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Chapter 1

Introduction

1.1 Introduction

In most works of fiction, the reader only discovers the true meaning ofal'nditle
afterthe last page of the book has been read. What you are about to redd ig/ark
of fiction, but a PhD thesis and the title that has been chosen reflects thé Hiim o
work. Therefore, contrary to a novel, this first chapter will be devateeplaining
the aim, and therefore the title, of this work. This aim will serve as a guide ginaut
this thesis, as the chapters that follow will reveal increasing amounts df. deta
The approach that will be followed in this chapter is comparable to that of/gtera
of Google Earth satellites. They can be used to view the entire world and then-g
ally zoom in, until they reveal your home and backyard, or your holidzstidation.
In a similar way, we will start this chapter by introducing some global issudéstba
the driving forces behind the development of new technology of whichatbik is a
small part and by continually zooming in further, we will end up explaining ihe a
of this work and stating the contributions of this thesis.

1.2 Towards a brighter future

Two very interesting phenomena are occurring in our society. On theam there
is a desire to eradicate extreme poverty and hunger, while on the othertharelis
an increased concern for our planet and the need to secure its maugrefice fu-
ture generations. These two phenomena are seemingly conflicting. |ndeedsed
living standards for the poor can be realized by providing access to ¢hadkgy
that increased the living standards in the West. Providing this access impkesa
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1.2. Towards a brighter future

greater strain on the environment and an increase in our use of natamirces.
Therefore, to realize a brighter future for our planet and its inhabitartstvould
increase the living standards of the poor and at the same time decreassvivan-
mental footprint. It is this goal that both politicians and scientists set out teweh
Politicians set targets, scientists look for ways to achieve these targetshésis is
about science, not politics, and | hope that it is part of this road towatatsghter
future.

The first of the United Nation’s eight millennium goals is to 'Eradicate Extreme
Poverty and Hunger’ [58]. According to World Bank figures of 2008,6% of the
world population live on less than 1 US dollar a day and 79.7% of the world{op
lation, excluding industrialized nations, live on less than 10 US dollar a daghw

is the poverty line for industrialized nations [19]. Needless to say, it is intiperto
bridge this poverty gap. At the close of a United Nations (UN) summit in Septembe
2010 a global action plan was launched to achieve this and seven other mitenn
goals by 2015. Looking back into history, Western prosperity levels waised by
the increase of productivity thanks to industralization. Therefore, thygtovaradicate
extreme hunger and poverty globally requires technology that will allovafather
such increase of productivity.

In parallel to these efforts, due to economic growth in Asian countries likeaCh
and India, but also in Brazil and Russia, the number of people who attagteYke
living standards increases steadily, from currenly 600 million people, tdiRtién
people in the near future. This increase in prosperity has two important iriptisa
Firstly, increased prosperity implies that less people will be willing to work inthea
threatening production environments. Cheap human labor in countries lika ®@Hl

be history soon. This will create a problem in the future, since our indpsiryally
relies on this cheap human labor. Secondly, our planet does not prawificent
traditional sources of energy and natural resources to supply 2.5 biéople in
the same way it is currently supplying 600 million people. This implies that a new
generation of sustainable technology is needed. This is reflected in Milkargoal
number seven, which is to 'Ensure Environmental Sustainability’ [58].

Meanwhile, in the industrialized world conflicting trends are visible in a similar. way
On the one hand, there is a steady demand from the public for technological
vation, while on the other hand, environmental legislation and awarenesasar
putting demands on the development of future technology. In the Springl&f @S
corporation Apple sold 1 million of its iPad devices within the first 28 days of its
release [65]. This is just an example of the continuous pressure ontndoikeep
evolving and keep putting innovative products on the market. At the same time go
ernments are setting clear targets via environmental legislation. These taagets
to be met by industry somehow. As an example, in a European Union agreemen
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Chapter 1. Introduction

the Dutch government has pledged that by 2020 14% of the energyroedsn the
Netherlands will be produced by renewable resources [79]. Thasddwelopments
put seemingly conflicting demands on industry: to preserve its market sl to
keep innovating, while parts of traditional technology can no longer husee-due to
environmental legislation.

What is needed to build a brighter future is a new generation of technolagigtable
to achieve three goals. First is to increase the living standards of peogésréhop-
ing nations. Second, to ensure that the living standards of industrialetexhs are
preserved. Third, to preserve our planet and its resources foefganerations. This
new technology should have no footprint. This means that natural iessinould be
fully reused and energy should be supplied from renewable resourbés footprint-
free technology implies that production processes should be run higtdynated,
to ensure that they are as efficient as possible and do not rely on mabaoal De-
velopment of a new generation of technology requires a significant @ffterms of
research and innovation. This thesis forms a small step towards the deesibpf
this new generation technology. The focus of this work has been oreeffaperation
of industrial production processes.

Industrial production is largely responsible for the use of our planessurces. A
large part of the available energy and natural resources go to méamirfigcplants,
ranging from power plants, to manufacturing of electronic devices, tdymtoon of
pharmaceutical products etc. As an example, in the Netherlands 55% oftahe
energy used in 2009 went to industrial manufacturing, including enemggyugtion
facilities. In contrast, only 13% of the total energy was consumed by Duiokéh
holds [78]. Due to the expected shortage of natural resources addsine to produce
footprint-free, environmental legislation already pressures the indirgtrydecreas-
ing its use of energy and natural resources. In the future, this peessl only
increase. Therefore, it is imperative to develop technology that will alkistiag
processes to be operated more efficiently and enable the developmeturefgener-
ation footprint-free production processes. This work contributes to ¢lieldpment
of this technology. In the next section, we will take a closer look at induigtreaduc-
tion and the challenges it faces.

1.3 Industrial production

As mentioned above, industrial production is responsible for a largeptmt use of
energy and natural resources across the globe. In this section wepldirewhat we
mean exactly by industrial production and how efficient operation of inidligro-

duction processes can contribute to the issues of sustainability, eradicBpioverty
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1.3. Industrial production

and technological innovation.

Industrial production is the process of taking a supply, performing soork en it
such that it becomes a product that is either used as supply for anetuerction
process or as an end-product by the consumer. Most productsergmocessing
by different branches of industry before they are finalized. Examgfiésdustrial
production are numerous, one can consider the production of elecrieady in a
nuclear power plant, manufacturing of Integrated Circuits such as gsorethat are
then built into PCs in other facilities, etc.

Development of industrial production has changed western life drastialtg the
industrial revolution. Through the use of steam power, petrochemioaépsing and
modern computing power, productivity has risen drastically causing a maj@ase
in living standards. As mentioned before another new wave of technaldgitova-
tion is needed to increase prosperity outside of the Western countriedlas we
The major challenge that industrial production currently faces is to inegasus-
tainability. This means two things. Firstly, further automation of existing produictio
processes. This automation will further decrease the use of scarcalmatources.
Secondly, development of a new generation of production processess thble to
achieve the global increase in prosperity and is footprint free.

To make the discussion more specific, we divide industrial productiorepses into
five categories [16]

1. Project this is a one-of-a-kind product that will likely only be produced once,
such as a large building.

2. Job processthese processes are designed for flexibility. The equipment can

be used for a range of products and the people working in such assrace
usually highly skilled.

3. Batch or Intermittent processinghe equipment in these facilities tends to be
more specialized, but still there is a range of products. Facilities tend tag@god
a large number of one product before changing their setup to allow gtiodu
of another product. Many products are produced in this way, suclotsng,
pharmaceutical products, glues etc.

. Repetitive processinghese processes are used to produce a very large volume

of a very limited variety of products. The equipment used is highly specialized
requiring very little, usually unskilled, manual labor. One can think of robotic
assembly and the production of most consumer electronics.

. Continuous processingenotes the situation where production is smooth and

uninterrupted in time, although production rates may vary over time. There is

12



Chapter 1. Introduction

bur:  burners

com: combustion
space

feed: feeder
g gob

refi.  refiner
thr:  throat

Figure 1.1: Cross section of a glass furnace

a constant influx of supplies and a constant output of end result. Exaimple
clude (petro-)chemical processing, industrial distillation, glass productteel
production and production of electrical energy using steam gener&ongin-
uous processing is generally used to produce large quantities of prpeuc
year.

Some processes may have characteristics from all categories, buthess this
categorization will be useful in our exposition. The remainder of this worlsilers
efficient operation otontinuous processesly. We will investigate techniques that
allow continuous processes to be operated more efficiently and can antieetisne
be used to develop next-generation continuous processes. An exdmagl@inuous
process is now introduced in more detail.

Example 1.3.1(Glass manufacturing)An example of a continuous production pro-
cess is the manufacturing of glass. The process of making glass razmidists of
melting raw materials at high temperature and letting the molten glass circulate an
mix for a while to give it the opportunity to attain certain properties. The glass i the
gradually cooled to proper temperatures at which it can be formed intor(imediate)
products. Figure 1.1 shows a cross section of a glass furnace. Tharedstinuous
influx of raw materials at the left and a continuous supply of energy throlig burn-
ers above the furnace. A glass furnace can be compared to a swimnohdifhed
with molten glass that circulates at approximateéBp0° C. The right part of the fur-
nace is called the working end and the feeder, in this part the cooling of tks tiies
place. Production of glass is very energy-intensive, approximatéfyof production
costs are energy costs. Natural gas is burned to produce the hedsthatessary to
melt the raw materials.

13



1.4. Operation of continuous processes

The circulations indicated in Fig. 1.1 are generated by temperature diffesenThe
quality of the end product is highly dependent on the temperature ancitygboofiles
present in the furnace.

1.4 Operation of continuous processes

Operation of continuous industrial processes in a systematic manneregticess
knowledge. Usually this knowledge is available from two sources. Thiecfrsier
of process knowledge is the experience of the process operat@se $pecialists by
experience instinctively know what will work and what will not work, whisitua-
tions should be avoided and how this can be achieved. Mathematical mochelthéo
second source of process knowledge. These models describe thoevof physi-
cal variables such as temperature, concentration, flow etc. The interatpbysical
principles and chemical reactions, heat transfer and material flowsaptered by
these models. The models are usually derived from the laws of physicrabased
on the assumption that energy, mass and momentum are conserved qudntéles.
cases the model describes the evolution of the physical variables overrinfera
some processes the evolution of physical variables also varies in dpate glass
furnace, Example 1.3.1, the temperature and flow profiles vary over tirhaldouas a
function of the different locations in the furnace. A model of a glassdcertherefore
describes the evolution of temperature over both space and time.

Most of the time, process models are formulated in terms of mathematical expres-
sions. In case of evolution over time only, the mathematical description is often a
collection of ordinary differential equations, describing the change impthsical
guantities as a function of change of time. In case of evolution over botte spad
time, the mathematical equations describe the change in the physical quantities as
both time and space change. This description is therefore usually in ternastiai P
Differential Equations.

Process models are usually generic, yet they are used in differetgixtgmamely
Research and Development, Production, and Maintenance. Theyearénusmula-
tion to design and improve understanding of what is happening inside a Placess
models are also used for monitoring purposes, to check whether thespiieamn the
right track. Thirdly, a process model can be used to evaluate diffsteategies for
operation. To make this clearer, recall the glass furnace example. Usuéliynace
is used to produce a range of products. Say that we are operatindaaneorglass
furnace which is producing brown-colored beer bottles. The nexraditht needs
to be fulfilled consists of clear marmalade containers. To go from the browhreto
clear-colored glass, furnace operation has to be adjusted. Thedifarent ways

14



Chapter 1. Introduction

to achieve this change in set point and a process model can be useditd wiéch
strategy will be fastest, or use the least energy.

From a management perspective, a reliable mathematical process modaleifula u
tool. Although the practical knowledge of process operators is oftengadgable, it
may take years to build that experience and there is no systematic way tetriuisf
knowledge from one person to the next. While it may only take a couple diswee
get familiar with a mathematical model and to learn how to use and maintain it. Busi-
ness may benefit from relying not only on the knowledge of operatdralbo using

the knowledge available in process models during day-to-day operatioiheFmore,
mathematical models may give additional insight into production processes, ain
wider variety of scenarios can usually be tested, compared to those mhiag exper-
imentally verified. Finally, a mathematical model is an indispensable tool in pgoces
analysis and optimization.

Let's take a closer look at what one would want to use a process madebfo an
operation and control perspective. One would like to use a procesd toadtermine
how to go from the current average operating situation to a desired inpopezating
range, realizing a certain set of wishes, such as the shortest time, agliestenergy
efficiency. While such a path is pursued, unexpected occurreneesdibe taken into
account and the model should tell us how to achieve our goal given thsinetion.
This is exactly the way in which a car navigation system works.

Example 1.4.1(Car Navigation) Consider a car navigation system. The naviga-
tion system uses a GPS signal to determine the car’s current locationyesaye in
Hochstetterstrasse 23, Hemmingen, Germany. The driver entersradidestina-
tion, say Den Dolech 2, Eindhoven, The Netherlands and a wish. In this @ar
driver would like to get to Eindhoven as fast as possible. Let’s say therdnwested

in an expensive navigation system and the maps of all of Europe are laleagla well

as up-to-date information on traffic jams and construction sites. Given thrergu
location, the destination and the information on traffic jams, the navigationrayste
determines which maps to use and what would be the fastest route. thesesps

of Germany and the Netherlands as its model. When a serious traffic jeumsaeear
Venlo, the system re-calculates the route to go via Aachen and Maastratbathof
Venlo.

In case of the glass furnace, the operator would like to use the proceletsnoa way
similar to that of Example 1.4.1. The process model, which in case of the giasséu

is a set of coupled patrtial differential equations, is equivalent to the wiaparope
in the navigation example. The navigation system was able to determine that it only
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1.5. Extracting information from process models

needed a small part of the maps of Germany and the Netherlands to pla®.aTou
go from brown-colored to clear glass, one should be able to extrauttfie process
models only the trajectories that are relevant to such a color changeefdite, if a
disturbance occurs, for example the composition of the raw materials isdiffieom
what was expected, there should be a selection mechanism availableaioukzte
the relevant trajectories. Just in the same way that the navigation systeablede
re-route in the case of a traffic jam. And finally, similar to the driver’s wisgetting
to Eindhoven as fast as possible, the operator of the glass furnadelikedo be able
to decide which trajectory will give him the fastest transition from browloiea to
clear glass.

To summarize, there are a couple of elements that we would like to extractafrom
process model in a control context. Given the current state, a degiezdtimg range
and a target, e.g. minimizing energy, we want to select from the model thebragsc
that are relevant, the one that minimizes the cost involved in realizing out tande
we want to be able to do this repeatedly, so that we are able to deal with disteh
and changing desires. Naturally, in the context of other model purpssel as
process design or process modeling, the specific elements we wish td éximathe
model may be different. However, the techniques discussed in this workemikin
relevant in these contexts.

Assuming a process model is available, it is not always straightforwarctiace the
information that is needed from this model. When dealing with processe® wher
physical variables evolve over space and time especially, there are ngttows
available to automatically extract the relevant information within reasonable time.
The difficulty is the following. The mathematical expressions that constitut®-a pr
cess model describe all possible trajectories of physical variablesasueimperature
and concentration over space and time, for all possible disturbancesaytbat the
model describes the global behavior of the process. There exist nemmatical tech-
nigues to extract from this generic process model the information that isarele
the current operating condition or current trajectory. Ideally, onelaviike to obtain
from the generic process model a description of those trajectories theglavant to
the current situation. Unfortunately, the mathematical techniques that aentiy
available do not allow this.

1.5 Extracting information from process models
Extracting information from mathematical process models is not straightfdnaar

mentioned in the previous section. To explain why this is the case, we exphain ho
numerical mathematical techniques deal with process models. Given aproodel
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Chapter 1. Introduction

that describes the change in the physical variables as a function of dmgectin
space and time. Information about individual trajectories is obtained hginlythe
global problem into a large number of small problems. These small problentisear
pieced together like a mosaic to form a trajectory of the full system. Unfaelyna
this division into small problems introduces a lot of computational overheade s
one has to make sure that the individual pieces in the mosaic represeonteawiten
combined. All this bookkeeping translates to high computation times. Theyefore
although numerical mathematical techniques are a useful tool to extragnetion
from process models, in most cases it takes too much time to extract the informatio
If the information comes too late it may no longer be relevant. In the car nauwigatio
example the re-route via Aachen and Maastricht is only useful for tlverdifi this
alternative route is determind@forethe driver is stuck in the traffic near Venlo. If he
is already in the middle of this traffic jam, providing an alternative route is useles
The devil is in the details, as they say, and this is most certainly the caseofgsr
models and the accompanying numerical techniques. The process mateis edi
details of all possible trajectories of the process. This is precisely therressy
most numerical techniques become so computationally complex. The issue is that
we are hardly interested in all of these details. For the glass furnace antidnge
from brown-colored to clear glass, the process operators want @ msEess model

to determine thdirectionin which they should steer the furnace and the details will
be taken care of in another way. The details that are available in the pnoaatels
are not of interest in this case. Unfortunately, no method exists yet, thagxtifict
information from a process model at a certain level of detail.

To explain what we mean by level of detail consider Figure 1.2. In thisdigan
image of a clown is visible. This image was coded in RGB colors and thus cookists
tree layers. Itis possible to infer from each layer individually that a cl@apictured.
However, if we want to see what color eyes this particular clown has gimbimation

of the three layers is needed to see that the clown indeed has brown eyes.

In this work, we are looking for automated procedures that are able idededat
information is relevant at a certain operating point or trajectory. This nd&bion
should be extracted from the generic process model into a compact magetom-
pact model should be accurate for the purpose at hand. The techmiguse looking

for should provide an alternative to existing numerical methods.

If we are able to extract this information from generic process modelssindiupro-
duction processes can be further automated. Based on the informatiactedtirom
compact models, systematic decisions about process operation in the frooshtef
manner can be made. This decreases the footprint of currently exisbdggtion
processes. Process models describe the interaction of physical nsechig@hwe are
able to extract information about this interaction on different levels of déas,in-
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1.5. Extracting information from process models

50 100 150 200 250 300

(a) Original Image

50 100 150 200 100 150 200 250 300

(b) Red Layer (c) Green Layer (d) Blue Layer

Figure 1.2: The clown image consists of three different layers. Eachidtugil layer
also carries information, independent of the others.
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Chapter 1. Introduction

formation can be used to develop new production processes. This @ynation

extracted from process models can contribute towards developing sudétach-
nology for the future. Therefore, the techniques developed in this wonkribute

both towards sustainable operation of industrial production procesddswaards the
development of next generation production processes.

1.6 Aim and contributions of this work

The premise of this chapter was to explain the title and thus the aim of this work.
Specifically, we will state what is meant Bypproximation of multi-variable signals
and systemsGiven a mathematical process model, approximation is the process of
extracting certain system trajectories from this model. In this case, the maieshiser

in those system trajectories that are relevant to the control objectiveoRipration is

the step that neglects the unnecessary detail to obtain only the essene@afdbss

one is interested inMulti-variable signals and systemnefers to the class of process
models that is under consideration. Namely, we consider process modelssheabe

the evolution of multiple physical quantities, over both space and time. Reghras
the aim of this work is to derive mathematical techniques that allow approximdtion o
multi-variable systems.

The method that has been developed and that is described in this thesidatlsush
approximations. It links traditional approximation techniques to concepts rfinalti-
linear algebra. This way, the approximation method is able to explicitly deal with
multiple physical variables and a spatial-temporal domain. The advantade tias
gained is that it gives extra flexibility in choosing approximation levels in epatia
variable. Furthermore, the scaling of the physical quantities can be tepadasely.

To make the aim and contributions of this work more specific, some additional co
cepts have to be introduced. This will be done in the next chapter, whaih agds
with a problem statement and contributions of this work.
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Chapter 2

Problem statement

2.1 Introduction

An important class of distributed systems models the evolution of signals tHaeevo
both in space as well as in time. Examples of such systems can be found in virtu-
ally all engineering disciplines including fluid dynamics, aerodynamics, ségyno

etc. Usually, first-principle models of these systems involve coupled setartélP
Differential Equations (PDES) that are inferred from physical corsn laws.

Today, many commercial and dedicated packages exist that allow anrefSaieu-
lation of such models. These numerical tools operate via discretization gbatials

and temporal domain of the signals via finite elements or finite volumetric elements.
The accuracy of these methods largely depends on the density of the wiesle,

fine meshes need to be generated at spatial locations or temporal instargdavhe
signal variations occur. By doing so, the system dynamics, represieyntist PDE,

are typically located in each and every element in the grid by copying thegalhys
laws in every element, and describing the interconnections of individuaksits and
their neighbors. In this way, the original global problem as describeth&yPDE

is translated into a large number of local problems and their interconnecimi$-v

nite Element (FE) or Finite Volume (FV) methods, see Fig. 2.1. Depending on the
specific application, the number of finite elements or finite volumetric elements may
be substantial and easily lead to large-scale models that require the sofutiorco

105 — 10® equations at every time step.

The large number of equations that have to be solved for each time-steponfRE
methods leads to a number of problems. Most naturally, the sheer numbguasf e
tions already makes simulation of FE (FV) models computationally demanding. This
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2.1. Introduction

Figure 2.1: This figure shows the mesh that was generated for the FE oicdiédw
around an obstacle [21]. A global problem is replaced by multiple locdllenas plus
their interconnections, this introduces computational overhead.

may prevent the models from being used for process monitoring if the simudation
are slower than real-time. Furthermore, the number of equations also implies tha
these models are not suitable for model-based control design, sincenipéegay of

the model is usually a lower-bound for the complexity of the controller. Fintdby,
large size of FE (FV) models implies that they are less suitable for analysjstais
properties such as stability, reachability, passivity, etc.

To reduce computation time and to enable the use of model-based analysesand d
tools, it then becomes necessary to construct simplified models that cdneist-o
siderably smaller number of equations. These substitute models should lveeof lo
complexity, yet retain the information that is relevant for simulation, contreighe
analysis, etc. The central question then becomes, given the FE modeldesired
objective, how to extract relevant information from the FE model so adastantially
reduce its complexity. Here, substantial will mean to reduce the number afieqsi
from 10¢ — 108 to less than 02,

As we shall describe in more detail below, approximation of multi-variable syste
involves both a signal and a system approximation step. Signals that aretimifuof
multiple variables or indices occur in all fields of science and engineeringsi@er

for example measurements of the distribution of temperature across the giohg d

a certain period of time. This temperature varies as a function of location and time

22



Chapter 2. Problem statement

Since locations are referenced by three coordinates, the temperatusaremants

are indexed by four indices. Three of these indices refer to the locadtierfpurth

to time. One can come up with scores of examples of signals that are a funttion o
multiple indices or multiple independent variables.

Generally, it is not the signals themselves one is interested in, but the informatio
they carry. The global temperature distribution is generally used to derivgerature
gradients or find out the temperature at specific locations across the {lbiseand
other types of information can be extracted from multi-variable signals usialgsis
tools. Signal approximation is one of these signal analysis tools.

Formally, signal approximation may be viewed as a low-rank approximatidaigao
Whenever the signal under consideration is a function of multiple variabéesa
multi-dimensional signal, low-rank approximations can be obtained via multi-linear
functionals, tensors. We will show that approximation of multi-variaylstemslso
boils down to low-rank approximation problems. And, for multi-dimensionaisys,

the solution of the system approximation problem involves the use of tensors.

The work presented in this thesis builds on previous work in this areal [304. Here

the aim was to derive approximate models of multi-variable systems with the specific
purpose of deriving models that are suitable for control of large scal®epses such

as the glass furnace introduced in Example 1.3.1. As is explained in themeésr
mentioned, the model of a glass furnace involves a combination of Navikessto
equations [12] and heat transfer in a three-dimensional spatial domiagnprémise

of this work is to examine the implications of a Cartesian structure in the spatial
domain on the approximation process.

It is the aim of this chapter to explain the role of multi-linear functionals, tengors
low-rank approximation of multi-dimensional signals and systems. We will intredu
the signal and system approximation problems, give a formal problem statan
provide an overview of the main body of this thesis.

2.2 Signal approximation

Signals that evolve over multi-dimensional domains are the focus of this settion
general, these signals themselves are not of immediate interest. One is idtereste
the information contained in these signals, where the context defines vidratation

is of importance. Extraction of information from signals then becomes a two-ste
process. The first step is to decide which part or property of the saggmahins the
information. The second step is to actually extract this specific part oepsop

As an example consider the one-dimensional periodic signal in Example 32pt.
pose that the information of interest is the low-frequent component ofghals This
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2.2. Signal approximation

information can be extracted by making a signhal decomposition in which spectra
components represent the harmonic content of the signal. This is donelagti-c

cal Fourier analysis. An approximatian. of the original signakw is obtained by
projection ofw on a subspace spanned by a set of harmonic functions. This projec-
tion is theoperationthat extracts the information from. In this case, we obtain the
low-frequent component ab which is represented by,

Example 2.2.1.Consider the approximation of one-dimensional periodic signals. Let
w : X; — R be of period2r and continuous, i.ew(z; + 27) = w(x;) for all

1 € X1. Then,w may be approximated by a truncated Fourier series as follows. By
definition, the Fourier series ab of orderr is the trigonometric series

wy(z1) = ag + Z ay, cos(kxy) + by sin(kx) (2.1)
k=1

with coefficientsi;, andby given by the Euler formulas [51]

21

ap = 1/w(x1)dx1

27
0
1 27
ar = — /w(xl) cos(kxy)dxy, k=1,2,...
27
0
1 27
by = Q—/w(xl)sin(kxl)dxl, E=1,2,....
s

0

With this approximation, we have convergence in the sense that

lim |jw—w,|| =0
r—00
where|w — w,.|? = 7 | w(z1) — w.(z1) | dz1, i.e. convergence in thé,

norm on|0, 2xr]. This particular approximatiom,. of w can be viewed as a projection

as follows. Let¥ = L;]0,2n] and letX, = span{1l,cos(kz),sin(kzy) | k =
1,...,r}. Then we have thab, = IIy w, wherelly,_ represents the orthogonal
projection ofw € X’ onto X,.

Figure 2.2 shows the approximation of a block signako,, for different values of.
Here, complexity ofy,. is measured by the number of independent harmonic functions
in X.. The projection otv on & extracts the low-frequent contentwof
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Chapter 2. Problem statement

Figure 2.2: Approximation of a block signal by Fourier Expansions okdfit or-
ders. From top-left in clockwise order the approximation degrees aée 20 and
100.

In this work, we focus on extracting information via projection of the origsighal

on low-dimensional subspaces. This projected signal generally is amapjation of

the original signal. The subspaces that are considered for projecjmnd entirely
on the context. In Example 2.2.1 we considered harmonic functions foundrexy
analysis, but one may also consider subspaces spanned by polynamials #is

thesis, the focus is on low-dimensional subspaces spannecpyical basis func-
tions. By this we mean that projection spaces are inferred from measusgdwated
data, acquired from the process.

Just like the information contained in a signal depends on the context, théeagiyip
of a signal depends on the choice of basis functions used to reptheesignal. The
complexity may be described by the bandwidth, or rather, more generabtikisge
by the dimension of the span of basis functions that are used to reptksesignal.
Such basis functions can be harmonic functions in case of Fourier &ndlys may
also be polynomials, etc. The number of basis functions used to reptksesignal
is the rank of the signal in terms of these basis functions. Low-rank ajppation
of signals then means representation of the signal with respect to a smatibenaf
basis functions. The projected signal is then said to be of lower complexityhtha
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2.2. Signal approximation

original.

In generalsignal projectionsare defined as follows. Consider a signal D — R™
where the domaii consists of a finite intervdD, L] C R. Throughout, we consider
the discretized signals only, i.e. we assume that the dofddias been sampled into
a finite set of points, i.eX = {pg”, . ,pgfﬂ} C ID. We assume this discretization
step has already been carried out and that the error introduced bysitristization is
sufficiently small.

Let X be the space of functions: R“x — R™ with associated inner product

Lx

(61,8) = (&(an), &a(xr))n (2.2)

k=1

where(-, -),, denotes the Euclidean inner producRif. Furthermore, lef f(*)} be an
orthonormal basis fo&’. Then, anyw € X can be expressed as a spectral expansion

w=> w,f®
k

wherew, are called the coefficients af with respect to the basisf*)} of X. Since
we consider an orthonormal bagig*)} of X, the coefficientsy,, satisfy

wy, = (w, f®, k=1,2,...

and are uniquely determined by € X and the basi§f(*)}. Let X, C X be ther-
dimensional subspack. = span{f(1), ..., (")} and letlly_denote the orthogonal
projection of elements iR” onto &,.. Then the approximatiow, of w is defined as

w, =Tyw=> w,f®. (2.3)
k=1

In this work, we consider subspac&sthat are spanned by empirical basis functions.
By replacing the original signal by one of lower complexity, signhal apjmation
allows information to be stored in a more compact manner. Furthermore, the low-
complexity replacement signal usually allows for faster computations, fample

in post-processing of signals. Finally, signal approximation may give nmtion
about the phenomena underlying the signal. For example, it may give informa
about the system that generated the signal. These underlying phenoragree of
lower complexity than the dimension of the original data may imply. Referring to
Example 2.2.1, a question relevant here is how to find the best approximétson o
certain degree of complexity, given the original signal, where 'best’ issonrea in

the norm associated with, [0, 27].
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50 100 150 200 250 300 100 150 200 250 300

(a) Original Image (b) Ranks Approximation (c) Rank15 Approximation

Figure 2.3: Optimal rank approximation of the clown image. The original imagk is o
size200 x 300 and the matrix describing it has raBR0. In the middle and on the
right two rank approximations of the original image are shown.

We will now consider approximation of two-dimensional signals on finite, dieao-
mains. Letw : X; xXs — R be a two-dimensional signal aiq, = {pg), e ,pff’f)}
for k = 1,2. Then, the signal values can be represented by maticesR>1 <12,
Consider the problem of finding decompositionsuofn terms of rank-one matrices

as follows
k

wheref(¥) ¢ RL1%L2 s of rank one. Approximations af may be obtained via trun-
cation of this decomposition in terms of rank-one matrices. The degree ofexitgp

of the approximation is in this case given by the rank of the approximating matrix.
The solution to the question of finding the best ran&pproximation of a matrix, was
presented in [27]. As is discussed in detail in Appendix A.3, the solution tpribie

lem of optimal rank approximation of matrices can be found via the SingulaeValu
Decomposition (SVD). An imaging example of optimal rank approximation to matri-
ces is shown in Fig. 2.3. This shows an image which can be represent@dy 300
matrix of rank200. The middle and right of Fig. 2.3 show rank approximations of the
image. These low-rank approximations do not capture all detail of the aljgiet it

is clear that one is looking at a (distorted) image of a clown. In the cade»f2, i.e.
when considering higher order tensors, the question of optimal rankxpymations
becomes much more involved, as we shall see later on.

The signal approximation problem we will consider is the following. We caarsid
signals that evolve over a multi-dimensional domain of independent varialdse
more specific, we consider signalgpi,...,py) € R® with (p1,...,pn) € X =

X; x -+ x Xy whereX}, is a set of finite cardinality.;, i.e. X, = {p,(j), e ,pl(f’“)}.
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2.3. System approximation

We want to obtain an approximatia. to w such that the errdfw—w, || is minimized

in some norm while the structure of the independent variables is kept intdet. T
reason this problem is more difficult to solve than the one- or two-dimensoaisal,

is that there are different rank concepts for multi-dimensional signaish Bithese
rank concepts lead to different low-rank approximations. Hence, a mh&hmmpute
optimal low-rank approximations to multi-dimensional signals does not yet exist.
The solution strategy to the problem of low-rank approximations to multi-dimeakion
signals is the following. We will associate a tensdr with w and determine low
(modal-)rank approximations to this tensor. These approximations defijexfion
spacest\™ C X, fork =1,..., N, wherex™ = span{p(", ... ©\""}. These
projection spaces are then used to define low-rank approximations to tred sig
This way, an approximatiow, of w is defined via an approximatidi,. of the tensor

W associated witlv. Since there may be different generalizations of the rank concept
to tensors, there are also different notions of low-rank approximatignsf 1. The
computation ofi¥,. in a systematic manner is one of the problems considered in this
work.

2.3 System approximation

In mathematical terms, the complexity of a model is usually defined in terms of the
number of coupled first-order differential or difference equatiohsThe accuracy of

a model is usually defined by comparing measured and simulated processdata

the same excitation is used for the model and the real process. Naturalyoahd

like the accuracy of a process model to be as high as possible. This uiscadigses
both the cost of obtaining the model and the model complexity.

One would like the complexity of a process model to be as low as possible. This,
because the implications of a high model complexity on model-based contighdes
and simulation of the model are manifold. The simulation time of high-complexity
models is large. Therefore, it may not be possible to use such a modéahidason
purposes. Furthermore, large simulation times also impede on-line modeld@ased
timization. In most model-based control strategies the complexity of the contioller
equal to or exceeds the complexity of the process model. This may lead lempsob

in the derivation and implementation of such a controller.

There is a clear trade-off between complexity and accuracy. Namelgased ac-
curacy implies increased complexity and vice versa. However, the situatim &s
black-and-white as it appears to be. This can be seen when one takesdotmt
what the process model will actually be used for. Generally, not allcaspd the
process behavior are relevant to the purpose for which the model wilsbé. For
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Chapter 2. Problem statement

example, if one is interested in steady-state process behavior, a modmi¢hedtely
describes not only the steady-state behavior but also the transientsllyasiatains
a lot of details that are not relevant. Another model of significantly lowenpiex-
ity that accurately predicts steady-state behavior but is less accurabe foansients
may be a good substitute for its purpose, with lower complexity.

The low-complexity replacement model should satisfy a number of demands:

e The error between the original model and its replacement should satisfy so
upper bound.

¢ If the replacement model is to be used in a predictive control setting, the com-
putation time of the model should be sufficiently small.

¢ Qualitative properties of the original model should be preserved as nsysbsa
sible in the replacement model. Examples of such properties include symmetry,
dissipativity, stability, conservation of energy, etc.

Several model approximation techniques exist. Techniques that ardstigialnear,
lumped systems include balancing, Hankel norm reduction a and Krylov deetho
Balancing is also applicable to nonlinear lumped systems. The method of Proper
Orthogonal Decompositions (POD) is one of the few model reduction methatls th
is suitable for distributed systems. POD is also known under the names of-Princ
pal Component Analysis (PCA) [44] and Karhunen-Loéve-Decoiitipag56]. The
essence of all of these methods is the same. Namely, they seek to obtain prodel a
proximations via projection of the original (state space) equations onto seme-lo
dimensional subspace. This concept of approximation via projection withtbe-
duced for lumped systems in the next subsection first. Then we will extend this
framework to discrete-domain distributed systems.

2.3.1 System approximation via projections

We will consider a special case of approximation through projection, natinatyof
a lumped system in input/state/output-form. This case is generally known aritca
found for instance in [1]. Consider the following system

. {wa +1) = f (@), u®)
y() =g (2(t),u(t)) .
Here,z(t) € R" is the state vectow(t) is the input andy(t) is the output. We will

derive a Petrov-Galerkin projection for this system. Consider the follopiogection
space

(2.4)

X:={x:Z—->TR"|z(t) e V}
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2.3. System approximation

hereV C R™ is a subspace of dimensien Furthermore, consider a subspatec
R"™ of dimension- and suppose that = Im V andW = Im W, wherelV andW are
matrices of dimension x r.

State approximation will be considered first. Decompo&g according to

x(t) = @—i—f\(ﬁ)/ (2.5)
eV eyt

Here,z(t) = I x.x(¢) is the projection of the state on the lower-dimensional subspace
Vandz(t) = (I — Iy, )z(t) = x(t) — &(t). 2(t) is defined by

2(t) = Hx,z(t) (2.6)

=VWVTV)y"WWTa®) (2.7)
zr(t)

=V, (t). (2.8)

wherez,(t) € R” will be the new state vector.
The residual equation that will be projected:ig + 1) — f(z(¢), u(t)) = 0. We define
the following approximate residual projection

(x(t+1) — f(x,u),&) =0, VEeW. (2.9)

Combined with the approximatioiit) of z(t) this gives the following reduced order
model

@(t+1) - f(2,u),§) =0, VEeW
(Vo (t+1) = f(Vay,u),§) =0, YEeW
(Var(t+1) = f(Var,u), We) =0, VpeR’
WV (t+1) =W f(Va,,u),¢) =0, VYpeR.
The last line implies that
WiV (t+1) =W f(Va,(t),u(t)) (2.10)

which defines the approximate model of state dimendian(X;) = r. A Galerkin
projection assumes théit = V, which leads to the new system

. {xr(t—l-l) =(VTV) W f(Va,,u) (2.11)

~ v = g(Var, u).
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Chapter 2. Problem statement

The crucial question behind this system approximation is the following. Given
systemX, how to choose the projection spadésandX;. such that the error between
¥ and is sufficiently small in a suitable norm. All existing model reduction methods
provide a solution strategy to precisely this question and it also this questtomitha
be considered in this work. The class of systems under consideration imdtkss
that of distributed systems on discrete domains, defined in Appendix A.2.

Although the state vector of the systethis of lower dimension than the original
state vector, function evaluatior¥ " V)~V T f(Vx,,u) in (2.11) still require the
computation off on (V x,., u) which are elements in the original state and input space.
If 7 is nonlinear, this implies that the computational efficiencd$ hardly improved
with respect to that oE. This problem is addressed in more detail in [3, 17] and in
Chapter 5 of this work.

2.3.2 Approximation of multi-variable systems

The concept of system approximation via projection, as introduced forddraps-
tems in the previous section can be formulated for distributed systems as follows
Consider an arbitrary linear distributed system described by the follovartipPDif-
ference Equation

D(s1,s7 o yony sy w = 0. (2.12)

Here D € R™"[¢y, ... &n,m, ... ,mn] IS a real matrix-valued polynomial iaN
indeterminates and (s, 1Y is the forward (backward) shift operator acting on the
spatial discretization in théth mode according to Definition A.2.1. The domain
of the signalw, will be denoted byX . Solutionsw to this PDE assume the form
w : X — R™ whereX is a set of finite cardinality, salx. This type of system is
formally introduced in Section A.2.

Let = be a set of functiong : X — R¢ equipped with the following bi-linear form

Lx

(€1,8)z = _(&1(mr), Lo(wr)) N (2.13)

k=1

where (-, -) v, 1 denotes the standard Euclidean inner produdkin We will first
define aresidual projectiorof (2.12) on= as

(D(s1,57 "oy Ny sy w, €)= = 0, V€ € E. (2.14)

Equation (2.14) will be viewed as a new, and weaker, constraint on tiebiew.
Indeed, any solutiof of (2.12) satisfies (2.14), but the converse is obviously not true.
We call (2.14) a residual projection &f(ci,s; ', ..., sy, sy )w = 0 onto=. We will
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2.4. Problem statement

be especially interested in finite dimensional subspatesf mappingsX — R¢,

say of dimension, i.e. =, = span{¢M), ... ¢} with {¢)} a basis of=,. The
expression (2.14) then becomes
(D(s1,57 % onssyw, €)= =0, VEETE,. (2.15)

The system associated with (2.15) is interpreted as the solution Hedt satisfies
(2.15).

The residual projection can also be combined with the signal approximatiae pts
as given in (2.3). That is, we now consider a projection sp8ctor w and consider
again the PDE (2.12). We will use the approximate residual projection,)(arib
substitute into this equation a projected sigmal This gives

(D(s1,67 %,y sy sy )Wy, )z = 0, VE € B w, =y w. (2.16)

This projection method is called Retrov-Galerkinprojection. Whenever the two
projection spaces are equal, i&. = Z,., (2.16) is called &alerkinprojection.

The question this work deals with is the following. Consider the case that thaido
X of (2.12) has Cartesian structure, iX¥.= X; x --- x ---Xy. Furthermore we
are interested in the case whé&h = =, and X, is obtained from data. That is, we
consider the problem of computing empirical projection spaces in case i
has Cartesian structure. The computation of these projection spacesisdga-
rank approximation problem for a signal (our data) on a Cartesian ghid.sdlution
of this problem again involves low-rank approximations to tensors, as atesge in
Chapter 4.

2.4 Problem statement

The aim of this work is to develop numerical techniques for the approximafion o
large-scale multi-variable systems, i.e. systems where the evolution of the stete is
both space and time. The technigues that will be developed allow the cdiwirat
low-complexity replacement models from large-scale Finite Element modelseThe
replacement models can then be used for on-line process monitoring, tresbel-
control design for example.

This aim translates into signal and system approximation problems, for seymals
systems defined on multi-dimensional domains. The main body of this thesistsonsis
of three parts. The common factor between these chapters is that taesasseciated
with multi-dimensional signals on discrete Cartesian grids. These tensotisegre
used to solve the original approximation problems.

The following problem statements can be formulated for each chapter:
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1. Chapter 3 considers the problem of finding low-rank approximationssots.
Specifically, we consider the following problems:

(a) Givenatensdi : Xy x---xXy — Rofmodalrankk = (R1,...,Ry),
find a tensoiV, : &} x --- x Xy — R of modal rankr = (r1,...,7n)
wherer, < Ri, k = 1,..., N such that the erroi’ — W, is minimized
in Frobenius and/or operator norm.

(b) If such a low-rank approximation method is found, what are its ptagser
and can the errdfWW — W,||r or ||W — W,|| be characterized?

(c) Derive a method for numerical computationif.

(d) Demonstrate the low-rank approximation method in a numerical example
and compare its performance with existing methods.

2. Chapter 4 considers the problem of finding approximations to systems that
evolve over a multi-dimensional domain. Specifically, we consider a distributed
dynamical systerx: on a discrete domail, as in Def. A.2.3. Furthermore, we
assume that the domak has Cartesian structure, i.& = X; x --- x Xy.

The question that will be addressed in Chapter 4 is that of finding a repéate
model3: to X via the Galerkin projection method (2.16). The projection spaces
are required to be empirical and have a Cartesian structure.

3. Chapter 5 considers the problem of reconstruction of multi-dimensiagrells
that have been sampled on a non-uniform Cartesian grid. Specificalgonve
sider signalsv : X — R, whereX = X x --- x Xy. The guestions that will
be addressed are the following:

(a) Given a subset of sample poinfs C X and the restrictiond := w|x,,
under which conditions is it possible to exactly recouefrom @ via a
reconstruction mag : Xy — X such thatjw — R(w)|| = 0.

(b) In case exact reconstruction is not possible, can we charactieeizzror
lw — R(w)|[?

2.5 Reading guide per chapter

This section provides an overview of the contents of the main body of this wor
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Chapter 3

Chapter 3 considers the problem of finding low-rank approximations t@tengor
order2 tensors, matrices, this problem is well understood, see Appendix A.3: Gen
eralization of these results to higher-order tensors, however, is @migtsiorward.
Finding tensor decompositions that allow suitable approximations after trundgstio
an active area of research [47], to which this chapter contributes imllbe/ing way.

The problem of low-rank approximations to tensors is ill-posed, see {26} thor-
ough discussion and overview of this issue. Therefore, we considiéieeent rank
concepts, referred to as multi-linear or modal rank, and define a methdatdm o
such tensor decompositions. This method will be referred T0SA&] which is short

for Tensor SVD. The naming of this method is for convenience only, therenany
other SVD-type tensor decomposition methods, of which the HOSVD [24] isthet
known. In Chapter 3 we derive properties of the TSVD and in certaiaxa® give
error bounds when the method is used for low-rank approximations tortenso
Sec. 3.7 we propose an adaptation of the TSVD method that may give begitexap
imation results when not all modal directions are approximated. This adaptétion

be referred to adedicated TSVDIn Sec. 3.8 we propose a numerical algorithm for
the computation of the (dedicated) TSVD. With a small adaptation, this algorithm ca
also be used to compute successive rank-one approximation to tensoadly, fn

Sec. 3.9, we include a simulation example which demonstrates the methodsgatopos
in this work and compares them to a well-known existing method.

Especially in the signal processing community, tensors are commonly viewed as
multi-dimensional arrays. Since changes of coordinate systems are angompsh
elementary operations, we believe that it is particularly important to unddrstan
sors as general multi-linear functionals. This is reflected in the way thigexhbas
been written. The results in this chapter have been published in [81, 7].

Chapter 4

Chapter 4 considers the problem of finding system approximations. Assdisg

in Sec. 2.3, methods for finding system approximations all rely on projecfitmeo
state vector and the system dynamics on low-dimensional subsystems. Tlogl wfeth
Proper Orthogonal Decompositions (POD) is such a model reduction mdRid is
suitable for systems that evolve over multi-dimensional domains. As we will iexpla
in our review of POD in Chapter 4, the projection spaces that are coadidtePOD
are empirical projection spaces, derived from measured or simulated data
Whenever the system domakhis a Cartesian domain, i.& = X; x --- x Xy, ten-
sors can be used to compute the empirical projection spaces. Specificalkyinee
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Chapter 2. Problem statement

(simulated) data on a Cartesian domain defines a tensor and decompositihas of
kind discussed in Chapter 3 can be used to compute projection space® the¢d to
derive the system approximations.

We first introduce the POD method as it is found in literature. Then we incaipo
tensors in the case of a Cartesian structure of the domain. The results didpigr
have been published in [7, 8].

Chapter 5

Chapter 5 considers the problem of reconstruction and approximationlt{fdimien-
sional signals, but now in the case that these signals are sampled witmiformaly
distributed sensors. The motivation for this problem statement stems fromiskanlyl
Point Estimation (MPE) method derived in [3]. The MPE technique aims to dsere
the computational cost of the reduced models derived using POD by eongjdys-
tem dynamics on a selection of grid-points only. The MPE method was dedope
one-dimensional signals.

Here, we consider multi-dimensional signals on a Cartesian dofainX; x - - - x
Xuy. Furthermore, we define the restriction of the signal X — R to a subset
Xp C X, as asamplingof w.

The central question of this chapter is that of finding a reconstruciiaf w from
the sampled signab. We consider a reconstruction m&pand present conditions for
exact reconstruction ab from @. In case that exact reconstruction is not possible,
we derive an expression for the reconstruction error. The resultéso€hapter have
been published in [5].
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Chapter 3

Tensor Decompositions

3.1 Introduction

This chapter proposes techniques to analyze and approximate tensoms-tank
approximations. For the matrix case (thatis, tensors of order 2), theepnaif finding
low-rank approximations is well understood. The solution consists of aturg a
dyadic expansion (i.e., a finite sum of orthonormal rank one matrices) ohétex,
that is directly inferred from its singular value decomposition [27]. For higider
tensors, this problem has been studied by many authors, such as [18, 2@, 55,
24]. With the approximation error defined by the Frobenius norm, and witiitabdée
notion of tensor rank, it was found that the optimal lower rank tensorcqpation
problem is ill-posed in the sense that optimal low rank approximations may fail to
exist or may not be unique. More specifically, the space of raténsors is non-
compact and the non-existence of low-rank approximations occurs foy ditierent
ranks and orders, regardless of the norm, see [26] for an ovenfighese issues.
The existence, unigueness and computability of optimal lower rank appriaima
of higher order tensors has therefore been recognized as a mdjamrom numerical
multi-linear algebra.

Within the existing literature, one can distinguish two main classes of tensomdeco
positions. The first one is known as a Tucker decomposition [75] armeésepts an
order N tensorT" as the product of a core tensor of the same size as the original one
together withNV nonsingular matrices whose columns span the domain of each of
the arguments of’. A special case of this decomposition is the higher order singu-
lar value decomposition (HOSVD) that has been proposed in [24]. T¢wndeclass

of decompositions amounts to representings a linear combination of normalized
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rank-1 tensors (outer-products of norm 1). The latter is usuallyreddp as a&CP
decompositiorfl15, 37]. Both classes of tensor decompositions have been used for
lower rank tensor approximation. However, neither of these classe&lproptimal

low rank approximations as in the matrix case. One can therefore only tfeacbn-
clusion that the algebraic and geometric properties of matrices and terfiswdeo

N > 2 are highly dissimilar.

The purpose of this chapter is to develop a notion of singular decompositons
tensors (TSVD’s) and to study its implication for the problem of finding (optirasy)
rank approximations of tensors. We will do this by introducing a decompoghian
combines a choice of orthonormal bases in the domain of the tensor with alsuitab
truncation of its expansion. In addition, we aim to develop suitable computhtiona
algorithms for the calculation of such decompositions and prove their stability an
convergence properties.

The focus on the topic of singular value decompositions for optimal rantogjppa-

tion problems is most natural for a number of reasons. Firstly, the SVOdaswa
useful way to numerically implement the algebraic concept of rank of matrites
doing this by quantifying near rank deficiencies or distances to lower appkoxi-
mations [33]. Secondly, singular vectors define orthonormal basestotie domain

and codomain of a linear map in such a way that the matrix representation of this
mapping is maximally sparse with respect to these bases. Thirdly, singulasvalu
provide relevant information to analyse invertibility and the numerical condiitgpn

of matrices and matrix operations. Fourthly, the SVD is well defined by paifag
successive rank-one approximations of a matrix.

A widely used generalization of the singular value decomposition to tensarfinsta
introduced in [24] and is referred to as the higher order singular vadaerdposition
(HOSVD). This decomposition involves the classical singular value decsitimoof

all possible matrix unfoldings of a tensor. In [24, 25] the authors pre@wsalgo-
rithm to construct the HOSVD and derive lower rank approximations byicdag

the domain of the tensor to subspaces spanned by the first few left singatars

of all possible matrix unfoldings. This procedure is easy to compute and impteme
but the resulting low order tensors do not optimally approxinfatén upper bound

on the approximation error is derived in [24]. Although the basic idea loeteinsor
unfoldings is interesting, at a more fundamental level it involves replacegnhti-
linear structure of a tensor by multiple bi-linear structures and, therdfites the
intrinsic multi-linear and algebraic properties of a tensor.

Especially in the signal processing community, tensors are commonly viewed as
multi-linear arrays and tensor operations are carried out with regular madrixpula-
tions. Although useful for many applications in signal processing suf2ag6, 77],

this point of view has serious shortcomings when studying tensors at afomuta-
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Chapter 3. Tensor Decompositions

mental algebraic level. Since changes of coordinate systems are amongghe mo
elementary algebraic operations, we believe that it is particularly importamicteru
stand tensors as general multi-linear functionals in a coordinate-frderalgeontext.
Therefore, a discussion on coordinate-free concepts such asprodrcts, orthog-
onality, contractions, modal ranks and norms of tensors precedesfthitiale of a
singular value decomposition and aims to provide insight in the true and more subtle
nature of tensors as operators.

This chapter is organized as follows. In Section 3.2 tensors are formalbdinted.

We discuss tensor norms and inner products. Section 3.3 introduceddta fensor
decompositions and gives a short overview of the current state of tlde figec-

tion 3.4 then formally defines tensor rank and several decompositionsdridateese

rank concepts. It also gives a formal problem statement for the protldoa-rank
approximation. Section 3.5 defines a new modal rank decomposition method. This
decomposition method will be referred to as TSVD and properties of tharjszo
sition are derived. Section 3.6 gives the low-rank approximation resultsamabe
achieved with this method. Section 3.7 proposes an adaptation of the TS\Vildahat
yield better approximation results when not all modal directions are apprtedgma
Section 3.8 presents a humerical algorithm that can be used to compute tie TSV
This chapter is concluded with a numerical example in Section 3.9 and a number o
conclusions.

3.2 Tensors

An order-N tensoris a multi-linear functional
W: X x..xXN—=>R

defined on vector spacéyg, ..., X'y that are assumed to be finite-dimensional. That
is, W is a linear functional in each of it8 arguments. Elements &% are spec-
ified by real numbersu,....,, where/, ranges from 1 till the dimensioh;, of A3,
and k ranges from 1 tillN. Elements ofit’ are commonly encoded in th¥-way
array [[we, ..y ]] € REV*Ln which, especially in signal processing, is taken as a
(coordinate-dependent) definition of a tensor [24],[47]. We will rédehek-th argu-
ment of W as thek-th modeof the tensor and td;, as thek-th mode dimension. The
elementsuy, ..., representV with respect to a specific collection of bases

(Fh =1, L}y, {f, v =1,... Ly} (3.1)
. . W(fel ZN)
of x1,..., Xn, respectively, in the sense that,...,, = Loy

£l 13 .
LD 2| £V 2
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3.2. Tensors

Throughout, the set of all orde¥-tensors oY} x ... x Xy is denoted by/ which
becomes a vector space over the figldvhen equipped with the standard definitions
of addition and scalar multiplication. Precisely, given tendgnd” € 7 and a scalar

«a € R, we have the following definitions.

1. Addition: U := V + W is the orderd tensor
U(xi,...,xn) =V (x1,...,2n) + W(x1,...,2N) (3.2)

for all x, € X. If V andW are represented with respect to the same sets of
basis functions, with coefficients, ...,,, andwy,...,,,, the coefficients ot/ are
given byuZl...gN = Uty T Wty

2. Scalar multiplication: For any € R, U := oW is the tensor
U(z1,...,2n) =aW(z1,...,zN) (3.3)

with x;, € Ay, k = 1,..., N. If the coefficients oV arewy, ..., , the coeffi-
cients ofU are given byuy, ..., 1= cwe, ..oy -

To define approximations to tensors we will needosim on the spacdy. For this
let|| - ||z denote the induced norm corresponding to the inner pradugt of Ay, i.e.
||l = /(z, x)r. We assume this structure fbr= 1, ..., N. Theinner productof
two tensorsS, T' € Ty with elementssy, ..., andt,....,,, both defined with respect
to the bases (3.1), is given by

(ST := 30 30D D skt (1 1) (N AN

k1 kn 0 135

It is immediate that the right-hand side of this expression is invariant underyn
basis transformations (i.e., transformatiéns: X — X} forwhich ||Qrz||x = ||z|/%
forall x € &}) and so7y becomes a well defined inner product space. The Frobenius
norm of a tensofV € Ty is then defined as

IWllp = [ (W, W). (3.4)

It is easily seen that ifV is represented bjjuwy, ..., ]| with (3.1) orthonormal bases,

then|| W% = X2, . ox W70y -
One may also consider tloperator normof W € Ty defined by

W = max (W (z1,...,zN)].
TR €X, ||k llk=1
k=1,...,.N

1111
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Chapter 3. Tensor Decompositions

That is,||W|| reflects the maximal amplitude that a tensor can assume when ranging
over the Cartesian product of all unit spheregink = 1,..., N. This norm satisfies

the propertiegW| > 0, |[W/| = 0only if W = 0, ||aW || = |af||W|| for any scalar

a € Rand|W + S|| < [[W] + ||S|| forany S, W € Ty. Therefore Ty becomes a
normed linear space when equipped with the operator norfn

For fixed elements, € X, k= 1,..., N, the functional

Uz, xn) = (ug, 21)1 - (un, 28N = T3 (Un, )

defines an ordeN tensor which will be denoted by = u; ® - - - ® un. Whenever

non-zero, such a tensor will be referred to asak-1 tensor With respect to the
bases (3.1), the elements Bfare ..., = uf'---uyY whereus* = (ug, f*)i

is the coefficient ofu;, with respect to the basis vectgf)fk. We have thaf|lU| =
I, |Jug |- Every tensor can be represented as a weighted sum of rank-ooestens

as follows
dim(Xy) dim(Xn)

W= Y wy Mo ey (3.5)
l1=1 In=1

We distinguish between different types of orthogonality (cf. [46, 5d§jarding ten-
sors. These distinct orthogonality concepts lead to different types sdtelecompo-
sitions, as will be shown later in this chapter.

Definition 3.2.1. LetU = v1 ® --- @ uy andV = v; ® --- @ vy be two rank-1
tensors.

1. U andV are said to beorthogonaldenoted) LV, if (U, V) = [To_; (u, vi)x
= 0.

2. They are said to beompletely orthogonadenoted/ L. V, if (ug,vg)r = 0
forallk=1,...,N.

3.2.1 Some additional tensor concepts

A linear mappingG : Ty — T is defined asB := G(A) whereB € Ty, is the
tensor

AM AT
B = Z-~-ZbM1,...,mM€1 '®...eeM
mi

mm

obtained from the coefficients, ., of A by

by ,.omay = Z e Zgel7-~7£N7m17~~-7mMa‘£17~-~7‘€N' (3.6)
0 I
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3.2. Tensors

for some collection of coefficieni®, . ¢y .m,...m, - Evidently,G is entirely defined
by the constants,, . ¢, .m....m, - IN particular, we associatenaultiplication tensor
T € Tnom With G by setting

¢ 0 A N
Tg = Z---ZZ“-Zgflpn,fzv,mL.--,mMell R..Q0ey TR ...Q&eM.
41

Iy ™M1 my
(3.7)
Itis immediate that any sucH is linear in the sense that, fdr, B € 7Ty anda, 5 € R,
we have thatG(aA + B) = aG(A) + BG(B).
Eigenvalues and eigentensors of a linear ilGap7y — 7Ty are defined as follows:

Definition 3.2.2 (Eigenvalues and Eigentensarg} nonzero tensodd € 7y is an
eigentensoof the linear maps : Ty — Ty with correspondingeigenvalue\ € R if
GA = )\A.

The concept of positive definiteness for matrices, as discussedd®redn easily be
extended to mappings between tensors.

Definition 3.2.3 (Positive definite operatar)A linear mappingG : Ty — 7Ty is
positive definitef for any 0 # A € Ty there holdsA, GA) > 0.

Positive definite mappings between tensors have real eigenvalues:

Theorem 3.2.4.I1f G : Ty — Ty islinear and positive definite then all its eigenvalues
are positive.

Proof. For any non-zero eigentensd; € 7Ty of G with corresponding eigenvalue
Ai, we have thatz A; = \; A;. Becausés is positive definite we have

Since|| 4;]| # 0, we must have that; > 0fori=1,...,N. O

The next section will introduce tensor decompositions. For the remaindrisof
chapter it is assumed that the reader is familiar with matrix concepts suchkagh@an
Singular Value Decomposition and optimal rank approximations to matrices.eThes
concepts are introduced in Appendix A.3, which can be referred to dgszry.
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Chapter 3. Tensor Decompositions

3.3 Introduction to Tensor Decompositions

Tensor Decompositions is a discipline of research that strives to devaltgpthat
allow analysis and approximation of tensors. In this section, we will provgknaral
introduction to this field.

To explain what is meant bignsor decompositionsonsider a tensd’ € Ty. W
operates on a coIIection of vector spaces,lile: X} x --- x Xy — R and is defined
with respectto base[gfk }df‘(x’“) k=1,...,N. Adecomposition ot} is implied
or defined by a basis change, such that the representatidhwith respect to these
new basis functions satisfies certain properties. Specifically, we lodetsrof basis
functlons{cp }4 "1,k =1,..., N, such that the representationidf with respect
to the newly deflned basis functions, i.e.

dim(X1) dim(Xn)

W= > - > w. V@@ ol (3.8)
l1=1 In=1

satisfies certain properties.
Desirable properties of tensor decompositions could be the following

1. Diagonality, the core of the representationldf in (3.8) is diagonal, i.e.

Wby = 0, unlessfy = --- = 2%
2. Orthonormality {gp 2““1 ) s an orthogonal (orthonormal) basis fat,,

k=1,...,N.

3. Low Approximation Errorthe decomposition (3.8) ¥ may be used to con-
struct approximations ofV/. Specifically, truncations in the summations of
(3.8) result in small approximation errors betwé&nand the truncated expan-
sion.

To explain the last item, we will now show how a tensor decomposition (3.8) ean b
used to construct approximations to tensors. The way we define thesxiapgtions
closely resembles the concepts discussed in Sec. 2.3 where we intregypcegima-
tions via projection of systems.

Consider a tensdil” and its decomposition (3.8) and define an approximation degree
r which is anN-dimensional vector of integers= (rq,...,ry). Asin (3.14) we
define the following subspaces

M = span{oM Q™) k=1, N
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An approximationV,. € Ty of W is now defined as the restriction

W, :=W | (3.9)

M(lﬁ)xmeg\:N) .

W, has the following representation

r1 TN
l L
WT: Z Z welgNngl)(g@@EVN)
=1 fn=1

The approximation degreeis a measure for the complexity of the approximéry,
since it indicates how many coefficients and basis elements must be storpretere
W,

Typically, it is not possible to construct tensor decompositions that satisfiyrae
properties mentioned. We will now discuss two types of tensor decomposifibies
first generalizes the property of diagonality to tensor decompositionsetiond type
generalizes the property of orthogonality.

The first type of tensor decompositions is called @enonical Polyadie or CP-
decomposition. It was first defined in 1927 by Hitchcock [38] and bechetter-
known when it was defined again in 1970 by Caroll and Chang and Rittershman.
In this decomposition, the corgwy, ..., ]] of (3.8) is required to be diagonal, i.e.

Wy, ..y, = 0, unlessly = --- = {y. Then, (3.8) is equivalent to
R
W= wel @ - 0§ (3.10)
/=1

The second type of tensor decompositions that will be examined i$utleerde-
composition [75]. This decomposition may be used to generalize the ortHdagona
property, though orthogonality is not strictly required. In the Tuckepdgmosition a
tensor is represented as follows

dim(X) dim(Xy)

lel ZNZ]_

where the basis functior{sp,ggk)} may be orthogonal (orthonormal) sets.

Apart from these two general types, other types of tensor decompasitiist. These
methods includdree-Tuckedecompositions, in which a tensor is decomposed into a
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tree of order-3 tensors, [60, 62], and block-decompositions [58].nfore informa-

tion on these and other tensor decompositions and the algorithms that mayllie use
compute these decompositions, we refer to [47].

Tensor decompositions originated in the field of psychometrics, where thieywsed

for analysis purposes. Their applications have since been expandeenmmetrics,
signal processing, numerical linear algebra and many more, see [dZhamrefer-
ences therein for an overview. An application area that receives gdtieation lately

is that of using tensors to reduce computation time of multidimensional functions on
discretized grids. In [11] the authors introduce the concepts of separank and sep-
arated representations to accelerate computations of multidimensional fafston
discretized grids. It is their aim to arrive at function approximations, ratten ten-

sor decompositions. Therefore, in the construction of the separatesespation, the
authors do not require minimality of rank, nor orthonormality of the decompasitio
in whatever sense, nor optimality of the approximation. Since it is ultimately the aim
of this work to construct empirical projection spaces spanned by ornth@midases,

the work of [11] is not considered further here. In [45] the authttengpt to combine

the strengths of the Tucker and CP decomposition to decrease the time inirolved
computations with function related multidimensional arrays. Numerical algorithms
for tensor decompositions and approximations of Tucker type are peesavith the
additional constraint that the core array is to be represented in a ldweearonical
format. As an application of tensors to accelerate computation of multidimensional
functions on discretized grids, [36] uses tensors to solve elliptic eigempatblems.

3.4 Tensor Decompositions

The aim of this section is to make the tensor decompositions introduced in the prev
ous section more specific. We will start with a discussion of the rank ctmtiegt

can be defined for tensors. Different rank concepts lead to ditfezrsor decomposi-
tions. We will introduce modal rank decompositions of tensors, which anbeass

of the Tucker decomposition defined in (3.11). This section concludes vidthreal
problem statement for the remainder of this chapter.

3.4.1 Tensor rank and related decompositions

The concept oftensor rankis a highly non-trivial extension of the same concept
for linear mappings and has been discussed in considerable detail iexdomple,
[26, 46, 48, 24, 25, 55]. As with orthogonality in the previous subsestithre dif-
ferent concepts of tensor rank lead to different types of tensomaleasitions. The
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rank of W € Ty, denotedrank (W), is the minimum integeR such thati¥’ can be
decomposed as in (3.10). By definition, the rank of the zero tensor is@).a[do
introduces the concepts of orthogonal and complete orthogonal raekarthogonal
rank andcomplete orthogonal ran&f a tensoil” is the minimal integeR? in decom-
position (3.10) with the additional requirements that> 0, |U,|| = 1 andU; L U;
(OI'UZ' 1. Uj) forl < 1,7 < R.

To define thanodal rankof a tensoiV € Ty, we first introduce thé&-mode kernel
of W to be the set

kerpy(W) :={ap € & | W(x1,...,2n) =0, Va, € X}, p # k}.

The multi-linearity of W implies thatker, (1) is a linear subspace of;. The k-
mode rankof W, is defined by

Ry, = ranky (W) := dim(Xy) — dim(kerg(W)), k=1,...,N,

and is coordinate free generalization of theank in [24]. Note thatrank (W)
coincides with the dimension of the space spanned by stringing out all elements
we, 1,0y Gl we, Ny (Where the indices, . .., IV are at thekth spot). Finally,
themodal rankof W, denotednodrank (1), is the vector of alk-mode ranks, i.e.,
modrank(W) = (Ry,...,Ry), Rr = ranky(W). The modal rank is also referred
to asmulti-linear rank [42].

The rank and modal rank are well defined in that there exist unique msnibe-
rank(W) and Ry, = ranky (W) for anyW € Ty. Obviously,rank(U) = rank(U)

= 1 for a rank-1 tensot/. For W € Ty we have thatank (W) < rank(W)
and there exist examples with strict inequality for/al24, 25]. For order-2 tensors
(matrices) we have that = R; = Rs = rank(WW) and the rank concept coincides
with the usual notion of rank, row-rank or column-rank, of a matrix. Téxt example
shows that the modal ranks of a tensor need not be the same.

Example 3.4.1.This example is taken from [24]. Consider the tendor: X} x X5 x
X3 — R, whereX;, = R?, k = 1,2,3. The representation di’ with respect to the
standard bases is

w1l = w21 = w112 = 1

W211 = W121 = W212 = W122 = W222 = 0.
The modal rank of¥ is given bymodrank(WW) = (2,2, 1).
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ForW € Ty of modal rankmodrank(W) = (R, ..., Ry) the expression

ul N l l
l1=1 In=1

is called amodal rank decompositioof 1/ whenever

(0, o = {0 Ti#T forall1 <ij < Rp k=1,...,N.

1 ifi=j
A modal rank decomposition is therefore a representatioiolvith respect to or-
thonormal bases

(0 R TN (P At v (3.13)

of X1 = R, ..., Xy = REN, respectively. The modal rank decomposition is a
higher-order extension of the Tucker decomposition introduced in [i&]additional
orthogonality constraints.
Among the different notions of tensor rank that we define here, only thehmadk
can actually be computed for arbitrary ord€rtensors. The other rank concepts can
only be determined for small academic examples su¢hxa8 x 2-tensors.

3.4.2 Modal Rank Approximations to Tensors

Since we view tensors as multi-linear functionals, rather than multi-dimensional a
rays, we only consider decompositions that can be regarded as basi®tnaation

of the multi-linear functional. Hence, we focus on modal rank decompositibns
the form (3.12) and do not take decompositions of the form (3.10) intoustcé-or
order-2 tensors, matrices, modal rank decompositions are equal tomkhéaeompo-
sitions defined in (3.10) and can be computed via the Singular Value Decitiopos
(SVD), see Appendix A.3. Truncation of the SVD of a matrix yields optimakran
approximations of these matrices, as is discussed in Appendix A.3.

For higher-order tensors the situation is less straightforward. Savethlods have
been proposed to compute modal rank decompositions for tensors of/érde 2.
Each of these methods generalizes different properties of the matrix SVD.
Consider a tensdiV’ € Ty of modal rank(Ry, ..., Ry). We will now demonstrate
how an approximation of this tensor can be computed from its modal rankrdeco
position. Using one of the modal rank decomposition algorithms, orthonorasig b
functions{<p,(fk)}fk’“:1 of X}, are computed as in (3.13). These basis functions de-
fine the modal rank decomposition, see (3.12). An approximatiol aff degree

r = (r1,...,rn) can be defined as follows. Define the subspaces

M]E;Tk) = Span{%gl)w..a%@l(:k)}a k= 17""N (314)
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3.4. Tensor Decompositions

Definition 3.4.2. Given a tensoi¥V € Ty . For a vector of integers = (ry,...,7n),
re < R, k=1,..., N, the modal truncationV,. is defined by the restrictiol,. :=
W

MO s ) and is represented by the expansion
D s M
il X (€1) (
WT: Z Z wélu-ﬁNSOll ®®90NN) (315)
€1=1 éNZl
¢ ¢
wherewy,...,, = W(gog Do ¢§VN)).

3.4.3 Problem formulation

The problem of finding lower modal rank approximations of a given tersdne
prime motivation for the remainder of this chapter. A precise formulation isgage
follows.

Problem 3.4.3.LetW e Ty be a givenN-order tensor.

P1: Given a vector of integers = (ry,...,7rn), 7, < rank,(W), determine
infynodrank(w,)=r [|[W — Wyl and find, if possible, a tensd#, € Ty with
modrank(W,) = r such that|W — W,.|| is minimal.

P2: Given a vector of integers = (ry,...,7rn), 7, < rank,(W), determine
infodrank(w,)=r [|W — We|[F and find, if possible, a tensd¥,. € Ty with
modrank(W,.) = r such that|W — W, ||g is minimal.

P3: Given an integer < rank W, determineinf i (w,)=, [|IW — W; | and find,
if possible, a tensoW, € Ty of rankrank(W,.) = r such that||\/W — W,|| is
minimal.

P4: Given an integer < rank W, determinénf ..., )=, [|[W — W.[|r and find,

if possible, a tensoW, € Wy of rankrank(W,) = r such that|W — W, ||

is minimal.
For N > 2, Problem P4 has been studied in [46][48][55][26] by introducing ayth
onal rank-1 tensor decompositions. It was found that the minimum raapproxi-
mation problem is ill-posed in that optimal lower rank approximations do not teeed
exist. In [55] an example is given of a rank 6 ten8orfor whichinf ., w;,)—2 [|[W —
Wsl|e = 0, showing that the space of lower rank tensors is not closed. For fuite
cussions on Problem P4 we refer to [26, 18]. In this work we focus emptbblems
P1and P2.
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3.5 TSVD

This section presents a new method to compute modal rank approximationsistens
We will first give the definitions of the method, then its properties will be diseds
The sections that follow this one will state low-rank approximation properties a
give a numerical algorithm to compute the decomposition. The work preshkated
was published in [81].

Let W € Ty be an orderV tensor defined on the finite dimensional vector spaces
X1, ..., XN where we suppose thatim(Xy) = Li. Thesingular valuesof W,
denoteds,,, (W), withm = 1,..., K and K = min; modrank(WW) are defined as
follows.

Fork=1,...,Nlet

SV = {w e Xy | |aln =1}

denote the unit sphere iti,. Define the first singular value &% by
o1(W):= sup W (x1,...,zN)|- (3.16)
(1
xkESk s

1<k<N

SinceW is continuous and the Cartesian prodgtt) := S{l) X -ee X 8](\}) of unit
spheres is a compact set, an extremal solution of (3.16) exists (i.e., tlersuprin
(3.16) is a maximum) and is attained by Antuple

@, 2Py e sO.
Subsequent singular valuesldf are defined in an inductive manner by setting
S = {r e Xy |||zl =1 (@, 2P) =0forj=1,....(m—1)} (3.17)
fork =1,..., N, and by defining
om(W) = sup [W(xy,...,zN)|, m < K. (3.18)

xkeslgrn)’
1<k<N

Again, since the Cartesian product
Sm .= S%m) X e X SJ(\,m)
is compact, the supremum in (3.18) is a maximum that is attained By-auple

(:rzgm), . ,:U%n)) e s,

49



3.5. TSVD

It follows that the vectors,(j), e x,(CK) are mutually orthonormal i,. If K < Ly

for any k, then we extend the collection of orthogonal elemerﬁjé, s x,(f() toa

complete orthonormal basis d&f;. This construction thus leads to a collection of
orthonormal bases

(2 =1, L}, 2 ey =1, Ly} (3.19)
for the vector space®t, ..., X, respectively.

Definition 3.5.1. Thesingular valuesf an ordersV tensorivV € Ty are the numbers
o1,...,0x With K = ming modranky (W) defined by3.16)and (3.18) Thesingu-
lar vectors of ordern are the extremal solutior(azgm), . ,xS’V”)) in S(™) that attain
the maximum ir{3.18) A singular value decompositiqi$VD) of the tensolV is a
representation ofl” with respect to the basi8.19) i.e.,

Iy Ly
W=3 3 wy Ve oM. (3.20)
l1=1 In=1

TheN-way array|[wy, ¢y]] € REV*L~ in (3.20)is called thesingular value core
of T

3.5.1 Characterization of singular vectors by duality

This section aims to characterize the singular values and singular vectersofs of
any order. The idea of viewing singular values as defined in Definition 8rigihates
from [34]. Here, the duality properties have been extended to axder 3. Let

L = L1+---+ Ly and associate with the optimization problem (3.16) the Lagrangian
L : REFN 5 R by setting

N
1
Ll(&?,)\) = W($17"'7$N)+ E iAk<1_<xkaxk>k)
k=1

It has already been argued that Artuple z(1) = (ng, . 7:,;5&)) exists that attains
the maximum in (3.16). From the theory of variational analysis [10, 31],thas
infers the existence of ai-tuple A\(V) = (Agl), . .,A%)) of Lagrange multipliers
such that

VL (2, 20y =0, (3.21)
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Chapter 3. Tensor Decompositions

whereV L, denotes the gradient @f;. Thek-mode Fréchet derivative
W (z1,...,zn) of W at the point(zy,...,xy) is an order-1 tensor (a linear func-
tional) that mapst;, to R and satisfies

8kW($1, .o .,I’N) = W(.ﬁlfl, ey Lh—1y "y LTh41y - - ,Z'N)

where the ‘dot’ is at thé&th spot. By the multi-linearity of the tensor,
W (x1,...,zyN) isindependent of;, € X}. Hence, rewriting (3.36) for each inde-
pendent modal direction gives thelt), \(!) satisfies, folk = 1,..., N,

W(argl),.. x,(fl)l, ,:L‘,(:_gl,.. (1)) /\(1)< :L',(:)), (3.22a)
gl = 1. (3.22b)
It follows thatW(:cgl),.. (1)) )\(1) = .- = )\5\}) = o3, i.e., all Lagrange
multipliers coincide. Moreover (3. 37a) implies that foreach 1,..., NV,
W(mgl), . ,x,gljl,gk, a;,g,lll, . ,xg\l,)) =0 Whenever(gk,m,gl)>k =0.

In a similar manner, fom > 1 we associate with the optimization problem (3.18) the
LagrangianL,, : REAN+N(m=1) _ R defined by

Ly (z, A\, ) =W(xq,...,xN)+

l\'J \

N
wherez;, € X, A\, € R, u, € R™ M andg,, : &, — R™!is given by

<€k7 x](gl)>k’

N
(T, Tk )k Z 9 (k)

9k (8k) = :
<§k7 (m— 1)>k

Again, there existV-tuplesz(™, \(™) andp(™ that satisfy the stationarity condition
V L (2™ X))y = g (3.23)

Rewriting (3.38) for each modal direction gives foe=1,..., N,

W™ a2 25 = A ™) 4 (g (), ™), (3.24a)

™|l = 1, (3.24b)

gk(ar;/,(C )) =0. (3.24c)
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3.5. TSVD

This immediately implies that/ (z\™, ..., 2{™) =A™ = . =\ = 5, and
we conclude again that, for fixed, the Lagrange muItipIiersg") coincide and are
equal to thenth singular value. Moreover, fdr=1,..., N,
W(:):(lm), ... ,.I’]({;n_l)l,{k,fﬂl(:j)l, e xg\r,n)) =
0 whenever,, L span(x,(:), ... ,x,(cm))
=9 ) @) (3.25)
I wheneveg, = z;’, j=1,...,m—1

whereu,(:;) is the jth entry in the vectop,im).

3.5.2 TSVD properties

The following theorem summarizes a number of properties of the tensotaivglue
decomposition.

Theorem 3.5.2. 1. EverytensoiV € Ty admits a singular value decomposition.
The singular value decompositi¢®.20)is an orthogonal decomposition where
the singular values are ordered accordingdp > o > --- > ox > 0. Here,
K = min; modrank(7") and the singular vectors of any order satisfy(3.37)
and(3.39)

2. W(xgm), e ,w](\?n)) = om.

3. Forallk =1,..., N there holds

W(:Bgm), . .,xl(ﬁ)l,ﬁ,:z:,(ﬁ)l, e ,a:%n)) =0
whenevet L span{m,(ﬁl), - 7$](€m)}.

4. The singular value core ¥ satisfies

Om ifé1=---=ly=m< K

<op fm=min{l,... . Ix}
Wy ety | = _

0 flt1=---=ly=m>K
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Chapter 3. Tensor Decompositions

5. f Ly = Ly = --- = Ly = Ly then the number of zeros in the singular value

core of W is at least
Lo(Lg—1

6. Inthe general case, the number of zeros is at least equal to

iv: Li(Ly —1)

k=1 2
Proof. The existence of the basis has been proven in the previous subsectien. T
ordering of the singular values and the fact that all rank-1 terms in thenggasi-
tion (3.20) are orthogonal is immediate from the definition (3.18). Item 2 follows
from (3.37) and (3.39) and the observation that for fixgcdthe Lagrange multipliers

)\,gm) coincide withg,, (cf. subsection 3.5.1). Item 3 has been derived in (3.25).
(41) (¢n)

Sincewy,..., = Wi(zy", -+, zx""), it follows that wym..., = om Whenever
m < ming modrank(W). This is the first case in item 4. To prove the inequality
in item 4, letm = min{¢;,...,¢x} and suppose, without loss of generality, that

{x = m. Then, for ally;, € s,§m>, k=1,...,N—1,

= max W, .,ano,280)] = (W, o2 0Y)
zpes™
kS
k=1,...,N—1

Substitute fow,, the singular vectot,(f’“). Sincel;, > m we have tha;tsgf’“) S S,ge’“) -
S, ie.,z{™) € 8™ Itthus follows that

Om > \W(az&zl), . ,m%ﬁf),wg\?@)ﬂ as claimed. Ifm > min; modrank(WW) then
there exists: € {1,..., N} for which k& > rank; (W) = Ry. For thisk we have

a:,(gm) € kery (W) and consequentlyy.., = 0. The fourth case in item 4 follows

again from (3.25). Indeed, iy, > 01 = --- = {1 = lgy1 = --- = {y = k then
Wey oty = W(:vgm), e ,a:](f’“), e ,:553”) and, using orthonormality of the bases,
a:,(f’“) €L span(x,(:), e ,g:,(gm)) and henceuvy,...,, = 0 by (3.25). Item 5 follows from
(3.25). Indeed, ifL; = Ly = --- = Ly = Ly then (3.25) shows that the singular

value core tensor vanishes(dty — 1) + (Lo —2) +--- + 1 = Lo(Lo — 1)/2 entries
in its kth mode. The total number of zero entries of an ordetensor is therefore
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Figure 3.1: Visualization of the zero elements in the singular value core obéreay
order-3 tensor of dimensiors, 3, 3).

> NLy(Lo —1)/2 as claimed. The result for the general case is immediate from this
result. O

In words, any tensoi/” admits an SVD with at mosk’ = ming modrank (W) non-

zero singular values. In any singular value decompositioivothe ordered singular
values occur on the main diagonal of theway array[[wy,, ¢, ]] of elements of

the tensor. In general, the singular value core tensor has non-zeigseam its non-
diagonal elements. Absolute values of non-diagonal entries are babdnute above

by the singular value of index equal to the smallest integer in the core indéy.ifO

N = 2 (the matrix case) the singular value core tensor is diagonal. A visualization of
the zero-structure in an order-3 singular value core is given in Figare 3

Example 3.5.3.AnyW € T admits a representatiol’ (u, v) = (u, Av) = (ATu,v)
whereA € R™*™, An SVD ofi¥ is then given by a representationéf with respect
to the orthonormal base§uy, . .., u,,} and{v,...,v,} that consist of the ordered
columns of the orthogonal matricés € R™*™ andV € R™*" that define a (any)
singular value decompositiad = UXV' T of the matrixA. In particular, by item 4 of
Theorem 3.5.2, the singular value cdfey, || € R™*™ of W coincides with® as it
has theK = rank(A) non-zero singular values of on its main diagonal and is zero
for all other elements. FoiV = 2 a tensor SVD therefore coincides with the matrix
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Chapter 3. Tensor Decompositions

SVD.

Example 3.5.4. Let the tensoiV : X} x X5 x X3 — R with vector spacegt; =
Xy = X3 = R? have coefficients 1, = w11 = wiie = 1 andwiay = wag =
wale = wWwiza = wae = 0 with respect to the standard Euclidean basesfon A
computation of the singular vectors associated Wittyields the orthonormal bases

A 1 1 0 A 1
V241 V241 . . V241 V241
1 M _)\ b O ) 1 ) 1 ) _A
VAZ+1 V241 VAZ+1 VAZ+1

of X1, X, and X3, respectively, wheré = 1 + 1./5. A representation of¥’ with
respect to this basis gives the singular value decompositid¥ wfith singular values
o1 = Aandos = 0 and singular value core

s111 =01, 8121 =0, s112 = 0, 5122 = 0,
A
s211 =0, 8921 =0, 8212 = ——ms—=, Sa22 =02 =0.
A +1
Note that the singular values are on the ‘main diagonal’ enteigs, s222 0Of the core,
|s212] < o1 and that not all off-diagonal entries are zero.

Example 3.5.5.Consider & x 2 x 2 tensorWV that is represented with respect to the
standard bases if®? x R? x R? with the elements ;1 = 2, wae = $V/2, wizg =
%ﬁ and with all other elements zero. Th&n has singular valueg, = wy11 = 2
and oy = wogy = %ﬂ and it turns out that the standard basis defines a singular
value decomposition df’. That is, W is already in SVD form andwy, ¢,e,]] €
R2*2x2 js the singular value core tensor Bf . Observe thatnodrank(W) = (2,2),
rank (W) = 3, the singular value core is not diagonal and it has> 3 = NL(L —
1)/2 zero entries.

3.6 Low rank approximations

In this section we consider low-rank approximations as defined by the mauatal tr
cation in Definition 3.4.2. Here, we define subspaﬁeg’“) using the singular vec-
tors defined in Definition 3.5.1 such thatt\™™) = span{z{", ... 2"} for k =
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3.6. Low rank approximations

., N. This specific modal truncation will be referred to using the symbol
W, is given by

71

TN
Wr=3 3wyl @ @M (3.26)
=1 Un=1

This section gives some low rank approximation properties that can hedéor the
TSVD. These results have been published in [7] and [81].

3.6.1 Successive rank-1 approximations

The following theorem establishes that modal truncations of rank 1 are dstiioa
tions to problems P2 and P4.

Theorem 3.6.1.LetW € Ty andr = (1,1,---,1). Then the modal truncatioW*
is a rank-1 tensor iV that is optimal in the sense that

IW — W¥|g = inf{|W — Wil | Wi € Ty has rank 3

In particular, W} is an optimal solution to problems P2 and P4. Moreover, the error
|W — W2 = ||W||2 — o2 whereo is the first singular value ofV’.

Proof. Let W, € Ty be an arbitrary rank-1 tensor. Th&f, can be written a$l’; =
AU where0 # A € RandU = u; ® --- ® uy is a normalized rank-1 tensor in that
|U||r = 1. Using the definition of the Frobenius norm, we have

W = AU||2 = (W = AU, W = \U) = (W, W) — 2\(W,U) + X2
This is a convex function in that attains its minimum at* = (W, U). But then

W — XU = — 2N (W, U) + ()2 =

(W, W)
= (W, W) = 2(W,U)* + (W,U)* =
= (W, W) — (W,U)* =

= (W, W) - IW(Uu - un)l?

where the last equality follows from Lemma A.4.1. The latter expression stiats
minimizing ||W — A*U||r over all rank-1 tensor& with ||U||r = 1 is equivalent to
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Chapter 3. Tensor Decompositions

maximizing |W (u1, - - - ,un)| over all unit vectorsuy, ||up|, = 1, n = 1,..., N.
But this problem is (3.16) and hdg* = x§” Q- ® :rg\l,) as its optimal solution.
Consequently\* = (W, U*) = o, and it follows thatiV; := mg” ®-® xg\}) is
the optimal rank-1 approximation &F. The error|W — W} |2 = |[W|2 - 02. O

Theorem 3.6.1 is particularly useful to define an algorithm of succesaivel ap-
proximations of a given tensd#¥ € 7Ty. Indeed, for givellV € Ty, let W :=
Wi 1) denote the optimal rank-1 tensor as defined in Theorem 3.6.1. The error
E, .= W — W7 then belongs tgx and is minimal in Frobenius norm when ranging
over all tensors of the forf — U € Ty with U € Ty of rank-1. For successive
values ofm > 1, apply Theorem 3.6.1 to the error tendef,_; to defineWW}, as

the optimal rank-1 tensor that minimizes the criterjdt,,_1 — U||r over all rank-1
tensord/ € Ty. Then setts,, := E,;,_; — W}..

Definition 3.6.2. GivenW € Ty, therth order successive rank-1 approximation of
W is the tensor
W =Wy W (3.27)

whereW;, ..., W are optimal rank-1 approximations &V, F, ..., E,_1, respec-
tively, as defined in the previous paragraph.

In this construction, the Frobenius norm of the etByy = W — W (m) satisfies the
recursion|| B2 = || Em—1]| — 03(Em—1) With B2 = W2 - o3(W). In
particular,|| E,||r < ||Em-1]|r SO that the norm of successive approximation errors
iS non-increasing.

Remark 3.6.3. The rank-1 modal truncatiof’;’ , defined in Theorem 3.6.1 is not
optimal in the induced norm. That is, the rank-1 modal truncation do¢solve
problems P1 and P3 for = (1,...,1).

3.6.2 One modal-rank approximations

The following result establishes a lower bound on the approximation estaeen a
tensor and its modal truncation when only one modal rank is reduced.

Theorem 3.6.4.LetW € Ty have modal ranknodrank(W) = (Ry,..., Ry) and
let
r= (Rla e >Rk‘—17rk’7Rk+17 e ;RN)
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3.6. Low rank approximations

withr, < Ry. Then
W =W = oryp1-

Proof. Without loss of generality assunte= 1 andr; < R;. DefineE .= W - W,
Then

E = [W - W:”M;l X Xg-- X XN + [W B W:”{MII}LXXZ'“XXN
= [W = Wil{oyx e x ey =
=0+ W’{le}lx%.--x&v =0

where we used the definition &F,, Lemma 3.25, and the fact thad|;p) « x,...x vy
satisfiesE(0, x2, - ,TN) = Dop - Dpy We, ..y (€41, 0) (2, 20) - -- (ef{,v,x]\ﬁ =
0. Furthermore, sinc&" ™ x - x SET € [M]']F x Ap x --- x Xy it follows
that

|E|l=  max (W (21, 2N)|
xle[./\/lll]L
R €X, [|lok =1
k= N

ceey

> ma?{ ‘W(le) ,.’,UN)’ =:0pr1+1
$k681(671+1)
k=1,.,N
Consequentiy| W — W*|| > o,,+1. This yields the result. O

The following theorem states that when only one of the arguments of thertisnso
approximated, the approximation error decreases for increasing<appton order.

Theorem 3.6.5.GivenWW € Ty of modal rankR = (Ry,...,Ry). Define for
r = (m, Ry, ..., Ry) the approximation errof,, = W — W, whereW is defined

in (3.26) Thenwe hav@E,,1||r < ||En| F-
Proof. Without loss of generality lep = 1. ThenWW* = W] with

MS’“) = span{gogl), . .,gogk)}. Then

M§k) XXoX...X XN

wW=w
‘Mgk>><)(2><...><XN X Xo X ... X XN

W]

+ W 1 —
|M§’“)
(MP %y x 2) (YMPT x X x Xy)'
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Since
)J_

(Mgk)xXQX...xXN)ﬂ(Mgk X Xog X ... x Xy)

andW‘(Z)xng..‘X)(N = 0, we infer that

By = W|M<’“)J‘><X2><...><XN'

1 1
sinceM® ¢ M"Y and, consequentiyt¥ ™ > MY we conclude
[Ergrll < [ Ek]l- O

3.6.3 Approximation of diagonalizable tensors

The diagonal of an arbitrary tenstr € 7Ty represented with respect to the bases
(3.1) is given by the elements,, ., with /; = --- = /. We will say that a
tensor isdiagonalif only its diagonal elements are nonzero. Whenever a collection
of bases can be found such thé&tis diagonal we will say thall” is diagonalizable
When considering higher-order statistics in the problem of IndeperCiemiponent
Analysis, diagonal tensors are of considerable importance. See2@.@3] 18].

Theorem 3.6.6.LetW € Ty, then

1. EveryWW € 7, is diagonalizable. Moreover, the singular value decomposition
of W gives a singular value core tensor that is diagonal.

2. For N > 2 not everylV € Ty is diagonalizable. IW € Ty is diagonalizable,
then the singular value core tensordf is, in general, not diagonal.

3. If W is diagonalizable with respect to a collection of orthogonal bases, then the
singular value core tensor & will be diagonal.

Proof. 1. EveryW € 7, can be written asV(z1,x2) = (x1, Azo) for some
matrix A. Let A = ULV be an SVD ofA. Then the singular value core
tensor oflV is given by the diagonal matrix.

2. A counterexample is given in Example 3.6.7 below.
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3.6. Low rank approximations

3. Suppose thak;, is an orthogonal full rank matrixk = 1,..., N such that
W =W.aX;-- .y Xy becomes diagonal. They, := X;Xk > 0andQy :=
XkS,i,/QHk is unitary for any permutation matrid; of dimensionL; x L.
Now, W = W .; Q1 - - - .n Qn remains diagonal and the permutation matrices
I1;, can be chosen such that the diagonal element® afe non-increasingy’
is then the singular value core tensorl®f and the columns of); define the

k-mode singular vectors.
O

Example 3.6.7.An example of the second item of Theorem 3.6.6 is given by the tensor
W defined in Example 3.5.5. As already shown, the singular value cdié isfnot
diagonal. However, with respect to the bases

o) () A6) G 16) 6

one easily shows thdl” admits a diagonal representation with diagonal elements
w111 = 2 andwsye = 1. Hence, a diagonalizable tensor will not necessarily have a
diagonal singular value decomposition.

Theorem 3.6.8.1f W € Ty is diagonalizable with respect to an orthonormal basis,
then

1. the rank and orthogonal rank &V are equal.

2. the singular value decompositionldf is a completely orthogonal rank decom-
position.

3. the singular value decomposition1df is given by
R
W = Zakxgk)@)-”@asg\]f)
k=1

whereR is equal to the rank of¥’. The modal truncatiomV* defined in(3.26)
is represented as

k=1
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and is an optimal rank- approximation ofi¥” in the sense that

St WS W = W =W = o,
modrank (W, )=r
Moreover,
R
St W =Wl = W =W =3 o

modrank(W,)=r k=r+1

That is, the modal truncatiol’;* is an optimal solution to problems P1,P2,P3
and P4.

Proof. Item 1is proven in [46]. For item 2 see [85]. To see item 3{11%5(“}@ k=

., N be an orthonormal basis for whidly has a diagonal representation where
the diagonal entries;, = wy..., are assumed to be ordered in that> oo > .
The error tensoF := W — W}t is then given by = Z,ﬁgh akwgk) ®- - Quwy
This gives||E|| = o,_41 and||E||2 = Y&, o? which are minimal in view of the
ordering of the singular values. See also [85]. Ol

(k)

3.7 Improved accuracy

One consequence of Definition 3.5.1 is that the computation of the singuliarvec
a:,(C ™ e X}, of orderm not only depends on singular vect(mr%7 of orderj < m

but also on the singular vectom,, for p #£ k andj < m. If modal truncations
in one specific modal direction, say thkth, are searched for, then the coupling of
the constraints in the computation of the singular vectors of ordenay actually
prevent the modal truncatioi¥,” defined in Theorem 3.6.4 to be optimal. A weak-
ening of the constraints on the s&';j’”) in (3.18) may then become an alternative. A
modified singular value decomposition can be obtained by redefining tb?{%)etor
ming modrank(W) < m < max; modranky (W) by, for example,

8" 1= {w € Xi | flallx = 1)

and by performing the optimization in (3.18). The construction and properfitee
decomposition that is thus obtained form the topic of this section. The resuhisof
section have been published in [7].
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The new construction for decomposing a tensor is as follows.Wet 7y be an
order4V tensor defined on the finite dimensional vector spades. ., Xn where we
suppose thatim(X,,) = L,,. Furthermore, lef”’ := X} x...x X; andX” := X; 11 x

... X Xy, where0 < i < N. Thededicated singular valuesf 1V, denoteds; (W),

withk =1,..., K andK = min,—; __; modrank(W) are defined as follows.

Let

S i={xe X | ||zlls =1} fork=1,...
Spi={xeX||z|y=1} fork=i+1,...,N
denote the unit sphere itj.. Define the first dedicated singular valuel@tfby
G1(W) := sup (W (x1,...,2N)|- (3.28)
epesV, 1<k<i

€Sk, (1+1)<kSN

SincelV is continuous and the Cartesian prod§eY = Sfl) x xS x Sipq x

i
- x Sy of unit spheres is a compact set, an extremal solution of (3.28) exists (i.e.,
the supremum in (3.16) is a maximum) and is attained byvatple

@M ) e sW,

Subsequent dedicated singular valuediofare defined in an inductive manner by
setting

S =z e X ||zl =1, (w0 =0forj=1,...,(m—1)}
fork =1,...,4, and by defining
Gm (W) = sup (W (z1,...,zn)], k<K. (3.29)
wpeS™ | 1<k<i
ek €S, (i+1)<k<N
Again, since the Cartesian product
stm) :S{m) X e sz-(m) X Sjp1 X - X Sy
is compact, the supremum in (3.29) is a maximum that is attained By-auple
@™, ) e st

Note that the set over which the optimization takes pl&#), is in general a larger
subset of the Cartesian product of unit balls than theS§&t as originally defined
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in (3.17). It follows that the vector$,(€1), . ,w,(gK) are mutually orthonormal if},
fork =1,...,i. If K < L foranyl < k < 4, then we extend the collection
of orthogonal element$,(€1), . ,w,g,K) to a complete orthonormal basis &f. This
construction leads to a collection of orthonormal bases

{wgél)agl = 17 .. -,Ll}v ceey {wz(&)vgz = 17 . ’Ll} (330)

for the vector space¥|, ..., A;, respectively. We will call elements of these orthonor-
mal basesledicated singular vectors the tensoit’.

Since there is no construction of orthonormal bases for the vectorspace . . .,

X, itis not possible nor appropriate to define a singular-value-like decsitimoof
the tensor using dedicated singular vectors. Instead, we defladieated represen-
tation of the tensor, which can be used to defirgedicated modal truncation

Definition 3.7.1. Given an order-N tensoiV € Ty, withWW : X1 x ... x Xy — R.
Assumet’ = X} x ... x X; and X" = X;11 x ... x Xy. Then, adedicated
representationf I/ can be defined as a representatiori@fwith respect to the bases
(3.30)for X7, where the original bases fot” are kept intact, i.e.

L1 Ly
wd = Z . Z ’LT)gl‘..gnggl) ®R-® wz@z') ® fi(iiio-l) Q- ® f](\fN) (3.31)
=1  fy=1

L Ly
= Y Wy Uty - (3.32)
6=1  ey=1
Using this representation &, a dedicated modal truncation can be defined.

Definition 3.7.2. Given an orderd tensoriW € Ty, with dedicated representation
W4 and a vector of integers = (r1,...,r;) withr, < R, fork =1,...,4. Let

M,(Cm) = span{l/},il),...,wl(gm)}, k=1,...,1i.

with m < Rj. Adedicated modal truncatias then defined by the restrictidw{;i =

W o -, and is represented by the expansion
MV My

ri  Rig1

T1 Ry
Wﬁl:z Z "'Zw&---fw

G=1  i=101=1 (y=1

e e i oo Y. (333
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The following theorem states some properties of the dedicated represertftio
tensor.

Theorem 3.7.3.ConsideriV € Ty.
1. Forall1 <i < N the dedicated representation Bf exists.

2. The dedicated representation is an orthogonal decomposititn imfthe sense
that the rank-one tensols,, ..., in (3.32)are mutually orthogonal

(Utytn: Upyopp,) = 0, unlesst,, = 0 ¥n=1,...,N.

3.
o61>--20g >0 (3.34)
4. There exists an orthonormal basﬁ&él), e @bﬁf”)} of X, withn > ¢ such
that
W, e el ) =0 (3.35)

forall ¢ L span{yi”, ... v}, whereg is at thenth spot, withl < n < i.
Proof. Proof of Theorem 3.7.3

1. Since extremal solutions to the optimization problems (3.28) and (3.29) are
guaranteed to exist for any tenddt € Ty, also the dedicated representation is
guaranteed to exist.

2. Using Lemma A.4.1 we have

i N
Ut Uy, ) = TL@ 0 T (el i)
n=1 n=i+1

Therefore, the inner product between unequal rank-one tenspesasvhen-
ever one of the inner products on the right-hand side is zero. Sincesbs bee
orthonormal, all rank-one tensors are orthogonal unigss ¢, for 1 < n <
N.

3. This is by construction
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Chapter 3. Tensor Decompositions

4. LetL = Ly +-- -+ Ly and associate with the optimization problem (3.28) the
LagrangianL; : RN — R by setting

N
Ly, \) = Wiy, on) + 3 %)\n(l — (z ).
n=1
It has already been argued that Artuple z() (¢1 yee ,wﬁ)) exists that
attains the maximum in (3.28). From the theory of variational analysis [10, 31]
one then infers the existence of Ahtuple \(1) = (Agl), cee /\%)) of Lagrange
multipliers such that
VL (W, A1) =0, (3.36)

whereV L, denotes the gradient d@f,. Then-mode Fréchet derivative
O W (x1,...,xn) of W atthe point(x1, ...,z y) is an order-1 tensor (a linear
functional) that maps(,, to R and satisfies

O W (x1,...,2n) =W(Z1, ..., Tp-1, s Tntls- - TN)

where the ‘dot’ is at theith spot. By the multi-linearity of the tensor,
oW (x1,...,xy)isindependent of,, € X,,. Hence, rewriting (3.36) for each

independent modal direction gives that), \() satisfies, fom = 1,..., N,
W( 7"'7¢ —1» 7¢511+)17~--> 5\})) :A%1)<7¢7(11)>7 (337a)
[ =1. (3.37b)

(3.37a) implies that foreach =1, ..., N,

W, ol gl el) =0 whenever(g,, y(V) = 0.
In a similar manner, fok > 1 we associate with the optimization problem
(3.29) the Lagrangiaf, : RETN+i(k=1) _y R defined by

Lip(z, A\ p) = W(xq,...,x +Z )\ xn,xn>)+z<gn(a¢n),un>.

n=1
wherez,, € X,,, \, € R, u, € R¥"1 andyg, : X,, — R*~1 s given by
(€n, 9iV)
gn(fn) =
(a0 )
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3.7. Improved accuracy

Again, there existV-tuplesz*), \(*) andn(¥) that satisfy the stationarity con-

dition
VL (2™ AF) k) = 0. (3.38)
Rewriting (3.38) for each modal direction gives, foe= 1, ..., 4, that
W2y U 080 = A U) + g (), ),
(3.393a)
Il =1, (3.39b)
(i) = 0. (3:390)

Now suppose, againfar = 1,...,1, thaté L Span{@bqgl), .. wﬁf“)}. Substitut-
ing ¢ for the dotted argument in (3.39a) gives that

W, e el ) =0 (3.40)
forall¢ L span{wg)7 . @z)q(f)}, wheref is at thenth spot, withl < n <.
[

Remark 3.7.4. Consider a tenso < 7Ty. Item 4 of Thm. 3.7.3 immediately
yields the following results regarding the zero structure of the dedicate@sep-
tation (3.31)of W

1. The cord[wy,...¢,]] of the dedicated representationdf satisfies

- 0 ifty=...=¢y>K
Wey by = . (341)
0 |f€n>€1:...:€n,1:EnJrl:...:&
2. Consider the case thdt; = Ly = --- = Ly = L. Then the number of zeros

in the core of the dedicated representatioriidfis at least

Z, (L(L2— 1)) |

The following theorem establishes a relationship between the original atichtied
singular values.
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Chapter 3. Tensor Decompositions

Theorem 3.7.5.ConsiderlV € Ty.

1. Both the original and dedicated singular values of a tensor are odlere

Y
v

(3.42)
(3.43)

g

Y

01 KO
x>0

v
(o)
Vv

012> .

2. 01 =61 and

U'(pll)®"'®<,0§\1/):&1' §I)®...®¢](\})

3. 5‘2 Z g9
Proof. Proof of Theorem 3.7.5.
1. This is by construction.

2. Since these optimization problems are identical, the first singular value@nd th
singular vectors that are found will also be identical.

3. This uses the previous part of this theorem. Since the results from she fir
optimization are identical, the optimization domaiﬁg), n=1,...,N will
be the same for both optimization problems. As the dedicated SVD construction
will incorporate less constraints for the second step, it only t@é@s n =
1,...,7 into account and uses the unit sphere for the rest of the vector spaces

5’2 Z g9.

3.8 Algorithms and computational issues

In this section we propose an efficient algorithm for the computation of theDT&s

defined in Definition 3.5.1 of an arbitrary ordéf-tensoriV € Ty. The algorithm
is based on the fixed point properties of a contractive mapgiribat is iterated in
a power-type algorithm to compute the singular vectors of ondend the singular
values as defined in Definition 3.5.1.
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3.8. Algorithms and computational issues

With z, € A} ando € R, we denote by: the vectorr = col(zy,...,zN,0) in
RE+-+Ln+1 To simplify notation, letl = L, + - - - + Ly and define the mapping
G :REFL — REHD by

1 T x
VW (s Ten)
Ga) = |, : (3.44)
vNW(Hle""’ E x )
x1 TN
W (s, 725)

Here, VW (z1,...,xn) = [0:W (z1,...,2N)]" is thek-mode gradient ofV’ in the
point (z1,...,zn) (i.e., the transpose of themode Fréchet derivative 7). Then
G(x) is well defined provided that;, # 0 for anyk ando # 0. The following the-
orem relates the fixed points 6f to solutions of th N equations in the Lagrangian
system (3.37).

Theorem 3.8.1.2* is a fixed point of7 if and only ifz* = col(z"”,. .. ,x§;>, o)
satisfies the Lagrangian conditio3.37)with /\gl) == /\g\l,) = o01.

Proof. Only if: Supposer* = col(z1,...,xn,0) is a fixed point ofG. ThenG(z*)

= z* from which it follows thato = W(||m1||""’ Tox ”) and

oxy = ViW(x1/||z1],...,zn/|zn]|) forallz = 1,..., N. Consider these equali-
ties forz = 1. Since thel-mode Fréchet derivative
W (z1,...,xn) = W(-,x2,...,zyN) it follows that
T2 TN

0'<1}1’(I;1> = W(vb HxQH P HwNH

forall v, € A;. (3.45)

By takingv, = Hi—i” we infer thato = o(x1/||z1]|, 1) = o||z1| so that we conclude
that||z1|| = 1. In a similar fashion one shows thiat;|| = 1 forallk = 1,...,N.
This gives (3.37b). But with unit norms, (3.45) reads, 1) = W(-,z2,...,zyN)
which is (3.37a) withk = 1. the same argument applies to prove (3.37a) for ather

If: Suppose a set d¥ vectorszy, € Xy, k= 1,..., N satisfied|zx| = 1 and
W(xl, ey Lh—1y 3y Lh41y - - - ,.rN) = U<-,£L’k>.
Then )
I X
—ViW( N ) = VkW(xl, ..., IN) = T,
o [z owl]

fork =1,..., N, which shows that = col(z1,...,xy,0) is fixed point ofG. [
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Chapter 3. Tensor Decompositions

The result of Theorem 3.8.1 gives rise to the following TSVD algorithm ferdbm-
putation of a singular value decomposition.

INPUT TensoriW € Ty with k-mode dimensiord,,.
DESIRED A singular value decomposition &F .
Step 0 (Initialization) Set tolerance levely > 0, orderm = 1, andWW,,, = W.

Step 1 Select random element§ € Xy, k = 1,..., N ando® with ||2)||x = 1 and
0 < o% < 1. Setz? := col(al, ..., 2%, 0Y).

Step 2 Let G be defined by (3.44) withl’ = W,,,, and iterate the map
= G(2h), i=0,1,2,..., i (3.46)
wherei* is such that|z’" — 2" 71| < &g
Step 3 Write 2" = col(z§, ..., z%,0*) and define, fok = 1,..., N,

_x (m
om=0", m =z,

(m — - x M x T
Step 4 Define the tensor

W1 =W o ng) SN Q%”)
and setntom + 1.

Step 5 Repeat Step 1, Step 2, Step 3, Step 4 unti- K = miny, modrank(W).
Step 6 For everyk for which K < Ly, complementX,gK) to an orthonormal matrix
(Lk)
XM

Step 7 Define
W=w.,x5 oy x ()

Theorem 3.8.2. Suppose thafy : RET! — RE*! maps a closed subsét ¢ REH!
into itself and that- is contractive orD in the sense that there exists< 1 such that
|Gz — Gy|| < aljlz — yl|| for all z,y € D. Then the iteratior(3.46) converges to a
unigue fixed point* of G in D. In that case, foreachh = 1,. .., K the vector&,gm)
withk =1,..., N satisfy the Lagrangian conditior{8.39)
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3.8. Algorithms and computational issues

The statements on the convergence of the iteration (3.46) can be fourty.if fieo-
rem 3.8.2 states that whenever (3.44) is a contractive mapping on a sulffi¢céege
closed invariant seD then the iteration (3.46) converges to the solution of the La-
grangian systems (3.37) and (3.39). It is easy to see that contractiiBy4af) with

W = Wi implies contractivity of (3.44) foiV = W,,, withm > 1.

In practice it is not trivial to explicitly verify this condition and to find a closed in
variant regionD that makes contractive. However, Theorem 3.8.2 promises that
whenever the algorithm converges, it converges to a solution of theahg@gn sys-
tems (3.37) and (3.39).

Remark 3.8.3. We remark that singular vectors and singular valuesiohecessarily
satisfy the Lagrangian systen(3.37) and (3.39) If the HessianV2L is positive
definite, these conditions are also sufficient in which case one can centtiat the
vectors:p,(cm) with k£ = 1,..., N are indeed the desired singular vectors of oraer
and thato,, is the corresponding singular value.

Remark 3.8.4. An algorithm for the computation of successive rank one approxima-
tions W) of W e Ty as defined in Definition 3.6.2 is immediate from Algorithm
TSVD. Indeed, for the computation of a rank-1 optimal approximant, sielys 1,2,3

of the TSVD algorithm are relevant. First apply the TSVD algorithmign:= W

to result in the optimal approximatiol;". Then repeat the TSVD algorithm on the
error tensork,, = E,,—1 — Wi for m < r to defing(3.27)

To investigate convergence properties of the TSVD algorithm furtheletdenote
the pth power of the operatafyy, i.e., thepth iterate ofz'*! = Gy 2! with initial
conditionz? in (3.46) satisfies? = G%,z°. The following theorem shows conver-
gence of the above sequential series of iterations to the exact singatarsvand
singular values of the tensoy .

Theorem 3.8.5.Suppose thatyy, : RETH — REF! maps a closed subsgt c REH!
into itself and that

Ghye — Gyl < apllz—yll, forallz,yeD, p=1,2,... (3.47)

whereg = 3772 | a;, < co. Then for everyn = 1, ... K, with
K = ming modrank(WW), the operatorGyy,, has a unique fixed point* € D (de-
pending onm) and the iteration(3.46) converges ta:* asi — oco. Moreover, every
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Chapter 3. Tensor Decompositions

iterate establishes the error estimate

" — || < Blla’ — 2", i=1,2,...
and the components,(gm), k =1,...,N ando,, of the fixed point:* are extremal

values of the optimization(8.16)(if m = 1) and(3.18)(for 1 < m < K).

The proof of the above theorem is an application of Theorem 12.1.1 ircfsfibined
with the observation that the inequality (3.47) holds witfy- replaced byGyy, with

k > 1 whenever (3.47) folGyy = Gyw,. In particular, this observation makes the
convergence rat@ independent ok.

In practice it is not trivial to explicitly verify whethetry, satisfies (3.47) An interest-
ing special case of Theorem 3.8.5 applies to tenBorf®r which Gy maps a closed
subsetD ¢ RI*! into itself and is contractive of® in the sense that there exists
a < 1suchthat|Gwr—Gwy| < a|lz—yl forallz,y € D. Inthat case, the result of
Theorem 3.8.5 simplifies to the contraction mapping theorem for nonlineaatoper
Specifically, if Gy is contractive, (3.47) holds with, = of and3 = = defines
the convergence rate. This means that under the contractivity conditiew pthe se-
guence (3.46) in step 2 of the TSVD algorithm converges to the uniquepgied of
Gw,, in D whenever:® € D. More refinements of convergence conditions go in the
direction of transforming=y into Gy, = TGwT~! where a suitable homeomor-
phismT : RE+L — RLFL is chosen so as to make,; contractive, or, alternatively,
to studyiterated contractionf the form ||Gyw (Gwz) — Gwz| < of|Gwz — ||
wherea < 1 andz € D. We refer to [59] for more details.

Theorem 3.8.5 promises that whenever the algorithm converges, itrgesve an
extremal solution to the optimization problems (3.16) and (3.18) that define the sin
gular value and singular vectors of order Here, by ‘extremal solutions’ we mean
that the fixed points ofryy,, satisfy thefirst order necessary conditiorfsr the op-
timal solution of the maximization problems formulated in (3.18). Solutions to the
optimization problems (3.16) and (3.18) satisfy these conditions but we ¢@uan
antee that the iterated map (3.46) converges to a fixed poif Gy, that also

satisfies thesufficient conditionsor the optima. This means thatdfyy,, is contrac-
(m) (m)

tive, the algorithm converges to a fixed poifit = col(y; ,...,¢N ,0m) Where
the N-tuple (o{™, ..., o™) € S and where the gradient of the cost function

|W (z1,...,2xN)| vanishes ir(gogm), . ,cp%”).

Remark 3.8.6. A numerical algorithm for the computation of a dedicated singular
value decomposition requires a minor change to the TSVD algorithm. dndé& <
Ty with X' = X x...xX;andX” = X1 x...x Xy. The dedicated singular value
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decomposition in Definition 3.7.1 is numerically calculated from the TSVD algorithm
in which the definition o@,(vm) in step 3 is replaced by

(m) . _

{I —o™@™T 1<k<i
k T

Remark 3.8.7. In this section we have derived some convergence properties regard-
ing the TSVD algorithm. When conducting numerical computations of nradkl
approximations to tensors one experiences difficulties due to local ogiirgk. The
reader is referred to [42] for an overview of this phenomenon and its irapbos. We

did not investigate the implications of local optima for our algorithm.

3.9 Numerical Example

To illustrate the methods discussed in this chapter, we consider a data csimpres
problem in 3-D imaging§ The data consists of pixel intensities of an MRI scan of
a human head in which each of tig slices is an image of.; x Lo pixels. The
original MRI scan has dimensiorls, = 262, L, = 262 and Ls = 29, consists of
1990676 pixels which corresponds to 2MB of storage. All pixel intensitiesstored
inanL; x Ly x L3 tensoriW e T3 of modal rankmodrank(W) = (243,199, 29).

The 10th slice of the original data is shown in Fig. 3.2. We consider two kihdp-0
proximations to this data. First, we discuss approximatiori& diy tensors of modal
rankr = (ry,7r2,73). Second, we review approximations by tensors of modal rank
r = (r1,re, L3), i.€., only the first and second mode dimensions are approximated.
For both types of approximations we compare the Higher-Order Singulae \&e-
composition (HOSVD) [24], the Tensor SVD as introduced in this chaptdrthe
method of Successive Rank-one approximations discussed in Section\&/&dim

for a drastic compression of the data. All simulations discussed in this seei@n h
been carried out with an accuracy setting:@f = 1 - 10~% in the TSVD algorithm.
Implementations of all algorithms use the tensor toolbox for Matlab [4]. Monearu

ical examples can be found in [6].

1The data was obtained from TU/e-BME, Biomedical Image Analysis, in lsotktion with
Prof. Dr. med. Berthold Wein, Aachen, Germany
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50 100 150 200 250

Figure 3.2: 10th slice of the original data.

3.9.1 Approximations of the form (r1, o, r3)

Table 3.1 shows the relative approximation errors in Frobenius norm thia @b-
tained with HOSVD, Successive Rank-One and Tensor SVD resplgctiv®m this

it is obvious that HOSVD and Successive Rank-One give comparapteximation
errors and outperform the Tensor SVD. The data compression in thpsexanations

is substantial. Indeed, the modal rank approximation with (10,10, 10) implies

a core tensor 0of000 elements, which i9.05% of the number of entries il and
therefore amounts to a storage reduction from 2MB to 1KB. Table 3.2 listsithber

of iterationsi* required in step 2 of the TSVD algorithm for the computation of the
Tensor SVD and the Successive Rank-one approximations.

Due to space limitations only the number of iteratioh$or the first five steps of the
respective algorithms are shown. The number of iterations seems to basimgre
as the algorithm progresses, but this is pure coincidence. The numbierations
decreases and increases quite randomly. The time to compute the first fukasin
values and sets of singular vectors for this examplea¥ seconds on &.83 GHz
Intel Duo Processor T2400. The first five successive rank-ppeoaimations have
been computed in6.21 seconds on the same PC.
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Table 3.1: Relative Approximation Errdl%#”?

(ri,m2,73) | HOSVD | Succ.R1| TSVD
(1,1,1) 0.5181 0.5181 | 0.5181
(3,3,3) | 0.2648 | 0.2647 | 0.5126
(5,5,5) 0.2334 0.2306 | 0.5108
(7,7,7) | 0.2111 | 0.2071 | 0.4280

(10,10,10) | 0.1869 0.1857 | 0.4265

Table 3.2: Number of iterations of (3.46).

TSVD Succ. Rank 1
o1 | 20 || Ty 20
02 56 T5 13
03 80 T3 34
oy | 130 | Ty 95
o5 262 Ts 223

3.9.2 Approximations of the formr = (ry, r, L3)

In applications it may be desirable to leave the mode rank unchanged for omare
modal directions. For example, when considering spatial-temporal daanay be
interested in approximating spatial information only. To this end, this secti@sgiv
simulation results for approximations of the form= (r1, 2, L3) for the MRI data.
As in the previous section, a comparison is made between the HOSVD, T@viBor
and the method of successive rank-one approximations. Furtherrasoétsrare also
included for the dedicated Tensor SVD as introduced in Sec. 3.7.

The numerical results of the computation of generic and dedicated singilli@s\can
be found in Table 3.3. From this table it is clear that the generic singulars/dkeay
much faster than the dedicated singular values. This would imply that theigemer
gular vectors give better results in approximation. However, examinatidaldé 3.4,
which lists the approximation errors, shows that exactly the opposite is theldsimg
the dedicated singular vectors for approximation gives approximatiorseirat are
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much smaller than those obtained when using the generic singular vectarssiblp
explanation for this is that since the dedicated singular value decompositéenass
constraints, more information of the original data is captured in the decompositio
Hence the larger dedicated singular values and the better approximations.

Table 3.3: Generic and dedicated singular values.

o1 | 102773.20 || 61 | 102773.20
o2 | 581549 | &2 | 49916.03
o3 | 3265.52 03 | 19275.82
oq | 1948.73 || &4 | 11779.07
o5 | 1489.41 05 | 9920.99

Table 3.4: Relative Approximation Erro'%, for approximations of the form
(11,72, L3).

(r1,72) | HOSVD | Succ. Rank 1] TSVD | Dedicated TSVD
(1,1) 0.5181 0.5181 0.5181 0.5181
(3,3) 0.2647 0.2646 0.5126 0.2646
(5,5) 0.2331 0.2305 0.5108 0.2305
(7,7) 0.2108 0.2069 0.4280 0.2070
(10,10) | 0.1868 0.1856 0.4265 0.1872

Figures 3.3 and 3.4 show the 10th slice of the ratik-10,29) approximations to
the original data. The figures illustrate the numbers given in Table 3.4. Ghe§
show clearly that the performance of the HOSVD, successive raalapproxima-
tions and dedicated TSVD is equivalent for this specific example. All threbods
significantly outperform the TSVD.

3.10 Conclusions

This chapter considered the problem of finding low-rank approximatiotenisors.
We have formally introduced tensors and tensor concepts in a coordiieateran-
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50 100 150 200 250 50 100 150 200 250

Figure 3.3: 10th slice of rankt0, 10,29) approximant, computed using HOSVD
(left) and Successive Rank-One approximations (right).

. | % b
50 100 150 200 250 50 100 150 200 250

Figure 3.4: 10th slice of rankt0, 10, 29) approximant, computed using TSVD (left)
and modified TSVD (right).
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ner. Furthermore, we have given a brief overview of the field of tedsoompositions
and defined the necessary concepts such as tensor rank and loappoximations.
Then, we have presented a new method for the computation of modal nartxapa-
tions to tensors. We have given a thorough analysis of the properties ofi¢ithod,
referred to as TSVD, and presented a number of low-rank approxinatsoits. We
have defined an adaptation to the TSVD which may give better approximation re
sults when not all modal directions are approximated. Finally, we have ezt

a numerical algorithm to compute the decomposition and analyzed its congergen
properties. The chapter concludes with a numerical example. In the natretam-

ple that was presented, the TSVD method was compared to the best-knistimngex
modal rank approximation method, the HOSVD. The work presented in thigerha
has previously appeared in [81, 7]. In future, a more thorough nuaienmalysis of
the decomposition method is necessary, specifically with respect to the odloén
local optima [42].
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Chapter 4

Generalization of POD

4.1 Introduction

POD is a model reduction method that is applicable to systems, linear or non-linea
that evolve both over space and time. Specifically, Galerkin projectionssat to
derive approximate models. According to the definition of a Galerkin projectice
projection spaces for the signal and residual projection are chosendqual. The
element that distinguishes POD from other Finite Element methods is the fact that
the projection spaces are computed from measured or simulated protzed3@B is
used in many application areas such as fluid dynamics, process cormtnasanvoir
modeling.

As mentioned above, POD is a projection-based method that relies on thetatiompu

of empirical projection spaces from a representative set of measurensmulation
data. Inits classical formulation, the projection spaces are used in asdgag@ansion
that separates space and time. No further structure is assumed fortiabvspibles.
This makes POD basically a two-variable method since it deals witNArsystem

by separating time and space. That is, the independent variablesameedd® reside

in a Cartesian product of a temporal and spatial domain.

There are a number of limitations concerning the application of POD to true-large
scale systems. Firstly, due to the Galerkin projection, when POD is appliechto no
linear PDEs the computation time does not decrease significantly. This issedtau
original nonlinear equations still have to be evaluated at each time-step.is$ues
was addressed in [3, 17]. Secondly, in most model reduction applicatosspa-
ration is made between space and time, but no further structure is assurmibd fo
spatial domain. In particular, for larger dimensional Euclidean geometliespatial
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variables are lumped and this yields a large-dimensional data correlaticat@pe.

In this way, theND nature of the original problem is replaced by an artificial 2-D
structure with space and time as independent variables. Thirdly, when muléple
pendent variables, i.e. multiple physical quantities, are considered diheae model
becomes very sensitive to scaling of these dependent variables.

In this chapter we propose an adaptation of POD to deal with the latter twos# the
issues. We will assume a more general Cartesian structure for the inldepemari-
ables. This allows changes to be made to POD that allow, at least in principle, mor
flexibility in defining approximate models.

This chapter is structured as follows. First, we introduce the POD methodisas it
currently used. Then, we propose an adaptation which assumes a@astescture

of the independent variables. This allows projection spaces to be compsitagl

the tensor decompositions methods discussed in the previous chapter. ddesdis
the spectral expansion and Galerkin projection that follow from the adsumgpf

a Cartesian structure for the independent variables. The method ptbposhis
chapter is illustrated using two numerical examples. The material presented in th
chapter was published in [7, 8].

4.2 Proper Orthogonal Decompositions

This section offers a brief introduction to the method of Proper Orthogdoaabm-
positions. More information on this topic can be found in [56, 52, 74].
Consider an arbitrary linear distributed system described by the follovargaPDif-
ference Equation

D(gl,gl_l,...,gN7g]§1)mz0. 4.2)

Here D € R*"[&,....&N,m1,-..,nN] is @ real matrix-valued polynomial ia N
indeterminates ancl, (gk,‘l) is the forward (backward) shift operator acting on the
spatial discretization in theth mode according to Definition A.2.1. The domain of
the signalw, D, is assumed to have a Cartesian strucfiire= X x T, which is
typically the product of a spatial and a temporal domain. Solutiorie this PDE
assume the fornv : X x T — R where bothX andT are sets of finite cardinality,
say Lx and Ly, respectively. Specifically, we considgr= {pg), . ,péLX)} and
T={p",....p{""}.

The POD method consists of three steps. First, the signial approximated by a
signalw,. using a spectral expansion. Second, the reduced model is defineasistco
of the signalsw, that satisfy a Galerkin projection. Third, the projection spaces in
this Galerkin projection are empirical projection spaces, i.e. they are cothfrata
measured or simulated process data.

80



Chapter 4. Generalization of POD

Whenevern > 1, two different types of spectral expansions can be found in literature.
These types will be referred to Igingle-variableand lumped-variableexpansions.

In single-variable expansions, each element of the vector-valued siga@xpanded
separately. In lumped-variable expansions, the signa expanded as a whole, as
we will show below.

4.2.1 Spectral Expansions

Lumped-variable expansions

Let X’ be the space of function: X — R™ with the following inner product

Lx
(f.g)x = >_(f), gpi)) (4.2)

k=1

forall f,g € X, where(:, -) denotes the Euclidean inner productif.
Solutionsw of (4.1) are assumed to satisfy-, p;) € X forallp, € T. Let{p,, k =
1,2,..., Lx} be an orthonormal basis far. Then, every solutiow to (4.1) admits
a spectral expansion

Lx

w(pa,pt) = Y ar(pr)g, (pa)-

k=1
In this expansion the modal coefficienis are uniquely determined by (p;) =
(w, pr)x forall p, € T. For0 < r < Ly, a low-rank approximation te is defined
by the truncation

T

w, (pz,pt) = Y ax(pe)e, (pr) (4.3)
k=1

forall p, € Xandp; € T.

Single-variable expansions

In single-variable expansions each component & expanded individually. Specif-
ically, for each of the componenis,, k = 1,...,n, of w = [wy,...,w,]" itis
assumed that, for any time instante T, the component functiowy (-, p;) belongs
to a Hilbert spacet;, of functions mapping = RXx to R with the following inner

product
L

(f,9x, = > FEENg(P), Vf.ge€ X (4.4)
k=1
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4.2. Proper Orthogonal Decompositions

Let go,(fk) : X — R is a (countable) orthonormal set of basis functionstpf thenw
admits an expansion of the form

/
o, a0l (p2)
w(pz,pt) = : :
S, (00) ™ (p2)

Here, the coefficients are uniquely determinedzﬁy(pt) = (w(-,pr), <p,(€ ’“)>j.
If r = (r1,...,r,) IS a vector of integers then thruncated expansionf orderr is
defined by the signab, (p,, p:) whosekth entry is given by the finite expansion

)(pas ) Z ag (p) o\ (pa).-
lim1

4.2.2 POD basis choice

POD basis choice for lumped-variable expansions

Clearly, the quality of the reduced order model (4.9) entirely dependsecarhibice of
basis functiong ¢y }. In the POD method, the orthonormal basis functigps} of X
are determined empirically, either from measurements ordat® — R simulated
from (4.1). This set of measured or simulated data is assumed to containaicnlle
of trajectories that is representative of the system dynamics of interestifigally,
for a Cartesian domai® = X x T and given datav : D — R with w(-,p;) € X and
ps € T, the basis functiong,, are chosen so as to minimize the criterion function

J(@1,. .. pr) = Zuw Y =S ™) e eRl? (4.5)
k=1

subject to the constraint that

1 ifk=m
) = _ km=1,...,r 4.6
(ks Pm) {0 k% m m r (4.6)

Here, the inner product is the inner product of the Hilbert sp@nd the optimiza-
tion is carried out for an arbitrary approximation degreeThe characterization of
the POD basis that follows is valid for arbitrary Hilbert spaggghat may be infinite
dimensional. This applies to this part of the chapter only.
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Chapter 4. Generalization of POD

Definition 4.2.1 (POD basis or order). A POD basis of order is defined to be a
collection of functiong ¢y, ..., ¢}, vr : X — R, that minimizes the criterio(.5)
subject to the constraini4.6). Hence, a POD basis of order minimizes the total
error ¢ ||lw — w,||? over all rankr approximationsw, of w of the form(4.3).

Definition 4.2.2 (POD basis) Let I be a countable set of indices with cardinality
equal to the dimension df. A complete orthonormal bas{sx, k € I} of X is said
to be aPOD basisf for all r the collection{¢1, ..., .} is a POD basis of order.

The constrained optimization problem (4.5) has an elegant solution in terms of th
data correlation operatdr : X — X that is implicitly defined as

Lt

(W1, P0) == S (Wi, w(,p™)) - (w(p{™),2) i, € X (A7)

m=1

Note that,® is a well defined linear, bounded, self-adjoint and non-negativeatqer
onxX.

Theorem 4.2.3.Suppose thafyy, k € I} is an orthonormal basis ot and suppose
that the eigenvalues d@f are absolute summable. Thépy, k € I} is a POD basis
if and only if®y, = Aok, k € 1 where the eigenvalues, are ordered according to
A1 > Ao > ---. Moreover, in that case the error

J(p1, ) = D Ak

k>r
and is minimal for all truncation levels > 0.
Hence, the eigenfunctions of the data correlation operator determine Dd&s.
Proof. If eigenvalues ofb are absolute summable,is self-adjoint and nuclear. This
means that it admits a representatiba= S | A\ (4, ), wherel < N < oo, the

eigenvalues\; are positive, non-increasingly ordered and summable, and the eigen-
functions{yy,k = 1,..., N} are orthonormal ifX’. Moreover, for any orthonormal

83



4.2. Proper Orthogonal Decompositions

basis{ o, k € I} of X we have

T

J(p1y-oy0r) = Z (W — Wy, w — wy)
m=
Ly

= <Z<w(-,p§m)),¢k>@k,Z<w(-,p§m)),s0k>s0k>
k>r

m=1 k>r

= 3 S (™), on) - (™), )
m=1k>r

Lt
Z Z Pt ©K) - <w<'7p§m))7(pk>
Z (ks

rm=1

Qpy).

Now first suppose that, = ¢ fork =1,...,N. Then,{p;,k =1,...,N}isan
orthonormal set of eigenfunctions & and.J(¢1,...,¢,) = >, Ak IS finite and
minimal for all» by the monotonicity of the sequengg. Hence{pr, k =1,...,r}
is a POD basis of orderfor anyr. Second, for any POD basjgy, k € I} the above
expression for the error implies that

N N
J(sol’ s 7907‘) = Z<Q0k’ Z )‘m<¢mv¢k>wm> = Z Z >\m<§0k7¢m>2
k>r m=1 k>rm=1

which is minimal for allr only if (¢, ¥m) = Ok for all integersk, m between 1
andN. But then it is immediate thdtyx, k = 1,..., N} is also a set of orthonormal
eigenvectors ob.

O

In the finite-dimensional discrete case, the data correlation opebatecomes a
symmetric non-negative definite matrix

® = WenadVsnap (4.8)
whereWspap € REx*LT s a matrix that contains trajectories of the system (4.1) that
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Chapter 4. Generalization of POD

have been obtained either from measurements or simulalifggpis given by

Wsnap: [w(vapgl))a e 7w(pzap§LT))]
w(pi(Cl)vng,l)) e M(pi(tl)7p§LT))
w(pd™, M) w(pt™, pitr)

POD basis functions can now be computed via the eigenvalue decompositign of
i.e. the decompositio® = UAU . Specifically, the eigenvectors &, stored in the
columns ofU, form the POD basis. These eigenvectors are equal to the left singular
vectors ofi¥snap Consider that the SVD dfgnapis given byWsnap = UXVT, then

the following holds

WenagVsnap= USV T VETUT
=U (z27) U

Hence, computation of POD basis functions via the eigenvalues of théatimmena-
trix is equivalent to computation of the Singular Value Decomposition of thessrudp
matrix.

POD basis choice for single-variable expansions

Similar to the lumped-variable case, for the single variable expansion a data co
lation operatord;, : X, — A} is defined for eaclk = 1,...,n with respect tow
according to

Lt

(0, Brtpo) = > (n, wi -, pi™)) (W2, wi -, ™))
m=1
for 1,19 € Xi. Thendy is a well defined linear, bounded, self-adjoint and non-
negative operator oA. The coIIection{go,(f) | ¢ =1,2,...} of ordered normalized

eigenfunctions ofd; then defines an orthonormal basis of a subspacg,inThat is,
let gp,(f) : X — R be the function that satisfi¢|$o,(f)|| =1and

q’k@ff) = Az@;(f)

where), is the/th largest eigenvalue @fy. Then{pff)} is a collection of orthonor-
mal functions provided that the eigenvalugsare disjoint (for non-disjoint eigenval-
ues the eigenfunctions d@f;, can be chosen to be orthonormal). This specific basis
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4.2. Proper Orthogonal Decompositions

is optimal for the given data in the sense tha}” , ||wk( ™) — w® (. pm™)| is
minimal for all truncation levels; and forallk =1, ...
SinceX consists ofL x disjoint samples, the spacés areLX—dimensionaI andy,
is a non-negative definite matrix of dimensidry x Lx defined byd, = WkW,;r
where[Wye, ¢, = wi(p (), p,gb)) is sometimes referred to asaapshot matrix
wi (Pt ), py (pgcl), p)
Wy =

(L ) (LT))

((LX) ) wi(pr 7, py

2y 2

POD basis functions can now be computed via the eigenvalue decomposition of
or the SVD oflWy, as in the lumped-variable case.

4.2.3 Galerkin projecion

Galerkin projection for lumped-variable expansion

Forr > 0, the reduced order model is then defined by the collection of solutions
w, (g, pt) = > r—1 ar(pt) i (py) that satisfy the Galerkin projection

<D(§1, gl_l, . ,gN,gK,I)MT, g0> =0, VypeX, 4.9
whereX’, is the finite dimensional projection spadg = span{e1, ..., ¢, }. When-
ever the spectral expansion©f. is substituted in (4.9), (4.9) becomes a system of
ordinary difference equations in the modal coefficientsk = 1, ..., r. Thisreduces

the PDE (4.1) to an approximate modekabrdinary differential equations.

Galerkin projection for single-variable expansion

In the single-variable case, the reduced model is defined for each fr¢vl) as
follows. Consider a vector of integers= (ry,...,r,). Forl < k < n, the reduced
order model is defined by the collection of solutiom%“) (Pzypt) =

P 1azk " (p)o\™ (p,) that satisfy

(D1, v sy, ®, 0) =0, Vo € span{pl”, ..., o™} (4.10)

Again, the spectral expansion @f. is substituted in (4.10),this becomes a system of

ri ordinary differential equations imélz).
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Chapter 4. Generalization of POD

4.3 Adaptation of POD

The previous section introduced the method of Proper Orthogonal Dexsitiops as

it can be found in literature. As mentioned in the introduction to this chaptee #rer

a couple of issues when applying POD to large-scale systems. Thergéodescribe

an adaptation of the method in this section. Instead of the separation of time and
space, we propose a more general Cartesian structure of the indepsadables.

This structure allows to define an alternative spectral expansion, Gaf@jection

and projection basis. Specifically, we assume that the dokai(4.1) has Cartesian
structureX = X; x --- x Xy. Furthermore, we assume that eah has finite
cardinality Ly, i.e. X = {pl(:), e ,p,(CL‘“)} fork = 1,...,N and letx), := R be
equipped with the standard Euclidean inner product. Finally, we as3umeR" to

also be equipped with the standard Euclidean product.

The proposed approach can be summarized as follows. The assumgiQadésian
domainX allow a tensor’v : X} x --- x Xy x YV — R to be associated with

the signalw. This also means that we can associate a tensor with the measured or
simulated data that will be used to compute a projection basis. Approximations to
this tensor provide a projection basis for each of the independent lewidthis leads

to a spectral expansion which is an alternative to the single- and lumpidbear
expansions introduced in the previous section. Since the spectralséxpamd the
projection basis have both changed, an adapted Galerkin projectiondechaebe

able to define a reduced model.

4.3.1 Spectral Expansion

The solutionw of the difference equation (4.1) can be viewed as a mapping

X; x - x Xy — R™. Therefore, we can define the $&t of mappingsiV’ : X} x
XXy = V. Wisa map7y — 71 and as described in Section 3.2.1, we can

associate a tensd¥/ € Tyy1 with W and therefore withu. W is a tensoiV :

X x - x Xy x Y — R. W is represented with respect to the standard bases as

follows

Ly Ln n
l
W = Z Z Z w€1~~~€1v+1€§€1) ®”'®€§VJ-\S1) (4.11)
=1  In=1ly 1=l

where the coefficientsy, ..., , are defined as follows

{4 {4
Weyty =W, (VDY) (4.12)

that is,wy, ..¢,,, takes the value of théy 1-th element ofw at grid-point

(pgel), . ,p%N)).
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4.3. Adaptation of POD

We will work towards a spectral expansion via a basis change for thertérisas
follows. Consider the following orthonormal bases &, ..., X'n, Y

(1)

(L 1 n
1)} {SOEV)a--wSON I {‘PN+17--->80§\72F1}' (4.13)

1
{o,. el
We now represent the tensdr with respect to (4.13), which leads to the following
representation

L1 n

- - ¢ ¢

W=3 S iy, V@@l (4.14)
£1:1 £N+1:1

Wy,...t,, denotes the elements Bf with respect to the new bases (4.13), i.e

- ¢ 4
Wy bnpq = W(Lpg 1)’ R gOg\fﬂ\flrl))

From now on, we assume thaly refers to the time variable, which we do not wish
to approximate in the remainder of the model reduction approach. We nomedefi
a spectral expansion far as follows. Let one component,, of the signakw be
defined as follows

wi(ki, . k) = W(elP), e By, (4.15)

Now, w is defined as

l
w(kl,..., Z Z wfl EN+1 (1)7 ( )>

h=1 lyiq=1

l 1
(Y, e

(), ey : . (4.16)

Y/ n
(S, e

Now define coefficients,, ..., , as follows

1 k
bgl?--eN,l (pSvN))

@1,__4N71(p§§N)) = : (4'17)
CRENNOSD
(PN )
Z gy, (W) i)y : . (4.18)
ECTNEN
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Then we arrive at the following spectral expansiondor

Ln_1

L
k k k
wE™ ) = 3 D b BR)
l1=1 In_1=1

In— kn—
<90¥1)7€gk1)> . <90§VJX11)’€§\7§11)>' (4.19)

So now we have a spectral expansion farwith vector-valued coefficients and a
scalar basis functions. A rank= (r,...,rx_1) approximation ofw is defined by
truncation of the sums in (4.19).

Remark 4.3.1. Due to practical motivations, we have chosen here not to incorporate
approximations in time or the space of dependent variaplerom a mathematical
point of view it is indeed possible to also approximate time and the spaceefident
variables. One would need to consider the physical significance ofagymioxima-
tions.

4.3.2 Projection basis

Assume a FE solutiomgn,, 0f (4.1) is available. We can associate a teri$@fap :
X x - x Xy x Y — R with wgy,pas outlined above Wsnap has the following
representation with respect to the standard bases

L1 n
Y4 l
Wenap= Z Z w€1~~~€N+1egl)®"'®€SV1{1)

[1:1 €N+1:1

wherewy, ..., , takes the value of théy . ; -th element ofv on the sample point with
index(¢1,...,4n).

Our aim here is to generalize the idea of a POD basis for spatial domains thex hig
dimensional Euclidean product space. For this, following 3.5.1, the daendent
tensoriWsnapis assumed to be decomposed in SVD from according to (3.20). Let

T 1 Tn
/\/l,({ W) — span{gpé ), . ,go,(C )}
fork=1,...,N andr, < L; define ari-dimensional projection space itj.. Then,
gp,(cl), . ,go,(f’“) form an orthonormal basis o‘f/l,(f"’). Let W, be the modal truncation

of Wsnapas defined in Def. 3.4.2. Then, a projection basis can be defined asdollow
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4.3. Adaptation of POD

Definition 4.3.2. The vector of integers = (ry,...,ry) withr,, < R, is said to
achieve a relative approximation errer> 0 if

||Wsnap_ W*HF
r < e 4.20
Woadle = (4.20)

In that case, we say that the basis functiqmécl), ... ,w,(gr’“)} fork =1,...,N
constitute a generalized projection basis for the mddel) derived from the tensor

Wte:ptsnap-

4.3.3 Galerkin projection

In the previous subsections a spectral expansion and a projectionhaasieen
defined. What remains to be done is the definition of a Galerkin projectiotepbn
that fits this framework. To avoid confusion because of complex indéatina, we
restrict the discussion to scalat i.e. from now onn = 1. That is, we first consider
the following difference equation

D(s1,...,sn)w = 0.

Th residual of this difference equatioR, := D(<i,...,sy)w is a signakw : X; x
... x Xy — R. We associate & with R as follows. LetD : X} x --- x Xy — R
be represented as

D= S dyaye @@, (4.21)
0 I,
Here, given a poin(tpgel), e ,p%N)) in the domair, coefficientsfgl...gN are defined
as . , ,
oyt = R(01, .. 0y) = [D(st, .. on)w] (8, .., i)y, (4.22)

That iS,CZgl...gN takes the value of the residual at grid—po@pfl), . ,p%N)).

Given sets of projection basis functio{@,(f’“)};k 2 Galerkin projection of the dis-
=

crete time modeD (¢, ..., sny)w = 0 is defined as

W o8, Dl w1 =0 (4.23)
fork,, =1,...,rp,andm = 1,..., N — 1. Here, the expression of nested inner
products should be interpreted as follows. Firstl,= D(si,...,sny)w is to be

associated with the tensd : X; x --- x Xy — R as above so thaby_; =
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Chapter 4. Generalization of POD

(¢n_1, D) becomes a linear functionély_; : X} x ... x Xy_a x Xy — R, etc.

Note that theVth independent variable is not projected. Throughout we assume this
independent variable corresponds to time. Equation (4.23) defines eticmi® of
tensorsD¢; : Xy — R defined by

~ ~ kn_
Do D( (k ) g\ffll)v')
k On_ k
Z Zdzl N R (3 AR AP [ (S AL B (X
A ‘N
for1 <k, <rm m=1,...,N —1, see Lemma A.4.1 in the appendix for back-

ground. Now,D¢; is defined by
Do={Dg: Xy > R|1<kpn<rm m=1,...,N—1} (4.25)

Equation (4.24) can be simplified by defining
In_ _
bk’l"'k'N—léN = Z Z dfl ZN 7 (k1)> ) <e]\1fv—117905\]/?f11)>- (4-26)
41 IN—1

This gives
Z% ey atn (€8 (4.27)

Now, we are in a position to deflne a reduced order model. Given a time iestanc
t= pg\’fN), the reduced model is given by the following equations

Da(piN)) = bty =0 (4.28)
forl < k,, <rp,m =1,...,N — 1. Given the order of the reduced model,
r=(r,...,N—1), the spectral expansion used fofp1, ..., px) is given by

Ly—1

wpl™, ... z Y by, 05Y)

l1=1 In_1=1
?
(i

)

elFy (i) elvony (4,00

Trajectories of the reduced model are thus formed by the coeffidignts, , that
satisfy the residuals (4.28) for al= pg\’,“N).

Remark 4.3.3. The approach to Galerkin projection presented here is similar for the
casen > 2. That case requires another vector space to be taken into accourthebut
approach remains identical.
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Figure 4.1: First and final time slices of the FE solution of (5.27).

4.3.4 Model reduction of a heat transfer process

Consider the following model of a heat transfer process on a rectamate of size
L, x Ly:

9*w d*w

ow
0= _Pcpa + Ky

Here,w(x,y,t) denotes temperature on position y) and timet € T := [0, Ty] and
the rectangular spatial geometry defines the Cartesian préduct’ := [0, L,] x

[0, L,]. The plate is assumed to be insulated from its environmentiLet £o(X x

Y) be the Hilbert space of square integrable functionXerlY and lett,, = X, x ).,
with X, € X = L5(X) and),, C Y = L2(Y) be finite dimensional subspaces
spanned by andr; orthonormal bases function{sogzl) } and{gaém}, respectively.
Solutions of the reduced model are then given by

(e, g, 1) = S5 T ane (D¢ (@) @ 042 (y) with ag,e, (1) = [A®)]as, a
solution of the matrix differential equation

0= —pcpA + K, FA+ K, AP. (4.31)

Here,F and P are defined as:

() el ™) (W5 6) - (el )

F= : : : P=

@i B0y - (ol ) 0585y ey 8y?)
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Alternatively,ay, ¢, (t) is the solution of the ordinary differential equation

71
pepitny (t) = ko Y ape (@ (@), 01 (2))+
k1=1

Ky S @k (DB (y), 057 (1)) (4.32)
ko=1

forl < /¢y <ryandl < ¢, < ry. A FE solution of (5.27) has been computed with
physical and discretization parameters as given in Table 4.1. Time slicagjiimg
the initial condition, of the simulation data can be seen in Fig. 4.1. The boundary ¢
ditions are chosen so as to represent that the plate is insulated from itmnenegirt.

Table 4.1: PDE Parameter Values

Parameteﬂ Value\ Unit ‘

pCp S méjK
Koy 0.5 %
Ky 05 | M-
L, 3 m
L, 4 m
Tf 3.6 S
A, 0.05 m
Ay 0.05 m
Ay 0.05 S

In this example the original ordet€, L2, L3) = (61,81, 72) are reduced to

(r1,72, L3) where we take = ro. The orthonormal basq$o§€1)} and{gogb)} have
been computed using Tensor SVD and dedicated Tensor SVD constrwekiere in
the latter time was not orthonormalized, since these basis functions will naidok u
in the reduced model. The first basis functionsiand) computed using Tensor
SVD described in Section 3.5 are shown in Fig. 4.2.

The simulation time of the FE implementationlig.22s, the reduced models have a
simulation time of approximatel9.35s. Table 4.2 gives the simulation error of the
reduced model for different model orders. The reduced models giega the same
initial condition as the was used to collect the snapshot data. Simulation areors
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Figure 4.2:0" (left), o) (middle) andy{" ® " (right). These basis functions
were computed using the Tensor Singular Value Decomposition.

given for models that use basis functions computed using TSVD and basisoins
computed using the dedicated construction. As can be seen in Table 4. 2uksdg
cated construction to compute basis functions does not give a more t&cadaced
model for this example.

Table 4.2: Reduced model simulation error results, basis functions werputed
using TSVD (left) and dedicated construction (right).

. W—Wollr | [W-—Walr
WL Wl
(2,2) 0.366 0.366
(3,3) 0.347 0.336
(5,5) 0.239 0.205
(7,7) 0.174 0.162
(10,10) | 0.137 0.079

4.4 Simulation example

The aim of this section is to show how the different options for spectramsipns
introduced in Section 4.2.1 and Section 4.3 perform in a benchmark exanodieis T
end, we consider their application in the reduced order modeling of a pdmersnal
tubular reactor, where a first order irreversible exothermic reactiastplace [40].
The reactor is illustrated in Figure 4.3. This model has two independenbissja
namely one spatial variable and time, this givés= 2. The two dependent variables
are temperature and concentration, therefore 2.
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f f f
le Tj2 Tj3

Figure 4.3: Tubular reactor

4.4.1 The model

The jacket temperatureéls, T;, andTjs are considered to be three independent in-
puts that serve as control variables. At the inlet side of the reactor, iipetature
and concentration of the reactant are two additional disturbance inpbesmathe-
matical model of the reactor describes the (normalized) temperafure) and the
(normalized) concentratiof'(z, t) of the reactant at an arbitrary locatienc [0, 1]

of the reactor and at arbitrary time instantsz 0. The model is given by the partial
differential equations.

oT 1 02T 10T 1

_— —— ’Y(l_i) —

875 Peh 822 Le az + vCe T) + ,LL(Twa” T)
2

oC _ 1 ”*C aC DaC’e”(l_%)

E Pem 82’2 82

subject to the boundary conditions

oT oT

L = Pan(T — T; < =0

atz=0: {gé en ) atz=1: {,82
gzpem(c—ci) =0

Here, the wall temperatufB,y is given by

Tj(t) if0<z2<1/3
Twa(z,t) = Tja(t) if1/3<2<2/3

Tis(t) if2/3<z2<1

whereT}, T2, T3 are the jacket temperatures. The physical parameters of the model
are given in Table 4.3.
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Pen Pem Le Da v v 2
5 5 1.0 0875 15 0.84 13.0

Table 4.3: Physical parameters

Let

T (t)
[(T(%,1) w(t) — / _ (L)
M(Zat) = (C(z,t)) ’ —(t) T % Eg ? d(t) T (Cl(t)>

denote the state, control input and disturbance input of the model, tegbhec

4.4.2 The data

A steady state operating condition has been determined for the model pygarut

an optimization on the three jacket temperatures col(7}, T2, T;3) under the as-
sumption that the temperature and concentration inlets are given by the newnaliz
values of the disturbance&t) = col(T;(t), Ci(t)) = col(1,1) for ¢ > 0. The op-
timization has been performed by minimizing a criterion function that expresses a
trade-off between a minimal energy consumption in the reactor and a maximal pr
duction (i.e., a minimum of reactant concentration) under the constraint i
perature in the reactor does not exceed a certain upper limit [72]. Téidted in
optimal steady state jacket temperatures

T 0.9970
u = |Th | = | 1.0475
T 1.0353

and corresponding steady state temperature and concentration profiles
(T*(2),C*(2)) as shown in Figure 4.4.

This optimal steady state operating condition turns out to be asymptotically stable.
However with a very small region of attraction. Indeed, a 3% perturbatiothe
steady state inlet temperature or inlet concentration of the reactant brimgsatie
w(z,t) of the reactor in a periodic limit-cycle.

For this, the spatial configuration of the reactor has been discretizeduoifcam
spatial grid of 100 points and we applied the method of lines to approximate s@utio
of the distributed model by a discrete iteration of the sampled state vector

@(t) = CO](T(Zl,t), e ,T(Zloo, t), C(Zl, t), e ,C(Zloo,t))
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Chapter 4. Generalization of POD

steady state tomperature steady state concentration

Figure 4.4: Steady state profiles for temperature and concentration

with the steady state profile as initial condition and with the perturbed injuts) =
Ty (t) = Tys(t) = 1 and

1 i
Ti(t) = TE<D o =1
1.038 ift>5

State datavw(z, t) has been collected on the discretized spatial sampl@sd at 5000
equidistant time samples in the internval< ¢ < 20. The evolution over time of
temperature and concentration at paint 0.5 can be seen in Fig. 4.7 (left).

All reduced models are derived from snapshot data described in thsestion, the
performance of the reduced models will be evaluated using a validationetata s

4.4.3 Reduced order model performance

To assess the performance of the reduced order models, a data setliatge as
described in Sec. 4.4.2, except for the inlet temperature and inlet dostoem, which
are disturbed as follows

1 if t<4, t>18
Ti(t) = 1+40.04€%-045(t—4) 5in(2(t—4))
+0.01 sin(5(t—4)) if 4<t<18
1 if t<4
Ci(t)y = 14-0.015 sin(5t)+0.02sin(t) if 4<t<18 .,
1.02 if t>18

Figure 4.7 (right) shows these inlet trajectories.

For this benchmark problem a number of reduced models have beenuotedinVe
will compare the performance of the single-variable, lumped-variable arsotep-
proaches, where in the tensor approach basis functions are genesatg both the
Higher Order Singular Value Decomposition (HOSVD) [24] and SucgesRiank
One approximations. The orders of the reduced models are chosendmbparable.
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Validation single variable model of order 4 Validation lumped variable model of order 8

— finite elemeljt —finite elemeljt
- - -reduced ordgr - - -reduced order

=0.49
=0.49

Temperature at location z
Temperature at location z

time time

Figure 4.5: Time evolution of temperature of single-variable reduced miadiglgnd
lumped-variable reduced model (right).

Validation HOSVD projected model of order 4 Validation Successive Rank One projected model of order 4
1.1 — 1.1 =
— finite elemelft —finite elemelft
- - -reduced order - - -reduced order

1.16 11§

=0.49
=0.49

Temperature at location z
Temperature at location z

time time

Figure 4.6: Time evolution of temperature of tensor-based reduced matidbasis
functions computed using HOSVD (left) and tensor-based reduced mittidbasis
functions computed using successive rank-one approximations (right).

For the single-variable approach the order is chosen t{d bg, the lumped variable

reduced order model has ordgrand both tensor-based reduced order models have
order(4,4).

Figures 4.5 and 4.6 show the time evolution of temperature at point0.5 for the
four different reduced models. The time evolution of concentration skowitar be-
havior for each of the reduced models. The performance of the siagiable reduced
model is inferior to the performance of the other models, see also Tablelisitable
gives the relative error of the total signdk, ¢) in Frobenius norm and the worst-case
errors of temperature and concentration. The table shows that themparfce of the
three remaining reduced models is comparable.
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Chapter 4. Generalization of POD

Table 4.4: Reduced model simulation error results

Method Wle [ 1T — Pl | 1~ Ol

Single 0.142 0.43 0.74

Lumped 0.024 0.17 0.19
Tensor - HOSVD| 0.027 0.30 0.11
Tensor - Succ. R1  0.029 0.32 0.12

Temperature and Concentration at location z = 0.49
11
'—— Temperature L —T
-- -Concentrau; o8 —

Vs

I O

' ) AN S
e B S A I Ny
AV RV ARR VR A TR ATA TR AN
,‘:"l,u

0 5 10 15 200' 0 5 10 15 20
time time

Figure 4.7: Time-evolution of temperature and concentration from snapslt at
point z = 0.5 (left), inlet temperature and concentration used for reduced model
validation (right).

4.5 Conclusions

This chapter considered the construction of reduced order models forvamiable
distributed systems. Starting point is the method of Proper Orthogonal Desdmp
tions. We have introduced a new method for the construction of projectacesp
from measurement or simulation data of these processes, wheneveesi&iastruc-
ture can be assumed for the independent variables. These projedciesdpad to
new construction of spectral expansions and Galerkin projection. Tgreagh allows
inner products for dependent and independent variables to bercheparately, this
will provide some additional freedom when dealing with scaling problemsthErr
more, in the proposed model reduction scheme reduction levels can bmiteidfor
each independent variable separately.

The tensor-based method has been applied to a tubular reactor exampdergraded
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4.5. Conclusions

to single-variable and lumped-variable techniques for obtaining redudedmodels.
The simulation results in this paper support earlier findings in that the lumgeabie

spectral expansions perform better than single-variable expan&ionthis example,
the performance of the tensor-based approach introduced in thisipajpenparable
to the performance of the lumped-variable approach. This makes the tgomoach
an interesting alternative in applications of very high dimensionality, or highbeu

of physical variables.
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Chapter 5

Reconstruction and
Approximation of
Multidimensional Signals
Described by Proper Orthogonal
Decompositions

This chapter was published as the paper [5].

5.1 Introduction

The question to recover or approximate an unknown analytic functiondraomber

of measurements has led to a substantial body of literature in the theory gfointer
lation, identification and function approximation. This problem has been tlgbip
studied in digital signal processing and interpolation theory and its solutiogyisok
many questions in optimization, estimation, reduction, data compression, infonmatio
retrieval, filtering and optimal control. Initiated by the pioneering work of EVhit-
taker [82], Kotelnikhov [49] and Shannon [70], the question of whesigaal can

be completely recovered from its samples led to a development of informatien the
ory and communication engineering that is nowadays known as sampling.tSeer

[84, 57] for some authorative overviews on this development. The deasitign of
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5.1. Introduction

analytic functions in spectral components is key to the understanding of miéesto
contributions such as Shannon’s sampling theorem in its many variations.

This chapter considers the problem of reconstruction and approximatiorulti-
dimensional signals that are sampled with non-uniformly distributed senktmse
specifically, we assume signals to be defined avi-dimensional Cartesian domain
and consider multi-dimensional spectral decompositions by orthonormzlidas in
each co-ordinate of the signal domain. Such spectral decompositioatsarealled
tensor decompositions as they involve the representation of a multi-lineaioiuzc

in terms of orthonormal basis functions. With partial information available osithe

nal or the tensor, we address the problem to reconstruct or approximeaginal (or
tensor) by suitably defining the spectral coefficients of a reconstrsageal on the
basis of partial information only. Unlike prevailing approaches [84, 6418, 63, 73,

35, 32], we will not consider spectral expansions with specific basistians such

as polynomials, harmonic functions, splines or shifted-modulated Gaussietions
(Gabor expansions) but, instead, decompose signals (and tensostinf@mpiri-

cal basis functions and develop reconstruction strategies by taking aieolmear
combinations of these functions. See [29] for a similar approach forumisampled
signals.

The motivation to consider empirical (or arbitrary orthonormal) basis funstatems
from applications in model reduction where the aim is to find simple substitute mod-
els for complex, large-scale finite element models. The method of Propesdorth
onal Decompositions (POD), also known as Principal Component Anglp€is\)

or the Karhunen-Loéve expansion is popular in the fluid dynamics commamnidly,
uses spectral decompositions and Galerkin projections to project the salfifiar-

tial differential equations onto a set of basis functions that is derivad gmpirical

or simulated data [71, 56, 39]. In the POD method, the idea is to determine a set
of empirical basis functions such that the error obtained by projecting siecuta
measured data onto the span of such functions is minimal. This method has led to a
substantial reduction of complexity of large-scale systems in computatioithtifu
namics and has proven very useful for identifying coherent pattetastalent fluids.

See for example [2, 3, 39, 68, 83] for some large-scale POD applicatitmsever,
despite the complexity reduction, the gain in computational speed is ratheratmder
for large-scale nonlinear systems due to the high dimensionality of the ddtatsEf

to address the problem of high computational cost include trajectory pssdwear
approximation schemes [67, 66], spatial-temporal correlation schempsJappy
POD techniques [30], missing point estimations [3] and the exploitation of symme-
tries [9, 69]. Each of these methods aims to remove latent variables anddgtext
tions from large systems of differential-algebraic equations.

This chapter will focus on the missing point estimation technique as propo$&d]in
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Chapter 5. Reconstruction and Approximation of Multidimensional Signals

and further developed in [3, 83]. The technique is based on sigraisaaction prop-
erties from sampled data and is mainly developed for one-dimensional sigreds
purpose of this chapter is to approach this reconstruction problem in afmuta-
mental way and employ multidimensional spectral analysis for studying reaons
tion and approximation questions. The focus will be on reconstructionrsehéor
two-dimensional spectral expansions, with empirical orthonormal basisifuns. We
address the problems of exact and approximate reconstruction of sagigats and
provide expressions for alias errors and the alias sensitivity.

The chapter is organized as follows. In Section 5.2 we formulate the sepaistruc-
tion problem that is considered in this chapter. Section 5.3 discusses ttidics
for exact reconstruction of a multidimensional signal from its discrete neamnts.
In Section 5.4 we proceed by deriving an expression for the alias ferrsituations
where exact reconstruction is not possible. In Section 5.5, the daegaits will be
illustrated on a heat transfer model. Conclusions and recommendationgtfoerf
research are collected in Section 5.6. The appendix contains a revi@meftensor
concepts.

Preliminaries and notation

For a matrixA € R™ ™ its transpose is denoted by". The left- and right inverse
of A are defined bydA=" = (ATA)"'AT andA=F = AT(AAT)~!, respectively.
Furthermore, recall thatd=%)" = (AT)~%. For a functionf : A — B and a set
Ay C A, we will denote byf| 4, the restriction off to A, defined asf| 4, (z) = f(x)
for € Ap. If Ais a Hilbert space andly C A a subspace, thell,, : A —
Ay denotes the canonical projection df onto .4y. The operatokol(-) stacks its
arguments in a vector. The set of positive integers is denotetl, by

5.2 Problem formulation

We consider signalsy : D — R defined on aN-dimensional domai® ¢ RY

and assume that such signals are continuous on the intefilarebllowing standard
terminology in engineering, for an arbitrary finite set of poibsin D we call the
restrictionw := w|p, a sampling ofw and refer toD, as a collection osample
points A central paradigm in digital signal processing deals with the problem of
reconstructing the signab from its samplego. In its traditional formulation, the
reconstructed signal interpolates the function val@esn the sample points. In a
more general setting, the reconstructed signal is assumed to belong tspaceb
spanned by a set eéconstruction functionsSee [29, 28]. The reconstructed signal
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5.2. Problem formulation

w is then selected as a linear combination of reconstruction functions suctinéhat
error ||w — || is small or minimal in some norm.

Throughout this chapter, we consider the case where the ddih@éna Cartesian
product of N intervalsX;, i.e.,D = X; x --- x Xy. The setD, of sample points is
assumed to have a Cartesian strucige= X! x - - - x XQ; whereXY{ is a finite subset
of X;. These assumptions allow us to consider multidimensional spectral decomposi-
tions in a natural way as follows. For=1,..., N, letW; = £2(X;) be the Hilbert
space of square integrable mappidgs— R with the usual inner produgt, -); and
norm|| - ||;. Similarly, letW := L£+(ID) be the set of square integrable functionglon
We assume that the functian(x1,...,z;—1,-, zi+1,...,zN), Viewed as a mapping
from X; to R, belongs toWV; for all choices ofz, € X, k # i. Because of the
Cartesian structure d@b this is equivalent to saying that € W.

If

(& nezy, o {4, tvezyy

defines a collection of orthonormal bases ¥y, . .., Wy, thenw admits a multidi-
mensional spectral decomposition of the form

w(Ty,...,TN) = Z . Z ael‘..eNcpgel)(m) . @%N)(x]v) (5.1)
/1=1 In=1
where the expansion coefficients are defined according to
Qe Ay = /(w, W&él)(iﬁl) T QO%N)(I'N»d{El N N
D

Here, convergence of the series in (5.1) is understood in the sttpagnse.

Apart from spectral decompositions (5.1), the expansion coefficiésusdafineten-
sor decompositionsSpecifically, aensor decompositioaf a multi-linear magt” :
Wi x ... x Wx — R operating on elements; € W;, i = 1,..., N is defined by

W(ws,...,wy) = - > ag, enlw, @)1 (o, o)n. (5.2)

Note thatl¥ is linear in each of its arguments. The Frobenius norm of tensors and
signals is defined in Sec. 3.2 and equals

lhi=1 In

o . 1/2
[wllr = [Wllr = (Z aZ...eN) ~
=1
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Chapter 5. Reconstruction and Approximation of Multidimensional Signals

We will say that the signab or the tenso#¥ hasfinite or limited bandwidth
(L1,...,Ly) if the summation index; in (5.1) or (5.2) ranges from 1 t&; for

i =1,...,N. Clearly, finite bandwidth signals (or tensors) are obtained from (5.1)
(or (5.2)) by projectingw on the span of the first; basis functions in théth co-
ordinate directionj = 1,..., N. Evidently, if a signal or a tensor has finite band-
width (Lq,..., Ly) then it is uniquely defined by th&/-way array[[as, ¢,]] €
RL1><"'><LN_

Let Dy be the set of function®, — R and letD C W be afinite dimensional
subspace o¥V that we refer to as theeconstruction spaceThe reconstruction of a
sampled signalb € Dy is then defined by the signal = R(w) where

RZDQ-}D

is thereconstruction map Evidently, for any reconstruction map and any signal
w € W, the error|jw — R(w)||r satisfies

lw = R(@)[r = [Jw—TpwlF

wherellp is the orthogonal projection df¥ ontoD. In words: the projection error
betweenw andIlpw is a lower bound for the error incurred layy reconstruction
map.

In this chapter we investigate a specific reconstruction R&wr multi-variate signals
that admit non-uniformly distributed samples on a Cartesian domain of sampts poin
Dy and investigate the errdiw — R(w)||r in terms of thealias sensitivitywhich will

be defined below. It is assumed that the sampled signal is not corruptedids;
The reconstruction mag is well understood for signals in one independent variable
(N = 1) and for specific collections of orthonormal basis functi({)mé'} in Ly(X;),
including harmonic functions, Laguerre polynomials, Chebyshev polyrnsntiger-
mite polynomials or Jacobi polynomials [63, 14, 35]. Here we consider arpitr-
thonormal bases of the Hilbert spadés, sample points that may be non-uniformly
distributed and multi-dimensional spectral decompositions of signals.

In order to expose ideas clearly, we will deal with the two-dimensional §p)acase
where N = 2. However, generalizations to higher dimensions are obtained in a
straightforward manner. We therefore consider the problem to recehstrsignal
w: D — RwithD = X x Y from its restrictionw on a finite set of sample points
Dy = Xg x Yg. Here,Xg = {z1,...,znx} andYy = {y1,...,yr} are non-empty
sets of N and M distinct samples oK andY, respectively. We assume that-, y) €

X =Ly(X) forally € Yandw(z,-) € Y = L2(Y) for all x € X. Equivalently, we
assume thaw € Lo(DD).

To define the finite dimensional reconstruction spBcsuppose thafpy, k € Z*T}
and{y, ¢ € Z*} are orthonormal bases fo¢f and), respectively and let,, =
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5.2. Problem formulation

span(¢1,...,¢n) andy,, = span(yy,...,1Y,) denote a pair ok, andm dimen-
sional subspaces &f and). For 2-D signals, the reconstruction space is then defined
as

D =Dy = {0 | W(-,y) € Xy, W(x,-) € Yy, forall (z,y) € D}.

Furthermore, let
Pk = Pk|Xo Ve := Pyly,

denote the restrictions of the basis functionXtoandY, respectively. The multidi-
mensional spectral expansion (5.1) reads

T,y) = i i akepr () Ye(y) (5.3)

k=1/¢=1

where

are = ((w(z, ), or (@) 2, Ye(y)y = (w(@, ), Ye(y))y, wr(@)) x

The projection ofw ontoD,,,,, is defined by the finite bandwiditm, m) signal

W (2, y) = p,, w=>_ > arpr(®)ve(y). (5.4)

k=1/¢=1

For a given collectiofiy, of real valued coefficients we define the reconstructed signal
n m
W (T, Y) Z Z arepr(x x € Xandy € Y. (5.5

Note thatw,,,,, belongs taD,,,,,. Conversely, any element &¥,,,,, can be represented
in the form (5.5) for suitable coefficients,,. Since

[|w — wnm”%’ = ||w — wpm + Wpm — Wnm, H%“
—_—
€D, €Dnm

= Hw_wan%“"‘Hwnm_wan%‘ (5.6)

projection error reconstruction error

it is clear that the reconstruction error is independent of the projectiam. eThe
latter originates in the truncation of the spectral expansion (5.3). Thectinyjeerror

is determined by the pain, m), which is assumed to be fixed. This is visualized in
Figure 5.1
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W . . an i an . an
—»{ Projection » Sampling » Reconstruction —»

Figure 5.1: Visualisation of signal flow

5.3 Exact reconstruction

In this section we will show that under certain conditions it is possible to exactly
reconstruct a continuous functian € W from its sampleso. We will first de-
fine two bilinear forms needed to compute the expansion coefficignts (5.5) and
then discuss the conditions for exact reconstruction. We assume thatshef basis
functions,{¢x} and{v,} are known. The truncation levelsandm are given and
constant.
Define:

e1(z1) .. enlz1)
d = : : € RVxn

e1(zn) ... enlzn)
and

Yi(y1) o Umly1)

U= : : e RMxm
Vi(ym) - Umlym)

i.e., the columns of and¥ are sampled basis functions fatrand), respectively.
Define for every, w € X andr, s € ) the following bilinear forms:

(vw)y = XN: v(@i)gijw(z;) (5.7)
Z,J];1
(rys)v = ijz_lT(yi)pijS(yj) (5.8)
whereg;; is the(s, j)th entry of
Q:=(d )T (@7 ") (5.9)
andp;; is the(z, j)th entry of
P =@ HTy-L (5.10)

The bilinear forms have the following property:
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5.3. Exact reconstruction

Lemma 5.3.1.If ® has full column rank, i.e® is injective, then
<U7 w>N = <’U, w>X
for all v,w € X,,, whereX,, = span(yp1,...,py). If ¥ has full column rank, i.e®
is injective, then
(rys)m = (r,s)y
forall r,s € Yy, where),, = span(¢1,...,¥m)

This lemma implies that i and¥ have full column rank, the bilinear forms (5.7) and
(5.8) define inner products for the Hilbert spadgsc X and),, C Y. In particular,
from Lemma 5.3.1 it follows that for,w € &, the inner productv, w) can be
computed from samples andw. The same goes for computing the inner product
(r,s)y whenr, s € V,,. This means that under certain conditions the inner product of
the infinite dimensional Hilbert spacésand) can be computed from the sampled
elements that require only or M samples. Note that full column rank @fimplies
that N > n and that full column rank o implies thatM > m.

5.3.1 Conditions for exact reconstruction
Define the expansion coefficiertg; by setting
age = ((w(-, ), )N, Ye) M 1<k<n, 1</<m. (5.11)

These coefficients are actually functionsio$ince (5.11) only requires knowledge of
w on the sample point®;. This means that the reconstruction miap Dy — D,

B (,9) = R0 y) = 30 anepu(a)in(y) (5.12)
k=1 /¢=1

is well defined.

Theorem 5.3.2.LetXy = {z1,...,2nx} be N distinct points inX and

Yo = {v1,-..,ynm} be M distinct points inY. Furthermore, le{ o, k € Z*} be an
orthonormal basis oft and {v;,¢/ € Z*} be an orthonormal basis @f. Suppose
that® has rankn and ¥ has rankm. If

W € Dy, ={w | w(-,y) € Xy, w(x,-) € Yy, forall (z,y) € D} (5.13)
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then

Wnm = R(0) = w
whereR is the reconstruction map defined(®12) That is,w can be exactly recon-
structed from its samples by the reconstruction maf®.12)

The conditions for exact reconstruction offer an interesting interpretafibie con-
dition (5.13) is a limitation on the bandwidth af. Therefore, exact reconstruction

is possible ifw has bandwidth of at mogt, m) in terms of the basis functions for

X and). Hence, this provides a co-ordinate dependent notion of bandwidth. The
other condition for exact reconstruction concerns the ranksarid¥ and imply that
necessarily the sample densiti8s> n andM > m need to be sufficiently large.

In other words, the bandwidth af may not exceed the number of samples to allow
exact reconstruction. This is an interesting generalization of Shansampling the-
orem that states that exact reconstruction of a signal from its samplessibleaf the
sampling frequency; is at least twice as large as the bandwidth of the signal, where
the traditional concept of bandwidth in terms of harmonic functions is used.

5.4 Approximate reconstruction

Naturally, there are cases where (5.13) does not hold. Exact teectien is then no
longer possible. In this section we derive expressions for the aliasietiese cases.

5.4.1 Alias error in the expansion coefficients

From the definition of the expansion coefficients (5.11) we can derivinaeaction
between the expansion coefficients of the original signal,and the coefficients,,
which are inferred from a sampled signal.

Theorem 5.4.1. Letayg, be defined by5.11)and letay, be the expansion coefficients
of a signalw as defined ir{5.3). Then:

dpe = ap + a3, 1<k<n, 1<l<m (5.14)
where

allas Z apﬂ Qop)@k N+ Z Qkq 1/)an>

p>n q>m

+ Z Z apg(Pp, PR)N Vg, Vo) M (5.15)

p>ng>m
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The expression (5.15) consists of three terms which offer an interestiegpiiata-
tion. The first term represents the alias-error originating from the samipliig The
second term represents the alias-error caused by sampliigvimile the third is a
cross-term, originating from sampling in bathandY. The expression (5.14) consid-
erably simplifies if the signab is band-limited in either of the coordinatesand/or
y. Specifically:

Corollary 5.4.2. 1. Ifw(z,-) € Y, for all z € X then the alias coefficient be-
comes:

afi® =" ap(ep, r)n-
p>n

2. Ifw(-,y) € &, for all y € Y then the alias coefficient becomes:

af® = Z g (g, Y1) M- (5.16)

q>m

5.4.2 The alias error

We showed that in certain casescan be reconstructed exactly froin i.e. w is
equal to the reconstructiaf. In this section we examine the alias error when exact
reconstruction is not possible.

The alias-coefficients are linearly dependent on the expansion c¢eef§ic;,;, where

k > n andl > m. We define the alias operatSrwhich maps the expansion coeffi-
cients,{ay, (k,£) € Z2 } represented byl € ¢5(Z2 ) in the sense thaty,, = A(k, 1),

to the corresponding alias error coefficiemg’;as. The alias coefficients are stored in
ann x m matrix A2, ThereforeS : ¢5(Z2) — R™™ is defined by:

SA = Adias (5.17)

with A3 1) = 28 The operator norm of),

|S|, is the induced norm

ISA[lF
ozactrz2) |AllF

151 == (5.18)

Sincew = Y72, Y12, aneryr and the basis functions are fixed, we have that:

||SAH%7 _ Hwnm—wan%

1S := (5.19)

0#£A€Ly(Z2) ||A||% _O;éweﬁg(XxY) IIwII%

Consequently, the operator norm of the alias operator is a measure dfaiaca
error. We will therefore cal|.S|| thealias sensitivity
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Theorem 5.4.3.The alias sensitivity.S|| is given by:
111 = MG (5.20)

whereG is an operatorG : 7o — 7T2. The coefficients of the tenséf; associated
with G with respect to the standard Euclidean bases are given by:

Grsvw = Z (Vg ¥s) M (g, Yw) s + Z(‘Ppa‘Pr>N<‘Pp»‘Pv>N

q>m p>n
+ Z<§0pa 907">N<90pa SOU>N Z <@Z}qa¢s>M<wq>1/}w>M (5-21)
p>n g>m
forr=1,...,n,s=1,....mv=1,...,nandw = 1,...,m. AmaxiS the largest

eigenvalue of-.

Remark 5.4.4. The tensor representation 6fwith respect to the standard Euclidean
bases is symmetric in its first and third and in its second and fourth coefficibiat

isa Grsvw = Gowrs-

5.4.3 Finite dimensional case

In this section we consider the case whatand) are finite dimensional and
equipped with the Euclidean inner product. We will assume that K dimensional
with K > n and that) is L dimensional withl, > m. We will derive an expression
for the elementg, .., Of G with respect to the standard Euclidean bases.

We have defined~ to be an operato€ : 7o — 7T2. In this particular casé& is
a mappingG : R™™ — R™*™_ As shown in the Appendix{& admits a tensor
representatiofi; given by

n

m n m
Te =33 grovue) ® e, @€l @ el (5.22)
v=1w=1

r=1s=1

The 4-way array representation 6 with respect to the standard Euclidean bases
will be denoted by[g,suw]] € R™*™*™*™ We will now return to the three scenarios
discussed earlier and give an expressior[ips,.,|| for all three scenarios:

Theorem 5.4.5. 1. Ifw(x,-) € Yy, forall z € X then the alias sensitivity is given

by:
151 = M3 (@7 d) 7 — 1} (5.23)
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2. Ifw(-,y) € &, for all y € Y then the alias sensitivity is given by:

151 = Mg { (@)t - 1} (5.24)
3. If
w(y) ¢X, forallyeY (5.25)
w(z, ) € Vm forallz e X
then the alias sensitivity is given by:
151l = Al [[Gy (5, w) + G, v) + Gy (5, w) G (r,v)]]) (5.26)

where G (s, w) is the (s, w)th entry of{(\ifT\iJ)—l - I} and G (r,v) is the
(r,v)th entry of{(éTé)‘l — I}.

Theorem 5.4.6. The operatorG : T, — 7T as defined in the preceding Theorem is
positive definite.

5.5 lllustrative example

As mentioned in the introduction, the motivation to consider empirical basis func-
tions originates from applications in the field of model reduction. Model ctol

aims to find substitute models for complex, large-scale finite element models. The
often excessive computation and simulation time of such models makes modal-base
control design, prediction or real-time monitoring virtually impossible. The method
of Proper Orthogonal Decompositions (POD) is particularly popular in thie @y-
namics community and derives low order substitute models from model equations
and an empirical set of basis functions. These basis functions avedeither from
empirical or simulated data. The reduction process is carried out sucththat-

ror between the outputs of the original and substitute model is small. The stéstitu
model is then used for applications such as real-time monitoring.

The theoretical results presented in the preceding section can be usgdeittduce

the dimensionality of the substitute model or to asses the effect of diffeeasbs
locations. To show how the theoretical results relate to a real-life exampleasern

the following two-dimensional heat transfer process:

ow 2w 0w
Peo g (001 = ha gy (04,0 hy gz (@9, 8) Fulwy ) (5.27)
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Chapter 5. Reconstruction and Approximation of Multidimensional Signals

wherew(z,y,t) denotes the temperature at positign y) and at timet of some
medium with heat capacity,, material density and thermal conductivity;, x =
Kz = ky. FOr each time instance, solutions are defined on a closell satich is
assumed to be a Cartesian prodiDct= X x Y with boundaryl" := 9(D). Here,
X =10,L,] andY = [0, L], whereL, > 0 andL,, > 0 denote the length and width
of the medium. The last term in the partial differential equation (5.2@), y,t), is a
heat-source input, which is assumed to be factorized as

u(z,y,t) = s(z,y)v(t)

wheres(z, y) is an indicator function representing the source locations/éf)ds the
time-dependent heat input. The following initial conditions apply

W(.CL',y,O) :wo(x,y) ($,y) €D
ow
— = t I, ¢t>
ox r Vl(xuya ) (x,y) el, 12 0
ow
a0 :72(x7yat) (flf,y) EF: tZO
Oy Ir

The first initial condition specifies the temperature profile at time 0. The other
initial conditions prescribe the boundary conditions. If we consider tlairigp of

a rectangular (lengti, = 0.5, L, = 1 [m]) piece of aluminium, we have, =
963,@%, p= 2700% andx = 155.8%. The heat source is applied in a rectangular
area in the center of the plate. The initial temperature profile is constant, tinel &y
conditions are chosen such that the rectangular plate is insulated fromiitsnenent,

ie. 1 =72 = 0.

The domainsX andY are assumed to be griddedihandL grid points,{z1, ..., zx}
and{y1,...,yr} with K = 50 andL = 100. Sample points are taken to be the
subsetsXy, € X andYy C Y which consist, respectively, d¥ < K andM < L
inhomogeneously distributed points over the rectangular grid, (with a hagresity

in the vicinity of the heat source, i.e. placing a sample point at each grid wbite
the heat source is located and distributing the remaining sample points evenly ov
the other gridpoints). Finite element functiofig, € £2(X), £ = 1,...,K} and

{ve € L2(Y), £ =1,..., L} are chosen as the piecewise constant harmonic functions
1 fork =1
— ) Vi
€T =
(o) {\/Zcos((k_gim‘) fork > 1

L fort =1
V((yk) = \/% (0—1)my )
1/ECOS(T) f0r€> 1
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Figure 5.2: First basis functions,, . . ., ¢4 (left) andy, . . ., ¥4 (right)

To approximate the finite element solution of the PDE (5.27), solutions are-repr
sented in the basis functions according to

wh (@, y,t Z Zakl Yk (2)ve(y). (5.28)

k=1/¢=1

Two data-dependent sets of basis functippg};_, and{«; };*, are determined from
the finite element simulation (5.28). The first 4 basis functions are displayeid-in
ure 5.2. The setép, }7_, and{v;};”, are orthonormal and span finite dimensional
subspaces’,, C £2(X) and),, C L2(Y), respectively. An approximate solution is
obtained by truncating the spectral expansion (5.28) as

n m

Wy (2, Y, T Z arl(t)er(@)vi(y) (5.29)
k=11=1

with degrees: < N andm < M.

Since all theoretical results in the preceding sections of the chapterroctheere-
construction error, we do not consider the projection error, see &soe5.1. We
assume throughout that the projection step is carried out such that faetjmo error
is small.
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Chapter 5. Reconstruction and Approximation of Multidimensional Signals

5.5.1 Exact reconstruction

In the exact reconstruction case, the original signal and the recotestrsignal have
the same bandwidth:

NE
NE

w(z,y,t) = a1 (t) ok (2)i1(y) = wpm(z, 9y, 1)
k=11=1
Dy (2, 9,8) = DD aw(t)or(@)hi(y)

£
Il
—
—
Il
_

The expansion coefficients in the reconstructiopt), were determined from the
sampled signalo(z, y,t), (z,y) € Xo x Yo by calculating (5.11). This, in turn,
defines the reconstruction map.

We examined the alias errets = ||w,,,,, — || » and averaged this error ovai0
time-steps. We give the error for two different combinationgvoéand M, see Table
5.1

Table 5.1: Simulation results for exact reconstruction, non-homogelyatissibuted
samples

n | m | N | M | Average temperature error
3161|3580 1.25-1078

5[50 6|60 | 1.35-107°

From the lower half of Table 5.1 we can conclude that it is possible to use h muc
lower spectral resolution in one dimension, i.e. takeg m, without influencing

the reconstruction error. However, using a much lower spectral tesolin one
dimension may influence the projection error (not shown in Table 5.1). lsioger
spectral resolution may be useful in applications where there are mordraggkent
variations in one coordinate direction than in the other.
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5.5. lllustrative example

5.5.2 Approximate reconstruction

To illustrate the results on approximate reconstruction derived in subsécdlich) we
consider bandlimited signals of the form

w(z,y,t) = DY an(t)er(@)i(y) = wam(z,y,t)
=1 I=1
Wy (2,Y, 1) = ar(t)pr(r)Pi(y)
=1 =1

wheren’ < n < N andm’ < m < M and wherew,,,,,» is the signalR(w) with

w = wpm,. This means that reconstructed signal has lower bandwidth than the orig-
inal signal. The expansion coefficients,, of the reconstruction map were defined
and computed in the same way as for exact reconstruction. We considetatiee
Frobenius norm temperature error:

Han - I/T/vn’m’ HF
Han”F

This error was averaged oved0 time-steps. For all simulations the number of sam-
ples were set t&v = 35 and M = 80. The sample locations were distributed inho-
mogeneously over the grid, with a higher density in the vicinity of the heatsour

We considered the three different scenarios from Theorem 5.4.5:

€y = 100 -

1. Scenario lw(zx,-) € Y, forall z € X.
To simulate this scenario, we fixed' = m = 61 and variedn’ fromn’ = 1
ton’ = n = 31. The results of this simulation are displayed in Figure 5.3. In
this Figure it is clearly shown that the alias error decreases mereases and
is zero forn’ = 31.

2. Scenario llw(-,y) € X, forally € Y.
For this scenario, we proceeded similarly as in the simulations for scenario
2. n/ = n = 31 remained fixed, whereas’ was varied fromm’ = 1 to
m’ = m = 61. The results are displayed in Figure 5.3. Again, the alias error
decreases ag’ increases and is zero for’ = 61.

3. Scenario llI: there existr, y) € X x Y for which

{ w(ay) g Xn
w(x,-) gym
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Figure 5.4: First result for scenardo(left) and second result for scenaBdright)

For this scenario, simulation results are shown in Figure 5.4. On the left the
alias error is shown for a simulation, whemné was fixed atl5 andm’ was
varied from1 to 61. On the right, the alias error is shown for a simulation
wherem’ was fixed aB0 andrn’ was varied froml to 31. Both Figures show
clearly that a full bandwidth in one dimension is not sufficient for the aliesrer

to become zero.

5.6 Conclusions

In this chapter we considered the problem to recover or approximatdsigfined

on a multi-dimensional domain from non-uniform samples. The domain of thalsign
has been assumed to have a Cartesian structure and this coordinateestrastoeen
used in a multi-dimensional spectral decomposition that uses empirical orthaho
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basis functions. This means that no assumptions on the structure or anabftitiey
basis functions have been made, other than their orthonormality with respiaet
Hilbert space of square integrable functions. For band-limited signalbavees! that
exact recovery of the signal is possible from its samples by introducingabte bi-
linear form from which the Fourier coefficients of a reconstruction fiemchave been
inferred. For non-bandlimited signals we derived an explicit alias egfmedor the
Fourier coefficients of the alias error. We introduced an alias sensitipéyador that
reflects the size of the alias error between signal and reconstructiarharatterized
the maximum alias sensitivity in terms of the maximal eigenvalue of a suitably defined
tensor operator. It is shown that for planar signals (i.e., signals on aitwensional
domain) and for finite dimensional inner product spaces, the alias ségsgicom-
putable from a matrix eigenvalue decomposition in a number of special cases.

Results in this chapter have been developed primarily for planar signalgevda the
exact reconstruction result stated in Theorem 5.3.2 admits a straighttbgenaeral-
ization to signals defined on higher dimensional domains. The same remdidsapp
to the result of Theorem 5.4.1 on the alias expressions. Theorem 5.4@lEes to
signals onN-dimensional domains by introducing a linear oper&tar7y — 7y in

a similar manner as in the proof of Theorem 5.4.3. The alias sensifigitythen be-
comes the maximum eigenvalue@f An efficient numerical scheme for the compu-
tation of eigenvalues of tensorial operators does not seem to existamihieresting
topic of future research.

In this chapter we assumed a Cartesian structure on the domain of the sifimials.
assumptions can not be weakened to more general (non-Cartesiaal) digmains
without compromising the structure that is assumed in the spectral decomp®sition
(5.1) of signals or tensors.

The results on the characterization of the alias sensitivity operator caophiediin

an algorithm to optimize the selection of sample points in each coordinate. The alias
sensitivity is then used as a measure to select a suitable set of sample paafits wh
achieve a minimum alias error. See [3] for an application on sample pointiseléc
computational fluid dynamics models.

5.7 Proofs

Proof. Proof of lemma 5.3.1.
Because of the symmetry in coordinate directions, it suffices to only prevesttond
part. Letr,s € V,,,. Thenr = >/, apypr ands = >, by, whereay, = (r, ¢y)
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fork=1,...,mandb, = (s,¢;) forl =1,...,m. Then

(ros)y = aphp, Y by = > agbp =a'b
k=1 P k=1

wherea = col(ai, . . ., a,) andb = col(by, ..., b,). Now use the fact that = ¥a
ands = Ub. SinceW has full column rankg andb are uniquely determined byand
§ and given byu = U—L7 andb = ¥ —L3. Substitution yields
(rys)yy=a'b=7" (T UL5=F"P5=(rs)y
P
which gives the result. O

Proof. Proof of Theorem 5.3.2.
The assumption (5.13) implies that, = 0 for £ > n and/ > m. Hence, the signal
w or the tensoi? admit representations

n m

=3 apepr(@)ve(y)

k=1/¢=1

W =" arpr @

k=1¢=1
where, forl < k <nandl </ <m,

are = ((w, or)x, Ye)y.

Since bothd and ¥ have full rank, Lemma 5.3.1 promises that for(all y) € X x Y,
1 <k <nandl </ <mwe have

Using (5.11), this yields that

are = ((w, o) x, Ye)y = (W, Pr)N, Vo) M = Qe

But then

n m
Do (2,9) = DY arepr(x) = w(z,y)

k=1¢=1
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and

m
an = Zzakf@k Ry =W
k=1/=1

as claimed. 0

Proof. Proof of Theorem 5.4.1.

Fork =1,...,n we have that
(o) (e.) (o, ¢] o
<w7 ‘Pk>N = < Z Z apq@pwqa ‘Pk>N = Z wq Z apq(‘va (Pk>N
p=1g=1 g=1 p=1
akq+zp>n apg{Pp k)N
(o ¢] [o¢]
= Z Ygakq + Yq Z Apg{Pps Pk)N -
q=1 q=1 p>n

Here, in the second equality we used Lemma 5.3.1 which states#hap,)ny =
(©ps r)x = 0pr, for p < mandk < n. Using this expression together with the or-

thonormality of the basis functions, we obtain that#éoe 1,...,nand¢ =1,...,m,
are = (W, 06)N, Y1)
= O Wgarg, b)) + (O Vg Y apg{p, 0r) N, V1) M
q=1 q=1 p>n
= Z kg (Pqs Y1) + Z<80p7 PEIN Z Apq (Vg Y1)
q=1 p>n q=1

= Zakq@pqawl)M + Z akq<1,[}q,ﬂ)l>M

q=1 q>m

Akl

+ Z(‘Pp790k>N Zapq<qu¢l>M+ Z apq{Wq: Y1) m

p>n q=1 q>m

ap

For the last equality we again used Lemma 5.3.1 to infer {hati);) s = g This
gives thatiy, = ax + a2 with o212 as given in (5.15). O
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Proof. Proof of Theorem 5.4.3.
The operator norm of the alias sensitivysatisfies

A 2
0£A€lx(Z2 1A%
= sup [ SA|?
0#£A || AllF=1
= sup (SA,SA)
0#£A || Allp=1
= sup (S*SA, A)
0#£A || Allp=1

It follows that||.S]|? = Amax(5*S) = Amax(SS*), whereAmax s the largest numbex
of the eigenvalue problem

SS8*Z = \Z.

Here, SS* : R™*™ — R™*™ or, equivalently,5S* : 75 — 7> with 75 the set of
order-2 tensors oR™ x R™,

SinceS : (5(Z2) — R™™, its Hilbert adjoint [51] isS* : R"*™ — (5(Z%) and
defined, for arbitraryd € ¢5(Z%) andB € R"*™, by the property

Using the definition of5 we find

alias;
aj Okl

NE
NE

(SA, B) =

B
Il
—
o~
Il
—

I
NE
NE

Z apl<90k7 @p)N + Z akq<¢lﬂ/}q>M

k=11=1 |[p>n q>m

+ Z Z apg{Pk> Pp) N (Y1, Yg) M | bri
p>n

q>m

= > > ap[(S*B)(p,q)]

PELy qEL
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where thep, ¢q)th entry of S* B is

0 1<p<nandl<g<m
(S*B)(p q) _ ZZZI Zlnil 6kp<wquwl>Mbkl 1 < p < n,q >m
’ D k=1 ity 5ql<‘va <Pk>kal p>n,1<g<m

> oh=1 i1 {Pp, PRI N (Vg Y1) b P> n,q>m
(5.30)

It remains to obtain a representation teér:.= SS* : 75 — 7> as linear operator on
the set of order-2 tensors @®&* x R™. For this, letTy € 74 be the multiplicative
tensor associated witd (See appendix ) is then defined by the elements,,, of
T, which are obtained by evaluating

Irsvw = <TrsvsS*va>Rn><m = <S*Trs, S*va>€2
whereT™® andT" are rank-1 tensors defined by:
TV =€, @ep, (5.31)

where the vectors!, ande/, fori = 1,...,n andj = 1,...,m form the standard
Euclidean basis foR™ andR™. For this, substitutd? = 77 in (5.30) to infer that

0 1<p<n,1<g<m
(S*T"%)(p,q) = Orp(Pqs Ps) 1<p<n,g>m
’ 5q8<(ppv(Pr>N p>n,1<g<m

<@p7¢r>N(¢qa¢s>M p>n,g>m

Hence,
Grsvw = <S*Trs, S*va>£2

= Z Z 5Tp60p<¢Qaws>M<¢qv¢w>J\/l

p=1g>m

+ Z Z 0g50quw (Pps Pr) N {®p: o) N
p>ng=1

+ 30 3 (o or) N (g, Vs) ar (s @)V (g )t

p>ng>m

which rewrites as (5.21). This gives the result. O
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Proof. Proof of Theorem 5.4.5

1. IfdimX = K, the expression (5.21) simplifies to

K

Grsvw = Z <§0p7()07’>N<§0p790U>N'
p=n-+1

and no longer depends srandw. The elements of the four-dimensional array
[[grsvw]] can therefore be equivalently represented by two-dimensional array,
the matrixG, € R™*", say. Definedy as theN x (K — n) matrix whose
(k — n)th column is the vector of restrictions, = ¢ilx,, » < k < K.
Then, using the orthonormality of the bagis,, kK = 1,..., K}, we have that
dTd =007 = I and
~ ~ ~ ~ T

(‘D q>tai|> (q; <I>tail) =In. (5.32)

With @ the matrix defined in (5.7), this implies that

Gy = PQd @ QDT = 27 Q (IN - &)&J) Qb =
— OTH(DTE) 2B (Iy — D7) B(DTD) 26T b —
—(@7E) (3T - (867)2) (37d) ! —
—(@7F) 1,

where, in the second equality we used that (5.32) implies
PP = In — @@ 7. Hence, the alias sensitivity is given by:

~+~\—1
1] = A(Gu) = M (878) " — 1 (5.33)
2. The proof is similar to the previous case.

3. Inthe third case, the summations in the expression (5.2%).for, run to K or
L. Specifically, the multiplication tens@i; is a sum of three tensors, given by:

G = ZZ ZZ (Gy(s,w) + Gg(r,v) + G(r,v)Gy(s,w)]

T S v w
e, ®e, e, e,
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whereG, (s, w) is the(s, w)th entry of (I T W) ~! —T andG,,(r, v) is the(r, v)th
entry of ((i)Tci))—l — I. Hence, the representation 6f with respect to the

standard Euclidean bas€§y,s,w]] € R™*™*"*™ is given by the four-way
array

[grsvwll = [[Gy(s, w) + Ga(r,v) + Gy(s, w)Ga(r, v)]]. (5.34)

The alias sensitivity thus becomes

11 = M ([[Gy (5, w) + Ga(r,v) + Gy(s,w)Ga(r,0)]]))  (5.35)

O]

Proof. Proof of Theorem 5.4.6 We need to show thiat GA) > 0 for all A €
T2, A # 0. Since

(A, GA) = (A, 8" A) o = (S A, 8" A)gy 22 ) = | S Al = 0

it suffices to prove thadim (ker S*) = 0. To see this leB # 0 and consideS* B as
defined in (5.30). Sinc& +# 0, there existgk, [) such thab;; # 0. Setq = I, let

D) = [Pnt1---PK]-

and defineX € R™*(K—") to be the matrix whosék, £)th entry is(px, @rin)3 for
1<k<nandl </¢< K —n. Then

o } a1
X = 3T QPP QP = ((I)T(I)) —In

~—~\—1
(See the proof of Theorem 5.4.5). Nod, = (<I>T<I>) — I, is not equal to
zero unlessXy; = X which is not the case. Therefore, there ip & n such that
{¢p, 01, )N # 0. Consequentlyker(S*) is trivial, which gives the result. O
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Chapter 6

Conclusion

Many people find open-ended novels frustrating. After all the time arattefpent
on a story and its characters, one wants to find out what happens aeddfi bn-
sure is often a disappointment. Unfortunately, it is the nature of sciencecasrtific
communication that both researcher and reader are left with questioasy &bien-
tific publication, be it a research paper or a PhD thesis such as this, issaeite
open-ended since research generally triggers at least as many gsiestiib can an-
swer. This also holds for the work described in this thesis. Therefasdattt chapter
serves to give an overview of this work and, more importantly, it points ta Wwha
notbeen achieved and which new questions have arisen.

The organization of this chapter is as follows. We first give an overviesvsum-
marize the most important concepts and results of each chapter. Thentnate tu
the problem statement and discuss the contributions of this work. The eleaients
the problem statement that have not been resolved are also indicatedhdrhisu-
tomatically leads to discussion of future research questions and we endemitinad)
conclusions.

6.1 Overview

The aim of this work has been to develop numerical techniques to extrecifisp
information from process models. Specifically, we considered problegasdiag
approximation of multi-variable signals and systems. In Chapter 2 we argitbdise
approximation problems can be phrased as spectral decomposition prafferes
the notion of spectral content can be (and has been) generalizedaiediffeatures
of a signal. Since we consider multi-dimensional signals and systems, te@sors
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6.1. Overview

be used to solve these low-rank approximation problems. Chapter 2 thezepsoto
give the problem statement for this work.

Chapter 3 considers the problem of finding low-rank approximations t@tensor
order2 tensors, matrices, this problem is well understood, see Appendix A.3: Gen
eralization of these results to higher-order tensors, however, is @oglsfiorward.
Finding tensor decompositions that allow suitable approximations after trungstio
an active area of research [47], to which this chapter contributesiougaways.

The problem of low-rank approximations to tensors is ill-posed. Thezefoe have
considered a different rank concept, referred to as multi-linear or hnadlk. We de-
fined a new method to obtain modal rank decompositions to tensors. This method h
been referred to a8SVD which is short for Tensor Singular Value Decomposition.
We have derived properties of the TSVD and in certain cases we haseryed error
bounds when the method is used for low-rank approximations to tensdéecl.7

we have proposed an adaptation of the TSVD method that may give bettexapp
mation results when not all modal directions are approximated. In Sec. 3&wee
presented a numerical algorithm for the computation of the (dedicated) T8MD

a small adaptation, this algorithm can also be used to compute succesgi@nean
approximation to tensors. Finally, in Sec. 3.9, we have included a simulation-exa
ple which demonstrates the methods proposed in this work and compares them to
well-known existing method.

The concepts that were introduced and discussed in Chapter 3 werénusesys-
tem approximation context in Chapter 4. The chapter started with a discudstom
well-known model reduction method of Proper Orthognal Decompositio@DjP
We have shown how the low-rank approximations to tensors can be usedire d
projection spaces in POD. Using these alternative projection spacegdezitanges

in the spectral decompositions and Galerkin projection, resulting in an didapbd

the POD method. This adaptation is both a generalization and a restriction. It is a
generalization because it allows POD to be used in a scalable fashiorofdems
with an arbitrary number of dependent and independent variables.eGrittar hand,

it is also a restriction, since the projection spaces used are not ordirgecton
spaces, but ones that have a Cartesian product structure. Thenedaetion method
that is obtained by combining the signal and system approximation conceydis&ia
demonstrated on a benchmark example from chemical engineering. Thistsdmula
example shows that the method is indeed feasible, and that the performaooe-is
parable to existing methods.

Chapter 5 considered the problem of reconstruction and approximatiomukiF
dimensional signals, if these signals are sampled with non-uniformly distribeted
sors. We considered multi-dimensional signals on a Cartesian domain. fitnal ce
question of this chapter is that of finding a reconstructioof w from its samples.
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Chapter 6. Conclusion

We considered a reconstruction m&pand have presented conditions for exact re-
construction ofw from <. In case that exact reconstruction is not possible, we have
derived an expression for the reconstruction error.

6.2 Contributions and future research

The focus of this work has been on low-rank approximations to signalsystdms.
Specifically, the contributions of this work are the following.

e In Chapter 3, we have considered the problem of finding low-rankcejpa-
tions to tensors. We have defined a new method for the computation of low
modal rank approximations to tensors, callegvVD We have derived proper-
ties of this method and in certain cases provided error bounds when thedmetho
is used for low-rank approximations to tensors. We have also definedisgn a
tation of the TSVD, that may provide increased accuracy when not all Imoda
directions are approximated. We have derived a numerical algorithm dor th
computation of the TSVD and analyzed its convergence properties. With a
small adaptation, this algorithm can also be used to compute successive rank
one approximations to tensors. The method proposed in this work was com-
pared to existing methods in a simulation example.
Results in this chapter support earlier findings that indicate that most of the
approximation properties of the matrix SVD do not naturally carry over when
generalizing to higher-order tensors. Nevertheless, the coordirdgpendent
framework introduced in Chapter 3 provides additional insight into thelenob
of low-modal-rank approximations to tensors and underlines the usefuifies
the approach in approximation of multi-dimensional signals.

e In Chapter 4 we have considered the problem of finding approximations to
multi-dimensional systems. We present an adaptation of the method of Proper
Orthogonal Decompositions (POD) for systems whose variables evobreaov
Cartesian domain. We have used tensors to compute empirical projecti@s spac
that define the reduced models. This leads to a modified spectral expansion
a more general Galerkin projection. The proposed model reduction method
demonstrated in two numerical examples.

This adaptation of POD allows multiple dependent and independent variables
explicitly to be taken into account. Choosing inner products for deperssheht
independent variables separately may provide additional degreeseafoiin

in dealing with scaling problems. Furthermore, the method allows truncation
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levels for each independent variable to be chosen separately, whichromay
useful in some applications.

e In Chapter 5 we have considered the problem of reconstruction andxapp
mation of multi-dimensionasampledsignals on Cartesian domains. We have
presented conditions for exact reconstruction of such signals franstrapled
versions. Whenever exact reconstruction is not possible, we havaatbrized
the reconstruction error together with expressions for alias sensitivities.

The results described in this chapter allow the Missing Point Estimation method
introduced in [3] to be extended to Cartesian domains.

The approach detailed in this thesis has been tested on a small-scale bénekimar
ample in Section 4.4. However, a lot of work still needs to be done and thestditkh

a lot of questions to be answered before this approach can be usedndustrial
context. The main steps that need to be taken are the following.

e The signal approximations considered in this work are all obtained from tru
cated tensor decompositions. The truncation level is chosen such thetificsp
level of accuracy is obtained. Alternatively, one can define a truncédie
and then find the best low multi-linear rank approximation as in [42]. In the ma-
trix case these two approaches would lead to the same result, but in the tensor
case these approaches are different. Low multi-linear rank approxinmaétn
ods were not considered in this work but may prove useful for the ctatipn
of projection bases in POD.

¢ In this thesis we did not focus on the numerical aspects surrounding this wo
Various issues need further attention and research in this context. Ringtly,
computational load and complexity of the algorithms proposed in Chapter 3
methods need to be investigated further. Secondly, the computational load of
the reduced models defined in Chapter 4 needs to be examined. If ngcessa
numerical techniques such as Missing Point Estimation [3] and Discrete Empir-
ical Interpolation [17] can be incorporated to improve computational efibgie

e From a system-theoretic point of view, it is important that model reduction
methods preserve crucial system properties such as stability and diggipati
From a physics point of view, it is important that model reduction methods kee
conservation laws, such as conservation of mass, intact. These isseasdt
been addressed in this work and it is a very important aspect of futseaneh
to investigate whether it is possible to include mechanisms that include these
properties in the reduced model.
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Chapter 6. Conclusion

e Although the methods presented in this thesis have been tested on small-scale
benchmark examples, exhaustive tests on industrial-scale benchmarks mode
still need to be carried out.

e The use of tensors in system theoretic questions of signal and systeaxiapp
mation has resulted in novel insights and novel applications. These inuatlve b
algebraic aspects of tensors, as well as numerical tools for the computation o
basic algebraic concepts such as rank, eigenvalues or decompositiems o
sors. A host of research topics in this direction are foreseeable. Asaample,
if we look at the more distant future, it would be very interesting to investigate
whether the concepts discussed in this thesis can be linked to a reseacch top
from numerical mathematics that is currently receiving a lot of attention. A
number of research teams are working towards using tensors to maketeempu
tion of multi-dimensional functions on discretized grids more efficient, see [11
[36], [61] among others. The methods developed in this area may be cainbine
with the model reduction method introduced in this work, to provide efficient
algorithms for control and observer design for multi-variable distributed sy
tems. As an example, [50] discuss Krylov subspace methods for lindensys
with a specific tensor structure. It would be worthwhile to investigate whether
the structure, or a modified version, of the reduced models introduced in this
work allows for specific optimization algorithms that have certain numerical
advantages.

6.3 General conclusions

Although a number of future research directions have been indicated pretimus
section, this work is a part of developments that lead towards the end ffoatieer
automation and re-design of industrial production processes. In thisrseee indi-

cate how the work presented in this thesis contributes to the global issudmtteat
been highlighted in Chapter 1.

In Chapters 3 and 4 approximation concepts for multi-dimensional signalsysad
tems have been discussed and developed. These concepts allow tinectiomsof
low-complexity models of production processes, as described in Chaptay4ea-

ture of these low-complexity models is that they allow extraction of those system
trajectories in a way that is suitable for use in real-time simulation and operation of
these processes. This means that they allow extraction of the system tragettiat

are relevant to process operation. These system trajectories oitgrtaisito the pro-
cess that may not follow from measurements alone. This information careddars
analysis, optimization and control purposes.
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6.3. General conclusions

The information contained in relevant system trajectories is especially impéotan
sustainable operation of production processes. It allows the procbesofmerated in
such a way that the use of natural resources is limited while at the same tinsradde
side-effects are minimized. The use of low-complexity does not end héey dan
also be used in a simulation and design context. The trajectories that areedbteg
assist in process re-design and lead to a next generation of footénteichnology.
Although these results form only a small element in the evolution towards a more
sustainable and equal society, it is a move in the right direction. Many manechf
small elements and large breakthroughs are needed, but they all centolards
building a brighter future. A future where wealth is distributed more equallycam
planet is preserved for future generations.
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Appendix A

Notation and Technicalities

A.1 Notation

A.1.1 Symbols

The following notation is used throughout this work. Lowercase chaeteare
used to indicate signals and functions. Underlined lowercase charagtetsnote
vector-valued signals and functions. A scalar functiorNoYariables is denoted by
a(xy,...,zN). A vector-valued function ofV independent variables is denoted by
a(xi1,...,xN). Throughoutry, ...,z x will be used to indicate independent variables
and may refer to both space and time. Uppercase charadiesse used to denote
operators such as matrices and tensors. Uppercase calligraphictehsys, are used

to indicate vector spaces and function spaces. Real and complextehsiere dnoted
asRR andC and will be identified with their corresponding field. The set of integers
is denoted byZ. Double-barred characters, denote intervals in the set of real or
integer numbers. We will denote a projection Hyand the symbol refers to the
identity matrix.

A.1.2 Differentiation

The partial differential operatog%c will be denoted byo,,. For a vector space

X equipped with an inner product we write, z2) to indicate the inner product,
x1,x2 € X. || - || refers to the norm.[[-]] is used to indicate the elements in

a basis-dependent representation of a tensor defined on a Cartesiictpt =

X1 x --- x Xy of vector spaces. Subscript indices refer to the mode, superscript ele
ments denote the element number. As an exanfé‘fé), denotes thé,.-th function in
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the k-th mode the tensor operates i},

A.1.3 Polynomials

A notation that is used often in this work and requires some explanation isfthat o
matrix-valued polynomials in several indeterminates. &) be a polynomial of
orderk in the indeterminaté with real coefficientsu, . . ., ax. Thatisr(¢) is given
by r(&) = ag + a1€ + - - - + arc¥. Replacingt by the differential operatoﬁ gives
an orderk differential operator-( j) with real coefficients. Theln( ;) can operate
on a scalar functiorf : R — R that isk times continuously dlfferentlable yielding
r(E)f = aof +ardf+-- + akj—;f. The shorthand notation that will be used
to indicate these polynomials ise R[¢], whereR[¢] denotes the set of real-valued
polynomials in the indeterminate

This can be extended to the case of a vector-valued fungtiol®R — R"™. In this
case, we consider the polynomial operak{g) € R**". The coefficients of? are
now matricesd € R*", i.e. R(¢) = Ao + A&+ ...+ AgEF. Again, substituting
the differential operatofi forf thenR( i) operates on a functiofi: R — R"™, and
yields the functiory = R(%)f.

The final step is to consider polynomials in multiple indeterminates. That &nietw

be a multi-indexed indeterminate= (&1, ...,&x) and consider a polynomia <
R™*"[&q, ..., En]. The coefficients oR are matricesk, € R™*", where/ is a multi-
index? = (¢1,...,¢y). The generalized indetermingtequalst = (&1, ...,&x) and
we definedt! := fl e ﬁ;v as thel-th power ofzi. The polynomialR is then given
by

R(&1, ... EN) : = Y ReE'= Y Regyl6d (A

0<|¢|<L 0<|¢|<L
where|¢| = SN ¢, andL = SN | max(¢). With & replaced by the partial

derivative§, = 0,,, R defines a polynomial differential operator. To demonstrate
how this notation can be derived from a set of PDEs, consider the folipexample.

Example A.1.1. Consider the following set of Partial Differential Equationsuin=

[wi (w1, 22), wa (1, 22)] "

2
alaxlwl + agamwg =0

Oé38x2w1 + Oé48x1x2w2 =0.
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In matrix notation this becomes

[ 10y, 042632 1 [ w1 1 —0. (A.2)

0438502 a48x1x2 w2

The polynomial notation for this set of PDEs is

R(€) = Y Ruynél &y

0<[e|<L

= Ri0é1 + Ry1&2 + Ri1&é2 + Roaks.

whereL = max(¢;) + max ¢y = 2. The coefficient matrices are given by

a; 0 0 0 0 0 0
Ry = s Rop = s R = ; Roo = .
N R P R P S b

The other coefficient matrices are equal to zero. Note that the solutiaf §a.2) is
linear.

A.2 Discrete-time systems

LetX =X x--- x Xy, whereX;, = {p,(f’“) | ¢x = 1,..., L} is afinite discrete grid
of points in mode: and ordered according inl) < p,(f) <o < p,(f’f). Consider

a signalw : X — R. Letg, be the forward shift operator acting on the spatial
discretization in théith mode as defined below.

Definition A.2.1. The forward shift operator acting on the spatial discretization in
the kth modegy, is defined as

Y4 l+1 Y4
(1) () e Jw@ ™YY < L
gw(py VoY) =
by, = Ly,
(A.3)

wherew : X — R with X = I}, X,.. For infinite countable discrete grids, one or
more dimensiong, are infinite and we define

gkw(pgel), . ,pg"), . ,pgé”)) = w(pgél), .. ,p,(f’“Jrl), . ,p%m) (A.4)
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A.2. Discrete-time systems

Thebackwardshift operator acting on the spatial discretization in tkt mode,g,;l,
is defined as

(€1) (£x—1) (¢n)
3 w(py ", ...,D sees D) A >1
5 lw(pgfl)’.“’pl(fk)’.”’p%N)): { 1 k N .
U, =1
(A.5)

Definition A.2.2 (Discrete-time lumped systemp discrete-time lumped dynamical
systent is defined as a triple

Y = (T, W, B). (A.6)

In this triple, T C Z is the time axisW is the signal space an8 is a subset of the
collection of maps frorfT to W.

As for the continuous case, we are especially interested in those ditoreteimped
systems that admit a representation by means of a (linear) set of OrdiiffareBce
Equations. LetD € R™*"[¢, n] be a polynomial in two indeterminates and consider
the following difference equation

D (s, gl_l)w =0. (A.7)

This defines the discrete-time lumped syste8m= (T, W, B) with time setT =
{z1,...,xr, }or T = {z}, | k € Z} with x;, = kTsample the behavior is given by

B={weW"| D, )w=0}. (A.8)

The signalkw may be scalar- or vector-valued. In the scalar case we Wave R,
whereas in the vector-valued cdge= R".

Definition A.2.3 (Distributed dynamical system on a discrete domaiklistributed
dynamical systerit on a discrete domain is defined as the triple

Y = (X, W, B). (A.9)

In this triple, X C Z" is the set of independent variablé¥, is the signal space and
B is a subset otV called the behavior of the system.
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As for the continuous case, we are especially interested in those ditonetleimped
systems that admit a representation by means of a (linear) set of PartiedeDife
Equations. LeD € R™ "¢y, ..., &N, m,-..,nn| be a polynomial iR N indetermi-
nates and consider the following difference equation

D(s,si . v, sy)w = 0. (A.10)

This defines the discrete-time lumped systém: (T, W, B) with T = X; x - - - x Xy
behavior is given by

B={weW*| D, ... on 3w =0} (A.11)

The signakv may be scalar- or vector-valued. In the scalar case we Wave R,
whereas in the vector-valued cage= R".

A.3 Optimal rank approximation to matrices

Section 3.2 introduced tensors and some of their properties. This appgdéivoted
to a special class of tensors, namely orgléensors on finite domains, commonly
referred to as matrices. As we will demonstrate , matrices have sevecilgp®p-
erties. We will introduce concepts such as matrix rank and the Singular e
composition. These concepts are well-known and can be found in markg looo
matrices, such as [33]. These concepts form the background dongw tecompo-
sition concepts.

Consider a tensdiV’ : X} x X» — R, whereX; = R% is equipped with the standard
Euclidean inner product far= 1,2. The array of coefficient§wy, ¢,]] obtained by
operating’’ on the standard bases f&f, i = 1,2 is an objec{[wy,y,]] € RI1*12,
This object is what is usually referred to as a matrix. In other words, theezits
wy, ¢, Of @ matrix[[wy,¢,]] € RY1%12 are the coefficients of the representatioriisf
with respect to the standard baseskdr andR%2, i.e.

L1 Lo
13 12
W= 3 wnne @
l1=1/42=1

Conversely, the matri¥d := [[wy,s,]] € RF1*L2 defines the tensd# : REL x RE2 —
R according to

W(x1,x2) = xIAxg = (11, Axg) = <ATIE1,:E2>.
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A.3. Optimal rank approximation to matrices

In the remainder of this chapter we will use the notatiba= [[wy,s,]] € RF1*12 so
as not to confuse the tensidf with its representation.
An important concept is that of matrix rank, which is defined as follows

Definition A.3.1 (Matrix Rank) Regarding matrix rank, we can define the column-
rank and the row-rank.

1. LetA = [ay---ap,] € REY*E2 withay, € REL, g = 1,..., Ly. The column
rank of A is defined as

col-rank(A) := dim(span{a; ...ar,}) (A.12)

2. LetA = [a1---ar,]" € REV*L2 withay, € RE2, 41 = 1,..., Ly. The row
rank of A is defined as

row-rankA) := dimspan{a] ... azl} (A.13)

Alternatively, the row and column rank of a matrix can be defined using tteviog
kernels. Let

kerl(W) = {.1‘1 e RL; | W(ZL‘l,ZL‘Q) = 0, Vag € RLQ}
kery(W) = {z5 € RLy | W(w1,22) =0, Vay € R}
Then, the row-rank and column-rank dfcan be defined as

row-rank A) := Ly — kery (W)
column-rankA) := Ly — kery(W)..

The following result is very well known and states that the row- and coltemnis of
a matrix are always equal. The proof can be found in [33] for instance.

Theorem A.3.2. Consider a matrixd € RX1*%2 the following holds
col-rankA) = row-rank(A) =: rank(A). (A.14)
The Singular Value Decomposition of matrices will play an important role in the re-

mainder of this chapter. Its definition can be found in many books on matnks a
linear algebra, such as [33]. First, we need to define unitary matrices.
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Definition A.3.3 (Unitary matrix) A matrix A € R1*I1 js said to be a unitary
matrix if
ATA=1

Theorem A.3.4(Singular Value Decomposition (SVD)Let A be a real matrix of
dimensionl-by-Ls. Then there exist orthogonal matrices
U:[u1~--uL1]€RL1XL1; V:[Ul---vLQ]ERLQXLQ
such that
UTAV =% = diag(%,0) € RL; x ks (A.15)

whereX = diag(o,...,0,) € RP*Pwithoy > -+ > 0, > 0andp = rank(A). The
numbersoy, ..., 0, are called thesingular valueof A, the vectorsuy, ... ,uy, are
called theleft singular vector®f A and the vectors, ..., v, are called theright
singular vectorsf A.

In other words A € RX1*L2 can be decomposed as follows
A=UxvV"

where,U € RE1<I1 andV e RE2%12 are orthogonal matrices andlis anL; x Lo
diagonal matrix with non-zero elements, . . . , o, on its main diagonal.

The SVD of a matrix can be interpreted in different ways. We now givesthherna-
tive interpretations, these will prove useful later on in this chapter.

1. The Singular Value Decomposition of a matrdxof rankp is a dyadic expan-
sion, i.e. it is an expansion of in rank-one matrices of the form

P
A= Z Uiuw;r.
=1

The orthogonality properties are now expressed in terms of the vectars, i.e
(ui,uj) = 0;; and (v;,vj) = d;;. Again, the sigma’s are in non-increasing
order,i.e.o; > --- > 0, > 0.

2. The Singular Value Decomposition of a matrix can be obtained througlsucc
sive rank-one approximations of the matrix. Given a mattix RE1<12 | et
U, € RE1xL2 pe g rank-one matrix that minimizes the norm

A= Ul (A.16)
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A.3. Optimal rank approximation to matrices

It is straightforward to show that the solution to this problem is gived/by=
oruiv{ . Now, define for successive valués= 1,...,p, the error4; :=

A —U; —--- — U and find the best rank-one matii%._; in the sense that
|Ax — Ug1|F is minimal. ThenU,41 = 0 andUy, = opugv, and we infer
that

p
A= Z O'iuiUiT.
=1

3. The SVD can also be obtained through the following maximization problem

max  [(Av,u)|

U,
lull=1,||v[|=1

The vectors that yield the maximum ake andv; and the maximum is given
by (Avi,u1) = o1. This maximization can be repeated, with the additional
constraints that. | u; andv 1 v for k = 2,..., p by setting

e max [(Av, u)|.
b
HuH:L”U”:luLspan{ul,...,uk_l},ULspan{vl,...,vk_l}

The vectors that yield the maximum aig andv, and the maximum is given
by (Avk, ur) = 0. Again, we find the decomposition

p
A= Z aiuwi—r.
i=1

The application of the SVD that is most relevant to this work is the application to
optimal rank approximation of matrices. The optimal rank approximation probfem
matrices can be formulated as follows.

Problem A.3.5. Given a matrix4 € RE1*L2 find a matrixA;, of rankk such that
1. ||A — Ag||F is minimized.

2. ||A — Aglling is minimized

The solution to the optimal rank approximation problem is as follows. ILEV/ "
be the SVD ofA. The optimal rankk approximationA; can now be defined as
Ap =Yk | oyuiv] with the error equal to

1A = Aklliha = ok 11

P
1A= Al = > of.
i=k+1
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50 100 150 200 250 300 100 150 200 250 300

(a) Original Image (b) Ranks Approximation (c) Rank15 Approximation

Figure A.1: Optimal rank approximation of the clown image. The original image is
of size200 x 300 and the matrix describing it has raB0. In the middle and on the
right two rank approximations of the original image are shown.

This error is minimal for both problems. This solution is unique in case the Frobe
nius norm is used. The solution®t unique if the problem is stated in the induced
norm. Indeed, if we setl;, = Zle(ai — pi)uiv; whereps, ..., p, are arbitrary real
numbers such that, far=1,... k&

0<o0i—pi <0oky1

then||A — Agling Will remain equal tooy. 1, yet the approximant matridy, is dif-
ferent. An imaging example of optimal rank approximation to matrices is shown in
Figure A.1. This shows an image which can be representecbg & 300 matrix of
rank200. The middle and right of Fig. A.1 show rank approximations of the image.
These low-rank approximations don’t capture all detail of the origindlijtye clear

that one is looking at a (distorted) image of a clown.

Optimal rank approximation to matrices is a powerful tool that has found pidad

use. Generalization of this property to the more general case of drdensors,

N > 2, is not straightforward as is discussed from Sec. 3.3 onward

A.4 A Useful Lemma

The following lemma proves useful and relates tensor evaluations with terhisoer
products.

Lemma A4.l. LetW € Ty, W : X1 x --- x Xy — R, with &}, inner product
spaces, possibly infinite dimensional, ande X, forn=1,...,N. Then
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A.4. A Useful Lemma

Wiz, - ,an) = W, 21 ® - @ zN).

W($17"' ,.’L'N) = <xN7'"<x27<xlvw>1>2"'>N-
Proof. Proof of Lemma A.4.1

1. Let {fﬁf”)}gjzl be an orthonormal basis foY,,, n = 1,...,N. W can be
represented with respect to these base®as- >, - >, wgl...gNdﬂl) ®
- ® 5%”. The tensor evaluation can be written as
W(:cl, <o ,:EN) = Zél v ZZN wgl...gN<$1,€f1> ce <$N,§f\lfv> LetU := 11 ®
~-®@zy. U can be represented &s= 3", --- >, ugl...gNé‘l) ®--- ®§§§N)
with ug,..e,, = [TV, (2, £9);. Then,

(W,U) = Z o Z Z . Zwkl"'kNufl“'éN

k1 kn 01 In

’ <fl7 Zl> <§N7N>
—_——

0 unlesski=¢;

— Z e Z Wpy- by Uyl

41 5%

— Z R wal'"eN<€fl’xl> T <£§\]/V7$N>
41 5%

which is the tensor evaluation.

2. To prove the second statement, we first show ¢Ina,tW(-,v2, S L UN))L =
W(xy1,ve,...,uN) for somevn e X,,n=2,. . Let {gﬁf”)}f_l be an

orthonormal basis fak’,, n = S N. W can be represented with respect to

these basesa§ = 3, --- ZzN wgl..‘gNél e ® §§§N . Then

N
W (a1, v, on) = 3 zwzl o (4 20) TTE™, vn)-

12 k=2
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On the other hand, we can writg asx; = >~ 1(951,51 >§ . Then

<$17 W(a U2,y .., UN)>1

= (a1, §k1)>1W(5§k1)7U27---,UN)
k1

= Z $17§1k1 Z Zwlﬂfg AN H
k1
= W(l'l,UQ,.--,UN)

Thus, we have thatr,, W (-, ve,...,un))1 = W(z1,ve,...,vx). Since ten-
sors are multilinear functionals, this completes the proof.
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Summary

Approximation of multi-variable signals and systems: a tensor
decomposition approach

Signals that evolve over multiple variables or indices occur in all fields ofhseiand
engineering. Measurements of the distribution of temperature across thee djio-

ing a certain period of time are an example of such a signal. Multi-variablemsgste
describe the evolution of signals over a spatial-temporal domain. The mathdmatica
equations involved in such a description are called a model and this modeédicta
which values the signals can obtain as a function of time and space. In airiatiu
production setting, such mathematical models may be used to monitor the process o
determine the control action required to reach a certain set-point. Sinceetoeir
lution is over both space and time, multi-variable systems are described byl Partia
Differential Equations (PDES).

Generally, it is not the signals or systems themselves one is interested ing kit th
formation they carry. The main numerical tools to extract system trajectooes f

the PDE description are Finite Element (FE) methods. FE models allow simulation
of the model via a discretization scheme. The main problem with FE models is their
complexity, which leads to large simulation time, making them not suitable for ap-
plications such as on-line monitoring of the process or model-based cdesign.
Model reduction techniques aim to derive low-complexity replacement mocets f
complex process models, in the setting of this work, from FE models. Theappr
imations are achieved by projection on lower-dimensional subspaces sigtieds

and their dynamic laws. This work considers the computation of empirical @roje
tion spaces for signals and systems evolving over multi-dimensional domains. F
mally, signal approximation may be viewed as a low-rank approximation problem.
Whenever the signal under consideration is a function of multiple varidblegank
approximations can be obtained via multi-linear functionals, tensors. Itders dx-
plained in this work that approximation of multi-variatdgstemslso boils down to
low-rank approximation problems.

The first problem under consideration was that of finding low-rank@pmations to
tensors. For orde?tensors, matrices, this problem is well understood. Generalization
of these results to higher-order tensors is not straightforward. Findimpr decom-
positions that allow suitable approximations after truncation is an active area o
search. In this work a concept of rank for tensors, referred to #&lnear or modal
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rank, has been considered. A new method has been defined to obtaihrarddde-
compositions to tensors, referred tol@nsor Singular Value Decomposition (TSVD)
Properties of the TSVD that reflect its sparsity structure have beevedesind low-
rank approximation error bounds have been obtained for certain speaffes. An
adaptation of the TSVD method has been proposed that may give bettexiapar
tion results when not all modal directions are approximated. A numericalidigo
has been presented for the computation of the (dedicated) TSVD, whicla sittall
adaptation can also be used to compute successive rank-one appraximatiosors.
Finally, a simulation example has been included which demonstrates the methods pr
posed in this work and compares them to a well-known existing method.

The concepts that were introduced and discussed with regard to sjgpraixana-
tion have been used in a system approximation context.\We have considereelith
known model reduction method of Proper Orthogonal Decompositions (P@B®
have shown how the basis functions inferred from the TSVD can be tosdefine
projection spaces in POD. This adaptation is both a generalization andieti@str

It is a generalization because it allows POD to be used in a scalable fashimmb-
lems with an arbitrary number of dependent and independent varialibeseudr, it is
also a restriction, since the projection spaces require a Cartesian pstrditure of
the domain. The model reduction method that is thus obtained has been dedsahstr
on a benchmark example from chemical engineering. This application gshatthe
method is indeed feasible, and that the accuracy is comparable to existing method
for this example.

In the final part of the thesis the problem of reconstruction and approximaf
multi-dimensional signals was considered. Specifically, the problem of sagrgiith
signal reconstruction for multi-variable signals with non-uniformly distribsasors
on a Cartesian domain has been considered. The central question dfaptsrowas
that of finding a reconstruction of the original signal from its samples. d@ciic
reconstruction map has been examined and conditions for exact remiostrhave
been presented. In case that exact reconstruction was not posstiayve derived
an expression for the reconstruction error.
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