖ refers to the norm. [[·]] is used to indicate the elements in
a basis-dependent representation of a tensor defined on a Cartesian product X =
X1 × · · · × XN of vector spaces. Subscript indices refer to the mode, superscript ele-
ments denote the element number. As an example,f

(ℓk)
k denotes theℓk-th function in
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thek-th mode the tensor operates on,Xk.

A.1.3 Polynomials

A notation that is used often in this work and requires some explanation is that of
matrix-valued polynomials in several indeterminates. Letr(ξ) be a polynomial of
orderk in the indeterminateξ with real coefficientsa0, . . . , ak. That isr(ξ) is given
by r(ξ) = a0 + a1ξ + · · · + akξ

k. Replacingξ by the differential operatorddt gives
an order-k differential operatorr( d

dt) with real coefficients. Thenr( d
dt) can operate

on a scalar functionf : R → R that isk times continuously differentiable, yielding
r( d

dt)f = a0f + a1
d
dtf + · · · + ak

dk

dtk f . The shorthand notation that will be used
to indicate these polynomials isr ∈ R[ξ], whereR[ξ] denotes the set of real-valued
polynomials in the indeterminateξ.
This can be extended to the case of a vector-valued functionf : R → R

n. In this
case, we consider the polynomial operatorR(ξ) ∈ R

ℓ×n. The coefficients ofR are
now matricesA ∈ R

ℓ×n, i.e. R(ξ) = A0 + A1ξ + . . . + Akξ
k. Again, substituting

the differential operatorddt for ξ, thenR( d
dt) operates on a functionf : R → R

n, and
yields the functiong = R( d

dt)f .
The final step is to consider polynomials in multiple indeterminates. That is, letξ now
be a multi-indexed indeterminateξ = (ξ1, . . . , ξN ) and consider a polynomialR ∈
R

m×n[ξ1, . . . , ξN ]. The coefficients ofR are matricesRℓ ∈ R
·×n, whereℓ is a multi-

indexℓ = (ℓ1, . . . , ℓN ). The generalized indeterminateξ equalsξ = (ξ1, . . . , ξN ) and
we definedξℓ := ξℓ1

1 · · · ξℓN

N as theℓ-th power ofxi. The polynomialR is then given
by

R(ξ1, . . . , ξN ) := R(ξ) =
∑

0≤|ℓ|≤L

Rℓξ
ℓ =

∑

0≤|ℓ|≤L

Rℓ1···ℓN
ξℓ1

1 · · · ξℓN

N (A.1)

where |ℓ| =
∑N

k=1 ℓk andL =
∑N

k=1 max(ℓk). With ξk replaced by the partial
derivativeξk = ∂xk

, R defines a polynomial differential operator. To demonstrate
how this notation can be derived from a set of PDEs, consider the following example.

Example A.1.1. Consider the following set of Partial Differential Equations inw =

[w1(x1, x2), w2(x1, x2)]⊤

α1∂x1w1 + α2∂
2
x2
w2 = 0

α3∂x2w1 + α4∂x1x2w2 = 0.
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In matrix notation this becomes

[

α1∂x1 α2∂
2
x2

α3∂x2 α4∂x1x2

] [

w1

w2

]

= 0. (A.2)

The polynomial notation for this set of PDEs is

R(ξ) =
∑

0≤|ℓ|≤L

Rℓ1ℓ2ξ
ℓ1
1 ξ

ℓ2
2

= R10ξ1 +R01ξ2 +R11ξ1ξ2 +R02ξ
2
2 .

whereL = max(ℓ1) + max ℓ2 = 2. The coefficient matrices are given by

R10 =

[

α1 0

0 0

]

;R01 =

[

0 0

α3 0

]

;R11 =

[

0 0

0 α4

]

;R02 =

[

0 α2

0 0

]

.

The other coefficient matrices are equal to zero. Note that the solution set of (A.2) is

linear.

A.2 Discrete-time systems

LetX = X1 × · · · ×XN , whereXk = {p(ℓk)
k | ℓk = 1, . . . , Lk} is a finite discrete grid

of points in modek and ordered according top(1)
k ≤ p

(2)
k ≤ · · · ≤ p

(Lk)
k . Consider

a signalw : X → R. Let ςk be the forward shift operator acting on the spatial
discretization in thekth mode as defined below.

Definition A.2.1. The forward shift operator acting on the spatial discretization in

thekth mode,ςk, is defined as

ςkw(p
(ℓ1)
1 , . . . , p

(ℓk)
k , . . . , p

(ℓN )
N ) =







w(p
(ℓ1)
1 , . . . , p

(ℓk+1)
k , . . . , p

(ℓN )
N ) ℓk < Lk

0 ℓk = Lk

(A.3)

wherew : X → R with X = ΠN
k=1Xk. For infinite countable discrete grids, one or

more dimensionsLk are infinite and we define

ςkw(p
(ℓ1)
1 , . . . , p

(ℓk)
k , . . . , p

(ℓN )
N ) = w(p

(ℓ1)
1 , . . . , p

(ℓk+1)
k , . . . , p

(ℓN )
N ) (A.4)
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Thebackwardshift operator acting on the spatial discretization in thekth mode,ς−1
k ,

is defined as

ς−1
k w(p

(ℓ1)
1 , . . . , p

(ℓk)
k , . . . , p

(ℓN )
N ) =







w(p
(ℓ1)
1 , . . . , p

(ℓk−1)
k , . . . , p

(ℓN )
N ) ℓk > 1

0 ℓk = 1
.

(A.5)

Definition A.2.2 (Discrete-time lumped system). A discrete-time lumped dynamical

systemΣ is defined as a triple

Σ = (T,W,B). (A.6)

In this triple,T ⊆ Z is the time axis,W is the signal space andB is a subset of the

collection of maps fromT toW.

As for the continuous case, we are especially interested in those discrete-time lumped
systems that admit a representation by means of a (linear) set of Ordinary Difference
Equations. LetD ∈ R

m×n[ξ, η] be a polynomial in two indeterminates and consider
the following difference equation

D(ς1, ς
−1
1 )w = 0. (A.7)

This defines the discrete-time lumped systemΣ = (T,W,B) with time setT =
{x1, . . . , xL1} orT = {xk | k ∈ Z} with xk = kTsample, the behavior is given by

B =
{

w ∈ W
T | D(ς1, ς

−1
1 )w = 0

}

. (A.8)

The signalw may be scalar- or vector-valued. In the scalar case we haveW = R,
whereas in the vector-valued caseW = R

n.

Definition A.2.3 (Distributed dynamical system on a discrete domain). A distributed

dynamical systemΣ on a discrete domain is defined as the triple

Σ = (X,W,B). (A.9)

In this triple,X ⊆ Z
N is the set of independent variables,W is the signal space and

B is a subset ofWX called the behavior of the system.
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As for the continuous case, we are especially interested in those discrete-time lumped
systems that admit a representation by means of a (linear) set of Partial Difference
Equations. LetD ∈ R

m×n[ξ1, . . . , ξN , η1, . . . , ηN ] be a polynomial in2N indetermi-
nates and consider the following difference equation

D(ς1, ς
−1
1 , . . . , ςN , ς

−1
N )w = 0. (A.10)

This defines the discrete-time lumped systemΣ = (T,W,B) with T = X1 ×· · ·×XN

andXk = {x(1)
k , . . . , x

(Lk)
k } or Xk = {x(m)

k | m ∈ Z} with xm
k = mTsample, the

behavior is given by

B =
{

w ∈ W
X | D(ς1, ς

−1
1 , . . . , ςN , ς

−1
N )w = 0

}

(A.11)

The signalw may be scalar- or vector-valued. In the scalar case we haveW = R,
whereas in the vector-valued caseW = R

n.

A.3 Optimal rank approximation to matrices

Section 3.2 introduced tensors and some of their properties. This appendixis devoted
to a special class of tensors, namely order-2 tensors on finite domains, commonly
referred to as matrices. As we will demonstrate , matrices have several special prop-
erties. We will introduce concepts such as matrix rank and the Singular ValueDe-
composition. These concepts are well-known and can be found in many books on
matrices, such as [33]. These concepts form the background dor the tensor decompo-
sition concepts.
Consider a tensorW : X1 × X2 → R, whereXi = R

Li is equipped with the standard
Euclidean inner product fori = 1, 2. The array of coefficients[[wℓ1ℓ2 ]] obtained by
operatingW on the standard bases forR

Li , i = 1, 2 is an object[[wℓ1ℓ2 ]] ∈ R
L1×L2 .

This object is what is usually referred to as a matrix. In other words, the elements
wℓ1ℓ2 of a matrix[[wℓ1ℓ2 ]] ∈ R

L1×L2 are the coefficients of the representation ofW
with respect to the standard bases forR

L1 andRL2 , i.e.

W =
L1∑

ℓ1=1

L2∑

ℓ2=1

wℓ1ℓ2e
(ℓ1)
1 ⊗ e

(ℓ2)
2

Conversely, the matrixA := [[wℓ1ℓ2 ]] ∈ R
L1×L2 defines the tensorW : RL1 ×R

L2 →
R according to

W (x1, x2) = x⊤
1 Ax2 = 〈x1, Ax2〉 = 〈A⊤x1, x2〉.
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A.3. Optimal rank approximation to matrices

In the remainder of this chapter we will use the notationA := [[wℓ1ℓ2 ]] ∈ R
L1×L2 so

as not to confuse the tensorW with its representation.
An important concept is that of matrix rank, which is defined as follows

Definition A.3.1 (Matrix Rank). Regarding matrix rank, we can define the column-

rank and the row-rank.

1. LetA = [a1 · · · aL2 ] ∈ R
L1×L2 with aℓ2 ∈ R

L1 , ℓ2 = 1, . . . , L2. The column

rank ofA is defined as

col-rank(A) := dim(span{a1 . . . aL2}) (A.12)

2. LetA = [a1 · · · aL1 ]⊤ ∈ R
L1×L2 with aℓ1 ∈ R

L2 , ℓ1 = 1, . . . , L1. The row

rank ofA is defined as

row-rank(A) := dim span{a⊤
1 . . . a

⊤
L1

} (A.13)

Alternatively, the row and column rank of a matrix can be defined using the following
kernels. Let

ker1(W ) :=
{

x1 ∈ RL1 | W (x1, x2) = 0, ∀x2 ∈ R
L2

}

ker2(W ) :=
{

x2 ∈ RL2 | W (x1, x2) = 0, ∀x1 ∈ R
L1

}

.

Then, the row-rank and column-rank ofA can be defined as

row-rank(A) := L1 − ker1(W )

column-rank(A) := L2 − ker2(W )..

The following result is very well known and states that the row- and column-ranks of
a matrix are always equal. The proof can be found in [33] for instance.

Theorem A.3.2. Consider a matrixA ∈ R
L1×L2 , the following holds

col-rank(A) = row-rank(A) =: rank(A). (A.14)

The Singular Value Decomposition of matrices will play an important role in the re-
mainder of this chapter. Its definition can be found in many books on matrices and
linear algebra, such as [33]. First, we need to define unitary matrices.
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Definition A.3.3 (Unitary matrix). A matrixA ∈ R
L1×L1 is said to be a unitary

matrix if

A⊤A = I

Theorem A.3.4 (Singular Value Decomposition (SVD)). LetA be a real matrix of

dimensionL1-by-L2. Then there exist orthogonal matrices

U = [u1 · · ·uL1 ] ∈ R
L1×L1 ; V = [v1 · · · vL2 ] ∈ R

L2×L2

such that

U⊤AV = Σ = diag(Σ, 0) ∈ RL1 × Ł2 (A.15)

whereΣ = diag(σ1, . . . , σp) ∈ R
p×p withσ1 ≥ · · · ≥ σp > 0 andp = rank(A). The

numbersσ1, . . . , σp are called thesingular valuesof A, the vectorsu1, . . . , uL1 are

called theleft singular vectorsof A and the vectorsv1, . . . , vL2 are called theright

singular vectorsofA.

In other words,A ∈ R
L1×L2 can be decomposed as follows

A = UΣV ⊤

where,U ∈ R
L1×L1 andV ∈ R

L2×L2 are orthogonal matrices andΣ is anL1 × L2

diagonal matrix with non-zero elementsσ1, . . . , σp on its main diagonal.
The SVD of a matrix can be interpreted in different ways. We now give three alterna-
tive interpretations, these will prove useful later on in this chapter.

1. The Singular Value Decomposition of a matrixA of rankp is a dyadic expan-
sion, i.e. it is an expansion ofA in rank-one matrices of the form

A =
p
∑

i=1

σiuiv
⊤
i .

The orthogonality properties are now expressed in terms of the vectors, i.e.
〈ui, uj〉 = δij and 〈vi, vj〉 = δij . Again, the sigma’s are in non-increasing
order, i.e.σ1 ≥ · · · ≥ σp > 0.

2. The Singular Value Decomposition of a matrix can be obtained through succes-
sive rank-one approximations of the matrix. Given a matrixA ∈ R

L1×L2 , let
U1 ∈ R

L1×L2 be a rank-one matrix that minimizes the norm

‖A− U1‖F . (A.16)
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It is straightforward to show that the solution to this problem is given byU1 =
σ1u1v

⊤
1 . Now, define for successive valuesk = 1, . . . , p, the errorAk :=

A − U1 − · · · − Uk and find the best rank-one matrixUk+1 in the sense that
‖Ak − Uk+1‖F is minimal. ThenUp+1 = 0 andUk = σkukv

⊤
k and we infer

that

A =
p
∑

i=1

σiuiv
⊤
i .

3. The SVD can also be obtained through the following maximization problem

max
u,v

‖u‖=1,‖v‖=1

|〈Av, u〉|

The vectors that yield the maximum areu1 andv1 and the maximum is given
by 〈Av1, u1〉 = σ1. This maximization can be repeated, with the additional
constraints thatu ⊥ u1 andv ⊥ v1 for k = 2, . . . , p by setting

max
u,v

‖u‖=1,‖v‖=1u⊥span{u1,...,uk−1},v⊥span{v1,...,vk−1}
|〈Av, u〉|.

The vectors that yield the maximum areuk andvk and the maximum is given
by 〈Avk, uk〉 = σk. Again, we find the decomposition

A =
p
∑

i=1

σiuiv
⊤
i .

The application of the SVD that is most relevant to this work is the application to
optimal rank approximation of matrices. The optimal rank approximation problemof
matrices can be formulated as follows.

Problem A.3.5. Given a matrixA ∈ R
L1×L2 , find a matrixAk of rankk such that

1. ‖A−Ak‖F is minimized.

2. ‖A−Ak‖ind is minimized

The solution to the optimal rank approximation problem is as follows. LetUΣV ⊤

be the SVD ofA. The optimal rank-k approximationAk can now be defined as
Ak =

∑k
i=1 σiuiv

⊤
i with the error equal to

‖A−Ak‖2
ind = σ2

k+1

‖A−Ak‖2
F =

p
∑

i=k+1

σ2
i .
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(a) Original Image
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(b) Rank-5 Approximation
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(c) Rank-15 Approximation

Figure A.1: Optimal rank approximation of the clown image. The original image is

of size200 × 300 and the matrix describing it has rank200. In the middle and on the

right two rank approximations of the original image are shown.

This error is minimal for both problems. This solution is unique in case the Frobe-
nius norm is used. The solution isnot unique if the problem is stated in the induced
norm. Indeed, if we setAk =

∑k
i=1(σi − ρi)uiv

⊤
i whereρ1, . . . , ρk are arbitrary real

numbers such that, fori = 1, . . . , k

0 < σi − ρi < σk+1

then‖A − Ak‖ind will remain equal toσk+1, yet the approximant matrixAk is dif-
ferent. An imaging example of optimal rank approximation to matrices is shown in
Figure A.1. This shows an image which can be represented by a200 × 300 matrix of
rank200. The middle and right of Fig. A.1 show rank approximations of the image.
These low-rank approximations don’t capture all detail of the original, yet it is clear
that one is looking at a (distorted) image of a clown.
Optimal rank approximation to matrices is a powerful tool that has found widespread
use. Generalization of this property to the more general case of order-N tensors,
N > 2, is not straightforward as is discussed from Sec. 3.3 onward

A.4 A Useful Lemma

The following lemma proves useful and relates tensor evaluations with tensorial inner
products.

Lemma A.4.1. Let W ∈ TN , W : X1 × · · · × XN → R, with Xn inner product

spaces, possibly infinite dimensional, andxn ∈ Xn for n = 1, . . . , N . Then
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1.

W (x1, · · · , xN ) = 〈W,x1 ⊗ · · · ⊗ xN 〉.

2.

W (x1, · · · , xN ) = 〈xN , · · · 〈x2, 〈x1,W 〉1〉2 · · · 〉N .

Proof. Proof of Lemma A.4.1

1. Let {ξ(ℓn)
n }∞

ℓn=1 be an orthonormal basis forXn, n = 1, . . . , N . W can be

represented with respect to these bases asW =
∑

ℓ1
· · ·∑ℓN

wℓ1···ℓN
ξ

(ℓ1)
1 ⊗

· · · ⊗ ξ
(ℓN )
N . The tensor evaluation can be written as

W (x1, · · · , xN ) =
∑

ℓ1
· · ·∑ℓN

wℓ1···ℓN
〈x1, ξ

ℓ1
1 〉 · · · 〈xN , ξ

ℓN

N 〉. LetU := x1⊗
· · · ⊗xN . U can be represented asU =

∑

ℓ1
· · ·∑ℓN

uℓ1···ℓN
ξ

(ℓ1)
1 ⊗ · · · ⊗ ξ

(ℓN )
N

with uℓ1···ℓN
=
∏N

i=1〈xi, ξ
(ℓi)
i 〉i. Then,

〈W,U〉 =
∑

k1

· · ·
∑

kN

∑

ℓ1

· · ·
∑

ℓN

wk1···kN
uℓ1···ℓN

· 〈ξk1
1 , ξℓ1

1 〉
︸ ︷︷ ︸

0 unlessk1=ℓ1

· · · 〈ξkN

N , ξℓN

N 〉

=
∑

ℓ1

· · ·
∑

ℓN

wℓ1···ℓN
uℓ1···ℓN

=
∑

ℓ1

· · ·
∑

ℓN

wℓ1···ℓN
〈ξℓ1

1 , x1〉 · · · 〈ξℓN

N , xN 〉

which is the tensor evaluation.

2. To prove the second statement, we first show that〈x1,W (·, v2, . . . , vN )〉1 =

W (x1, v2, . . . , vN ) for somevn ∈ Xn, n = 2, . . . , N . Let {ξ(ℓn)
n }∞

ℓn=1 be an

orthonormal basis forXn, n = 1, . . . , N . W can be represented with respect to

these bases asW =
∑

ℓ1
· · ·∑ℓN

wℓ1···ℓN
ξ

(ℓ1)
1 ⊗ · · · ⊗ ξ

(ℓN )
N . Then

W (x1, v2, . . . , vN ) =
∑

ℓ1

· · ·
∑

ℓN

wℓ1···ℓN
〈ξ(ℓ1)

1 , x1〉
N∏

k=2

〈ξ(ℓk)
k , vk〉.
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On the other hand, we can writex1 asx1 =
∑∞

k=1〈x1, ξ
(k)
1 〉ξ(k)

1 . Then

〈x1,W (·, v2, . . . , vN )〉1

=
∑

k1

〈x1, ξ
(k1)
1 〉1W (ξ

(k1)
1 , v2, . . . , vN )

=
∑

k1

〈x1, ξ
(k1)
1 〉1

∑

ℓ2

· · ·
∑

ℓN

wk1ℓ2···ℓN

N∏

k=2

〈ξ(ℓk)
k , vk〉

= W (x1, v2, . . . , vN )

Thus, we have that〈x1,W (·, v2, . . . , vN )〉1 = W (x1, v2, . . . , vN ). Since ten-

sors are multilinear functionals, this completes the proof.
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Summary

Approximation of multi-variable signals and systems: a tensor

decomposition approach

Signals that evolve over multiple variables or indices occur in all fields of science and
engineering. Measurements of the distribution of temperature across the globe dur-
ing a certain period of time are an example of such a signal. Multi-variable systems
describe the evolution of signals over a spatial-temporal domain. The mathematical
equations involved in such a description are called a model and this model dictates
which values the signals can obtain as a function of time and space. In an industrial
production setting, such mathematical models may be used to monitor the process or
determine the control action required to reach a certain set-point. Since theirevo-
lution is over both space and time, multi-variable systems are described by Partial
Differential Equations (PDEs).
Generally, it is not the signals or systems themselves one is interested in, but the in-
formation they carry. The main numerical tools to extract system trajectories from
the PDE description are Finite Element (FE) methods. FE models allow simulation
of the model via a discretization scheme. The main problem with FE models is their
complexity, which leads to large simulation time, making them not suitable for ap-
plications such as on-line monitoring of the process or model-based controldesign.
Model reduction techniques aim to derive low-complexity replacement models from
complex process models, in the setting of this work, from FE models. The approx-
imations are achieved by projection on lower-dimensional subspaces of thesignals
and their dynamic laws. This work considers the computation of empirical projec-
tion spaces for signals and systems evolving over multi-dimensional domains. For-
mally, signal approximation may be viewed as a low-rank approximation problem.
Whenever the signal under consideration is a function of multiple variables,low-rank
approximations can be obtained via multi-linear functionals, tensors. It has been ex-
plained in this work that approximation of multi-variablesystemsalso boils down to
low-rank approximation problems.
The first problem under consideration was that of finding low-rank approximations to
tensors. For order-2 tensors, matrices, this problem is well understood. Generalization
of these results to higher-order tensors is not straightforward. Findingtensor decom-
positions that allow suitable approximations after truncation is an active area of re-
search. In this work a concept of rank for tensors, referred to as multi-linear or modal
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rank, has been considered. A new method has been defined to obtain modal rank de-
compositions to tensors, referred to asTensor Singular Value Decomposition (TSVD).
Properties of the TSVD that reflect its sparsity structure have been derived and low-
rank approximation error bounds have been obtained for certain specific cases. An
adaptation of the TSVD method has been proposed that may give better approxima-
tion results when not all modal directions are approximated. A numerical algorithm
has been presented for the computation of the (dedicated) TSVD, which witha small
adaptation can also be used to compute successive rank-one approximation to tensors.
Finally, a simulation example has been included which demonstrates the methods pro-
posed in this work and compares them to a well-known existing method.
The concepts that were introduced and discussed with regard to signal approxima-
tion have been used in a system approximation context.We have considered the well-
known model reduction method of Proper Orthogonal Decompositions (POD). We
have shown how the basis functions inferred from the TSVD can be usedto define
projection spaces in POD. This adaptation is both a generalization and a restriction.
It is a generalization because it allows POD to be used in a scalable fashion for prob-
lems with an arbitrary number of dependent and independent variables. However, it is
also a restriction, since the projection spaces require a Cartesian product structure of
the domain. The model reduction method that is thus obtained has been demonstrated
on a benchmark example from chemical engineering. This application showsthat the
method is indeed feasible, and that the accuracy is comparable to existing methods
for this example.
In the final part of the thesis the problem of reconstruction and approximation of
multi-dimensional signals was considered. Specifically, the problem of sampling and
signal reconstruction for multi-variable signals with non-uniformly distributedsensors
on a Cartesian domain has been considered. The central question of this chapter was
that of finding a reconstruction of the original signal from its samples. A specific
reconstruction map has been examined and conditions for exact reconstruction have
been presented. In case that exact reconstruction was not possible,we have derived
an expression for the reconstruction error.
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