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ABSTRACT

Mechanical variables at the microstructural level are
believed to regulate biological processes in trabecular
bone. In the present study it is attempted to determine
these microstructural parameters, using a realistic 3-D
finite element mode] of the trabecular structure. Three
dimensional computer reconstruction techniques were
used to obtain the microstructure of a Smm cube of
trabecular bone, A finite element model was created
from this data by directly converting voxels to brick
elements. The model thus obtained consisted of 296,676
brick elements and was solved using a special purpose
finite element routine in combination with an iterative
solving procedure.

The tissue strain-energy density distribution showed a
wide range of values. With boundary elements not
accounted for, a maximum tissue strain-energy density
of 269 times the apparent strain-energy density was
found. The tissue Young’s modulus was estimated at
8245 MPa by comparing the calculated apparent density
with literature values.

INTRODUCTION

The mechanical characteristics of trabecular bone
depend on the morphology of its structure, which
regulates the load transfer distribution from the articular
surface through the bone matrix. Mechanical strains at
the microstructural level of the individual trabeculae ate
believed to regulate the biological adaptive processes in
trabecular bone. However, as yet not much is known
about the micro-mechanical variables. Most of the stress
analyses with the finite element method (FEM) reported
use continuum assumption and apparent density and

250

anisotropy variables to represent microstructural
properties. Several attempts have been made to develop
a model suitable to study stresses and strains at the
microstructural level (Gibson, 1985; Williams and Lewis,
1982; Beaupré and Hayes, 1985). Recently, Hollister and
Fyhrie (1991) introduced homogenization theory in
combination with the FEM for modeling trabecular bone
in more detail. This theory assumes trabecular bone to
be a structure of unit cells, each having the same micro-
structural morphology. Owing to periodicity in the FEM
solution, the local stress distribution can be evaluated
from a global model. The unit cells can either be
simplified, regular structures (Hollister et al., 1991), or
represent a bone detail of trabecular morphology
(Hollister and Kikuchi, 1992a).

Two methods are presently available to measure and
represent the trabecular structure on a micro level. One
is a nondestructive method, using micro-CT-scanning,
whereby a voxel size of 50 micron can be obtained
(Feldkamp et al., 1989). The other technique involves 3-
D serial reconstruction using microtome slices (Odgaard
et al., 1990), which has a smallest possible voxel size of
about 20 microns. Until recently, however, efforts to
represent & substantial piece of bone in a FE model, for
example in the size of a mechanical test specimen, have
failed due to restrictions in computer memory and cpu-
time.

The purpose of the present study was to develop a new
FE strategy which does enable such a full, realistic 3-D
analysis. To this end, use is made of the morphological
characteristics of the voxel reconstruction and new
algorithms which take advantage of the vectorizing
capacity of computers. In this paper, the results of the
first analyses are presented.



FIGURE 1. THE THREE DIMENSIONAL RECONSTRUCTION OF THE
TRABECULAR BONE CUBE, WHICH ALSO REPRESENTS THE FE-
MODEL.

METHODS
The three dimensional microstructure of a character-
istic piece of trabecular bone was obtained by digitizing

128 slices from a Smm cube of bone taken from the .

proximal human tibia. A three dimensional recon-
struction of this bony cube is shown in Figure 1. The
rectangular voxels in the digitized cross sections were
converted to equally sized elements using a three
dimensional FE pre-processor developed in our labo-
ratory. The connectivity of the resulting element mesh
was checked for elements not connected to the main
structure. All elements in the model are rectangular and
equally sized: 40.26 by 28.44 by 40 microns in x-, y- and
z-direction respectively. The cube has N d-128 voxels
at each side (Fig. 2), hence, (128)3 voxels in total of
which N_=296,676 represent bone. Accordingly, the
volume fraction of the bone thus modeled equals

v=Ng/(Nprig)®= 0.14. The total number of degrees of
freedom equals 1,381,602.

A uniformly distributed unit load in the z-direction was

applied at the top of the model at z=z_, (Fig. 2).
Boundary conditions were chosen such that the displace-
ments in the x-direction were constrained at the x=x;,
and the x=x_, boundaries, in the y-direction at the
Y=Ypi, and the y=y_. boundaries, and in the z-direction
at the z=z; boundary.
All elements in the model were given isotropic material
properties with a Young’s modulus of 1000 MPa, and a
Poisson’s ratio of 0.3.

A special purpose FE-code was developed to solve the
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FIGURE 2. DIMENSIONS AND LOADING OF THE FE-MODEL

set of equations that results from the finite element
approach. In this code the Conjugate Gradient Iterative
Solving technique, with diagonal scaling as a
preconditioner was used (Strang, 1986; Hughes, 1987).
Each iteration requires a multiplication of the global
stiffness matrix with a vector. The memory required to
solve this problem was reduced by three separate
strategies. First, the entire global stiffness matrix is never
actually computed. Instead, an Element By Element
(EBE) approach (Hughes et al.; 1987) is applied which
allows for the multiplication at element level. Second,
because all elements are identical in size, the global
structure can be described by the element connectivity
alone. Hence, no nodal coordinate data has to be stored.
Finally, all elements have identical material properties
which allows for an identical element stiffness matrix for
all elements. This reduction even applies when each
element would have a different Young’s modulus,
because the isotropic element stiffness matrix is a linear
function of this modulus. Compared to traditional EBE-
solving techniques which must store all elements stiffness
matrices, the required core size is drastically reduced.
The matrix-vector multiplication was performed in a
highly vectorized manner (Hughes et al.; 1987, Hayes and
Devloo; 1986), taking full advantage of the CRAY YMP
computer used for the calculations.

The solution was considered sufficiently accurate if the
error in the calculated strain field was less than 25
microstrain. For the element size used in the present
study (40 micron), this criterium implies a maximum
allowable error in the displacement field of 1IE-6mm (1
micron). Residual forces were calculated to check for the
accuracy.

At tissue level, results will be presented for the tissue
strain energy density distribution, calculated directly from
the element nodal displacements and forces, and the
element volume. These values are compared to the
apparent strain energy density, which was calculated from
the external nodal forces and the corresponding



FIGURE 3. STRAIN-ENERGY DENSITY DISTRIBUTION IN A TEN
ELEMENTS THICK SLICE TAKEN FROM THE MIDDLE OF THE
MODEL. WHITE AREAS ARE HIGHLY LOADED, BLACK AREAS ARE
UNLOADED.

displacements, and the apparent volume.

To compare the results with those of earlier continuum
models, the apparent Young's modulus for the specimen
as a whole was calculated from the formula E,=o/e,,
where a,=1/(h.hy) is the apparent stress due to the
applied unit load, and &,=u_/h, is apparent strain; u,
represents the mean displacement of the loaded area,
and h,, hy and h, represent the external dimensions of
the cube 1n x-, y-, z-directions, respectively.

RESULTS

The Conjugate Gradient Iterative solver used a total
of 5074 iterations and 2.5 hours cpu time to obtain the
solution within the accuracy interval. Residual forces
were found to be less than 1E-5 N.

The calculated tissue strain-energy density distribution
is shown in Fig. 3 for a 10 elements thick slice taken
from the middle of the cube. Throughout the cross
section, the SED distribution shows relatively high
loaded regions inside trabeculae oriented in the overall
load direction. To quantify the results for the whole
structure, the ratio between the apparent SED U, and
the microstructural tissue SED U, in each element was
calculated. Results are presented in the histogram of
Figure 4. The mean ratio of tissue and apparent SED
was (U/U)pean= 7.07. The maximum value for this
ratio was (U,/U,) .= 16,343, To investigate whether this
high maximum value was due to boundary effects, the
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FIGURE 4. DISTRIBUTION OF THE TISSUE STRAIN-ENERGY

DENSITY U, OVER THE APPARENT STRAIN-ENERGY DENSITY U,
THE BIN WIDTH IS SET TO 1.0U,.

maximum ratio was calculated again, now excluding the
elements close to the boundary i.e. within 20 grid units.
The maximum U,/U, ratio in the remaining structure was
268.7.

The average displacement of the externally loaded
nodal points was u,, =9.68E-3mm. The apparent Young's
modulus calculated from this value was E,= 28.2MPa.

DISCUSSION

In the present paper it is shown that the model
developed can be used to obtain relations between local
tissue quantities and apparent quantities, for a reason-
ably large piece of trabecular bone.

The mean ratio of tissue and apparent SED determined
in the present model equals exactly the estimation for
this value U fv=7.07, as introduced by Carter et al
(1987). This result confirms the validity of the local
strain-energy density calculation as the total apparent
energy V,U, must equal the total internal energy in the
load carrying structure V,(U), .., Where V, is the
apparent volume and V,=vV, the total tissue volume.
However, the tissue SED distribution shows a wide range
of values, with a maximum U,/U, ratio of about 2312
times the average value although the number of elements
with excessive SED values is relatively small (Fig. 4). If
the elements close to the boundary are excluded, this
maximum ratio drops to 38 times the average value. It
is possible that a more physiological loading condition
(for instance obtained from multiaxial load cases) will
further reduce the maximal SED value.

Assuming that the bone tissue is a homogeneous,
isotropic and linear elastic material, the actual value of
its Young’s modulus can be obtained by scaling the
calculated apparent modulus to an experimentally
determined value. For a human proximal tibia, the mean
apparent Young’s modulus can be estimated from the
apparent density using for instance the formula of



FIGURE 5. DETAIL OF THE FE-MODEL SHOWING THE ELEMENT
SIZE RELATIVE TO THE TRABECULAR WIDTH.

Hodgkinson and Currey (1992): E, =10(%43+156loge), 1,
the present example an approximated value for the
apparent density is 280 kgm™ (approximated from the
volume fraction of 0.14). In the above formula this gives
an apparent Young’s modulus of 232.5 MPa . We have
calculated an apparent Young's modulus of 28.2 MPa
with a tissue modulus of 1000 MPa in the present model.
Since the model is linear, a tissue modulus of 8245 MPa
would give exactly the apparent modulus value of 232.5
MPa. The tissue value of 8245 MPa is in agreement with
results found by Hollister (1992a) who suggested that the
tissue modulus should be greater than 5000 MPa. A
better determination of the tissue modulus can be
obtained by experimentally testing the same specimens
that are actually modeled. These experiments can also be
used to determine material properties that are a non-
linear function of the deformations, such as the Poisson’s
ratio. Optimization procedures are required to fit
experimental and FE model results, from which the
unknown parameters can be obtained.

The geometry of the FE-model was chosen such that
the average trabecular cross section as seen in the model
was covered with at least four elements. A typical
trabecula in the model is shown in Fig. 5. The jagged
boundary that can be seen in the digitized mesh may
introduce inaccuracies in the calculations. However,
Hollister (1992b) has shown that the resulting errors in
the stiffness determination resulting from the digitization
will be less than 10% for images with 50 micron cubic
voxels where the major structures are 100-200 microns
in thickness. For the 40 micron voxels used in the
present study, the resulting error is expected to be less
than the error found by Hollister.
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