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Summary
Information-theoretic analysis of a family of additive energy channels

This dissertation studies a new family of channel models for non-coherent com-
munications, the additive energy channels. By construction, the additive en-
ergy channels occupy an intermediate region between two widely used channel
models: the discrete-time Gaussian channel, used to represent coherent com-
munication systems operating at radio and microwave frequencies, and the
discrete-time Poisson channel, which often appears in the analysis of intensity-
modulated systems working at optical frequencies. The additive energy chan-
nels share with the Gaussian channel the additivity between a useful signal and
a noise component. However, the signal and noise components are not complex-
valued quadrature amplitudes but, as in the Poisson channel, non-negative real
numbers, the energy or squared modulus of the complex amplitude.

The additive energy channels come in two variants, depending on whether
the channel output is discrete or continuous. In the former case, the energy is a
multiple of a fundamental unit, the quantum of energy, whereas in the second
the value of the energy can take on any non-negative real number. For con-
tinuous output the additive noise has an exponential density, as for the energy
of a sample of complex Gaussian noise. For discrete, or quantized, energy the
signal component is randomly distributed according to a Poisson distribution
whose mean is the signal energy of the corresponding Gaussian channel; part
of the total noise at the channel output is thus a signal-dependent, Poisson
noise component. Moreover, the additive noise has a geometric distribution,
the discrete counterpart of the exponential density.

Contrary to the common engineering wisdom that not using the quadrature
amplitude incurs in a significant performance penalty, it is shown in this dis-
sertation that the capacity of the additive energy channels essentially coincides
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Summary

with that of a coherent Gaussian model under a broad set of circumstances.
Moreover, common modulation and coding techniques for the Gaussian chan-
nel often admit a natural extension to the additive energy channels, and their
performance frequently parallels those of the Gaussian channel methods.

Four information-theoretic quantities, covering both theoretical and practi-
cal aspects of the reliable transmission of information, are studied: the channel
capacity, the minimum energy per bit, the constrained capacity when a given
digital modulation format is used, and the pairwise error probability. Of these
quantities, the channel capacity sets a fundamental limit on the transmission
capabilities of the channel but is sometimes difficult to determine. The min-
imum energy per bit (or its inverse, the capacity per unit cost), on the other
hand, turns out to be easier to determine, and may be used to analyze the
performance of systems operating at low levels of signal energy. Closer to
a practical figure of merit is the constrained capacity, which estimates the
largest amount of information which can be transmitted by using a specific
digital modulation format. Its study is complemented by the computation of
the pairwise error probability, an effective tool to estimate the performance of
practical coded communication systems.

Regarding the channel capacity, the capacity of the continuous additive
energy channel is found to coincide with that of a Gaussian channel with iden-
tical signal-to-noise ratio. Also, an upper bound —the tightest known— to
the capacity of the discrete-time Poisson channel is derived. The capacity of
the quantized additive energy channel is shown to have two distinct functional
forms: if additive noise is dominant, the capacity is close to that of the continu-
ous channel with the same energy and noise levels; when Poisson noise prevails,
the capacity is similar to that of a discrete-time Poisson channel, with no ad-
ditive noise. An analogy with radiation channels of an arbitrary frequency, for
which the quanta of energy are photons, is presented. Additive noise is found
to be dominant when frequency is low and, simultaneously, the signal-to-noise
ratio lies below a threshold; the value of this threshold is well approximated
by the expected number of quanta of additive noise.

As for the minimum energy per nat (1 nat is log2 e bits, or about 1.4427 bits),
it equals the average energy of the additive noise component for all the stud-
ied channel models. A similar result was previously known to hold for two
particular cases, namely the discrete-time Gaussian and Poisson channels.

An extension of digital modulation methods from the Gaussian channels
to the additive energy channel is presented, and their constrained capacity
determined. Special attention is paid to their asymptotic form of the capacity
at low and high levels of signal energy. In contrast to the behaviour in the
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Gaussian channel, arbitrary modulation formats do not achieve the minimum
energy per bit at low signal energy. Analytic expressions for the constrained
capacity at low signal energy levels are provided. In the high-energy limit
simple pulse-energy modulations, which achieve a larger constrained capacity
than their counterparts for the Gaussian channel, are presented.

As a final element, the error probability of binary channel codes in the ad-
ditive energy channels is studied by analyzing the pairwise error probability,
the probability of wrong decision between two alternative binary codewords.
Saddlepoint approximations to the pairwise error probability are given, both
for binary modulation and for bit-interleaved coded modulation, a simple and
efficient method to use binary codes with non-binary modulations. The meth-
ods yield new simple approximations to the error probability in the fading
Gaussian channel. The error rates in the continuous additive energy channel
are close to those of coherent transmission at identical signal-to-noise ratio.
Constellations minimizing the pairwise error probability in the additive energy
channels are presented, and their form compared to that of the constellations
which maximize the constrained capacity at high signal energy levels.
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Samenvatting

In dit proefschrift wordt een nieuwe familie van kanaalmodellen voor niet-
coherente communicatie onderzocht. Deze kanalen, aangeduid als additieve-
energie kanalen, ontlenen kenmerken aan twee veelvuldig toegepaste model-
len. Dit is enerzijds het discrete-tijd Gaussische kanaal, dat als model dient
voor systemen met coherente communicatie op radio- en microgolf-frequenties,
en anderzijds het discrete-tijd Poisson kanaal, dat doorgaans wordt gebruikt
in de analyse van optische communicatiesystemen gebaseerd op intensiteit-
modulatie. Zoals in het Gaussische kanaal, is de uitgang van een additieve-
energie kanaal de som van het ingangs-signaal en additieve ruis. De waarden
die deze uitgang kan aannemen zijn echter niet complex zoals de phasor van een
electromagnetisch veld, maar niet-negatief reëel overeenkomstig de veldenergie.

Bij additieve-energie kanalen kan onderscheid worden gemaakt tussen ka-
nalen met continue en kanalen met discrete energie. Als de energie continu
is, heeft de additieve ruis een exponentiële verdeling, zoals de amplitude van
circulair symmetrische complexe Gaussische ruis. Bij discrete energie is de
kanaaluitgang een aantal energiekwanta. In dit geval is de signaalterm een sto-
chast, verdeeld als een Poisson variabele waarvan de gemiddelde waarde gelijk
is aan het aantal energiekwanta in het equivalente continue-energie model. Als
gevolg hiervan komt een deel van de ruis (Poisson ruis) uit het signaal zelf.
Verder heeft de ruisterm een geometrische verdeling, de discrete versie van een
exponentiële verdeling.

In dit proefschrift wordt aangetoond dat additieve-energie kanalen vaak
even goed presteren als het coherente Gaussische kanaal. In tegenstelling tot
wat vaak wordt verondersteld, leidt niet-coherente communicatie niet tot een
substantiëel verlies. Deze conclusie wordt gestaafd door bestudering van vier
informatie-theoretische grootheden: de kanaalcapaciteit, de minimum energie
per bit, de capaciteit voor algemene digitale modulaties en de paarsgewijze
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Samenvatting

foutenkans. De twee eerstgenoemde grootheden zijn overwegend theoretisch
van aard en bepalen de grenzen voor de informatieoverdracht in het kanaal,
terwijl de twee overige een meer praktisch karakter hebben.

Een eerste bevinding van het onderzoek is dat de capaciteit van het continue
additieve-energie kanaal gelijk is aan de capaciteit van een Gaussisch kanaal
met identieke signaal-ruis verhouding. Daarnaast wordt een nieuwe boven-
grens afgeleid voor de capaciteit van het discrete-tijd Poisson kanaal. Voor de
capaciteit van het additieve-energie kanaal met discrete energie bestaan twee
limiet-uitdrukkingen. De capaciteit kan benaderd worden door de capaciteit
van een kanaal met exponentiële ruis bij lage signaal-ruis verhouding, m. a. w.
als geometrische ruis groter is in verwachting dan de Poisson ruis. Vanaf een
bepaalde waarde van de Poisson ruis verwachting is daarentegen de capaciteit
van een Poisson kanaal zonder geometrische ruis een goede benadering. Toe-
passing van het bovenstaande model op elektromagnetische straling, waarbij
de kwanta fotonen zijn, leidt tot een formule voor de drempel in de signaal-ruis
verhouding als functie van de temperatuur en de frequentie. Voor de gebrui-
kelijke radio- en microgolf-frequenties ligt deze drempel ruimschoots boven de
signaal-ruis verhouding van bestaande communicatiesystemen.

De minimum energie per nat is gelijk aan de gemiddelde waarde van de
additieve ruis. Bij afwezigheid van additieve ruis is de minimum energie per
bit oneindig, net als bij het Poisson kanaal.

De analyse van digitale puls-energie modulaties is gebaseerd op de “cons-
trained capacity”, de hoogste informatie rate die gerealiseerd kan worden met
deze modulaties. Anders dan in het Gaussische kanaal, halen puls-energie mo-
dulaties in het algemeen niet de minimum energie per nat. Voor hoge energie
zijn deze modulaties echter potentiëel efficiënter dan vergelijkbare kwadratuur
amplitude modulaties voor het Gaussische kanaal.

Tot slot wordt de foutenkans van binaire codes geanalyseerd met behulp
van een zadelpunt-benadering voor de paarsgewijze foutenkans, de kans op een
foutieve beslissing tussen twee codewoorden. Onze analyse introduceert nieu-
we en effectieve benaderingen voor deze foutenkans voor het Gaussische kanaal
met fading. Zoals eerder ook met de capaciteit het geval was, is de fouten-
kans van binaire codes voor additieve-energie kanalen vergelijkbaar met die
van dezelfde codes voor het Gaussische kanaal. Tenslotte is ook bit-interleaved
coded-modulation voor additieve-energie kanalen bestudeerd. Deze modulatie-
methode maakt op een eenvoudige en effectieve wijze gebruik van binaire co-
des in combinatie met niet-binaire modulaties. Het blijkt dat modulatie en
coderingen voor het Gaussische kanaal vaak vergelijkbare prestaties leveren als
soortgelijke methoden voor additieve-energie kanalen.
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Glossary

Ad Number of codewords at Hamming distance d
AE-Q Quantized additive energy channel
AEN Additive exponential noise channel
APSK Amplitude and phase-shift keying modulation
AWGN Additive white Gaussian noise channel
b Binary codeword
b Bit (in a codeword)
BICM Bit-interleaved coded modulation
BNR Bit-energy-to-noise ratio
BNRmin Minimum bit-energy-to-noise ratio
BNR0 Bit-energy-to-noise ratio at zero capacity
BPSK Binary phase-shift keying modulation
C Channel capacity, in bits(nats)/channel use
CX ,µ Bit-interleaved coded modulation capacity
CX Coded modulation (“constrained”) capacity
Cu
X Coded modulation uniform capacity

C(E) Channel capacity at energy E
CG(εs, εn) AE-Q channel capacity bound in G regime
CP(εs) AE-Q channel capacity bound in P regime
c1 First-order Taylor coefficient in capacity expansion
c2 Second-order Taylor coefficient in capacity expansion
C1 Capacity per unit energy
D(·||·) Divergence between two probability distributions
d Hamming distance between two binary codewords
∆P Power expansion ratio
∆W Bandwidth expansion ratio
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DTP Discrete-time Poisson channel
E[·] Expectation of a random variable
εb Bit energy (DTP, AE-Q channels)
Eb,min Minimum energy per bit
εb,min Minimum bit energy (DTP, AE-Q channels)
εb0 Bit-energy at zero capacity (DTP, AE-Q channels)
ε(·) Energy of a symbol or sequence
En Average noise energy (AEN)
εn Average noise (AE-Q)
E(ε) Exponential random variable of mean ε
Es Energy constraint (AWGN, AEN)
εs Energy constraint (DTP, AE-Q)
η Spectral efficiency, in bits/sec/Hz
ε0 Energy of a quantum
G(εs, ν) Gamma distribution with parameters εs and ν
γe Euler’s constant, 0.5772 . . .
G(ε) Geometric random variable of mean ε
h Planck’s constant
HExp(ε) Differential entropy of E(ε)
HGeom(ε) Differential entropy of G(ε)
HNC(σ2

0) Differential entropy of NC(µ, σ2)
HPois(x) Entropy of a Poisson distribution with mean x
H(X) Entropy (or differential entropy) of X
H(Y |X) Conditional (differential) entropy of X given Y
I(X; Y ) Mutual information between variables X and Y
κ1(r) Cumulant transform of bit score
κpw(r) Cumulant transform of pairwise score
kB Boltzmann’s constant
λi Log-likelihood ratio
λ PEM constellation parameter
mgf(r) Moment gen. function of X, E[erX ]
m log2 |X |, for modulation set X
mf Nakagami/gamma fading factor
µ1(X ) First-order moment of constellation X
µ2(X ) Second-order moment of constellation X
µ2′(X ) Pseudo second-order moment of constellation X
n Length of transmitted/received sequence
N0 Noise spectral density
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NC(0, σ2) Circularly-symmetric complex Gaussian variable
ν Frequency
P Average received power
PAM Pulse-amplitude modulation
PS|X(s|x) Signal channel output conditional probability
PY |X(y|x) Channel output conditional probability
pS|X(s|x) Signal channel output conditional density
pY |X(y|x) Channel output conditional density
Pb Bit error rate
PEM Pulse-energy modulation
pep(d) Pairwise error probability (Hamming distance d)
Pw Word error rate
pgf(u) Probability gen. function of discrete X, E[uX ]
Pr(·) Probability of an event
P(ε) Poisson random variable of mean ε
PSK Phase-shift keying modulation
PX(·) Input distribution
QAM Quadrature-amplitude modulation
q(x, y) Symbol decoding metric
qi(b, y) Bit decoding metric at position i
Q(y|x) Channel transition matrix
Qi(y|b) Channel transition prob. at bit position i
QPSK Quaternary phase-shift keying modulation
R Transmission data rate, in bits(nats)/channel use
r̂ Saddlepoint for tail probability
σ2(X ) Variance of constellation X
σ̂2(X ) Pseudo variance of constellation X
σ2 Average noise energy (AWGN)
sk Discrete-time received signal
SNR Signal-to-noise ratio
T0 Ambient temperature
u(t) Step function
Var(·) Variance of a random variable
W Bandwidth (in Hz)
Weff Total effective bandwidth (in Hz)
Ws Spatial bandwidth; number of degrees of freedom
Wt Temporal bandwidth (in Hz)
w Index of transmitted message
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|W| Cardinality of the set of messages w
ŵ Index of estimated message at receiver
x Sequence of transmitted symbols
X Alphabet of transmitted symbols
X b

i Set of symbols with bit b in i-th label
Xλ PEM constellation of parameter λ
X∞λ Continuous PEM of parameter λ
XE(εs) Input distributed as E(εs)
XG(εs,ν) Input distributed as G(εs, ν)
Ξb Decoder decision bit score
Ξpw Decoder decision pairwise score
xk Discrete-time received signal
y Sequence of received symbols
Y Alphabet of received symbols
yk Discrete-time received signal
zk Discrete-time (additive) noise
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1

Introduction

1.1 Coherent Transmission in Wireless Communications

One of the most remarkable social developments in the past century has been
the enormous growth in the use of telecommunications. In a process sparked
by the telegraph in the 19th century, followed by Marconi’s invention of the
radio, and proceeding through the telephone system and the communication
satellites, towards the modern cellular networks and the Internet, the pos-
sibility of communication at a distance, for that is what telecommunication
means, has changed the ways people live and work. Fuelling these changes,
electrical engineers have spent large amounts of time and resources in better
understanding the communication capabilities of their systems and in devising
new alternatives with improved performance. Among the possible names, let
us just mention three pioneers: Nyquist, Kotelnikov, and Shannon.

Harry Nyquist, as an engineer working at the Bell Labs in the early 20th
century, identified bandwidth and noise as two key parameters that affect the
efficiency of communications. He then went on to provide simple, yet accu-
rate, tools to represent both of them. In the case of bandwidth, his name is
associated with the sampling theorem, specifically with the statement that the
number of independent pulses that may be sent per unit time through a tele-
graph or radio channel is limited to twice the bandwidth of the channel. As
for noise, he studied thermal noise, present in all radio receivers, and derived
the celebrated formula giving the noise spectral density N0 as a function of the
ambient temperature T0 and the radio frequency ν,

N0 =
hν

e
hν

kBT0 − 1
, (1.1)

where h and kB are respectively Planck’s and Boltzmann’s constants. At radio
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1. Introduction

frequencies, hν ¿ kBT0, and one recovers the well-known formula N0 ' kBT0.
Vladimir Kotelnikov, working in the Soviet Union in the 1930’s and 1940’s,

independently formulated the sampling theorem, complementing Nyquist’s re-
sult with an interpolation formula that yields the original signal from the sam-
ple amplitudes. In addition, he extensively analysed the performance of com-
munication systems in the presence of noise, in particular of Gaussian noise; in
this context, he provided heuristic reasons to justify the Gaussianity of noise
in the communication receiver, essentially by an invocation of the central limit
theorem of probability theory.

Kotelnikov also pioneered the use of a geometric, or vector space, approach
to model communication systems. More formally, consider a signal y(t) at
the input of a radio receiver, say one polarization of the electromagnetic field
impinging in the receiving antenna. Often, the signal y(t) is given by the sum
of a useful signal component, x(t), and an additive noise component, z(t). In
the geometric approach, the signal y(t) is replaced by a vector of numbers yk,
each of whom is the projection of y(t) onto the k-th coordinate of an underlying
vector space. Since projection onto a basis is a linear operation, we have that

yk = xk + zk, (1.2)

where xk and zk respectively denote the useful signal and the noise components
along the k-th coordinate. The resulting discrete-time model is the standard
additive white Gaussian noise (AWGN) channel, where zk are independent
Gaussian random variables with identical variance. When the complex-valued
quantities yk are determined at the receiver, we talk of coherent signal detec-
tion. In physical terms, coherent detection corresponds to accurately estimat-
ing the frequency and the phase of the electromagnetic field.

Claude Shannon, another engineer employed at the Bell Labs, is possibly
the most important figure in the field of communication theory. Among the
many fundamental results in his well-known paper “A Mathematical Theory of
Communication” [1], of special importance is his discovery of the existence of a
quantity, the channel capacity, which determines the highest data rate at which
reliable transmission of information over a channel is possible. In this context,
reliably means with vanishing probability of wrong message detection at the
receiving end of the communication link. For a radio channel of bandwidth
W (in Hz) in additive white Gaussian noise of spectral density N0 and with
average received power P , the capacity C (in bits/second, or bps) equals

C = W log2

(
1 +

P

WN0

)
. (1.3)
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In [1], Shannon expressed the channel capacity in terms of entropies of random
variables and, using the fact that the Gaussian distribution has the largest
entropy of all random variables with a given variance, he went on to prove
that Gaussian noise is the worst additive noise, in the sense that other noise
distributions with the same variance allow for a larger channel capacity. More
recently, Lapidoth proved [2] that a system designed for the worst-case noise,
namely maximum-entropy Gaussian noise, is likely to operate well under other
noise distributions, thus providing a further engineering argument to the use
of a Gaussian noise model.

As the capacity C is the maximum data rate at which reliable commu-
nication is possible, Eq. (1.3) provides guidance on the way to attain ever
higher rates. Indeed, the evolution of telecommunications in the second half
of the 20th century can be loosely described as a form of “conversation” with
Eq. (1.3). Several landmarks in this historical evolution are shown in Fig. 1.1,
along with the spectral efficiency η, given by η = C/W (in bps/Hz), as a
function of the signal-to-noise ratio SNR, defined as SNR = P/(WN0).
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Figure 1.1: Trade-off between signal-to-noise ratio and spectral efficiency.

In the first radio systems, represented by the label ‘ca. 1948’ in Fig. 1.1,
signal-to-noise ratios SNR of the order of 20-30 dB were typical, together with
low spectral efficiencies, say η ≤ 0.5 bps/Hz. After Shannon’s analysis, channel
codes were devised in the 1950’s and 1960’s for use in various communication
systems, e. g. satellite transmission. These channel codes allow for a reduction
of the required signal-to-noise ratio at no cost in spectral efficiency, as indicated
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1. Introduction

by the label ‘ca. 1968’ in Fig. 1.1. Later, around the 1980’s, requirements for
higher data rates, e. g. for telephone modems, led to the use of multi-level
modulations, which trade increased power for higher data rates; a label ‘ca.
1988’ is placed at a typical operating point of such systems.

When it seemed that the whole space of feasible communications was cov-
ered, a new way forward was found. It was discovered that the total “band-
width” Weff available for communication, i. e. the total number of indepen-
dent pulses that may be sent per unit time through a radio channel, ought
to have two components, one spatial and one temporal [3]. Loosely speaking,
Weff = WtWs, where Wt, measured in Hz, is the quantity previously referred
to as bandwidth, and Ws is the number of spatial degrees of freedom, typically
related to the number of available antennas. In order to account for this ef-
fect, W should be replaced in Eq. (1.3) by Weff and, consequently, the spectral
efficiency η becomes

η =
C

Wt
= Ws log2

(
1 +

P

WeffN0

)
. (1.4)

Exploitation of this “spatial bandwidth” is the underlying principle behind the
use of multiple-antenna (MIMO) systems [4, 5] for wireless communications,
where spectral efficiencies exceeding 5 bps/Hz are possible for a fixed signal-
to-noise ratio, now defined as SNR = P/(WeffN0); these values of the spectral
efficiency are represented by the label ‘ca. 1998’ in Fig. 1.1.

Having sketched how communication engineers have exploited tools derived
from the information-theoretic analysis of coherent detection to design efficient
communication systems for radio and microwave frequencies, we next shift our
attention to optical communications.

1.2 Intensity Modulation in Optical Communications

In parallel to the exploitation of the radio and microwave frequencies, much
higher frequencies have also been put into use. One reason for this move is the
fact that the available bandwidth becomes larger as the frequency increases. At
optical frequencies, in particular, bandwidth is effectively unlimited. Moreover,
at optical frequencies efficient “antennas” are available for the transmitting and
receiving ends of the communication link, in the form of lasers and photodiodes,
and an essentially lossless transmission medium, the optical fibre, exists. As a
consequence, optical fibres, massively deployed in the past few decades, carry
very high data rates, easily reaching hundreds of gigabits/second.
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Intensity Modulation in Optical Communications

Most optical communication systems do not modulate the quadrature am-
plitude x(t) of the electromagnetic field, but the instantaneous field intensity,
defined as |x(t)|2. The underlying reason for this choice is the difficulty of
building oscillators at high frequencies with satisfactory phase stability proper-
ties. At the receiver side, coherent detection is often unfeasible, due to similar
problems with the oscillator phase stability. Direct detection, based on the
photoelectric effect, is frequently used as an alternative.

The photoelectric effect manifests itself as a random process with discrete
output. More precisely, the measurement of a direct detection receiver over
an interval (0, T ) is a random integer number (of photons, or quanta of light),
distributed according to a Poisson distribution with mean υ. The mean υ, given
by υ =

∫ T

0
|y(t)|2 dt, depends on the instantaneous squared modulus of the field

at the receiver, |y(t)|2, and is independent of the phase of the complex-valued
amplitude y(t). Since the variance of a Poisson random variable coincides with
its mean υ, it is in general non-zero and there is a noise contribution arising
from the signal itself. This noise contribution is called shot noise.

In information theory, a common model for optical communications systems
with intensity modulation and direct detection is the Poisson channel, originally
proposed by Bar-David [6]. A short, yet thorough, historical review by Verdú
[7] lists the main contributions to the information-theoretic analysis of the
Poisson channel. The input to the Poisson channel is a continuous-time signal,
subject to a constraint on the peak and average value. The input is usually
denoted by λ(t), which corresponds to an instantaneous field intensity, i. e.
λ(t) = |y(t)|2, in our previous notation. In an arbitrary interval (0, T ), the
output is a random variable distributed according to a Poisson distribution
with mean υ =

∫ T

0
λ(t) dt. As found by Wyner [8], the capacity of the Poisson

channel is approached by functions λ(t) whose variation rate grows unbounded.
Practical constraints on the variation rate of λ(t) may be included by assuming
that the input signal is piecewise constant [9], in which case the Poisson channel
is naturally represented by a discrete-time channel model, whose output yk has
a Poisson distribution of the appropriate mean.

Next to the Poisson channel models, physicists have also independently
studied various channel models for communication at optical frequencies; for
a relatively recent review, see the paper by Caves [10]. In particular, the
design and performance of receivers for optical coherent detection has been
considered. In this case, it is worthwhile remarking that direct application
of Eq. (1.3) with N0 given by the corresponding value of Eq. (1.1) at optical
frequencies, proves problematic since N0 ' 0, which would indicate an infinite
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1. Introduction

capacity. Phenomena absent in the models for radio communication, must be
taken into account. A good overview of such phenomena is given by Oliver [11].

Under different assumptions on signal, noise, and/or detection method,
different models and therefore different values for the channel capacity are ob-
tained [10, 12–15]. To any extent, and regardless of the precise value of the
channel capacity at optical frequencies, it is safe to state that deployed optical-
fibre communications systems are, qualitatively, somehow still around their
equivalent of ‘ca. 1948’ in Fig. 1.1. Designers have not yet pushed towards
the ultimate capacity limit, in contrast to the situation in wireless communica-
tions which was sketched during the discussion on Fig. 1.1. Both modulation
(binary on-off keying) and multiplexing methods (wavelength division mul-
tiplexing) have remained remarkably constant along the years. Nevertheless,
and in anticipation of future needs for increased spectral efficiency, research has
been conducted on channel codes [16] —corresponding roughly to ‘ca. 1968’—,
modulation techniques [17], multi-level modulations [18] —for ‘ca. 1988’—, or
multiple-laser methods [19,20] —as the techniques in ‘ca. 1998’—.

A common thread of the lines of research listed in the previous paragraph is
the extension of techniques common to radio frequencies to optical frequencies.
In a similar vein, it may also prove fruitful to extend to optical frequencies
some key features of the models used for radio frequencies. One such key
feature is the presence of additive maximum-entropy Gaussian noise at the
channel output; as we previously mentioned, Shannon proved that this noise
distribution allows for the lowest possible channel capacity when the signal is
power constrained. For other channel models, a similar role could be played by
the corresponding maximum-entropy distribution; this is indeed the case for
non-negative output and exponential additive noise, as found by Verdú [21].
This observation suggests an extension of the discrete-time Poisson channel so
as to include maximum-entropy additive noise. Such a channel model includes
two key traits of the Poisson channel, namely non-negativity of the input signal
and the quantized nature of the channel output and adds the new feature of
a maximum-entropy additive noise. In the next section we incorporate these
elements into the definition of the additive energy channels.

1.3 The Additive Energy Channels

The family of additive energy channels occupies an intermediate region between
the discrete-time Poisson channel and the discrete-time Gaussian channel. As
in the Poisson channel, communication in the additive energy channels is non-
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coherent, in the sense that the signal and noise components are not represented
by a complex-valued quadrature amplitude, but rather by a non-negative num-
ber, which can be identified with the squared modulus of the quadrature am-
plitude. From the Gaussian channel, the additive energy channels inherit the
properties of discreteness in time and of additivity between a useful signal and
a noise component, drawn according to a maximum-entropy distribution.

In analogy with Eq. (1.2), the k-th channel output, denoted by y′k, is given
by the sum of a useful signal x′k and a noise component z′k, that is

y′k = x′k + z′k. (1.5)

In general, we refer to additive energy channels, in plural, since there are two
distinct variants, depending on whether the output is continuous or discrete.

When the output is discrete, the energy is a multiple of a quantum of energy
of value ε0. The useful signal component x′k is now a random variable with a
Poisson distribution of mean |xk|2, say the signal energy in the k-th component
of an AWGN channel. The additive noise component z′k is distributed according
to a geometric (also called Bose-Einstein) distribution, which has the largest
entropy of all distributions for discrete, non-negative random variables subject
to a fixed mean value [22].

For continuous output, the value of the signal (resp. additive noise) compo-
nent x′k (resp. z′k) coincides with the signal energy in the k-th coordinate of an
AWGN channel, i. e. x′k = |xk|2 (resp. z′k = |zk|2), a non-negative number. The
noise z′k follows an exponential distribution, since zk is Gaussian distributed.
The exponential density is the natural continuous counterpart of the geometric
distribution and also has the largest entropy among the densities for continu-
ous, non-negative random variables with a constraint on the mean [22]. The
channel model with continuous output is an additive exponential noise channel,
studied in a different context by Verdú [21]. The continuous-output channel
model may also be derived from the discrete-output model by letting the num-
ber of quanta grow unbounded, simultaneously keeping fixed the total energy.
Equivalently, the energy of a single quantum ε0 may be let go to zero while the
total average energy is kept constant.

The additive energy channel models are different from the most common
information-theoretic model for non-coherent detection, obtained by replacing
the AWGN output signal yk by its squared modulus (see e. g. the recent study
[23] and references therein). The channel output, now denoted by y′′k , is then

y′′k = |yk|2 = |xk + zk|2. (1.6)
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By construction, the output y′′k conditional on xk follows a non-central chi-
square distribution and is therefore not the sum of the energies of xk and zk,
i. e. y′′k 6= |xk|2 + |zk|2.

The main contribution of this dissertation is the information-theoretic anal-
ysis of the additive energy channels. We will see that, under a broad set of
circumstances, the information rates and error probabilities in the additive en-
ergy channels are very close to those attained in the Gaussian channel with the
same signal-to-noise ratio. Somewhat surprisingly, the performance of direct
detection turns out to be close to that of coherent detection, where we have
borrowed terminology from optical communications. In Section 1.4, we outline
the main elements of this analysis, as a preview of the dissertation itself.

1.4 Outline of the Dissertation

In this dissertation, we analyze a family of additive energy channels from the
point of view of information theory. Since these channels are mathematically
similar to the Gaussian channel, we find it convenient to apply tools and tech-
niques originally devised for Gaussian channels, with the necessary adaptations
wherever appropriate. In some cases, the adaptations shed some new light on
the results for the Gaussian channel, in which case we also discuss at some
length the corresponding results.

In Chapter 2, we formally describe the additive energy channels, both for
continuous output ( additive exponential noise channel) and for discrete output
(quantized additive energy channel). In the latter, the analysis is carried out in
terms of quanta, with a brief application at the end of the chapter of the results
to the case where the quanta of energy are photons of an arbitrary frequency.

Four information-theoretic quantities, covering both theoretical and practi-
cal aspects of the reliable transmission of information, are studied: the channel
capacity, the constrained capacity when a given digital modulation format is
used, the minimum energy per bit, and the pairwise error probability.

As we stated before Eq. (1.3), the channel capacity gives the fundamental
limit on the transmission capabilities of a channel. More precisely, the capac-
ity is the highest data rate at which reliable transmission of information over
a channel is possible. In Chapter 3, the channel capacity of the additive en-
ergy channels is determined. The capacity of the continuous additive energy
channel is shown to coincide with that of a Gaussian channel with identical
signal-to-noise ratio. Then, an upper bound —the tightest known to date—
to the capacity of the discrete-time Poisson channel is obtained by applying a
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method recently used by Lapidoth [24] to derive upper bounds to the capacity
of arbitrary channels. The capacity of the quantized additive energy channel
is shown to have two distinct functional forms: if additive noise is dominant,
the capacity approaches that of the continuous channel with the same energy
and noise levels; when Poisson noise prevails, the capacity is similar to that of
a discrete-time Poisson channel with no additive noise.

An analogy with radiation channels of an arbitrary frequency, for which
the quanta of energy are photons, is presented. Additive noise is found to be
dominant when frequency is low and, simultaneously, the signal-to-noise ratio
lies below a threshold; the value of this threshold is well approximated by the
expected number of quanta of additive noise.

Unfortunately, the capacity is often difficult to compute and knowing its
value does not necessarily lead to practical, workable methods to approach it.
On the other hand, the minimum energy per bit (or its inverse, the capacity
per unit cost) turns out to be easier to determine and further proves useful
in the performance analysis of systems working at low levels of signal energy,
a common operating condition. Even closer to a practical figure of merit is
the constrained capacity, which estimates the largest amount of information
which can be transmitted by using a specific digital modulation format. In
Chapter 4, we cover coded modulation methods for the Gaussian channel, with
particular emphasis laid on the performance at low signal-to-noise ratios, the
so-called wideband regime, of renewed interest in the past few years after an
important paper by Verdú [25]. Some new results on the characterization of the
wideband regime are presented. The discussion is complemented by an analysis
of bit-interleaved coded modulation, a simple and efficient method proposed
by Caire [26] to use binary codes with non-binary modulations.

In Chapter 5, an extension of digital modulation methods from the Gaussian
channels to the additive energy channel is presented, and their corresponding
constrained capacity when used at the channel input determined. Special at-
tention is paid to the asymptotic form of the capacity at low and high levels of
signal energy. In the low-energy region, our work complements previous work
by Prelov and van der Meulen [27, 28], who considered a general discrete-time
additive channel model, and determined the asymptotic Taylor expansion at
zero signal-to-noise ratio, in that the additive energy channels are constrained
on the mean value of the input, rather than the variance, and similarly the noise
is described by its mean, not its variance; the models considered by Prelov and
van der Meulen rather deal with channels where the second-order moments,
both for signal energy and noise level, are of importance. Our work extends
their analysis to the family of additive energy channels, where the first-order
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moments are constrained. In the high-energy limit, simple pulse-energy mod-
ulations are presented which achieve a larger constrained capacity than their
counterparts for the Gaussian channel.

In addition, techniques devised by Verdú [29] to compute the capacity per
unit cost are exploited to determine the minimum energy per nat (recall that
1 nat = log2 e bits, or about 1.4427 bits), which is found to equal the average
energy of the additive noise component for all the channel models we study.
We note here that this result was known to hold in two particular cases, namely
the discrete-time Gaussian and Poisson channels [29,30].

We complement our study of the constrained capacity by the computation
of the pairwise error probability, an important tool to estimate the perfor-
mance of practical binary codes used in conjunction with digital modulations.
In Chapter 6, the error probability of binary channel codes in the additive
energy channels is studied. Saddlepoint approximations to the pairwise error
probability are given, both for binary modulation and for bit-interleaved coded
modulation. The methods yield new simple approximations to the error prob-
ability in the fading Gaussian channel. It is proved that the error rates in the
continuous additive energy channel are close to those of the coherent transmis-
sion at identical signal-to-noise ratio. Finally, constellations minimizing the
pairwise error probability in the additive energy channels are presented, and
their form compared to that of the constellations which maximize the con-
strained capacity at high signal energy levels.

Concluding the dissertation, Chapter 7 contains a critical discussion of the
main findings presented in the preceding chapters and sketches possible exten-
sions and future lines of work.
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The Additive Energy Channels

2.1 Introduction: The Communication Channel

In this dissertation we study the transmission of information across a communi-
cation channel from the point of view of information theory. As schematically
depicted in Fig. 2.1, very similar to the diagram in Shannon’s classical pa-
per [1], information is transmitted by sending a message w, generated at the
source of the communication link, to the receiving end. The meaning, form, or
content of the message are not relevant for the communication problem, and
only the number of different messages generated by the source is relevant. For
convenience, we model the message w as an integer number.

The encoder transforms the message into an array of n symbols, which we
denote by x. The symbols in x are drawn from an alphabet X , or set, that
depends on the underlying channel. In this dissertation, symbols are either
complex or non-negative real numbers, as is common practice for the modelling
of, respectively, wireless radio and optical-fibre channels.

The symbol for encoder output x also stands for the communication channel
input. The channel maps the array x onto another array y of n symbols, an
array which is detected at the receiver. The channel is noisy, in the sense that
x (and therefore w) may not be univocally recoverable from y.

The decoder block generates a message estimate, ŵ, from y and delivers it

EncoderSource Channel
Noisy

Decoder Destination

yxMessage w Message ŵ

Figure 2.1: Generic communication link.
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to the destination. The noisy nature of the communication channel causes the
estimate ŵ to possibly differ from the original message w. A natural problem
is to make the probability of the estimate being wrong low enough, where the
precise meaning of low enough depends on the circumstances and applications.

Information theory studies both theoretical and practical aspects of how
to generate an estimate ŵ very likely to coincide with the source message w.
First, and through the concept of channel capacity, information theory gives
an answer to the fundamental problem of how many messages can be reliably
distinguished at the receiver side in the limit n → ∞. Here reliably means
that the probability that the receiver’s estimate of the message, ŵ, differs from
the original message at the source, w, is vanishingly small. In Chapter 3, we
review the concept of channel capacity, and determine its value for the channel
models described in this chapter.

Pairs of encoder and decoder which allow for the reliable transmission of the
largest possible number of messages are said to achieve the channel capacity.
In practice, simple yet suboptimal encoder and decoders are used. Information
theory also provides tools to analyze the performance of these specific encoders
and decoders. The performance of some encoder and decoder pairs for the
models described in this chapter are covered in Chapters 4, 5, and 6.

Models with arrays as channel input and output naturally appear in the
analysis of so-called waveform channels, for which functions of a continuous
time variable t are transformed into a discrete array of numbers via an ap-
plication of the sampling theorem or a Fourier decomposition. Details of this
discretization can be found, for instance, in Chapter 8 of Gallager’s book [31].
Since the time variable is discretized, these models often receive the name
discrete-time, a naming convention we adopt.

In the remainder of this chapter, we present and discuss the channel models
used in the dissertation. The various models are defined by the alphabet, or
set, of possible channel inputs; the alphabet of possible channel outputs; and a
probability density function pY|X(y|x) (for continuous output, if the output is
discrete, a probability mass function PY|X(y|x) is used) on the set of outputs
y for each input x. We consider memoryless and stationary channels, for which
pY|X(y|x) (resp. PY|X(y|x)) admits a decomposition

pY|X(y|x) =
n∏

k=1

pY |X(yk|xk), (2.1)

where the symbols xk and yk are the k-th component of their respective arrays.
The conditional density pY |X(·|·) (resp. PY |X(·|·)) does not depend on the
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value of k. An alternative name for the output conditional density is channel
transition matrix, denoted by Q(·|·). This name is common when the channel
input and output alphabets are discrete.

We assume that one output symbol is produced for every input symbol, as
depicted in Fig. 2.2 for the k-th component, or time k. The output yk is the
sum of two terms, the signal component sk and the additive noise zk, both of
them taking values in the same alphabet as yk (or possibly in a subset of the
output alphabet). The probability law of zk is independent of xk. The channel
output is

yk = sk(xk) + zk. (2.2)

The signal component sk is a function of the channel input xk. The mapping
sk(xk) need not be deterministic, in which case it is described by a probability
density function pS|X(sk|xk) (PS|X(sk|xk) for discrete output), common for all
time indices k.

yk = sk + zk

zk

sk(xk)xk

Figure 2.2: Channel operation at time k.

On Notation We agree that a symbol in small caps, u, refers to the numerical
realization of the associated random variable, denoted by the capital letter U .
Its probability density function, of total unit probability, is denoted by pU (u).
Here U may stand for the encoder output Xk, the channel output Yk, the noise
realization Zk, or a vector thereof. The input density may be a mixture of
continuous and discrete components, in which case the density may include a
number of Dirac delta functions. When the variable U takes values in a discrete
set, we denote its probability mass function by PU (u).

Throughout the dissertation, integrals, Taylor series expansions, or series
sums without explicit bibliographic reference can be found listed in [49] or may
otherwise be computed by using Mathematica.

2.2 Complex-Valued Additive Gaussian Noise Channel

Arguably, the most widely analyzed, physically motivated, channel model is
the discrete-time Additive White Gaussian Noise (AWGN) channel [31–33]. In
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this case, the time components arise naturally from an application of the sam-
pling theorem to a waveform channel, as well as in the context of a frequency
decomposition of the channel into narrowband parallel subchannels.

We consider the complex-valued AWGN channel, whose channel input xk

and output yk at time index k = 1, . . . , n, are complex numbers related by

yk = xk + zk. (2.3)

In this case, the channel input xk and its contribution to the channel output
sk(xk) coincide; they will differ for other channel models. The noise component
zk is drawn according to a circularly-symmetric complex Gaussian density of
variance σ2, a fact shorthanded to Zk ∼ NC(0, σ2). The noise density is

pZ(z) =
1

πσ2
e−

|z|2
σ2 . (2.4)

The channel transition matrix is Q(y|x) = pZ(y − x).
We define the instantaneous (at time k) signal energy, denoted by ε(xk),

as |xk|2. Similarly, the noise instantaneous energy ε(zk) is ε(zk) = |zk|2. The
average noise energy, where the averaging is performed over the possible real-
izations of zk, is E[|Zk|2] = Var(Zk) = σ2.

The channel is used under a constraint on the total energy ε(x), of the form

ε(x) =
n∑

k=1

ε(xk) =
n∑

k=1

|xk|2 ≤ nEs, (2.5)

where Es denotes the maximum permitted energy per channel use.
The average signal-to-noise ratio, denoted by SNR, is given by

SNR =
Es

σ2
. (2.6)

Here, and with no loss of generality, we assume that the constraint in Eq. (2.5)
holds with equality. This step will be justified in Chapter 3, when we state
how the channel capacity links the constraint on the total energy per message,
as in Eq. (2.5), with a constraint on the average energy per channel use, or
equivalently on the average signal-to-noise ratio.

It is common practice to replace the AWGN model given in Eqs. (2.3) by an
alternative model whose input signal x′k and channel output y′k are respectively
given by xk =

√
Esx

′
k and

y′k =
1
σ

yk =
√

SNRx′k + z′k, (2.7)
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so that both signal x′k and additive noise z′k have unit average energy, i. e.
E[|X ′

k|2] = 1 and Z ′k ∼ NC(0, 1). The channel transition matrix is then

Q(y|x) =
1
π

e−|y−
√

SNRx|2 . (2.8)

Both forms of the AWGN channel model are equivalent since they describe the
same physical realization.

2.3 Additive Exponential Noise Channel

We next introduce the additive exponential noise (AEN) channel as a variation
of an underlying AWGN channel. Since we use the symbols for the variables xk,
zk, and yk for both channels, we distinguish the AWGN variables by appending
a prime.

In the AEN channel, the channel output is an energy, rather than a com-
plex number as it was in the AWGN case. In the previous section, we defined
the instantaneous energy of the signal and noise variables as the squared mag-
nitude of the complex number x′k or z′k, and avoided referring to the energy
of the output y′k. The reason for this avoidance is that there are two natural
definitions for the output energy.

First, in the AEN channel, the channel output yk is defined to be the sum
of the energies in x′k and z′k, that is, yk = xk + zk, where the signal and noise
components xk and zk are related to their Gaussian counterparts by

xk = ε(x′k) = |x′k|2, zk = ε(z′k) = |z′k|2. (2.9)

Figure 2.3 shows the relationship between the AWGN and AEN channels. We
hasten to remark that this postulate is of a mathematical nature, possibly
independent of any underlying physical model, since the quantity ε(x′k)+ε(z′k)
cannot be directly derived from y′k only.

The inputs xk and outputs yk are non-negative real numbers, as befits an
energy. The correspondence with the AWGN channel, xk = |x′k|2, leads to a
natural constraint on the average energy per channel use Es,

∑n
k=1 xk ≤ nEs,

where Es is the constraint in the AWGN channel.
The noise energy zk = ε(z′k) = |z′k|2, that is the squared amplitude of a

circularly-symmetric complex Gaussian noise, has an exponential density [32]
of mean En = σ2,

pZ(z) = 1
En

e−
z

En u(z), (2.10)
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Figure 2.3: AEN model and its AWGN counterpart.

where u(z) is a step function, u(z) = 1 for z ≥ 0, and u(z) = 0 for z < 0. We use
the notation Zk ∼ E(En), where the symbol E is used to denote an exponential
distribution. The channel transition matrix has the form Q(y|x) = pZ(y−x).

The average signal-to-noise ratio, denoted by SNR, is given by

SNR =
E

[
ε(Xk)

]

Var
1
2 (Zk)

=
Es

En
, (2.11)

again assuming that the average energy constraint holds with equality. Here
we used that the variance of an exponential random variable is E2

n.
Even though the simplicity of this channel matches that of the AWGN

channel, the AEN channel seems to have received limited attention in the
literature. Exceptions are Verdú’s work [21, 34] in the context of queueing
theory, where exponential distributions often appear.

A second model derived from the AWGN channel is the non-coherent AWGN
channel, see [23] and references therein. Its operation is depicted in Fig. 2.4.
In this model, the output energy and channel output is |y′k|2, that is

|y′k|2 = |x′k|2 + |z′k|2 + 2 Re(x′∗k z′k). (2.12)

The square root of the output, |y′k|, is distributed according to the well-known
Rician distribution [32]. In general, the value of |y′k|2 does not coincide with
the sum of the energies ε(x′k) + ε(z′k). By construction, the output energy in
the AEN channel is the sum of the signal and noise energies. We say that the
channel is an additive energy channel.
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Figure 2.4: Non-coherent AWGN model.

In the AEN channel, multiplication of the output yk by a real, non-zero
factor α, leaves the model unchanged. The choice α = E−1

n , together with a
new input x′k, whose average energy is 1, leads to a new pair of signals x′k and
z′k, with E[X ′

k] = 1 and Z ′k ∼ E(1), such that the output becomes

y′k = SNR x′k + z′k. (2.13)

Here the prime refers to the equivalent AEN channel, not to the Gaussian
counterpart. As it happened for the AWGN channel, the channel capacity and
the error rate performance achieved by specific encoder and decoder blocks
coincide for either description of the AEN channel. We shall often use the
model described in Eq. (2.13), whose channel transition matrix is given by

Q(y|x) = e−(y−SNR x)u(y − SNR x). (2.14)

We next consider a different additive energy channel model, whose channel
output is a discrete number of quanta of energy. First, in the next section, we
discuss the discrete-time Poisson channel, for which there is no additive noise
component zk, and then move on to the quantized additive energy channel.

2.4 Discrete-Time Poisson Channel

The discrete-time Poisson (DTP) channel appears naturally in the analysis
of optical systems using the so-called pulse-amplitude modulation. Examples
in the literature are papers by Shamai [9] and Brady and Verdú [35]. When
ambient noise is negligible [12], it also models the bandlimited optical channel.

In the DTP model, the channel output is an energy, which comes in a dis-
crete multiple of a quantum of energy ε0. At time k the input is a non-negative
real number xk ≥ 0, and we agree that the input energy is xkε0; in optical com-
munications the number xk is the energy carried by an electromagnetic wave of
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2. The Additive Energy Channels

the appropriate frequency. The channel is used under a constraint on the (max-
imum) average number of quanta per channel use, εs,

∑n
k=1 xk ≤ nεs, with

the understanding that the average energy per channel use Es is εsε0 = Es.
The channel output depends on the input xk via a Poisson distribution with

parameter xk, that is, Yk = Sk ∼ P(xk), where the symbol P is used to denote
a Poisson distribution. Hence, the conditional output distribution is given by

PS|X(s|x) = e−x xs

s!
, (2.15)

which also gives the channel transmission matrix Q(y|x), with s replaced by y.

Since the channel output Yk is a Poisson random variable, its variance is
equal to xk [36], Var(Yk) = xk. Differently from AWGN or AEN channels,
noise is now signal-dependent, coming from the signal term sk itself. We refer
to this noise as shot noise or Poisson noise.

As the number of quanta sk becomes arbitrarily large for a fixed value of
input energy xkε0, the standard deviation of the channel output, of value

√
sk,

becomes negligible compared to its mean, sk, and the density of the output
energy skε0, viewed as a continuous random variable, approaches

pS|X(skε0|xkε0) = lim
∆x→0,xk→∞

xkε0fixed

1
∆x

Pr
(

xk − ∆x

2
≤ sk ≤ xk +

∆x

2

)
(2.16)

= δ
(
(sk − xk)ε0

)
, (2.17)

i. e. a delta function, as for the signal energy in the AWGN and AEN channels,
models for which there is no Poisson noise at the input.

2.5 Quantized Additive Energy Channel

The quantized additive energy channel (AE-Q) appears as a natural general-
ization of the discrete-time Poisson and the additive exponential channels.

First, it shares with the DTP channel the characteristic that the output
energy is discrete, an integer number of quanta of energy ε0 each.

In parallel, it generalizes the DTP channel in the sense that an additive
noise component is present at the channel output. The correspondence with
the AEN channel is established by assuming that the noise component has
a geometric distribution, the natural discrete counterpart of the exponential
density in Eq. (2.10). Also, the geometric distribution has the highest entropy
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Quantized Additive Energy Channel

among all discrete, non-negative random variables of a given mean, a property
shared by the exponential density among the continuous random variables [22].

The output yk is an integer number of quanta of energy, each of energy ε0.
As in the additive exponential noise channel, the output yk at time k is the
sum of a signal and an additive noise components, that is

yk = sk + zk, k = 1, . . . , n, (2.18)

where the numbers yk, sk and zk are now non-negative integers, i. e. are in
{0, 1, 2, . . . }.

The input is a non-negative real number xk ≥ 0, related to its AWGN
(and AEN) equivalent by xkε0 = |x′k|2, where x′k is the AWGN value. There
is a constraint on the total energy, expressed in terms of the average number
of quanta per channel use, εs, by

∑n
k=1 xk ≤ nεs. As in the discrete-time

Poisson case, the signal component at the output sk has a Poisson distribution
of parameter xk, whose formula is given in Eq. (2.15).

The additive noise zk has a geometric distribution of mean εn, that is

PZ(z) =
1

1 + εn

(
εn

1 + εn

)z

. (2.19)

We agree on the shorthand Zk ∼ G(εn), where the symbol G denotes a geomet-
ric distribution. Its variance is εn(1 + εn).

In order to establish a correspondence between the various channel models,
we choose εnε0 = σ2 = En, the average noise energies in the AWGN and AEN
channels. From the discussion at the end of Section 2.4, the AEN model is
recovered in the limiting case where the number of quanta becomes very large,
and consequently the Poisson noise becomes negligible.

In the AE-Q channel, we identify two limiting situations, the G and P
regimes, distinguished by which noise source, either additive geometric noise
or Poisson noise, is predominant.

In the G regime, additive geometric noise dominates over signal-dependent
noise. This happens when εn À 1 and xk ¿ ε2

n. Note that, in addition to
large number of quanta, a second condition relating the noise and signal levels
is of importance. Then, the (in)equalities Var(Yk) ' Var(Zk) ' ε2

n À xk hold.
In the P regime, Poisson noise is prevalent. In terms of variances, Var(Yk) '

Var(Sk) ' xk À Var(Zk). Since the additive geometric noise is negligible, the
signal-to-noise ratio for the AEN or AWGN channel models would become
infinite in this case.

It is obvious that the transition between the G and P regimes does not
take place in the AWGN and AEN models, where increasing the signal energy
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2. The Additive Energy Channels

makes the additive noise component ever smaller. Moreover, since the models
remain unchanged when both signal and noise components are multiplied by
a constant value, these alternative forms are characterized by the ratio of the
noise and signal energy levels, and not by their absolute values taken separately.
A consequence is that signal-to-noise ratio can be freely apportioned to signal
or noise components, and the choices leading to Eqs. (2.7) and (2.13) often
prove convenient.

On the other hand, the AE-Q channel is sensitive to the absolute values of
signal and noise, in addition to their ratio, since application of a scaling factor
may easily change operation from the G to the P regime, or vice versa. The
presence of the quantum as a fundamental unit of energy and the discreteness
of the output fundamentally alter the behaviour of the channel under changes
of scale. For the DTP or AE-Q channel models it is the absolute energies, not
only their ratio, what determines the channel performance.

To the best of our knowledge the AE-Q channel model is new. A discrete
counterpart of the chi-square (squared Rician) distribution, which describes
the output of the non-coherent AWGN channel in Eq. (2.12), is the Laguerre
distribution with parameters x and εn [37], and is studied in the literature on
optical communications. In Section 2.6, we particularize the AE-Q channel for
the case when the quanta of energy are photons of frequency ν.

The main characteristics of each channel considered so far are listed in
Table 2.1: the parameters include the signal input, its energy, the total out-
put, the signal output, the additive noise distribution and its parameters; the
expressions for the channel transition matrices Q(y|x) are

Q(y|x) =
1

πσ2
e−

|y−x|2
σ2 for AWGN, (2.20)

Q(y|x) =
1

En
e−

y−x
En u(y − x) for AEN, (2.21)

Q(y|x) = e−x xy

y!
for DTP, (2.22)

Q(y|x) =
y∑

l=0

e−x

1 + εn

(
εn

1 + εn

)y

(
x
(
1 + 1

εn

))l

l!
for AE-Q. (2.23)
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Photons as Quanta of Energy

AWGN AEN DTP AE-Q

Input xk Alphabet C [0,∞) [0,∞) [0,∞)
Signal Energy |xk|2 xk xkε0 xkε0

Output yk Alphabet C [0,∞) {0, 1, . . . } {0, 1, . . . }
Signal Output sk xk xk ∼ P(xk) ∼ P(xk)
Signal Output Mean xk xk xk xk

Signal Output Variance 0 0 xk xk

Additive Noise zk ∼ NC(0, σ2) ∼ E(En) 0 ∼ G(εn)
Average Noise Energy σ2 En = σ2 0 εnε0 = En

Noise Variance Var(Zk) σ2 E2
n 0 εn(1 + εn)

Table 2.1: Input and output descriptions for the various channel models.

2.6 Photons as Quanta of Energy

For electromagnetic radiation of frequency ν, Einstein linked the energy ε0

of the quantum of radiation [38], the photon, to its frequency as ε0 = hν,
where h is Planck’s constant, h = 6.626 ·10−34 Js. Moreover, since the additive
component zk stems from the environment at a physical temperature T0, a
natural choice for εn is the blackbody radiation formula [38],

εn =
(
e

hν
kBT0 − 1

)−1
, (2.24)

where T0 is the ambient temperature and kB is Boltzmann’s constant, kB =
1.381 · 10−23 J/K. Table 2.2 shows εn for several frequencies at T0 = 290 K.

Even though we need not have an integer number of quanta at the input, it
is nevertheless possible to define an equivalent number of photons in the signal
input, xk, from the AWGN value, x′k, as

xk =
|x′k|2
hν

. (2.25)

The constraint on the average signal energy becomes εshν = Es, where εs is
the average number of photons.

In the low-frequency (or high-temperature) limit, i. e. when hν ¿ kBT0

Eq. (2.24) for the noise energy εn becomes εn ' kBT0
hν and we recover the well-

known relationship between the noise variance and the physical temperature
for Gaussian channels, εnhν ' kBT0 = σ2.
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2. The Additive Energy Channels

Frequency Band Wavelength (c/ν) hν
kBT0

εn

HF - 6MHz 50 m 10−6 106

VHF - 60MHz 5 m 10−5 105

UHF - 2GHz 15 cm 3 · 10−4 3000
Microwave - 6 GHz 5 cm 10−3 1000
EHF - 60GHz 0.5 cm 0.01 100
sub-mm - 4THz 75 µm 0.66 1
Optical - 500THz 600 nm 83 10−36

Table 2.2: Typical values of εn at T0 = 290 K; c = 3 · 108 m/s.

Background noise does not include any source originating at the receiver it-
self, for instance at amplifier or other electronic devices. Accepting this caveat,
at optical frequencies, there is no background noise, as is approximately true
in optical communication systems. Most of the radio communication systems
operate in the region below 30 GHz, for which εn is at least in the order of
thousands of photons, a value which increases to millions of photons when low
frequencies are used.

In Chapter 3, we compare the channel capacities for the AWGN, AEN and
AE-Q channels for several of the cases listed in Table 2.2, and discuss how the
AWGN and AEN channels appear as a limiting case of the AE-Q model when
the number of quanta becomes large.

2.7 Summary

In this chapter we have introduced and described the channel models we will use
throughout the dissertation. All channels are memoryless and time-discrete.
At time k, the output yk is given by yk = sk(xk) + zk, where xk is the channel
input, sk(xk) the input contribution to the output, and zk an additive noise.
Four forms of this model have been presented:

1. The additive white Gaussian noise (AWGN) channel, in Section 2.2.

2. The additive exponential noise (AEN) channel, described in Section 2.3.

3. The discrete-time Poisson (DTP) channel, described in Section 2.4.

4. The additive energy (AE-Q) channel, introduced in Section 2.5.
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Summary

Using the AWGN as a basis for the comparison, relationships between the
various channels have been derived:

• The AEN is derived by postulating that the channel output is given by
the sum of the energies of the signal and noise components in the AWGN
channel.

• The AE-Q is derived from the AEN model by postulating that energy is
discrete and the channel output is a non-negative integer, the number of
energy quanta.

• The DTP is an AE-Q channel whose additive noise component is zero.

In the DTP and AE-Q channels, energy is discrete. In Section 2.6 we have
used radiation as a guide to obtain the orders of magnitude of the signal and
noise components. We use these numerical values in Chapter 3 to compare the
communication capabilities of the AE-Q channel with its AWGN counterpart.

A key feature of the AWGN channel is the presence of additive maximum-
entropy Gaussian noise at the channel output. For other channel models, a
similar role is played by the corresponding maximum-entropy distribution. Us-
ing the DTP channel as the baseline,

• The AE-Q is derived by postulating the presence of an additive, maximum-
entropy noise component. This additive noise component has a geomet-
ric (or Bose-Einstein) distribution. Note that this differs from the usual
practice in the analysis of the DTP channel, where an additive noise
component with Poisson distribution is often considered.

• The AEN is derived from the AE-Q channel by letting the number of
quanta become infinite, keeping fixed the energy value. Equivalently, the
energy of the quantum ε0 goes to zero, having kept fixed the energy. In
the limit, additive noise has an exponential density, and the Poisson noise
effectively vanishes.

Table 2.1, on page 21, summarizes the characteristics of the various mod-
els. All channels, bar the AWGN, operate with energies rather than with the
complex amplitude in the Gaussian channel. As the AWGN admits a physical
motivation, it might prove convenient to briefly discuss the physical meaning
of the additive energy channels.

In terms of electromagnetic theory, the complex amplitude in the Gaussian
model corresponds to the amplitude and phase of electromagnetic fields: the
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2. The Additive Energy Channels

component sk is generated by a far-away antenna, and the noise zk is produced
by the environment. Discreteness in time appears by considering, say, narrow
parallel frequency sub-bands. An AWGN model assumes that the fields are
added at the receiver, and then detected as a complex number. In the additive
energy channels, noise and signal are postulated to be incoherent, so that their
energies can be added. Since the discrete-time additive energy channels cannot
be derived from the discrete-time AWGN channel, possible links with physical
channels would require analyzing the continuous-time AWGN channel. Some
elements of this possible analysis are mentioned in Chapter 7.
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3

Capacity of the Additive Energy Channels

3.1 Outline of the Chapter

In this chapter we determine the capacity of the additive energy channels. As
an introduction, we review in Section 3.2 the concept of channel capacity and
discuss its relevance for the problem of reliable transmission of information. We
also provide some tools necessary to compute its value. In addition, we define
the concept of minimum energy per bit, which is related to the capacity per
unit energy. The presentation borrows elements from standard textbooks on
information theory, namely Gallager [31], Blahut [39], Cover and Thomas [22].

The first channel we consider, in Section 3.3, is the standard additive Gaus-
sian noise channel. Then, in Section 3.4 we determine the capacity of the
additive exponential noise (AEN) channel, presented in Section 2.3.

In Section 3.5, we provide good upper and lower bounds to the capacity
of the discrete-time Poisson channel (DTP), introduced in Section 2.4. The
bounds we provide are tighter than previous results in the literature, such as
those by Brady and Verdú [35] or Lapidoth and Moser [24].

Finally, we bound the capacity of the quantized additive energy channel
(AE-Q) in Section 3.6. We construct the bounds from knowledge of the be-
haviour in the two cases discussed previously, namely the AEN and the DTP
channels. These two cases respectively correspond to the G and P regimes
of the AE-Q channel (see Section 2.5, page 19), and show markedly different
behaviour. Since upper and lower bounds are close to each other in each of
these two regimes, the channel capacity of the AE-Q is determined to a high
degree of accuracy.
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3. Capacity of the Additive Energy Channels

3.2 Mutual Information, Entropy, and Channel Capacity

Shannon’s well-known block diagram of the communication channel, depicted
in Chapter 2, is reproduced in Fig. 3.1. In few words, a message w is to
be transmitted from the source of the communication link to the receiving
end. With no loss of generality, the message may be modelled as an integer
number. This message w is encoded onto a sequence x(w), the encoder output,
possibly under a constraint on its energy ε(x), and sent over the channel, which
generates a noisy output y(x). Both sequences x and y have length n. The
receiver produces a message estimate, ŵ, from the noisy output y.

The channels we study are discrete-time, memoryless and stationary, such
that an output symbol yk, k = 1, . . . , n is generated for each symbol xk. The
conditional output density pY|X(y|x) (resp. PY|X(y|x) for discrete output)
satisfies

pY|X(y|x) =
n∏

k=1

pY |X(yk|xk) =
n∏

k=1

Q(yk|xk), (3.1)

where both pY |X(·|·), the conditional density of the output (resp. PY |X(·|·)),
and Q(·|·), the channel transition matrix, are equivalent ways of characterizing
the channel.

The output at time k, yk, satisfies a generic equation of the form

yk = sk(xk) + zk, (3.2)

where sk(xk) is a (possibly random) variable, whose realization depends on the
input xk, and the component zk is random. Input and output alphabets, as
well as measures for the different channel models, were defined in Chapter 2,
in Eqs. (2.20)–(2.23).

In a sense which will be made precise later, the channel input xk may be seen
as the realization of a random variable X with density pX(·). In the following
we drop the sub-index k unless doing so creates ambiguity. One defines the
mutual information between the channel input X and output Y , in

EncoderSource Channel
Noisy

Decoder Destination

yxMessage w Message ŵ

Figure 3.1: Generic communication channel.
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Definition 3.1. The mutual information I(X; Y ) between the channel input
X, with density pX(x), and the channel output Y is the quantity

I(X;Y ) =
∫∫

pX(x)Q(y|x) log
Q(y|x)
pY (y)

dy dx, (3.3)

where pY (y), the output density, is given by pY (y) =
∫

pX(x)Q(y|x) dx.

Throughout the dissertation, logarithms are taken in base e, and the mu-
tual information is measured in nats. The same holds for other information-
theoretic quantities, such as entropies or channel capacities. Further, we agree
that 0 log 0 = 0. In general, though, plots of the channel capacity will be in
bits. In some of the cases we consider the output is discrete and/or the input
density may contain Dirac delta’s.

In our analysis of digital modulation in Chapters 4 and 5, x is drawn from
a set X . In that case, we denote the corresponding mutual information by CX
and refer to it as constrained capacity or coded modulation capacity, where the
constraint comes from using a specific modulation format.

When the random variables are purely discrete or continuous, one can define
their (differential) entropy H(U) (we use the same symbol for both cases).

Definition 3.2. The differential entropy H(X) of a continuous random vari-
able X with density pX(x) is given by

H(X) = −
∫

pX(x) log pX(x) dx. (3.4)

Definition 3.3. The entropy H(X) of a discrete random variable X with
distribution PX(x) is given by

H(X) = −
∑

x

PX(x) log PX(x). (3.5)

Similar definitions hold for the conditional differential entropy, as well as the
conditional entropy H(Y |X). For instance, in the discrete case, the conditional
entropy between two random variables Y and X is given by

H(Y |X) = −
∑

x

PX(x)
∑

y

PY |X(y|x) log PY |X(y|x). (3.6)

The conditional differential entropies have the analogous definition.
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3. Capacity of the Additive Energy Channels

We are most interested in cases where the variable Y is a (possibly stochas-
tic) function of another variable X, viz. Y = S(X) + Z. Whenever the (dif-
ferential) entropies H(X) and H(X|Y ), or H(Y ) and H(Y |X), are finite the
mutual information respectively admits the well-known decompositions

I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ). (3.7)

In the channels we study, inputs are used under an energy constraint,
namely Es for the AWGN and AEN channels and εs for the AE-Q and DTP
channels. Recall that for each time index, the instantaneous signal energy (or
cost, in general) ε(xk) is given by ε(xk) = |xk|2 for the AWGN channel and by
ε(xk) = xk for the AEN, AE-Q and DTP channels. For an energy constraint
E, one defines the channel capacity C(E) as

Definition 3.4. The channel capacity with energy constraint E is the supre-
mum among all possible input distributions of the mutual information between
channel input and output,

C(E) = sup
pX(·)

I(X; Y ), (3.8)

where the optimization is subject to the constraint, E
[
ε(X)

] ≤ E.

Note that the constraint on the total energy has been replaced by a con-
straint on the average energy of the random variable X. Additionally, in the
channels we study the largest mutual information is attained when the inequal-
ity constraint on the average energy is satisfied with equality. The original
constraint on the maximum energy is therefore equivalent to a constraint on
the average energy.

Associated to the definition of channel capacity, a coding theorem sharply
determines the limits on the reliability of communication. Shannon’s coding
theorem states [1,22,31,39] that, as the length of the encoder output sequence
x, n, becomes large, the probability that the receiver’s message estimate, ŵ,
differs from the original message at the source, w, is vanishingly small. Let the
set of messages w have cardinality |W| and define the rate R as R = 1

n log |W|.
Denote the message estimate at the receiver by ŵ:

Theorem 3.5 (Noisy-Channel Coding Theorem). For each ε > 0 for all n
large enough, there exist an encoder and decoder such that the probability of
error, Pr(Ŵ 6= W ) is at most ε, if R < C.
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Moreover, when R > C the bit error probability at the receiver cannot be
made small.

The exact computation of the channel capacity is possible only in some
specific cases. The AWGN case is a well-known example, and the AEN channel
will turn out to share this trait. In general, one resorts to computing bounds
to the capacity. A straightforward method to derive lower bounds is

Proposition 3.6 (Lower Bound to Capacity). A fixed input density pX(x)
which satisfies the energy constraint achieves a mutual information I(X; Y )
lower than the channel capacity, I(X; Y ) ≤ C(E).

There is also a simple procedure to derive upper bounds from a fixed output
density, which need not correspond to a valid channel output.

Proposition 3.7 (Upper Bound to Capacity). Let pY (y) be an arbitrary chan-
nel output density. Then, for every γ ≥ 0 and every energy E the following
expression gives an upper bound to the channel capacity at energy E, C(E),

C
(
E

) ≤ max
x

(∫
Q(y|x) log

Q(y|x)
pY (y)

dy − γ(ε(x)− E)

)
. (3.9)

We prove the result in Appendix 3.A; the discrete case is essentially identical
and is omitted. The proof builds on a result by Blahut (in the proof of the
convergence of the algorithm to compute the channel capacity, Section 5.4 of his
book [39]). Other appearances of similar results are in Gallager’s book [31], in
Section 4.5 and Problem 4.17; in Section 3.3 of Csiszár and Körner’s book [40];
the analysis of the capacity of the non-coherent discrete-time Rayleigh-fading
channel [41]; and the derivation of upper bounds to the capacity by Lapidoth
and Moser [24]. Our formulation includes the effect of the constraint.

The capacity per unit energy (or unit cost in general), which we denote by
C1 is a close relative to the channel capacity. It was defined by Verdú [29] as
the largest information which can be reliably sent over the channel per unit
cost. In our channel models the capacity per unit cost is closely related to the
smallest energy per bit required to transmit information reliably.

Definition 3.8. In a channel with capacity C
(
E

)
at energy E, the capacity

per unit energy C1 is given by

C1 = sup
E

C
(
E

)

E
. (3.10)
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3. Capacity of the Additive Energy Channels

Similarly, the minimum energy per bit is defined as Eb,min = infE
E

C(E) , where
the capacity is measured in bits.

If the capacity is in nats, it is clear from the definitions that

Eb,min =
log 2
C1

. (3.11)

Since the dependence on the cost constraint E is removed, the capacity per
unit energy often proves easier to determine than the channel capacity itself.
In particular, we have [29]

Theorem 3.9. If the channel has an input x0 with zero energy, i. e. ε(x0) = 0,
then the capacity per unit energy is given by

C1 = sup
x

D
(
Q(y|x)||Q(y|x0)

)

ε(x)
, (3.12)

where D
(
Q(y|x)||Q(y|x0)

)
is the divergence between the output distributions

for inputs x and x0, given by

D
(
Q(y|x)||Q(y|x0)

)
=

∑
y

Q(y|x) log
Q(y|x)
Q(y|x0)

. (3.13)

For channels with continuous output, the divergence in Eq. (3.13) is defined
in the natural manner.

3.3 Capacity of the Gaussian Noise Channel

We described the additive Gaussian noise (AWGN) channel in Section 2.2.
Under an signal energy constraint Es, and for circularly-symmetric complex
Gaussian noise with variance σ2, the capacity is given in

Theorem 3.10. The capacity of the complex-valued AWGN channel is

C(SNR) = log(1 + SNR), (3.14)

where SNR is the signal-to-noise ratio, SNR = Es/σ2.

The proof [1] depends on the fact that a Gaussian density maximizes the
differential entropy among all the densities with the same variance [1, 33].
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Proposition 3.11. The density which maximizes the differential entropy of a
complex-valued random variable, subject to a constraint on the variance σ2

0, is
the Gaussian density NC(µ, σ2

0), where µ is arbitrary. Its entropy HNC
(σ2

0) is

HNC
(σ2

0) = log(πeσ2
0). (3.15)

3.4 Capacity of the Additive Exponential Noise Channel

We described the additive exponential noise (AEN) channel in Section 2.3. It
is a discrete-time model as in Eq. (3.2), with non-negative, real-valued input xk

and output yk. The input is used under a constraint,
∑n

k=1 xk ≤ nEs, where
Es is the energy per channel use. The additive noise component samples are
independently drawn from an exponential distribution, Zk ∼ E(En), with En

the average noise energy.
The capacity of the AEN channel coincides with the capacity of the equiv-

alent AWGN channel,

Theorem 3.12. The capacity of the additive-exponential noise channel, C, is

C(SNR) = log(1 + SNR), (3.16)

where SNR is the signal-to-noise ratio, SNR = Es/En.

The capacity of this channel was determined by Verdú [21], in a different
context. His proof exploits that an exponential density maximizes the differen-
tial entropy among the distributions of non-negative random variables [1, 21]:

Proposition 3.13. The density which maximizes the differential entropy of a
non-negative random variable U , subject to a constraint on the mean ε, is the
exponential density. Its entropy HExp(ε) is

HExp(ε) = 1 + log ε = log eε. (3.17)

We also need the following result,

Proposition 3.14. Let Y be a continuous non-negative real-valued random
variable of the form Y = X +Z; X has mean Es and Z is additive exponential
noise of mean En. The output Y has exponential distribution of mean Es +En

(and thus maximum differential entropy) when the input density pX(x) is

pX(x) =
Es

(Es + En)2
exp

(
− x

Es + En

)
+

En

Es + En
δ(x), x ≥ 0. (3.18)
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We shall later see that a similar density maximizes the output entropy in
the quantized additive energy channel.

We now reproduce the proof of Theorem 3.12.

Proof. For a given input density pX(·), the mutual information I(X; Y ) satisfies

I(X;Y ) = H(Y )−H(Y |X) (3.19)
= H(Y )−H(X + Z|X) (3.20)
= H(Y )−H(Z), (3.21)

as the noise is additive. A maximum is achieved when H(Y ) is maximum, that
is when Y itself it exponentially distributed. This condition is satisfied for the
density in Proposition 3.14. As the output mean is Es + En, we have

C = max
pX(·)

I(X;Y ) = log(Es + En)− log En. (3.22)

In the Gaussian case, the capacity-achieving input is Gaussian, the same
distribution that the noise has. However, as found by Verdú, with additive
exponential noise the input is not purely exponential, but has a delta at x = 0,

3.5 Capacity of the Discrete-Time Poisson Channel

3.5.1 Introduction and Main Results

In this section, and before embarking on the analysis of the quantized additive
energy channel, we study the channel capacity of the discrete-time Poisson
(DTP) channel. The channel was described in Section 2.5. Briefly said, it has
a non-negative, real-valued input xk, and an integer output yk drawn from a
Poisson distribution with parameter xk, that is Yk ∼ P(xk). The input is used
under an energy constraint,

∑n
k=1 xk ≤ nεs, εs being the average number of

quanta of energy per channel use.
In the context of optical communications, where this channel model some-

times appears, the capacity C(εs) was estimated by Gordon [12] as,

C(εs) ' 1
2
(
HGeom(εs)− log2(2πeγe)

)
, (3.23)

where γe ' 0.5772 . . . is Euler’s constant, and HGeom(t) is the entropy of a
geometric distribution with mean t,

HGeom(t) = (1 + t) log2(1 + t)− t log2(t). (3.24)
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This mutual information is obtained by an exponential density at the channel
input, a density sometimes conjectured to be optimal [12, 15]. As εs becomes
large, the mutual information can be further simplified, and approximated by

C(εs) ' 1
2

log2 εs − 1. (3.25)

From an information-theoretic perspective, Brady and Verdú [35] computed
some asymptotic bounds for the channel capacity. Their analysis was recently
refined by Lapidoth and Moser [42], who derived the (tighter) bounds

C(εs) ≥ 1
2

log2 εs + (1 + εs) log2

(
1 +

1
εs

)
−

(
1 +

√
π

24εs

)
log2 e, (3.26)

C(εs) ≤ 1
2

log2 εs + oεs
(1), (3.27)

where the error term oεs
(1) tends to zero as εs → ∞. The upper bound is of

asymptotic nature.
A critical examination of the proofs for these results [12,35] shows that the

blocking elements in obtaining simple formulas are mainly two. Firstly, there
is no simple formula for the entropy of a random variable with a Poisson dis-
tribution, especially compared to the neat formula for the differential entropy
of a continuous variable with Gaussian density (see Eq. (3.15) on page 31).
The major difficulty here is the evaluation of the term log m!, where m is an
integer. A common solution makes use of the Stirling approximation, which
is accurate for moderate and large values of m, but leads to non exact ex-
pressions. We attack this problem by using an integral representation of the
function log m! [43, 44], as we will see in Section 3.5.2. As a by-product of the
analysis, we shall also determine the entropy of discrete random variables with
a negative binomial distribution.

The second major difficulty is the determination of the optimum input
density. In Section 3.5.3 we study in detail the mutual information of the family
of gamma densities. We shall see how some gamma densities achieve a larger
mutual information for low quanta counts. An exact integral representation
of the mutual information will be given. As an example, for the exponential
input density, the exact mutual information I(XE(εs);Y

)
(in nats) is

I(XE(εs);Y ) = (εs + 1) log(εs + 1) +
∫ 1

0

ε2
s(1− u)

1 + εs(1− u)
du

log u
− εsγe. (3.28)
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Asymptotically, as εs →∞, we find that its behaviour is

I(XE(εs); Y ) ' 1
2

log2 εs − 0.188, (3.29)

that is, higher than Gordon’s approximation in Eq. (3.25). As a by-product
of the analysis, tight lower and upper bounds to the channel capacity can be
computed. A lower bound to the capacity is the mutual information achievable
with a gamma input, S ∼ G(1/2, εs), in Eq. (3.46). We have numerically
checked, but not proved, the additional inequality

C(εs) ≥ I(XG(1/2,εs); Y ) ≥ 1
2

log(1 + εs). (3.30)

Our best upper bound admits the simple expression

C(εs) ≤ log

((
1 +

√
2e− 1√
1 + 2εs

)(
εs + 1

2

)εs+ 1
2

√
eεεs

s

)
. (3.31)

As εs becomes large, this upper bound asymptotically tends to

C(εs) ≤ 1
2

log εs +
√

2e− 1√
2
√

εs

+ O
(

1
εs

)
, (3.32)

in line with the bound in Eq. (3.27).
The remainder of this section is structured as follows. First, in Section 3.5.2

we give closed-form expressions for the entropy of random variables with Pois-
son or negative binomial distributions. In Section 3.5.3 similar closed-form
expressions are given for the mutual information of a DTP channel when the
input has a gamma density; these expressions give lower bounds to the channel
capacity. In Section 3.5.4 we provide an upper bound to the channel capacity.
Finally, numerical results are presented in Section 3.5.5.

3.5.2 Entropy of Poisson (and Derived) Random Variables

In our computations we shall make extensive use of the following exact identity
for the logarithm of Euler’s gamma function [44], log Γ(x),

log Γ(x) =
∫ 1

0

(
1− ux−1

1− u
− (x− 1)

)
du

log u
. (3.33)
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Euler’s gamma function [44] is defined as

Γ(x) = ax

∫ ∞

0

ux−1e−au du, (3.34)

where a is positive real number, a > 0. We often take a = 1, the common
definition of the gamma function. Recall that Euler derived his gamma function
as a generalization the factorial m! and that for integer m we have the identity
m! = Γ(m + 1). Therefore

log m! = log Γ(m + 1) =
∫ 1

0

(
1− um

1− u
−m

)
du

log u
. (3.35)

These expressions do not seem to admit an evaluation in terms of more funda-
mental functions but are nevertheless easily computed and, more importantly,
they may be manipulated algebraically to simplify some expressions involving
log Γ(x) or log m!, as we now see. The technique was used by Boersma [43] to
determine the entropy of a Poisson distribution.

Proposition 3.15. The entropy HPois(x) of a random variable distributed
according to a Poisson law with parameter x is

HPois(x) = x− x log x +
∫ 1

0

(
1− e−x(1−u)

1− u
− x

)
du

log u
. (3.36)

The formula is exact and easy to evaluate with the aid of a computer. The
derivation is straightforward; details can be found in Appendix 3.B.

The integral in Eq. (3.36) is proper and converges: at u = 0, the integrand
tends to 0; at u = 1, an expansion of the exponential term around u = 1 yields

lim
u→1

(
1− e−x(1−u)

1− u
− x

)
1

log u
=

x2

2
. (3.37)

Here we have removed a common term (u−1) from numerator and denominator
and then applied the L’Hôpital’s rule.

It is worthwhile determining the asymptotic form, as x →∞, of the entropy
of a Poisson distribution. To do so, we consider a slightly more general function,
which will appear later in this chapter:

Proposition 3.16. As x →∞, the function f(x) given by

f(x) = x− x log x +
∫ 1

0

(
uν−1 1− e−x(1−u)

1− u
− x

)
du

log u
, (3.38)
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where ν > 0, behaves as

f(x) =
(
ν − 1

2

)
γe + 1 +

(
ν − 1

2

)
log x− 1

x

(
1
12
− (ν − 1)2

2

)

+
∫ 1

0

(
(1− u)ν−1

u log(1− u)
+

1
u2
− 1

u

(
ν − 1

2

)
)

du + O
(

1
x2

)
. (3.39)

In particular, the entropy of the Poisson distribution (ν = 1), grows as

HPois(x) =
1
2

log(2πex)− 1
12x

+ O
(

1
x2

)
. (3.40)

The asymptotic formula for the Poisson distribution coincides with that
derived in [43].

The proof is the result of a collaboration with Dr. Hennie Ter Morsche,
from the Department of Mathematics at Technische Universiteit Eindhoven.

Proof. The derivation of Eq. (3.39) can be found in Appendix 3.C. The par-
ticularization for the Poisson distribution uses the identity

1
2
γe + 1 +

∫ 1

0

(
1

u log(1− u)
+

1
u2
− 1

2u

)
du =

1
2

log(2πe). (3.41)

If the parameter s of a Poisson variable changes a new discrete random
variable is generated. Let us consider the general family of gamma densities,
which may be seen as a generalization of the exponential density. Each member
of the family is characterized by a parameter ν and the density pX(x) is

pX(x) =
νν

Γ(ν)εs
ν
xν−1e−

νx
εs . (3.42)

The number εs is the mean of the variable X. The exponential density is
obtained by setting ν = 1. The output induced by a gamma density is a
negative binomial distribution [36], with distribution PY (y)

PY (y) =
Γ(y + ν)
y!Γ(ν)

ννεs
y

(εs + ν)y+ν
. (3.43)

For ν = 1 we obtain the geometric distribution of mean εs, as we should.
We have the following result,
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Proposition 3.17. The entropy HNegBin(ν, εs) of a random variable distributed
according to a negative binomial law with mean εs and parameter ν is

HNegBin(ν, εs) = (εs + ν) log(εs + ν)− ν log ν − εs log εs

+
∫ 1

0

(
1− pgf(u)

)1− uν−1

1− u

du

log u
, (3.44)

where pgf(u) =
(
1 + εs

ν (1− u)
)−ν .

The derivation of Eq. (3.44) exploits the identity Eq. (3.33) to obtain an
alternative form of Γ(y + ν) and y!. It can be found in Appendix 3.D.

For the geometric random variable we recover the entropy in Eq. (3.24).
As in happened for the entropy of a Poisson distribution, the integral in

Eq. (3.44) converges for u → 1. Applying L’Hôpital’s rule twice yields

lim
u→1

(
1− pgf(u)

)
(1− uν−1)

(1− u) log u
= εs(1− ν). (3.45)

3.5.3 Lower Bound: Mutual Information with Gamma Input

As we mentioned in Section 3.2 lower bounds to the channel capacity are
straightforward to generate. A fixed input density achieves a mutual infor-
mation I(X;Y ), in general lower than the capacity. We now exploit the rep-
resentation derived in the previous section to compute the mutual information
in the family of gamma densities. Each of them gives thus a lower bound.

We denote the input by XG(ν,εs), to make the gamma density explicit.

Theorem 3.18. A lower bound to the capacity of the DTP channel with energy
constraint εs is given by the mutual information achieved by an input with
gamma density with parameter ν, denoted by I(XG(ν,εs); Y ), and given by

I(XG(ν,εs);Y ) = (εs + ν) log
εs + ν

ν
+ εs

(
ψ(ν + 1)− 1

)

−
∫ 1

0

((
1− νν

(ν + εs(1− u))ν

)
uν−1

1− u
− εs

)
du

log u
, (3.46)

where ψ(y) is Euler’s digamma function, ψ(y) = Γ′(y)/Γ(y).
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The proof is included in Appendix 3.E.
A particularization to ν = 1, the exponential density, gives the achievable

mutual information I(XE(εs);Y ) as

I(XE(εs); Y ) = (εs + 1) log(εs + 1) +
∫ 1

0

ε2
s(1− u)

1 + εs(1− u)
du

log u
− εsγe. (3.47)

Here we used that ψ(2) = 1− γe, γe being Euler’s constant.
These exact formulas, even though they do not seem to admit an expression

in terms of more fundamental functions, are relatively easy to compute.

3.5.4 Duality-based Upper Bound

We consider now the family of output distributions obtained in a Poisson chan-
nel when the input density p∆(x) is used,

p∆(x) = ∆ δ(x) + (1−∆) pG(ν,εs)(x), (3.48)

that is a mixture of a gamma density with parameter ν and mean εs, denoted
by pG(ν,εs)(x), chosen with probability 1 − ∆, and a delta at x = 0 whose
probability is ∆. Accordingly, the output distribution is a mixture of a nega-
tive binomial distribution with mean εs and parameter ν, and the zero-output
variable. The output distribution, P∆(y) is

P∆(y) =





∆ + (1−∆)
νν

(εs + ν)ν
, y = 0,

(1−∆)
Γ(y + ν)
y!Γ(ν)

ννεs
y

(εs + ν)y+ν
, y > 0.

(3.49)

Each distribution gives an upper bound via Eq. (3.9), with Q(y|x) = e−x yx

y! .
The flexibility in the choice of ν and ∆ allows us to derive a tight bound.

For this family, let us define a function κ(x) as

κ(x) =
∑

y

Q(y|x) log
Q(y|x)
P∆(m)

− γ(x− εs). (3.50)

The function is computed in Appendix 3.F, and is found to have the form
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κ(x) = κ0(x) + κ1(x, γ) + κ2(γ), with the summands in turn given by

κ0(x) = −x + x log x +
∫ 1

0

(
x− uν−1 1− e−x(1−u)

1− u

)
du

log u

− e−x log

(
1 +

∆
(1−∆)

(
1 +

εs

ν

)ν
)

(3.51)

κ1(x, γ) = −x

(
γ − log

εs + ν

εs

)
(3.52)

κ2(γ) = ν log
εs + ν

ν
+ γεs − log(1−∆). (3.53)

From Proposition 3.7, an upper bound to the capacity is given by maxx κ(x).
We now separately examine the three summands to locate the maximum.

First, κ2(γ) is constant and has therefore no impact in the localization of
the maximum over x. Then, choosing γ = log εs+ν

εs
makes κ1(x, γ) = 0 and

therefore constant, with no impact on the localization of the maximum over x.
We consider only the variation of κ0(x) with x.

Initially, consider ∆ = 0, later we will optimize ∆ in order to tighten the
bound. From Proposition 3.16, the behaviour as x →∞ of κ0(x) is given by

κ0(x) = −(
ν − 1

2

)
γe − 1− (

ν − 1
2

)
log x +

1
x

(
1
12
− (ν − 1)2

2

)

−
∫ 1

0

(
(1− u)ν−1

u log(1− u)
+

1
u2
− 1

u

(
ν − 1

2

)
)

du + O
(

1
x2

)
, (3.54)

and therefore diverges to +∞ if ν < 1
2 . This fact is corroborated by Fig. 3.2,

which shows the values of κ0(x) in the range 0 ≤ x ≤ 10, for some values of ν.
For ν ≥ 1

2 , the maximum over x appears at x = 0, and maxx κ0(x) = κ0(x =
0) = 0. Therefore, using the values for γ and κ1(x, γ), an upper bound to the
capacity is given by κ2(γ), whose value is

κ2(γ) = ν log
εs + ν

ν
+ γεs = (εs + ν) log(ν + εs)− εs log εs − ν log ν. (3.55)

For ν = 1 we obtain C(εs) ≤ HGeom(εs), a trivial statement as the geometric
distribution has maximum entropy.

As κ2(γ) decreases as ν becomes smaller, the best upper bound is obtained
by setting ν = 1

2 . Moreover, for the choice ν = 1
2 a finite asymptotic limit is
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Figure 3.2: Computation of κ0(x) for several values of ν.

reached for κ0(x) as x →∞. Indeed, applying Proposition 3.16, we have that

lim
x→∞

κ0(x) = −1−
∫ 1

0

(
(1− u)−1/2

u log(1− u)
+

1
u2

)
du (3.56)

= −1
2

log(2e). (3.57)

In Appendix 3.G we list the numerical evaluation of κ0(x) for large values of x,
where it is verified that the limit is approached from below, i. e. an upper bound
to κ0(x) is given by − 1

2 log(2e). This is in accordance with Proposition 3.16,
which gives the asymptotic expression for κ0(x),

κ0(x) = −1
2

log(2e)− 1
24x

+ O
(

1
x2

)
, (3.58)

and the limit is indeed approached from below for sufficiently large x. The
approximation − 1

2 log(2e) − 1
24x is also included in Appendix 3.G, and shows

very good match with the function κ0(x) for large x.
Finally, we choose ∆ so as to reduce the value at x = 0. Taking

− log

(
1 +

∆∗

1−∆∗
(
1 + 2εs

)1/2

)
= −1

2
log(2e), (3.59)

or in other words,

∆∗ =
√

2e− 1
√

2e− 1 +
(
1 + 2εs

)1/2
, (3.60)

40



Capacity of the Discrete-Time Poisson Channel

then the value at x = 0 coincides with the value as x → ∞, and κ0(0) =
limx→∞ κ0(x). This effect is visible in Fig. 3.2, where the function κ0(x) de-
creases from its value at x = 0 to a local minimum, and increases afterwards.
We have also verified numerically that κ′0(x) is positive after the local mini-
mum, that is the function is monotonic increasing and never reaches the value
κ0(0).

Summarizing all the considerations so far, we choose an input density of
the form Eq. (3.48), with ν = 1/2 and the optimum ∆∗ in Eq. (3.60). This
yields an output distribution PY (y), which is used together with the parameter
γ = log εs+ν

εs
to derive an upper bound to the capacity, using Proposition 3.7.

The maximum over x is located at x = 0 and x → ∞ and is such that the
following upper bound is obtained

C(εs) ≤ −1
2

log(2e) + ν log
εs + ν

ν
+ εs log

εs + ν

εs
− log(1−∆∗) (3.61)

= log

(
1 +

√
2e− 1√
1 + 2εs

)
+ log

(
εs + 1

2

)εs+ 1
2

√
eεεs

s
. (3.62)

As it could be expected from Lapidoth’s result in Eq. (3.27), the upper
bound grows asymptotically as 1

2 log εs for large εs,

1
2

log εs +
√

2e− 1√
2
√

εs

+ O
(
ε−1
s

)
, (3.63)

where we used that log(1 + t) = t + O
(
t−1

)
, as t → 0.

3.5.5 Some Numerical Results

Figure 3.3 shows several bounds and approximations to the channel capacity,

1. Gordon’s approximate formula Eq. (3.23).

2. Lapidoth’s lower bound Eq. (3.26).

3. The exact mutual information Eq. (3.46) with two densities of the gamma
family, namely ν = 1

2 and ν = 1 (exponential).

4. The upper bound derived from the gamma density with ν = 1
2 , Eq. (3.62).

5. An upper bound assuming a geometric distribution, HGeom(εs).
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Figure 3.3: Upper and lower bounds to the channel capacity.

6. A Gaussian approximation to the capacity, CGaus(εs) = 1
2 log2(1 + εs).

In general our results follow the asymptotic expression for the capacity,
1
2 log2 εs, but are tighter than the previously known bounds, by Gordon and
Lapidoth. The gamma density with ν = 1

2 is uniformly better than the expo-
nential input, beating it by about 0.188 bits/channel use, the difference between
the two asymptotic expansions of the capacity, namely

I(XG(1/2,εs);Y ) =
1
2

log2 εs + o(1), (3.64)

I(XG(1,εs);Y ) =
1
2

log2 εs − 0.188 + o(1). (3.65)

We have determined both expansions numerically.
In the range depicted in Fig. 3.3 the corresponding mutual information is

very closely given by the Gaussian approximation CGaus(εs). Figure 3.4 depicts
some further curves to better compare the spectral efficiencies with CGaus. In
Fig. 3.4a we show the difference

I(XG(ν,εs); Y )− CGaus(εs), (3.66)

for the mutual information for two gamma inputs, with ν = 1 and ν = 1
2 .

The difference of C(εs) with respect to the upper bound in Eq. (3.62) is also
depicted. Remarkably, the gamma density with ν = 1

2 seems to be above
CGaus. This is further supported by the results plotted in Fig. 3.4b, a zoom
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in logarithmic scale of the previous plot, where the depicted range is increased
up to εs = 1036 quanta.

These computations allow us to numerically determine an additional term
in the asymptotic expansion to the mutual information for ν = 1

2 ,

I(XG(1/2,εs);Y ) ' 1
2

log εs +
0.324√

εs
+ o(ε−1/2

s ). (3.67)

The plot of the upper bound in Fig. 3.4b matches with its asymptotic form,

1
2

log εs +
√

2e− 1√
2
√

εs

+ O(ε−1
s ). (3.68)

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  50  100  150  200  250

D
if
fe

re
n

c
e
 w

rt
 G

a
u

s
s
ia

n
 A

p
p
ro

x
im

a
ti
o

n
 (

b
it
s
)

Average Number of Input Quanta

Upper Bound
Lower Bound - Gamma(1/2)
Lower Bound - Exponential

(a) Difference for low quanta counts.

10
-20

10
-15

10
-10

10
-5

10
0

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

D
if
fe

re
n

c
e
 w

rt
 G

a
u

s
s
ia

n
 A

p
p
ro

x
im

a
ti
o

n
 (

b
it
s
)

Average Number of Input Quanta

Upper Bound
Lower Bound - Gamma(1/2)

(b) Difference for large quanta counts.

Figure 3.4: Comparison of channel capacity with Gaussian approximation.

From these numbers we conjecture that CGaus is always a lower bound
to the channel capacity, even though we have not been able to prove it. It is
significant that the upper bound in Eq. (3.62), also represented in Fig. 3.4b, ap-
proaches CGaus rather rapidly; the difference between the two is below 0.1 bits
for 150 quanta/mode, falling to 0.01 bits at about 15000 quanta/mode. The
narrow gap between the best lower and upper bounds constitutes the tightest
pair of bounds known so far for this channel.
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3. Capacity of the Additive Energy Channels

3.6 Capacity of the Quantized Additive Energy Channel

3.6.1 Introduction and Main Results

We now move on to study the capacity of the quantized additive energy (AE-
Q) channel, which was described in Section 2.5. Briefly said, in the AE-Q
channel, the non-negative real-valued input xk and the integer-valued output
yk are related as

yk = sk(xk) + zk, (3.69)

where the output variables are distributed as Sk ∼ P(xk), and Zk ∼ G(εn),
i. e. with Poisson and geometric distributions respectively. The input is used
under an energy constraint,

∑n
k=1 xk ≤ nεs, where εs is the average energy per

channel use.
As with the discrete-time Poisson channel, we determine the channel ca-

pacity C(εs, εn) by providing tight upper and lower bounds. The main results
are presented in subsequent sections and summarized here for convenience.

Upper bounds are given in Theorem 3.19 and Theorem 3.21,

C(εs, εn) ≤ min(CG(εs, εn), CP(εs)), (3.70)

where CG(εs, εn) and CP(εs) are respectively given by

CG(εs, εn) = HGeom(εs + εn)−HGeom(εn),

CP(εs) = log

((
1 +

√
2e− 1√
1 + 2εs

)(
εs + 1

2

)εs+ 1
2

√
eεεs

s

)
. (3.71)

Here HGeom(t) is the entropy of a geometric distribution with mean t, given by
Eq. (3.24). Both functions CG(εs, εn) and CP(εs) are monotonically increasing
functions of εs. Roughly speaking, CG is closer to the true capacity for low
values of εs, whereas CP is more accurate for higher values of εs. Note that
CP(εs) does not depend on εn.

This threshold behaviour can be seen in Fig. 3.5, which depicts the upper
and lower bounds to the capacity as a function of the input number of quanta
εs and for several values of εn. The upper bound in solid lines does not depend
on εn, as is due to the intrinsic noise in the signal itself sk. When the additive
noise zk can be neglected, the total noise at the output does not disappear,
but is dominated by the signal-dependent noise. Neglecting the signal noise,
the second upper bound (in dashed lines) essentially takes the opposite path.
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There exists a threshold ε∗s = ε2
n such that the behaviour of the AE-Q

channel is dominated by additive geometric noise below it (the G regime),
and by signal-dependent Poisson noise above it (P regime). When εn is large
enough, a good approximation to the location of the threshold is ε∗s = ε2

n or,

εn =
ε∗s
εn

=
ε∗sε0

εnε0
=

E∗
s

En
= SNR∗ (3.72)

that is the signal-to-noise ratio of the equivalent AWGN and AEN channels.
In terms of the signal-to-noise ratio of the underlying AWGN channel, below
SNR∗ = εn the capacities of the AE-Q and AWGN channels are very similar,
whereas sufficiently above SNR∗ the capacity of the AE-Q channel is half the
capacity of the AWGN channel.

For each value of εn the lower bound CLB(εs, εn) depicted in Fig. 3.5 (in
dashed-dotted lines) is the achievable mutual information with an exponential
input identical to that of the additive exponential noise channel,

CLB(εs, εn) = HGeom(εs + εn)− εn

εs + εn
HGeom(εn)

− εs

εs + εn

(
1
2

log 2πe +
1
2

log
(

εn(1 + εn)
1
12

)
×

× e
εn(1+εn)+ 1

12
εs+εn Γ

(
0,

εn(1 + εn) + 1
12

εs + εn

))
, (3.73)
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3. Capacity of the Additive Energy Channels

where Γ(0, t) is an incomplete gamma function, Γ(0, t) =
∫∞

t
u−1e−u du. De-

spite its unwieldy appearance, the formula is simple to evaluate numerically.
Upper and lower bounds are respectively derived in Sections 3.6.2 and 3.6.3.

Numerical results, particularized for the case when quanta are identified with
photons, are presented and discussed in Section 3.6.4. In this case, the thresh-
old signal-to-noise ratio of the equivalent AWGN channel is given by

SNR∗ = εn ' 6 · 1012

ν
, (3.74)

where ν is the frequency (in Hertz). In decibels, SNR∗ (dB) ' 37.8−10 log10 ν,
where the frequency is in GHz.

3.6.2 Upper Bounds to the Capacity

In this section we shall give two upper bounds to the capacity C of the quantized
additive energy channel as a function of the average signal energy εs and the
average geometric noise energy εn. The first one will be directly related to the
additive exponential noise channel, and the second derived from the discrete-
time Poisson channel. Obviously, the smallest of them also constitutes an upper
bound, tighter than each of them separately.

Our first result is the following

Theorem 3.19. The capacity of the AE-Q channel is upper bounded by

C(εs, εn) ≤ CG(εs, εn) = HGeom(εs + εn)−HGeom(εn), (3.75)

where HGeom(t) is the entropy of a geometric distribution of mean t.

Since HGeom(t), is given by Eq. (3.24), HGeom(t) = (1+t) log(1+t)−t log t,
an equivalent expression for the upper bound is

CG(εs, εn) = (1 + εs + εn) log(1 + εs + εn)− (εs + εn) log(εs + εn)
− (1 + εn) log(1 + εn) + εn log εn. (3.76)

We have also the following corollary,

Corollary 3.20. For finite values of εs, CG(εs, εn) is bounded by

log
(

1 +
εs

εn + 1

)
< CG(εs, εn) < log

(
1 +

εs

εn

)
. (3.77)

The capacity of the AE-Q channel is therefore strictly upper bounded by the
capacity of an AEN channel of signal-to-noise ratio SNR = εs/εn.
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We now prove Theorem 3.19.

Proof. For any input pX(x) the mutual information clearly satisfies

I(X;Y ) = H(Y )−H(Y |X) (3.78)

≤ HGeom(εs + εn)−H
(
S(X) + Z|X)

, (3.79)

as the geometric distribution has the highest entropy under the given con-
straints. Then, as conditioning reduces entropy,

H
(
S(X) + Z|X) ≥ H

(
S(X) + Z|X,S

)
(3.80)

= H(Z|X, S) = H(Z), (3.81)

and Z is independent of the input X. Therefore,

I(X; Y ) ≤ HGeom(εs + εn)−HGeom(εn). (3.82)

As this holds for all inputs the theorem follows.

We now move on to prove the formulas comparing the upper bound with
the capacity of the additive exponential noise channel.

Proof. First, we prove the strict inequality

log(εs + εn)− log εn > CG(εs, εn), (3.83)

for all values of εs > 0, εn ≥ 0. Using the definition of CG(εs, εn), we have

(1 + εs + εn) log(εs + εn)− (1 + εs + εn) log(1 + εs + εn)
− (1 + εn) log(εn) + (1 + εn) log(1 + εn) > 0, (3.84)

that is,

(1 + εs + εn) log
εs + εn

1 + εs + εn
> (1 + εn) log

εn

1 + εn
. (3.85)

Proving this is equivalent to proving that the function

f(t) = (1 + t) log
t

1 + t
= (1 + t) log t− (1 + t) log(1 + t) (3.86)
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3. Capacity of the Additive Energy Channels

is monotonically increasing for t > 0. Its first derivative f ′(t) is

f ′(t) = log t +
1 + t

t
− log(1 + t)− 1 (3.87)

=
1
t
− log

(
1 +

1
t

)
, (3.88)

which is positive since log(1 + t′) < t′ for positive t′.
We now move on to prove the second strict inequality. For εs > 0, εn ≥ 0.

CG(εs, εn) > log(εs + εn + 1)− log(εn + 1). (3.89)

Using the definition of CG(εs, εn) and cancelling common terms,

(εs + εn) log(1 + εs + εn)− (εs + εn) log(εs + εn)
− εn log(1 + εn) + εn log εn > 0, (3.90)

a condition equivalent to

(εs + εn) log
1 + εs + εn

εs + εn
> εn log

1 + εn

εn
. (3.91)

This equation is true whenever the function f(t)

f(t) = t log
(

1 +
1
t

)
(3.92)

is monotonically increasing for t > 0. Equivalently, its first derivative f ′(t),

f ′(t) = log
(

1 +
1
t

)
+ t

− 1
t2

1 + 1
t

= log
(

1 +
1
t

)
− 1

t + 1
, (3.93)

must be positive for t > 0. This condition may be rewritten as

log
(

1 +
1
t

)
>

1
t + 1

, (3.94)

or, exponentiating in both sides,

1 +
1
t

> e
1

t+1 > 1 +
1

t + 1
, (3.95)

where the last inequality is due to the fact that et > 1 + t. Accordingly,
f ′(t) > 0 since t + 1 > t.
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Our second upper bound is in

Theorem 3.21. The capacity of the AE-Q channel is upper bounded by

C(εs, εn) ≤ CP(εs) = log

((
1 +

√
2e− 1√
1 + 2εs

)(
εs + 1

2

)εs+ 1
2

√
eεεs

s

)
. (3.96)

Note that this formula does not depend on the additive noise εn, as will
become apparent from it being derived from the discrete-time Poisson channel.
The proof of Theorem 3.21 is similar to that of Theorem 3.19. It exploits that
a genie has knowledge of the exact value of the additive noise component.

Proof. The variables X, S(X), and Y (S) form a Markov chain in this order,

X → S(X) → Y = S(X) + Z. (3.97)

Hence, by the data processing inequality (Theorem 2.8.1 in [22]),

I(X; Y ) ≤ I
(
X; S(X)

)
, (3.98)

that is the mutual information achievable in the discrete-time Poisson channel.
The bound follows then from Eq. (3.31), as an upper bound to the latter is
also an upper bound to the AE-Q channel.

3.6.3 A Lower Bound to the Capacity

Our lower bound is derived from the mutual information achievable by the
input which achieves the largest output entropy. This input is characterized in

Proposition 3.22. In the AE-Q channel the output entropy H(Y ) is maxi-
mized when the input density pX(x) is given by

pX(x) =
εs

(εs + εn)2
exp

(
− x

εs + εn

)
+

εn

εs + εn
δ(x), x ≥ 0. (3.99)

As a particular case we recover the exponential input, which maximizes the
output entropy of a DTP channel [12]. Also, the form of the density is analogous
to the result in the additive exponential noise channel, in Proposition 3.13.

The proof needs the probability generating function (pgf) pgf(u) of z. For
a geometric random variable of mean x, the pgf is given in
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3. Capacity of the Additive Energy Channels

Proof. Since Y is a discrete random variable, its entropy is maximum when its
distribution is geometric. In that case the pgf E[uY ] is given by

pgfGeom(εn)(u) =
(
1 + εn(1− u)

)−1
. (3.100)

Similarly, for a Poisson distribution with mean x, its pgf is pgfPois(x)(u) =
e−x(1−u). As for the signal component at the output, its pgf is a mixture of
Poisson distributions, of value

pgf(u) =
∫ ∞

0

pX(x) pgfPois(x)(u)dx (3.101)

=
∫ ∞

0

(
εs

(εs + εn)2
e−

x
εs+εn +

εn

εs + εn
δ(x)

)
e−x(1−u)dx (3.102)

=
εs

εs + εn

1(
(εs + εn)(1− u) + 1

) +
εn

εs + εn
(3.103)

=
1 + εn(1− u)

(εs + εn)(1− u) + 1
. (3.104)

As Y is the sum of two independent random variables, its pgf is the product
of the corresponding pgf’s, Eqs. (3.100) and (3.104), which gives

(
(εs + εn)(1− u) + 1

)−1
, (3.105)

the pgf of a geometric distribution with mean εs + εn, as desired.

We shall also need the following upper bound to the entropy of a random
variable Y with a given variance VarY (Theorem 9.7.1 of [22]),

H(Y ) ≤ 1
2

log 2πe

(
VarY +

1
12

)
. (3.106)

We have then the following

Theorem 3.23. A lower bound CLB(εs, εn) to the capacity of the AE-Q chan-
nel is

CLB(εs, εn) = HGeom(εs + εn)− εn

εs + εn
HGeom(εn)

− εs

εs + εn

(
1
2

log 2πe +
1
2

log
(

εn(1 + εn) +
1
12

)
×

× e
εn(1+εn)+ 1

12
εs+εn Γ

(
0,

εn(1 + εn) + 1
12

εs + εn

))
, (3.107)
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where Γ(0, t) is an incomplete gamma function, Γ(0, t) =
∫∞

t
u−1e−u du.

An alternative integral expression is

CLB(εs, εn) = − εs

(εs + εn)2

∫ ∞

0

1
2

log 2πe

(
x + εn(1 + εn) +

1
12

)
e−

x
εs+εn dx

+ HGeom(εs + εn)− εn

εs + εn
HGeom(εn). (3.108)

Proof. We choose as an input the density in Eq. (3.99) in Proposition 3.22. By
construction, the output is then geometric with mean εs + εn and the output
entropy H(Y ) is therefore given by H(Y ) = HGeom(εs + εn). We compute the
mutual information with this input as H(Y )−H(Y |X).

We now move on to estimate the second term, the conditional entropy, as

H(Y |X) =
∫ ∞

0

H(Y |x)

(
εs

(εs + εn)2
e−

x
εs+εn +

εn

εs + εn
δ(x)

)
dx (3.109)

=
εn

εs + εn
H(Y |x = 0) +

εs

(εs + εn)2

∫ ∞

0

H(Y |x)e−
x

εs+εn dx. (3.110)

The first term is the entropy of a geometric distribution, that is H(Y |x = 0) =
HGeom(εn). And the second is upper bounded by Eq. (3.106),

H(Y |x) ≤ 1
2

log 2πe

(
Var(Y |x) +

1
12

)
(3.111)

=
1
2

log 2πe +
1
2

log
(

x + εn(1 + εn) +
1
12

)
. (3.112)

Hence,
∫ ∞

0

H(Y |x)e−
x

εs+εn dx ≤ 1
2

log 2πe

∫ ∞

0

e−
x

εs+εn dx

+
∫ ∞

0

1
2

log
(

x + εn(1 + εn) +
1
12

)
e−

x
εs+εn dx

(3.113)

= (εs + εn)
1
2

log 2πe + (εs + εn)
1
2

log
(

εn(1 + εn) +
1
12

)
×

× e
εn(1+εn)+ 1

12
εs+εn Γ

(
0,

εn(1 + εn) + 1
12

εs + εn

)
. (3.114)
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We determined the integral in Eq. (3.113) by using Mathematica; here Γ(0, t)
is an incomplete gamma function, defined as Γ(0, t) =

∫∞
t

u−1e−u du. Hence,

H(Y |X) ≤ εn

εs + εn
HGeom(εn) +

εs

εs + εn

(
1
2

log 2πe +
1
2

log
(

εn(1 + εn) +
1
12

)
×

× e
εn(1+εn)+ 1

12
εs+εn Γ

(
0,

εn(1 + εn) + 1
12

εs + εn

))
. (3.115)

3.6.4 Numerical Results and Discussion

In this section, we compute the upper and lower bounds which we have derived
in previous pages. We start by evaluating the difference between the upper
and lower bounds from Theorems 3.19, 3.21, and 3.23. The quantity

min
(
CG(εs, εn),CP(εs)

)− CLB(εs, εn) (3.116)

is plotted in Fig. 3.5 as a function of εs for several values of εn, viz. 1, 100, 1000,
and 106 quanta. In all cases, the difference between upper and lower bounds
is at most 1.1 bits, a relatively small value. At low εs, the gap converges to
about 0.6 bits (depicted in Fig. 3.6 as a horizontal line), which is the difference
between the Gaussian bound to the output differential entropy H(Y |X = x),
assuming a variance εs + εn(1 + εn) ' ε2

n, and the differential entropy of
exponential noise, that is,

1
2

log(2πe ε2
n)− log(eεn) =

1
2

log
2π

e
' 0.60441 bits. (3.117)

For high values of εn the gap gets close to this asymptotic value (see especially
the curve for εn = 106). Most of the loss is likely caused by a pessimistic
estimate of the conditional output entropy H(Y |X), which may be closer to
the additive entropy H(Y ) than we have been able to prove. If this were the
case the true channel capacity C(εs, εn) would be closely given by the upper
bound in Theorem 3.19.

At high εs the gap seems to converge to about 0.18 bits (shown in Fig. 3.6 as
a horizontal line), the same gap between the capacity of the discrete-time Pois-
son channel and the mutual information with exponential input. A different
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Figure 3.6: Difference between upper and lower bounds to the channel capacity.

input, such as a gamma density with ν = 1/2, the density used in Section 3.5
on the capacity of the DTP channel, should close this gap.

Figure 3.7 depicts the various upper bounds for several values of εn: 1,
100, 10000, and 106 quanta. The AEN approximation is mentioned in Corol-
lary 3.20, and is given by log2

(
1 + εs

εn

)
. It is indistinguishable from the upper

bound CG(εs, εn) for large values of εn, and is very close to it for εn = 1.
In line with the previous discussion, the upper and lower bounds are close

for all cases, differing by at most 1.1 bits, as mentioned previously. We next
estimate the crossing point between the two forms of the upper bound. For the
highest values of εs depicted in Fig. 3.7 the double approximation εn À 1 and
εs À 1 holds true and we can use the asymptotic forms of the upper bounds
to the capacity, respectively given by Eq. (3.77) and Eq. (3.68),

CG(εs, εn) ' log
(

1 +
εs

εn

)
, CP(εs) ' 1

2
log(εs). (3.118)

With the additional assumption that εs À εn, at the crossing point

ε2
s

ε2
n

' εs. (3.119)

Equivalently, there is a threshold signal-to-noise ratio of the underlying AWGN
and AEN channels,

SNR∗ =
Es

En
=

ε0εs

ε0εn
' εn, (3.120)
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Figure 3.7: Upper bounds to the capacity for several values of εn.

such that the behaviour is limited by additive geometric noise below it (i. e. it
falls in the G region), and by the Poisson, signal-dependent noise above it (i.
e. the P region). The position of the threshold roughly corresponds to input
energy value for which the Poisson noise variance Var(S) = εs coincides with
the additive noise variance Var(Z).

For the upper plots in Fig. 3.7 the position of the threshold is also given by
the expression (3.119), even though the amount of additive noise is not large.
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Conclusions

Photons as Quanta of Energy We conclude our discussion by applying
the results of the AE-Q channel capacity to a channel where photons are the
unit of energy. The details of this correspondence were given in Section 2.6,
on page 21, and summarized in Table 2.2 therein. For a fixed frequency ν,
one can identify the variables εs and εn with respectively the energy of the
useful signal and of thermal noise in a physical channel which makes use of
electromagnetic radiation to convey information. Moreover, εn is given by
Eq. (2.24), the average number of thermal photons at a given temperature.

More concretely, the four cases presented in Fig. 3.7 correspond to frequen-
cies 4THz (εn = 1), 60GHz (εn = 100), 600 MHz (εn = 104), and 6 MHz
(εn = 106). For each of these cases the threshold signal-to-noise ratio SNR∗

has the respective values 0 dB, 20 dB, 40 dB, and 60 dB, as corresponds to using
Eq. (3.120),

SNR∗ = εn =
(
e

hν
kBT0 − 1

)−1 ' kBT0

hν
' 6 · 1012

ν
. (3.121)

In decibels, SNR∗ (dB) ' 37.8− 10 log10 ν, where the frequency is in GHz.
Below threshold, the capacity of the AE-Q channel is closely given by

C(εs, εn) ' log
(

1 +
εs

εn

)
' log

(
1 +

Es

kBT0

)
, (3.122)

where Es is the average signal energy and kBT0 the one-sided noise spectral
density of an equivalent AWGN channel.

Above the threshold SNR∗ the slope of the capacity as a function of log(εs)
changes to the value 1/2. An intriguing connection, which is worthwhile men-
tioning, can be made with non-coherent communications in Gaussian chan-
nels [23], where one of the two signal quadratures is not used, and a similar
change in slope in the capacity takes place. A similar effect appears in phase-
noise limited channels [45].

3.7 Conclusions

In this chapter we have determined the channel capacity of several additive
energy channels. First, we have seen that the capacity of the complex-valued
additive Gaussian noise channel coincides with that of the additive exponential
noise channel with identical levels of signal and additive noise.

Second, we have obtained some new results on the capacity of the discrete-
time Poisson (DTP) channel. We have derived what seems to be the tightest
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known upper bound. An important tool in this analysis has been a simple
method to upper bound the capacity as function of an input distribution. In
addition, we have also derived closed-form proper integral expressions for the
entropy of Poisson and negative binomial distributions, as well as for the aver-
age mutual information of a gamma input in the discrete-time Poisson channel.
This analysis has been published in [46].

As we discussed in Chapter 2, the AE-Q channel is an intermediate model
between the DTP and AEN channels. At one extreme, the additive exponential
noise channel may be seen as a continuous version of the AE-Q. Next to the
difference in the output alphabet (that is integer, instead of real-valued output),
a more important effect is the absence or presence of Poisson (signal-dependent)
noise, besides the additive noise component. In the AE-Q channel, as in the
DTP channel, noise is partly signal-dependent. When this Poisson noise is
taken into account, we have seen that two regimes appear,

• the G regime, where capacity is limited by additive geometric noise, and

• the P regime, where the limiting factor is Poisson noise.

We have computed the capacity by deriving upper and lower bounds. They
differ by (at most) about 1.1 bits, and we expect that the channel capacity is
close to the upper bound. In that case, in the G regime, the channel capacity
is almost the capacity of the equivalent AWGN or AEN channels,

log
(

1 +
εs

εn

)
, (3.123)

whereas in the P regime the capacity is close to the DTP value, 1
2 log εs.

Finally, we have briefly discussed the analogy with radiation channels, for
which the G regime corresponds to the thermal regime, in which additive Gaus-
sian noise is predominant. An unexpected trait of the model is that the con-
dition to lie in the G regime is not only to be at low frequency, as would be
expected, but also to have signal-noise ratio below a threshold. Poisson noise is
macroscopically visible when it prevails over additive noise, an effect which can
arise in one of two ways: by reducing the additive noise level, i. e. by increasing
the frequency or lowering the background temperature, or by increasing the sig-
nal level and so indirectly the variance of the signal itself, which is proportional
to the mean (for a Poisson distribution).

For the frequencies commonly used in radio or wireless communications, the
threshold is located at above 30 dB, and therefore the capacity of the AE-Q and
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AWGN channels would coincide for all practical effects. However, for higher
frequencies or larger values of signal-to-noise ratio, a discrepancy between the
two models would appear. An interesting question is to establish the extent to
which the AE-Q represents a real limit to the capacity of a radio or wireless
communication link. Needless to say, at optical frequencies the AE-Q model
collapses into a discrete-time Poisson channel, widely considered as a valid
model for communication under the so-called direct detection.

Preliminary results on the analysis of the AE-Q channel were presented
at the International Symposium on Information Theory (ISIT) 2006 [47], and
at ISIT 2007 [48]. A paper is to be submitted to the IEEE Transactions on
Information Theory.

3.A An Upper Bound to the Channel Capacity

Let pin(x) be a density on the input alphabet, satisfying the input constraint,
∫

ε(x)pin(x) dx ≤ E. (3.124)

The density pin(x) induces a corresponding output density, p1(y), p1(y) =∫
pin(x)Q(y|x) dx, and achieves a mutual information

I(Xin;Y1

)
=

∫∫
pin(x)Q(y|x) log

Q(y|x)
p1(y)

dx dy, (3.125)

which in general will be smaller than the capacity C(E).
The right-hand side in Eq. (3.9) satisfies

max
x

(∫
Q(y|x) log

Q(y|x)
p(y)

dy − γ(ε(x)− E)
)

= (3.126)

=
∫

pin(x′)

(
max

x

(∫
Q(y|x) log

Q(y|x)
p(y)

dy − γ(ε(x)− E)
))

dx′ (3.127)

≥
∫

pin(x′)
(∫

Q(y|x′) log
Q(y|x′)

p(y)
dy − γ(ε(x′)− E)

)
dx′ (3.128)

≥
∫

pin(x′)
∫

Q(y|x′) log
Q(y|x′)

p(y)
dy dx′, (3.129)

where Eq. (3.127) uses that
∫

pin(x′) dx′ = 1 and x′ is a dummy variable. When
obtaining Eq. (3.128) we used that the integral becomes smaller by replacing
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maxx f(x) by f(x′) at each x′, as f(x′) ≤ maxx f(x). Finally Eq. (3.129) fol-
lows since γ ≥ 0 and the input density pin(x) satisfies the constraint Eq. (3.124).

We continue by proving that the right-hand side in Eq. (3.129) is an upper
bound to I(Xin; Y1). Indeed, cancelling common terms,

∫
pin(x′)

∫
Q(y|x′) log

Q(y|x′)
p(y)

dy dx′ −
∫∫

pin(x)Q(y|x) log
Q(y|x)
p1(y)

dx dy

=
∫

pin(x′)
∫

Q(y|x′) log
p1(y)
p(y)

dy dx′ (3.130)

=
∫

p1(y) log
p1(y)
p(y)

dy ≥ 0. (3.131)

Here we used the definition of p1(y) and the fact that the divergence between
two densities is non-negative.

We have therefore proved that

max
x

(∫
Q(y|x) log

Q(y|x)
p(y)

dy − γ(ε(x)− E)
)
≥ I(Xin; Y1

)
(3.132)

for all input densities which satisfy the input constraint. Since this holds for
all densities, it must also hold for the supremum, the channel capacity C(E).

3.B Entropy of a Poisson Distribution

Using the value of PS(s|x) = e−x xs

s! and log PS(s|x) = −x+ s log x− log s!, the
entropy HPois(x) is written as

HPois(x) = x− x log x +
∞∑

s=0

PS(s|x) log s!, (3.133)

where we substituted the mean value. Using Eq (3.35) the last summand is

∞∑
s=0

PS(s|x) log s! =
∞∑

s=0

e−x xs

s!

∫ 1

0

(
1− us

1− u
− s

)
du

log u
(3.134)

=
∫ 1

0

(
1− e−xexu

1− u
− x

)
du

log u
, (3.135)

where we have interchanged the order of summation and integration and added
up the various terms in the infinite sum.

58



Asymptotic Form of f(x)

3.C Asymptotic Form of f(x)

This analysis was carried out in collaboration with Dr. Hennie Ter Morsche,
from the Department of Mathematics at Technische Universiteit Eindhoven.

Let I denote the integral

I =
∫ 1

0

(
x− (1− u)ν−1 1− e−xu

u

)
du

log(1− u)
. (3.136)

This integral is derived from the one in Eq. (3.38) by the change of variables
u′ = 1− u. For convenience, let us express I as the sum I = I1 + I2 − I3 + I4,
where

I1 =
∫ 1/x

0

(
x− (1− u)ν−1 1− e−xu

u

)
du

log(1− u)
, (3.137)

I2 = x

∫ 1

1/x

du

log(1− u)
, (3.138)

I3 =
∫ 1

1/x

(1− u)ν−1 1
u

du

log(1− u)
, (3.139)

I4 =
∫ 1

1/x

(1− u)ν−1 e−xu

u

du

log(1− u)
. (3.140)

We approximate each of these integrals for large x, determining an expansion
up to order x−1.

In I1, let us change the variable to t = xu. Then

I1 =
∫ 1

0

(
1−

(
1− t

x

)ν−1 1− e−t

t

)
dt

log
(
1− t

x

) . (3.141)

Using the Taylor expansions of (1− z)ν−1 and log−1(1− z), given by

(1− z)ν−1 = 1− (ν − 1)z + az2 + O(z3) (3.142)

log−1(1− z) = −1
z

+
1
2

+
z

12
+ O(z2), (3.143)
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with a = 1
2 (ν − 1)(ν − 2), back in Eq. (3.141), we get for I1 the expression

I1 =
∫ 1

0

(
1−

(
1− (ν − 1)

t

x
+ a

t2

x2
+ O

(
t3

x3

))1− e−t

t

)
×

×
(
−x

t
+

1
2

+
t

12x
+ O

(
t2

x2

))
dt (3.144)

=
∫ 1

0

(
−x

t
+

1
2

+
t

12x

)(
1− 1− e−t

t

)
dt + O

(
1
x2

)
+

+
∫ 1

0

(
(ν − 1)

t

x

1− e−t

t

)(
−x

t
+

1
2

)
dt + O

(
1
x2

)
+

−
∫ 1

0

(
a

t2

x2

1− e−t

t

)(
−x

t

)
dt + O

(
1
x2

)
(3.145)

= −x

∫ 1

0

1
t

(
1− 1− e−t

t

)
dt +

1
2

+
(
ν − 1

2

) ∫ 1

0

(
1− e−t

t

)
dt+

+
1
x

(
1
24 + 1

e

(
− 1

12 + ν−1
2 + a

))
+ O

(
1
x2

)
. (3.146)

Here we used that
∫ 1

0
(1− e−t) dt = e−1.

We now move on to I2. By adding and subtracting a term u−1 to the
integrand, the integral is computed as

I2 = x

∫ 1

1/x

(
1

log(1− u)
+

1
u
− 1

u

)
du (3.147)

= x

∫ 1

1/x

(
1

log(1− u)
+

1
u

)
du− x

∫ 1

1/x

1
u

du (3.148)

= x

∫ 1

1/x

(
1

log(1− u)
+

1
u

)
du− x log x. (3.149)

Now, we extend the lower integration limit to 0, by writing
∫ 1

1/x

(
1

log(1− u)
+

1
u

)
du =

∫ 1

0

(
1

log(1− u)
+

1
u

)
du

−
∫ 1/x

0

(
1

log(1− u)
+

1
u

)
du, (3.150)
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a valid operation since, as u → 0, we deduce from Eq. (3.143) that
(

1
log(1− u)

+
1
u

)
=

1
2

+
u

12
+ O(u2). (3.151)

Hence, the contribution of the second integral can be evaluated asymptotically,

x

∫ 1

1/x

(
1

log(1− u)
+

1
u

)
du = x

∫ 1

0

(
1

log(1− u)
+

1
u

)
du− 1

2
− 1

24x
+ O

(
1
x2

)
,

(3.152)

and we obtain the expression for I2,

I2 = x

∫ 1

0

(
1

log(1− u)
+

1
u

)
du− 1

2
− 1

24x
− x log x + O

(
1
x2

)
. (3.153)

We move on to I3. We add and subtract a term 1
u − 1

2 to the function
1

log(1−u) in the integrand, and write

I3 =
∫ 1

1/x

(1− u)ν−1

(
1

u log(1− u)
+

1
u2
− 1

2u

)
du

−
∫ 1

1/x

(1− u)ν−1

(
1
u2
− 1

2u

)
du. (3.154)

Since

lim
u→0

(
(1− u)ν−1 ·

(
1

u log(1− u)
+

1
u2
− 1

2u

))
=

1
12

+ O(u), (3.155)

we can shift the lower integration limit to 0 in the first integral. This is com-
pensated by subtracting the integral

∫ 1/x

0

(1− u)ν−1

(
1

u log(1− u)
+

1
u2
− 1

2u

)
du =

1
12x

+ O
(

1
x2

)
, (3.156)

where the error term is O
(

1
x2

)
. The resulting integral between 0 and 1 does

not depend on x. The second term, which we denote by I3′ , is given by

I3′ = −
∫ 1

1/x

(1− u)ν−1

(
1
u2
− 1

2u

)
du. (3.157)
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By adding and subtracting a function 1− (ν − 1)u, we rewrite I3′ as

I3′ = −
∫ 1

1/x

(
(1− u)ν−1 − 1 + (ν − 1)u

)(
1
u2
− 1

2u

)
du

−
∫ 1

1/x

(
1− (ν − 1)u

)(
1
u2
− 1

2u

)
du. (3.158)

Again, since
(
(1− u)ν−1 − 1 + (ν − 1)u

)(
1
u2
− 1

2u

)
= a + O(u) (3.159)

around u = 0, we can shift the lower integration order to 0. In doing so, we
must include the summand

∫ 1/x

0

(
(1− u)ν−1 − 1 + (ν − 1)u

)(
1
u2
− 1

2u

)
du =

a

x
+ O

(
1
x2

)
. (3.160)

The resulting integral between 0 and 1 does not depend on x.
The remaining integral in the evaluation of I3 is evaluated as

−
∫ 1

1/x

(
1
u2
− 1

u

(
ν − 1

2

)
+

ν − 1
2

)
du =

1
u

+
(

ν − 1
2

)
log u− ν − 1

2
u

∣∣∣∣
1

1/x

(3.161)

= 1− ν − 1
2

− x +
(

ν − 1
2

)
log x +

ν − 1
2x

. (3.162)

Hence, collecting the previous expressions, I3 admits the asymptotic expression

I3 =
∫ 1

0

(1− u)ν−1

(
1

u log(1− u)
+

1
u2
− 1

2u

)
du+

−
∫ 1

0

(
(1− u)ν−1 − 1 + (ν − 1)u

)(
1
u2
− 1

2u

)
du +

3− ν

2
+

− x +
(

ν − 1
2

)
log x +

1
x

(
− 1

12
+ a +

ν − 1
2

)
+ O

(
1
x2

)
. (3.163)

Finally, we split I4 into two parts, I4′ and I4′′ , respectively given by

I4′ =
∫ 1/2

1/x

(1− u)ν−1 e−xu

u

du

log(1− u)
(3.164)

I4′′ =
∫ 1

1/2

(1− u)ν−1 e−xu

u

du

log(1− u)
. (3.165)
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In the first one, I4′ let us add and subtract a term 1
u − 1

2 , to obtain

I4′ =
∫ 1/2

1/x

(1− u)ν−1 e−xu

u

(
1

log(1− u)
+

1
u
− 1

2

)
du

−
∫ 1/2

1/x

(1− u)ν−1 e−xu

u

(
1
u
− 1

2

)
du. (3.166)

The first summand of I4′ , of value

∫ 1/2

1/x

(1− u)ν−1 e−xu

u

(
1

log(1− u)
+

1
u
− 1

2

)
du, (3.167)

has the form
∫ 1/2

1/x
g(u)e−xu du, where, using Eq. (3.143),

g(u) = (1− u)ν−1

(
1

u log(1− u)
+

1
u2
− 1

2u

)
=

1
12

+ O(u). (3.168)

Replacing this expansion back in the integral, we obtain

∫ 1/2

1/x

e−xu

(
1
12

+ O(u)
)

du =
1

12ex
+ O(e−

x
2 ) +

∫ 1/2

1/x

e−xu O(u) du (3.169)

=
1

12ex
+ O

(
1
x2

)
, (3.170)

where we used that

∫ 1/2

1/x

e−xuun du = O
(

1
xn+1

)
, (3.171)

for large x and n integer.
Changing variables, to t = xu, we get for the second contribution to I4′

−x

∫ x/2

1

(
1− t

x

)ν−1
e−t

t2
dt +

1
2

∫ x/2

1

(
1− t

x

)ν−1
e−t

t
dt. (3.172)
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The Taylor expansion in Eq. (3.142) gives for the first of these summands

− x

∫ x/2

1

(
1− (ν − 1)

t

x
+ a

t2

x2
+ O

(
t3

x3

))e−t

t2
dt =

= −x

∫ x/2

1

e−t

t2
dt + (ν − 1)

∫ x/2

1

e−t

t
dt− a

x

∫ x/2

1

e−tdt−
∫ x/2

1

O
(

t
x2

)
e−tdt

(3.173)

= −x

∫ ∞

1

e−t

t2
dt +

∫ ∞

1

(ν − 1)
e−t

t
dt− a

ex
+ O

(
1
x2

)
, (3.174)

where we replaced the upper integration order by ∞, which introduced an
exponentially small error term O(e−x), and used Eq. (3.171). Similarly, the
second summand in Eq. (3.172) can be expressed as

1
2

∫ x/2

1

(
1− (ν − 1)

t

x
+ O

(
t2

x2

))e−t

t
dt =

=
1
2

∫ x/2

1

e−t

t
dt +

1
2x

∫ x/2

1

(ν − 1)e−tdt +
∫ x/2

1

O
(

t
x2

)
e−tdt

(3.175)

=
1
2

∫ ∞

1

e−t

t
dt− 1

2ex
(ν − 1) + O

(
1
x2

)
, (3.176)

where we also replaced the upper integration order by ∞, with the correspond-
ing error term O(e−x).

The last remaining term is I4′′ ,

I4′′ =
∫ 1

1/2

(1− u)ν−1 e−xu

u

du

log(1− u)
. (3.177)

The magnitude of its contribution |I4′′ | is upper bounded by

|I4′′ | = e−
x
2

∣∣∣∣∣
∫ 1

1/2

(1− u)ν−1 e−xu

u

du

log(1− u)

∣∣∣∣∣, (3.178)

since the function is the integrand is regular, and the exponential function
decays with increasing u. Since the integral exists, we conclude that

I4′′ = O
(
e−

x
2
)
. (3.179)
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Finally, combining Eqs. (3.146), (3.153), (3.163), (3.170) (3.174), (3.176),
and Eq. (3.179), the value of I is given by

I = −x

∫ 1

0

(
1
t
− 1

t2
+

e−t

t2

)
dt− 3− ν

2
+

1
2
− (

ν − 1
2

) ∫ 1

0

(
1− e−t

t

)
dt

+ x

∫ 1

0

(
1

log(1− u)
+

1
u

)
du− 1

2
− x log x−

(
ν − 1

2

)
log x

−
∫ 1

0

(1− u)ν−1

(
1

u log(1− u)
+

1
u2
− 1

2u

)
du

+
∫ 1

0

(
(1− u)ν−1 − 1 + (ν − 1)u

)(
1
u2
− 1

2u

)
du + x− x

∫ ∞

1

e−t

t2
dt

+
∫ ∞

1

(
ν − 1

2

)e−t

t
dt +

1
x

(
1
12
− a− ν − 1

2

)
+ O

(
1
x2

)
. (3.180)

Here we cancelled the common terms in the coefficient of x−1. Further, recall
that a = 1

2 (ν − 1)(ν − 2).
Further simplification is brought about by the facts that

∫ 1

0

(
− 1

log(1− t)
− 1

t2
+

e−t

t2

)
dt +

∫ ∞

1

e−t

t2
dt = (3.181)

=
∫ 1

0

(
− 1

log(1− t)
− 1

t2
+

e−t

t2
+ e−1/t

)
dt = 0 (3.182)

∫ 1

0

1− e−t

t
dt−

∫ ∞

1

e−t

t
dt =

∫ 1

0

1− e−t − e−1/t

t
dt = γe, (3.183)

which, together with some straightforward combinations, implies that

I = −(
ν − 1

2

)
γe − x log x− 3− ν

2
+ x− (

ν − 1
2

)
log x +

1
x

(
1
12
− (ν − 1)2

2

)

−
∫ 1

0

(
(1− u)ν−1

u log(1− u)
+

(
1− (ν − 1)u

)(
1
u2
− 1

2u

))
du + O

(
1
x2

)
(3.184)

= −(
ν − 1

2

)
γe − x log x− 1 + x− (

ν − 1
2

)
log x +

1
x

(
1
12
− (ν − 1)2

2

)

−
∫ 1

0

(
(1− u)ν−1

u log(1− u)
+

1
u2
− 1

u

(
ν − 1

2

)
)

du + O
(

1
x2

)
. (3.185)
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3.D Entropy of a Negative Binomial Distribution

The moment generating function E[etX ] of a variable X with gamma dis-
tribution, denoted by mgfG(ν,εs)(t), and the probability generating function
E[uX ] of a random variable X with negative binomial distribution, denoted by
pgfNegBin(ν,εs)(u), are respectively given by

mgfG(ν,εs)(t) =
νν

(ν − εst)ν
(3.186)

pgfNegBin(ν,εs)(u) =
νν

(ν + εs(1− u))ν
= mgfG(ν,εs)(u− 1). (3.187)

By definition the entropy is the sum

HNegBin(ν, εs) = −
∞∑

y=0

PY (y) log PY (y) (3.188)

= −
∞∑

y=0

PY (y)
(

log
Γ(y + ν)
y!Γ(ν)

+ log
νν

(εs + ν)ν
+ y log

εs

εs + ν

)
(3.189)

= − log
νν

(εs + ν)ν
− εs log

εs

εs + ν
−

∞∑
y=0

PY (y)
(

log
Γ(y + ν)
y!Γ(ν)

)
(3.190)

= (εs + ν) log(εs + ν)− ν log ν − εs log εs −
∞∑

y=0

PY (y)
(

log
Γ(y + ν)
y!Γ(ν)

)
.

(3.191)

We first expand the logarithm using Eq. (3.33),

log
Γ(y + ν)
y!Γ(ν)

=
∫ 1

0

(
1− uy+ν−1 − 1 + uy − 1 + uν−1

1− u

)
du

log u
(3.192)

= −
∫ 1

0

(
(1− uν−1)(1− uy)

1− u

)
du

log u
. (3.193)

The last summand in Eq. (3.191) then equals
∞∑

y=0

PY (y)
(∫ 1

0

(
(1− uν−1)(1− uy)

1− u

)
du

log u

)
(3.194)

=
∫ 1

0

(
(1− uν−1)(1− pgf(u))

1− u

)
du

log u
. (3.195)
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3.E Mutual Information for a Gamma Density Input

The mutual information I(XG(ν,εs);Y ) is the sum I(XG(ν,εs);Y ) = H(Y ) −
H(Y |X). The output entropy H(Y ) is directly given by Eq. (3.44), since the
output is distributed according to a negative binomial distribution. As for
the conditional entropy H(Y |X), from its very definition we note that it is a
function of the entropy of a Poisson random variable, given by Eq. (3.36),

H(Y |X) =
∫ ∞

0

pX(x)HPois(x) dx (3.196)

=
∫ ∞

0

pX(x)
(

x− x log x +
∫ 1

0

(
1− e−x(1−u)

1− u
− x

)
du

log u

)
dx

(3.197)

= εs +
∫ 1

0

(
1−mgf(u− 1)

1− u
− εs

)
du

log u
−

∫ ∞

0

pX(x)x log x dx.

(3.198)

The remaining integral can be evaluated in terms of the digamma function [49],
∫ ∞

0

pX(x)x log x dx = εsψ(ν + 1)− εs log
ν

εs
. (3.199)

Putting all elements together and grouping the obvious terms gives the
desired expression.

3.F Computation of the Function κ(x)

By construction, the function κ(x) is given by

κ(x) = −HPois(x)−
∞∑

y=0

Q(y|x) log P∆(y)− γ(x− εs). (3.200)

The second summand includes the expression log P∆(y), where P∆(y) given
by Eq. (3.49), the channel output under the density Eq. (3.48). The second
summand is given by

∞∑
y=0

Q(y|x) log P∆(y) = Q(0|x) log P∆(0) +
∞∑

y=1

Q(y|x) log P∆(y), (3.201)
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written so as to isolate a term related to the entropy of the negative binomial.
Let us denote the negative binomial distribution as P (y) = PrNegBin(ν,εs)(y).

Adding and subtracting a term Q(0|x) log
(
(1−∆)P (0)

)
we have

∞∑
y=0

Q(y|x) log P∆(y) = Q(0|x) log
P∆(0)

(1−∆)P (0)
+

∞∑
y=0

Q(y|x) log
(
(1−∆)P (y)

)

(3.202)

= e−x log

(
1 +

∆
(1−∆)

(
1 +

εs

ν

)ν
)

+ log(1−∆)

+
∞∑

y=0

Q(y|x) log
(
P (y)

)
, (3.203)

where we used that Q(0|x) = e−x. The last summand was evaluated in the
derivation of Eq. (3.44), included in Appendix 3.D, in Eqs. (3.189) and (3.193).
Using these equations we have

∞∑
y=0

Q(y|x) log P (y) = ν log
ν

εs + ν
+

∞∑
y=0

Q(y|x)y log
εs

εs + ν

−
∞∑

y=0

Q(y|x)
∫ 1

0

(
(1− uν−1)(1− uy)

1− u

)
du

log u
(3.204)

= ν log ν + x log εs − (x + ν) log(εs + ν)

−
∫ 1

0

(
(1− uν−1)(1− e−x(1−u))

1− u

)
du

log u
. (3.205)

Combining this term with the entropy HPois(x) given by Eq. (3.36), can-
celling some common terms and rearranging the final form, we have

κ(x) = −x + x log x +
∫ 1

0

(
x− uν−1 1− e−x(1−u)

1− u

)
du

log u

− e−x log

(
1 +

∆
(1−∆)

(
1 +

εs

ν

)ν
)
− x

(
γ − log

εs + ν

εs

)

+ ν log
εs + ν

ν
+ γεs − log(1−∆). (3.206)
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3.G Numerical Evaluation of κ0(x) for Large x

Table 3.1 shows the computed values of κ0(x) for a wide range of input variable
x. Since a large precision goal is required for large x, we have set Mathematica
to a high precision goal in the internal computations by using the command

N[x + x*Log[x] -
NIntegrate[((1 - Exp[-x*(1-u)])/Sqrt[u]/(1-u) - x)/Log[u],

{u, 0, 1}, WorkingPrecision -> 240, MinRecursion -> 10,
PrecisionGoal -> 60, MaxRecursion -> 400], 30]

to generate the results reported in the table. As x →∞, κ0(x) strongly seems
to approach− 1

2 log(2e) ' −0.84657359027997265470861606072 . . . from below.

x κ0(x) − 1
2

log(2e)− 1
24x

10−3 -0.007215157306619305332096007285 -42.51324025694663932137528272740
0.01 -0.049175062876264757290432766019 -5.013240256946639321375282727396
0.1 -0.266340584231272974982946453848 -1.263240256946639321375282727396
1 -0.773051830993302198340618735354 -0.888240256946639321375282727396
10 -0.851269835471555230853156933655 -0.850740256946639321375282727396
100 -0.846994503273299681423249654818 -0.846990256946639321375282727396
103 -0.846615298690951927273996819862 -0.846615256946639321375282727396
104 -0.846577757363383440063808026741 -0.846577756946639321375282727396
106 -0.846573631946680988119380164202 -0.846573631946639321375282727396
108 -0.846573590696639325541949471493 -0.846573590696639321375282727396
1010 -0.846573590284139321375699394062 -0.846573590284139321375282727396
1012 -0.846573590280014321375282769062 -0.846573590280014321375282727396
1014 -0.846573590279973071375282727400 -0.846573590279973071375282727396
1020 -0.846573590279972654709032727396 -0.846573590279972654709032727396
1025 -0.846573590279972654708616064896 -0.846573590279972654708616064896

Table 3.1: Evaluation of κ0(x) for large values of x.
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4

Digital Modulation in the Gaussian Channel

4.1 Introduction

In the introduction to Chapter 2, where Shannon’s model for the communica-
tion channel was introduced, we mentioned the existence of an encoder, which
transforms the source message into a form appropriate for reliable transmis-
sion across a channel. From a systems point of view, the encoder performs two
tasks, that can be broadly described as coding and modulation:

1. The encoder adds redundancy to the source message, so that the dele-
terious effect of channel noise can be overcome. This is the domain of
channel coding, which will be treated in some detail in Chapter 6.

2. The encoder transforms the source message into a set of modulation sym-
bols. This set is judiciously chosen by taking into proper account the
nature of the channel characteristics and impairments.

When the coding and modulation tasks are jointly performed at both the
encoder and the decoder, we talk of coded modulation. Alternatively, for bit-
interleaved coded modulation, the two tasks may be carried out sequentially:
first, the source message is encoded with a binary code; the encoder output is
then mapped onto a set of modulation symbols. At the decoder, the reverse
operations are carried out. If we do not wish to distinguish among the two
options, we rather use the words digital modulation.

In this chapter, we study digital modulation for the Gaussian channel. Since
Gaussian channels are often used to model communication systems operating
at radio and microwave frequencies, much previous work has been done in the
field, see e. g. the recent reviews [50,51]. Part of the content of this chapter is
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4. Digital Modulation in the Gaussian Channel

a review of this body of work, as a prelude to deriving similar results on digital
modulation for the additive energy channels, in Chapter 5.

Much attention has been paid recently to the performance of coded modula-
tion in the so-called “wideband regime”, where signal-to-noise ratio is very low,
see for instance [25, 52]. The reasons for this increased attention are twofold:
from a practical point of view, many wireless systems operate at low signal-
to-noise ratio and theoretical results in this field are of directly applicable. In
addition, mathematical analysis is somewhat simpler than in the general case,
leading to neat closed-form expressions for some information-theoretic quanti-
ties. In this chapter, we shall also study the performance in this regime and
derive some new results, described in more detail below. In Chapter 5, we
extend our analysis to the additive energy channels.

In Chapter 3, the channel capacity was defined as the largest rate at which
messages can be reliably sent over the channel. For some channels, we found
the form of the distribution at the channel input which achieves the capacity.
Other input distributions also allow for vanishingly small error probabilities,
but at a rate, the constrained capacity, that is in general lower than the chan-
nel capacity. In practical communication systems, this reduction in rate may
be compensated by the ease of design allowed by simple modulation sets, as
opposed to using the capacity-achieving input. In Section 4.2 we consider the
constrained capacity for some common digital modulation formats, such as
phase-shift keying (PSK) or quadrature-amplitude modulation (QAM).

Since the constrained capacity does not admit a simple expression, it often
proves convenient to study alternative figures of merit, such as the capacity
per unit energy or the minimum energy-to-noise ratio [25, 52]; they approxi-
mate the constrained capacity by its second-order Taylor series around zero
signal-to-noise ratio. In Sections 4.2.2 and 4.2.3, we review these concepts and
provide an independent derivation of the Taylor series, which does not depend
on Prelov’s previous analysis [52]. The method used for the derivation will
prove directly applicable to the additive energy channels in Chapter 5. An-
other figure of merit, relevant at large signal-to-noise ratios, is the shaping
gain, which determines the asymptotic loss incurred by not using the optimum
channel input. The shaping gain is considered in Section 4.2.6.

In Section 4.3 we describe bit-interleaved coded modulation, in general
terms and particularized to the Gaussian channel, and analytically determine
its behaviour at low signal-to-noise ratio.

The results presented in this chapter have been partly published in [53]
and a paper has been submitted to the IEEE Transactions on Information
Theory [54].
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4.2 Coded Modulation in the Gaussian Channel

4.2.1 Constrained Capacity

In Chapters 2 and 3, we considered the discrete-time additive Gaussian noise
channel model. Its output is a complex-valued vector (y1, . . . , yn), whose k-th
component yk is given by the sum

yk =
√

SNR xk + zk. (4.1)

Here the zk are independent samples of circularly symmetric complex-valued
Gaussian noise of variance 1, zk ∼ NC(0, 1), and each xk is k-th the complex-
valued channel input, namely a modulation symbol drawn from a set with unit
average energy. SNR is the average signal-to-noise ratio at the receiver.

Input symbols are drawn according to a common distribution PX(·) from a
set X with |X | = 2m elements. When the symbols used with equal probabil-
ities, m bits are required to choose a symbol. We define the first and second
constellation moments, respectively denoted by µ1(X ) and µ2(X ), as

µ1(X ) =
∑

x∈X
xPX(x), µ2(X ) =

∑

x∈X
|x|2PX(x). (4.2)

Often, constellations have zero mean, i. e. µ1(X ) = 0, and unit energy, that is
µ2(X ) = 1. Similarly, we define a variance as σ2(X ) = µ2(X )− ∣∣µ1(X )

∣∣2.
The capacity C of the Gaussian channel was given by Theorem 3.10, C(SNR) =

log(1 + SNR). We define the bit-energy-to-noise ratio as

BNR =
SNR

C(SNR)
log 2. (4.3)

namely the average received energy normalized to a bit of information. It
should be noted that a bit need not be effectively transmitted, since C may
be smaller than 1 bit. This quantity is commonly used to compare systems
operating at low signal-to-noise ratio in the Gaussian channel, in part because,
as we shall see, most modulation formats asymptotically attain the same BNR
at low capacities, easing the performance comparison among different formats.

Even though the common notation for BNR is Eb/N0, we prefer the alter-
native symbol BNR because it can be used for the additive energy channels,
for which a noise spectral density N0 is not necessarily defined. Moreover, the
symbol BNR maintains the symmetry with respect to the acronym SNR and
leads to formulas which are, possibly, easier to read.
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In order to achieve the capacity C, the channel input must be a properly
chosen complex Gaussian distribution. In practice, however, it is common to
fix a finite constellation set for the channel input. Well-known examples [32,
50] are phase-shift keying (PSK), quadrature-amplitude modulation (QAM),
amplitude-phase shift keying (APSK), or pulse-amplitude modulation (PAM).

When the symbols in X are used with probabilities PX(x), the mutual
information I(X;Y ) between channel input X and output Y , or constrained
coded modulation capacity CX for short, is given by Eq. (3.3) on page 27. The
name constrained capacity is justified by the fact that the mutual information
gives the maximum rate at which information can be reliably transmitted over
the channel by using the input the distribution PX(x), in an analogous manner
as the channel capacity gives the maximum rate at which information can be
reliably transmitted over the channel for all possible input distributions.

For the Gaussian channel, the channel transition matrix Q(y|x) is given by

Q(y|x) =
1
π

exp
(−|y −

√
SNRx|2), (4.4)

as in Chapter 2, Eq. (2.8) on page 15. We have then

Definition 4.1. For the additive Gaussian noise channel with average signal-
to-noise ratio SNR, the constrained capacity CX with a modulation set X used
with probabilities PX(x) is

CX (SNR) = −E

[
log

( ∑

x′∈X
PX(x′) exp

(−|
√

SNR(X − x′) + Z|2 + |Z|2)
)]

.

(4.5)

The expectation is performed over all input symbols X and all possible noise
realizations Z, Z ∼ NC(0, 1).

If the symbols are used with equal probabilities, i. e. PX(x) = M−1, we
refer to the constrained capacity as uniform capacity, and denote it by Cu

X .
Figure 4.1 shows the constrained coded modulation capacity for several

typical modulations as a function of SNR and of BNR, defined as BNR =
SNR

CX (SNR) log 2. Note that plot 4.1b has the x and y axes reversed with respect
to the common practice, as in [50], and so shows BNR as a function of the
capacity CX , rather than the capacity as a function of BNR. Behind this
choice lies the convention in plotting a function f(x) which reserves the x axis
to present the free variable x and uses the y axis to depict the function f(x). In
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Fig. 4.1b the free variable is the capacity CX (or the signal-to-noise ratio SNR),
from which the bit energy-to-noise ratio BNR is derived. If, as it happens for
some channels, the inverse function CX (BNR) can take two values, interpreting
the standard depiction is slightly confusing, whereas a plot BNR(CX ) leads to
no conceptual complication. Apart from this, the plots are well-known and can
be found, for instance, in [50].
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Figure 4.1: Channel capacity (in bits per channel use).

Two traits in Fig. 4.1b deserving special attention are the asymptotic be-
haviour at low and high signal-to-noise ratio. First, the well-known minimum
BNR = −1.59 dB is approached at low BNR for all modulations depicted. Sec-
ond, before each of the curves attains the asymptotic value H(X) = m log 2 at
high BNR, all lines define a gap with respect to the unconstrained capacity C,
the so-called shaping gain. In the following pages, we characterize analytically
the behaviour in each of these two regimes.

4.2.2 Capacity per Unit Energy

In this section, we rederive Shannon’s limit for the minimum bit-energy-to-noise
ratio, namely BNRmin = −1.59 dB, in terms of the capacity per unit energy.
The capacity per unit energy C1 is the largest number of bits per symbol which
can be reliably sent over the channel per unit energy. As found by Verdú [29],
the capacity per unit energy in the Gaussian channel and the minimum energy
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per bit, obtained from Eq. (3.11), are respectively given by

C1 =
1
σ2

, Eb,min = σ2 log 2. (4.6)

Alternatively, C1 can be determined by using Theorem 3.9 on page 30.
Another equivalent form is the minimum bit-energy-to-noise ratio BNRmin,

BNRmin = Eb,min
σ2 = log 2, or -1.59 dB. This quantity is the well-known Shannon

limit. As previously mentioned, this result is apparent from Fig. 4.1b.

4.2.3 Asymptotic Behaviour at Low SNR

In this section, we examine the asymptotic behaviour of the constrained ca-
pacity CX as SNR → 0. We provide some analytic results which complement
the recent study by Verdú of the “wideband, power-limited regime” [25].

Before considering the effect of modulation, let us first discuss the uncon-
strained case. A Taylor expansion of the capacity C around SNR = 0 gives

C = log(1 + SNR) = SNR− 1
2 SNR2 +O(SNR3). (4.7)

The inverse function, which gives SNR as a function of C, is

SNR = eC − 1 = C + 1
2C2 + O(C3). (4.8)

In terms of the bit-energy-to-noise ratio BNR, we have

BNR = log 2 + 1
2C log 2 + O(C2), (4.9)

or, keeping only the linear term in BNR,

C ' (
BNR− log 2

) 2
log 2

. (4.10)

The capacity is positive if the bit-energy-to-noise ratio exceeds log 2, or about
−1.59 dB, in line with the analysis of the capacity per unit energy. Additionally,
the capacity can be approximated by an affine function when BNR is small.
Recently, Verdú suggested approximating the constrained capacity CX by an
affine function of BNR (in decibels, BNRdB = 10 log10 BNR), that is,

CX ' α0

(
BNRdB − BNRdB

0 ), (4.11)

where α0 and BNRdB
0 depend on the constellation set through the first terms

of the Taylor series of CX (SNR) at SNR = 0. In general, we have
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Definition 4.2 (Taylor coefficients). We denote by c1 and c2 the first two
coefficients of a Taylor expansion of the capacity around SNR = 0, i. e.
C(SNR) = c1 SNR+c2 SNR2 +o(SNR2).

We will use the same notation for constrained capacity and for the additive
energy channels, where the expansion is around zero energy.

Then we have (Theorem 9 of [25]),

Theorem 4.3. As SNR → 0, the channel capacity admits an expression in
terms of BNR of the form

CX ' γ0

(
BNRdB − BNRdB

0

)
+ o

(
(∆BNRdB)

)
, (4.12)

where ∆BNRdB = BNRdB − BNRdB
0 , γ0 is a wideband slope, and BNR0 the

BNR at SNR → 0. γ0 and BNR0 are respectively given by

γ0 = − c2
1

c210 log10 2
, BNR0 =

log 2
c1

. (4.13)

For the unconstrained case c1 = 1 and c2 = − 1
2 . In [52], Prelov and Verdú

determined c1 and c2 for proper-complex constellations, introduced by Neeser
and Massey [55]. These constellations satisfy µ2′(X ) = 0, where

µ2′(X ) =
∑

x∈X
x2PX(x), (4.14)

is a second-order pseudo-moment, borrowing notation from the paper [55]. We
define a pseudo-variance σ̂2(X ) as σ̂2(X ) = µ2′(X )− µ2

1(X ). We compute the
coefficients for slightly more general modulation formats in

Theorem 4.4. The first two Taylor-series coefficients of the coded modulation
capacity over a signal set X used with probabilities PX(x) are given by

c1 = σ2(X ) = µ2(X )−
∣∣µ1(X )

∣∣2 (4.15)

c2 = −1
2

(
σ4(X ) +

∣∣σ̂2(X )
∣∣2

)
. (4.16)

In particular, when the average symbol is zero, and the mean energy is one,

c1 = 1, c2 = −1
2

(
1 +

∣∣µ2′(X )
∣∣2

)
, (4.17)
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and the bit-energy-to-noise ratio at zero SNR is BNR0 = log 2.
The second-order coefficient is bounded by −1 ≤ c2 ≤ − 1

2 , the maximum
(c2 = −1/2) being attained when the constellation has uncorrelated real and
imaginary parts and the energy is equally distributed among the real and imag-
inary parts.

Note that constellation sets with unit energy and zero mean achieve the
minimum energy per bit at low SNR.

Proof. The formulas for c1 and c2 can be derived from Theorem 5 of [52]. The
details are given in Appendix 4.A. An alternative direct proof, which does not
require knowledge of Theorem 5 in [52], may be found in Appendix 4.B. The
minimum BNR is directly given by Theorem 4.3.

It is obvious that c2 ≤ − 1
2 . From the Cauchy-Schwartz inequality we deduce

that |µ2′(X )| =
∣∣E[X2]

∣∣ ≤ E
[|X|2] = µ2(X ), and therefore c2 ≥ −1. The

maximum c2 = − 1
2 is attained when µ2′(X ) = 0, that is when E[X2] = 0. This

condition is equivalent to

E[X2
r ]− E[X2

i ] = 0, and E[XrXi] = 0. (4.18)

Therefore, the real and imaginary parts must be uncorrelated (E[XrXi] = 0 =
E[Xr] E[Xi]) and with the same energy in the real and imaginary parts; this is
indeed satisfied by proper-complex constellations [55].

The first part, giving c1, can be found as Theorem 4 of [25]. The formula for
c2 seems to be new; note however that it can be easily derived from Theorem 5
in [52]. Application of Theorem 4.4 to some signal constellations of practical
interest (used with equal probabilities) yields the following corollary.

Corollary 4.5. Pulse amplitude modulation (PAM) with 2m levels has c2 =
−1.

A mixture of nr |Xn|−PSK constellations for n = 1, . . . , nr has c2 = − 1
2 if

|Xn| > 2 for all rings/sub-constellations n = 1, . . . , nr.

Proof. In PAM, all symbols lie on a line in the complex plane, up to an irrele-
vant constant phase factor, we have |µ2′(X )| = µ2(X ) = 1.

Assume a PSK modulation with |X | > 2. Up to a constant, irrelevant
phase, the sum over the constellation symbols in µ2′(X ) gives

µ2′(X ) =
1
|X |

|X |−1∑

i=0

ej2 2πi
|X| =

1
|X |

1− ej2
2π|X|
|X|

1− ej2 2π
|X|

= 0, (4.19)
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as ej4π = 1. This is true only if the denominator is nonzero, which is satisfied
for |X | > 2. When |X | = 2, we have

∣∣µ2′(X )
∣∣2 = 1.

Let ε2n be the squared modulus of the symbols at ring n. For simplicity,
assume all rings have the same phase origin. We can split the sum over X as
a sum over rings indexed by n,

µ2′(X ) =
1
|X |

nr∑
n=1

ε2n
1− ej2

2π|Xn|
|Xn|

1− ej2 2π
|Xn|

. (4.20)

This number is zero if |Xn| > 2 for all n.

This result is a generalization of Theorems 11.1 and 11.2 of [25], where the
results held for QPSK or mixtures of QPSK constellations. This result covers
QAM and APSK modulations, for instance.

The expansion of the mutual information can be transformed into an ex-
pansion of the output channel entropy, by using the decomposition I(X; Y ) =
H(Y )−H(Y |X), and H(Y |X) = H(Z) = log πe,

Corollary 4.6. The entropy of the AWGN channel output H(Y ) has the ex-
pansion at SNR = 0

H(Y ) = log πe + c1 SNR+c2 SNR2 +O(SNR5/2). (4.21)

In this section we have given closed-form approximations to the channel
capacity as a function of the signal-to-noise ratio for low values of the signal-
to-noise ratio. An interesting byline, recently analyzed by Verdú [25], links the
coefficients c1 and c2 with two physical parameters in a radio communication
channel, power and bandwidth. We next discuss this relationship.

4.2.4 Power and Bandwidth Trade-Off

In previous pages we have computed the first terms of the Taylor expansion
of the constrained coded modulation capacity around SNR = 0. Next to the
intrinsic theoretical value of the results, the analysis also possesses some prac-
tical value, since many communication systems operate in Gaussian noise at
low signal-to-noise ratio SNR. In this section we explore this link.

For a communication systems engineer interested in maximizing the data
rate over a Gaussian channel, two physical variables are critical, namely the
power P , or energy per unit time, and the bandwidth W , or number of channel
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4. Digital Modulation in the Gaussian Channel

uses per unit time. Assuming additive Gaussian noise with spectral density
N0, the signal-to-noise ratio SNR is then given by SNR = P/(N0W ).

The condition of low SNR applies to a wide variety of practical communica-
tion systems, whenever the condition that the available energy at each channel
use is very low, that is, SNR ¿ 1. For fixed P and N0, this is attained by
letting the bandwidth increase unbounded, W →∞.

The capacity measured in bits per unit time is a natural figure of merit for
the communications system. This capacity is given by CW = W log(1+SNR),
where C the capacity considered in previous sections or in Chapter 3, has units
of bits per unit time per Hertz. When W is very large, we have that

CW = W log
(

1 +
P

N0W

)
=

P

N0
− P 2

2N2
0 W

+ O
(

P 3

N3
0 W 2

)
. (4.22)

For coded modulation systems whose Taylor expansion around SNR = 0 has
coefficients c1 and c2,

CXW = c1
P

N0
+ c2

P 2

N2
0 W

+ O

(
P 5/2

N
5/2
0 W 3/2

)
. (4.23)

To first-order, the capacity increases linearly with the ratio P/N0, that
is linearly with the power P for fixed N0. Following Verdú, we consider the
following general situation. Two alternative transmission systems, respectively
represented by an index i = 1, 2, with given power Pi and bandwidth Wi,
achieve respective capacities per channel use Ci with Taylor coefficients c1i

and c2i. In general, the capacities per unit time CiWi will differ.
A natural comparison between the two methods is to hold the power fixed,

that is P1 = P2, and derive, as a function of W1, the bandwidth W2 required to
have the same capacity per unit time, C1W1 = C2W2. Verdú carried out this
analysis [25] and found that the bandwidth expansion is given by the ratio of
the wideband slopes of alternatives 1 and 2, where the wideband slope is given
by Theorem 4.3, and

W2

W1
=

c21

c22
. (4.24)

For instance, BPSK (c22 = −1), needs a bandwidth two times as big as QPSK
(c21 = −1/2) to transmit the same rate. However, the form of Eq. (4.23) shows
that the dependence of the capacity per unit time CW on the bandwidth W
is rather weak. Since the capacity varies linearly with the available power P ,
a better way of achieving the same capacity is by varying P .
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Coded Modulation in the Gaussian Channel

A natural trade-off between the two alternatives starts by fixing the power
P1 and bandwidth W1 of system 1, and therefore signal-to-noise ratio SNR1

and capacity per unit time C1W1. Then, one can fix the power P2 (or the
bandwidth W2), and then determine how much bandwidth W2 (resp. power
P2) is required to achieve the same capacity, that is C1W1 = C2W2. The
following result determines the form of the trade-off between the power and
the bandwidth for two alternative systems transmitting at the same rate,

Theorem 4.7. Let two modulations attain respective capacities per channel
use Ci, i = 1, 2, with respective Taylor coefficients c1i and c2i for SNR → 0.
Consider system 1 as baseline, with power P1, bandwidth W1, signal-to-noise
ratio SNR1 and capacity C1W1. Define ∆P = P2/P1 and ∆W = W2/W1 as
the power and bandwidth expansion ratios between alternatives 1 and 2.

In a neighbourhood of SNR1 = 0 the capacities in bits per second, C1W1

and C2W2 are equal when the expansion factors ∆P and ∆W are related as

∆W =

(
c22 SNR1 +o(SNR1)

)
(∆P )2

c11 + c21 SNR1 +o(SNR1)− c12∆P
, (4.25)

for ∆W as a function of ∆P and, if c12 6= 0,

∆P =
c11

c12
+

(
c21

c12
− c22c

2
11

c3
12∆W

)
SNR1 +o(SNR1), (4.26)

for ∆P as a function of ∆W .

Proof. The proof can be found in Appendix 4.C.

Remark that we use the approximation SNR1 → 0. As a consequence,
replacing the value of ∆P from Eq. (4.26) into Eq. (4.25) gives

∆W =
1 + O(SNR1)

1
∆W + o(1)

, (4.27)

which is not exact, but consistent with the approximation that SNR1 is small.
The previous theorem leads to the following derived results. For simplicity,

we drop the terms o(SNR1) and replace the equality signs by approximate
equalities.

Corollary 4.8. To a first approximation, c11P1 ' c12P2, and a difference in
coefficient c1 immediately translates into a power loss.
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4. Digital Modulation in the Gaussian Channel

Corollary 4.9. For ∆P = 1, we obtain

∆W ' c22 SNR1

c11 + c21 SNR1−c12
, (4.28)

and for the specific case c11 = c12, ∆W ' c22/c21.

The latter formula was previously obtained by Verdú [25] as a ratio of
wideband slopes. As noticed in [25], and previously mentioned in Eq. (4.24),
the loss in bandwidth may be significant when ∆P = 1. But this point is
just one of a curve relating ∆P and ∆W . For instance, with no bandwidth
expansion we have

Corollary 4.10. For c11 = c12 = 1, and choosing ∆W = 1, ∆P ' 1 +
(
c21 −

c22

)
SNR1.

In decibels, and since SNR1 is small, we may use a Taylor expansion of the
logarithm function, and have ∆P ' 4.34

(
c21 − c22

)
SNR1 dB, where SNR1 is

in linear scale. In fact, there is no strong reason to limit ourselves to ∆W = 1.
For instance, for ∆W = 1

10 , or a bandwidth compression of a factor 10, and for
the QPSK/BPSK comparison, one gets ∆P ' 1+9.5 SNR1 ' 41.26 SNR1 dB,
which is indeed negligible for vanishing SNR.

Figure 4.2 shows the trade-off curves between QPSK (baseline) and BPSK.
For ∆P = 1, the bandwidth expansion is indeed 2 times. However, for SNR1 =
−20 dB, if a power loss of 1 + 1

2 SNR1 ' 0.02 dB is accepted, there is no
bandwidth increase. Increasing power further, bandwidth may even be reduced.
In either case, as SNR1 → 0, the additional power loss turns negligible.

For signal-to-noise ratios below -10 dB, the approximation in Theorem 4.7
seems to be very accurate for “reasonable” power or bandwidth expansion
ratios. A quantitative definition would lead to the problem of the extent to
which the second order approximation to the capacity is correct, a question on
which we do not dwell further.

Note that the curve derived from Theorem 4.7 diverges to ∆W →∞ if

∆P =
c11 + c21 SNR1

c12
, (4.29)

which is typically close to ∆P = 1 for low SNR. As we get away from ∆P = 1,
the bandwidth expansion quickly becomes smaller. The anomalous behaviour
at large ∆P , namely the non-monotonicity of the curve, is due to the expansion
at low SNR breaking down, more concretely from the minus sign of square root
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Figure 4.2: Trade-off ∆P vs. ∆W between QPSK (baseline) and BPSK.

in Eq. (4.142) in the proof of the theorem. In this region, the assumption of
low SNR ceases being valid and the results become meaningless.

This analysis complements Verdú’s approach to determine the form of trade-
off between these two system variables, power and bandwidth. Next, we briefly
consider the effect of fully-interleaved fading.

4.2.5 Effect of Fading on the Low SNR Regime

We now briefly study the effect of fading on the expansion at the low power
regime. The fading model we consider is a fully-interleaved model, where the
output yk at time k has a form similar to Eq. (4.1),

yk =
√

SNR hk xk + zk, (4.30)

where zk is a sample of Gaussian noise, hk is a complex-valued fading coefficient,
and xk is the input. At each time instant, a new value hk is used; its phase
assumed known at the receiver. For general fading distributions, we have the
following (see Theorem 12 of [25]),

Theorem 4.11. For a fading distribution with finite moments satisfying E[χ] =
1, the Taylor expansion of the constrained capacity at low SNR is

CX (SNR) = c1 SNR+c2 E[χ2] SNR2 + o(SNR2), (4.31)
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4. Digital Modulation in the Gaussian Channel

where c1 and c2 denote the first two terms in the expansion of the capacity in
the absence of fading, Eqs. (4.15) and (4.16).

In Chapter 6 we shall use a Nakagami fading model to study the error
performance of channel codes over Gaussian channels. In this case the squared
fading coefficient χk = |hk|2 follows a gamma distribution

pχ(χk) =
m

mf

f χ
mf−1
k

Γ(mf )
e−mf χk , (4.32)

where the parameter mf is a real positive number, 0 < mf < ∞. Since
E[χk] = 1, and signal and noise have average unit energy, SNR represents
the average SNR at the receiver. This fading model is slightly more general
than the standard Nakagami-mf fading, since we lift the usual restriction to
mf ≥ 0.5 [32, 51]. As the distribution is well-defined for 0 < mf < 0.5,
reliable transmission is possible for mf > 0. We recover the unfaded AWGN
channel by letting mf → +∞, a Rayleigh fading model by setting mf = 1
and (an approximation to) Rician fading with parameter KRic by fixing mf =
(KRic + 1)2/(2KRic + 1).

Using the values of the moments of Nakagami-mf fading, E[χ] = 1, and
E[χ2] = 1 + 1/mf (see Eq. (3.34)), we characterize the effect of Nakagami
fading in the power and bandwidth requirements for a given modulation in the
Gaussian channel,

Theorem 4.12. Consider a modulation set X with average unit energy and
used with power P , bandwidth W , and signal-to-noise ratio SNR. Let the capac-
ity in absence of fading be characterized at low SNR by the coefficients c1 = 1
and c2. When used over a Nakagami-mf channel, then c2(mf ) =

(
1 + 1

mf

)
c2.

When used in the Nakagami-mf channel with power P (mf ) and bandwidth
W (mf ), if P (mf ) = P , W (mf ) = W

(
1 + 1

mf

)
, and if W (mf ) = W , P (mf ) =

P
(
1− c2

mf
SNR

)
.

As expected, for unfaded AWGN, when mf → ∞, we have E[χ2] = 1.
Rayleigh fading (mf = 1) incurs in a bandwidth expansion of a factor 2 if the
power remains fixed. On the other hand, if bandwidth is kept unchanged, there
is a power penalty in dB of about 10 log10(1− c2 SNR) ' −10c2 SNR / log 10 '
−4.343c2 SNR dB, a negligible amount for all practical effects since SNR → 0.
The worst possible fading is mf → 0, which requires an unbounded bandwidth
expansion or incurs an unlimited power penalty.
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Coded Modulation in the Gaussian Channel

4.2.6 Asymptotic Behaviour at High SNR

In Figs. 4.1a and 4.1b, on page 75, we saw that there seemed to be only small
differences among the various modulations in the low and high BNR extremes.
In the last sections, we characterized analytically the behaviour at low BNR
and showed that there are indeed no large differences in the rates achievable
for the different modulations.

For fixed SNR and SNR → ∞, the family of squared QAM constellations
approaches an asymptotic mutual information, which differs from the mutual
information by a constant. In this section we relate this asymptotic behaviour
with the so-called shaping gain. We define the shaping gain of a constellation
X as the ratio between the energy required to achieve a given input entropy
H(XX ) and the energy required by a Gaussian input to attain the same entropy.

For a fixed energy Es, the largest entropy is achieved by a complex Gaus-
sian distribution of variance Es, H(X) = log(πeEs), as we saw in Chapter 3,
on page 31. For a fixed entropy an arbitrary constellation requires a larger
energy than a Gaussian input. The differential entropies of two distributions,
respectively uniformly distributed in a square and a circle, are given by [50,56]

Proposition 4.13. A constellation with average energy Es uniformly dis-
tributed in a square (−∆, ∆)× (−∆, ∆), ∆ =

√
3Es/2, has differential entropy

H(X) = log(6Es).
A constellation with average energy Es uniformly distributed in a circle has

radius ρ =
√

2Es and differential entropy H(X) = log(2πEs).

Proof. Within a square of size 2∆, the uniform input density p(sr, si) satisfies
(2∆)2p(sr, si) = 1. The value of ∆ is adjusted to the right average energy,

Es =
∫ ∆

−∆

∫ ∆

−∆

1
4∆2

(s2
r + s2

i ) dsr dsi =
2∆2

3
. (4.33)

This relates ∆ and the average energy, ∆2 = 3Es/2. The differential entropy
of the uniform distribution is readily computed to be log(4∆2) = log(6Es).

In a circle of radius ρ, the uniform input density p(r) = (πρ2)−1 satisfies
2π

∫ ρ

0
r3p(r) dr = Es, and therefore ρ2 = 2Es. The differential entropy is then

−2π

∫ ρ

0

1
πρ2

r log
1

πρ2
dr = log(πρ2) = log(2πEs). (4.34)

Then, for a square constellation the shaping gain is πe
6 , or 1.53 dB, whereas a

circular constellation requires the marginally smaller shaping gain e
2 , or 1.33 dB.
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4. Digital Modulation in the Gaussian Channel

In Chapter 5, we shall carry out a similar analysis for the additive energy
channels and determine their shaping gains.

This section concludes the analysis of coded modulation in the Gaussian
channel. We next move to describe and analyze the technique of bit-interleaved
coded modulation.

4.3 Bit-Interleaved Coded Modulation

4.3.1 On Bit-Interleaved Coded Modulation

As we saw in Section 4.2.3, for low signal-to-noise ratio the capacity of the
Gaussian channel can be closely approached by using binary modulation, such
as BPSK. For a fixed bit-energy-to-noise ratio BNR more efficient use of the
channel is obtained by using QPSK modulation. Since the real and imaginary
parts of the channel output yk are separable into independent components for
either BPSK or QPSK, the channel is as a binary-input, real-valued output
channel with additive Gaussian noise. For this channel there exist good binary
linear codes, viz. turbo-like codes [50], which get close to the capacity C.

For larger signal-to-noise ratios, constellations with more than two sym-
bols are required. Since the shaping gain is relatively small, as we saw in
Section 4.2.6, 2m-ary modulations with equiprobable symbols are frequently
used. When m is an integer, and for 2m-QAM modulation, or 2m-PSK mod-
ulation modulations, Ungerboeck proposed [57] the use of convolutional codes,
combined with set-partitioning and trellis coding. These codes are efficiently
decoded with the Viterbi algorithm.

A natural question is how well binary linear codes mapped with a binary
mapping rule onto 2m-ary modulations do perform, without set-partitioning
and the trellis coding construction. A practical answer was given by pragmatic
trellis-coded modulation [50], which replaced Ungerboeck’s channel codes by
a standard 64-state convolutional code. From the theoretical point of view,
a more radical break with Ungerboeck’s paradigm was the work by Caire et
al. [26] on bit-interleaved coded modulation (BICM).

The operation of a bit-interleaved coded modulation scheme is depicted in
Fig. 4.3. The source generates a message, which the encoder maps onto a binary
codeword b = (b11, · · · , bm1, . . . , b1n, · · · , bmn), of length mn, where |X | = 2m,
and n is the number of channel uses. Code selection is independent of the
constellation set X ; more precisely, binary inputs and binary codes are used.
Next, a mapper µ uses m consecutive binary digits to compute a (complex-
valued) channel-input symbol xk = µ(b1k, . . . , bmk), for k = 1, . . . , n. A typical
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Bit-Interleaved Coded Modulation

choice for µ is natural reflected Gray mapping, or Gray for short. The Gray
mapping for m bits may be generated recursively from the mapping for m− 1
bits by prefixing a binary 0 to the mapping for m − 1 bits, then prefixing a
binary 1 to the reflected (i. e. listed in reverse order) mapping for m−1 bits.

Source Destination

y Message ŵ

λ

Message w x

Mapping µBinary Enc.

b

Encoder

Binary Dec.

DecoderChannel
Noisy

Demapper

Figure 4.3: Operation of bit-interleaved coded modulation.

As in our analysis of coded modulation over the AWGN channel, the channel
output is still given by Eqs. (4.1), namely yk =

√
SNRxk + zk, where zk is a

complex-valued Gaussian noise, zk ∼ NC(0, 1), and SNR is the average signal-
to-noise ratio. The conditional output density Q(y|x) is given by Eq. (4.4).

At the receiver side, the first step is demapping, i. e. the computation from
the channel output y of the metrics used by the decoder. In coded modula-
tion, the demapper determines the symbol a posteriori probabilities PX|Y (x|y),
which are proportional to the channel transition matrix Q(y|x); the factor of
proportionality is irrelevant for the decoding. With bit-interleaved coded mod-
ulation, the metrics q(x, y) are given by

q(x, y) =
m∏

i=1

qi(b, y), b ∈ {0, 1}, (4.35)

namely the product of per-bit metrics qi(b, y). These metrics are in turn pro-
portional to the marginal bit a posteriori probabilities, denoted by PBi|Y (b|y),
and given by

qi(b, y) ∝ PBi|Y (b|y) ∝ pY |B(y|b) =
∑

x∈X b
i

1
|X b

i |
Q(y|x), (4.36)
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where X b
i is the set of constellation symbols with bit b in the i-th position of

the binary label. An alternative form is the log-likelihood ratio form,

λi = log
PBi|Y (1|y)
PBi|Y (0|y)

= log

∑
x∈X 1

i
Q(y|x)

∑
x∈X 0

i
Q(y|x)

. (4.37)

It is clear that the marginal a posteriori probabilities for the bit Bi may be re-
covered from λi. The log-likelihood ratios constitute a set of sufficient statistics
for the decoding.

Finally, an estimate of the source message is generated. In practice, if
turbo-like codes are used, a variation of iterative decoding is used. We finally
note that very good error performance is possible with simple linear codes,
such as convolutional codes or turbo-like codes [26].

4.3.2 Bit-Interleaved Coded Modulation Capacity

The presentation in the previous section naturally leads to a BICM channel
capacity, which in general is smaller than the coded modulation capacity we
considered in previous sections. For a given constellation set X , we denoted
the constrained capacity by CX . Analogously, we denote the BICM capacity
for a given constellation set X and mapping rule µ by CX ,µ.

From the decoder’s point of view, and following Caire’s analysis [26], the
channel is separated into a set of parallel subchannels, such that the input to
subchannel i is bit bi; the channel output has the form of a log-likelihood ratio
λi. As the log-likelihood ratios are a sufficient statistics for the decoding,

I(Bi; Λi) = I(Bi;Y ). (4.38)

For infinite interleaving, and assuming the subchannels are independent,
this would give a total rate CX ,µ equal to the mutual informations in each
subchannel, I(Bi; Y ), that is CX ,µ =

∑m
i=1 I(Bi;Y ). This total rate is the so-

called BICM capacity. The ratios λi are generated simultaneously, by assuming
a uniform prior over the remaining bits in the symbol. The correlation among
the m ratios, for i = 1, . . . , n, in the same symbol is ignored. We shall later see
that this loss is small.

We next define the BICM capacity for a generic channel, not necessarily
Gaussian. One such example of interest is provided by the additive energy
channels, which we will study in Chapter 5.
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Definition 4.14. For a channel with transition matrix Q(y|x) the capacity
BICM CX ,µ with a fixed modulation set X and mapping rule µ is given by

CX ,µ =
m∑

i=1

I(Bi; Y ), (4.39)

where

I(Bi; Y ) = E

[
log

∑
x′∈XB

i
Q(Y |x′)

1
2

∑
x′∈X Q(Y |x′)

]
. (4.40)

The expectation is performed over the bit values b, the input symbols x in X b
i ,

and the channel realizations Y .

Remark 4.15. In recent joint work with Albert Guillén i Fàbregas, we have an-
alyzed the BICM decoder from the point of view of mismatched decoding [58].
For the decoding metric in Eq. (4.35), we have proved that the corresponding
generalized mutual information [58] is indeed given by Caire’s BICM capacity,
even though the interleaver is finite. This proves the achievability of the BICM
capacity. A similar result had been presented in [59].

This alternative definition proves useful for the analysis at low SNR,

Proposition 4.16. For a channel with transition matrix Q(y|x), modulation
set X and mapping rule µ, the BICM capacity CX ,µ is

CX ,µ =
m∑

i=1

1
2

∑

b=0,1

(Cu
X − Cu

X b
i
), (4.41)

where Cu
X and Cu

X b
i

are, respectively, the constrained capacities for equiprobable
signalling in X and X b

i .

Proof. By definition, the BICM capacity is the sum over i = 1, . . . ,m of the
mutual informations I(Bi;Y ). We rewrite this mutual information as

I(Bi;Y ) =
1
2

∑

b∈{0,1}
E

[
log

∑
x′∈X b

i
Q(Y |x′)

1
2

∑
x′∈X Q(Y |x′)

]
(4.42)

=
1
2

∑

b∈{0,1}
E

[
log

(∑
x′∈X b

i

2
|X |Q(Y |x′)

Q(Y |X)
Q(Y |X)

1
2

∑
x′∈X

2
|X |Q(Y |x′)

)]
,

(4.43)
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where we have modified the variable in the logarithm by including a factor
2
|X |Q(Y |X) in both numerator and denominator. Splitting the logarithm,

I(Bi;Y ) =
1
2

∑

b∈{0,1}
E

[
log

∑
x′∈X b

i

2
|X |Q(Y |x′)

Q(Y |X)

]

+
1
2

∑

b∈{0,1}
E

[
log

Q(Y |X)
1
|X |

∑
x′∈X Q(Y |x′)

]
. (4.44)

For fixed b, the expectations are respectively recognized as (minus) the
mutual information achievable by using equiprobable signalling in X b

i , Cu
X b

i
,

and the mutual information achieved by equiprobable signalling in X , Cu
X .

Figures 4.4a and 4.4b depict the BICM channel capacity (in bits per channel
use) CX ,µ for several modulations and mapping rules in the Gaussian channel.
The cases depicted correspond to commonly used modulations and mapping
rules: QPSK with Gray and anti-Gray mappings, 8PSK with Gray and set
partitioning mappings, and 16-QAM with Gray and set-partitioning mappings
(see for instance [26] for the exact mapping rules). As found in [26], the BICM
capacity is close to that of coded modulation when Gray mapping is used. Use
of set-partitioning leads to a significant loss in capacity.

The good behaviour of Gray mapping is somewhat limited at high SNR, as
can be seen in Fig. 4.4b where BNR is plotted as a function of the capacity. In
the following section, we consider the asymptotic behaviour at low SNR, and
characterize it analytically. Among other things, we shall be able to explain
behaviour such as that for QPSK and anti-Gray mapping, which has a nega-
tive slope at BNR0. This plot shows why the notation BNR0 is preferable to
BNRmin, as the minimum BNR is not necessarily attained at zero capacity.

4.3.3 Asymptotic Behaviour at Low SNR

In the previous section, we derived the BICM capacity CX ,µ, and plotted it
as a function of SNR in Fig. 4.4a. In the same plot, the CM channel capacity
CX , which assumes equiprobable signalling over the input constellation set, is
also shown. As a function of the signal-to-noise ratio SNR, in Fig. 4.4, the
BICM capacity is close to the CM value when Gray mapping is used. However,
the plot as a function of the BNR (see Fig. 4.4b) reveals the suboptimality of
BICM for low rates, or equivalently, in the power-limited regime.
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Figure 4.4: Channel capacity (in bits per channel use).

In this section, we apply the techniques developed for the analysis of coded
modulation in the AWGN channel to the low-SNR regime for BICM. As we
did in the coded modulation case, our goal is to compute expansions of CX ,µ

as a function of SNR and BNR, when CX ,µ is small.
First, for fixed label index, i, and bit value b, let us define the quantities

µ1(X b
i ), µ2(X b

i ), and µ2′(X b
i ), σ2(X b

i ) and σ̂2(X b
i ) as the (pseudo-)moments

and (pseudo-)variances of the set X b
i . Then, we have

Theorem 4.17. In the AWGN channel with average signal-to-noise ratio SNR,
the Taylor coefficients of the BICM capacity CX ,µ used over the set X (of zero
mean and unit average energy) with mapping µ are given by

c1 =
m∑

i=1

1
2

∑

b

|µ1(X b
i )|2, (4.45)

c2 = −1
2

{
m∑

i=1

1
2

∑

b=0,1

((
σ4(X )− σ4(X b

i ) +
∣∣σ̂2(X )

∣∣2 −
∣∣σ̂2(X b

i )
∣∣2)

)}
. (4.46)

Proof. From Proposition 4.16, the BICM capacity can be written as

CX ,µ =
m∑

i=1

1
2

∑

b=0,1

(Cu
X − Cu

X b
i
). (4.47)
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4. Digital Modulation in the Gaussian Channel

Since the summands Cu
X and Cu

X b
i

admit a Taylor expansion given in Theo-
rem 4.1,

c1 =
m∑

i=1

1
2

∑

b=0,1

(
1− (

µ2(X b
i )− |µ1(X b

i )|2)
)

(4.48)

=
m∑

i=1

((
1− 1

2

∑

b=0,1

µ2(X b
i )

)
+

1
2

∑

b=0,1

|µ1(X b
i )|2

)
(4.49)

=
m∑

i=1

1
2

∑

b=0,1

|µ1(X b
i )|2, (4.50)

since 1
2

∑
b=0,1 µ2(X b

i ) = µ2(X ) = 1 by construction.
The quadratic coefficient c2 follows from a similar application of Theo-

rem 4.1.

Table 4.1 shows the values of the coefficients c1 and c2, as well as the
minimum bit signal-to-noise ratio BNR0 for various cases, namely QPSK with
Gray (Q–Gr) and anti-Gray mapping (Q–A-Gr), 8PSK and 16-QAM modula-
tions and Gray and set partitioning mappings (respectively 8–Gr, 8-SP, 16-Gr,
and 16–SP). Note that for QPSK with anti-Gray mapping the slope at BNR0 is
negative. From Theorem 4.3 this should correspond with a positive coefficient
c2, as it indeed does. A similar effect takes place for 8PSK and set partitioning,
even though it is barely noticeable in the plot.

Modulation and Mapping

Q–Gr Q–A-Gr 8–Gr 8–SP 16–Gr 16–SP

c1 1.0000 0.5000 0.8536 0.4268 0.8000 0.5000
BNR0 0.6931 1.3863 0.8121 1.6241 0.8664 1.3863
BNR0 (dB) -1.5917 1.4186 -0.9041 2.1062 -0.6226 1.4186

c2 -0.5000 0.2500 -0.2393 0.0054 -0.1600 -0.3100

Table 4.1: Bit signal-to-noise ratio and coefficients c1, c2 for BICM in AWGN.

In general, it seems to be difficult to draw general conclusions for arbitrary
mappings from Theorem 4.17. A notable exception, however, is the analysis
under natural reflected Gray mapping.
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Theorem 4.18. For 2m-PAM and 22m-QAM (m a positive integer) and nat-
ural, binary-reflected Gray mapping, the coefficient c1 in the Taylor expansion
of the BICM capacity CX ,µ at low SNR is

c1 =
3 · 22m

4(22m − 1)
, (4.51)

and the minimum BNR0 is

BNR0 =
4(22m − 1)

3 · 22m
log 2. (4.52)

Proof. For 2m-PAM, the Gray mapping construction makes µ1(X b
i ) = 0, for

b = 0, 1 and all bit positions except one, which we take with no loss of generality
to be i = 1. Therefore,

c1 =
1
2

∣∣µ1(X 0
1 )

∣∣2 +
1
2

∣∣µ1(X 1
1 )

∣∣2 =
∣∣µ1(X 0

1 )
∣∣2 =

∣∣µ1(X 1
1 )

∣∣2. (4.53)

The last equalities follow from the symmetry between 0 and 1.
Symbols lie on a line in the complex plane with values±β

(
1, 3, 5, . . . , 2m−1),

with β2 = 3/(22m − 1); this follows from setting 2n = 2m in the formula
1
n

∑n
i=1(2i− 1)2 = 1

3 ((2n)2 − 1). The average symbol has modulus |µ1(X 0
1 )| =

β2m−1, and therefore

c1 =
∣∣µ1(X 0

1 )
∣∣2 =

3 · 22m

4(22m − 1)
. (4.54)

Extension to 22m-QAM is clear, by taking the Cartesian product along real
and imaginary parts. Now, two indices i contribute, each with an identical
form to that of PAM. As the energy along each axis of half that of PAM, the
normalization factor β2

QAM also halves and overall c1 does not change.

The results for BPSK, QPSK (2-PAM×2-PAM), and 16-QAM (4-PAM×4-
PAM), as presented in Table 4.1, match with the Theorem, as they should.

It is somewhat surprising that the loss with respect to coded modulation
at low SNR is bounded,

Corollary 4.19. As m → ∞, and under the conditions of Theorem 4.18,
BNR0 approaches 4

3 log 2 ' −0.3424 dB from below.
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4. Digital Modulation in the Gaussian Channel

Using our analysis of the low SNR regime, Theorem 4.7 and its corollary 4.8,
we deduce that the loss represents about 1.25 dB with respect to the classical
CM limit, namely BNR0 = −1.59 dB. Using a fixed modulation for a large
range of signal-to-noise ratio values, with adjustment of the transmission rate
by changing the code rate, needs not result in a large loss with respect to more
optimal transmission schemes, where both the rate and modulation change.
Applying the trade-off between power and bandwidth of Theorem 4.7, band-
width may be compressed at some cost in power. Figure 4.5 depicts the trade-
off for between QPSK and 16-QAM (with Gray mapping) for two values of
signal-to-noise ratio. The exact result, obtained by using the exact formulas
for the mutual information is plotted along the result by using Theorem 4.7.
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Figure 4.5: Trade-off ∆P vs. ∆W between 16-QAM (Gray map.) and QPSK.

As expected from the values of c1 and c2, use of 16-QAM incurs in a non-
negligible power loss, given to a first approximation by Theorem 4.18. This loss
may however be accompanied by a significant reduction in bandwidth, which
might be of interest in some applications. For signal-to-noise ratios larger than
those reported in the figure, the assumption of low SNR loses its validity and
the results derived from the Taylor expansion are no longer accurate.

4.4 Conclusions

In this chapter, we have reviewed the capacity of digital modulation systems
in Gaussian channels. Whenever the results presented are known, we have
strived to present them in such a way that generalization to the additive energy
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channel is straightforward. In addition, there are a few novel contributions in
the analysis:

1. The first two derivatives of the constrained capacity at zero SNR have
been computed for general modulation sets.

2. The trade-off between power penalty and bandwidth expansion between
two alternative systems at low SNR has been determined. It general-
izes Verdú’s analysis of the wideband regime, which estimated only the
bandwidth expansion. We have shown that no bandwidth expansion may
often be achieved at a negligible (but non-zero) cost in power.

3. A similar trade-off between power penalty and bandwidth expansion for
general Nakagami-mf fading has been computed, with similar conclusions
as in the point above: bandwidth expansion may be large at no power
cost, but absent at a tiny power penalty.

4. The capacity at low BNR for BICM has been characterized by simple
expressions. For binary reflected Gray mapping, the capacity loss at low
SNR with respect to coded modulation is bounded by about 1.25 dB.

In the next chapter, we build on the analysis presented here and show that
these results admit a natural extension to the additive energy channels.

4.A CM Capacity Expansion at Low SNR

Since the constellation moments are finite, we have that E
[|X|2+α

]
< ∞ for

α > 0. Therefore, as SNR → 0, for µ > 0 the technical condition

SNR2+α E
[|X|2+α

] ≤ (− log
√

SNR)µ, (4.55)

necessary to apply Theorem 5 of [52] holds.
Let us define a 2× 1 vector x(r) = (xr xi)T , with components the real and

imaginary parts of symbol s, respectively denoted by xr and xi. The covariance
matrix of x(r), denoted by cov(X), is given by

cov(X) =
(

E[(Xr − x̂r)2] E
[
(Xr − x̂r)(Xi − x̂i)

]
E

[
(Xr − x̂r)(Xi − x̂i)

]
E[(Xi − x̂i)2]

)
, (4.56)

where x̂r and x̂i are the mean values of the real and imaginary parts of the
constellation.

95



4. Digital Modulation in the Gaussian Channel

Theorem 5 of [52] gives c1 = Tr(cov(X)) and c2 = −Tr(cov2(X)), or

c1 = E[(Xr − x̂r)2] + E[(Xi − x̂i)2] (4.57)

c2 = −
(
E2[(Xr − x̂r)2] + E2[(Xi − x̂i)2] + 2E2

[
(Xr − x̂r)(Xi − x̂i)

])
. (4.58)

The coefficient c1 coincides with that in Eq. (4.15).
As for c2, let us add a subtract a term E[(Xr − x̂r)2] E[(Xi − x̂i)2] to

Eq. (4.58). Then,

c2 = −
(

1
2 E2[(Xr − x̂r)2] + 1

2 E2[(Xi − x̂i)2] + E[(Xr − x̂r)2] E[(Xi − x̂i)2]

+ 1
2 E2[(Xr − x̂r)2] + 1

2 E2[(Xi − x̂i)2]

− E[(Xr − x̂r)2] E[(Xi − x̂i)2] + 2E2
[
(Xr − x̂r)(Xi − x̂i)

])
,

(4.59)

which in turn can be written as

c2 = −1
2

(
E2

[|X − x̂|2] +
∣∣E[(X − x̂)2]

∣∣2
)
, (4.60)

a form which coincides with Eq. (4.16), by noting that

E
[|X − x̂|2] = E

[|X|2]− |x̂|2 = µ2(X )− ∣∣µ1(X )
∣∣2 (4.61)

E[(X − x̂)2] = E[X2]− x̂2 = µ2′(X )− µ2
1(X ). (4.62)

4.B CM Capacity Expansion at Low SNR – AWGN

The constrained capacity CX is given by Eq. (4.5),

CX = −
∑

x

P (x)
∫

Y

Q(y|x) log

( ∑

x′∈X
P (x′)e−|γ(x−x′)+z|2+|z|2

)
dy, (4.63)

where, for the sake of brevity, we have set γ =
√

SNR.
We first rewrite each of the exponents in the log(·) in Eq. (4.63),

exp
(−|γ(x− x′) + z|2 + |z|2) = exp

(−γ2|x− x′|2 − 2γr(x− x′)
)
, (4.64)

where we have used the function r(y), defined as

r(y) = Re(yz∗). (4.65)
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In general, we will take y = x− x′.
Now we use a Taylor expansion of et around t = 0, et = 1 + t + 1

2 t2 + 1
6 t3 +

1
24 t4 + O

(
t5

)
to transform Eq. (4.64) into

1− γ2|x− x′|2 − 2γr(x− x′) +
1
2

(
−γ2|x− x′|2 − 2γr(x− x′)

)2

+
1
6

(
−γ2|x− x′|2 − 2γr(x− x′)

)3

+
1
24

(
−γ2|x− x′|2 − 2γr(x− x′)

)4

+ O(γ5) (4.66)

= 1− γ2|x− x′|2 − 2γr(x− x′) +
1
2
γ4|x− x′|4 + γ22r2(x− x′)

+ γ32|x− x′|2r(x− x′)− γ42|x− x′|2r2(x− x′)

− γ3 4
3
r3(x− x′) + γ4 2

3
r4(x− x′) + O(γ5). (4.67)

With the substitutions,

a′1 = −2r(x− x′) (4.68)

a′2 = −|x− x′|2 + 2r2(x− x′) (4.69)

a′3 = 2|x− x′|2r(x− x′)− 4
3
r3(x− x′) (4.70)

a′4 =
1
2
|x− x′|4 − 2|x− x′|2r2(x− x′) +

2
3
r4(x− x′). (4.71)

the sum over x′ in Eq. (4.63) becomes

∑

x′∈X
P (x′)

(
1 + γa′1 + γ2a′2 + γ3a′3 + γ4a′4 + O(γ5)

)
(4.72)

=
(
1 + γa1 + γ2a2 + γ3a3 + γ4a4 + O(γ5)

)
. (4.73)

where the coefficients al, with l = 1, 2, 3, 4, are given by al =
∑

x′∈X a′lP (x′).
Of special interest is a1,

a1 = −2
∑

x′∈X
r(x− x′)P (x′) = −2

(
r(x− x̂)

)
, (4.74)

since r(y) is linear in its argument and x̂ is the mean value of the constellation.
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As next step we expand the logarithm in Eq. (4.73) using log(1 + t) =
t− 1

2 t2 + 1
3 t3− 1

4 t4 +O
(
t5

)
, where y is small. The term in t4 is needed to catch

all factors in γ4. Then

log
(
1+γa1 + γ2a2 + γ3a3 + γ4a4 + O(γ5)

)
(4.75)

= γa1 + γ2a2 + γ3a3 + γ4a4 − 1
2
(
γa1 + γ2a2 + γ3a3 + γ4a4

)2

+
1
3
(
γa1 + γ2a2 + γ3a3 + γ4a4

)3

− 1
4
(
γa1 + γ2a2 + γ3a3 + γ4a4

)4 + O(γ5) (4.76)

= γa1 + γ2a2 + γ3a3 + γ4a4 − 1
2
(
γ2a2

1 + 2γ3a1a2 + γ4a2
2 + 2γ4a1a3

)

+
1
3
(
γ3a3

1 + 3γ4a2
1a2

)− γ4 1
4
a4
1 + O(γ5) (4.77)

= γa1 + γ2

(
a2 − 1

2
a2
1

)
+ γ3

(
a3 − a1a2 +

1
3
a3
1

)

+ γ4

(
a4 − 1

2
a2
2 − a1a3 + a2

1a2 − 1
4
a4
1

)
+ O(γ5). (4.78)

The remaining steps are the averaging over the input symbol x and the
noise realization z. To save space, we sometimes use the symbol EX,Z to make
explicit the variable (X, Z) over which the averaging is performed.

Throughout, we have factors depending on

EZ rk1(χ1)rk2(χ2), (4.79)

χ1 and χ2 complex numbers, and k1, k2 are 0, 1, 2, 3, or 4. We have then

Lemma 4.20. Let the function r(y) be r(y) = Re(yz∗), where z is a complex
Gaussian random variable, z ∼ NC(0, 1), and y is a complex number. Then

EZ rk1(χ1)rk2(χ2) = 0, if k1 + k2 is odd. (4.80)

and

EZ r(χ1)r(χ2) =
1
2
|χ1||χ2| cos(ϕ1 − ϕ2) (4.81)

EZ r(χ1)r3(χ2) =
3
4
|χ1||χ2|3 cos(ϕ1 − ϕ2) (4.82)

EZ r2(χ1)r2(χ2) =
1
4
|χ1|2|χ2|2

(
2 + cos 2(ϕ1 − ϕ2)

)
. (4.83)
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Here ϕ1 and ϕ2 are the phases of the complex numbers χ1 and χ2 respectively.
In particular,

EZ r2(χ1) =
1
2
|χ|2 (4.84)

EZ r4(χ1) =
3
4
|χ|4. (4.85)

Proof. Using a polar decomposition of the numbers χ1, χ2, and z, we have
with the obvious definitions,

χ1 = |χ1|ejϕ1 , χ2 = |χ2|ejϕ2 , z = |z|ejϕz . (4.86)

The realization of the variable whose expectation is to be computed is then

(
Re

(|χ1||z|ejϕ1e−jϕz
))k1

(
Re

(|χ2||z|ejϕ2e−jϕz
))k2

(4.87)

|χ1|k1 |χ2|k2 |z|k1+k2 cosk1
(
ϕ1 − ϕz

)
cosk2

(
ϕ2 − ϕz

)
. (4.88)

We carry out the expectation separately for the modulus and phase,

EZ |z|k1+k2 cosk1
(
ϕ1 − ϕz

)
cosk2

(
ϕ2 − ϕz

)
(4.89)

= E|Z| |z|k1+k2 EΦz cosk1
(
ϕ1 − ϕz

)
cosk2

(
ϕ2 − ϕz

)
. (4.90)

For the phase, Mathematica gives

EΦz cosk1
(
ϕ1 − ϕz

)
cosk2

(
ϕ2 − ϕz

)
=





1
2 cos(ϕ1 − ϕ2), k1 = 1, k2 = 1
3
8 cos(ϕ1 − ϕ2), k1 = 1, k2 = 3
1
8

(
2 + cos 2(ϕ1 − ϕ2)

)
, k1 = 2, k2 = 2

0, k1 + k2 odd.
(4.91)

and for the modulus,

E|Z| |Z|k1+k2 =

{
1, k1 + k2 = 2
2, k1 + k2 = 4.

(4.92)

We now put all terms together in Eq. (4.78), proceeding from γ up to γ4.
We use the appropriate equation in the previous lemma at each step.
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First, using Eq. (4.80) in the term with γ, for which k1 = 1 and k2 = 0,

EZ [A1] = EZ

[−2
(
r(x)− r(x̂)

)]
= 0. (4.93)

Then, for γ2, Eq. (4.84) gives

EZ [A2] = EZ

[ ∑

x′∈X
P (x′)

(
−|x− x′|2 + 2r2(x− x′)

)]
(4.94)

=
∑

x′∈X
P (x′)

(
−|x− x′|2 + |x− x′|2

)
= 0, (4.95)

and

EZ

[
−1

2
A2

1

]
= −2 EZ

[
r2(x− x̂)

]
= −|x− x̂|2. (4.96)

Now, for γ3, Eq. (4.80) with k1 = 1 or k1 = 3 and k2 = 0 yields

EZ [A3] = EZ

[ ∑

x′∈X
P (x′)

(
2|x− x′|2r(x− x′)− 4

3
r3(x− x′)

)]
= 0, (4.97)

and

EZ

[
1
3
A3

1

]
= −8

3
EZ

[
r3(x− x̂)

]
= 0, (4.98)

and also

EZ [−A1A2] = 2 EZ

[
r(x− x̂)

∑

x′′∈X
P (x′)

(
−|x− x′′|2 + 2r2(x− x′′)

)]
= 0.

(4.99)

And finally, for γ4, Eqs. (4.84) and (4.85) give

EZ [A4] =
∑

x′∈X
P (x′) EZ

[
1
2
|x− x′|4 − 2|x− x′|2r2(x− x′) +

2
3
r4(x− x′)

]

(4.100)

=
∑

x′∈X
P (x′)

(
1
2
|x− x′|4 − |x− x′|4 +

1
2
|x− x′|4

)
= 0. (4.101)
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Next,

EZ

[
−1

2
A2

2

]
= −1

2
EZ

[( ∑

x′∈X
P (x′)

(
−|x− x′|2 + 2r2(x− x′)

))2]
(4.102)

= −1
2

EZ

[( ∑

x′∈X
P (x′)

(
−|x− x′|2 + 2r2(x− x′)

))
×

×
( ∑

x′′∈X
P (x′′)

(
−|x− x′′|2 + 2r2(x− x′′)

))]
,

(4.103)

since x′ and x′′ are dummy variables. Multiplying the terms in brackets fac-
tor by factor and using Eqs. (4.84) and (4.85) in the Lemma, the summand
corresponding to x′ and x′′ becomes

P (x′)P (x′′)|x− x′|2|x− x′′|2
(

1 + cos 2
(
ϕ(x− x′)− ϕ(x− x′′)

))
(4.104)

= P (x′)P (x′′)|x− x′|2|x− x′′|2 cos2
(
ϕ(x− x′)− ϕ(x− x′′)

)
(4.105)

= P (x′)P (x′′)
(
Re

(
(x− x′)(x− x′′)∗

))2

(4.106)

= P (x′)P (x′′)
(
Re

(|x|2 − xx′′∗ − x′x∗ + x′x′′∗
))2

(4.107)

= P (x′)P (x′′)
(
|x|4 +

(
Re(xx′′∗)

)2 +
(
Re(x′x∗)

)2 +
(
Re(x′x′′∗)

)2

− 2|x|2 Re(xx′′∗)− 2|x|2 Re(x′x∗) + 2|x|2 Re(x′x′′∗)
+ 2 Re(xx′′∗)Re(x′x∗)− 2Re(xx′′∗)Re(x′x′′∗)

− 2 Re(x′x∗)Re(x′x′′∗)
)
. (4.108)

Here we used that 1 + cos 2α = 2 cos2 α. Then, we average over x, x′ and x′′

and combine some expectations since x, x′ and x′′ are dummy variables taking
values in the same set. Using the definition of x̂, we get

EX,Z

[
−1

2
A2

2

]
= −EX,X′

[
|X|4 + 3

(
Re(XX ′∗)

)2 − 4|X|2 Re(Xx̂∗)

+ 2|X|2|x̂|2 − 2 Re2(Xx̂∗)
]
, (4.109)
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Then, with Eqs. (4.82) and (4.83), the next term of γ4 is

EZ

[
−A1A3

]
= 2 EZ

[
r(x− x̂)

( ∑

x′∈X
P (x′)

(
2|x− x′|2r(x− x′)− 4

3
r3(x− x′)

))]

(4.110)

=
∑

x′∈X
2P (x′)

(
|x− x̂||x− x′|3 cos

(
ϕ(x)− ϕ(x′)

)

− |x− x̂||x− x′|3 cos
(
ϕ(x)− ϕ(x′)

))
= 0.

(4.111)

The following term in γ4 becomes

EZ

[
A2

1A2

]
= EZ

[
4r2(x− x̂)

( ∑

x′∈X
P (x′)

(
−|x− x′|2 + 2r2(x− x′)

)]

(4.112)

= 2
∑

x′
P (x′)|x− x̂|2|x− x′|2

(
1 + cos 2

(
ϕ(x)− ϕ(x− x′)

))

(4.113)

= 4
∑

x′
P (x′)

(
|x− x̂|2|x− x′|2 cos2

(
ϕ(x)− ϕ(x− x′)

))
(4.114)

= 4
∑

x′
P (x′)

(
Re

(
(x− x̂)(x− x′)∗

))2

. (4.115)

We now expand the factor
(
Re

(
(x− x̂)(x− x′)∗

))2

,

(
Re

(
(x− x̂)(x− x′)∗

))2

= |x|4 +
(
Re(xx′∗))2 +

(
Re(x̂x∗)

)2 +
(
Re(x̂x′∗)

)2

− 2|x|2 Re(xx′∗)− 2|x|2 Re(x̂x∗) + 2|x|2 Re(x̂x′∗)
+ 2Re(xx′∗)Re(x̂x∗)− 2Re(xx′∗)Re(x̂x′∗)
− 2Re(x̂x∗) Re(x̂x′∗). (4.116)

Grouping terms, carrying out the averaging over X ′ and X, and using that the
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variables are dummy, we get

EX,Z

[
A2

1A2

]
= 4 EX,X′

[
|X|4 +

(
Re(XX ′∗))2 + 2

(
Re(x̂X∗)

)2

− 4|X|2 Re(X∗x̂) + 2|X|2|x̂|2 − 2|x̂|4
]
. (4.117)

Finally,

EZ

[
−1

4
a4
1

]
= −4EZ

[
r4(x)

]
= −3|x− x̂|4. (4.118)

This coefficient can also be expanded,

|x− x̂|4 =
(|x|2 + |x̂|2 − 2Re(x∗x̂)

)2 (4.119)

= |x|4 + |x̂|4 + 4
(
Re(x∗x̂)

)2 + 2|x|2|x̂|2
− 4|x|2 Re(x∗x̂)− 4|x̂|2 Re(x∗x̂), (4.120)

and summed over x,

EX,Z

[
−1

4
a4
1

]
= −3EX

[
|X|4 + |x̂|4 + 4

(
Re(X∗x̂)

)2 + 2|X|2|x̂|2

− 4|X|2 Re(X∗x̂)− 4|x̂|4
]

(4.121)

= −3EX

[
|X|4 − 3|x̂|4 + 4

(
Re(X∗x̂)

)2 + 2|X|2|x̂|2 − 4|X|2 Re(X∗x̂)
]
.

(4.122)

We finally collect all the coefficients of powers of γ, up to γ4. The non-zero
contributions stem from Eqs. (4.96), (4.109), (4.117), and (4.122). Therefore,

CX = c1γ
2 + c2γ

4 + O(γ5) (4.123)

= c1 SNR+c2 SNR2 +O(SNR5/2). (4.124)

The first-order coefficient (in γ2) is recovered from Eq. (4.96),

c1 = EX [|X − x̂|2]. (4.125)
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The second-order coefficient of the constrained capacity (in γ4) is derived
by grouping Eqs. (4.109), (4.117), and (4.122),

c2 = EX,X′
[
|X|4 + 3

(
Re(XX ′∗)

)2 − 4|X|2 Re(Xx̂∗) + 2|X|2|x̂|2 − 2Re2(Xx̂∗)

− 4|X|4 − 4
(
Re(XX ′∗))2 − 8

(
Re(x̂X∗)

)2 + 16|X|2 Re(X∗x̂)

− 8|X|2|x̂|2 + 8|x̂|4 + 3|X|4 − 9|x̂|4 + 12
(
Re(X∗x̂)

)2

+ 6|X|2|x̂|2 − 12|X|2 Re(X∗x̂)
]

(4.126)

= EX,X′
[
2
(
Re(X∗x̂)

)2 − (
Re(XX ′∗))2 − |x̂|4

]
. (4.127)

Finally, we verify that c2 coincides with

c2 = −1
2

(
E2

X

[|X − x̂|2] +
∣∣EX [(X − x̂)2]

∣∣2
)

. (4.128)

To do so, let us expand the summands in Eq. (4.127). First,

EX,X′
(
Re(XX ′∗)

)2 = EX,X′

[
(XX ′∗)2 + (X∗X ′)2 + 2|X|2|X ′|2

4

]
(4.129)

=
1
2

(
Re

(
EX [X2] EX′ [X ′2]∗

)
+ EX |X|2 EX′ |X ′|2

)

(4.130)

=
1
2

(∣∣EX [X2]
∣∣2 + E2

X |X|2
)
. (4.131)

Similarly, we obtain

EX

(
Re(X∗x̂)2 =

1
2

(
Re

(
x̂2 E∗X [X2]

)
+ |x̂|2 EX |X|2

)
. (4.132)

Therefore,

c2 = Re
(
x̂2 E∗X [X2]

)
+ |x̂|2 EX |X|2− 1

2

∣∣EX [X2]
∣∣2− 1

2
E2

X |X|2− |x̂|4, (4.133)
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which indeed coincides with Eq. (4.128), since

c2 = −1
2

(
E2

X

[|X − x̂|2] +
∣∣EX [(X − x̂)2]

∣∣2
)

(4.134)

= −1
2

((
EX |X|2 − |x̂|2

)2 +
∣∣EX X2 − x̂2

∣∣2
)

(4.135)

= −1
2

(
E2

X |X|2 + |x̂|4 − 2|x̂|2 EX |X|2

+ |EX X2|2 + |x̂4| − 2Re(x̂2 E∗X X2)
)

. (4.136)

4.C Determination of the Power and Bandwidth Trade-Off

In order to have the same capacities bandwidth and/or power must change to
account for the difference in capacity, so that

c11
P1

N0
+ c21

P 2
1

W1N2
0

+ o(W1 SNR2
1) = c12

P2

N0
+ c22

P 2
2

W2N2
0

+ o(W2 SNR2
2).

(4.137)

Simplifying common factors, we obtain

c11 + c21 SNR1 +o(SNR1) = c12
P2

P1
+

(
c22 + o(SNR1)

)P 2
2

P 2
1

W1

W2
SNR1 . (4.138)

Or, with the definitions ∆P = P2/P1, and ∆W = W2/W1,

c11 + c21 SNR1 +o(SNR1) = c12∆P +
(
c22 SNR1 +o(SNR1)

) (∆P )2

∆W
, (4.139)

and

∆W =

(
c22 SNR1 +o(SNR1)

)
(∆P )2

c11 + c21 SNR1 +o(SNR1)− c12∆P
. (4.140)

This equation gives the trade-off between ∆P and ∆W , for a fixed (small)
SNR1, so that the capacities of scenarios 1 and 2 coincide.

Next we solve for the inverse, i. e. for ∆P as a function of ∆P . First, let us
define the quantities a = c22 SNR1 +o(SNR1) and b = c11+c21 SNR1 +o(SNR1).
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Rearranging Eq. (4.140) we have a(∆P )2+c12∆W∆P−b∆W = 0 and therefore

∆P =
−c12∆W ±

√
(c12∆W )2 + 4ab∆W

2a
(4.141)

=
c12∆W

2a

(
−1±

√
1 +

4ab

c2
12∆W

)
. (4.142)

Often we have c22 < 0, and then the negative root is a spurious solution. We
choose then the positive root. Since ab is of order SNR1, we can use the Taylor
expansion (1 + 4t)1/2 = 1 + 2t− 2t2 + o(t2), to write

∆P =
c12∆W

2a

(
2ab

c2
12∆W

− 2a2b2

c4
12(∆W )2

)
(4.143)

=
b

c12
− ab2

c3
12∆W

. (4.144)

Since SNR1 → 0, we group the non-linear terms in SNR1 and so get

∆P =
c11 + c21 SNR1

c12
− c22c

2
11 SNR1

c3
12∆W

+ o(SNR1) (4.145)

=
c11

c12
+

(
c21

c12
− c22c

2
11

c3
12∆W

)
SNR1 +o(SNR1). (4.146)
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5

Digital Modulation in the Additive Energy
Channels

5.1 Introduction

In this chapter, we extend the analysis of digital modulation of Chapter 4 to the
family of additive energy channels. As in Chapter 4, the presentation is built
around the concept of mutual information achievable with a given constellation
set X ; we call this mutual information constrained coded modulation capacity
and denote it by the symbol CX . The constellation we consider is pulse energy
modulation (PEM), a set of non-negative real numbers x, used with proba-
bilities P (x). The name PEM is in agreement with the standard terminology
used in Gaussian channels or in optical communications, e. g. pulse-amplitude
modulation (PAM). We reserve the word amplitude to refer to the quadrature
amplitude, a complex-valued quantity, meanwhile the word energy refers to the
squared modulus of the (quadrature) amplitude.

As we saw in Chapter 4, in amplitude modulation the constellation points
have the form

±βPAM

(
1
2

+ (i− 1)
)

, i = 1, . . . , 2m−1, (5.1)

where βPAM is a normalization factor fixed to ensure average unit energy. All
points are used with the same probability, namely 1/2m. By construction, con-
secutive points are separated by a distance βPAM. A straightforward extension
to the additive energy channels would be to consider a set of the form,

β(i− 1), i = 1, . . . , 2m, (5.2)

where β is another normalization factor which also ensures average unit energy.
Instead, we consider a slightly more general constellation set constructed by
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5. Digital Modulation in the Additive Energy Channels

choosing a positive real number λ > 0 and taking the constellation points

βPEM

(
(i− 1)λ

)
, i = 1, . . . , 2m, (5.3)

where βPEM is a third normalization factor. Further details on the constellation
are given in Section 5.2. Note that uniform PEM is recovered by setting λ = 1.
Having at our disposition a family of constellations dependent on a parameter λ
allows us to determine the optimum value of λ for a given channel property. As
we shall see in Chapter 6, the pairwise error probability is minimized for λ = 1
in the additive exponential noise channel and for λ = 2 in the discrete-time
Poisson channel. In this chapter, we determine the values of λ which maximize
the constrained coded modulation capacity at high and low signal energy.

We carry out the analysis for the three additive energy channels of Chap-
ter 2, namely

1. The additive exponential noise channel (AEN).

2. The discrete-time Poisson channel (DTP).

3. The (quantized) additive energy channel (AE-Q).

Of these, the DTP channel in particular possesses some practical interest, since
it is often used to model optical communication systems. Even though there
are some results in the literature on the capacity of such channels, as we saw
in Chapter 3, there seems to be no extensive study of the capabilities of non-
binary modulation in this channel (see the recent review [15]). The results
presented here are a contribution to fill this gap.

The text is sequentially organized, respectively covering the AEN, DTP, and
AE-Q channels in Sections 5.3, 5.4 and 5.5. For each channel, the presentation
follows closely the structure of the Gaussian case, the study being further split
into a part on coded modulation, including the capacity per unit energy and the
shaping gain, and a second part on bit-interleaved coded modulation (BICM).
Specifically, we compute the BICM capacity and study its closeness to CX
and conclude that BICM is likely to constitute a good alternative for the code
design in these channels.

Particular attention will be paid to the performance in the low energy
regime, as was done in the Gaussian channel. Prelov and van der Meulen, in
a series of papers [27, 28], considered a general discrete-time additive channel
model and determined the asymptotic Taylor expansion at zero signal-to-noise
ratio. Our work differs from theirs in that the additive energy channels are con-
strained on the mean value of the input, rather than the variance, and similarly
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the noise is described by its mean, not its variance; the models considered by
Prelov and van der Meulen rather deal with channels where the second-order
moments, both for signal energy and noise level, are of importance. Our work
extends their analysis to the family of additive energy channels, where the
first-order moments are constrained.

Another relevant body of work is that of Guo, Shamai, and Verdú [60] and
Palomar and Verdú, [61], who determined the form of the first derivative of the
constrained capacity CX for arbitrary signal-to-noise ratio by exploiting a link
with estimation theory, e. g. with the minimum mean square error (MMSE)
estimator in the Gaussian channel. Their tools, applied to the additive energy
channels, could be used to compute the first derivative at zero signal energy,
one of the quantities we determine. However, the extension to compute the
second-order derivative does not seem to be straightforward, so we have chosen
to apply the proof method developed in Chapter 4 to find the value of the first
derivatives of CX at zero signal energy.

Finally, we show that the minimum energy per bit of the Gaussian channel,
namely σ2 log 2, coincides with the minimum energy per bit of the additive
energy channels, when the average level of the additive noise in the latter
models is set to σ2. Unlike the Gaussian channel, where the number log 2, or
−1.59 dB was a universal constant at low SNR for general modulation formats,
the performance at low energy strongly depends on the size of the constellation
and the channel model.

5.2 Constellations for Pulse Energy Modulation

By construction, the input symbols in the additive energy channels are real
non-negative numbers. The optimum input distribution for the AEN channel
was determined by Verdú [21], a result recalled in Eq. (3.18), and has the form

pX(x) = Es

(Es+En)2 e−
x

Es+En + En

Es+En
δ(x), x ≥ 0. (5.4)

Here En is the noise average energy and Es the constraint on the average signal
energy. In the DTP channel, the optimum input is not known, but the density
in Eq. (3.48), from Chapter 3, was found to be a good choice, especially for
large quanta counts. This density is given by

pX(x) = (1+2εs)1/2
√

2e−1+(1+2εs)1/2
1√

2πxεs
e−

x
2εs +

√
2e−1√

2e−1+(1+2εs)1/2 δ(x), (5.5)

where εs is the average number of quanta per channel use. Qualitatively, the
optimum density for the AE-Q channel should lie between these two densities,
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its functional form depending on the precise values of εs and on the average
number of quanta of additive noise, εn.

In principle, the optimum densities for the AEN and AE-Q channels depend
on the value of the signal (Es or εs) and noise (En or εn) levels. In this chapter,
we consider an alternative input, namely scaled constellations αX , where X
has unit energy and α is the average signal energy (Es or εs). This pulse-energy
modulation (PEM) follows the common practice in the Gaussian channels with
amplitude or phase modulations. Additionally, we let the discrete constellation
X depend on a free parameter λ, which will be optimized in later sections to
approximate, in a sense to be made precise later, the optimum input densities.

Let the parameter λ be a positive real number, λ > 0. We define the set of
constellation symbols Xλ as the 2m points

Xλ =
{
β(i− 1)λ

}
, i = 1, . . . , 2m, (5.6)

where β is a normalization factor, β−1 = 1
2m

∑2m

i=1(i − 1)λ. We assume that
the points are used with identical probabilities, namely 1/2m. When λ = 1, we
recover a uniform PEM constellation with equispaced, equiprobable symbols.

As the number of points 2m increases, the discrete constellation Xλ ap-
proaches a continuous distribution, which we denote by X∞λ , and whose form
can be seen in Fig. 5.1 for several values of λ. For λ > 1 the constellation
density, being less flat than the uniform, is somewhat closer to the optimum
densities for the AEN and DTP channels above. We shall exploit this observa-
tion to determine the optimum λ for these channel models. To the best of our
knowledge, this study is new, the problem of coded modulation in the AEN
channel not having been studied in the past, and the study of the DTP channel
having focused on the analysis of the uncoded error probability.

The main features of the limiting continuous constellation X∞λ are listed in

Proposition 5.1. The constellation X∞λ has bounded support in the interval
[0, λ + 1] and a non-uniform density given by

pX(x) =
x

1
λ−1

λ(1 + λ)
1
λ

(5.7)

within the interval [0, λ+1] and zero outside. Its mean (or first-order moment)
µ1(X∞λ ) is one, and its second-order moment is given by µ2(X∞λ ) = (λ+1)2

2λ+1 .
A scaled constellation αXλ, with α > 0, has density

f(x) =
x

1
λ−1

α
1
λ λ(1 + λ)

1
λ

(5.8)
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Figure 5.1: Density of the channel input X∞λ for PEM with parameter λ.

in the interval [0, α(λ + 1)] and zero outside it.
The differential entropy of the continuous constellation αXλ is given by

H(X∞λ ) = 1− λ + log
(
λ(λ + 1)

)
+ log α. (5.9)

As it should, the uniform distribution λ = 1 is distributed in the interval
(0,2), with density 1/2, and has a differential entropy log 2.

Proof. We begin by computing the support. It is obvious that the interval
starts at x = 0. As for the upper limit xmax, its inverse is clearly given by

1
xmax

=
1

2m

2m∑

i=1

(
i− 1

2m − 1

)λ

. (5.10)

As 2m →∞, the sum can be approximated by a Riemann integral. Hence,

lim
2m→∞

1
xmax

=
∫ 1

0

xλ dx =
1

λ + 1
. (5.11)

This number is finite, and the upper limit xmax approaches λ + 1 as 2m →∞.
The support is bounded to [0, λ + 1]. We have just seen that points are

selected uniformly in the interval [0, 1]. This uniform choice induces a non-
uniform measure in the interval [0, λ + 1]; this measure is the density we seek.
Let t denote a variable in [0, 1] and x = f(t) = (1 + λ)tλ be the function

111



5. Digital Modulation in the Additive Energy Channels

changing the measure. Then, since the measure dx of an infinitesimal interval
around x, must coincide with the measure dt of the corresponding interval
around t, that is dx = (1 + λ)λtλ−1 dt, we have that

dt =
1

(1 + λ)λtλ−1
dx =

x
1
λ−1

(1 + λ)
1
λ λ

dx. (5.12)

The formulas for the scaled constellation follow from a new change of mea-
sure, now x′ = αx. Since the probability must remain unchanged, the density
of x′ therefore satisfies f(x′) dx′ = f(x) dx. Since dx′ = αdx, we have

f(x′) = f(x)
dx

dx′
=

x′
1
λ−1

α
1
λ λ(1 + λ)

1
λ

. (5.13)

The entropy of the limiting scaled constellation may be directly computed
from its density, or obtained from Theorem 9.6.4 of [22].

5.3 Coded Modulation in the Exponential Noise Channel

5.3.1 Constrained Capacity

The channel model for the exponential noise channel was presented in Chap-
ter 2, and we now briefly review it. The channel output consists of a real-valued
vector y = (y1, . . . , yn). For each index k, the output yk is given by the sum

yk = SNR xk + zk, (5.14)

where the zk are independent samples of additive noise, exponentially dis-
tributed as Zk ∼ E(1), SNR is the average signal-to-noise ratio, and xk is the
channel input. The channel capacity, of value C(SNR) = log(1 + SNR), is
achieved when the channel input has the density given by Eq. (5.4). Since
the capacity cost function has the same form as in the Gaussian channel, the
capacity per unit energy also coincides with its value in the Gaussian channel,
an assertion which will be verified in Section 5.3.2.

In this section, we study the constrained capacity for pulse energy modu-
lation (PEM), where the input symbols are drawn from a constellation set X .
Symbols in X are used with probabilities P (x), and have arbitrary first- and
second-order moments, µ1(X ) and µ2(X ).

112



Coded Modulation in the Exponential Noise Channel

The constellation is assumed to have |X | = 2m elements. For later use, we
add a point at infinity, defined as x|X |+1 = ∞. It is useful to sort the symbols
in increasing order, i. e. x1 ≤ x2 ≤ . . . ≤ x|X |.

As a final notational convention, the conditional output density Q(y|x) is

Q(y|x) = e−(y−SNR x)u(y − SNR x), (5.15)

where u(t) is the step function, so that the density is zero for y < SNRx.
In contrast with the Gaussian case, there exists a closed-form expression

for the constrained capacity,

Proposition 5.2. In the AEN channel, the constrained capacity CX (SNR) for
signalling over a fixed modulation set X with probabilities P (x) with an average
signal-to-noise ratio SNR is given by

CX (SNR) = −
∑

x∈X
P (x)

∑

xj≥x

(
eSNR(x−xj) − eSNR(x−xj+1)

)
log

( ∑

x′≤xj

P (x′)e− SNR(x−x′)

)
.

(5.16)

Proof. Eq. (3.3) on page 27, gives the mutual information across a communi-
cations channel. Writing down the expectations over all input symbols x and
noise realizations z, we obtain

CX = −
|X |∑

l=1

P (xl)
∫ ∞

0

e−z log

( ∑

x′∈X
P (x′)e−γ(xl−x′)u

(
γ(xl − x′) + z

)
)

dz.

(5.17)

We split the integral into consecutive sections of length γ(xj+1−xj), starting at
j = l (the sent symbol) and extending the sum to infinity with the convention
x|X |+1 = ∞. Then

∫ ∞

0

e−zf(xl, z) dz =
|X |∑

j=l

∫ γ(xj+1−xl)

γ(xj−xl)

e−zf(xl, z) dz, (5.18)

where f(xl, z) is the logarithm function in Eq. (5.17). Within each interval the
function f(xl, z) is constant, since

u
(
γ(xl − x′) + z

)
= 1, for x′ ≤ xj , (5.19)

u
(
γ(xl − x′) + z

)
= 0, for x′ > xj , (5.20)
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which allows us to use the integral
∫ z2

z1
e−z dz = e−z1 − e−z2 and derive

EZ

[
f(xl, z)

]
=

|X |∑

j=l

(
e−γ(xj−xl) − e−γ(xj+1−xl)

)
f
(
xl, γ(xj − xl)

)
. (5.21)

Substituting this expression in Eq. (5.17) gives the desired formula.

The proof can be easily extended to apply to constellations with continuous,
rather than discrete, support.

Figure 5.2 shows the constrained capacity for the uniform 2m-PEM (λ =
1 in the constellations of Section 5.2). In Fig. 5.2a, capacity is plotted as
a function of SNR, whereas in Fig. 5.2b, the bit-energy-to-noise ratio BNR,
defined as BNR = SNR

CX
log 2, is given as a function of the capacity. Figure 5.3

depicts the capacity CX for the same values of SNR using a constellation with
λ = 1

2 (1 +
√

5). The reason for this specific choice will become apparent later.
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Figure 5.2: CM capacity for uniform 2m-PEM.

As we did for the Gaussian channel in Chapter 4, we characterize analyti-
cally the behaviour of CX at low and high SNR. We start by computing the
capacity per unit energy in Section 5.3.2 and relating it to the minimum energy
per bit BNRmin. In Section 5.3.3, we compute the first two terms of the Taylor
expansion of the capacity around SNR = 0, and relate them to the quantity
BNR0, attained as SNR tends to zero. As clearly seen in Figs. 5.2a and 5.3a,
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Figure 5.3: CM capacity for equiprobable 2m-PEM with λ = 1
2 (1 +

√
5).

the capacity per unit energy is not universally achieved by arbitrary constel-
lation sets: 2-PEM has a minimum BNR0 of 0 dB, and an asymptotic value
for BNR0 is attained as m increases for both values of the parameter λ; this
asymptotic value will also be computed. Finally, we provide constellation sets
for which BNR0 is arbitrarily close to BNRmin.

At high SNR, the curves for the capacity seem to approach a common
envelope as the number of constellation points increases. To emphasize this
fact, two dotted lines are shown; their form will be related in Section 5.3.4
to the differential entropy of the input. Both functions are very close to the
respective envelope of the capacity, and are rather close to the channel capacity,
especially in Fig. 5.3a.

Lastly, we extend the analysis of bit-interleaved coded modulation to this
channel in Section 5.3.5. Curves for the BICM capacity, similar to those de-
picted in Figs. 5.2a and 5.3a will be obtained.

5.3.2 Capacity per Unit Energy

The capacity per unit energy is the largest number of bits per symbol which can
be reliably sent over the channel per unit energy. Since the capacity equals that
of the complex-valued AWGN channel, it follows that the capacity per unit cost
is also equal to that of the AWGN channel, namely C1 = E−1

n . The minimum
energy per bit Eb,min is obtained by computing Eb,min = log 2

C1
= En log 2.

115



5. Digital Modulation in the Additive Energy Channels

It takes the same energy to transmit a bit in the complex-valued AWGN and
the AEN channels when the noise variance of the AWGN channel, σ2, equals
the noise mean of the AEN channel, En. This fact was to be expected since
the channel capacity is log(1+SNR) in both cases. The minimum bit-energy-
to-noise ratio BNRmin, given by BNRmin = Eb,min

En
= log 2, equals −1.59 dB, in

agreement with the results depicted in Figs. 5.2b and 5.3b.
Alternatively, we can use Theorem 3.9 on page 30, to determine C1,

C1 = sup
x

D
(
Q(y|x)||Q(y|x = 0)

)

Esx
(5.22)

= sup
x

1
Esx

∫ ∞

SNR x

e−(y−SNR x) log
e−(y−SNR x)

e−y
dy (5.23)

= sup
x

1
En

∫ ∞

SNR x

e−(y−SNR x) dy =
1

En
sup

x
1 =

1
En

. (5.24)

To write Eq. (5.23), we used the definition of the divergence between two
probability distributions and the form of the channel transition probability
Q(y|x) in Eq. (5.15). The remaining steps are straightforward.

5.3.3 Asymptotic Behaviour at Low SNR

We start by characterizing the behaviour at low SNR of the constrained capac-
ity CX in

Proposition 5.3. In the AEN channel, the constrained capacity CX (SNR)
using a signal set X with average energy constraint SNR, admits a Taylor series
expansion of the form CX (SNR) = c1 SNR+c2 SNR2 +O(SNR3), as SNR → 0,
with c1 and c2 given by

c1 = −
|X |−1∑

j=1

(xj+1 − xj)qj log qj (5.25)

c2 =
1
2
σ2(X ) +

|X |−1∑

j=1

(xj+1 − xj)
(

1
2 (xj + xj+1)qj − q′j

)
log qj , (5.26)

where σ2(X ) = µ2(X )− µ2
1(X ), qj =

∑
x′≤xj

P (x′) and q′j =
∑

x′≤xj
x′P (x′).

Proof. The detailed derivation can be found in Appendix 5.A.
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We verify next that this characterization indeed describes the results in
Fig. 5.2. For the special case of equiprobable 2m-PEM, the proposition becomes

Corollary 5.4. In the AEN channel, 2m-PEM modulation with parameter λ
has

c1 = − 2m

∑2m

j=1(j − 1)λ

2m−1∑

j=1

(
jλ − (j − 1)λ

) j

2m
log

j

2m
. (5.27)

For 2-PEM, c1 = log 2 and BNR0 = 1, or 0 dB. As m →∞, an asymptotic
limit is reached,

lim
m→∞

c1 =
λ

λ + 1
, (5.28)

lim
m→∞

c2 = − λ2

2(1 + 2λ)2
, (5.29)

and therefore

lim
m→∞

BNR0 =
λ + 1

λ
log 2. (5.30)

As λ → ∞ and m → ∞, BNR0 approaches log 2, the value derived from the
capacity per unit energy; under the same conditions c2 approaches − 1

8 .

Proof. Eq. (5.27) immediately follows from the constellation definition.
As m → ∞, the probability qj =

∑
x′≤xj

P (x′) of the limiting continuous
distribution is given by the Riemann integral

qj =
∫ xj

0

x
1
λ−1

λ(1 + λ)
1
λ

dx =
(

xj

λ + 1

) 1
λ

. (5.31)

Therefore, the first-order coefficient is given by

c1 = −
∫ λ+1

0

(
xj

λ + 1

) 1
λ

log
(

xj

λ + 1

) 1
λ

dxj =
λ

λ + 1
. (5.32)

Next, the parameter q′j is given by the integral

q′j =
∫ xj

0

x
x

1
λ−1

λ(1 + λ)
1
λ

dx =
(

xj

λ + 1

)1+ 1
λ

. (5.33)
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Approximating the sum in the formula for c2 by an integral, and setting 1
2 (xj +

xj+1) = xj , we get

xjqj − q′j = xj

(
xj

λ + 1

) 1
λ

−
(

xj

λ + 1

)1+ 1
λ

= λ

(
xj

λ + 1

)1+ 1
λ

, (5.34)

and, since the constellation variance is σ2(X ) = λ2

1+2λ , we get

c2 =
1
2

λ2

1 + 2λ
+

∫ λ+1

0

λ

(
xj

λ + 1

)1+ 1
λ

log
(

xj

λ + 1

) 1
λ

dxj (5.35)

=
1
2

λ2

1 + 2λ
− λ2(λ + 1)

(1 + 2λ)2
= − λ2

2(1 + 2λ)2
. (5.36)

As seen in Fig. 5.2b, the value of 2-PEM indeed approaches zero capacity
at 0 dB. Uniform PEM requires a bit energy of 2 log 2 as the number of points
increases, a loss of 3 dB compared to the asymptotic value in the AWGN case.
Use of the optimum constellation, with λ = 1

2 (1 +
√

5) reduces this loss by
about 1 dB, since BNR0 = 1

2 (1 +
√

5) log 2, or 0.50 dB. Further reductions are
possible by increasing λ, but BNRmin is approached relatively slowly.

A more efficient method of attaining the minimum BNRmin is by using
flash signalling [25], a generalized form of binary modulation with two points
at positions 0, with probability p, and 1/(1−p), with probability 1−p. Indeed

Corollary 5.5. The coefficients c1 and c2 of binary modulation with one sym-
bol at x = 0 used with probability p are

c1 = − p

1− p
log p, c2 =

p

2(1− p)

(
1 +

log p

1− p

)
. (5.37)

As p → 1, the coefficient c1 → 1, and the minimum bit-energy-to-noise ratio
approaches BNR → log 2. As for c2, it approaches −1/4.

Proof. There is just one term in the summation over j in Eq. (5.16), q1 = p
and q′1 = 0 and x2 = (1− p)−1. Also µ2(X ) = (1− p)2. Then

c1 = −P (x1)(x2 − x1) log P (x1) = − p

1− p
log p (5.38)

c2 = 1
2

(
(1− p)−1 − 1

)
+ (x2 − x1)

(
1
2 (x1 + x2)q1 − q′1

)
log q1 (5.39)

=
1
2

p

1− p
+

1
2

p

(1− p)2
log p =

1
2

p

1− p

(
1 +

log p

1− p

)
. (5.40)
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The limits as p → 1 are readily computed by using the Taylor expansion
log p = p− 1− 1

2 (p− 1)2 + O(p− 1)3.

For instance, the choice p ' 0.77 already gives BNR0 ' −1 dB. For this
choice the symbols are located at positions 0 and (1− p)−1 ' 4.27, a relatively
compact constellation. In order to achieve a similar value of BNR0, a value of
λ ' 6.85 would be required, a much less effective method than flash signalling,
since the constellation is more peaky and needs more points (recall that BNR0

is attained as m →∞, and that for 2-PEM BNR0 is 0 dB).

5.3.4 Asymptotic Behaviour at High SNR

We estimate the asymptotic behaviour of CX at high SNR of the constellations
described in Section 5.2 by following a method very close to that of the Gaussian
channel in Section 4.2.6. We first assume that the input is described by the
limiting continuous density in Eq. (5.7), and then approximate the output
(differential) entropy H(Y ) by the differential entropy of the input H(X). As
we shall shortly see, the PEM constellations described in Section 5.2 allow for
rather neat closed-form expressions.

As we saw in Proposition 5.1, the differential entropy of the input Xλ is

H(Xλ) = 1− λ + log
(
λ(λ + 1)

)
. (5.41)

Scaled by SNR, its entropy is H(Xλ) + log SNR. As for the noise entropy, as
we determined in Proposition 3.13 on page 31, is given by H(Y |X) = H(Z) =
log(e). The asymptotic expansion of the capacity at high SNR is

CXλ
(SNR) ' log SNR−λ + log

(
λ(λ + 1)

)
. (5.42)

This formula begets the natural question of determining the value of λ which
maximizes its value. Setting the first derivative to zero, we derive the optimum
λ as the solution of

−1 +
1
λ

+
1

λ + 1
= 0 =⇒ −λ(λ + 1) + λ + λ + 1 = 0, (5.43)

that is λ2 − λ − 1 = 0. The positive solution of this equation is λ = 1+
√

5
2 '

1.618 . . . , the golden number. Hence, choosing λ as the golden number maxi-
mizes the capacity at large SNR in the constellation family described in Sec-
tion 5.2.
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5. Digital Modulation in the Additive Energy Channels

The capacity of the AEN channel, of value log(1 + SNR), asymptotically
behaves as log SNR for large SNR, slightly larger than Eq. (5.42). For a fixed
SNR, let SNR′ the signal-to-noise ratio necessary to achieve the same capacity
by using PEM. Then, we can compute the energy loss incurred by using a
non-optimal constellation by setting

log SNR = log SNR′−λ + log
(
λ(λ + 1)

)
, (5.44)

or equivalently
SNR′

SNR
=

eλ

λ(λ + 1)
. (5.45)

This quantity is larger than one. Figure 5.4 depicts the loss, in decibels, in-
curred by the PEM constellations we consider. The lowest loss, achieved for
λ = 1

2 (1 +
√

5) is approximately 0.76 dB, lower than the shaping loss incurred
by uniform square QAM distribution in the Gaussian channel, namely 1.53 dB.
Uniform PEM, with λ = 1, suffers from an energy loss 2/e, or approximately
1.33 dB, the same value as a uniform distribution in a circle for the Gaussian
channel (see Proposition 4.13 in Section 4.2.6). For the sake of comparison,
the losses for the square and circle constellations in the Gaussian channel are
shown in Fig. 5.4 as horizontal lines.
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Figure 5.4: Asymptotic power loss in decibels for PEM constellations.

We conclude that PEM constellations in the AEN channel may be more
energy-efficient at high SNR than QAM or PAM modulations in the AWGN.
This reverts the situation at low SNR, where typical AWGN constellations
require a lower SNR to achieve the same capacity, as we saw in Section 5.3.3.
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Coded Modulation in the Exponential Noise Channel

5.3.5 Bit-Interleaved Coded Modulation

The principles for bit-interleaved coded modulation, presented in Section 4.3,
apply essentially unchanged to the AEN channel. In particular, we can define
the BICM capacity CX ,µ for a given constellation set X and mapping rule µ.
Using Proposition 4.16, we have the following convenient form,

Definition 5.6. In the AEN channel, the BICM capacity CX ,µ for a modula-
tion set X used under the binary mapping rule µ is given by

CX ,µ =
m∑

i=1

1
2

∑

b=0,1

(Cu
X − Cu

X b
i
), (5.46)

where Cu
X and Cu

X b
i

are, respectively, the constrained capacity of equiprobable
signalling in the sets X and X b

i . The set X b
i is the collection of all constellation

symbols with bit b in the i-th position of the binary label.

Efficient computation of Cu
X and Cu

X b
i

can be performed by using Eq. (5.16)
with respective probabilities 1/|X | and 2/|X |.

Figure 5.5 depicts the BICM capacity for several cases of equiprobable 2m-
PEM constellations under binary reflected Gray mapping. In Fig. 5.5a, the
constellation points follow a uniform distribution, λ = 1, whereas λ = 1

2 (1 +√
5), the optimum value for coded modulation, in Fig. 5.5b. In both cases, the

curves are rather close to the respective constrained modulation capacities CX ,
depicted in Figs. 5.2a and 5.3a.

Proposition 5.3 can be applied to derive the asymptotic expansion of the
BICM capacity at low SNR. However, the resulting formula does not seem to
be particularly informative and we have chosen not to write it down explicitly.

In contrast with the Gaussian case, inspection of Fig. 5.5 at high SNR sug-
gests that the asymptotic form of the BICM capacity CX ,µ with Gray mapping
is appreciably smaller than the corresponding constrained capacity CX . This
impression is supported by Fig. 5.6, which shows the difference (in bits) be-
tween the channel capacity log(1 + SNR) and the capacities CX and CX ,µ for
several values of λ. For fixed λ and SNR, the largest capacity for all values of
m ≤ 12 was determined; the difference between this number and the channel
capacity is depicted in the figure.

The divergence at large SNR is explained by the fact that the largest size of
the constellation sets was 4096, limiting the capacity to 12 bits. If the channel
capacity is appreciably larger than this number, a gap appears. At the other
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Figure 5.5: BICM capacity as a function of SNR for 2m-PEM, Gray mapping.
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extreme, the difference among the various curves is small, since the absolute
difference with the capacity is bounded by the capacity itself, a small num-
ber. Of more interest is the behaviour at moderate-to-large SNR. First, the
capacity CX for λ = 1 is about 0.45 bits smaller than C, in line with Eq. (5.42)
from Section 5.3.4. The values for λ = 1.618 and λ = 2 also approach their
asymptotic form, Eq. (5.42), but do so more slowly. We have not found a
convincing explanation for this fact. More intriguing is that the BICM ca-
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pacities are around 0.25–0.30 bits lower than the CM capacities at high SNR.
This trait, which was not appreciable in the Gaussian channel, should relate to
the decoding metric for BICM, which ignores the correlation among the log-
likelihood ratios. Moreover, the use of a mapping other than natural reflected
Gray might yield some additional improvement.

5.4 Coded Modulation in the Discrete-Time Poisson Channel

5.4.1 Introduction

We now move on to the analysis of the discrete-time Poisson (DTP) channel.
As we saw in Chapter 2, in this channel information is modulated onto the
input symbol energy, as it was in the AEN channel. Energy at the channel
output is quantized, and the input energy constraint is given in terms of the
average number of quanta, denoted by εs.

The input at time k, a non-negative real-valued number xk, induces a non-
negative integer-valued output yk distributed according to a Poisson distribu-
tion of parameter εsxk, Yk ∼ P(εsxk), there is no additive noise. We assume
that xk is drawn with probability P (xk) from a set X ; the set X is normalized
to unit energy. The cardinality of X is |X | = 2m, that is m bits are required
to index a symbol. The conditional output density Q(y|x) is

Q(y|x) = e−εsx (εsx)y

y!
. (5.47)

The analysis in this section examines the transmission capabilities of the
channel under pulse-energy modulations, with special attention being paid to
the family described in Section 5.2. As such, our study complements existing
work, such as [15], by deriving some new results:

• The performance at low quanta-count εs is described with techniques im-
ported from the analysis of the Gaussian channel at low signal-to-noise
ratio. In particular, the capacity per unit energy, the first two deriva-
tives of the mutual information at zero quanta count, and the minimum
number of quanta per bit for generic PEM formats are determined.

• The asymptotic form of the constrained coded modulation capacity at
high quanta counts is determined by using a Gaussian approximation. A
constellation with small loss with respect to the capacity is provided.
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• Bit-interleaved coded modulation is shown to be a good method to design
practical channel codes, since its capacity is close to that of coded modu-
lation. In addition, the performance loss with uniform PEM modulation
and Gray mapping at low quanta counts is given by a simple expression.

These items are respectively covered in Sections 5.4.3-5.4.4, 5.4.5, and 5.4.6.

5.4.2 Constrained Capacity

From the definition of mutual information in Eq. (3.3) on page 27, we define
the constrained capacity CX for a fixed modulation set X as

Definition 5.7. In the DTP channel with average quanta count εs, the ca-
pacity CX for signalling over a modulation set X with probabilities P (x) is

CX (εs) = −
∑

x

P (x)
∞∑

y=0

e−εsx (εsx)y

y!
log

( ∑

x′∈X
P (x′)eεs(x−x′)

(
x′

x

)y
)

.

(5.48)

If necessary, we also use the convention x log x = 0 for x = 0. Further, for
x = 0, the only possible output is y = 0, and Eq. (5.48) is well-defined by the
natural limiting procedure replacing the summation over y by

log

( ∑

x′∈X
P (x′)e−εsx′

)
. (5.49)

Figures 5.7 and 5.8 show the capacity for equiprobable 2m-PEM, respec-
tively with λ = 1 and λ = 1 +

√
3. In both cases, the upper plot depicts the

capacity as a function of εs, whereas the lower one shows the number of quanta
per bit εb, defined in analogy to the AWGN and AEN channels as εb = εs

CX
log 2,

as a function of the capacity CX . Since for this channel the capacity is not
known, we also depict the upper and lower bounds from Chapter 3.

We will see in Section 5.4.5 how the choice λ = 1 +
√

3 maximizes the
asymptotic expression of the capacity CX at high εs under a Gaussian approx-
imation. These asymptotic expressions match well with the envelope of the
capacity curves as the number of constellation points increases. To any extent,
the constrained capacity for this value of λ is markedly larger than for uniform
PEM, λ = 1; inspection of the plots shows an energy gain factor above 3 for
a fixed capacity or about 0.65 bits for fixed εs. Further, constellations with
λ = 1 +

√
3 are better than uniform PEM also for low εs.
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Figure 5.7: CM capacity for uniform 2m-PEM.
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(a) Capacity as a function of εs.
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Figure 5.8: CM capacity for equiprobable 2m-PEM with λ = 1 +
√

3.

As it happened in the AEN case, the modulations do not converge to a single
line for low εs. This behaviour is analytically characterized in Section 5.4.4,
where we shall also see that the coded modulation capacity for flash signalling
closely approaches the upper bound to the true channel capacity. First, in
Section 5.4.3, we determine the capacity per unit energy of the DTP channel.
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5.4.3 Capacity per Unit Energy

The capacity per unit energy C1 is defined as the largest number of bits per
symbol which can be reliably sent over the channel per unit energy. Using
Theorem 3.9 on page 30, C1 is determined as

C1 = sup
x

D
(
Q(y|x)||Q(y|x = 0)

)

εsx
= ∞, (5.50)

since the support of the conditional output Q(y|x = 0) is limited to y = 0, and
therefore the divergence is infinite. This value was already computed by Verdú
[29] and before him by Pierce [30] in the context of optical communications.

The minimum bit-energy-to-noise ratio εb,min is εb,min = log 2
C1

= 0. In other
words, to transmit an asymptotically vanishing amount of information, the
required number of quanta approaches zero faster than linearly in the amount
of information.

As a final remark, we note that for the AEN (resp. AWGN) channels,
the bit energy Eb,min = En log 2 (resp. Eb,min = σ2 log 2) also vanishes as the
average noise En (resp. σ2) goes to zero. Since there is no additive noise in the
DTP channel, the value of εb,min in the DTP channel is in agreement with this
behaviour in the continuous channels. In Section 5.5.2, we shall see that εb,min

in the quantized additive energy channel is εn log 2, where εn is the expected
additive noise, making complete the analogy with the continuous channels.

5.4.4 Asymptotic Behaviour at Low εs

At low εs the behaviour of the coded modulation capacity is characterized in

Proposition 5.8. In the DTP channel, the constrained capacity CX (εs) using
a signal set X with probabilities P (x) and average energy constraint εs, admits
a Taylor series expansion of the form CX (εs) = c1εs +c2ε

2
s +O(ε3

s), as εs → 0,
with c1 and c2 given by

c1 =
∑

x∈X
xP (x) log

x

µ1(X )
(5.51)

c2 =
1
2
σ2(X )− 1

2
µ2(X ) log

µ2(X )
µ2

1(X )
. (5.52)

Proof. The proof can be found in Appendix 5.B.
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For constellations with unit mean energy, the bit energy at zero capacity
εb, εb0, is given by Theorem 4.3,

εb0 = log 2

(∑

x∈X
xP (x) log x

)−1

. (5.53)

Since the function t log t is convex, this quantity is in general larger than zero,
the value of εb,min derived from the capacity per unit energy.

For the PEM constellations described in Section 5.2, it is possible to com-
pute the asymptotic limit as the number of points becomes infinite,

Corollary 5.9. For 2-PEM, c1 = log 2 and BNR0 = 1, or 0 dB.
In the DTP channel, as m →∞, 2m-PEM with parameter λ has

lim
m→∞

c1 = log (λ + 1)− λ

λ + 1
(5.54)

lim
m→∞

c2 =
1
2

(
λ2

2λ + 1
− (λ + 1)2

2λ + 1
log

(λ + 1)2

2λ + 1

)
, (5.55)

and therefore

lim
m→∞

εb0 =
log 2

log (λ + 1)− λ
λ+1

. (5.56)

As λ → ∞ and m → ∞, BNR0 approaches 0, the value derived from the
capacity per unit energy; under the same conditions c2 approaches −∞.

For instance, uniform 2m-PEM modulation in the discrete-time Poisson
channel requires about εb,min = log 2

log 2− 1
2
' 3.59 quanta/bit, as the number of

quanta vanishes, εs → 0.

Proof. For the PEM constellations under consideration, average energy is one
and µ1(X ) = 1. For large m, the sum over the modulation symbols is replaced
by a Riemann integral, and we have

lim
m→∞

c1 =
∫ λ+1

0

x
1
λ−1

λ(1 + λ)
1
λ

x log x dx = log (λ + 1)− λ

λ + 1
. (5.57)

εb,min follows immediately.
The limit for the second-order coefficient c2 is obtained by using the formula

for µ2(X ) in Proposition 5.1.
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We next consider a generalized form of on-off keying, flash signalling [25].
With our definitions, the classical on-off keying is defined by two points at
positions 0 and 2, randomly selected each time instant with probability 1/2.
In flash signalling, the two possible inputs are x1 = 0, with probability p, and
x1 = 1/(1 − p), with probability 1 − p, and the value of p is taken close to 1.
Then, it is straightforward to obtain

Corollary 5.10. Flash signalling in the DTP channel has coefficients

c1 = − log(1− p), c2 =
p + log(1− p)

2(1− p)
. (5.58)

In the limit p → 1, c1 → ∞ and the number of quanta per bit approaches
εb0 = 0. In addition, c2 approaches −∞. This behaviour is consistent with a
functional form C(εs) ' εs log ε−1

s as εs → 0, as opposed to linear in εs, i. e.
C(εs) ∝ εs, as was the case in the AWGN and AEN channels.

Figure 5.9 depicts the capacity of flash signalling for several values of p.
In Fig. 5.9a, capacity is presented as function of εs. The difference between
the highest capacity CX and the upper bound to the true channel capacity is
quite small. Figure 5.9b shows εb as a function of the capacity. Even though εb0

indeed approaches zero, it does so very slowly. Curiously, the choice p = 1−e−1

gives c1 = 1, as in the Gaussian channel. This input appears in the information-
theoretic analysis of the Z-channel at high noise levels, see [62].
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5.4.5 Asymptotic Behaviour at High εs

We now move on to the estimate of the asymptotic behaviour of the constrained
capacity at high εs. The constrained capacity may be written as the difference
between two terms, the output entropy H(Y ) and the conditional entropy
H(Y |X). We approximate the output entropy the same way we did in the
AWGN and AEN channels, namely by approximating H(Y ) by the differential
entropy of the input H(X), when the input is a continuous density. As we saw
in Proposition 5.1, the differential entropy of the scaled input εsXλ is

H(Xλ) = 1− λ + log
(
λ(λ + 1)

)
+ log εs. (5.59)

As for the conditional entropy, differently from the AWGN/AEN channels,
noise is not additive in the DTP channel, a fact which must be properly taken
into account. We use a Gaussian approximation to the conditional entropy,
which is also valid as an asymptotic formula for the entropy of a Poisson dis-
tribution, H(Y |X = x) ' 1

2 log(2πex) (see Proposition 3.40 in Section 3.5.2).
Integrated over the input x, this gives

H(Y |X) '
∫ εs(λ+1)

0

x
1
λ−1

ε
1
λ
s λ(1 + λ)

1
λ

1
2

log(2πex) dx (5.60)

=
1
2

(
log

(
2πeεs(λ + 1)

)− λ
)
. (5.61)

Therefore, assuming the Gaussian approximation is valid, the asymptotic be-
haviour of C at high εs is given by

C(εs) ' 1− λ + log
(
λ(λ + 1)

)
+ log εs − 1

2

(
log

(
2πeεs(λ + 1)

)− λ
)

(5.62)

=
1
2

log εs +
1
2
(
1− λ

)
+

1
2

log
(
λ2(λ + 1)

)− 1
2

log(2π). (5.63)

As we did in the AEN case, it is interesting to determine the value of λ with
the highest asymptotic capacity. It is derived by computing the first derivative
with respect to λ and setting it to zero,

−1
2

+
1
λ

+
1

2(λ + 1)
= 0 =⇒ −λ(λ + 1) + 2(λ + 1) + λ = 0, (5.64)

that is λ2 − 2λ− 2 = 0. Its positive root is λ = 1 +
√

3 ' 2.732 . . . .
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Since the capacity of the DTP channel behaves as 1
2 log εs for large εs (see

Section 3.5.4), using PEM requires a larger energy ε′s to attain the same data
rate. We compute the energy loss incurred by PEM modulation by setting

1
2

log εs =
1
2

log ε′s +
1
2
(
1− λ

)
+

1
2

log
(
λ2(λ + 1)

)− 1
2

log(2π). (5.65)

Solving for the ratio between the energies,

ε′s
εs

=
2πeλ−1

λ2(λ + 1)
. (5.66)

This quantity is larger than 1 for λ > 0 and represents a relative loss in energy.
Figure 5.10 depicts the loss, in decibels, incurred by the PEM constellations.
The lowest loss, achieved for λ = 1 +

√
3, is slightly above 1 dB, better than

the shaping loss of circular or square QAM constellations in the Gaussian
channel or a uniform density in the AEN channel, also drawn in the figure as
horizontal lines for the sake of comparison. Uniform PEM, with λ = 1, suffers
from a power loss of π, or about 4.97 dB. The improvement brought about by
a good choice of λ is significant. As we shall review in Chapter 6, the value
λ = 2 minimizes the pairwise error probability in the DTP channel.
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Figure 5.10: Asymptotic power loss in decibels for PEM constellations.

5.4.6 Bit-Interleaved Coded Modulation

It is probably not very surprising that a bit-interleaved coded modulation chan-
nel can be defined for the DTP channel, as was done for the Gaussian and AEN
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channels. In particular, we have a BICM capacity CX ,µ, given by the expres-
sion (4.39) or alternatively by a definition similar to that of Eq. (5.46).

Figure 5.11 depicts the BICM capacity for several equiprobable 2m-PEM
modulation and Gray mapping. The upper and lower bounds to the channel
capacity from Chapter 2 are also depicted. The most remarkable fact is that
the curves are very close to those of the coded modulation capacity.
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Figure 5.11: BICM capacity as a function of εs for 2m-PEM and Gray mapping.

The loss incurred by BICM with respect to the upper bound to the channel
capacity is depicted in Fig. 5.12. More precisely, for each value of εs and λ,
the highest BICM capacity for all m ≤ 7 is determined, and subtracted from
the upper bound to the channel capacity; the result is plotted as a function of
εs. The same steps are repeated for the constrained capacity.

The BICM capacity is very close to that of coded modulation, as was the
case in the Gaussian channel. Qualitatively, the behaviour of the various curves
is very similar to that of the AEN channel. For low εs the difference among
the various curves is small, since the absolute difference with the capacity is
bounded by the capacity itself, a small number; all curves coincide because
the highest capacity is achieved by 2-PEM, and in that case CX and CX ,µ

coincide. For larger values of εs, the capacities CX and CX ,µ approach an
asymptotic form, whose value for CX is very closely given by the expressions
in Section 5.4.5.

For the DTP channel, a neat formula exists for the linear terms of the
Taylor expansion of CX ,µ around εs. Then, we have
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Proposition 5.11. The BICM capacity in the DTP channel for a constellation
X with average unit energy admits an expansion in Taylor series around εs = 0
whose first term c1 is given by

c1 =
m∑

i=1

1
2

∑

b

µ1(X b
i ) log µ1(X b

i ) (5.67)

where µ1(X b
i ) is the average symbol for a fixed label index i, and bit value b.

Proof. From Proposition 4.16, the BICM capacity can be written as

CX ,µ =
m∑

i=1

1
2

∑

b=0,1

(Cu
X − Cu

X b
i
). (5.68)

The summands Cu
X and Cu

X b
i

admit a Taylor expansion given in Proposition 5.8,

c1 =
m∑

i=1

1
2

∑

b=0,1

(∑

x∈X
x

1
|X | log

x

µ1(X )
−

∑

x∈X b
i

x
2
|X | log

x

µ1(X b
i )

)
(5.69)

=
m∑

i=1

1
2

∑

b=0,1

µ1(X b
i ) log µ1(X b

i ), (5.70)

since µ1(X ) = 1, and the summations over X b
i for b = 0 and b = 1 can be either

combined to yield a summation over X , hence cancelling the contribution from
the first summand, or carried out to give µ1(X b

i ).
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As in the Gaussian case, we can compute the result in Theorem 5.11 for
natural Gray mapping (see the definition on page 87). Then

Corollary 5.12. For uniform 2m-PEM and Gray mapping, c1 is given by

c1 =
1
2

2m−1 − 1
2m − 1

log
2m−1 − 1
2m − 1

+
1
2

3 2m−1 − 1
2m − 1

log
3 2m−1 − 1

2m − 1
. (5.71)

As m →∞, the coefficient c1 approaches c1 → log 33/4

2 ' 0.13, whereas the
minimum bit energy approaches εb0 → 7.24 dB.

The loss represents about 1.69 dB with respect to the CM limit as m →∞,
which was found in Corollary 5.9 to be εb0 = 5.55 dB.

Proof. For 2m-PEM, the Gray mapping construction above makes µ1(X b
i ) = 1

for b = 0, 1 and all bits but one, say i = 1. Therefore,

c1 =
1
2
µ1(X 0

1 ) log µ1(X 0
1 ) +

1
2
µ1(X 1

1 ) log µ1(X 1
1 ). (5.72)

Symbols xi, i = 0, . . . , 2m − 1 take the value xi = 2i
2m−1 , and therefore

µ1(X 0
1 ) =

2
2m − 1

1
2m−1

2m−1−1∑

i=0

i =
2m−1 − 1
2m − 1

, (5.73)

µ1(X 1
1 ) =

2
2m − 1

1
2m−1

2m−1∑

i=2m−1

i =
32m−1 − 1

2m − 1
. (5.74)

The coefficient c1 then follows. The limit m →∞ is obvious.

5.5 Coded Modulation in the Quantized Additive Energy Channel

5.5.1 Constrained Capacity

The quantized additive energy (AE-Q) channel was introduced in Chapter 2
as an intermediate between the additive exponential (AEN) and discrete-time
Poisson (DTP) channels. From the former, it inherits the trait that the channel
output at time k yk is the sum of a signal and an additive noise components,
respectively denoted by sk and zk, i. e. yk = sk + zk. It shares with the DTP
channel the properties that the output yk is a non-negative integer and that
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the signal component sk follows a Poisson distribution. The output suffers
from Poisson noise (from sk) and additive noise (from zk). The noise zk has a
geometric distribution of mean εn.

In this section, we assume that the channel input at time k is a non-negative
real number, of value εsxk, where εs is the average signal energy count, and
xk are drawn from a set X with probability P (xk). The elements of X are the
modulation symbols, and are normalized to have unit energy.

The DTP channel is recovered from the AE-Q channel by setting εn = 0.
At the other extreme, as εn →∞, we saw in Chapter 3 that the AE-Q channel
becomes ever closer to an equivalent AEN channel with signal-to-noise ratio
SNR if also εs goes to infinity as εs = SNR εn. In this section, we study the way
the AE-Q channel is an intermediate between the AEN and DTP channels when
coded modulation is considered. Our main contributions are the computations
of the capacity per unit energy, in Section 5.5.2, and of the Taylor expansion
of the constrained capacity for low values of εs, in Section 5.5.3.

Recall that the constrained capacity CX (εs, εn) is given by

CX (εs, εn) = −
∑

x

P (x)
∞∑

y=0

Q(y|x) log

( ∑

x′∈X
P (x′)

Q(y|x′)
Q(y|x)

)
, (5.75)

with Q(y|x) depends on εs and εn, and is given by Eq. (2.23),

Q(y|x) =
e

εsx
εn

1 + εn

(
εn

1 + εn

)y y∑

l=0

e
−εsx

(
1+

1
εn

) (
εsx

(
1 + 1

εn

))l

l!
. (5.76)

Figure 5.13 shows the capacity CX (εs, εn) for uniform 2m-PEM modulation
and for several values of εn. For the sake of comparison, the channel capacities
for the AEN (with signal-to-noise ratio εs/εn) and DTP channels (with signal
energy εs) are also depicted.

The first and expected conclusion drawn from the plots is that the required
signal energy to achieve a given rate migrates to higher values as the noise
level εn increases. In addition, most of the heuristic results for the channel
capacity derived in Chapter 3 extend to coded modulation. For low values of
the additive noise εn, say from εn = 0 up to εn = 1, the constrained capacity
is closely given by that of a discrete-time Poisson channel with εn = 0.

For values of additive noise εn À 1, a good approximation to the capacity
is the capacity of the AEN channel with signal-to-noise ratio given by SNR =
εs/εn. This fact is especially visible in Fig. 5.13b. Nevertheless, for each value
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Figure 5.13: CM capacity as a function of εs for uniform 2m-PEM.

of εn, there exists a threshold ε∗s above which the constrained capacity diverges
from the AEN value and approaches that of a DTP channel with count εs. As
we saw in Eq. (3.119), on page 52, this threshold is approximately given by
ε∗s = ε2

n, or equivalently by a threshold signal-to-noise ratio SNR∗ ' εn.
In Section 5.3.4 we studied the asymptotic expression of CX for uniform 2m-

PEM in the AEN channel, and found it was log SNR− log e
2 . In the analysis

of the DTP channel with the Gaussian approximation, in Section 5.4.5, the
asymptotic expansion in Eq. (5.63) is given by 1

2 log εs − 1
2 log π. The plots

in Fig. 5.13 suggest that the shaping gain in the AE-Q channel experiences a
smooth transition when moving from the DTP-like to the AEN-like regimes.

Identical qualitative results also hold for other non-uniform 2m-PEM con-
stellations. An interesting and rather surprising phenomenon concerns the
behaviour for low quanta counts, which we discuss next.

5.5.2 Capacity per Unit Energy

We start by determining the capacity per unit energy C1, the largest number
of bits per symbol which can be reliably sent over the channel per unit energy.

Theorem 5.13. In the AE-Q channel with additive geometric noise of mean
εn, the capacity per unit energy C1 and the minimum energy per bit εb,min are
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respectively given by

C1 =
1
εn

, εb,min = εn log 2. (5.77)

The energy per bit has its natural meaning. Its form is reminiscent of the
results for the Gaussian channel, Eb,min = σ2 log 2, and for the exponential
channel Eb,min = En log 2.

Proof. The proof can be found in Appendix 5.C.

This is the natural counterpart of the result in the AEN channel, where
the minimum energy per bit was found to be En. The presence of Poisson
noise does not reduce the capacity per unit energy, or equivalently increase the
minimum energy per bit.

5.5.3 Asymptotic Behaviour at Low εs

For a capacity CX , it is natural to define a number of quanta per bit, εb, as
εb = εs

CX
log 2. As we saw in the DTP channel, this quantity plays an analogous

role to that of BNR in Gaussian channels. The capacity curves in Fig. 5.13
may be turned around and represented as εb versus the channel capacity. The
resulting plot is depicted in Fig. 5.14. One immediately notices an unexpected
behaviour in the region CX → 0, namely the seeming divergence to infinity
of number of quanta per bit εb. This impression is further corroborated by
Fig. 5.14b, essentially a logarithmic unfolding of the previous plot, in which
the x scale is plotted in logarithmic scale, so as to better examine the shape of
the curve.

This odd behaviour is no artifact of the computations, as stated in

Proposition 5.14. In the AE-Q channel with geometric noise of mean εn > 0
and average signal count εs, the Taylor expansion of the constrained capacity
CX (εs, εn) around εs = 0 is given by

CX (εs, εn) =
1
2
σ2(X )

ε2
s

εn
+ O(ε3

s). (5.78)

Since the linear term is zero, the energy per bit at vanishing εs is εb0 = ∞.

Proof. The proof can be found in Appendix 5.D.
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Figure 5.14: Bit energy versus CM capacity CX for uniform 2m-PEM.

Since the result holds for arbitrary PEM modulations, the use of flash sig-
nalling (binary modulation, with one symbol at zero used with probability p)
does not achieve a finite εb0. It would however, achieve a large c2 coefficient,
since c2 = p

2(1−p) → ∞ for flash signalling with probability p → 1, as we saw
in the proof of Corollary 5.5.

This is a most surprising fact, for which we have not found an intuitive
explanation. In Sections 5.3.3 and 5.4.4, on the respective analysis of the
limiting cases AEN and DTP, we saw that the required energy per bit at
zero SNR had a finite, well-defined value. It would have been natural that
the intermediate case, the AE-Q channel, changes these well-defined values in
a smooth transition between the two extremes. The transition seems to be
however different, as implied by the curves in Fig. 5.14b and Proposition 5.14.
For the DTP channel, εb0 is finite, of value

εb0 = log 2

(∑

x∈X
xP (x) log x

)−1

, (5.79)

given in Theorem 5.8. From this point, the addition of some additive noise εn,
however small, makes the curve εb

AE-Q(CX ) diverge from the DTP value. The
dual behaviour takes place in the transition to the AEN limit.

This seeming contradiction is solved by noting that this happens at a very
small capacity, below 10−3 bits for εn = 10−4, as seen in Fig. 5.14b. For even
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lower values of εn, the divergence takes place at even lower capacities. A similar
transition takes place when approaching the AEN limit. Fortunately, the di-
vergence is not visible in the limit, unless one wishes to work at tiny capacities.
Further, if a system operated at such low rates, it could be argued whether εb

is an appropriate figure of merit, as opposed to εs. An interesting question is
what impact this behaviour may have for situations when the channel is not
close to either limit, such as εn in the order of hundreds.

We note that we have not been able to analytically determine the position
of the inflection point in the curves for εb(CX ), which would correspond to the
minimum energy per bit for a given modulation set. To any extent, an absolute
lower bound to the energy per bit is given by εb,min = εn log 2.

5.5.4 Bit-Interleaved Coded Modulation

We conclude our analysis of the AE-Q channel by briefly considering bit-
interleaved coded modulation. A BICM capacity can be defined as in the
previously studied channels, and its value computed. When using Gray map-
ping, the results turn out to be very close to the CM case, and identical con-
clusions to the ones reached previously can be derived for BICM. In particular,
there is a transition between the AEN and the DTP channels, with the AE-
Q channel model bridging the gap between the two of them. We conclude
that bit-interleaved coded modulation is likely to be a good method to general
channel codes for the AE-Q channel.

In addition, thanks to the decomposition of the BICM capacity in Propo-
sition 4.16, it is clear that the first term c1 of the Taylor series of the capacity
around εs = 0 is zero, in line with the result for coded modulation.

5.6 Conclusions

The additive energy channel models were constructed in Chapter 2 in such a
way that the AE-Q channel has the AEN and DTP channels as limiting forms.
This idea was further supported in Chapter 3, where we saw that the capacity of
the AE-Q channel indeed converges to the capacity of these limiting cases in a
natural manner. In this chapter, we have examined this transition when coded
modulation is considered and we have in the process extended the analysis of
coded modulation, carried out for the Gaussian channel in Chapter 4, to the
additive energy channels.

More specifically, we have determined the capacity achievable by a family
of pulse-energy modulations (PEM) whose constellation points have the form
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β(i− 1)λ, for i = 1, . . . , 2m, where λ > 0 is a parameter and β a normalization
factor; points are used with the same probabilities. As m becomes very large,
the constellation can be described by a continuous density with support limited
to the interval [0, λ + 1]. In addition, we have considered flash signalling, a
generalized form of binary modulation with two points at positions 0, with
probability p, and 1/(1− p), with probability 1− p.

For the various additive energy channels, we have computed the constrained
capacity CX achievable by using a set X and the bit-interleaved coded mod-
ulation (BICM) capacity CX ,µ for the set X under mapping rule µ. As for
the Gaussian channel, both capacities are rather similar when binary reflected
Gray mapping is used for BICM. BICM is therefore likely to be a good method
to perform channel coding in the energy channels, by using simple binary codes,
such as convolutional or turbo-like codes.

The behaviour of the constrained capacity at low energy levels, when the
capacity becomes vanishingly small, has been determined. The main results
are summarized in Table 5.1, where the capacity per unit energy, the minimum
energy per nat1, and the energy at zero-capacity for PEM modulation and
flash signalling are presented. It is remarkable that the energy per nat (or the
capacity per unit energy) shows a smooth transition between the AWGN and
DTP channels, going through the AEN and AE-Q models: for all models, it is
equal to the average energy of the additive noise component.

Even though the capacity per unit energy of the Gaussian channel is at-
tained by any zero-mean unit-energy constellation, this result does not extend
to the additive energy channels. The performance of a specific modulation for-
mat at low energy levels strongly depends on the modulation format itself. As
seen in Table 5.1, the minimum energy per nat is attained by the appropriate
limits of PEM(λ) of flash signalling in the AEN and DTP channels. Intrigu-
ingly, it is not the case for the AE-Q channel, whose energy per nat at zero
energy is infinite. These seemingly contradictory extremes have been recon-
ciled in Section 5.5.3 by looking at somewhat higher channel capacities, for
which the AE-Q model represents a smooth transition between the AEN and
DTP channel models. Care must be exercised when analyzing the asymptotic
behaviour, as it may not be representative of a more practical scenario.

For all the channel models, we have computed the first two coefficients of

1In the chapter, we have rather considered the energy per bit. Since log 2 nats=1 bit,
giving the energy per nat removes the ubiquitous factor log 2 in the formulas for the energy
per bit and makes for more compact results. Needless to say, this change of units has no
effect on the conclusions.
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Channel model AWGN AEN DTP AE-Q

Cap./unit energy 1/σ2 1/En ∞ 1/εn

Min. energy/nat σ2 En 0 εn

c1 – 2m-PEM (λ) 1 λ
λ+1 log (λ + 1)− λ

λ+1 0
Energy at zero σ2 ≥ En > 0 ∞
c1 – flash (p) 1 − p

1−p log p − log(1− p) 0
Energy at zero σ2 ≥ En > 0 ∞

Table 5.1: Minimum energies in the additive energy channels.

the Taylor expansion of the capacity at zero energy, namely

C(γ) = c1γ + c2γ
2 + o(γ2), (5.80)

where γ is SNR for the AEN (and AWGN) channels, and εs for the DTP and
AE-Q channels. The coefficients c1 are given by Propositions 5.3, 5.8, and 5.14,

cAEN
1 = −

|X |−1∑

j=1

(xj+1 − xj)qj log qj (5.81)

cDTP
1 =

∑

x∈X
xP (x) log

x

µ1(X )
(5.82)

cAE-Q
1 = 0, (5.83)

where qj =
∑

s′≤sj
P (x′). The linear coefficients c1 for 2m-PEM and flash

signalling are given in Table 5.1. As for the coefficients c2, they are given by

cAEN
2 =

1
2
σ2(X ) +

|X |−1∑

j=1

(sj+1 − sj)
(

1
2 (sj + sj+1)qj − q′j

)
log qj , (5.84)

cDTP
2 =

1
2
σ2(X )− 1

2
µ2(X ) log

µ2(X )
µ2

1(X )
, (5.85)

cAE-Q
2 =

1
2εn

σ2(X ), (5.86)

where σ2(X ) = µ2(X ) − µ2
1(X ), and q′j =

∑
s′≤sj

s′P (x′). This analysis com-
plements the results obtained for the Gaussian channel, in Proposition 4.4.
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Next to the low-energy region, we have studied the asymptotic expression
of the capacity for large energy levels. From Eqs. (5.42) and (5.63) (under a
Gaussian approximation), we have

CAEN
X ' log SNR−λ + log

(
λ(λ + 1)

)
, (5.87)

CDTP
X ' 1

2 log εs + 1
2

(
1− λ

)
+ 1

2 log
(
λ2(λ + 1)

)− 1
2 log(2π), (5.88)

for 2m-PEM constellations with parameter λ. The value of λ which maximizes
these expressions was determined, and found to be λAEN = 1

2 (1 +
√

5) and
λDTP = 1 +

√
3. The AE-Q channel shows a transition between the two as the

number of quanta grows and Poisson noise becomes more important, compared
to the additive noise. Uniform PEM was found to suffer from an energy loss
factor of e

2 (AEN) and π (DTP), to be compared with the value πe
6 for square

constellations in the Gaussian channel. Optimizing λ reduced these values to
1.19 (AEN), saving 0.58 dB, and 1.27 (DTP), a reduction of 3.92 dB.

Even though some of the results seem of a rather technical nature, it is
hoped that the analysis presented in this section may prove useful in the design
and performance analysis of, at least, some optical communication systems. In
the following chapter we complement the analysis presented so far by studying
the pairwise error probability for binary codes, a fundamental tool to study
the effective performance of channel codes.

5.A CM Capacity Expansion at Low SNR – AEN

We follow the same steps as for AWGN, with the necessary adaptations. For
the sake of compactness, we define γ = SNR and respectively denote the first-
and second-order moments of the constellation by µ1 and µ2. Recall that the
CM capacity is

CX = −
|X |∑

l=1

P (xl)
|X |∑

j=l

(
e−γ(xj−xl) − e−γ(xj+1−xl)

)
log

( ∑

x′≤xj

P (x′)e−γ(xl−x′)

)
.

(5.89)

For each of the summands in the log(·) in Eq. (5.89) we use et = 1 + t +
1
2 t2 + O(t3) to obtain

e−γ(xl−x′) = 1 + γ(x′ − xl) + 1
2γ2

(
x′2 + x2

l − 2x′xl

)
+ O(γ3). (5.90)
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Let us now define the variables qj , q′j , and q′′j respectively as

qj =
∑

x′≤xj

P (x′), q′j =
∑

x′≤xj

x′P (x′), q′′j =
∑

x′≤xj

x′2P (x′). (5.91)

Rearranging, the sum in the logarithm over x′ such that x′ ≤ xj gives

∑

x′≤xj

eγ(x′−xl)P (x′) = qj

(
1 + γ

q′j
qj
− γxl + 1

2γ2
q′′j
qj
− γ2xl

q′j
qj

+ 1
2γ2x2

l + O(γ3)

)
.

(5.92)

Taking logarithms, and using the expansion log(1 + t) = t − 1
2 t2 + O(t3)

around γ = 0, we obtain

log qj + γ
q′j
qj
− γxl + 1

2γ2
q′′j
qj
− γ2xl

q′j
qj

+ 1
2γ2x2

l − 1
2γ2

(
q′j
qj
− xl

)2

+ O(γ3)

(5.93)

= log qj + γ
q′j
qj
− γxl + 1

2γ2
q′′j
qj
− 1

2γ2

(
q′j
qj

)2

+ O(γ3). (5.94)

We now move on to the summation over j in Eq. (5.89). We use the Taylor
expansion of the exponential function in the summation over j, separating the
last term as special. Starting at it, j = |X |, we note that the sum over x′ ≤ x|X |
includes all symbols, and its contribution to the sum is
(
1− γ(x|X | − xl) + 1

2γ2(x|X | − xl)2
)
×

×
(

log qj + γ
q′j
qj
− γxl + 1

2γ2
q′′j
qj
− 1

2γ2

(
q′j
qj

)2
)

+ O(γ3) (5.95)

=
(
1− γ(x|X | − xl) + 1

2γ2(x|X | − xl)2
)(

γ(µ1 − xl) + 1
2γ2

(
µ2 − µ2

1

))
+ O(γ3),

(5.96)

since
∑

x′ P (x′) = 1. Carrying out the expectation over xl, and discarding
terms of order O(γ3), this term contributes with

∑

l

P (xl)
(
γ(µ1 − xl) + 1

2γ2
(
µ2 − µ2

1

)− γ2(x|X | − xl)(µ1 − xl)
)

= (5.97)

= − 1
2γ2

(
µ2 − µ2

1

)
. (5.98)
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As for the terms j < |X |, the following terms contribute
|X |−1∑

j=l

(
γ(xj+1 − xj) + 1

2γ2(x2
j − x2

j+1 − 2(xj − xj+1)xl)
)(

log qj + γ
q′j
qj
− γxl

)

(5.99)

=
|X |−1∑

j=l

{
γ(xj+1 − xj) log qj + 1

2γ2(x2
j − x2

j+1) log qj − γ2(xj − xj+1)xl log qj

+ γ2(xj+1 − xj)

(
q′j
qj
− xl

)}
. (5.100)

The only remaining step is the averaging over xl, which yields

CX = −
∑

l

P (xl)
|X |−1∑

j=l

{
γ(xj+1 − xj) log qj + 1

2γ2(x2
j − x2

j+1) log qj

− γ2(xj − xj+1)xl log qj + γ2(xj+1 − xj)

(
q′j
qj
− xl

)}

+ 1
2γ2

(
µ2 − µ2

1

)
+ O(γ3). (5.101)

The order of the double summation over l and j can be reversed, with the
summation limits becoming
|X |−1∑

j=1

∑

l≤j

P (xl)

{
γ(xj+1 − xj) log qj + γ2(xj − xj+1)

(
1
2 (xj + xj+1)− xl

)
log qj

+ γ2(xj+1 − xj)

(∑
x′≤xj

x′P (x′)

qj
− xl

)}
(5.102)

=
|X |−1∑

j=1

(
γ(xj+1 − xj)qj log qj + γ2(xj − xj+1)

(
1
2 (xj + xj+1)qj − q′j

)
log qj

)
.

(5.103)

Therefore the desired expression for the CM capacity is

CX = −
|X |−1∑

j=1

(
γ(xj+1 − xj)qj log qj − γ2(xj+1 − xj)

(
1
2 (xj + xj+1)qj − q′j

)
log qj

)

+ 1
2γ2

(
µ2 − µ2

1

)
+ O(γ3). (5.104)
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5.B CM Capacity Expansion at Low εs – DTP

The CM capacity is

CX = −
∑

x

P (x)
∞∑

y=0

Q(y|x) log

( ∑

x′∈X
P (x′)eεs(x−x′)

(
x′

x

)y
)

. (5.105)

For the sake of compactness, we respectively denote the first- and second-order
moments of the constellation by µ1 and µ2.

Using the Taylor expansion of the exponential, et = 1 + t + 1
2 t2 + O(t3), we

notice that, in the low εs region, there are only three possible channel outputs
to order ε3

s, namely

y = 0, Q(y|x) = 1− εsx + 1
2ε2

sx
2 + O(ε3

s) (5.106)

y = 1, Q(y|x) = εsx− ε2
sx

2 + O(ε3
s) (5.107)

y = 2, Q(y|x) = 1
2ε2

sx
2 + O(ε3

s) (5.108)

y ≥ 2, Q(y|x) = O(ε3
s). (5.109)

Since each of these cases behaves differently, we examine them separately.
We rewrite the variable in the log(·) in Eq. (5.105) with the appropriate

approximation. When the output is y = 0, the variable is
∑

x′∈X
P (x′)eεs(x−x′) =

∑

x′∈X
P (x′)

(
1 + εs(x− x′) + 1

2ε2
s(x− x′)2 + O(ε3

s)
)

(5.110)

= 1 + εs(x− µ1) + 1
2ε2

s(x
2 + µ2 − 2xµ1) + O(ε3

s). (5.111)

Taking logarithms, and using the formula log(1+t) = t− 1
2 t2+O(t3), we obtain

εs(x− µ1) + 1
2ε2

s(x
2 + µ2 − 2xµ1)− 1

2ε2
s(x

2 + µ2
1 − 2xµ1) + O(ε3

s) (5.112)

= εs(x− µ1) + 1
2ε2

s

(
µ2 − µ2

1

)
+ O(ε3

s). (5.113)

When the output is y = 1, the variable in the logarithm in Eq. (5.105) is
∑

x′∈X
P (x′)eεs(x−x′) x

′

x
=

1
x

∑

x′∈X
P (x′)x′

(
1 + εs(x− x′) + O(ε2

s)
)

(5.114)

=
1
x

(
µ1 + εs

(
xµ1 − µ2

)
+ O(ε2

s)
)

(5.115)

=
µ1

x

(
1 +

εs

µ1

(
xµ1 − µ2

)
+ O(ε2

s)
)
. (5.116)
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Taking logarithms, and using the Taylor expansion of the logarithm, we get

log
µ1

x
+

εs

µ1

(
xµ1 − µ2

)
+ O(ε2

s). (5.117)

We will later verify that no higher-order terms are required.
At last, for y = 2, the variable in the logarithm in Eq. (5.105) is

∑

x′∈X
P (x′)eεs(x−x′) x

′2

x2
=

1
x2

∑

x′∈X
P (x′)x′2

(
1 + O(εs)

)
(5.118)

=
1
x2

(
µ2 + O(εs)

)
(5.119)

=
µ2

x2

(
1 + O(εs)

)
. (5.120)

Taking logarithms, and using the Taylor expansion of the logarithm, we get

log
µ2

x2
+ O(εs). (5.121)

Later, we will verify that no higher-order terms are required.
After carrying out the averaging over y, we first combine Eqs. (5.113), (5.117)

and (5.121) with the probabilities in Eqs. (5.106)–(5.108) and then group all
terms up to O(ε3

s) to derive
(
1− εsx + 1

2ε2
sx

2
)(

εs(x− µ1) + 1
2ε2

s

(
µ2 − µ2

1

))
+

+
(
εsx− ε2

sx
2
)(

log
µ1

x
+

εs

µ1

(
xµ1 − µ2

))
+ 1

2ε2
sx

2 log
µ2

x2
+ O(ε3

s) (5.122)

= εs(x− µ1) + 1
2ε2

s

(
µ2 − µ2

1

)− ε2
s(x

2 − xµ1) + εsx log
µ1

x

− ε2
sx

2 log
µ1

x
+ ε2

s

1
µ1

(
x2µ1 − xµ2

)
+ 1

2ε2
sx

2 log
µ2

x2
+ O(ε3

s). (5.123)

The expectation over x is straightforward, and gives

CX = εs

∑

x∈X
P (x)x log

x

µ1
+

1
2
ε2

s

(
µ2 − µ2

1 − µ2 log
µ2

µ2
1

)
+ O(ε3

s). (5.124)

5.C Capacity per Unit Energy in the AE-Q Channel

From Theorem 3.9, the capacity per unit energy can computed as

C1 = sup
x

D
(
Q(y|x)||Q(y|x = 0)

)

εsx
. (5.125)
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Using Eq. (5.76) for Q(·|·) and the definition of divergence, we have

D
(
Q(y|x)||Q(y|x = 0)

)
=

∑
y

Q(y|x) log

(
e

εsx
εn

y∑

l=0

e−α αl

l!

)
, (5.126)

where α = εsx
(
1 + 1

εn

)
. Let us define P (l) = e−α αl

l! and the quantity
q(y) =

∑y
l=0 P (l), i. e. the cumulative distribution function of a Poisson ran-

dom variable with mean α.
Moving the exponential out of the logarithm, we obtain

D
(
Q(y|x)||Q(y|x = 0)

)
=

εsx

εn
+

∑
y

Q(y|x) log
(
q(y)

)
. (5.127)

Hence, the capacity per unit energy is given by

C1 =
1
εn

+ sup
x

∑
y Q(y|x) log

(
q(y)

)

εsx
. (5.128)

Since q(y) ≤ 1, its logarithm is always non-positive, and

C1 ≤ 1
εn

. (5.129)

The proof is completed by proving that

lim
x→∞

e
εsx
εn

εsx(1 + εn)

(∑
y

(
εn

1 + εn

)y

q(y) log
(
q(y)

)
)

= 0, (5.130)

where we expressed Q(y|x) as a function of q(y). If this condition holds true,
then Eq. (5.129) becomes an equality.

In Eq. (5.130) we split the summation over y into two parts, from 0 to
y∗ = bαc, and from y∗ + 1 to infinity. In the first part, e−α αy

y! is an increasing
function in y, and therefore

q(y) =
y∑

l=0

P (l) ≥
y∑

l=0

P (0) = (y + 1)P (0) = (y + 1)e−α. (5.131)

Hence, the summation for y ≤ y∗ is bounded as

y∗∑
y=0

(
εn

1 + εn

)y

q(y) log
(
q(y)

) ≥
y∗∑

y=0

(
εn

1 + εn

)y

(y + 1)e−α
(
log(y + 1)− α

)
.

(5.132)

146



Capacity per Unit Energy in the AE-Q Channel

And, multiplying by the exponential factor e
εsx
εn , we have

y∗∑
y=0

e−εsx

(
εn

1 + εn

)y

(y + 1) log(y + 1)−
y∗∑

y=0

e−εsx

(
εn

1 + εn

)y

(y + 1)α.

(5.133)

As y →∞, each of these two summands goes to zero. The second has the form

e−εsx

y∗∑
y=0

(
εn

1 + εn

)y

(y + 1)α, (5.134)

which decays exponentially in x, since the sum satisfies

y∗∑
y=0

(
εn

1 + εn

)y

(y + 1) ≤
∞∑

y=0

(
εn

1 + εn

)y

(y + 1) = (1 + εn)2, (5.135)

and e−εsxα(1 + εn)2 vanishes for large x. Similarly, the summation

y∗∑
y=0

(
εn

1 + εn

)y

(y + 1) log(y + 1) (5.136)

remains bounded, since it is the partial sum of a convergent series, with n-th
coefficient βn(n + 1) log(n + 1) and β = εn/(1 + εn) < 1. This is verified by
the checking the ratio test, as

lim
n→∞

βn(n + 1) log(n + 1)
βn−1n log n

= β < 1. (5.137)

Boundedness of the partial sum implies that, after multiplying times an expo-
nential factor e−εsx, the first summand vanishes as x →∞.

Next, we consider the remainder of the summation in Eq. (5.130),
∞∑

y=y∗+1

(
εn

1 + εn

)y

q(y) log
(
q(y)

)
. (5.138)

Clearly, q(0) = e−α ≤ q(y) ≤ 1 and therefore −α ≤ log q(y) ≤ 0, so each
summand is negative and bounded by

(
εn

1 + εn

)y

q(y) log
(
q(y)

) ≥ −α

(
εn

1 + εn

)y

q(y) ≥ −α

(
εn

1 + εn

)y

. (5.139)
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Summing over y,
∞∑

y=y∗+1

(
εn

1 + εn

)y

q(y) log
(
q(y)

) ≥ −α(1 + εn)
(

εn

1 + εn

)y∗+1

. (5.140)

Using the definition of α = εsx
(
1+ 1

εn

)
and taking into account the denom-

inator εsx(1 + εn) in Eq. (5.130), we must study the behaviour of

−εn + 1
εn

e
εsx
εn

(
εn

1 + εn

)y∗+1

= −εn + 1
εn

e
εsx
εn

−(y∗+1) log
(
1+ 1

εn

)
(5.141)

as x →∞. By construction, y∗ + 1 > α, and therefore

εsx

εn
− (y∗ + 1) log

(
1 +

1
εn

)
<

εsx

εn
− εsx

(
1 +

1
εn

)
log

(
1 +

1
εn

)
(5.142)

= εsx

(
1
εn
−

(
1 +

1
εn

)
log

(
1 +

1
εn

))
. (5.143)

Since t ≤ (1 + t) log(1 + t) for t > 0, a fact which follows from the inequality
log(1 + t) ≤ t, this left-hand side of Eq. (5.142) is strictly upper bounded by a
function ax, where a is negative. Hence, the function in Eq. (5.141) vanishes
exponentially as x →∞, and so does the term

e
εsx
εn

εsx(1 + εn)

∞∑
y=y∗+1

(
εn

1 + εn

)y

q(y) log
(
q(y)

)
. (5.144)

This proves the limit in Eq. (5.130) and shows that Eq. (5.129) holds with
equality.

5.D CM Capacity Expansion at Low εs – AE-Q

The constrained capacity for coded modulation is

CX = −
∑

x

P (x)
∞∑

y=0

Q(y|x) log

(∑
x′∈X P (x′)Q(y|x′)

Q(y|x)

)
, (5.145)

where Q(y|x) is given by Eq. (2.23), namely

Q(y|x) =
1

1 + εn

(
εn

1 + εn

)y
(

y∑

l=0

(
1 + εn

εn

)l

e−εsx (εsx)l

l!

)
. (5.146)
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As it happened in the discrete-time Poisson channel, the Taylor expansion
of the exponential, et = 1 + t + 1

2 t2 + O(t3), implies that there are only three
possible channel outputs s to order ε3

s, that is,

s = 0, P (s|x) = 1− εsx +
1
2
(εsx)2 + O(ε3

s) (5.147)

s = 1, P (s|x) = εsx− (εsx)2 + O(ε3
s) (5.148)

s = 2, P (s|x) =
1
2
(εsx)2 + O(ε3

s) (5.149)

s > 2, P (s|x) = O(ε3
s). (5.150)

Hence the channel output y = s + z only includes these contributions. We
distinguish three cases, viz. y = 0, y = 1, and y ≥ 2.

In the first case, y = s = z = 0, and Q(y|x) becomes

Q(y|x) =
1

1 + εn

(
1− εsx +

1
2
(εsx)2 + O(ε3

s)

)
. (5.151)

For y = 1, we combine the outputs s = 0 and s = 1,

Q(y|x) =
εn

(1 + εn)2

(
1− εsx +

1
2
(εsx)2 +

1 + εn

εn

(
εsx− (εsx)2

)
+ O(ε3

s)

)

(5.152)

=
εn

(1 + εn)2

(
1 +

εs

εn
x− ε2

sx
2

(
1
2

+
1
εn

)
+ O(ε3

s)

)
. (5.153)

For y ≥ 2, we combine the outputs s = 0, s = 1, and s = 2,

Q(y|x) =
εy

n

(1 + εn)y+1

(
1− εsx +

1
2
(εsx)2 +

(
εsx− (εsx)2

)(1 + εn

εn

)

+
1
2
(εsx)2

(
1 + εn

εn

)2

+ O(ε3
s)

)
(5.154)

=
εy

n

(1 + εn)y+1

(
1 +

εs

εn
x +

ε2
s

2ε2
n

x2 + O(ε3
s)

)
, (5.155)

after combining some terms together.
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We next rewrite the numerator and denominator in the log(·) in Eq. (5.145)
with the appropriate approximation. For y = 0, the common term (1 + εn)−1

cancels, and the numerator is

∑

x′∈X
Q(y|x′)P (x′) =

∑

x′∈X

(
1− εsx

′ +
1
2
(εsx

′)2 + O(ε3
s)

)
P (x′) (5.156)

=
(

1− εsµ1 +
1
2
ε2
sµ2

)
+ O(ε3

s). (5.157)

In the denominator, we keep the expansion

1− εsx + 1
2 (εsx)2 O(ε3

s). (5.158)

Taking logarithms of Eqs. (5.157) and (5.158), using the formula log(1 + t) =
t− 1

2 t2 + O(t3), and combining numerator and denominator, we obtain

log
(

1− εsµ1 +
1
2
ε2
sµ2 + O(ε3

s)
)
− log

(
1− εsx +

1
2
(εsx)2 + O(ε3

s)
)

(5.159)

= −εsµ1 +
1
2
ε2
sµ2 − 1

2
ε2

sµ
2
1 + εsx− 1

2
(εsx)2 +

1
2
(εsx)2 + O(ε3

s) (5.160)

= −εs(µ1 − x) +
1
2
ε2

s(µ2 − µ2
1) + O(ε3

s). (5.161)

If the output is y = 1, we use Eq. (5.153). Summing over x′ in the numer-
ator, we get

∑

x′∈X
Q(y|x′)P (x′) =

(
1 +

εs

εn
µ1 −

(
1
2

+
1
εn

)
µ2ε

2
s + O(ε3

s)

)
, (5.162)

with the agreement that a common term εn/(1 + εn)2 has been cancelled.
Combining numerator and denominator, taking logarithms, and using the

Taylor expansion of the logarithm, we obtain

εs

εn
µ1 −

(
1
2

+
1
εn

)
µ2ε

2
s −

ε2
s

2ε2
n

µ2
1 −

εs

εn
x +

(
1
2

+
1
εn

)
x2ε2

s +
ε2
s

2ε2
n

x2 + O(ε3
s)

(5.163)

=
(µ1 − x)εs

εn
−

((
1
2

+
1
εn

)
µ2 +

µ2
1

2ε2
n

− x2(1 + εn)2

2ε2
n

)
ε2

s + O(ε3
s). (5.164)
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If the output is y ≥ 2, in an analogous way we use Eq. (5.155) to rewrite
the logarithm of the ratio of numerator and denominator as

log

(
1 +

εs

εn
µ1 +

ε2
s

2ε2
n

µ2 + O(ε3
s)

)
− log

(
1 +

εs

εn
x +

ε2
s

2ε2
n

x2 + O(ε3
s)

)
.

(5.165)

Using now the Taylor expansion of the logarithm, we obtain

εs

εn
µ1 +

ε2
s

2ε2
n

µ2 − ε2
s

2ε2
n

µ2
1 −

εs

εn
x− ε2

s

2ε2
n

x2 +
ε2

s

2ε2
n

x2 + O(ε3
s) (5.166)

=
εs

εn
(µ1 − x) +

ε2
s

2ε2
n

(µ2 − µ2
1) + O(ε3

s). (5.167)

The remaining steps are the averaging over x and y. We first carry out the
expectation over x. From Eq. (5.161), the averaging over x yields

∑
x

1
1 + εn

(
1− εsx +

1
2
(εsx)2

)(
(x− µ1)εs +

1
2
ε2
s

(
µ2 − µ2

1

))
+ O(ε3

s)

(5.168)

=
1

1 + εn

(
1
2
ε2
s

(
µ2 − µ2

1

)− ε2
s

(
µ2 − µ2

1

))
+ O(ε3

s) (5.169)

=
1

1 + εn

1
2
ε2
s

(
µ2

1 − µ2

)
+ O(ε3

s). (5.170)

Similarly, from Eq. (5.164) we obtain (bar for a constant factor εn

(1+εn)2 )

∑
x

(
1 +

εs

εn
x− ε2

sx
2

(
1
2

+
1
εn

))
×

×
(

(µ1 − x)εs

εn
−

((
1
2

+
1
εn

)
µ2 +

µ2
1

2ε2
n

− x2(1 + εn)2

2ε2
n

)
ε2

s

)
+ O(ε3

s)

(5.171)

=

(
−

(
1
2

+
1
εn

)
µ2 − µ2

1

2ε2
n

+
µ2(1 + εn)2

2ε2
n

+
ε2

s

ε2
n

(µ2
1 − µ2)

)
ε2

s + O(ε3
s)

(5.172)

= (µ2
1 − µ2)

ε2
s

2ε2
n

+ O(ε3
s). (5.173)
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And finally, from Eq. (5.167), for y ≥ 2, we get

∑
x

εy
n

(1 + εn)y+1

(
1 +

εs

εn
x +

ε2
s

2ε2
n

x2

)(
εs

εn
(µ1 − x) +

ε2
s

2ε2
n

(µ2 − µ2
1)

)
+ O(ε3

s)

(5.174)

=
εy

n

(1 + εn)y+1

(
ε2

s

2ε2
n

(µ2 − µ2
1) +

ε2
s

ε2
n

(µ2
1 − µ2)

)
+ O(ε3

s)

(5.175)

=
εy

n

(1 + εn)y+1

ε2
s

2ε2
n

(µ2
1 − µ2) + O(ε3

s). (5.176)

The summation over y ≥ 2 can be carried out and yields

∞∑
y=2

εy
n

(1 + εn)y
=

ε2
n

1 + εn
. (5.177)

Then, combining Eq. (5.177) into Eq. (5.176), and summing with Eqs. (5.170)
and (5.173) (including the factor εn

(1+εn)2 ), we obtain

1
1 + εn

1
2
ε2

s

(
µ2

1 − µ2

)
(

1 +
1

εn(1 + εn)
+

1
ε2
n

ε2
n

1 + εn

)
+ O(ε3

s) (5.178)

=
1
2
ε2

s

(
µ2

1 − µ2

) 1
εn

+ O(ε3
s). (5.179)

And, finally, the expansion for CX follows,

CX =
1
2
(µ2 − µ2

1)
ε2

s

εn
+ O(ε3

s). (5.180)
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6

Pairwise Error Probability for Coded Transmission

6.1 Introduction

As we saw in Chapter 3, the channel capacity gives the largest rate at which
information can be sent reliably, i. e. at low error rates, over a communication
channel. Reliability is obtained by the operation of a channel code, or more
practically of an encoder and a decoder, respectively located at the transmitting
and receiving ends of the channel. We discussed in Chapters 4 and 5 some
aspects of the operation of the channel code, related to the use of various
modulation formats and to the use of bit-interleaved coded modulation (BICM)
as a method to combine good binary codes with these modulations.

A possible continuation of our study would be the design of such binary
codes. Instead, we have opted for a simpler alternative, in which we estimate
the so-called pairwise error probability, rather than the performance of specific
channel codes. Since the pairwise error probability is a key element in the
analysis of the code performance, the tools developed here may prove to be
useful in future code design for the additive energy channels.

In this chapter we follow a common practice in the optical communications
literature, as represented by Helstrom [63] and Einarsson [64], and provide ap-
proximations to the error probability, rather than true upper and lower bounds,
the usual approach in an information-theoretic analysis. As we shall see, the
saddlepoint approximation yields an accurate estimate of the pairwise error
probability. The methodology is presented in Sections 6.2 and 6.3.

In Sections 6.4 and 6.5, we analyze binary transmission and BICM in Gaus-
sian fading channels and derive accurate and easy to compute approximations
to the pairwise error probability. We next consider the two limiting cases of
the additive energy channel, namely the additive exponential noise channel, in
Section 6.6, and the discrete-time Poisson channel, in Section 6.7. The results
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presented in these sections seem to be new, except for some special cases of
the binary DTP channel. One of the most intriguing results, to be presented
in Section 6.6, is the closeness of the error rates for binary transmission in the
AWGN channel and its AEN equivalent.

6.2 Error Probability and the Union Bound

Two fundamental figures of merit measure the probability of error: the word
error rate and the bit error rate. We start our exposition with their definition.

Let a specific message, say message w, be selected at the transmitter; all
messages have the same probability. We assume that the message is represented
by a sequence of l0 input (information) bits. Then, we encode the message with
a binary code and identify it with a binary codeword b, an array of l coded
bits. The codeword is mapped onto an array of modulation symbols of length
n by using a mapping rule µ : {0, 1}m → X , which groups m consecutive bits
and outputs a corresponding modulation symbol xk,

xk = µ(bm(k−1)+1, bm(k−1)+2, . . . , bm(k−1)+m), for k = 1, . . . , n. (6.1)

Since a modulation symbol x is uniquely selected by m bits, we denote the
sequence of bits corresponding to the symbol x by

(
b1(x), . . . , bm(x)

)
.

The corresponding k-th channel output is denoted by yk. At the receiver,
the decoder uses a metric function q : X × Y → R to make a decision on
which codeword was sent; here Y denotes the output alphabet. For a received
sequence y = (y1, . . . , yn), the codeword with largest metric

n∏

k=1

q
(
µ(bm(k−1)+1, . . . , bm(k−1)+m), yk

)
(6.2)

is selected as estimate of the transmitted codeword. In case of ties one of the
candidate codewords is randomly chosen.

The word error rate, which we denote by Pw, is the probability of selecting
a codeword different from the one transmitted. Similarly, we define the bit
error rate, denoted by Pb, as the average number of input bits in error.

Exact expressions for the error probabilities Pw or Pb are difficult to obtain,
and one often resorts to some form of bounding, the simplest of which is proba-
bly the union bound. The union bound is built on the realization that an error
event is the union of many pairwise error events. Even though these pairwise
error events are in general not statistically independent, an accurate estimate
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of the error probability in a region above the cut-off rate [65] is obtained by
summing their probabilities. Since many existing channel codes operate in this
region, viz. convolutional codes or turbo-like codes in the floor region, the union
bound has wide applicability.

The word error rate Pw is upper bounded by

Pw ≤
∑

d

Ad pep(d), (6.3)

where d is the Hamming distance between two codewords, namely the number
of bits in which they differ, and Ad denotes the number of codewords at Ham-
ming distance d. As for the bit error rate, Pb is given by the right-hand side
of Eq. (6.3) with Ad replaced by A′d =

∑
j′

j′

l0
Aj′,d, Aj′,d being the number of

codewords at output Hamming distance d and input Hamming distance j′. In
either case, the pairwise error probability pep(d) is of fundamental importance,
and we devote the remainder of this chapter to its study.

6.3 Approximations to the Pairwise Error Probability

In this section, we discuss the estimation of the pairwise error probability by
using a method similar to the analysis in Sections 5.3 and 5.4 of Gallager’s
book [31], or to the presentation of Chapters 2 and 3 of Viterbi’s book [65].

We assume that the decoding metric function is of the form

q
(
µ(b1, . . . , bm), y

)
=

m∏

i=1

qi(bi, y), (6.4)

namely the product of per-bit metric functions qi : {0, 1} × Y → R. Inspired
by the analysis of BICM in Section 4.3, we let the function qi be given by

qi(b, y) =
∑

x′∈X b
i

Q(y|x′), (6.5)

where X b
i is the set of symbols with bit b at label index i. One simple example

of a different metric is qi(b, y) = maxx′∈X b
i

Q(y|x′). Since our analysis can be
easily extended to general metrics, we concentrate on the metric in Eq. (6.5).

Later, we will make use of the fact that the metric qi in Eq. (6.5) is propor-
tional to the transition probability Qi(y|b) of the i-th BICM parallel channel,

Qi(y|b) =
1
|X b

i |
∑

x′∈X b
i

Q(y|x′). (6.6)
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Let us denote by bj and b′j the j-th bits of the transmitted and alternative
codewords respectively. Taking logarithms in Eq. (6.2), the decoder makes a
pairwise error if the pairwise score Ξpw, or score for short, given by

Ξpw =
n∑

k=1

m∑

i=1

log
qi(b′m(k−1)+i, yk)

qi(bm(k−1)+i, yk)
, (6.7)

is positive, i. e. if Ξpw > 0. When Ξpw = 0 an error is made with probability
1
2 . The pairwise score is the sum of n symbol scores Ξs, in turn given by the
sum of m bit scores1 Ξb, with their obvious definitions.

It proves fruitful to view the bit score Ξb as a random variable, whose
distribution depends on all the random elements in the channel, including the
transmitted bit b and the index i. For each value of k, a choice is made at the
transmitter between the mapping rule µ in Eq. (6.1) and its binary complement.
This choice is known at the receiver. Denoting the cumulant transform [67] of
the bit score by κ1(r) = log E[erΞb ], we have

Definition 6.1. The cumulant transform of the bit score Ξb is given by

κ1(r) = log E[erΞb ] = log

(
1
m

m∑

i=1

1
2

∑

b∈{0,1}
EY

[
qi(b̄, Y )r

qi(b, Y )r

])
, (6.8)

where the bit b̄ is the binary complement of b and Y is the set of possible
channel outputs with bit b is transmitted at position i; the expectation over Y
is done according to the transition probability Qi(y|b), in Eq. (6.6).

Clearly, only the bit indices for which bj 6= b′j have a (possibly) non-zero
bit score; the number of such positions is the Hamming distance d. Since bits
in the same symbol are affected by the same noise, the bit scores are generally
statistically dependent. This dependence can be analyzed in a number of ways:

1. Assume the codeword length is infinite, so that the bits bj belong to
different symbols with probability 1.

2. Carry out an averaging over all possible interleavers of a given size n, and
compute the average pairwise error probability, in a situation reminiscent
of the uniform interleaving appearing in the analysis of turbo-like codes.

1In [66] we gave the somewhat clumsy name “a posteriori log-likelihood ratio” to the bit
score. We use here the shorter name bit score, which has the additional advantage of being
well-defined for metrics other than the one in Eq. (6.5).

156



Approximations to the Pairwise Error Probability

3. Include in the analysis information of the position where bits are mapped
into. Here, the Hamming distance is not the only relevant variable, as
the position of the bits at which the codewords differ is also important.

For the binary-input Gaussian channel, all three alternatives coincide. For
BICM, we choose the first option, as in [26]. We further discuss the validity of
this choice in Section 6.5.3, where the analysis of Yeh et al. [68] for the second
alternative is exploited to study QPSK modulation over fading channels.

We can compute the pairwise error probability as the tail probability of a
random variable, the pairwise score, in a form that we shall use in our analysis,

Proposition 6.2. The pairwise error probability pep(d) is given by

pep(d) = Pr

(
d∑

j=1

Ξb,j > 0

)
+

1
2

Pr

(
d∑

j=1

Ξb,j = 0

)
, (6.9)

where the variables Ξb,j are bit scores.

In estimates of tail probabilities, such as in Proposition 6.2, use of the cu-
mulant transform proves convenient [67]. Let us denote the cumulant transform
of the pairwise score by κpw(r). For independent, identically distributed bit
scores, we have κpw(r) = dκ1(r) [67]. The main advantage brought about by
using the cumulant transform is that the behaviour of the random variable is
to great extent determined by its behaviour around the saddlepoint r̂, defined
as the value r for which κ′pw(r̂) = 0 and therefore κ′1(r̂) = 0.

Proposition 6.3. The saddlepoint is located at r̂ = 1
2 , that is κ′1

(
1
2

)
= 0. In

addition, the next derivatives of the cumulant transform verify

κ′′1(r̂) =
E

[
Ξ2

be
r̂Ξb

]

E
[
er̂Ξb

] ≥ 0, κ′′′1 (r̂) =
E

[
Ξ3

be
r̂Ξb

]

E
[
er̂Ξb

] = 0. (6.10)

Remark that we are explicitly using the metric in Eq. (6.5).

Proof. The computation is included in Appendix 6.A.

The cumulant transform, evaluated at the saddlepoint, appears in the Cher-
noff (or Bhatthacharyya) bound to the pairwise error probability,

Proposition 6.4 (Chernoff Bound). The Chernoff bound to the pairwise error
probability is

pep(d) ≤ edκ1(r̂). (6.11)
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This result gives a true bound and very easy to compute. It is further known
to correctly give the asymptotic exponential decay [39] of the error probability
for large d. However, it is not exact and in some cases, such as Gaussian
fading channels, is not tight. As we next see, the saddlepoint approximation
complements the Chernoff bound by including a multiplicative coefficient to
obtain an expression of the form α · edκ1(r̂).

In Appendix 6.B we derive the saddlepoint approximation to the tail prob-
ability of a continuous random variable, including an estimate of the approxi-
mation error. The derivation was published in [66]. Even though the derivation
is valid for small values of the saddlepoint r̂, we do not exploit this property
as r̂ = 1

2 . Unlike other presentations, such as Gallager’s [31], we are mainly
interested in finite values of d. Using that κ′′′1 (r̂) = 0 and denoting the fourth
derivative of κ1(r) by κIV

1 (r̂), we have

Theorem 6.5. In channels with continuous bit score Ξb, the pairwise error
probability can be approximated to first-order by

pep(d) ' 1√
2πdκ′′1(r̂)r̂

edκ1(r̂), (6.12)

where r̂ = 1
2 . The second-order approximation is

pep(d) '
(

1 +
1

dκ′′1(r̂)

(
− 1

r̂2
+

κIV
1 (r̂)

8κ′′1(r̂)

))
1√

2πdκ′′1(r̂)r̂
edκ1(r̂). (6.13)

Higher-order expansions are characterized by having a correction factor α

polynomial in inverse powers of
(
dκ′′1(r̂)

)−1. In the next section we compute
the pairwise error probability in the binary-input AWGN channel by explicitly
using the bit score. The effect of the correction α is found to be negligible.

The approximation is different when the bit score takes values on the points
of a lattice, i. e. it has the form α + iβ, where β is the span of the lattice, α
an offset, and i indexes the random variable. In that case, the probability
distribution is well approximated (see section 5.4 of [31]) by

Theorem 6.6. For a discrete random variable Z inscribed in a lattice of span
β, with cumulant transform κ(r), let r̂ be the root of κ′(r̂) = 0. Then, the
saddlepoint approximation to the probability mass function is given by

PZ(z) ' βeκ(r̂)−r̂z

√
2πκ′′(r̂)

. (6.14)
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6.3.1 Error Rates in the Z-Channel

In this section we apply the tools presented previously to analyze the error rates
in the Z-channel, one of the simplest channel models in information theory. In
addition to its intrinsic interest, the Z-channel will prove of importance in the
analysis of the additive energy channels.

A Z-channel has two possible inputs, say 0 and 1, two possible outputs, say
α and β, and the following transition matrix

Q(α|0) = 1, Q(α|1) = ε (6.15)
Q(β|0) = 0, Q(β|1) = 1− ε, (6.16)

where 0 ≤ ε ≤ 1. A diagram is depicted in Fig. 6.1. The name of the channel
becomes apparent from inspecting the diagram.

0

1

α

β

1 − ε

ε

Figure 6.1: Transitions in the Z-channel.

We estimate the error rates of the Z-channel with randomized inputs: the
input is mapped with probability 1/2 to either 0 or 1; this choice is known
by the receiver. In general, this randomization may sacrifice performance with
respect to an optimum code design. If the input is 0, the output is α, and the
bit score is log Q(α|1)

Q(α|0) = log ε. When the input is 1, the output is either α, in

which case Ξb is log Q(α|0)
Q(α|1) = − log ε, an event with probability ε, or the output

is β, and the bit score is log Q(β|0)
Q(β|1) = −∞. Hence, the bit score takes the values

ξ =





−∞, with probability 1
2 (1− ε),

log ε, with probability 1
2 ,

− log ε, with probability 1
2ε.

(6.17)

The cumulant transform of Ξb is κ1(r) = log E[erΞ] = log
(

1
2εr + 1

2ε1−r
)
. Note

that κ1(0) = log
(

1
2 (1 + ε)

)
< 1, since the random variable Ξb is defective, in

the sense that a possible value it may take (−∞) is not a real number.
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Using Proposition 6.3, the saddlepoint is located at r̂ = 1/2, which also can
be verified by direct computation. The second derivative at the saddlepoint is
readily found to be κ′′1(r̂) = log2 ε. We have the following

Theorem 6.7. In the Z-channel, the bit score takes only two real values,
namely ± log ε. Its cumulant transform is

κ1(r) = log
(

1
2
εr +

1
2
ε1−r

)
. (6.18)

At the saddlepoint, located at r̂ = 1/2, κ1(r̂) = 1
2 log ε and κ′′1(r̂) = log2 ε. For

two codewords at Hamming distance d, κpw(r) = dκ1(r).
The pairwise error probability in the Z-channel is given by

pep(d) =





2√
2πd

(∑ d−1
2

j=0 εj

)
ε(d+1)/2, d odd,

2√
2πd

(
1
2 +

∑ d
2
j=1 εj

)
εd/2, d even.

(6.19)

Proof. The first part of the theorem, on the cumulant transform, is a restate-
ment of the previous analysis. The approximation to the pairwise error prob-
ability is derived in Appendix 6.C.

6.4 Error Probability in Binary-Input Gaussian Channels

6.4.1 Channel Model

We now consider BPSK modulation over the Gaussian channel. The set-up
is as follows. A codeword b, with n bits, b = (b1, . . . , bn), is mapped onto a
sequence of binary symbols xk, with xk = {−1, +1}; the mapping rule is

xk = −1, if bk = 0; xk = +1, if bk = 1. (6.20)

At the channel output, a complex-valued vector y = (y1, . . . , yn) is detected.
For each index k, k = 1, . . . , n, the output yk is given by the sum

yk =
√

SNRhk xk + zk, (6.21)

where zk is Gaussian noise, Zk ∼ NC(0, 1), SNR is the average signal-to-noise
ratio at the receiver, and hk is a fading coefficient. We assume the fully-
interleaved fading model of Section 4.2.5 on page 83. The squared fading
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coefficient χk = |hk|2 follows a gamma distribution

pχk
(χ) =

m
mf

f χmf−1

Γ(mf )
e−mf χ, (6.22)

where mf is a real non-negative number. The phase of hk is assumed known
at the receiver. Recall that unfaded AWGN is recovered by letting mf → +∞
and Rayleigh fading by setting mf = 1.

This is the standard model for BPSK modulation. In the absence of fading,
it also models the transmission of QPSK signals; whenever there is fading and
QPSK is used there is some residual correlation among the channel outputs
through the fading coefficient hk. This effect will be studied in Section 6.5.3.

6.4.2 Exact Pairwise Error Probability in the absence of Fading

In this section, we present some standard results for BPSK modulation. The
material is presented in terms of the bit score in order to ease the generalization
to other channels. With no fading, hk = 1, and we have

Theorem 6.8. In the binary-input AWGN channel the bit score has a normal
distribution, Ξb ∼ N (−4 SNR, 8 SNR), independent of the value of the trans-
mitted bit. The bit score is drawn randomly and independently at each channel
realization and the pairwise score for two codewords at Hamming distance d
also has a normal distribution, Ξpw ∼ N (−4dSNR, 8d SNR).

The pairwise error probability is given by

pep(d) = Pr(Ξpw > 0) = Q(
√

2dSNR), (6.23)

where Q(x) is the Gaussian tail function Q(x) = (2π)−1/2
∫ +∞

x
e−t2/2 dt.

This formula is the well-known formula for the pairwise error probability
for BPSK [32, 69]. It is exact, a trait not shared by the equivalent results we
shall derive for more general channels. We derive it by using the bit score.

Proof. Assume symbol x is sent. The value of Ξb depends on the noise z as

ξb = log
exp

(−|√SNR(x− x′) + z|2)

exp(−|z|2) = −4 SNR−4Re
(√

SNRxz∗
)
, (6.24)

where we used the mapping rule in Eq. (6.20). Since the noise z is distributed as
NC(0, 1), the bit score has a normal distribution N (−4 SNR, 8 SNR). Further,
the bit score does not depend on the value of b.
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6. Pairwise Error Probability for Coded Transmission

For the d values where b and b′ differ the bit scores Ξb are drawn randomly
and independently. Since the sum of d Gaussian variables is a Gaussian with
mean and variance the sum of means and variances, so does the distribution
of the pairwise score. Using Proposition 6.2, we have that

pep(d) = Pr

(
d∑

j=1

Ξj > 0

)
=

1√
16πd SNR

∫ +∞

0

e−
(t+4d SNR)2

16d SNR dt. (6.25)

and Eq. (6.23) follows from the definition Q(x) = (2π)−1/2
∫ +∞

x
e−t2/2 dt.

A well-known approximation to the Q(·) function [32,70] is

Q(
√

2d SNR) =
e−d SNR

2
√

πd SNR

(
1− 1

2d SNR
+

1 · 3
(2dSNR)2

+ . . .

)
, (6.26)

an equation used sometimes to extract information on the asymptotic be-
haviour of the error probability with increasing d or SNR. In the following
section, we show that such an expression naturally appears when the exact
error probability is computed by means of the saddlepoint approximation.

6.4.3 Pairwise Error Probability in Nakagami Fading

In general, the bit score Ξb depends on all the random elements in the channel.
For fading channels we use that the random elements in the channel output y
are the noise and the fading realizations, respectively z and h.

Theorem 6.9. In the binary Nakagami-mf fading channel, κ1(r) is given by

κ1(r) = −mf log
(

1 +
4r SNR

mf
− 4r2 SNR

mf

)
. (6.27)

In first-order approximation, the pairwise error probability is

pep(d, SNR) ' 1
2
√

πd SNR

(
1 +

SNR
mf

)−mf d+
1
2
. (6.28)

The second-order approximation is

pep(d, SNR) ' 1
2
√

πd SNR

(
1 +

SNR
mf

)−mf d+
1
2
(

1− 1
2dSNR

− 1
8dmf

)
.

(6.29)
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The pairwise error probability is upper bounded by

pep(d) ≤
(

1 +
SNR
mf

)−mf d

. (6.30)

In particular, for AWGN, when mf →∞,

pep(d) ≤ e−d SNR. (6.31)

Even though an exact form of the density of Ξb may be relatively difficult
to obtain, the cumulant transform admits a rather simple derivation. As a
complement, in Appendix 6.D we determine the exact bit error probability for
uncoded transmission in Rayleigh channels by using the bit score.

Remark 6.10. For non-stationary channels, e. g. in the presence of memory
across the fading coefficients h, the bit scores Ξb,j are not independent and
the appropriate joint density should be used to compute the total cumulant
transform κpw(r), which is no longer dκ1(r). Furthermore, the code spectrum
Ad in the union bound, Eq. (6.3), should be expanded to properly take into
account the distribution of the Hamming weight d within the codeword.

Proof. Using the definition of the bit score, we write κ1(r) as

κ1(r) = log EE
[
erΞb |H = h

]
, (6.32)

where the inner expectation is for a fixed fading realization. Conditioned on a
realization of the fading h, Eq. (6.24) shows that Ξb is normally distributed,
Ξb ∼ N (−4χSNR, 8χSNR), where χ = |h|2. As for the unfaded case, Ξb does
not depend on the transmitted bit b. The cumulant transform of a Gaussian
random variable of mean µ and variance σ2 is µr + 1

2σ2r2 [32], which gives

E
[
erΞb |H = h

]
= E

[
erΞb |χ]

= e−4rχ SNR +4r2χ SNR, (6.33)

from which we deduce in turn that

κ1(r) = log
∫ +∞

0

m
mf

f χmf−1

Γ(mf )
e−mf χ e−4rχ SNR +4r2χ SNR dχ (6.34)

= −mf log
(

1 +
4r SNR

mf
− 4r2 SNR

mf

)
. (6.35)
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The first derivatives at the saddlepoint, located at r̂ = 1/2, are given by

κ′′1(r̂) =
8 SNR

1 + SNR
mf

, κIV
1 (r̂) =

192 SNR2

mf

(
1 + SNR

mf

)2 . (6.36)

Theorem 6.5 gives the error probability estimates. For the second-order
approximation, some straightforward computations give

α = 1− 1
2dSNR

− 1
8dmf

. (6.37)

The Chernoff bound is a restatement of Proposition 6.4.

For Rayleigh fading (mf = 1), Eqs. (6.28) and (6.29) constitute a general-
ization of the well-known Chernoff bound in Eq. (6.30), namely

pep(d) ≤ (1 + SNR)−d. (6.38)

Further, for mf → ∞, i. e. for the AWGN channel, the approximation
gives the first two terms in the classical expansion of the Q(·) function, see
Eq. (6.26). This suggests that the saddlepoint approximation generalizes the
classical expansion of the Q(·) function from AWGN to fading channels.

We next show some numerical results that illustrate the accuracy of the
proposed method as well as its asymptotic behavior. Figure 6.2 compares the
error probability simulation with the saddlepoint approximations for BPSK in
Nakagami fading with parameter mf = 0.3, 0.5, 1 and 4. In particular, we show
the following: the Chernoff bound Eq. (6.30), the saddlepoint approximation,
both in first-order Eq. (6.28) and second-order, Eq. (6.29), and the simulation
of the bit-error rate. The curves for simulation and saddlepoint approximation
are very close, especially when the second order term is included. The second-
order effect is noticeable only for low values of mf . Figure 6.2a shows the
results of uncoded transmission and Fig. 6.2b the word error rate for Hamming
distance d = 5. Results for convolutional and turbo-like codes may be found
in [71].

The saddlepoint approximation gives an accurate result at a fraction of
the complexity required by alternative computation methods [72], such as the
(exact) formula for the uncoded case (a Gauss hypergeometric function), or
numerical integration of Craig’s form of the Q(·) function. Furthermore, as
opposed to the numerical integration, the saddlepoint approximation is useful
in an engineering sense, as it highlights the individual role of all the relevant
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Figure 6.2: Comparison of simulation, Chernoff bound, and saddlepoint ap-
proximation to pep(d) for BPSK in Nakagami fading of parameter mf =

0.3, 0.5, 1, 4,∞.

variables (SNR, mf , d) in the error probability. Finally, we note that the
saddlepoint method is an approximation to direct integration in the complex
plane, used in [73] to exactly compute the error probability.

6.5 Pairwise Error Probability for Bit-Interleaved Coded Modulation
in Gaussian Noise

6.5.1 Channel Model

The concept of bit-interleaved coded modulation (BICM), a pragmatic coding
scheme for non-binary modulations, was discussed in Section 4.3 in the con-
text of Gaussian channels. Very briefly, binary codewords b = (b1, . . . , bl) are
mapped onto an array of channel symbols x = (x1, . . . , xn) by bit-interleaving
the binary codeword and mapping it on the signal constellation X with a binary
labelling rule µ, as in Eq. (6.1). With no loss of generality, the constellation
set is assumed to have 2m elements, so that m bits are necessary to index one
symbol. The binary decoder uses the metric function in Eqs. (6.4) and (6.5).
We assume that interleaving is infinite except in Section 6.5.3, where we exploit
the results in [68] to analyze QPSK modulation in fading channels.

The error probabilities of BICM in Gaussian channels were analyzed in [26].
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6. Pairwise Error Probability for Coded Transmission

However, the results reported there were either not tight or exceedingly complex
to compute. In this section, we provide a simple, yet accurate, estimate of the
pairwise error probability by making use of a saddlepoint approximation to the
tail probability of the pairwise score. This work was partly published in [66].

6.5.2 An Estimate of the Error Probability

As in the binary case, the received signal yk at time instant k, for k = 1, . . . , n,
is expressed as yk =

√
SNR hk xk + zk, where hk is a fading attenuation, zk

a sample of circularly-symmetric Gaussian noise of unit variance, and xk the
transmitted signal, chosen from a set with unit energy; the average received
signal-to-noise ratio is SNR. All the variables are complex-valued. We consider
Nakagami-mf fading channels, as described in Section 6.4.1.

Each input bit bj is matched with a bit score ξb,j , whose sample value
depends on all the random elements in the channel: 1) the bit value bj ; 2)
the bit position j, randomly mapped to any set of the possible label indices
i, i = 1, . . . , m; 3) the transmitted symbol xk, drawn from the set X b

i , which
contains all symbols with bit b at position i; and 4) the noise and fading
realizations zk and hk. For convenience, we group all these random elements
in a 5-tuple (B, I,X, H,Z). Using Definition 6.1 and Theorem 6.5 we have

Theorem 6.11. For BICM with infinite interleaving in the AWGN fading
channel, the pairwise error probability pep(d) admits the approximation

pep(d) ' 2√
2πd E

1
2 [
√

γ log2 γ]
Ed+ 1

2 [
√

γ], (6.39)

where γ is the following function of the 5-tuple (B, I,X, H,Z),

γ(b, i, x, h, z) =
qi(b̄, hx + z)
qi(b, hx + z)

=

∑
x′∈X b̄

i
e−|h(x−x′)

√
SNR+z|2

∑
x′∈X b

i
e−|h(x−x′)

√
SNR+z|2 . (6.40)

The expectation is carried out over all possible values of (B, I, X,H, Z).

The explicit form of the expectations is

E[γr] =
1

m2m

∑

b∈{0,1}

m∑

i=1

∑

x∈X b
i

∫∫
pH(h)pZ(z) γr dz dh. (6.41)
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This expectation can be easily evaluated by numerical integration using the
appropriate quadrature rules. Unfortunately, there seems to be no tractable,
simple expression for the final result.

Proof. From Definition 6.1 we extract the function γ in Eq. (6.40). Proposi-
tion 6.3 shows that the saddlepoint is located at r̂ = 1/2. As computed in
Proposition 6.3, κ′′1(r̂) is given by

κ′′1(r̂) =
E[Ξ2

be
r̂Ξb ]

E[er̂Ξb ]
=

E[
√

γ log2 γ]
E

[√
γ
] . (6.42)

We next compare the saddlepoint approximation with the alternative meth-
ods given in [26] to compute the pairwise error probability pep(d) for BICM: the
Bhattacharyya union bound and the expurgated BICM union bound. Clearly,
the Bhattacharyya union bound is simply the Chernoff bound in Proposition 6.4
using the definitions in Theorem 6.11, namely pep(d) ≤ edκ1(r̂) = Ed[

√
γ].

Let pepex(d) denote the pairwise error probability in the expurgated bound.
We start the analysis with Eqs. (48-49) in [26] – p. 938 –, which read

pepex(d) =
1

2πj

∫ r̂+j∞

r̂−j∞
ψex(r)d dr

r
, (6.43)

where

ψex(r) =
1

m2m

m∑

i=1

1∑

b=0

∑

x∈X b
i

E
[
er∆(x,x̂)

]
, (6.44)

and the function ∆(x, x′) had been defined in (their) Eq. (33) – p. 936 – as

∆(x, x̂) = log
Q(y|x̂)
Q(y|x)

. (6.45)

Here x is the transmitted symbol, and x̂ its nearest neighbour in X b̄
i , i. e., with

complementary bit b̄ in label index i, and Q(y|x) the channel transition matrix.
These equations are very close to our analysis. First, the saddlepoint ap-

proximation is an efficient method to carry out the integration in the complex
plane in Eq. (6.43), by choosing r̂ to be the saddlepoint. Then, the expecta-
tion in Eq. (6.44) coincides with the expectation used in Theorem 6.11 and the
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cumulant transform of the bit score is (almost) κ1(r) = log ψex(r). It is not
completely so because the role of ∆(x, x̂) is played in our analysis by

log

∑
x′∈X b̄

i
Q(y|x′)

∑
x′∈X b

i
Q(y|x′) . (6.46)

Caire’s equation (6.45) can be obtained by taking only one term in each summa-
tion, respectively x and x̂. From Definition 6.1 we see that this is equivalent to
changing the decoder metric qi(b, y). Depending the specific metric and map-
ping rule Caire’s approximation may be accurate or not. For example, in the
simulation results for the set-partitioning mapping reported in [26], the union
bound was not close to the simulation. This inaccuracy was solved in the sim-
ulations in [66] by using Eq. (6.46). To any extent, the added complexity from
taking all terms in Eq. (6.46) is negligible.

Figure 6.3 depicts the pairwise error probability between two codewords at
Hamming distance d = 5 for several modulations and channel models. The
modulations are 8-PSK, 16-QAM and 64-QAM, all with Gray mapping, and
the channel models AWGN and Rayleigh fading. In all cases the saddlepoint
approximation shows an excellent match with the simulation results. Results
for convolutional and turbo-like code ensembles may be found in [66].
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Figure 6.3: Comparison of simulation, Chernoff bound, and saddlepoint ap-
proximation to pep(d) for d = 5 over 8-PSK, 16-QAM, and 64-QAM.
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6.5.3 On the Memory among the Channel Outputs

We have assumed in our analysis, as it was done in [26], that bit interleaving is
infinite and that the l BICM sub-channels from bit bj to log-likelihood ratio λj

are independent, and so are the corresponding bit scores. For finite interleaving,
some of the d bits in which the two codewords differ may belong to the same
symbol and therefore suffer from the same noise, and some residual statistical
dependence among the bit scores Ξb,j appears, as we mentioned in Section 6.3.
In this section we study what arguably constitutes the simplest case, namely
QPSK with Gray mapping under Nakagami fading.

In general, the d bits fall into a number of symbols, each of them having
between 1 and m bits. Since it appears almost impossible to know how these
bits are distributed onto the n symbols, it seems more appropriate to compute
an average pairwise error probability, by averaging over all possible distribu-
tions of d bits onto n symbols. Following [68], let us define w = min(m, d)
and denote a possible pattern by π` = (`0, . . . , `w), where `v is the number of
symbols with v bits. Clearly, d =

∑w
v=1 v`v and `0 = n−∑w

v=1 `v. A counting
argument gives the probability of the pattern π` as

P
(
π` = (`0, . . . , `w)

)
=

(
m
1

)`1(m
2

)`2 · · · (m
w

)`w

(
mn
d

) n!
`0!`1!`2!· · · `w!

(6.47)

At this point, it would convenient to define the cumulant transforms of
generic symbol scores Ξs for a given Hamming weight in the symbol. Then,
κv(r) is such cumulant transform for a Hamming weight v. Definition 6.1
corresponds to v = 1 and is thus consistent with this idea. Since we limit
ourselves to QPSK, we postpone the definition of κ2(r). In Theorem 6.5 we
assumed that the cumulant transform of the pairwise score is κpw(r) is given
by dκ1(r). In general, and for a given pattern, one would have that

κpw(r, π`) =
w∑

v=1

`vκv(r), (6.48)

since the symbol scores are assumed to be independent. A theorem analogous
to Theorem 6.5 can then be formulated. Moreover, the average over all possi-
ble patterns π` of the conditional pairwise error probability gives the average
pairwise error probability.

When l →∞ and m > 1 the probability that the bit scores are dependent
tends to zero, but does so relatively slowly, as proved in the following
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Proposition 6.12. The probability that all d bits are independent is Prind

Prind =
md

(
l/m

d

)
(

l
d

) . (6.49)

For large l, the probability of πall one = (1, . . . , 1) is

Prind ' e−
d(d−1)(m−1)

2l ' 1− d(d−1)(m−1)
2l . (6.50)

Proof. We use that `1 = d, `v = 0 for v > 1, and `0 = n− d. The derivation of
the approximation can be found in Appendix 6.E.

For BPSK, or m = 1, there is no dependence, as it should. We next have

Proposition 6.13. In the Nakagami fading channel with QPSK modulation
and Gray mapping, the cumulant transform of the symbol score when two bits
belong to the same symbol, denoted by κ2(r), is given by

κ2(r) = −mf log
(

1 +
4r SNR

mf
− 4r2 SNR

mf

)
. (6.51)

Proof. Separating the real and imaginary parts, and respectively denoting them
by 1 and 2, the channel has an equivalent output

y1 =
√

SNRRe(x)h + Re(z), y2 =
√

SNR Im(x)h + Im(z). (6.52)

Conditioned on h, Eq. (6.24) shows that, say, Ξb,1 takes the value

ξb,1 = − SNRχ
(
Re(x)− Re(x′)

)2 − 2
√

SNR
√

χ Re(x− x′)Re(z), (6.53)

that is Ξb,1 ∼ N (−2χSNR, 4χSNR). The same analysis gives identical distri-
bution for Ξb,2. Eq. (6.55) then follows from the binary case in Theorem 6.9.
When χ = |h|2 is the same value for both 1,2, then

κ2(r) = log EE
[
erΞb,1+rΞb,2 |χ]

= log E[e−2(2rχ SNR +2r2χ SNR)], (6.54)

from which we proceed as in the binary case, in Theorem 6.9.

When the bits belong to different symbols, the same proof shows that an
individual bit behaves as BPSK with signal-to-noise ratio 1

2 SNR. Therefore,
the cumulant transform of one such bit score is given by

κ1(r) = −mf log
(

1 +
2r SNR

mf
− 2r2 SNR

mf

)
. (6.55)
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For this case, we can index all possible partitions by considering `2, the
number of symbols with 2 bits. Clearly, this number can take the values `2 =
max(0, d− dl/2e), . . . , bd/2c. Applying Eq. (6.47), we obtain

P (`2) =
2`1

(
l
d

) n!
(n− `1 − `2)!`1!`2!

. (6.56)

Finally, combining this formula with Proposition 6.13, we average over all
possible mappings of the d bits onto the l/2 QPSK symbols and derive

Theorem 6.14. The average pairwise error probability pep(d) of QPSK with
codeword length l in Nakagami fading is

pep(d) '
∑

`2

2`1

(
l
d

) n!
(n− `1 − `2)!`1!`2!

(
1 + SNR

2mf

)−mf `1(
1 + SNR

mf

)−mf `2

√
2π

(
`1

SNR
1+ SNR

2mf

+ `2
2 SNR
1+ SNR

mf

) ,

(6.57)

where `2 is limited to max(0, d− dl/2e) ≤ `2 ≤ bd/2c, `1 + 2`2 = d.
The (averaged) Chernoff bound is

pep(d) ≤
∑

`2

2`1

(
l
d

) n!
(n− `1 − `2)!`1!`2!

(
1 +

SNR
2mf

)−mf `1(
1 +

SNR
mf

)−mf `2

.

(6.58)

Proof. By construction, the pairwise score is the sum of `1 symbols with Ham-
ming weight 1 and `2 symbols with Hamming weight 2, with respective cumu-
lant transforms given by Eqs. (6.55) and (6.51). The conditional transform at
the saddlepoint is therefore given by

κpw(r̂) = −mf `1 log
(

1 +
SNR
2mf

)
−mf `2 log

(
1 +

SNR
mf

)
. (6.59)

The second derivative can be recovered from Theorem 6.9,

κ′′pw(r̂) = `1
4 SNR

1 + SNR
2mf

+ `2
8 SNR

1 + SNR
mf

. (6.60)

Figure 6.4 depicts the pairwise error probabilities of Eq. (6.57) for d = 3 and
d = 6 in Nakagami fading with mf = 0.5 and mf = 1. Two short interleavers
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are considered, l = 10 and l = 200. In all cases the effect from the correlation,
appearing as a knee in the curves takes place at very low values of pairwise
error probability, easily below 10−6. Further, the transition takes place at ever
lower values by increasing the length l or the distance d. In a practical scenario,
the effect due to the correlation among the log-likelihood ratios is unlikely to
determine the error probabilities, being other variables, for instance the perfect
channel estimation, which possibly determine the error rates.
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Figure 6.4: Saddlepoint approximation pep(d) for QPSK in Nakagami fading
mf = 0.5, 1; Hamming distance d = 3, 6, and codeword length l = 10, 200.

Going back to the general BICM case, the apparent closeness of the BICM
probability analysis with the simulation results is likely due to the limited effect
of the dependence across the log-likelihood ratios, compared to a situation with
no statistical independence (infinite interleaving). It would be interesting to
characterize this effect quantitatively and find the threshold signal-to-noise
ratio at which the dependence starts being noticeable.

A second conclusion one can draw is that for finite interleaving and high-
enough signal-to-noise ratio, the error probability will be determined by the
worst possible π`, that having the largest tail for the log-likelihood ratio. This
implies that any analysis based on infinite interleaving fails for large enough
SNR. A caveat is in order, since this large enough may be extremely large.
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6.5.4 Cumulant transform asymptotic analysis

An interesting result of [66], proved by Albert Guillén i Fàbregas, concerns the
limit for large SNR of BICM. For the AWGN channel with no fading BICM
behaves as a binary modulation, in the sense that

lim
SNR→∞

κ1(r̂)
SNR

= −d2
min

4
, (6.61)

where d2
min = minx,x′∈X |x − x′|2 is the minimum squared Euclidean distance

of the constellation. For some standard modulations, the minimum distance is
given by (see for instance Table I of [74])

d2
min = 4 sin2 π

2m
for 2m-PSK, (6.62)

d2
min =

12
22m − 1

for 2m-PAM, (6.63)

d2
min =

6
(2m − 1)

for 2m-QAM. (6.64)

Note that the mapping does not affect the result.
The loss with respect to binary modulation (d2

min = 4) for 8-PSK amounts
to 8.34 dB, for 16-QAM is 10 dB, and for 64-QAM becomes 16.23 dB. At low
SNR, these values match well with the simulations reported in Fig. 6.3, when
compared with the binary case included in Fig. 6.2b.

We will later see that a similar result holds for the additive energy channels.

6.6 Error Probability in the Exponential Noise Channel

In this section, we study the pairwise error probability in the additive exponen-
tial noise (AEN) channel. As for the Gaussian channel, we build our analysis
around the pairwise and bit scores. The results presented here seem to be new
and are somewhat surprising, in the sense that the pairwise error probability
is very close to that of an AWGN channel with identical signal-to-noise ratio:

• The Chernoff bound to the pairwise error probability for BPSK and bi-
nary modulation in the AEN channel coincide.

• For BICM at large signal-to-noise ratio SNR, and comparing the Chernoff
bounds to the pairwise error probability, 22m-PEM in AEN incurs in a
power loss of 3

2 (about 1.76 dB) with respect to 22m-QAM in AWGN.
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This similarity strongly suggests that binary codes will achieve essentially the
same performance in these two channels.

6.6.1 Channel Model for Binary Modulation

We start with the study of binary modulation (2-PEM). At the transmitter,
each bit bk is mapped onto a binary symbol xk, with xk = {0, +2}; the mapping
rule µ is

xk = 0, if bk = 0; xk = +2, if bk = 1, (6.65)

used with probability 1/2, and its complement µ̄, used with probability 1/2.
The choice between µ and µ̄ is made known to the receiver.

At the channel output, and for each index k, the output yk is given by

yk = SNR xkχk + zk, (6.66)

where zk is a real-valued, exponentially distributed, noise Zk ∼ E(1), SNR is
the average signal-to-noise ratio at the receiver, and χk is a fading coefficient
having a gamma distribution, as in Eq. (6.22). For a fixed fading realization,
assumed known at the receiver, the channel transition probability Q(y|x) is

Q(y|x) = e−(y−SNR xχ)u(y − SNRxχ). (6.67)

The presence of the fading is a natural generalization of the exponential channel
we have considered so far and fits smoothly with its Gaussian counterpart. In
the additive energy channels, we use the name “gamma fading” rather than
Nakagami fading, since the latter is usually expressed in terms of the complex
amplitude, rather than the energy.

6.6.2 Error Probability in the absence of Fading

We first consider the case without fading, obtained by setting χk = 1 in the
model, Eq. (6.66). The natural counterpart of the Gaussian result is

Theorem 6.15. The binary AEN channel is a Z-channel with transition prob-
ability ε = e−2 SNR. The cumulant transform of the bit score is

κ1(r) = log
(

1
2
e−2r SNR +

1
2
e−2(1−r) SNR

)
(6.68)

= − SNR+ log cosh
(
SNR(2r − 1)

)
, (6.69)
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and the pairwise error probability for Hamming distance d is

pep(d) '





2√
2πd

(∑ d−1
2

j=0 e−2j SNR

)
e−(d+1) SNR, d odd,

2√
2πd

(
1
2 +

∑ d
2
j=1 e−2j SNR

)
ε−d SNR, d even

. (6.70)

The Chernoff bound to the pairwise error probability is

pep(d) ≤ e−d SNR. (6.71)

Proof. Let symbol x be transmitted and x̄ denote its complement. The bit
score ξb depends on the noise realization z as

ξb = log
e−(SNR x+z−SNR x̄)u(SNR x + z − SNR x̄)
e−(SNR x+z−SNR x)u(SNR x + z − SNRx)

(6.72)

= log
(
e− SNR(x−x̄)u(SNR(x− x̄) + z)

)
. (6.73)

There are two possibilities, u(SNR(x− x̄) + z) = 0 or u(SNR(x− x̄) + z) = 1.
The first takes place when SNR(x− x̄) + z < 0 and occurs with a probability

∫ SNR(x̄−x)

0

e−t dt = 1− e− SNR(x̄−x). (6.74)

In this case ξb = −∞. In the second case, SNR(x− x̄) + z ≥ 0, an event with
probability e− SNR(x̄−x), and inducing a bit score ξb = − SNR(x− x̄).

Using the randomized mapping, there are three possible values of ξb,

ξb =





−∞, with probability 1
2 (1− e−2 SNR),

−2 SNR, with probability 1
2 ,

2 SNR, with probability 1
2e−2 SNR.

(6.75)

This corresponds to a Z-channel with transition probability ε = e−2 SNR. The
rest of the theorem is an application of Theorem 6.7.

Remark that the use of the continuous saddlepoint approximation, given in
Theorem 6.5 would lead to inexact results.

Since the Chernoff bound coincides with the value of BPSK in the AWGN
channel, given in Eq. (6.31), the error performance of both modulation formats
would be similar for identical levels of signal-to-noise ratio.
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Also, the error probability decays as e−(d+1) SNR when d is odd, slightly
faster than in the Chernoff bound. This effect may create some room to design
efficient codes for this channel, since the error probability for d odd is similar to
the error probability with d + 1, buying, so to speak, some Hamming distance
from the channel itself. A similar effect was noticed by van de Meeberg in the
analysis of binary symmetric channels [75]. A special case of d odd is uncoded
transmission, for which d = 1, and the exact bit error rate is

Pb = Pr(Ξ > 0) =
1
2
e−2 SNR. (6.76)

This value should be compared with the saddlepoint approximation, Pb '
2√
2π

e−2 SNR ' 0.798e−2 SNR, a reasonably good approximation.
Figure 6.5 depicts the word error rate with 2-PEM for several values of d.

Simulations match well with the approximation in Theorem 6.15. The Chernoff
bound does not give the correct dependence with d for odd d, especially for
d = 1; this problem does not arise for the saddlepoint approximation.
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Figure 6.5: Comparison of simulation and saddlepoint approximation to pep(d)
of 2-PEM in the AEN channel, d = 1, . . . , 6.

6.6.3 Error Probability with Gamma Fading

We complete our analysis of the AEN channel by considering the effect of
gamma fading. In this case, it is possible to compute an exact expression for
the uncoded error probability. Conditioned to a fading realization, the error
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probability is given by
1
2
e−2χ SNR, (6.77)

and after averaging over the fading realizations,

Pb =
∫ +∞

0

m
mf

f χmf−1

Γ(mf )
e−mf χ 1

2
e−2χ SNR dχ =

1
2

(
1 +

2SNR
mf

)−mf

, (6.78)

obtained from the definition of the gamma function, see Eq. (3.34). This nice
formula does not seem to extend easily to the pairwise error probability. How-
ever, we have

Theorem 6.16. In the binary AEN channel with gamma fading, the cumulant
transform of the bit score Ξb is given by

κ1(r) = log

(
1
2

(
1 +

2r SNR
mf

)−mf

+
1
2

(
1 +

2(1− r) SNR
mf

)−mf
)

. (6.79)

The Chernoff bound to the pairwise error probability is

pep(d) ≤
(

1 +
SNR
mf

)−mf d

. (6.80)

The saddlepoint approximation to the pairwise error probability is

pep(d) '





2√
2πd

(∑ d−1
2

j=0

(
1 + (d+1+2j) SNR

mf

)−mf
)

, d odd,

2√
2πd

(
1
2

(
1 + d SNR

mf

)−mf

+
∑ d

2
j=1

(
1 + (d+2j) SNR

mf

)−mf
)

, d even
.

(6.81)

Proof. Conditioned on a fading realization χ, it is clear from the proof of The-
orem 6.15 that Ξb has the discrete distribution of a Z-channel with transition
probability ε = e−2χ SNR. Using the definition of Ξb, we rewrite κ1(r) as

κ1(r) = log E E
[
erΞ|χ]

, (6.82)

where the inner expectation is for a fixed fading realization. The moment
generating function, eκ1(r), is derived from Theorem 6.15,

E
[
esΞb |χ]

=
1
2
e−2sχ SNR +

1
2
e−2(1−s)χ SNR, (6.83)
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from which we deduce that

κ1(r) = log
1
2

∫ +∞

0

m
mf

f χmf−1

Γ(mf )
e−mf χ

(
e−2rχ SNR + e−2(1−r)χ SNR

)
dχ (6.84)

= log

(
1
2

(
1 +

2r SNR
mf

)−mf

+
1
2

(
1 +

2(1− r) SNR
mf

)−mf
)

. (6.85)

From Proposition 6.3, the saddlepoint is located at r̂ = 1/2, and

κ1(r̂) = −mf log
(

1 +
SNR
mf

)
. (6.86)

The Chernoff bound is then obtain by using Proposition 6.4.
The saddlepoint approximation follows from integrating the approximation

in the absence of fading, given in Theorem 6.15, and using the definition of the
Gamma function.

In practice, the sums over j in Eq. (6.81) are dominated by the first term,
and good approximations would be obtained by using only them.

In this result, we have not used a direct saddlepoint approximation to the
tail probability of Ξpw, such as that of Theorem 6.5. The reason is that the
latter approximation is not tight for large values of mf , that is small fading,
when the score becomes ever more “discrete”. To any extent, the equation in
the absence of fading can be integrated term by term and the final formula
gives a good approximation, as can be seen from Fig. 6.6, where simulation
and the approximation for uncoded 2-PEM in gamma fading of parameter
mf = 0.3, 0.5, 1, 4,∞ are compared. Similarly good match is observed for the
pairwise error probability pep(d).

6.6.4 Bit-Interleaved Coded Modulation

In Section 6.5, we discussed bit-interleaved modulation (BICM) for Gaussian
noise and gave a saddlepoint approximation to its pairwise error probability.
For BICM, the channel model in Eq. (6.66) is still valid, with the addition that
the symbols xk are not directly indexed by the mapping rule in Eq. (6.65), but
rather the binary codeword b is mapped onto an array of channel symbols x by
bit-interleaving the binary codeword and mapping it on the signal constellation
X with a binary labelling rule µ. We have then
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Figure 6.6: Comparison of simulation and saddlepoint approximation to
pep(d = 1) for 2-PEM in gamma fading of parameter mf = 0.3, 0.5, 1, 4.

Theorem 6.17. For BICM with infinite interleaving in the AEN channel, the
pairwise error probability pep(d) admits the approximation

pep(d) ' 2√
2πd E

1
2 [
√

γ log2 γ]
Ed+ 1

2 [
√

γ], (6.87)

where γ is the following function of the 5-tuple (B, I, X, χ, Z),

γ(b, i, x, χ, z) =

∑
x′∈X b̄

i ,x′≤x+ z
SNR χ

e− SNR χ(x−x′)−z

∑
x′∈X b

i ,x′≤x+ z
SNR χ

e− SNR χ(x−x′)−z
. (6.88)

The expectation is carried out over all possible values of (B, I,X, χ, Z).

The expectation over z can be carried out in closed form, as we did in
Chapter 5. As for the fading, it seems to be less tractable, but numerical
integration is straightforward.

We conclude our analysis by studying the asymptotic behaviour of the cu-
mulant transform of the bit score for large SNR.

Theorem 6.18. For large SNR, BICM in the AEN channel behaves as a binary
modulation with distance dmin = minx,x′∈X |x− x′|, in the sense that

lim
SNR→∞

κ1(r̂)
SNR

= −dmin

2
. (6.89)
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Proof. The proof can be found in Appendix 6.F, bar for the trivial result on
the minimum distance.

For uniform 2m-PEM, the cumulant transform is then approximately κ1(r̂) '
− SNR

2m−1 . The optimum value of λ for the PEM constellations considered in
Chapter 5 is λ = 1. Using the Chernoff bound, the pairwise error probability
approximately decays as pep(d) ' e−d SNR

2m−1 .
The modulations depicted in Fig. 6.7 asymptotically behave at large SNR as

2-PEM with respective losses of 4.77 dB for 4-PEM, 11.76 dB for 16-PEM, and
17.99 dB for 64-PEM. A comparison with the results for 2-PEM from Fig. 6.5
shows there is good agreement between the simulations and the asymptotic
approximation suggested by Theorem 6.18.
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Figure 6.7: Comparison of simulation, Chernoff bound, and saddlepoint ap-
proximation to pep(d = 5) for 4-, 16-, and 64-PEM in the AEN channel.

Finally, the asymptotic loss with respect to 2m-QAM modulation in the
AWGN channel is 3

2 , or 1.76 dB, since we saw in Section 6.5.4 that κ1(r̂) grows
asymptotically as − 3 SNR

2(2m−1) for 2m-QAM modulation in the AWGN channel.

6.7 Error Probability in the Binary Discrete-Time Poisson Channel

We now shift our attention to the discrete-time Poisson (DTP) channel. In
this section we consider the error rates under binary modulation, 2-PEM. As
in the AEN channel, each bit bk is mapped onto a binary symbol xk, with
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xk = {0, +2}; the mapping rule µ is

xk = 0, if bk = 0; xk = +2, if bk = 1, (6.90)

used with probability 1/2, and its complement µ̄, used with probability 1/2.
The choice between µ and µ̄ is known at the receiver.

At time k, the channel output yk follows a Poisson distribution with param-
eter εsxkχk, where εs is the average signal count, and χk is a fading coefficient
having a gamma distribution, as in Eq. (6.22). For a fixed fading realization
(known at the receiver) the channel transition probability Q(y|x) is

Q(y|x) = e−εsxχ (εsxχ)y

y!
. (6.91)

We directly estimate the performance for the binary DTP channel in

Theorem 6.19. In the absence of fading, the binary DTP channel is a Z-
channel with transition probability ε = e−2εs . The pairwise error probability
admits the saddlepoint approximation

pep(d) =





2√
2πd

(∑ d−1
2

j=0 e−2jεs

)
e−(d+1)εs , d odd,

2√
2πd

(
1
2 +

∑ d
2
j=1 e−2jεs

)
ε−dεs , d even

. (6.92)

The Chernoff bound to the pairwise error probability is

pep(d) ≤ e−dεs . (6.93)

In the presence of gamma fading, the Chernoff bound is

pep(d) ≤
(

1 +
εs

mf

)−mf d

, (6.94)

and the saddlepoint approximation to the pairwise error probability is

pep(d) '





2√
2πd

(∑ d−1
2

j=0

(
1 + (d+1+2j)εs

mf

)−mf
)

, d odd,

2√
2πd

(
1
2

(
1 + dεs

mf

)−mf

+
∑ d

2
j=1

(
1 + (d+2j)εs

mf

)−mf
)

, d even
.

(6.95)
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The theorem coincides with the result for the AEN channel, replacing SNR
by εs. Therefore, the comments and figures in Sections 6.6.2 and 6.6.3 apply
unchanged to the DTP channel.

Proof. We prove the equivalence to a Z-channel. Under input randomization, a
symbol x1 = 0 is chosen with probability 1/2, in which case the output is y = 0,
and the bit score is ξb = log e−2εs = −2εs. The symbol x2 = 2εs is chosen with
probability 1/2. We distinguish two cases, y = 0, where ξb = log e2εs = 2εs,
and y > 0, for which ξb = −∞. This coincides with the binary AEN channel.
Therefore the proofs of Theorems 6.15 and 6.16 apply.

As for bit-interleaved coded modulation, we have the following

Theorem 6.20. For BICM with infinite interleaving in the DTP channel, the
pairwise error probability pep(d) admits the approximation

pep(d) ' 2√
2πd E

1
2 [
√

γ log2 γ]
Ed+ 1

2 [
√

γ], (6.96)

where γ is the following function of the 5-tuple (B, I,X, χ, Y ),

γ(b, i, x, χ, y) =

∑
x′∈X b̄

i
x′y e− SNR χx′

∑
x′∈X b

i
x′y e− SNR χx′ . (6.97)

The expectation is carried out over all possible values of (B, I, X, χ, Y ).

We conclude our analysis by studying the asymptotic behaviour of the cu-
mulant transform of the bit score for large εs.

Theorem 6.21. As the average number of quanta εs goes to infinity, the cu-
mulant transform of the bit score evaluated at the saddlepoint behaves as

lim
εs→∞

κ1(r̂)
εs

= − min
x,x′∈X

1
2
(√

x−
√

x′
)2

. (6.98)

The limit for uniform 2m-PEM modulation is given by

lim
εs→∞

κ1(r̂)
εs

= −
(

1−
√

2m − 2
2m − 1

)2

. (6.99)
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For a given constellation set, the largest limit (in absolute value) is achieved
when the modulation points xj, j = 1, . . . , 2m, are placed at

xj = (j − 1)2
6

(2m+1 − 1)(2m − 1)
. (6.100)

For this modulation set, the limit as εs →∞ is

lim
εs→∞

κ1(r̂)
εs

=
3

(2m+1 − 1)(2m − 1)
. (6.101)

The optimum constellation was also given in [64]. Note that the optimum
value of λ for the PEM constellations considered in Chapter 5 is λ = 2.

Using the Chernoff bound, the pairwise error probability approximately

decays as pep(d) ' e
−d 3εs

(2m+1−1)(2m−1) for the optimum constellation and as

pep(d) ' e
−dεs

(
1−

√
2m−2
2m−1

)2

for the uniform constellation. For the cases de-
picted in Fig. 6.8a, the asymptotic energy loss of uniform 2m-PEM with re-
spect to binary modulation are 14.73 dB for 4-PEM, 29.39 dB for 16-PEM, and
41.97 dB for 64-PEM, in good agreement with Fig. 6.5.
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(a) Uniformly spaced constellation.
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(b) Optimized constellation.

Figure 6.8: Comparison of simulation, Chernoff bound, and saddlepoint ap-
proximation to pep(d = 5) for 4-, 16-, and 64-PEM in the DTP channel.

As for the optimum constellation, depicted in Fig. 6.8b, the energy loss
with respect to binary modulation is reduced to 8.45 dB for 4-PEM, 21.90 dB
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for 16-PEM, and 34.26 dB for 64-PEM. As m becomes large, the exponent
is approximately 3

22−2m, similar to the value 3 2−2m achieved by 2m-PAM in
Gaussian channels, as a function of SNR. In general, simulation results match
well with the limit given by the theorem and with the saddlepoint approxima-
tion. On the other hand, the Chernoff bound is somewhat loose, as expected.

6.8 Conclusions

In this chapter, we have studied the computation of the pairwise error proba-
bility, an essential tool to estimate the error rates of practical channel codes.
Unlike other common approaches to the subject, we have not derived true
bounds to the error probability, such as the Chernoff bound, but have rather
computed a saddlepoint approximation to the probability. In general, the ap-
proximation has been found to be very close to the exact simulation values. The
saddlepoint approximation for continuous random variables has been derived
anew, and its expansion up to second order determined. This approximation
is valid for all values of the saddlepoint, even as it approaches zero.

We have found it useful to define a new quantity, the pairwise score, a
random variable which depends on all the random elements in the channel and
whose positive tail probability gives the pairwise error probability. For two
codewords at Hamming distance d, the pairwise score is in turn the sum of d
bit scores. For memoryless and stationary channels with binary input the bit
scores are independent, but in general are statistically dependent. We have
carried out our analysis of bit-interleaved coded modulation by assuming that
they are independent, as proposed by Caire et al. [26].

Throughout the chapter we have considered a specific decoding metric,
defined in Section 6.3, similar to the one used in BICM decoding. The methods
presented in this chapter can however be easily extended to other metrics.

When applied to the AWGN channel, the formulas we have found seem
to rank among the simplest yet closest approximations to the error probabil-
ity. Two special cases are of particular interest, the fully-interleaved Nakagami
fading channel, considered in Section 6.4, and the performance under BICM,
discussed in Section 6.5. In the analysis of BICM, have solved a small inconsis-
tency in the bounds presented in the paper [26] by Caire et al.. In Section 6.5.3
we have briefly considered the subject of finite interleaving and determined the
performance of QPSK in fully-interleaved Nakagami fading channels. The ef-
fect of the finite interleaving has been found to be negligible.
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We have seen how the AEN and the DTP channels with binary input admit
a natural modelling as a Z-channel. We have determined the saddlepoint ap-
proximation to the error probability of the Z-channel, and therefore also to the
other channels. We have considered gamma fading channels, a natural counter-
part to Nakagami fading in the AWGN channel. Intriguingly, the performance
of binary modulation in the exponential channel is almost identical to that of
BPSK in Gaussian noise, for all the values of the fading parameter.

As for BICM, we have seen that the performance of 2m-PEM at large signal-
to-noise ratio in the AEN channel remains close to that of an AWGN channel
with identical signal-to-noise ratio. More specifically, the pairwise error proba-
bility asymptotically decays in both channels as e−a SNR 2−m

for large SNR and
large m; a is a constant factor of value a = 3/2 for 2m-QAM modulation in
the AWGN channel and a = 1 for 2m-PEM modulation in the AEN channel.

Regarding non-binary transmission in the DTP channel, general formu-
las for the pairwise error probability have been given. These formulas show
that equispaced 2m-PEM modulation is non-optimal, as already discovered by
Einarsson [64]. For the optimum constellation, a PEM modulation with pa-
rameter λ = 2, the asymptotic behaviour of the error probability as a function
of the quanta count coincides with that of a Gaussian channel using 2m-PAM
modulation, i. e. it asymptotically decays as e−aεs2−2m

for large εs and large
m; here a = 3 for the AWGN channel and a = 3/2 for the DTP channel.

An interesting possible extension of the present work would include the
analysis of the general quantized additive energy channel, in order to determine
the way the functional form of the pairwise error probability changes between
the additive exponential and discrete-time Poisson limits.

6.A Saddlepoint Location

For each i, and conditioned on b, the output density Qi(y|b) is given by
Eq. (6.6). Since the metric qi(b, y) is proportional to Qi(y|b), we have that

E[erΞ] =
∫ (

1
2
Qi(y|0)er log

Qi(y|1)
Qi(y|0) +

1
2
Qi(y|1)er log

Qi(y|0)
Qi(y|1)

)
dy (6.102)

=
∫ (

1
2
Q1−r

i (y|0)Qr
i (y|1) +

1
2
Q1−r

i (y|1)Qr
i (y|0)

)
dy. (6.103)

This quantity is symmetric around r = 1
2 , since it remains unchanged if we

replace r by 1− r.
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The first derivative of κ1(r) is given by κ′1(r) =
E
[
ΞberΞb

]

E
[
erΞb

] , and is thus zero

when E
[
Ξbe

rΞb
]

= 0. We concentrate on E
[
Ξbe

rΞb
]
, readily computed as

∫
1
2

(
Qi(y|0) log

Qi(y|1)
Qi(y|0)

(
Qi(y|1)
Qi(y|0)

)r

+ Qi(y|1) log
Qi(y|0)
Qi(y|1)

(
Qi(y|0)
Qi(y|1)

)r
)

dy

(6.104)

=
∫

1
2

(
Qi(y|0)

(
Qi(y|1)
Qi(y|0)

)r

−Qi(y|1)
(

Qi(y|1)
Qi(y|0)

)r
)

log
Qi(y|1)
Qi(y|0)

dy, (6.105)

which is zero at r̂ = 1
2 thanks to the symmetry.

As for the other derivatives, we have that

κ′′1(r) =
E

[
Ξ2

be
rΞb

]

E
[
erΞb

] − E2
[
Ξbe

rΞb
]

E2
[
erΞb

] (6.106)

κ′′′1 (r) =
E

[
Ξ3

be
rΞb

]
E

[
erΞb

]

E2
[
erΞb

] − 3 E
[
Ξ2

be
rΞb

]
E

[
Ξbe

rΞb
]

E2
[
erΞb

] +
2E3

[
Ξbe

rΞb
]

E3
[
erΞb

] ,

(6.107)

which, evaluated at the saddlepoint, respectively become

κ′′1(r̂) =
E

[
Ξ2

be
rΞb

]

E
[
erΞb

] , κ′′′1 (r̂) =
E

[
Ξ3

be
rΞb

]

E
[
erΞb

] . (6.108)

We thus find that the second derivative is proportional to

1
2

∫ (
Qi(y|0)

(
Qi(y|1)
Qi(y|0)

)r

+ Qi(y|1)
(

Qi(y|1)
Qi(y|0)

)r
)

log2 Qi(y|1)
Qi(y|0)

dy, (6.109)

which is positive at r = 1
2 . As for the third derivative, it is proportional to

1
2

∫ (
Qi(y|0)

(
Qi(y|1)
Qi(y|0)

)r

−Qi(y|1)
(

Qi(y|1)
Qi(y|0)

)r
)

log3 Qi(y|1)
Qi(y|0)

dy, (6.110)

which is zero at r = 1
2 , thanks to the symmetry.
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6.B A Derivation of the Saddlepoint Approximation

We wish to estimate the tail probability Pr(Z > z0) for Z, a continuous random
variable with density pZ(z). Instead of the density, we represent Z by its
cumulant transform κ(r), defined as κ(r) = log E[erZ ], r a complex number.

Often, the saddlepoint approximation is derived by assuming that Z is the
sum of d random variables Xi, Z =

∑d
j=1 Xj , and the asymptotic behaviour

as d → ∞ is studied. Since in our problem there need be no asymptotics,
we prefer to work with Z directly. To any extent, when the variables Xj

are independent, the cumulant transform of Z is the sum of the transforms
for each component, and the analysis applies unchanged. Bar for this change
of emphasis, the presentation follows closely, and slightly generalizes, Olver’s
book [70], and Jensen’s [67].

The tail probability can be recovered from κ(r) by Fourier inversion:

Pr(Z >z0) =
1

2πj

∫ j∞

r=−j∞
eκ(r)−rz0

dr

r
. (6.111)

An application of Cauchy’s integral theorem allows us to shift the integra-
tion path to the right, from the imaginary axis to a line L = (r̂− j∞, r̂ + j∞)
that crosses the real axis at another point r̂.

It is most convenient to choose r̂ the real number which verifies κ′(r̂) = z0.
Since complex-variable analytic functions do not reach extreme points, this
point is a saddlepoint. It exists and is unique due to the convexity of κ(r)
for r real. The shifted integration path can be parameterized by r = r̂ + jri,
−∞ < ri < ∞, or (r− r̂) = jri. Using this new variable of integration we now
expand the argument of the exponential term in a Taylor series around r̂,

κ(r)− rz0 = κ(r̂)− r̂z0 +
κ′′(r̂)

2!
(jri)2 + R2(ri), (6.112)

where we have used that the first derivative is zero and R2(ri) includes the
remaining terms in the expansion around r̂,

R2(ri) =
∞∑

`=3

κ(`)(r̂)
`!

(jri)`. (6.113)
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Eq. (6.111) can then be rewritten as

Pr(Z > z0) =
1
2π

eκ(r̂)−r̂z0

∫ +∞

−∞
e−

κ′′(r̂)
2 r2

i eR2(ri)
dri

r̂ + jri
(6.114)

=
1
2π

eκ(r̂)−r̂z0

∫ +∞

−∞
e−

κ′′(r̂)
2 r2

i eR2(ri)
r̂ − jri

r̂2 + r2
i

dri, (6.115)

where we have multiplied numerator and denominator times a factor r̂ − jri.
We next use the Taylor series of the exponential to expand eR2(ri), and

express it in powers of ri. Including the factor r̂ − jri in the expansion,

(r̂ − jri)eR2(ri) = (r̂ − jri)
∞∑

m=0

1
m!

( ∞∑

`=3

κ(`)(r̂)
`!

(jri)`

)m

(6.116)

=
∞∑

m=0

ηm rm
i , (6.117)

where the terms with common factor rm
i are grouped, and their corresponding

coefficient denoted by ηm. The symmetry of the integrand in Eq. (6.115) implies
that the integral of the terms with odd m is zero; we need thus consider only
even values of m, which we parameterize by m = 2n. The first few terms are

η0 = r̂, η2 = 0, (6.118)

η4 = −κ(3)(r̂)
3!

+ r̂
κIV (r̂)

4!
, (6.119)

η6 =
κ(5)(r̂)

5!
− r̂

κ(6)(r̂)
6!

− r̂
1
2!

(
κ(3)(r̂)

3!

)2

. (6.120)

The next step is the normalization of the `-th order derivatives, or `-th
cumulant, by κ′′(r̂). The normalized `-th derivative, denoted by κ̃(`)(r̂), is

κ(`)(r̂) = κ̃(`)(r̂)κ′′(r̂), (6.121)

and the coefficients η2n become polynomials in κ′′(r̂). The degree of the polyno-
mials will prove useful when tracking the various terms in the final expansion.

The tail probability in Eq. (6.115) becomes

Pr(Z > z0) = eκ(r̂)−r̂z0

∞∑
n=0

η2nτ(2n), (6.122)
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a weighted sum of integrals τ(2n), for non-negative n, of the form

τ(2n) =
1
2π

∫ +∞

−∞
e−

κ′′(r̂)
2 x2 x2n

r̂2 + x2
dx. (6.123)

For n = 0,

1
2π

∫ +∞

−∞
e−

κ′′(r̂)
2 x2 1

r̂2 + x2
dx =

1
2r̂

erfc

(
r̂

√
κ′′(r̂)

2

)
exp

(
r̂2 κ′′(r̂)

2

)
, (6.124)

where erfc(x) is the error complementary function erfc(x) = 2
π

∫∞
x

e−t2 dt. It
has an asymptotic series

erfc(x) =
e−x2

x
√

π

∞∑
m=0

(−1)m 1 · 3 ·· · · (2m− 1)
2mx2m

, (6.125)

and therefore

τ(0) =
1

r̂2
√

2πκ′′(r̂)

∞∑
m=0

(−1)m 1 · 3 ·· · · (2m− 1)
r̂2m

(
κ′′(r̂)

)m . (6.126)

In general, when n 6= 0, we can expand the fraction in the integrand by
explicitly carrying out the division. We obtain then

x2n

r̂2 + x2
=

n−1∑

i=0

(−1)n−i−1r̂2(n−i−1)x2i + (−1)n r̂2n

r̂2 + x2
, (6.127)

a sum which we next integrate term by term. Each summand,

1
2π

∫ +∞

−∞
e−

κ′′(r̂)
2 x2

x2i dx, (6.128)

is seen to be proportional to the 2i-th moment of a normal random variable
with zero mean and variance

(
κ′′(r̂)

)−1, and therefore

1
2π

∫ +∞

−∞
e−

κ′′(r̂)
2 x2

x2i dx =
1 · 3· · · (2i− 1)
√

2π
(
κ′′(r̂)

)i+ 1
2
. (6.129)

When i = 0, we agree that the product 1· · · (2i− 1) is 1.
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Combining the summands in Eq. (6.127) back into Eq. (6.123), and using
the expansion (6.126) for the last summand in Eq. (6.127), we get

τ(2n) =
n−1∑

i=0

(−1)n−i−1r̂2(n−i−1) 1 · 3· · · (2i− 1)
√

2π
(
κ′′(r̂)

)i+ 1
2

+ (−1)nr̂2n 1
r̂2

√
2πκ′′(r̂)

∞∑
m=0

(−1)m 1 · 3 ·· · · (2m− 1)
r̂2m

(
κ′′(r̂)

)m (6.130)

=
1

r̂2
√

2πκ′′(r̂)

(
n−1∑

i=0

(−1)n−i−1r̂2(n−i) 1 · 3 ·· · ·
(
2i− 1

)
(
κ′′(r̂)

)i

+
∞∑

m=0

(−1)n+mr̂2(n−m) 1 · 3 ·· · · (2m− 1)(
κ′′(r̂)

)m

)
(6.131)

=
1

r̂2
√

2πκ′′(r̂)

∞∑
m=n

(−1)n+mr̂2(n−m) 1 · 3 ·· · · (2m− 1)(
κ′′(r̂)

)m . (6.132)

To derive Eq. (6.131) we used some obvious algebraic combinations, and the
last equation follows by noting that the first n− 1 terms in both summations
exactly cancel each other. Factoring out the first term in the series, we obtain

τ(2n) =
1 · 3 ·· · · (2n− 1)

r̂2
√

2πκ′′(s)
(
κ′′(r̂)

)n

(
1− 2n + 1

r̂2κ′′(r̂)
+

(2n + 1)(2n + 3)

r̂4
(
κ′′(r̂)

)2 + . . .

)
.

(6.133)

The classical saddlepoint approximation is obtained by taking only τ(0),
and then the leading term in Eq. (6.133),

Pr(Z > z0) ' η0τ(0)eκ(r̂)−r̂z0 =
1√

2πκ′′(r̂)r̂
eκ(r̂)−r̂z0 . (6.134)

Note that it loses its validity for small r̂, in which case we may use Eq. (6.124),

Pr(Z > z0) =
1
2

erfc
(

r̂

√
κ′′(r̂)

2

)
exp

(
1
2
r̂2κ′′(r̂)2

)
eκ(r̂)−r̂z0 . (6.135)

This approximation remains valid for small values of the saddlepoint, since the
probability tends to 1/2 for r̂ → 0.

Higher-order approximations are obtained by extending the procedure. For
instance, the following non-zero contribution comes from η4, or n = 2. The
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leading coefficient of τ(4) in Eq. (6.133) is
(
κ′′(r̂)

)− 5
2 , a term multiplied in

by η4, linear in κ′′(r̂). The effective leading coefficient is thus
(
κ′′(r̂)

)− 3
2 , and

coefficients up to the same order must be considered in τ(0),

τ(0) ' 1
r̂2

√
2πκ′′(r̂)

(
1− 1

r̂2κ′′(r̂)

)
. (6.136)

Similarly for τ(4),

τ(4) ' 1 · 3
r̂2

√
2πκ′′(r̂)

(
κ′′(r̂)

)2 . (6.137)

Since η6 (Eq. (6.120)) has a term proportional to
(
κ′′(r̂)

)2, the leading term of
τ(6) must be included as well,

τ(6) ' 1 · 3 · 5
r̂2

√
2πκ′′(r̂)

(
κ′′(r̂)

)3 . (6.138)

The second-order saddlepoint approximation is

Pr(Z > z0) ' (η0τ0 + η4τ4 + η6τ6)eκ(r̂)−r̂z0 , (6.139)

where only one the last term in Eq. (6.120) for η6 is to be included. Explicitly,

Pr(Z > z0) ' α
eκ(r̂)−r̂z0

r̂
√

2πκ′′(r̂)
, (6.140)

where the factor α is given by

α =
r̂

r̂

(
1− 1

r̂2κ′′(r̂)

)
+

(
−κ(3)(r̂)

3!
+ r̂

κIV (r̂)
4!

)
1 · 3

r̂
(
κ′′(r̂)

)2

− r̂
1
2!

(
κ(3)(r̂)

3!

)2 1 · 3 · 5
r̂
(
κ′′(r̂)

)3 (6.141)

= 1− 1
r̂2κ′′(r̂)

− κ(3)(r̂)

2r̂
(
κ′′(r̂)

)2 +
κIV (r̂)

8
(
κ′′(r̂)

)2 −
15

(
κ(3)(r̂)

)2

72
(
κ′′(r̂)

)3 . (6.142)

This additional term in the expansion also serves as an estimate of the error
made by the approximation.

In general, the first term of the expansion gives a very good approximation
to the real tail probability, with no need of considering extra terms.
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6.C Pairwise Error Probability in the Z-Channel

The distribution of the pairwise score Ξpw is discrete and can be inscribed in
a lattice with span 2| log ε| = −2 log ε, since ε < 1. Also, the set of possible
values of the pairwise score is

{−d,−(d− 2), . . . , d− 2, d
}× | log ε|.

The approximations differ depending on whether d is odd or even. When d
is odd, the score is positive for ξpw ∈ {1, 3, . . . , d} × | log ε|, points of the form
(2j+1)×| log ε|, where j runs from 0 up to d−1

2 . Using Theorem 6.6, we obtain

pep(d) = Pr(Ξpw > 0) '
d−1
2∑

j=0

βe−r̂(2j+1)| log ε|
√

2πdκ′′1(r̂)
edκ1(r̂). (6.143)

And replacing the values of the lattice span β, κ1(r̂), and κ′′1(r̂), we have that

Pr(Ξpw > 0) '
d−1
2∑

j=0

2| log ε|e 1
2 (2j+1) log ε

√
2πd log2 ε

ed 1
2 log ε (6.144)

=
2√
2πd

ε(d+1)/2

d−1
2∑

j=0

εj . (6.145)

Similarly, if d is even, the values of the score ξpw leading to an erroneous
decision are ξpw = 0, with an error probability of 1/2, and ξpw = 2, 4, . . . , d,
when an error is surely made. This latter set has the form 2j, where j runs
from 1 to d/2. Then,

pep(d) = 1
2 Pr(Ξpw = 0) + Pr(Ξpw > 0) (6.146)

' 1
2

β√
2πdκ′′1(r̂)

edκ1(r̂) +

d
2∑

j=1

βe−r̂2j| log ε|
√

2πdκ′′1(r̂)
edκ1(r̂) (6.147)

=
2√
2πd

εd/2

(
1
2

+

d
2∑

j=1

εj

)
. (6.148)

6.D Error Probability of Uncoded BPSK in Rayleigh Fading

The uncoded error probability in binary-input (BPSK), Rayleigh fading, Gaus-
sian noise channels admits a closed-form expression [32]. We derive it in this
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Appendix by using the bit score. Conditioned on the fading realization h, or
χ = |h|2, we saw in the proof of Theorem 6.9 that Ξb ∼ N (−4χSNR, 8χSNR).
Averaging over all possible values of χ, and using Mathematica, we obtain

pΞb
(ξb) =

∫ +∞

0

e−χ 1√
16χπ SNR

e−
(ξb+4χ SNR)2

16χ SNR dχ (6.149)

=





1

4
√

SNR(1+SNR)
exp

(
− ξb

2

(
1 +

√
1+SNR
SNR

))
, ξb ≥ 0

1

4
√

SNR(1+SNR)
exp

(
− ξb

2

(
1−

√
1+SNR
SNR

))
ξb < 0.

(6.150)

The distribution is a two-sided exponential; its decay is slower than that of a
normal random variable.

The error probability Pw is the tail Ξb > 0 and takes the value

Pw =
∫ +∞

0

1
4
√

SNR(1 + SNR)
exp

(
−ξb

2

(
1 +

√
1 + SNR

SNR

))
dξb (6.151)

=
1
2

(
1−

√
SNR

1 + SNR

)
, (6.152)

where in the last equation we have multiplied times
√

1 + SNR−√SNR. This
equation coincides with the error probability of binary transmission in fading
channels [32], as it should.

6.E Probability of All-One Sequence

We use Stirling’s approximation to the factorial, n! ' nne−n
√

2πn, to Eq. (6.49)
in order to obtain

Prind '
md

(
l
m

) l
m e−

l
m

√
l
m (l − d)l−de−(l−d)

√
l − d

(
l
m − d

) l
m−d

e−
(

l
m−d

)√
l
m − d lle−l

√
l

(6.153)

=
l

l
m

(l −md)
l
m−d+ 1

2

(l − d)l−d+ 1
2

ll
, (6.154)
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with the obvious simplifications and groupings of common terms. Extracting
a factor l in (l − d) and (l −md), we get

Prind '
(

1− md

l

)− l
m+d− 1

2
(

1− d

l

)l−d+
1
2
. (6.155)

Since the powers of l in numerator and denominator cancel.
Taking logarithms, the right-hand side of Eq. (6.155) becomes

(
− l

m
+ d− 1

2

)
log

(
1− md

l
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(
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1
2
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We now use Taylor’s expansion of the logarithm log(1 + t) ' t − 1
2 t2 + o(t3),

and discard all powers of l higher than l−2,
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= −md2

2l
+

md

2l
+

d2

2l
− d

2l
= −d(d− 1)

2l
(m− 1). (6.159)

Finally, recovering the exponential,

Prind ' e−
d(d−1)

2l (m−1). (6.160)

6.F Cumulant Transform Asymptotic Analysis - AEN

The cumulant transform κ1(r̂) is

κ1(r̂) = log E

[(∑
x′∈X1

i
e− SNR(x−x′)−zu(SNR(x− x′) + z)

∑
x′∈X0

i
e− SNR(x−x′)−zu(SNR(x− x′) + z)

)r̂]
. (6.161)

In the limit SNR →∞, we can take the dominant terms in the sums and

lim
SNR→∞

κ1(r̂)
SNR

= lim
SNR→∞

1
SNR

log E

[(
e− SNR(x−x̃)−z

e−z

)r̂]
(6.162)
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where x̃ denotes the signal constellation symbol closest to and below x, in the
complementary set X 1

i . Cancelling the common term e−z, we have that

lim
SNR→∞

κ1(r̂)
SNR

= lim
SNR→∞

1
SNR

log E
[
er̂ SNR(x̃−x)

]
. (6.163)

The expectation now has the form of a sum over input bits, label positions,
and symbols. The dominant summand is that with smallest distance x̃ − x,
which is also the (negative) minimum distance in the constellation, −dmin, and

lim
SNR→∞

κ1(r̂)
SNR

= lim
SNR→∞

1
SNR

log E
[
e−r̂ SNR dmin

]
(6.164)

= −r̂dmin. (6.165)

6.G Cumulant Transform Asymptotic Analysis - DTP

The cumulant transform κ1(r̂) is

κ1(r̂) = log E

[(∑
x′∈X 1

i
e−εsx′(εsx

′)y/y!
∑

x′∈X 0
i

e−εsx′(εsx′)y/y!

)r̂]
. (6.166)

In the limit εs →∞, we can take the dominant terms in the sums and

lim
εs→∞

κ1(r̂)
εs

= lim
εs→∞

1
εs

log E

[(
Q(y|x̃)
Q(y|x)

)r̂]
(6.167)

where x denotes the transmitted symbol closest and x̃ denotes the closest sym-
bol in the complementary set X 1

i .
Carrying out the expectation over y, we get

∞∑
y=0

(
Q(y|x̃)Q(y|x)

)1/2 =
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y=0

1
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1
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1
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= e−
1
2 εsx̃e−

1
2 εsxeεs

√
x̃x (6.169)

= e−
1
2 εs(

√
x̃−√x)2 . (6.170)

As next step, we carry out the expectation over x, which has the form of a
sum over input bits, label positions, and symbols. The dominant summand is
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that with smallest distance (
√

x̃−√x), and we have that

lim
εs→∞

κ1(r̂)
εs

= −min
x,x̃

1
2
(√

x̃−√x
)2

. (6.171)

A natural problem is the determination of the constellation X which mini-
mizes this exponent. One such constellation has points xj , j = 1, . . . , 2m at

xj = (j − 1)2α, (6.172)

where α is a factor to have normalized energy

1 = α
1

2m

2m∑

j=1

1
2
(j − 1)2 = α

1
2m

1
6
2m(2m − 1)(2m+1 − 1) (6.173)

and therefore α = 6
(2m+1−1)(2m−1) . The difference between adjacent symbols

(and exponent of the pairwise error probability) is indeed independent of j,

1
2
(√

x−
√

x̃
)2 =

1
2
α =

3
(2m+1 − 1)(2m − 1)

. (6.174)
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7

Discussion and Recommendations

A detailed list of the main contributions of our study can be found in the Sum-
mary, as well as in the outline to the dissertation, included in the introductory
chapter, starting at page 8. In this chapter, we critically discuss the results
presented in previous chapters, their possible relevance for practical communi-
cation systems, and some links with other bodies of work. As a complement,
we propose several possible extensions of the research into new directions.

As explained in some detail in Chapters 1 and 2, the additive energy chan-
nels incorporate traits of two standard channel models for the transmission of
information via electromagnetic radiation, namely the discrete-time additive
white Gaussian noise (AWGN) channel and the discrete-time Poisson (DTP)
channel. Whereas in the AWGN channel the channel output is a complex-
valued quadrature amplitude, given by the sum of a useful signal and an addi-
tive noise component, in the additive energy channels the output is, as for the
DTP channel, a non-negative number, an energy. The non-negativity of the
output is shared with the non-coherent discrete-time AWGN (NC-GN) chan-
nel, whose channel output is the squared modulus of the output of a coherent
AWGN channel. Unlike the additive energy channels, for which the output is
given by the sum of the signal and noise energies, the channel output in the
NC-GN channel is affected by an additional beat term (cross-product) between
signal and additive noise components.

We have considered two distinct cases, depending on whether the channel
output is continuous (additive exponential noise channel —AEN—) or discrete
(quantized additive energy channel —AE-Q—), in which case the energy comes
as an integer number of quanta, each of them with energy ε0. When the
quantum of energy ε0 vanishes, keeping the total energy constant, the AE-Q
channel model degenerates into the AEN model. Finally, one can establish
a link between the AE-Q channel and the DTP channel by noting that the
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latter is an AE-Q channel whose additive noise is zero; equivalently the AE-Q
channel is a generalization of the DTP channel whose output is affected by an
additive noise component with geometric distribution. Figure 7.1 shows how
the various channel models relate to each other.

AEN

AE−Q

DTPAWGN

Beat term, discrete output

Geometric noise

Zero additive noise 
Discrete output

NC−GN

Beat term

Quadrature amplitude

Energy

ε0 → 0

Figure 7.1: Additive energy channels (in dashed ellipse), their Gaussian
relatives, and the discrete-time Poisson channel.

7.1 Elaboration of the Link with Practical Systems

Perhaps the most natural candidate for a real channel where the additive energy
channel models are applicable is a radiation channel, be it at radio or optical
frequencies. In Chapter 3, we considered an AE-Q channel where the quantum
of energy is given by the energy of a photon, i. e. ε0 = hν, where h is Planck’s
constant and ν the frequency, with the assumption that the additive noise
component is distributed as thermal radiation at temperature T0. We saw in
that chapter the appearance of a natural threshold signal-to-noise ratio of the
equivalent AWGN channel, denoted by SNR∗, and approximately given by

SNR∗ ' 6 · 1012

ν
, (7.1)

for a temperature T0 = 290K. For example, at frequencies 60 GHz and 600MHz
the respective thresholds are 20 dB and 40 dB. Below the threshold the capacity
of the AE-Q channel is close to that of an equivalent AWGN channel, namely
log

(
1 + Es

Ew

)
= log

(
1 + εs

εn

)
, where Es = εsε0 and Ew = εnε0 are the average

signal and noise energy and εs and εn are the average number of photons in
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signal and thermal noise. Above threshold, the capacity asymptotically ap-
proaches the value 1

2 log εs. A similar change in the slope of the capacity from
1 to 1

2 takes place in the NC-GN channel, as determined by Katz [23].
Another possible link could be made with the self-noise which appears in

some channel measurements of wireless systems [76], or with phase noise, which
is known to progressively becomes the limiting factor in performance for high
enough frequencies. The general problem is to elaborate the possible relation-
ship between phase noise, self-noise, and Poisson noise.

Since most radio receivers are based on some form of coherent detection,
further research should be carried out on the possibility of designing energy-
modulation transmitters and direct-detection receivers for waveform channels
at either radio or optical frequencies.

Even though it is not reported in the dissertation, it is worthwhile men-
tioning that a linear amplifier model can be naturally defined for the AE-Q
channel. In this model, each quantum at the input generates, independently
of the remaining quanta, a random number of quanta at the output. It can be
shown [77] that this model leads to a natural definition of noise figure and of
Friis’s formula for the noise figure of a chain of amplifiers.

It is intriguing that the capacity of coherent detection may be achieved even
though no explicit use is made of the quadrature components of the signal. An
explanation for this effect is likely to need some use of quantum information
theory, possibly with an identification of the concepts “quantum” and “classi-
cal” capacity with some of the channels we have mentioned here. Some steps
along this line were carried out by Helstrom [78], who however did not con-
sider the additive energy channel models we have studied, but rather models
based on a non-coherent detection, which leads to a chi-square or a Laguerre
distribution, as we previously mentioned.

In a recent paper [79], Ben Schumacher, a pioneer in the field of quantum
information theory, is quoted as saying that “interesting restrictions on experi-
mental operations yield interesting information theories”. The additive energy
channels might thus be seen as “an interesting restriction on experimental oper-
ations” which naturally leads to an “information theory” deserving some study.
In this dissertation, we have presented some elements of such an analysis.

7.2 Extensions of the Channel Model

The family of additive energy channels naturally admits more models than the
ones we have considered. For example, in the AE-Q channel model the channel
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output at time k yk is given by the sum yk = sk +zk, where sk is a useful signal
with Poisson distribution, and zk an additive noise with geometric distribution.

A first natural extension of the model is the addition of a second Poisson
noise source, say vk, with Poisson distribution of a given mean, so that the
channel output becomes yk = sk + vk + zk. In fact, in the analysis of optical
channels, a DTP channel model of the form yk = sk + vk is often used; in this
case the noise source vk receives the name dark current and its origin is linked
to an undesired source of ambient light or to the working of the photodiode.

Another possible extension relates to the effect of signal fading. Inclusion of
fully-interleaved gamma-mf fading is straightforward; as we saw in Chapter 3 in
the context of DTP channels, the signal sk has in this case a negative binomial
distribution with coefficient m. Along this line, a physical reasoning for the
appearance of a gamma distribution in the fading would also be of interest.

A natural question is the determination of the capacity in presence of a dark
current or of fading. Concerning the dark current, its effect on the capacity
of the DTP channel was studied by Lapidoth and Moser [42] and Brady and
Verdú [35]. As for the fading, it is straightforward that the capacity of the
AEN channel with gamma fading also coincides with that of an AWGN with
gamma fading; in both cases the fading amplitude is assumed known at the
receiver. This follows from the fact that the capacities of the AEN and AWGN
channels with identical signal-to-noise ratio coincide.

Moreover, and as we mentioned previously, we saw in Chapter 3 that the
capacity of the AE-Q channel has two distinct forms as a function of the signal-
to-noise ratio. Below a threshold, additive geometric noise prevails over the
signal-dependent Poisson noise; above the threshold the situation is reversed.
In a similar vein, it would be interesting to determine the effect of gamma
fading on the position of the threshold signal-to-noise ratio.

Other extensions refer to studying the capacity of the non-coherent Gaus-
sian channel and its discrete counterpart, where the output has a Laguerre
distribution [37]. Recently, the NC-GC channel was extensively studied by
Katz and Shamai [23]; the capacity of the discrete non-coherent model seems
to have received little attention in the literature.

Another research topic relates to finding the exact capacity or the capacity-
achieving distributions of the DTP and AE-Q channels. Taking into account
the experience from the DTP channel [35,42], this problem is likely to be hard.
A possibly simpler problem is finding an alternative, simpler derivation of the
bounds to the capacity of the DTP channel.

As we discussed in Chapter 1, multiple-antenna systems have received
widespread attention in the past few years since their use increases the number
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of degrees of freedom available for communication. In order to account for
the presence of multiple antennas (or multiple-input multiple-output in gen-
eral, MIMO), the scalar model yk = xk + zk should replaced by an equation
relating signal and noise vectors through a mixing matrix. In contrast with
the Gaussian channels, this mixing matrix has non-negative coefficients, and
the optimality of standard matrix decomposition techniques to split the chan-
nel into a set of parallel sub-channels [4, 5] should be established. Otherwise,
an extension of the matrix decomposition techniques to non-negative matrices
could be necessary.

The matrix decomposition techniques would allow one to extend the MIMO
results from microwave systems to similar optical designs, such as mode-group
diversity multiplexing [20], a concept for the design of transparent parallel links
proposed by the optical communications group at TU/e. Direct extensions
of the Gaussian-channel results to optical frequencies have been reported by
Stuart [19] and by Shah et al. [80], the latter using coherent detection.

Other model extensions include the consideration of multi-user scenarios.
For the multiple-access AEN channel, Verdú found that its capacity region
coincides with that of the AWGN channel [21]. Other multiple-user channels,
such as the broadcast channel, still need to be studied.

We have recently obtained some results on the multiple-access additive en-
ergy channels [48]. Of special interest is the analysis of the effect of feedback on
the multiple-access channel. Recall that, in an information-theoretic context,
feedback means that the value of the channel outputs y1, y2, . . . , yk are made
known at the transmitter before sending the signal at time k + 1, xk+1. The
signal xk+1 may therefore be a function of the channel outputs y1, y2, . . . , yk.
For the single-user case, feedback does not increase the capacity [22], but it can
do so for the multiple-user AWGN channel [22]. Despite the apparent similar-
ity of the capacity regions of the AWGN and AEN channels, feedback does not
enlarge the capacity region of the latter. For details, refer to [48]. Moreover,
the threshold signal-to-noise ratio in the AE-Q channel depends on the number
of active users. Essentially, the more users there are, the larger their aggregate
Poisson noise is, and the lower the threshold.

7.3 Refinement of the Analysis of Coding and Modulation

Not only are the channel capacities of the AWGN and the AEN/AE-Q channels
close under a broad set of conditions, we have also seen in Chapters 5 and 6
that there exist simple digital modulation formats whose constrained capacity
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is similar to the channel capacity, and that the error rates of binary codes over
these channels are close to those in the AWGN channel.

We have determined the first two derivatives of the constrained capacity at
zero signal energy by direct computation. It would be worthwhile to explore
further the link with estimation theory recently found by Guo, Shamai, and
Verdú [60, 61] to provide an alternative computation for our results, possibly
for arbitrary values of the signal energy. Along this line, we have found that
the first-order coefficient of the constrained capacity over the AE-Q channel
is zero, which implies that the minimum energy per bit is attained at a finite
signal energy, whose value we have been unable to determine.

At the other range of signal energy, an exact form of the shaping gain of the
DTP channel for our family of pulse energy modulations (PEM), with no use of
a Gaussian approximation, is open. Since the approximation is quite good, the
practical improvement is however likely to be small. Knowing the shaping gain
for the DTP channel would allow for an extension of the quantitative analysis
of PEM modulation to the AE-Q channel, and possibly for a determination of
the threshold signal-to-noise ratio for the constrained capacity, rather than the
channel capacity considered in the dissertation.

A side-line of our analysis of the wideband regime in the Gaussian channel
was the extension of the trade-off between power and bandwidth to account for
the possibility of variations in the power, next to the bandwidth change studied
by Verdú [25]. It seems to be simple to extend our analysis to multiple-user
Gaussian channels, thereby extending the results by Caire et al. [81].

As final element, we have estimated the pairwise error probability in some
additive energy channels by using the union bound and a saddlepoint approx-
imation to the pairwise error probability. A possible complement would be to
use EXIT chart techniques [69] to optimize codes and modulation mappings.

From a more mathematical point of view, it would be useful to improve the
accuracy of the saddlepoint approximation, possibly by estimating the error
incurred by them. An extension of the saddlepoint approximation to general
random variables, thereby removing the distinction between lattice and con-
tinuous random variables when using the approximation would have interest in
itself, and would moreover lead to a method to consider the error probability
in the AE-Q channel, which we have not considered in its full generality.
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