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Abstract Optimization of timing behaviour of manufacturing systems can be re-
garded as a scheduling problem in which tasks model the various produc-
tion processes. Typical for many manufacturing systems is that (collec-
tions of) tasks can be associated with manufacturing entities, which can
be structured hierarchically. Execution of production processes for sev-
eral instances of these entities results in nested finite repetitions, which
blows up the size of the task graph that is needed for the specification of
the scheduling problem, and, in an even worse way, the number of pos-
sible schedules. We present a subclass of UML activity diagrams which
is generic for the number of repetitions, and therefore suitable for the
compact specification of task graphs for these manufacturing systems.
The approach to reduce the complexity of the scheduling problem ex-
ploits the repetitive patterns. It reduces the original problem to a prob-
lem containing the minimum amount of identical repetitions, and after
scheduling of this much smaller problem the schedule is expanded to
the original size. We demonstrate our technique on a real-life example
from the semiconductor industry.
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1. Introduction
Scheduling in manufacturing systems has received much attention in

the literature. The basic scheduling issue, the assignment of mutually
exclusive resources to tasks, is addressed in the Job Shop Scheduling
literature [15, 19]. In addition, in some cases also the order of tasks
for a single resource influences temporal behaviour of the manufacturing
system [3], analogous to the Traveling Salesman Problem [13]. Both of
these problems areNP hard to solve. Combination of these optimization
problems and the size and diversity of practical manufacturing cases
makes scheduling of manufacturing systems an interesting challenge.

In [14], an overview of specific scheduling issues playing a role in man-
ufacturing systems can be found. One of them is the fact that the same
manufacturing processes have to be executed repetitively for several in-
stances of manufacturing entities. Often, the relations between the man-
ufacturing entities are hierarchical. Consider for example an assembly
system. A final product in such a system, called an assembly, can con-
sist of sub-assemblies, which in turn can consist of sub-sub-assemblies.
Products are manufactured in batches and manufacturing orders consist
of multiple batches. The relationships between the manufacturing enti-
ties of this system can be expressed by the Entity-Relationship Diagram
(ERD) of figure 1.

Entity B Entity C Entity D Entity E
1 n 1 n 1 n 1 n

Entity A

Figure 1: Hierarchical structure of manufacturing entities.

For the assembly system example, entities A through E can be asso-
ciated with order, batch, product, sub-assembly, and sub-sub-assembly,
respectively. Another example with hierarchical manufacturing entity
relations concerns packaging. For instance, a manufacturing order of a
beer brewery consists of several pallets, containing several crates with
several bottles of beer. A third example concerns a wafer scanner man-
ufacturing system from the semiconductor industry [1]. Wafers are also
produced in batches (lots). A wafer scanner projects a mask on a wafer,
using light. Eventually, the projected masks result in Integrated Circuits
(ICs). On one wafer, multiple ICs and types of ICs are manufactured.
Multiple types of ICs involve multiple masks, and multiple masks are
placed on a reticle. The manufacturing entities can be modeled as in
figure 1, where entity A through E can be associated with lot, wafer,
reticle, mask, and IC, respectively. As this example concerns not only
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entities that end up in the product but also other entities required for
manufacturing, this example is considered in the remainder of this paper.

Repetitive execution of manufacturing processes for several instances
of manufacturing entities leads to finite repetitive patterns in manufac-
turing schedules. In practice, execution of the first few instances and last
few instances of a manufacturing entity differ slightly from the rest. This
is a large difference with unlimited repetitive behaviour of manufacturing
systems, which has received much attention in literature [20, 11]. Fur-
thermore, the hierarchical structure of the manufacturing entities leads
to patterns on several granularity levels. The purpose of this paper is
describe an approach to identify exactly identical repetitive scheduling
patterns in order to reduce the complexity of the scheduling problem.
With this information, a (sub-) optimized manufacturing schedule can
be determined by concatenation of the optimized sub-schedules of the
patterns. Without this information, combination of the possible sub-
schedules for these recurrent patterns blows up the number of possible
overall schedules dramatically.

Concretely, our contribution is twofold. First, we introduce a subclass
of UML activity diagrams [10, 17] for the compact specification of task
graphs which contain finite repetitive behaviour. The second part of
our contribution consists of a method for finding repetitive subgraphs in
these task graphs. This information can easily be exploited to speed up
the scheduling process in a dramatic way. We show this by applying our
technique to a real-life example from the semiconductor industry.

Related work. In [16] UML activity diagrams that specify scheduling
problems are translated to timed automata models. Schedulability of the
activity diagram is translated to a reachability property, which is checked
by the model checker Uppaal [12]. If the property is satisfied (the
activity diagram is schedulable), then a trace that proves the property is
equivalent to a schedule for the activity diagram. Although the explosion
of the scheduling effort due to hierarchical, finite repetitions is recognized
in [16], no solution is provided.

Related work w.r.t. the semantics of UML activity diagrams includes
the verification of workflow models specified by these diagrams [5]. In
contrast to our work, the semantics of [5] associates a transition system
to each activity diagram, using some form of “token game”. The tran-
sition system semantics of [5] can serve as a basis for verification using
model checking but, unlike our task graph (partial order) semantics, it
cannot be used as a starting point for solving scheduling problems. An-
other semantics for UML activity diagrams is provided by [7], using a
straightforward translation to Petri nets. However, this semantics does
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not address the evaluation of conditionals, and as a result it is unclear
how to extract a task graph in order to address scheduling issues.

Related work w.r.t. the second part includes computer-aided design of
video processing algorithms [18]. Most video algorithms consist of repet-
itive executions of operations on data, which can be described by using
nested loops and multidimensional arrays. The scheduling problem in
this case is to minimize a particular cost function while satisfying certain
timing, resource and precedence constraints. However, it seems that no
exploitation of equality of loop instances takes place. Our work proba-
bly relates more to widening and acceleration techniques (e.g., [4] and
[2, 8]), which try to accelerate the fixed-point computation of reachable
sets. At least the approaches in the latter two use static analysis of the
control graph (the syntax) to detect interesting cycles, of which the re-
sult of iterated execution can be computed by one single meta-transition.
These meta-transitions are then added to the system and favored by the
state space exploration algorithm, resulting in faster exploration of the
state space. Our technique also exploits cyclic structures, yet not in the
syntax, but in the semantics of the activity diagrams, to derive future
behaviour. When this is done during the actual scheduling, it can be
regarded as a form of acceleration. We are not aware of any other related
work.

Outline. The paper is structured as follows. In section 2, activity
graphs – a subclass of UML activity diagrams – are introduced, which
are suited to model finite repetitive behaviour of manufacturing systems.
Subsequently, we formally define the syntax of activity graphs, and we
define the semantics by association of task graphs. Section 3 discusses
an approach to recognize repetitive patterns in task graphs associated
with activity graphs. Moreover, we show how this information can be
used in a real-life, industrial, example. Finally, concluding remarks are
presented in section 4.

2. Activity graphs
Task graphs are basic objects for the specification of scheduling prob-

lems. However, they are less suited for the specification of manufacturing
systems with finite repetitive behaviour. Consider figure 1 and assume
that we need to produce 5 units of each entity to be able to produce its
parent entity. A task graph describing such a problem then consists of
55 sub graphs for the production of the needed quantity of entity E. In
other words, the task graph may be exponentially large (or even worse!)
in the number of different entities, which makes specification using a
task graph and scheduling inconvenient.
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In this section we introduce a subclass of UML activity diagrams for
the compact specification of task graphs which contain limited repetitive
behaviour [10, 17]. Activities can be associated with manufacturing pro-
cesses. Limited repetition of (collections of) activities can be obtained
using the so-called conditionals, that start the next repetition if the limit
is not reached, and proceed if the limit has been reached.

2.1 Formal definition of activity graphs
Activity graphs are directed graphs with different types of vertices

(a.k.a. nodes), which correspond to the types in UML activity diagrams,
and with an annotation of the conditional nodes, which is used to specify
finite repetitions of subgraphs1.

Definition 1 (Activity graph) An activity graph is defined by a tu-
ple (N,n0,�, c), where

N is a finite set of nodes, partitioned into the sets C,F, J,A, M
and E which are sets of conditional, fork, join, activity, merge
and exit nodes respectively,

n0 ∈ F ∪A ∪M is the initial node,

�⊆ N ×N is the set of precedence edges such that:

– exit nodes have no successors, fork nodes have at least two
successors, conditional nodes have two successors, and other
nodes have one successor, and

– join and merge nodes have at least one predecessor, and other
nodes have one predecessor. The initial node is an exception
since it may have no predecessors.

c : C → N × N × N × 2C is the conditional function such that:
if c(v) = (v′, n, v′′, R), then v � v′ and v � v′′. We call v � v′

the true transition of v, n the upper bound of v, v � v′′ the false
transition of v, and R the reset set of v.

We can explain the conditional function c as follows. Assume that
c(v) = (v′, n, v′′, R). This means that initially the true transition of v is
enabled and the false transition of v is disabled. After n executions of
the true transition it becomes disabled and the false transition becomes

1In this paper we do not need to perform the actual scheduling. Therefore, we omit the
durations and resource requirements of the activities/tasks in all definitions.
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enabled. The enabledness can be reset to the initial situation by taking
a false transition of a conditional w such that v is in the reset set of w.

We use the regular UML conventions for the graphical representation
of activity diagrams to represent our activity graphs. Summarizing, forks
and joins are represented by bars, merges by diamond shapes with one
outgoing arrow, activities by boxes with a name inside, exits by circled
black dots, and conditionals by diamonds with two guarded outgoing
edges. The initial node is preceded by a black dot. In our representation
we use the conditionals as “counters” to keep track of the number of
executions of the true edge of the conditional.

[c2<2][c1<2]

[c2>=2][c1>=2]

A2 A3

A1

Figure 2: A small activity graph.

For instance, figure 2 depicts a small activity graph that has three
activities and uses two conditionals, c1 and c2. There is one cycle, con-
trolled by the conditionals, that is executed twice and in which activities
A2 and A3 can run in parallel. Activity A1 must be run once, and this
can happen in parallel with the cycle.

2.2 From activity graphs to task graphs
We define the semantics of an activity graph by unfolding it (which

means resolving the conditional choices) to obtain all reachable instances
of nodes and their precedence relation. For instance, figure 3 depicts the
intended unfolding of the activity graph in figure 2.

Although the unfolding operation is intuitively quite clear, there is a
snag in it. Consider, for instance, the activity graph of figure 4. We can
unfold this graph in two ways, since we can choose when to reset c1. The
first unfolding contains one instance of both activities whereas the sec-
ond unfolding contains two instances of activity A1 and one instance of
activity A2. This example shows us that an activity graph may contain
race conditions in which two parallel branches of a fork use the same
imaginary conditional counter, which results in a non unique unfolding.
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A2 A3 A1A3A2

Figure 3: The intended unfolding of the activity graph of figure 2.

Such race conditions are undesirable and we want to restrict ourselves
to a subclass of activity graphs that do not contain race conditions and
which have a unique unfolding.

A2

[c1<1]

A1

[c2<1]

[c1>=1]
[c2>=1]
c1:=0

Figure 4: A non-deterministic activ-
ity graph.

[c1<2]

[c1>=2]

A1 A2

Figure 5: An activity graph which
requires the use of additional coun-

ters.

In order to recognize the situation in which an activity graph can be
unfolded in more than one way, we compute a distribution of the privi-
leges of using the conditionals over the various parallel branches in the
activity graph. We obtain such a distribution, a relevancy mapping, by
assigning a set of relevant conditional nodes to each node in an activity
graph. In order to exclude race conditions, we forbid parallelism of nodes
that have overlapping relevancy sets. For instance, the conditional c1 is
relevant for both parallel branches of the fork node in figure 4, which
renders a unique unfolding impossible.

To avoid problems with, for instance, the unfolding of the activity
graph in figure 5, we extend the range of the relevancy mapping to
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all nodes2. The rationale behind the formal definition of the relevancy
mapping is as follows. First, we require that a node is relevant for itself,
and the reset set of a conditional is relevant for that conditional. Second,
we require that relevancy is passed on to neighboring nodes, except not
forward through forks and not backward through joins (we consider these
last two situations separately). This is necessary to give an inductive
definition of the unfolding operation. Third, if a node is relevant for the
successor of a fork, then it is also relevant for the fork. Moreover, the
relevancy sets of any two different successors of a fork are disjoint. The
first part is necessary for the inductive definition, and the second part
is to avoid race conditions. Fourth, we require that the set of relevancy
sets of the predecessors of a join is a partitioning of the relevancy set of
the join, which, again, is necessary for the inductive definition. These
four points are formalized as follows:

Definition 2 (Relevancy mapping) A relevancy mapping for an ac-
tivity graph (N,n0,�, c) is a function X : N → 2N such that:

(i) If v is a conditional node with c(v) = (v′, n, v′′, R), then {v}∪R ⊆
X(v). Otherwise, v ∈ X(v).

(ii) If v � v′, v is not a fork node and v′ is not a join node, then
X(v) = X(v′).

(iii) If v is a fork node with successors v1, ..., vn, then ∪n
i=1X(vi) ⊆ X(v)

and X(vi) ∩X(vj) = ∅ for all 1 ≤ i 6= j ≤ n.

(iv) If v is a join node with predecessors v1, ..., vn, then we require
X(v) = ∪n

i=1X(vi) and X(vi) ∩X(vj) = ∅ for all 1 ≤ i 6= j ≤ n.

We can show that the problem whether a general activity graph has a
relevancy mapping is NP-complete by a reduction from 3-SAT without
negation and with exactly one true literal per clause [6]. However, for the
more restricted class of activity graphs for which holds that every node is
reachable from the initial node – which is not a limiting assumption – we
cannot find a reduction, yet we also cannot find a polynomial algorithm.

2Assume that the nodes in a unfolding are tuples (v, γ), where v is a node and γ is a valuation
of the conditionals which are relevant for that node (γ(v) counts the number of executions
of the true edge of v since its last reset). Now consider figure 5. When we construct the
set of relevant conditionals for each node, we see that either T1 must be labeled with c1
or T2 must be labeled with c1 (otherwise we cannot give a clean inductive definition of the
unfolding operation). If we assume that T1 is labeled with c1, and we unfold the activity
graph, then we see that only one instance of T2 appears, namely (T2, ∅), since T2 has an
empty relevancy set. This, of course, is not what we expect from the unfolding.
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In practice, one can easily translate the problem of finding a rele-
vancy mapping for an activity graph to |N | SAT problems in |N | literals
(where N is the set of nodes), which can then be solved by state of the
art algorithms [9]. We can also give an ad hoc algorithm for finding a
relevancy mapping or showing that such a mapping does not exist. Our
algorithm makes O(|N | · dn) calls to a balance function which is polyno-
mial in the size of the activity graph. In this formula d is the maximal
amount of predecessors of a join node and n is the total number of join
nodes. Experimental research should be able to clarify which of the two
approaches is the best.

In order to define the semantics of an activity graph, we define ΓN for
an activity graph with nodes N as the set of partial functions with type
N ↪→ N. We call a γ ∈ ΓN a node valuation and we use the following
abbreviations: γ[v := v +1] maps every node not equal to v to the same
value as γ, and it maps v, if it is defined by γ, to the value γ(v) + 1.
Similarly, γ[R := 0] agrees with γ on the value of every node not in R
and it maps every node in R, if it is defined by γ, to zero. If γ, γ′ ∈ ΓN

and they both are defined for disjoint sets of nodes, then we let γ ∪ γ′

denote the node valuation that is defined for the union of these counter
sets according to γ and γ′. Finally, if γ ∈ ΓN and S is a subset of
counters, then we let [γ]S denote the partial counter valuation that is
obtained by projecting γ to S.

For simplicity we make two assumptions about our activity graphs:
(1) a conditional node is not immediately followed by a join node, and
(2) a fork node is not immediately followed by a join node. Note that we
can easily eliminate these constructions in an activity graph by adding
“dummy merges” with only one predecessor. Therefore, these assump-
tions can be made without loss of generality, yet they make the following
definition much shorter.

Definition 3 (Unfolding) Let A = (N,n0,�, c) be an activity graph
(N is partitioned in the usual way) with relevancy mapping X. The
unfolding of A is a directed graph (V, 7→), where V ⊆ N × ΓN is the set
of node instances, and 7→⊆ V × V is a set of directed edges, inductively
defined as follows:

(i) The base clause is: {(n0, γ0)} ∈ V , where γ0(v) = 0 if v ∈ X(n0)
and it is undefined otherwise.
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(ii) The inductive clauses are3:

(v, γ) ∈ V v ∈ J ∪M ∪A v � v′ v′ /∈ J

(v′, γ′) ∈ V (v, γ) 7→ (v′, γ′) where γ′ = γ[v := v + 1]
(1)

(v, γ) ∈ V v ∈ F v � v1, · · · , v � vn

(vi, γi) ∈ V (v, γ) 7→ (vi, γi) where γi = [γ]X(vi)[v := v + 1]
(2)

(v1, γ1), · · · , (vn, γn) ∈ V v1 � v, · · · , vn � v
γ1(v1) = · · · = γn(vn) v ∈ J

(v, γ) ∈ V (vi, γi) 7→ (v, γ) where γ = ∪n
i=1γi[vi := vi + 1]

(3)

(v, γ) ∈ V v ∈ C c(v) = (v′, n, v′′, R) γ(v) < n

(v′, γ′) ∈ V (v, γ) 7→ (v′, γ′) where γ′ = γ[v := v + 1]
(4)

(v, γ) ∈ V v ∈ C c(v) = (v′, n, v′′, R) γ(v) ≥ n

(v′′, γ′′) ∈ V (v, γ) 7→ (v′′, γ′′) where γ′′ = γ[R := 0]
(5)

With rules (2) and (3) we consider all successors or predecessors.

The inductive definition of the unfolding of an activity graph has a
unique solution. For instance, the unfolding of the activity graph in
figure 2 indeed is the one in figure 3 (we omitted the node valuations,
since that unnecessarily complicates the picture).

An activity graph for which holds that its unfolding has no “loose
ends” (which are non exit instances with no successors) is called well-
defined. For instance, the unfolding in figure 3 is well-defined. However,
if we construct the unfolding for the activity graph in figure 2 in which
we have replaced the upper bound of conditional c1 with 3, then we see
that the third instance of activity A2 is a loose end, since there will be
only two instances of activity A3.

Note that the unfolding of a well-defined activity graph is a new ac-
tivity graph in which all conditionals have been replaced by merges.
Compare, for instance, the activity graph in figure 2 and its unfolding
in figure 3.

Let a and b be two instances in some unfolding. If there is a path
from a to b, then we denote this by a 7→∗ b. A path consisting of at

3Essentially this is a parameterized definition. Thus, for each activity graph, we can find a
finite set of inductive clauses, which are “instances” of the parameterized clauses, that are
used for the construction of the unfolding of that particular activity graph.
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least one edge is denoted by a 7→+ b. We define parallelity of instances
as follows:

(v, γ) ‖ (v′, γ′) ⇐⇒ ((v, γ) 67→∗ (v′, γ′) ∧ (v′, γ′) 67→∗ (v, γ))

We say that an instance a is non-parallel if there is no instance b
such that a ‖ b. We now informally state some useful properties of
unfoldings. (For the formal statement and proof of these items we refer
to the appendix.)

Many different relevancy mappings may exist for an activity graph,
but they all lead to essentially the same unfolding (lemma 1).

Race conditions do not appear in activity graphs which have a rel-
evancy mapping. Thus, node instances which use the same nodes
are not parallel (lemma 3).

The instances in a well-defined unfolding satisfy the same require-
ments on the number of successors and predecessors as their nodes
in the activity graph, except that merge instances have one pre-
decessor and conditional instances have one successor (lemmas 4
and 5).

An unfolding is acyclic, but it might be infinite (lemma 6).

We state a sufficient syntactical condition on activity graphs that
ensures finiteness of the unfolding. We can check this condition in
time polynomial in the size of the activity graph (lemma 7).

By “stripping away” the control structure instances (all instances but
those of activity nodes) in an unfolding we obtain the task graph. Hence,
we call instances of activity nodes tasks.

Definition 4 Let (V, 7→) be the unfolding of activity graph A. The task
graph of A is the tuple (T,→), where

T = { (v, γ) ∈ V | v is an activity node }, and

→⊆ T × T defined as: a → b iff

– a 7→+ b without passing through other activity instances, and
– no c ∈ T \{b} exists such that a 7→+ c without passing through

other activity instances and c 7→+ b.

The fact that there are no cycles in an unfolding implies that the task
graph is acyclic too. For instance, figure 6 depicts the task graph of the
unfolding in figure 3. (Again, we did not depict the node valuations of
the instances.)
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T1

T2

T2 T3

T3

Figure 6: The task graph of the unfolding in figure 3.

3. An approach to exploit repetitive structures
in activity graphs

In the previous section we have used activity graphs for the specifi-
cation of scheduling problems for manufacturing systems with a finite
repetitive control structure. The semantics of these activity graphs is de-
fined in terms of unfoldings, which on their turn define (possibly infinite)
task graphs.

Apart from the known NP-hardness of the task graph scheduling
problem, we also face a possible blow-up in size of the task graph due to
nested cycles. This makes the approach in which we straightforwardly
unfold the activity graph and feed it to an regular scheduler infeasible.
Instead, we need to determine the repetitive structures in an activity
graph to be able to exploit these during scheduling of the task graph.

Our approach consists of three steps. First, we lower the upper bounds
of conditionals to values as small as possible, which means that we are
just able to recognize repetitive structures in the condensed activity
graph. Second, we compute the task graph of the condensed graph,
and use regular scheduling tools to find a solution for this relatively
small problem. Third, using repetitive structures and the schedule, we
construct a schedule for the original, generally much larger, activity
graph.

3.1 Formalizing our approach
In this section we formalize our three step plan introduced above for

scheduling activity graphs. The first step involves decreasing the upper
bounds of the conditionals that control the repetitions in the activity
graph such that they are minimal w.r.t. to detecting the repetitions. At
this moment, our approach for finding the minimal activity graph is as
follows:

The activity graph has been constructed with a clear view of what
it should mean. Therefore, it is known which conditionals (or
sets of conditionals) specify the repetitions of the manufacturing
process. The first step is to set the upper bounds of all these con-
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ditionals to the value such that at least one regular instance of the
manufacturing entity is present. E.g., all leading manufacturing
entities (that differ slightly from normal ones) are present, plus a
single regular entity. If all entities are the same, then the upper
bound is set to one.

Increment the lower bounds of conditionals that control a single
repetition, until all (sets of) conditionals are “extendable” (below,
we formally explain what extendability means). It seems that the
order of this search process can be arbitrary.

Next, we explain what extendability of a set of conditionals means.
First, we define what we exactly mean with the increment (and decre-
ment of upper bounds).

Definition 5 ((G, n)-extension) Let A be an activity graph, let G be
a subset of conditionals of A, and let n ∈ N. We define the (G, n)-
extension of A, denoted by E(A, G, n), as the activity graph in which the
upper bounds of the conditionals in G have been incremented with n.

A relevancy mapping for an activity graph is also a relevancy mapping
for any extension of that activity graph. In the general case, however,
the unfolding of such an extension does not need to be well-defined, as
we already have sketched in the previous section. Next, we define what
we exactly mean with a “repetitive structure” in an activity graph.

Definition 6 (Repetitive structure) Let A be an activity graph
and let A′ = (N ′,�′) be a subgraph of A.We call A′ a repetitive struc-
ture of A iff there exists more than one isomorphic embedding of A′

into the unfolding of A, denoted by (V ′, 7→′), i.e., an injective function
i : N ′ → V ′ satisfying

i(v) = (v′, γ′) ⇒ v = v′

v � v′ ⇔ i(v) 7→ i(v′)

This definition carries easily over to task graphs. We think that it is
quite useful to be able to point out the repetitive patterns in an unfolding
(or task graph), since such information can be exploited during schedul-
ing, e.g., by copy-pasting the sub schedules of the repetitive patterns to
obtain a schedule for an extension of the activity graph.

Note that repetitions in an unfolding appear due to a cycle in the ac-
tivity graph. The scope of this paper is finite repetitive behaviour, which
implies that the cycles in the activity graph are controlled by condition-
als. Therefore, we try to grasp repetitive structures using subsets of
conditionals.
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Let A be a well-defined activity graph with a finite unfolding (V, 7→)
and let G be a subset of conditionals of that graph. The algorithm
depicted in figure 7 computes a pair of sets, R and B, called the cyclic
structure of G (we use succ(R) to denote the set of direct successors of
instances in set R).

(1) i := 0
(2) R0 := {(n0, γ0)}
(3) while (Ri 6= ∅)
(4) Bi := trans closure of succ(Ri) under 7→ \{ ((v, γ), (v′, γ′)) | v ∈ G }
(6) Ri+1 := { (v, γ) ∈ Bi | v ∈ G }
(7) Bi := Bi \Ri+1

(8) i := i + 1
(9) od
(10) return (R, B) where R = {R1, ..., Ri−1} and B = {B1, ..., Bi−1}

Figure 7: Computation of the cyclic structure of the set of conditionals G.

The while loop eventually terminates since we assumed that the un-
folding is finite, and we have proven that it is acyclic. Also note that
Ri only contains instances of conditionals in G and all edges leading
outside Bi lead to Ri+1. Figure 8 gives a graphical representation of a
cyclic structure where all pairs Ri and Rj are disjoint.

R

R

R

B

1

2

k

1

V

Figure 8: The cyclic structure associated with the set of conditionals G.

We can define Γi as the union of all valuations of the instances in Ri

projected to the domain of the conditionals of the activity graph. If all
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instances in Ri are pairwise parallel, then Γi is a partial function, since
lemma 3 tells us that the relevancy mapping must then assign disjoint
sets to the conditional nodes of Ri. Next, we define the situation in
which we are able to recognize repetitive structures.

Definition 7 (Extendability) Let G be a subset of conditionals of
an activity graph A and let R = {R1, ..., Rk} and B = {B1, ..., Bk} be
the associated cyclic structure. We call G extendable, if

the set R is a partitioning of the set of all instances of conditionals
in G, such that |Ri| = |G|,

if (v, γ) 7→ (v′, γ′) and (v′, γ′) ∈ Bi, then (v, γ) ∈ Bi ∪Ri,

the outgoing edges of Ri either are all true edges or all false edges,
and

if Ri exits with true edges and Ri+1 exits with false edges, then
Γi+1 = Γi[G := G + 1]. We call the set Ri ∪Bi a repetitive set.

This definition concludes the first step of our approach. We now
can decide which condensed activity graph is the smallest such that the
conditionals which specify repetitions are still extendable. This means,
as we see during the third step, that we can detect repetitive patterns
for all sets of extendable conditionals.

The second step of our approach consists of using regular scheduling
tools to find a (optimal) solution for the condensed activity graph that
we have found in step one. The actual scheduling falls outside the scope
of this paper. Therefore, we just assume that we can obtain such a
solution.

The third step consists of using repetitive structures of the condensed
activity graph of step one and the schedule of step two to construct a
schedule for the original activity graph. The next lemma formalizes our
thought that the unfolding (task graph) of the condensed activity graph
is just large enough to contain subgraphs which can be copy-pasted to
obtain the unfolding (task graph) of the original problem.

Lemma 8 If an activity graph A is extendable for G, then E(A, G, n)
is well-defined for any n ∈ N. Moreover, the subgraphs of A associated
with the repetitive sets are repetitive structures of the extension.

Proof. Let R = {R1, ..., Rk} and B = {B1, ..., Bk} be the cyclic struc-
ture of G for an activity graph A. Let {i1, ..., im} be a set of indices of
the repetitive sets. We assume that the indices are strictly increasing,
that is j < k ⇒ ij < ik.
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The first item of definition 7 says that any set Ri contains exactly one
instance of every conditional node in G. Since R is a partitioning, every
instance of a conditional node in G is included in some Ri. Moreover,
the instances in Ri are pairwise parallel, since otherwise R would not be
a partitioning, and therefore we know that every Γi is a partial function
for all Ri.

Now consider the (G, n)-extension of A, denoted by A′. The rele-
vancy mapping for A also is a relevancy mapping for A′ and we use that
relevancy mapping to construct the unfolding of A′.

Since only the upper bounds of the conditionals in G are increased, we
can use exactly the same inductive clauses from definition 3 to construct
the unfolding up to the conditionals in the set Ri1+1. Now instead of
taking the false edges of the conditionals, the true edges must be taken,
since the upper bounds of all counters in G have been increased with n.
Since we required that Γi1+1 = Γi1 [G := G + 1], we know that in this
situation exactly the same conditional edges are enabled as from the
conditionals in Ri1 . Moreover, the second item of definition 7 tells us
that the structure Ri1∪Bi1 is independent from the rest of the unfolding
(especially it contains no join instances that have a predecessor that is
not in Ri1 ∪ Bi1). Finally, the third item tells us that every instance
of a conditional in G takes its true edge from Ri1 and its false edge
from Ri1+1. Therefore, we can say that the subgraph Ri1 ∪ Bi1 exactly
defines the last execution of the cycle that is controlled by the set of
conditionals G. In other words, we can apply the same inductive clauses
that we used to show that Ri1 ∪ Bi1 is part of the unfolding to show
that a “copy” of this sets also is part of the unfolding. Thus, we can
copy Ri1 ∪ Bi1 n times before we proceed with the set Ri1+1.

If we do this copy-pasting for all the indices {i1, ..., im}, then we have
extended all conditional instances, since by the first item of definition 7
we know that there are no conditionals in G that are not in some R-set.
The resulting unfolding is the unfolding of the (G, n)-extension of A.
Moreover, it is well-defined since A is well-defined and the second item
of the definition ensures that copy-pasting introduces no loose ends.

Finally, it is clear that the subgraphs of A associated with the sets
Rij ∪ Bij are repetitive structures, since we have shown that repetitive
patters in the (G, n)-extension of A appear by applying the copy-past
method sketched above to these sets. �

The previous lemma only covers the extension of a single set of con-
ditionals, whereas in general we need the extension of several sets of
conditionals. The next definition covers hierarchy (or nesting) between
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cyclic structures of different sets of conditionals, which is needed for such
a parallel extension.

Definition 9 (Hierarchy) Let A be an activity graph and let G and
G′ be a disjoint sets of conditionals of A, which both are extendable for
A. We say that G ≺ G′ iff for all repetitive sets Ri ∪ Bi of G we can
find a B′

j in the B-set of G′ such that Ri ∪Bi ⊂ B′
j.

The next lemma states that we can extend an activity graph for two
sets of conditionals, if they are hierarchical. (Note that we can easily
generalize this lemma to an arbitrary number of hierarchical sets of
conditionals.)

Lemma 10 If an activity graph A is extendable for G and for G′ and
G ≺ G′, then E(E(A, G, n), G′, n′) is well-defined for any n, n′ ∈ N.
Moreover, the subgraphs of A associated with the repetitive sets of G
and G′ are repetitive structures of the extension.

Proof (sketch). The idea is to construct the extension ofA inside out.
This means that we first apply the method sketched in the constructive
proof of lemma 8 to G, and then to G′.

By definition 9 we can find a B′
j in the B-set of the cyclic structure of

G′ such that Ri∪Bi ∈ B′
j for every repetitive set Ri∪Bi of G. Thus, we

copy-paste the set Ri∪Bi n times and also add the new instances to the
set B′

j . In the proof of lemma 8 we have sketched that this works out
fine. Moreover, it does not disturb the validity of the cyclic structure of
G′, that is, G′ is extendable for the extension E(A, G, n) and the tuple
(R, B′), where B′ has been updated as described above, is the associated
cyclic structure. �

3.2 Example application of our approach
In this subsection we apply our approach to part of a scheduling prob-

lem from a wafer scanner. This example covers three out of five manufac-
turing entities that were discussed in the introduction: reticles, masks,
and ICs.

The number of reticles involved is 15 in this case. The conditional
set that can be associated with this GC = {c0, c1}. Obviously, the
upper bounds of these conditionals equal 15.

The number of masks involved is 8. The conditional set that can
be associated with this GD = {c2, c3}. For the first mask of
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every reticle, some additional activities must be executed, which
is controlled by conditionals c4, c5, c6, and c8.

The number of ICs involved is 43, which is controlled by conditional
set GE = {c7}. Therefore, the total amount of ICs in the specified
schedule will be 15 × 8 × 43 = 5160.

It is clear that the task graph associated with this activity graph is
quite large and not easily schedulable. We have implemented the theory
in this paper using Java, and we can show in a few minutes that the
task graph consists of 11655 tasks (construction of the relevancy mapping
takes 85 calls to the balance function).

We try to apply the technique explained in the previous section. The
first step consists of finding smallest upper bounds of the conditionals
that specify the repetitions for the recticles, masks and ICs. We start by
setting the upper bounds of GC and GE to 1, since every repetition is
equal. However, we set the upper bounds of GD to 2, since the first image
of every reticle differs from the rest. Next, we check the extendability of
GC , GD and GE for this condensed graph which we call A0: they are all
extendable. Moreover, GE ≺ GD ≺ GC as expected, which enables the
“parallel” extension of the conditional sets (see lemma 10). Computation
of the cyclic structures and checking the extendability takes – for this
particular example – fractions of a second using our tool.

For the second step we use a regular scheduling tool to find an optimal
schedule for the condensed activity graph. One such a optimal schedule
is shown in figure 10 as a Gantt chart.

In the third step we use the repetitive structures of GC , GD and GE

to construct a schedule for the original activity graph. These repetitive
structures are given during computation of the extendability of the sets
of conditionals (see definition 7 and lemma 8). Furthermore, during the
scheduling of the activity graph in step 2, tasks that share resources
are put in a certain order to satisfy the mutual exclusion property of
resources that plays a role in this kind of scheduling problems. This
corresponds to adding additional precedences to the activity graph, such
that the task order is forced to be the same as in the schedule.

For our example, step 3 of our approach can be described using figure
10 as follows. The repetitive structure that can be associated with GC is
the entire Gantt chart. The tasks in the time interval [b, d] are associated
with GD. Finally the tasks in the intervals [a, b] and [c, d] are associated
with GE . According to lemma 10 we need to construct the schedule for
the original problem from inside out. First, we increase the upper bound
of the conditional in GE . Therefore, we copy-paste the interval [a, b] 42
times, and then we copy-paste the second interval also 42 times. Next,
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[c7>=43]
c7:=0

Figure 9: An activity graph which specifies part of a real-life scheduling problem for
a wafer scanner.

we proceed with copy-pasting the interval that can be associated with
GD 6 times to increase the upper bounds of conditionals in GD to their
original values. Finally, we copy-past all tasks in the updated Gantt
chart 14 times to increase the upper bound of the conditionals in GC .
Note that this copy-pasting does not concern a time interval, but a sub
graph of the task graph. The tasks on resource 7 and 9 that are shown
at the left of figure 10 will succeed the task that ends at d, and the
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Figure 10: An optimal schedule for the condensed activity graph.

precedences admit that it is executed in parallel with the task starting
at d on resource 3 and 5.

It is clear that our method only involves the scheduling of the rela-
tively small task graph of the condensed problem. This renders it in
many case much more suitable than the straightforward approach of
scheduling the original, very large, task graph. It is necessary to quan-
tify the (sub) optimality of the generated schedule, and we regard this
as an important subject for future work.

4. Conclusions
The idea of this work is to reduce the complexity of scheduling prob-

lems being faced in many manufacturing systems by exploitation of the
repetitive patterns that can be recognized in them. The task graph
that usually forms a basis for description of a scheduling problem is
extended with additional modeling features to describe this finite repet-
itive behaviour. This extended model follows the UML activity diagram
standard, and is called an activity graph. In fact, an activity graph is
a folded-in equivalent of a task graph with repetitive patterns, which
is generic for the number of pattern repetitions. The activity graph is
formally defined, and so is its equivalence with a task graph. An impor-
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tant issue is the unambiguousness of the activity graph, which is proven
statically by construction of a ”relevancy mapping”.

The expressivity of the activity graphs is sufficient for a lot of prac-
tical cases from industry. It is possible to model parallelity of different
instances of one manufacturing entity by introduction of multiple con-
ditionals controlling execution of activities that can run in parallel for
these different instances in the system. As a consequence of the fact that
conditionals are not hierarchical, i.e., a conditional that can be associ-
ated with a lower level is not a child of a conditional of a higher level, it
is not possible to describe a system in which manufacturing entities can
“overtake” each other. This means that processing order must be first
in, first out, which is fine for most practical cases. Extension of activity
graphs for hierarchical conditionals could be considered for future work.
The same goes for the ad-hoc algorithm to determine a relevancy map-
ping, which seems to be acceptable for practical cases, but a polynomial
one would be preferable.

The approach for reduction of the complexity of the scheduling prob-
lems exploits the hierarchical manufacturing entity structure that re-
sults in nested patterns in the schedule. First, the scheduling problem
is reduced with respect to the number of repetitions. Subsequently, the
reduced problem in the form of an activity graph is converted to the
usual form based on a task graph and can be scheduled using appropri-
ate tooling. Finally, the schedule of the reduced problem is extended
up to the size of the original problem using repetitive structures. This
extension algorithm is in general much more efficient than scheduling
the original task graph. We believe that preservation of (make span)
optimality is ensured for a subset of problems that can be described.
This means that for cases in which instances of manufacturing entities
are processed sequentially, recurrent TSP-alike problems are recognized
and therefore are to be scheduled only once while preserving optimality.
This issue is an important subject for future research.
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Appendix: Formal proofs
Lemma 1 If X and X ′ are relevancy mappings for an activity graph, then the two
resulting unfoldings are bisimilar.
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Proof. Consider the two resulting unfoldings (V, 7→) and (V ′, 7→′). Bisimilarity in
our case means that a relation R ⊆ V × V ′ exists such that:

the two initial instances are related, and

((v, γ1), (v
′, γ′1)) ∈ R and (v, γ1) 7→ (w, γ2) implies that there exists a (w, γ′2) ∈

V ′ such that (v′, γ′1) 7→′ (w, γ′2) and ((w, γ2), (w, γ′2)) ∈ R. (The reverse impli-
cation is covered by the symmetric definition).

We define R as follows: ((v, γ), (v′, γ′)) ∈ R if and only if v = v′ and γ and γ′ agree
on the intersection of their domain.

Since the node valuation of the initial instance maps a subset of nodes to 0 by
definition, we see that the initial instances are related by R indeed.

Now let us assume that ((v, γ1), (v
′, γ′1)) ∈ R and (v, γ1) 7→ (w, γ2). By definition

of our relation, we know that v = v′. Moreover, γ1 and γ′1 agree on the intersection of
their domains (thus, q ∈ X(v)∩X ′(v′) implies that γ1(q) = γ′1(q)). We now consider
the 5 possibilities for existence of the edge (v, γ1) 7→ (w, γ2) (these are the 5 different
inductive rules of definition 3):

(1) We prove that the edge (v′, γ′1) 7→′ (w, γ′2), where γ′2 = γ′1[v
′ := v′ + 1], exists,

by using exactly the same inductive clause as for (v, γ1) 7→ (w, γ2). We thus
can derive that γ2 = γ1[v := v+1] and γ′2 = γ′1[v := v+1]. By definition of the
relevancy mapping, the domain of γ2 equals the domain of γ1 and the domain
of γ′2 equals the domain of γ′1. Moreover, since ((v, γ1), (v

′, γ′1)) ∈ R, γ1 and
γ′1 agree on the intersection of their domain. Therefore, γ2 and γ′2 also agree
on the intersection of their domain, which proves that ((w, γ2), (w, γ′2)) ∈ R.

(2) The argument for this rule is similar to the argument of (1), except, that the
domain of γ2 is a subdomain of γ1 and the domain of γ′2 is a subdomain of γ′1.
However, this does not change the validity of the argument.

(4) The argument for this rules is similar as in (1).

(5) The argument for this rules is similar as in (1).

(3) In this case, (w, γ2) is a join instance. Since it exists, we know that all its
predecessors exist (one of them is (v, γ1)). We prove with induction on the
number of inductive clauses of type (3) that is needed to prove that these
predecessors are in V , that we can find a related (w′, γ′2) ∈ V ′.

The base of the induction is formed by 0 inductive clauses of type (3). Thus,
for every predecessor of (w, γ2) , say (pi, γi) we can prove with the inductive
clauses (1), (2), (4) and (5) that it is in V . Moreover, in the items above we

argued that we can find related instances, say (pi′ , γi′) in V ′, by using exactly

the same inductive clauses. Without loss of generality we can say that pi = pi′ ,
and therefore γi and γi′ agree on the intersection of their domain.

By definition of inductive rule (3) we know that γi(pi) = γj(pj). Since pi =

pi′ ∈ X ′(pi′), we know that γi′(pi′) = γj′
(pj′

). Therefore we can add the

edge (v′, γ′1) 7→ (w, γ′2), where (v′, γ′1) = (pi′ , γi′) for some i. So, this γ′2 is the
union of all (partially incremented, see definition 3) predecessor valuations.

However, all these predecessor valuations γi′ agree on their domains with their
counterparts γi that are used to construct the valuation γ2. Therefore, γ2 and
γ′2 also agree on their domains, which proves that ((w, γ2), (w, γ′2)) ∈ R.

The proof of the induction step is equal to the proof of the base case.

�
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The next lemma is used as a basis for some other lemmas.

Lemma 2 For every instance (v, γ) in an unfolding (V, 7→) such that q ∈ X(v) a
path (n0, γ0) 7→∗ (v, γ) exists of which all nodes are labeled with q by X.

Proof. We prove the lemma by induction on the number of aplications of the base
and inductive clauses of definition 3 that is needed to show that (v, γ) ∈ V . The base
of the induction is formed by one application of a clause. Since the first application
must be the base clause, we can only show that (n0, γ0) ∈ V . Therefore, (v, γ) =
(n0, γ0), which clearly proves that we can find the path.

Now let us assume that we can find the desired path for all instances for which we
can show that they belong to V with n applications of the base and inductive clauses.
Let us consider an instance (v′, γ′) for which we can show in n+1 applications of the
base and inductive clauses that it belongs to V . Then obviously (v, γ) 7→ (v′, γ′) and
we can show with n applications of the base and inductive clauses that (v, γ) belongs
to V . We now distinguish two cases:

The edge (v, γ) 7→ (v′, γ′) is added by inductive clause 1,2,4, or 5. We can
conclude that v′ is not a join, and by definition 2 that q ∈ X(v′) implies that
q ∈ X(v). By applying the induction hypothesis we can conclude that the
desired path exists.

The edge is added by inductive clause 3. Then we know that (v1, γ1) 7→ (v′, γ′),
..., (vn, γn) 7→ (v′, γ′) such that (v, γ) = (vi, γi) for some 1 ≤ i ≤ n. Moreover,
we can show with n applications of the base and inductive clauses that (vi, γi)
belongs to V for all 1 ≤ i ≤ n. By definition 2 we know that q ∈ X(v′) implies
that q ∈ X(vi) for some i. Thus, by applying the induction hypothesis we can
conclude that the desired path exists.

�

The next lemma ensures that race conditions do not appear in activity graphs
which have a relevancy mapping.

Lemma 3 If (v, γ) and (v′, γ′) are two different instances and X(v) ∩ X(v′) 6= ∅,
then (v, γ) 6‖ (v′, γ′).

Proof. First, we choose one particular w ∈ X(v) ∩X(v′). Then, using lemma 2 we
can say that two paths that are completely labeled with w exist:

(n0, γ0) 7→ (u1, γ1) 7→ (u2, γ2) 7→ ... 7→ (um, γm) 7→ (v, γ)

(n0, γ0) 7→ (u′1, γ
′
1) 7→ (u′2, γ

′
2) 7→ ... 7→ (u′n, γ′n) 7→ (v′, γ′)

We now assume that m < n (we fix the other cases later). We prove that (ui, γi) =
(u′i, γ

′
i) for all 1 ≤ i ≤ m by an inductive argument:

Base: i = 1. The initial instance either is not a fork, or is a fork. In the
former case, its successor is fixed, and clearly (um, γm) = (u′n, γ′n). In the
latter case, both paths take the same successor node due to the disjunction
part of requirement (iii) on the relevancy mapping X and the fact that w ∈
X(u1)∧w ∈ X(u′1) (by construction of the paths). Therefore, the equivalence
holds.
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Induction: assume that it holds for i = k. We need to distinguish three cases,
namely (1) uk and u′k are forks, (2) they are conditionals, or (3) they have an
other type. We can prove the equivalence for the first and third case with a
similar argument as in the previous item. As for the second case, we know that
γk = γ′k and therefore they choose the same successor: uk+1 = u′k+1 and also
γk+1 = γ′k+1.

Thus, we know that (um, γm) = (u′m, γ′m). We can use the same argument as in
the inductive proof above to show that (v, γ) = (u′m+1, γ

′
m+1) and therefore (v, γ) 7→+

(v′, γ′). With a similar argument we can prove that if m > n, then (v′, γ′) 7→+ (v, γ).
However, if m = n, then (v, γ) = (v′, γ′), which cannot occur since we assumed that
they are different. �

The next two lemmas state properties of the number of predecessors and successors
of the instances in the unfolding.

Lemma 4 Instances of an unfolding satisfy the same restrictions as their counter-
parts in the activity graph w.r.t. to the number of predecessors except that merge
instances have exactly one predecessor.

Proof. Let us consider an instance (v, γ) in the unfolding. We distinguish three cases.
First, v is a activity, conditional, exit or fork node. First observe that this instance
has at least one predecessor, since otherwise it would not be in the unfolding. Now
assume that (v′, γ′) 7→ (v, γ) and (v′′, γ′′) 7→ (v, γ) and (v′, γ′) 6= (v′′, γ′′). According
to definition 1 v′ = v′′ and therefore, the domain of γ′ equals the domain of γ′′.
Moreover, γ = γ′[v′ = v′ + 1] and γ = γ′′[v′′ = v′′ + 1] = γ′′[v′ = v′ + 1]. Therefore,
we may conclude that γ′ = γ′′ and thus, (v′, γ′) = (v′′, γ′′) which is a contradiction.

Second, v is a join node. According to definition 3 there is only one inductive
clause to show that a join node is part of the unfolding, namely rule (3). So, if we
can show that a join instance, say (v, γ) ∈ V , then it has at least the correct number
of predecessors, say (v1, γ1), ..., (vn, γn). Now suppose that another application of the
inductive rule (3) adds the edge (v′, γ′) 7→ (v, γ) (this is the only way to add edges to
join instances). Then, v′ = vi for some 1 ≤ i ≤ n by definition. Moreover, γ′ must be
equal to γi, since otherwise (v′, γ′) cannot lead to (v, γ). Therefore, v has the desired
number of predecessors.

Finally, we prove that an instance of a merge node, say (v, γ), has exactly one
predecessor. By definition 3 it has at least one predecessor. If we assume that it has
more than one predecessor, then we can pick two of them, say (v1, γ1) and (v2, γ2).
By requirement (ii) of definition 2 we know that v ∈ X(v1) and v ∈ X(v2). In lemma
3 we can read that a path

(n0, γ0) 7→∗ (v1, γ1) 7→ (v′1, γ
′
1) 7→∗ (v2, γ2) 7→ (v, γ)

exists such that for all nodes vi that occur in this path holds that v ∈ X(vi). Observe
that v′1 = v. Since if it was an instance of another node, then v1 is a fork (because
we assumed (v1, γ1) 7→ (v, γ)). In that case, however, the relevancy mapping X does
not satisfy the disjunction part of requirement (iii) for this fork, since v ∈ X(v) by
definition and v ∈ X(v′1) by construction of the path.

Now we distinguish two cases:

v1 = v. We now know that γ(v) = γ1(v) + 1 (from our assumption that
(v1, γ1) 7→ (v, γ) and rule (1)) and γ′1(v) = γ1(v) + 1 (from the path and rule
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(1)). Since v′1 = v we see that the value of v also is increased on exit of
(v′1, γ

′
1) and therefore necessarily γ(v) > γ1(v) + 1 (from the path), which is a

contradiction.

v1 6= v. We now know that γ(v) = γ1(v) (from our assumption that (v1, γ1) 7→
(v, γ) and rule (1)) and γ′1(v) = γ1(v) (from the path and rule (1)). Since
v′1 = v we see that the value of v also is increased on exit of (v′1, γ

′
1) and

therefore necessarily γ(v) > γ1(v) (from the path), which is a contradiction.

From these contradictions we conclude that the merge instance can have at most one
predecessor. �

Lemma 5 Instances of an unfolding either have the same number of successors (or
1 successor in case of conditional instances) as their counterparts in the activity graph,
or they have zero successors.

Proof. Suppose that we have an instance (v, γ) which has more than its allowed
number of successors. In other words, we can find two successors (v′, γ′) and (v′′, γ′′)
such that v′ = v′′ (by definitions 1 and 3). Note that the inductive definition preserves
the property: for all (v, γ) ∈ V holds that γ(v′) is defined if and only if v′ ∈ X(v) for
all nodes v′ ∈ N . Thus, the domain of γ equals the domain of γ′. Now we distinguish
two cases:

v′ = v′′ is not a join node. By definition, γ undergoes the same transformation,
since both edges must be added by the same inductive clause. Therefore we
can conclude that γ′ = γ′′, which contradicts our assumptions.

v′ = v′′ is a join node. Then, of course, (v′, γ′) and (v′′, γ′′) have their other
necessary predecessors (as shown in lemma 4), say (v′1, γ

′
1), ..., (v

′
n−1, γ

′
n−1) and

(v′′1 , γ′′1 ), ..., (v′′n−1, γ
′′
n−1) respectively. Without loss of generality we may as-

sume that v′i = v′′i . It is clear that γ′i 6= γ′′i for at least one 1 ≤ i < n, since
otherwise γ′ = γ′′, which is a contradiction of our initial assumption.

Moreover, we know that γ′i(v
′
i) = γ′′i (v′′i ) by the combination of inductive clause

(3) and the fact that γ(v) = γ′i(v
′
i) and γ(v) = γ′′i (v′′i ) according to this clause.

Now we apply lemma 3 to the different (as argued above) instances (v′i, γ
′
i) and

(v′′i , γ′′i ) (remember that v′i = v′′i ). Thus, we see that (v′i, γ
′
i) 7→+ (v′′i , γ′′i ) (or

the other way around, but that case is similar). Moreover, v′i = v′′i is not a
conditional node (since we assumed that conditionals cannot directly lead to a
join in activity graphs) and its value is therefore never reset. In other words,
γ′′i (v′′i ) = γ′i(v

′
i) + 1 which is in contradiction with knowledge derived in the

previous paragraph.

Of course, due to failed synchronizations in join nodes, predecessors of join nodes may
have zero successors. The resulting unfolding is not well-defined. �

The next lemma states a very useful property of our unfoldings, namely that they
are acyclic. This means that an unfolding defines a, possibly infinite, partial ordering,
which is exactly what we intended.

Lemma 6 An unfolding is acyclic.

Proof. First, we prove that if there is a cycle in an unfolding, then the initial instance
(n0, γ0) is on that cycle. Assume that there is a cycle, say (v1, γ1), ..., (vn, γn), (v1, γ1),
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such that the initial instance is not part of the cycle. In order for this cycle to be
part of the unfolding, at least a path from the initial instance to this cycle must exist
(see the extremal clause of definition 3).

From lemma 4 we conclude that one of the instances in the cycle, say (vi, γi), is a
join instance that connects the initial instance to the cycle (since only join instances
can have multiple predecessors and the initial instance is not on the cycle). However,
by definition 3 we know that γi+1(vi) = γi(vi) + 1. Since the value of a join node
cannot be reset, it is impossible that (vi+1, γi+1) 7→∗ (vi, γi). From this contradiction
we conclude that the initial instance must be part of the cycle.

Next, we prove the lemma by contradiction. Therefore, let us assume that a cycle
exists in the unfolding. Above we have shown that (n0, γ0) is on the cycle. With the
knowledge that the initial instance cannot be a conditional instance by definition 1
(and its value thus is never reset), we can use a similar argument as above to show
that the cycle cannot be a cycle. Therefore, no cycles exist in unfoldings! �

The next lemma states a sufficient condition on the syntax of activity graphs for
finiteness of their unfoldings.

Lemma 7 Let G = (N, n0, �, c) be an activity graph. If for all cycles in G, say
v1, ..., vn, such that n ≤ 4 · | � | holds that they contain a conditional node, say vi,
such that (vi, vi+1) is the true edge and vi is not reset on the cycle, then the unfolding
of G is finite.

Proof. We prove the lemma by contradiction and therefore assume that the premises
hold, but the unfolding is infinite. This means that there exists an infinite path,
and since an activity graph is finite, at least one node, say v must appear infinitely
often in this path. This can only occur, if v is on a cycle. Since this cycle satisfies
the precondition, the counter of the “exit” conditional of this cycle must be reset
infinitely often (otherwise the cycle is not infinitely often enabled). This means that
there must be another cycle involving node v that resets the counter. Thus, connecting
these cycles gives us a larger cycle that contradicts our assumption about the cycles
of the activity graph (namely that the counter of the exit conditional is not reset).
The question now is how long these two cycles can be.

We first consider the cycle which contains the true edge of the exit conditional,
say v′ � v′′. The path from v to v′ can be bounded by | � |, since any path from
v to v′ that is longer than | � |, can easily be transformed to a path with length
bounded by | � |. The same holds for the path from v′′ to v, with the result that
the length of this first cycle can be bounded by 2 · | � |. (More precisely, if there
is a cycle in the activity graph involving v and v′ � v′′ with a length greater than
2 · | � |, then there exists a cycle also involving v and v′ � v′′ with a length less or
equal to 2 · | � |.)

We can use the same argument to show that the cycle from v to the resetting
conditional of v′ and back also can be bounded by 2 · | � |. Combination gives the
required upper bound. �


	
	Introduction
	Activity graphs
	Formal definition of activity graphs
	From activity graphs to task graphs

	An approach to exploit repetitive structures in activity graphs
	Formalizing our approach
	Example application of our approach

	Conclusions
	 -References
	Appendix: Formal proofs


