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Preface 
 

 

Imagine that you are a captain on a ship. Your mission is to discover new territory. You 

head to sea with the journals and maps constructed by others who have gone before you. 

You study these in great detail, combine their insights and techniques, and head for a 

hitherto unknown destination and destiny. On this journey, you enjoy the freedom and 

absorb the beautiful scenery that you encounter. However, on occasions, the sea is 

extremely rough, and storms and thunders threaten to sink your ship and, at times, you 

even doubt whether you will make it back at all. After much hard work, you encounter a 

stretch of land that you believe to be undiscovered. You map this new terrain in great 

detail, in much the same way as others have done before you. Even though you would 

like to spend more time studying this new land and exploring the ways in which it could 

be used, you are running low on provisions and need to head back home. On your way 

back you are obsessively working on completing your journal until, finally, your 

homeport is in sight. You decide to report your discovery immediately the second that 

you touch shore. However, when you hit land doubt suddenly enters your mind. What if 

someone else has already discovered the same land before you? Or, what if the land has 

no economic use whatsoever? You recollect your adventures and become aware of how 

much you have learned and realize that the significance of your journey is not dependent 

upon the economic value of your discoveries. You have grown in many aspects, and you 

decide then and there that that will be the only measure with which you will judge the 

significance of your endeavor. 
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Part I Introduction 
 

“The formulation of a problem is often more essential than its solution.” 

~ Einstein 

 



 



 

Chapter 1   
 

Introduction 

1.1 Introduction 

Technology is becoming increasingly important for policy-makers. For example, EU 

policy-makers attribute a highly important role to technology and innovation to transition 

the ‘old’ EU into a ‘new’ knowledge-based EU, as can be seen in Box 1.1. Moreover, in 

response to the global economic crisis, one of the main goals of the American Recovery 

and Reinvestment Act of 2009 is to “provide investments needed to increase economic 

efficiency by spurring technological advances in science and health” (American Recovery 

and Reinvestment Act, 2009: H.R.1–2).  

 

The Importance of Innovation in the EU 

 

In the beginning of this century, the European Council set out an action and development plan, 

labeled the Lisbon Strategy, with the aim to make the EU the most competitive economy in the 

world by investing in the transition of the ‘old’ EU to a ‘new’ competitive, dynamic and 

knowledge-based economy. After all, the EU performs weakly in comparison with its major 

competitors (i.e., USA and Japan) on numerous performance indicators, especially those related 

to knowledge and innovation. As such, one of the priority areas outlined in the Lisbon strategy is 

investing more in knowledge and innovation. 

 

Even though the EU has made considerable progress over the last years, many experts claim that 

the EU still has a long way to go, and needs to boost innovation for both social and economic 

reasons. According to these experts, the ‘innovation gap’ reflects, amongst others, a weakness in 

the links between research and industry. The European Council has, therefore, adopted 

integrated guidelines that form the basis for member states’ national reform programs and 

channel their efforts towards key priority areas. One of these guidelines (guideline No 8) is to 

facilitate all forms of innovation, see below. 

 

Guideline No 8  

To facilitate all forms of innovation, Member States should focus on (European Union, 2008): 

� Improvements in innovation support services, in particular for dissemination and technology 

transfer;  

� The creation and development of innovation poles, networks and incubators bringing 

together universities, research institutions and enterprises, including at regional and local 

level, helping to bridge the technology gap between regions;  

� The encouragement of cross-border knowledge transfer, including from foreign direct 
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investment;  

� Encouraging public procurement of innovative products and services;  

� Better access to domestic and international finance;  

� Efficient and affordable means to enforce intellectual property rights. 

 

As argued above, the transition of the EU to a competitive, dynamic, and knowledge-based 

society is dependent on the EU’s innovative capacity. In this respect, biotechnology is a key 

priority area, which is reflected in the fact that the European Commission has put the biotech 

industry firmly on the map when it reformulated a strategy for Europe on Life Sciences and 

Biotechnology in 2002, aimed at promoting a sustainable bio-economy. The reason for doing so 

is that biotechnologies are believed to play a vital role in the future of human kind. After all, even 

though biotechnologies have been around for over 5,000 years (e.g., in the making of bread, 

cheese, beer, and wine), current developments offers prospects of sustainable energy sources and 

major breakthroughs in the field of medicine (BIO, 2006). 

Box 1.1 The importance of innovation in the European Union 

 

The management of technology and innovation is also becoming increasingly 

important for CEOs. Consider, for example, the increase in the relative number of 

articles in some of the leading journals for management executives (i.e., California 

Management Review, Academy of Management Executive, MIT Sloan Management Review, and 

Harvard Business Review) on the topic of innovation and technology, as visualized in Figure 

1.1. In the academic domain, we can notice a similar increase in focus on the subject of 

technology and innovation. While technology and innovation received little attention in 

the top-tier management and organization journals (i.e., Administrative Science Quarterly, 

Academy of Management Review, Academy of Management Journal, Organization Science, and 

Strategic Management Journal) in the 80's, we can observe a steady increase in the relative 

number of publications on the topic of technology and innovation since 1990.  

Despite the recent increase in attention to technology and innovation, the 

importance of technology and innovation, however, is not a contemporary observation. 

Schumpeter (1934) already posited technology as the driving force behind economic 

development many decades ago. Since then, many scientists acknowledge the importance 

of technology in the evolution of our society (Anderson & Tushman, 1990; Dosi, 1982; 

Lawless & Anderson, 1996; Nelson & Winter, 1982). However, despite this awareness 

within the scientific community, technology or technological change is a phenomenon 

that is not well understood. By means of this dissertation, we therefore hope to 

contribute to furthering our understanding of technology and technological change. 

Because, nowadays, technology is developed more and more in an organizational context, 

we do this by studying technology in the context of organization science, which is an 

academic discipline that studies all facets of organization. 
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Figure 1.1 Five-year moving average of the relative number of articles on the topic of innovation 
and technology in several top-tier executive management journals 
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Figure 1.2 Five-year moving average of the relative number of articles on the topic of innovation 
and technology in several top-tier academic management and organization journals  

 

 The organization of this chapter is as follows. In the next section, we will briefly 

discus the standing of technology in the context of organization science. Then, in Section 

1.3, we briefly introduce the field that is associated most with the study of technology in 
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an organizational context: evolutionary economics. Section 1.4 subsequently discusses the 

core logic of a domain that we believe can contribute significantly to our understanding 

of technology: organizational ecology. Section 1.5 introduces the research objective of 

this dissertation. Section 1.6 presents the research questions that we derive from this 

objective. Finally, Section 1.7 gives a short overview of the organization of this 

dissertation. 

1.2 Technology and organization 

Even though quite a few pioneer economists in the neoclassical tradition did recognize 

the role of technical change, they have generally assumed technological progress to be a 

mere shift along the production function. From this perspective, technological change is 

considered to be an exogenous variable. The process of technological growth thus 

remains a ‘black box’ or, in Solow’s famous formulation, technological progress’s 

outcomes appear as noise in the residual of a regression equation (Rosenberg, 1982). 

Following Marx (1906), Schumpeter (1943), who is considered by many as the founding 

father of modern innovation theory, presented an evolutionary theory on the working of 

the capitalist system, driven by forces of technological change. Since then, many scholars 

have emphasized the importance of technology in shaping economic processes. By now, 

to argue that technology is a powerful force (Lawless & Anderson, 1996) that drives a 

variety of economic phenomena (Nelson & Winter, 1982) is stating the obvious. It is for 

this reason that Tushman and Nelson (1990) already concluded almost two decades ago 

that technology deserves a central role in any organization theory. However, despite this 

call for a systematic study of technology in an organizational context, progress has been 

rather haphazard. Only within evolutionary economics does technology have a central 

role, even though technology does receive some attention within organizational ecology 

and industrial organization. So, technology has not yet penetrated fully the domain of 

organization science, resulting in the fact that the process of technological change is not 

yet fully understood. In this dissertation, therefore, we want to demonstrate that, by 

studying technology from an ecological perspective (i.e., organizational ecology), we can 

add insights above and beyond the ones that originate from evolutionary economics 

alone. In doing so, we not only contribute to our understanding of the process of 

technological change, but also close part of the chasm that exists in the debate between 

organizational adaptation and environmental selection schools of thought (Baum, 1996; 

Lewin & Volberda, 1999; van Witteloostuijn, 1994).  

1.3 Evolutionary economics 

At the heart of evolutionary economics lies the notion of endogenous technological 

change as a process of recombination (Fleming, 2001), where (existing) components are 

brought together in new ways (Schumpeter, 1939). This conception of technological 
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change as a process of recombination has been widely adopted in the literature. In this 

dissertation, we follow this tradition, and view technological change (i.e., invention) as a 

process of recombination of components, where components refer to the constituents of 

invention (Fleming, 2001). Characterizing technological change as a process of 

recombination implies technological lineage, where an invention builds upon antecedent 

inventions (see Figure 1.3), and can subsequently becomes the basis for future 

(descendant) inventions itself. This logic is demonstrated in Figure 1.4. 

 
Figure 1.3 Invention as a process of recombination of (antecedent) components 

 

In this evolutionary logic of technological change, diversity (i.e., the heterogeneity 

of components) forms a central notion. The reason is that diversity forms the input to 

the process of recombination, and it is therefore considered to be the ultimate source of 

novelty (Johnson, 1992; Nooteboom, 2000). However, because any component can be 

combined with every other component, the number of potential combinations increases 

exponentially with the number of components. Hence, the complete set of potential 

combinations quickly becomes incomprehensible, and an inventor (or a population of 

inventors; e.g., an organization) can only consider a limited number of components and 

combinations simultaneously (Fleming, 2001). This observation is also known as the 

bounded rationality assumption, which also lies at the heart of evolutionary economics. 

As a result, individuals, organizations, and communities1 are argued to search and 

recombine locally from and among a limited set of components (Fleming, 2001).  

 

 
Figure 1.4 The technological lineage of an invention 

 

At the organizational level, this translates into organizational routines that enable 

regular and predictable patterns of behavior (Nelson & Winter, 1982). At the level of a 

technological community, this implies regular and predictable patterns of technological 

growth (Dosi, 1988; Foster, 1986; Nelson & Winter, 1982). These stable and predictable 

                                                 
1 Here, community refers to the members of a technological domain (e.g., biotechnology or semiconductor 

technology). 
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patterns of technological growth go by many different names such as, amongst others, 

natural trajectories (Nelson & Winter, 1982), technological regimes (Winter, 1984), 

dominant designs (Utterback & Abbernathy, 1975), technological paradigms (Dosi, 

1982), technological guideposts (Rosenberg, 1976), and design hierarchies (Clark, 1985). 

These stable and predictable patterns of technological growth result from the stable 

configuration of the set of technological components that belong to a particular 

technological system or community. As such, this stable configuration identifies the 

major components to be developed, as well as the relationships among these 

components. This facilitates cumulative growth as “research becomes increasingly 

specialized and sophisticated and the technology is broken down into its component 

parts with individual investigations focusing on improvements in small elements of the 

technology” (Mueller & Tilton, 1969: 576). These stable configurations thus enable 

specialization and subsequent integration of the specialized components, implying that 

(groups of) individuals and organizations no longer have to invest in learning many 

alternative configurations, but can concentrate their (limited) learning resources largely 

on (a part of) the technology’s dominant design configuration (Henderson & Clark, 

1990).  

Clearly, these stable configurations or structures do not emerge ex nihilo, but have 

to be created somehow by the stakeholders of the particular technology. This logically 

implies the existence of different stages of technological development. First, there is a 

stage in which the stable configuration is socially constructed by the stakeholders in the 

environment. Because this stage is characterized by the existence of diverging viewpoints 

regarding the configuration of technology, we refer to this stage as the stage of 

divergence. Second, the creation of a stable configuration implies a consensus among the 

technology’s stakeholders regarding the configuration of technology. As such, in this 

stage, developments converge towards the collectively-agreed-upon design configuration 

of the technology’s components, implying technological determinism. We label this the 

stage of convergence. The distinction between the stages of divergence and convergence 

is is similar to, for instance, Anderson and Tushman’s (1990) era of ferment and 

incremental change (or order), Utterback and Abernathy’s (1975) fluid and specific 

technological change, or Dosi’s (1982) paradigmatic and pre-paradigmatic stages of 

technological development, respectively. The stages also connect to the more general life 

cycle theory. More specifically, the divergence stage of social construction can be 

characterized by the seed stage in life cycle theory, while the convergence stage of 

technological determinism can be characterized by the growth stage in life cycle theory.  

Bascially, the different stages of technological development refer to the different 

characteristics of the selection environment. A much debated and important 

characteristic of this environment is the level of uncertainty (Dosi, 1982; Fleming, 2001; 

Nelson & Winter, 1982; Podolny, Stuart, & Hannan, 1996; Rosenberg, 1996). On the one 
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hand, in the stage of technological divergence, uncertainty is relatively high as the 

scientific and technological principles on which technological growth should be based are 

yet unknown (Dosi, 1988). On the other hand, during the stage of technological 

convergence, the stable configuration contains strong prescriptions on which directions 

of technological change to pursue and which to neglect (Dosi, 1982; Rosenberg, 1982), 

which significantly reduces the level of uncertainty. This is similar to Knight’s (1921) 

distinction between uncertainty (i.e., unknown unknowns) and risk (i.e., known 

unknowns). 

To date, the evolutionary economics literature is biased to the study of 

technological diffusion (Stuart, 1999), implying that the level and nature of technological 

variety are exogenous to the theory. Indeed, evolutionary economics has been successful 

in analyzing processes of technological diffusion, but much less is known about the very 

nature and origin of variety that drives technological growth. In this respect, we believe 

that organizational ecology can contribute, being evolutionary economics’ counterpart in 

sociology, both sharing an emphasis on the ecological variation-selection-retention logic. 

Much organizational ecology focuses on the influence of environmental features on 

organizational entry and exit, seeking answers to the question “Why are there so many 

different kinds of organizations?” (Hannan & Freeman, 1977). So, organizational ecology 

considers the effect of the (structural) characteristics of the (selection) environment on 

evolutionary processes (growth; the entry and exit of variety) within organizational 

populations. The argument here is that a similar logic can be effectively applied to 

technological populations. 

1.4 Organizational ecology 

Like evolutionary economics, organizational ecology was introduced in the mid-1970s. 

Hannan and Freeman (1977) developed a response to the then contemporary 

organizational theories that emphasized the flexibility and adaptability of organizations 

surviving in changing environments. In contrast to the dominant assumption in 

organization theory and strategic management that organizations are rapid and flexible 

adapters, organizational ecology stresses that, due to the requirements of reliability and 

predictability, organizations are inert and core changes pose a severe threat to the 

survival chances of organizations. As a result, organizational ecology argues that most of 

the variation in organization populations comes about by the creation of new 

organizational forms and the demise of their old counterparts, whereas only a small part 

of population-level change is the result of adaptation of organizations. Hence, selection is 

assumed to be the dominant force. However, this does not mean that organizational 

ecologists assume that organizations cannot adapt. On the contrary, the argument of 

organizational ecology centers on the fact that due to the success of the organization in 

adapting to its past circumstances, the organization is hindered from adapting to 
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changing or different circumstances (i.e., path dependence). More specifically, because 

the organization’s (internal and external) stakeholders have formed clear expectations 

about the identity of the organization, radically changing the organization’s triggers a 

legitimation crisis, as the stakeholders have to adapt their expectations. So, organizational 

ecology redirected attention to the population level of analysis, emphasizing 

environmental selection and de-emphasizing organizational adaptability. Hence, the 

origin of organizational variety is argued to be located in entry and exit processes, rather 

than in adaptation of individual organizations. From this core logic, organizational 

ecology has developed fine-grained theory and has collected much evidence as to the 

evolutionary processes of and within organizational populations (Carroll & Hannan, 

2000).  

Theory-wise, the key source of inspiration is bio-ecology. In bio-ecology, the 

niche is a central construct that describes the position of an organism or species in an 

ecosystem. A similar concept of the niche has been applied extensively in organizational 

ecology, to describe the position of an organization or organizational form in a 

population or community, respectively. It is argued that the niche of an organization (or 

an organizational form, for that matter) is the locus of competition, legitimation and 

selection (Hannan, Carroll, & Pólos, 2003b). For example, Podolny, Stuart and Hannan 

(1996), Dobrev, Kim and Hannan (2001b), and Dobrev, Kim and Carroll (2003) have 

used the concept of the niche as an explanatory variable in an ecological model of 

survival performance of individual organizations. Moreover, Barnett (1990) and Boone, 

Wezel and van Witteloostuijn (2004) measure a niche variable at the community and 

population level of analysis, respectively, in an attempt to explain higher-level 

organizational diversity. Because an organization’s niche describes its position in resource 

space, it logically follows that niche overlap refers to the extent to which the location of 

organization x in resource space is similar to that of organization y (Dobrev, Kim, & 

Carroll, 2002a; Dobrev, Kim, & Hannan, 2001a). For example, two pharmaceutical firms 

(say, Pfizer and Bayer) may reveal more or less overlap in terms of types of drugs on 

offer (niche overlap in product space) or in terms of the countries in which they run sales 

operations (niche overlap in geographical space). At the population level, lower 

organizational overlap implies higher organizational diversity. Depending upon 

environmental conditions, such diversity or overlap may increase or decrease the focal 

organization’s likelihood of survival, or may increase or decrease the likelihood of 

overlapping entry (Boone, Wezel, & van Witteloostuijn, 2007). With high population-

level organizational diversity, overlap will boost legitimation, and hence the likelihood of 

survival; with low such diversity, overlap implies crowding and competition, thus 

lowering the likelihood of survival.  

Another central concept in organizational ecology is organizational density, 

defined as the (mere) number of organizations active in a specific organizational 
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population. Population density serves as a surrogate for the difficult-to-observe features 

of the material and social environment that affect organizational founding and mortality 

rates, particularly competition and legitimation (Hannan & Freeman, 1989). According to 

Hannan and Freeman (1987: 918), on the one hand, “if institutionalization means that 

certain forms assume a taken-for-granted character, then simple prevalence of the form 

ought to legitimate it.” This means that processes of legitimation produce a positive 

relationship between population density and founding rates. Regarding processes of 

competition, on the other hand, increasing density implies increasing competition within 

populations, as more organizations fight for limited resources, which results in declining 

founding rates (Hannan & Freeman, 1987). The joint forces of legitimation (dominant at 

low density) and competition (dominant at high density) produce non-monotonic 

density-dependent processes of organizational entry (reverse U-shaped) and exit (U-

shaped), which together generate an S-shaped growth curve of population density. Even 

though this theory of density dependence has been primarily applied to organizational 

populations, and very successfully so, recent research illustrates that this argument can 

also be effectively applied in other settings, such as the birth and death rates of national 

laws (de Jong & van Witteloostuijn, 2008; van Witteloostuijn, 2003; van Witteloostuijn & 

de Jong, 2009) and organizational rules (March, Schulz, & Shou, 2000; Schulz, 1998). We 

believe that density-dependence logic can also fruitfully be used in the study of 

evolutionary processes within technological populations (cf. Pistorius & Utterback, 

1997).  

The last concept from organizational ecology that we want to introduce is that of 

status. It is commonly known that in environments marked by pervasive uncertainty, 

actors base their future expectations on information about the past. In science, this is 

referred to as the Matthew effect (Merton, 1968b). Within organizational ecology, this 

phenomenon is labeled the status effect. In an organizational context, organizations 

associated with high degrees of status, attract activity, such as, for example, investments 

(Podolny, 1993), exchange relations (Podolny, 1994), and alliances (Stuart, 1998). Status is 

also important in the context of technology, as technological development is marked by 

pervasive uncertainty (Dosi, 1982; Nelson & Winter, 1982; Podolny & Stuart, 1995; 

Rosenberg, 1996). Due to the inherent uncertainty of technological development, the 

technical properties or features of technology alone may not serve as a reliable guide for 

directing technological search and development, and organizations may well forgo 

superior technical performance to rather accept a package of relatively well-known 

innovations in an attempt to reduce technological uncertainty (Anderson & Tushman, 

1990). Moreover, Podolny and Stuart (1995) and Podolny, Stuart and Hannan (1996) 

empirically validate that, under uncertainty, the identity or status of actors is important in 

deciding on technological advancement.  
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Now that we have briefly explained the theoretical concepts on which this 

dissertation is based, we can continue with the objective that will guide our subsequent 

investigation. 

1.5 Research objective 

For sure, technology is central to evolutionary economics, and received substantial 

attention in focused studies in organizational ecology and industrial organization. 

However, by and large, ignoring notable exceptions that will be extensively reviewed later 

in this thesis, technology and organization are studied rather independently. The reason is 

that organization science as a whole is rather fragmented, without much cross-

fertilization between isolated silos. It is therefore our aim to contribute to the integration 

of technology in organization science by cross-fertilizing organizational ecology and 

evolutionary economics into what we label the “ecology of technology”. We formulate 

our objective accordingly. 

 

Research Objective: To develop an ecology of technology in organization science. 

 

That is, in this dissertation, we will provide some of the groundwork that is 

required for developing an integrated model of technology and organization. After all, 

according to our opinion, only when the evolution of technology and organization is 

considered in unison can we fully understand the evolution of either one. To accomplish 

this objective, we will formulate several research questions that will guide our efforts and 

break this complex task up into manageable parts. In the final chapter, we will revisit our 

objective and, in the discussion of the limitations of our study, we also provide some 

directions to facilitate further development of a model on the co-evolution of technology 

and organization. 

1.6 Research questions 

As mentioned, relatively little is known about how technology structures ecological 

processes across organizations and industries. Our interest lies mainly in the stage when 

technology is still in its formative stage. After all, in this stage, technological structures 

are highly fluid and, therefore, subject to influence by stakeholders (e.g., organizations or 

policy makers). It is for this reason that we want to pay explicit attention to one emerging 

technology in this dissertation: biotechnology. Biotechnology is posited by many as the 

technology of the future because it holds the potential to cure (costly) diseases such as 

cancer and Alzheimer, fight hunger by increasing the yield and nutrition value of crop, 

and even improve upon humankind (BIO, 2008). Even though we certainly believe that 

biotechnology will have an important impact on our future, we also want to know what 
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the impact is of biotechnology on our current society. We therefore formulate our first 

research question as follows. 

 

Research Question 1: What is the importance of biotechnology? 

 

This research question will be the focus of Chapter 2. The working assumption 

(i.e., hypothesis) of this chapter is that biotechnology has indeed a large impact on our 

everyday lives. Using a diverse array of commercially and freely available databases, we 

will demonstrate that biotechnology has a strong and increasing impact on numerous 

socio-economic indicators. This leads us to conclude that biotechnology is a strategic 

technology that has a large and increasing impact on numerous aspects of our socio-

economic environment, which includes the organizational environment and is thus 

relevant for the domain of organization science. 

 Considering that biotechnology is indeed a strategic technology that penetrates 

more and more aspects of our everyday life, then what determines the growth of such an 

emerging technology? The distinction between an emerging technology and a non-

emerging (i.e., mature) technology is that a mature technology follows rather predictable 

and stable patterns of growth. For example, technological developments within 

semiconductors follow predictable patterns of growth (i.e., exponential growth). 

According to Intel co-founder Gordon E. Moore (1965), the capacity of semiconductors 

roughly doubles every year, which was revised approximately nine years later into a 

doubling every two years. This was posited as Moore’s Law by Carver Head in 1972, a 

noted computer scientist at Caltech at that time. This translates, on the one hand, into a 

falling of average prices of semiconductor-related materials, and, on the other hand, into 

an increase in average performance of semiconductor-related products. Even though 

there are signs that developments within certain biotechnological components can also 

be characterized by similar patterns of growth, these do not yet translate into a steady 

decrease of average prices of biotechnology products or an increase in average 

performance levels. Hence, biotechnology as a whole cannot be characterized by such 

growth patterns. We formulate our next research question accordingly. 

 

Research Question 2: How to study the growth of an emerging technology? 

 

Even though technology is mainly studied from the academic domain of 

evolutionary economics, we take a slightly different approach in Chapter 3. That is, we 

study technology by using logic from organizational ecology. The reason for doing so is 

that organizational ecology is a rather coherent theory that uses rigorous models that are 

tightly linked with empirics. Furthermore, organizational ecology is currently going 

through a process of formalization, where different theory fragments are being integrated 
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into more complete wholes (Hannan, Pólos, & Carroll, 2007), which provides for the 

perfect opportunity to put forth technology as an vital component that should also be 

included in the ecological perspective. Hence, using organizational ecology logic, we 

develop a model to study the growth of an emerging technology. We test this model 

empirically through a panel regression analysis of patent and patent citation data from the 

United States Patent and Trademark Office (USPTO). In doing so, we demonstrate that 

emerging technology can effectively be studied as a technological system composed of a 

set of interacting technological components. The growth of these components depends 

on the technology’s structural characteristics (i.e., its embeddedness in the larger 

technological landscape), indicating the path dependent nature of (bio-) technology. In 

the process, we also add diversity as an important construct in the study of technological 

growth.  

Even though this ecological model already contributes significantly to our 

understanding of technological growth, it is of a relatively static nature (i.e., we assume 

that the structural characteristics have a stable effect on the technology’s individual 

components), while an emerging technology is characterized mainly by its non-static 

nature. Therefore, in Chapter 4, we explicitly consider the dynamic nature of emerging 

technology. So, we formulate our subsequent research questions as follows. 

 

Research Question 3: How to study the evolution of an emerging technology? 

 

In Chapter 4, we distinguish between two stages of technological development 

(i.e., divergence and convergence), and hypothesize that in the stage of divergence 

competition mainly occurs between sets of organizations that support alternative 

technological design configurations, in an effort to establish the supported configuration 

as the basis of future technological developments. In contrast, in the stage of 

technological convergence, actors have agreed upon the technological design 

configuration that will form the basis of future developments. So, on the basis of our 

model from Chapter 3, we develop a logic that distinguishes between these different 

stages of technological development. In doing so, we demonstrate that these different 

stages of technological component are characterized by different processes of 

competition and legitimation. Our model is thus dynamic in the sense that we allow the 

structural characteristics (of the technological selection environment) to have a 

differential effect in the different stages of technological development. Moreover, by 

further taking technological lineage (i.e., the embeddedness of technological 

development) into account, we add antecedent and descendant technological diversity as 

key dimensions of the technological niche, and illustrate the intricate role that diversity 

plays in technological development. We validate our hypotheses by combining a 

structural break model with a negative binomial panel regression model that analyzes the 
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rate of entry of patents into the different biotechnological components. Again, we use 

patent and patent citation data from the USPTO.  

 On the basis of the insights into the growth and evolution of an emerging 

technology from Chapters 3 and 4, it is possible to extend our knowledge about 

processes of legitimation and competition at the organizational level as well. However, 

before we can do so, we first need to define the technological niche at the level of an 

individual organization. We thus formulate our next research question accordingly. 

 

Research Question 4: How can we integrate technology into the theory of the organization-specific 

technological niche? 

 

In Chapter 5, we choose to define the organization-specific technological niche 

using formal logic not only because this connects nicely to the formalization wave that is 

currently going on in organizational ecology, but this also greatly facilitates the 

integration of our findings. Because natural language is highly ambiguous, it is possible to 

formulate highly eloquent arguments that are logically flawed. This makes a process of 

logical formalization valuable, as it requires explicating all underlying assumptions that 

are used in the argumentation. We formalize the theory of the organization-specific 

technological niche as conceived by Podolny, Stuart, and Hannan (1996), to develop a 

formal argument regarding the role of technology in co-determining organizational 

performance that is logically sound and complete. We add technological quality as a 

dimension to the technological niche (besides crowding and status) and explicate how 

uncertainty mediates the relationship between the organization’s technological quality, 

status, and performance. Moreover, we argue that crowding or niche overlap not always 

results in competition, but, in certain conditions, can also lead to legitimation effects as a 

result of positive spillovers. In doing so, we demonstrate how formal logic can be used in 

the process of theory analysis and how it facilitates theory extension. As mentioned, this 

also connects to the current wave of logical formalization that is ongoing in 

organizational ecology.  

 After formalizing the technological niche, we are fully equipped to integrate our 

findings from Chapters 3 and 4, and thus posit our next research question as follows. 

 

Research Question 5: What are the consequences of integrating several technological insights into the 

theory of the organization-specific technological niche? 

 

In Chapter 6, we integrate our insights about the growth and evolution of 

technology into our formal theory fragment from Chapter 5, hereby extending the theory 

of the organization-specific technological niche. Basically, we extend our arguments by 

using a total of four assumptions, namely, the existence of (1) multiple technological 
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systems, (2) different stages of technological development, (3) different levels of 

uncertainty, and (4) different growth rates.  On the basis of these rather simple and 

straightforward assumptions, we can significantly extend the theory of the technological 

niche. Not only by pointing to the important role that the stage of technological 

development plays in the formalized arguments of status and crowding, but also by 

adding two additional dimensions to the organization-specific technological niche, 

namely technological diversity and technological opportunities. The dimension of 

technological diversity is threefold. First, focal technological diversity signifies the extent 

to which an organization’s technological developments are situated in different 

technological domains. Second, antecedent diversity refers to the extent to which the 

organization’s knowledge originates from different technological domains. Third, 

descendant diversity refers to the extent to which the organization’s technology is 

diffused throughout the technological landscape. Technological opportunities refer to the 

extent to which innovations within a certain domain are easier to accomplish. In all, we 

posit that technology has a highly intricate role in organizational performance, and 

structures ecological processes within and between organizational populations. 

 Clearly, even though the theoretical discussion of the previous chapters already 

contributes greatly to our understanding of the role of technology in organizational 

performance, we need statistical evidence to back our arguments. Hence, our next 

research question becomes as follows. 

 

Research Question 6: Can we find proof for our extended theory of the organization-specific 

technological niche? 

 

Our extended model from Chapter 6 will be empirically tested in Chapter 7, by 

investigating the effects of the different dimensions of the organization-specific 

technological niche on organizational biotechnology innovation. We test our model by 

analyzing all organizations that have been awarded more than 10 biotechnology patents 

during the period of 1980-2005. Through a sophisticated negative binomial panel 

regression analysis of 935 organizations, we find strong support for many of our 

hypotheses. In doing so, we demonstrate the added value of a structural perspective 

towards technological change in explaining processes of competition and legitimation of 

individual organizations. Hence, cross-fertilizing organizational ecology and evolutionary 

economics appears to hold much promise. Moreover, it seems to suggest that technology 

might be an important factor in closing the chasm between organizational adaptation and 

environmental selection. In the concluding chapter, we consider the implications for the 

study of technological and organizational (co-) evolution. Hence, our final research 

question can be stated as follows. 
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Research Question 7: What are implications for the study of the co-evolution of technology and 

organization? 

 

Finally, Chapter 8 discusses the implications of our findings. That is, we propose 

a general framework that can be used to investigate the co-evolutionary processes that 

exist between technology and organization. More specifically, by conceiving technology 

and organization as multileveled hierarchies, it is possible to delineate the co-evolutionary 

links and define some general characteristics that are deemed important in the study of 

the co-evolution between technology and organization. Additionally, on the basis of the 

design limitations of our study, we also consider important avenues for future research  

1.7 Organization of this dissertation 

To recap, the next chapter will present evidence to indicate the increasing importance of 

biotechnology in our everyday lives. Next, Chapter 3 will develop an ecological model to 

study the growth of emerging technology, while Chapter 4 will make this model more 

dynamic to enable a better investigation of the evolution of emerging technology. To 

facilitate integration of our findings from Chapters 3 and 4, through a process of logical 

formalization, Chapter 5 will develop a formal theory of the organization-specific 

technological niche. Then, in Chapter 6, we will actually integrate our main findings 

about the growth and evolution of emerging technology into this formal theory. Next, 

Chapter 7 will test whether our extended model holds when subjected to a thorough 

empirical test. Finally, Chapter 8 will discuss our main findings in the context of our 

objective, propose a general framework to study the process of co-evolution of 

technology and organization at multiple levels of analysis, and provide directions for 

future research. 

 



 



 

Chapter 2    
 

Biotechnology 

2.1 Introduction 

Even though mankind has utilized biological processes for over 6,000 years (BIO, 2008), 

the first phase of the biotechnology revolution only started in the mid-1930s (Goujon, 

2001). This phase can be characterized by the term molecular biology, and is the result of 

a convergence of several previously distinct biological disciplines, such as biochemistry, 

genetics, microbiology and virology. The discovery of deoxyribonucleic acid (DNA) in 

1953 by James Watson and Francois Crick initiated the second phase of the 

biotechnology revolution, marking the beginning of the modern era of genetics. This era 

received a major impulse from genetic modification, represented by recombinant DNA 

(rDNA) technology. rDNA technology was first conceived by Herbert Boyer and Stanley 

N. Cohen in 1972, and has dramatically changed the field of biological sciences, by 

opening the door to genetically modified organisms.  

The major finding in biotechnology in the last five to ten years is the principle of 

biological universality, or the striking similarity of the cell (Horvitz, 2002). Unity of life at 

the cellular level provides the foundation for biotechnology. All cells have the same basic 

design, are made of the same construction material, and operate using essentially the 

same processes. DNA, the genetic material of almost all living species, directs cell 

construction and operation, while proteins do all the actual work. Because cells and 

biological molecules are extraordinarily specific in their interactions, biotechnology 

products can solve specific problems, and generate fewer side-effects and unintended 

consequences than other approaches (BIO, 2006). Biotechnology is expected to have a 

major impact on our society, and has been suggested as the solution to battle increasing 

healthcare costs by curing costly diseases and enabling predictive, preventive, and 

personalized medicine.  

The structure of this chapter is as follows. First, in Section 2.2, we will give a 

brief introduction of what biotechnology precisely is. Next, Section 2.3 discusses the 

increasing importance of biotechnology by investigating the economic and social impact 

of biotechnology. We will dig deeper into the position of biotechnology from a purely 

technological perspective in Section 2.4. Finally, Section 2.5 considers the future of 

biotechnology by contemplating the advancements within synthetic biology. 

2.2 What is biotechnology? 

Biotechnology essentially refers to all technology that is based on biology. Hence, 

biotechnology is the technology of the living world. According to this definition, 
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biotechnology is far from being a new phenomenon. After all, human kind has been 

using biological processes for over 6,000 years to leaven bread, to ferment beer and to 

produce wine (BIO, 2008). However, what has changed during the last century is that we 

have gone from the use of biological processes at the macro level (i.e., by using whole 

organisms, such as yeast) to the use of biological processes at the micro level (i.e., by 

using processes that occur at the cellular and molecular level, so within organisms). 

Hence, a modern definition of biotechnology can be stated as follows: 

 

“[T]he use of cellular and bio-molecular processes to solve problems or make useful products” (BIO, 

2008: 1). 

2.2.1 How does biotechnology work? 

In the mid-19th century, it was discovered that all organism are composed of cells, and 

that all cells are created by cells. This implies that the cell is the basic building block of 

life. Essentially, there are two kinds of cells: (1) prokaryotic cells, and (2) eukaryotic cells. 

Prokaryotes refer to the group of organisms (usually unicellular, and mostly bacteria) that 

lack a cell nucleus. In contrast, eukaryotes (e.g., plants, animals, and humans) are multi-

cellular organisms with different types of specialized cells that all originate from the same 

basic, undifferentiated stem cells.2 As a result, eukaryotic cells are much more complex, 

the main difference being that they contain a nucleus or command center that contains 

its entire DNA (i.e., the organism’s genome or complete collection of genetic material) 

that instructs the cell what to do in specific situations.3 The development of a multi-

cellular organism from a single cell involves the processes of cell proliferation and cell 

differentiation. Cell proliferation refers to the process where cells replicate many times. 

Cell specialization or differentiation refers to the process where a less specialized cell 

(e.g., a stem cell) differentiates into a more specialized cell (e.g., a human nerve, blood, 

heart, or muscle cell).  

 Unspecialized or stem cells have three properties that distinguishes them from 

specialized cells, which are: (1) stem cells are capable of dividing and renewing 

themselves for long periods (i.e., proliferation), (2) stem cells are unspecialized, and (3) 

                                                 
2 Human embryonic stem cells (ESC) can differentiate into all kinds of different cells, such as, for example, 

brain cells, heart cells, nerve cells, tissue cells, and liver cells. In contrast, adult stem cells (ASC) are 

undifferentiated cells that have more limited flexibility. Currently, scientists are investigating processes of 

cell differentiation and de-differentiation. Scientist had assumed that differentiated cells could not be 

reverted (i.e., de-differentiated) into unspecialized cells. The birth of Dolly proved this to be an incorrect 

assumption, when Scottish scientists cloned Dolly by using an adult stem cell through a process of somatic 

cell nuclear transfer. It was because of this reason that Dolly was special, not just the fact of cloning per se. 
3 Because prokaryotic cells do not have a nucleus, all DNA is condensed into what is called a nucleoid 

contained in the cytoplasm of the cell. 
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stem cells can give rise to specialized cell types, such as a heart muscle cell that pumps 

blood through the body, a red blood cell that carries oxygen molecules through the 

bloodstream, or a nerve cell that can fire electrochemical signals to other cells that allow 

the body to move or speak. There is a distinction between embryonic stem cells and 

adult stem cells, the difference being that adult stem cells typically generate the cell types 

of the tissue in which they reside. For example, a blood-forming adult stem cell in the 

bone marrow normally gives rise to the many blood cells, such as red and white blood 

cells. The differentiation of stem cells into specialized cells (i.e., cell differentiation) 

occurs through a combination of internal and external signals. The internal signals are 

controlled by a cell’s DNA, which carries the genetic instructions of the cell. External 

signals include chemicals secreted by other cells, physical contact with neighboring cells, 

and certain molecules in the microenvironment. In all, cells undergo four processes, 

which are: (1) cell growth, (2) cell reproduction, (3) cell differentiation, and (4) cell death. 

 

  
Figure 2.1 The double helix structure of DNA (source: U.S. National Library of Medicine) 

2.2.2 How are the DNA instructions actually turned into proteins? 

A gene refers to a particular section of our DNA that contains the process instruction to 

fabricate a particular protein. The Human Genome contains approximately 25.000-

30.000 genes, encoded in a total of approximately 3 billion base pairs of DNA. DNA has 

a double helix structure and is composed of so-called base pairs (i.e., AT or GC, where 

the initials stand for Adenine, Thymine, Guanine, and Cytosine, respectively). These base 
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pairs are combined using sugar and phosphate molecules to actually form the double 

helix structure, as can be seen in Figure 2.1. 

Under the right conditions (i.e., a combination of internal and external signals), 

the double helix of DNA will unravel itself into two strands, and mRNA (i.e., messenger 

ribonucleic acid) is created from one strand of DNA. That is, the DNA serves as a 

template to create a strand of genetic instructions or mRNA. The mRNA then travels 

outside the cell nucleus, where it is read by another cell structure (i.e., ribosome) that 

produces the protein by combining different types of amino acids. This process is 

displayed in Figure 2.2. 

Different combinations of amino acids result in different types of proteins. 

Because proteins are encoded in our genes, there should be an equal amount of proteins 

as genes in the Human Genome. However, post-translation modifications add to protein 

diversity. As a result, the human proteome (i.e., the complete human protein system) is a 

highly dynamic and complex system that contains 100s of thousands of different 

proteins. Some of the better known protein types are antibodies, enzymes (chemical 

reactors), messengers, structural components, and transport/storage proteins. Due to the 

important role of protein the in cellular processes (i.e., proteins provide all functionality 

for cellular processes), understanding cells means understanding proteins. In turn, 

understanding proteins implies understanding genes, as proteins are an expression of the 

genes. 

 

 
Figure 2.2 Protein synthesis (source: US National Institute of Health) 
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2.2.3 The unity of life on a cellular level 

As mentioned previously, the most important principle of biotechnology is the unity of 

life at cellular level (BIO, 2008; Horvitz, 2002). The cell is the fundamental unit of life 

and all cells have the same basic design. That is, all cells have the same basic components 

(e.g., DNA, rRNA, ribosome, and proteins) that interact in the same way.4 So, millions of 

years of evolution have resulted in highly sophisticated molecular systems 

(Lauffenburger, 2005). Because almost all cells speak the same genetic language, DNA 

from one cell can be used by any other cell (even a completely different cell from a 

completely different species). This feature makes DNA the cornerstone of modern 

biotechnology, as it is the machine language of biological processes. It effectively allows 

biotechnologists to recombine biological processes from different organism (such as 

plants, animals, insects, and humans) at the molecular level. Biotechnology thus gives us 

the ability to influence evolution at the molecular level. And, due to the fact that the 

genetic instructions that are encoded in an organism’s DNA or genome are so specific, 

biotechnology products can often solve problems more effectively (i.e., with fewer side-

effects than other approaches). In fact, the best words to describe today’s biotechnology 

are specific, precise, and predictable (BIO, 2008). Box 2.1 provides an overview outline 

of some of the major historic events that characterize biotechnology’s evolution. 

 

Biotechnology’s condensed timeline 

8000bc Humans domesticate crops and livestock 

4000bc Biotechnology first used to make bread and beer 

1590-1608 The microscope is invented 

1663 Cells are discovered 

1761 Successful cross breeding of different species of crop plants 

1830 Proteins are discovered 

1833 Discovery of the cell nucleus 

1838 Cell is the organization of all living things 

1839 All organisms are composed of cells 

1858 All cells only arise from pre-existing cells 

1859 Darwin’s theory of evolution 

1865 Mendel’s law of inheritance 

1879 Chromosomes are discovered 

1919 The word ‘biotechnology’ is first used in print 

1938 The term ‘molecular biology’ is coined 

1941 The term ‘genetic engineering’ is first used 

                                                 
4 Clearly, we refer here to the design configuration of cells that are of the same type (e.g., prokaryotic and 

eukaryotic cells), even though design configurations of cells of different types are also highly similar. 
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1944 Discovered that DNA carries genetic information 

1953 Double helix structure of DNA discovered 

1958 DNA is made in a test tube  

1960 Messenger RNA is discovered 

1972 First recombinant DNA molecule created 

1973 Technique to cut and paste DNA (i.e., recombinant DNA or rDNA) perfected 

1975 Conference to discuss rDNA and develop safety protocols 

1976 First biotech company (i.e., Genentech) founded  

1980 The US Supreme Court rules that modified organisms can be patented 

1980 US Bayh-Dole Act: grant recipients own federally funded inventions 

1980 Polymerase Chain Reaction (PCR) invented, a technique for copying DNA 

1982 First biotech drug (i.e., Genentech’s and Lilly’s human insulin) approved by the FDA 

1983 The first genetic markers for specific inherited diseases are found 

1988 The US Patent and Trademark Office grants Harvard University a patent for a mouse 

1988 United States launches the Human Genome Project 

1989 Plant Genome Project begins 

1990 Official start of the Human Genome Project 

1996 First Biotechnology crops commercially grown 

1997 Dolly the sheep (cloned using an adult stem cell) is unveiled in Scotland 

1998 First complete animal genome is sequenced 

1998 Discovery of how to isolate human embryonic stem cells 

2000 First complete map of a plant genome is developed 

2001 Draft version of the complete human genome is published 

2002 First draft of a functional map of the yeast proteome (i.e., complete protein system) 

2003 The Human Genome Project is completed 

2004 The first biotech pet (i.e., a fluorescent fish) hits the North American market 

2005 Skin cells dedifferentiated into Embryonic Stem Cells (ESC) using existing ESC 

2006 Pig developed that produces high levels of omega-3 fatty acids 

2007 Eucalyptus tree developed that ingests up to three times more carbon dioxide 

2007 Skin cells dedifferentiated into ESC without using existing ESC 

2008 Craig Venter’s genome synthesized (proof DNA carries genetic instructions) 

Box 2.1 Biotechnology’s timeline (source: BIO, 2008; Biotechnology Institute, 2009) 

2.3 The importance of biotechnology 

Not only will biotechnology be important for the future of human kind, it already has a 

major impact on our current society. As we will demonstrate in this section of the 

chapter, according to numerous socio-economic indicators, the activity within 

biotechnology is increasing at a rapid pace. Because most of these figures speak for 

themselves, we will not discuss them in great detail.  

From a financial perspective, we can get an idea of the importance of 

biotechnology by looking at the market capitalization of publicly traded biotechnology 
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firms. According to Bioworld (2008), a leading biotechnology news provider and 

information source, the market capitalization of biotechnology stocks tracked was $360 

billion in April 2008. Figure 2.3 present the evolution of the market capitalization of 

biotechnology firms from 1994 until 2006. As becomes clear from this figure, there has 

been a sharp increase over the recent years in absolute terms. From 1994 to 2006, market 

capitalization has increased more than seven-fold. Especially the sharp increase in 2000 is 

noteworthy, and illustrates that 2000 was a highly successful year for the biotech industry.  
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Figure 2.3 Market capitalization (BIO, 2008) 

 

In relative terms, the value increase remains highly impressive. Even though 

biotechnology shares obviously move up and down with the stock exchange’s general 

climate, biotechnology outperforms the average technology fund. This is illustrated in 

Figure 2.4, were we juxtapose the relative increase in the market capitalization of 

biotechnology stocks with the NASDAQ composite index from 1994 to 2006. 

There are two reasons for the sharp increase in market capitalization in 2000. 

First, this is due to an increase in biotechnology investments, as can be seen in Figure 

2.5. Even though 2000 was an extraordinary year for biotechnology investments that has 

not been surpassed in 2001 to 2004, the general trend is that biotechnology investments 

are steadily increasing. The second reason is a sharp increase in stock evaluations. 

Despite some analyst’s claims, biotechnology is, however, not just thriving on 

expectations. After all, biotechnology is not merely growing strong in financial terms, but 

also displays a strong growth in other areas, such as, amongst others, in terms of actual 

products on the market, as can be seen in Figure 2.6. 
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Relative market capitalization biotechnology and NASDAQ

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

Year

R
el
at
iv
e 
g
ro
w
th

 (
b
as

e 
ye

ar
 =

 1
99

4)

Biotech Nasdaq
 

Figure 2.4 Relative increase in biotechnology’s market capitalization and the NASDAQ 
composite index, base year = 1994 
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Figure 2.5 Biotechnology investments (source: Bioworld) 

 

This strong growth can also be observed from the number of alliances formed by 

biotechnology organizations, which has also increased sharply over the recent years, as 

can be seen in Figure 2.7. Again, a surge in activity can be noted in the year 2000, 
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stressing the importance of that year for the biotechnology industry. Despite the fact that 

the subsequent years have not been able to top 2000, again, the general trend is clearly an 

increasing one. The figure also demonstrates that the alliance activity is not only the 

result from cooperation between biotechnology and pharmaceutical organizations. Even 

though the early years of alliance activity in biotechnology was mainly driven by 

biopharmaceutical alliances (i.e., alliances between pharmaceutical firms and 

biotechnology firms), recent years demonstrate that alliance formation in biotechnology 

is becoming more independent from cooperation with pharmaceutical firms. This implies 

that there is an increase in the formation of alliances between biotechnology and non-

pharmaceutical firms (i.e., alliance activity is increasing among biotechnology firms, 

between biotechnology firms and universities, and between biotechnology and non-

pharmaceutical firms). 
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Figure 2.6 Biotechnology products on the US market (source: Bioworld) 

 

Besides an increase in alliances, we can also witness a sharp increase in merger 

and acquisition activity. In Figure 2.8, we graphically display the number mergers and 

acquisitions where the primary target or acquirer was a biotechnology firm. Because 

different databases contain different statistics, due to differences in coverage and coding 

strategies, we include both the data from Thomson Banker One and Bioworld. Even 

though these databases display different patterns, the general trend is a strong increase in 

M&A activity over the recent years. 

Furthermore, we have also conducted a query on Google to determine the 

attention (i.e., the number of pages devoted to biotechnology) that biotechnology 

receives on the World Wide Web. The results of this query are displayed in Figure 2.9. As 

can clearly be observed in this figure, the last three years the attention for biotechnology 
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is increasing exponentially. Even though it is impossible to draw any strong conclusions 

from these figures, it does indicate the growing attention that biotechnology receives. 
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Figure 2.7 The evolution of biotechnology and biopharmaceutical alliances (source: Recap) 
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Figure 2.8 Number of M&As (source: Thomson Banker One & Bioworld) 
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If we look at the number of scientific publications, the year 2000 was not out of 

the ordinary. As can be seen in Figure 2.10, the number of publications increases steadily 

in the period 1980-2008. If we assume that scientific knowledge translates into useful 

products and processes with a certain time lag, as many scholars do, this implies that the 

impact of biotechnology will continue to increase over the coming years. 

When looking at the technological knowledge production (i.e., patents), we also 

see a sharp increase. However, we can also observe a decline in the last years of 

observation (see Figure 2.11). This is due to a number of reasons, which are, amongst 

others, the completion of the Human Genome Project in 2003 (Lawrence, 2004), stricter 

examination guidelines for biotechnology patents at the USPTO (Barfield & Calfee, 

2007), the Bush administration’s ban on stem cell research, and Bush’s closure of the 

loophole in drug patents in 2002.5 
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Figure 2.9 Number of biotechnology hits at Google.com per year (the search term for 2005 was 
as follows: “biotechnology AND year AND 2005”) 

                                                 
5 Closure of the loophole in drug patent was part of a plan to speed up the process of getting generic drugs 

to the marketplace. The new rules make it clear that drug companies cannot file patents on such product 

aspects as packaging changes, metabolites, and intermediates that are unlikely to represent significant 

innovations to the original drug. 
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Figure 2.10 The number of scientific publications on biotechnology per year (source: ISI Web of 
Knowledge; all databases where topic is biotechnology) 

 

Biotechnology and drug patents

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

Year

N
u
m
b
er
 o
f 
p
at
en
ts

Biotech Drugs
 

Figure 2.11 The total number of USPTO Biotechnology (i.e., class 435 + 800) and Drugs (i.e., 
class 435) patents per year 

 

To illustrate that the reduction in drug and biotechnology patents is not tied to a 

general patenting trend, Figure 2.12 displays the growth of biotechnology and drug 

patents relative to the total number of patents issued by the USPTO. 
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Relative number of biotechnology and drug patents
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Figure 2.12 The number of USPTO Biotechnology (i.e., class 435 + 800) and Drugs (i.e., class 
435) patents per year relative to the total number of USPTO patents 

2.4 The position of biotechnology in the technological landscape 

In this section, we will consider the evolution of biotechnology’s position in the total of 

technological developments (i.e., in the overall technological landscape). The position of 

a focal technology in the overall technological landscape indicates the extent to which the 

focal technology forms an essential and integrated part of the whole of technological 

development. On the basis of this information, we are able to deduce the role of 

biotechnology in the historic and current technological structure of our society. To 

represent this information, we will make use of the concept of a technological network, 

which was first developed by Podolny and Stuart (1995). In this work, the authors use 

the concept of a technological network to represent individual inventions (i.e., the nodes 

of the network) and the technological linkages that exist between these inventions (i.e., 

the ties of the network). To construct the network, the authors use patents to represent 

the inventions, and patent citations to represent the technological ties between these 

inventions. Subsequently, in cooperation with Mike Hannan (Podolny et al., 1996), the 

authors use firms to represent the nodes of the network, again using patent citations to 

represent the linkages between the nodes. Here, we take this methodology one step 

further, and argue that the nodes of the network can also be represented by technologies 

or technological domains (e.g., biotechnology or semiconductors). Again, on the basis of 

patent and patent citation data, we can construct technological networks that represent 
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the structure of the overall technological landscape. On the basis of these networks, it is 

subsequently possible to determine the evolution of a technology or a technological 

domain (e.g., biotechnology) in the overall (patented) technological structure. The 

position of a technology in this network can be used to infer the role of the technology in 

the overall technological landscape. For example, according to the social network 

literature (Wasserman & Faust, 1994), the more central a focal technology the more 

important the role of this technology in the technological landscape. Hence, on the basis 

of a simple visual inspection of these technological networks, we can determine the role 

of biotechnology in the whole of technological development.  

To make the data manageable, we distinguish between a total of six five-year 

periods, ranging from 1976 until 2005. For these periods, we display the core structure of 

the technological landscape, by using patent and patent citations data from the USPTO. 

More specifically, we position technologies using ‘spring embedding’ on the basis of 

geodesic distances in Net Draw (Borgatti, Everett, & Freeman, 2002). We distinguish 

between higher lever technological categories and lower level technological domains 

using the classification system developed by Hall, Jaffe, and Trajtenberg (2001b). Within 

this classification system, technological domain 33 refers to biotechnology, is composed 

of USPTO patent classes 435 and 800, and belongs to technology category 3, named 

‘Drugs and Medical’.  

 In these networks, the size of the nodes is based on the relative number of 

patents of this domain, and thus reflects the size of the technological domain relative to 

all other domains. The linkages between the domains represent citations patterns and 

determine the relative position of the domain in the plots. For each network plot, we 

employ a unique cut-off value to represent the core configuration of the technological 

landscape. The reason for doing so is that the number of citations increases substantially 

over subsequent years, and employing the same cut-off value results in highly dense 

(sparse) and non-informative network images in later (earlier) periods. In the network 

plots below, we indicate the position of biotechnology using a larger typeface. These 

figures clearly illustrate three points. First of all, the structure of the technological 

landscape is highly stable over time, which suggests the existence of stable technological 

(design) configurations at aggregate levels of analysis. This is illustrated by the fact that 

many ties between components remain stable over time. For example, the tie between 

“Biotechnology” and “Miscellaneous-chemical” exists in all periods. This naturally leads 

us to our second point, which is that technologies are embedded within a larger 

technological environment.6 Third, biotechnology’s position changed in the early 1990s. 

Until then, biotech was only connected to “Miscellaneous-chemical”. Since the early 

                                                 
6 Remember that the network plots only represent the core of the technological landscape. If all linkages 

between technologies would be included, the embedded nature of technological development would be 

much more profound. 
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1990s, connections with “Organic Compounds” and “Drugs” were added.  This can be 

seen as a sign that biotech is now starting to move closer to the core structure of the 

network, by creating strong triads or Simmelian ties (Simmel, 1950) with “Organic 

Compounds”, “Miscellaneous-chemicals”, and “Drugs”. However, notwithstanding this 

shift, biotech has still a long way to go before this technology can be regarded as really 

core. For example, consider the distinction between the evolution of biotechnology 

versus the evolution of “Semiconductor Devices”. This latter domain has evolved from a 

peripheral position at the edge of the network to a highly central position in the core of 

the network. Hence, if the impact of biotechnology is expected to be of the same or 

greater magnitude as “Semiconductor Devices”, it will surely take many years before 

biotechnology is at its peak influence. In the network plots we only display the 

technological domains, without reference to the technological category to which they 

belong. This information is provided in Appendix A, while some descriptive statistics 

about the (relative) size and importance of the domains in the different periods are 

provided in Appendix B. 

 

 
Figure 2.13 Plot of the core of the technological landscape of 1976-1980 (500+ citations) 



Chapter 2 48

 
Figure 2.14 Plot of the core of the technological landscape of 1981-1985 (750+ citations) 

 

 
Figure 2.15 Plot of the core of the technological landscape of 1986-1990 (1250+ citations) 
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Figure 2.16 Plot of the core of the technological landscape of 1991-1995 (2000+ citations) 

 

 
Figure 2.17 Plot of the core of the technological landscape of 1996-2000 (3000+ citations) 

 



Chapter 2 50

 
Figure 2.18 Plot of the core of the technological landscape of 2001-2005 (5000+ citations) 

2.5 The future of biotechnology 

It might have become clear from the previous discussion that biotechnology has many 

(potential) applications in a diverse array of domains. For example, in healthcare, 

biotechnology is argued to lead to predictive, preventive, and personalized medicine. 

More specifically, by studying a patient’s genome or DNA, it is possible to determine his 

or her disposition to diseases, identify ways that prevent a disease from actually 

manifesting itself, and develop custom-made medications in the event that the disease 

does occur (BIO, 2008). In addition, understanding cell differentiation implies an ability 

to replace any part of the body, also referred to as regenerative medicine (van Santen, 

Khoe, & Vermeer, 2007). To give a non-healthcare example, in the agriculture industry, 

biotechnology can be used to increase yields by increasing stress tolerance levels of crops 

and animals (BIO, 2008). Closely related, in food technology, the quality of food can be 

increased by increasing the health and nutritional benefits of food, such as a pig that 

produces high levels of omega 3 fatty acids, or the so-called ‘golden rice’ that alleviates 

micronutrient deficiencies in developing countries (Paine et al., 2005). Moreover, there 

are also many industrial and environmental applications of biotechnology, such as, for 

example, organisms that increase efficiency of chemical processes, convert plant matter 

into biofuel, or remediate our natural environment (BIO, 2008). These are just a few of 

the many applications of biotechnology, and the possibilities are virtually endless. For 

example, some of the more distant and exotic examples are a space ship that assembles 

itself, a tree that grows separate rooms that can subsequently be used as a house (Endy, 

Thomas, & Brand, 2008), or the terraforming of Mars (Kuldell & Shetty, 2009). Even 

though the latter examples already stretch the imagination of most people, if there is 
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something that history has taught us, it is that future developments will most likely even 

take us beyond our wildest imaginations.  

 It is not so much a question of whether but rather of when these applications will 

become solidified. Unmistakably, this is difficult to say and depends to a large extent on 

the priority that is given to and the amount of resources invested in the creation of 

general (e.g., stem cell research) and specific applications (e.g., the development of 

organisms that convert coal into methane). With respect to healthcare applications, we 

can make the following observations. According to the US Centers for Disease Control 

and Preventions (CDC), chronic diseases (such as cardiovascular disease, cancer, and 

diabetes) are among the most prevalent and costly of all health problems. To be specific, 

the direct (i.e., medical costs) and indirect (i.e., productivity losses) costs of diabetes are 

$174 billion a year, of arthritis $128 billion, cardiovascular disease $448 billion, obesity 

nearly $117 billion in 2000, and cancer an estimated $89 billion annually in direct medical 

costs in the US (CDC, 2009). Due to rising costs (especially of the obesity-related 

cardiovascular diseases) and the aging of society, it becomes clear that this problem 

cannot be resolved by controlling healthcare costs alone (Termeer, 2002). Hence, there 

exists a strong current to bring these costs down through innovative solutions enabled 

through biotechnology. For example, stem cells hold the key to curing diseases such as 

Parkinson’s disease, diabetes, and cardiovascular disease (NIH, 2008). 

At this moment, biotechnology is no more than a collection of technological 

components (BIO, 2008) that are highly complex and heterogeneous because human 

biology is a highly complex, highly integral system (Pisano, 2006). This means that 

biological processes posses a degree of integration of their parts that is far greater than 

that of non-living systems (Andrianantoandro, Basu, Karig, & Weiss, 2006), which results 

from the approximately 3.8 billion years that it has taken for nature to optimize its 

designs through evolution.7 The genetic code or the machine language of the living world 

(i.e., DNA) is just yet discovered. Due to incomplete knowledge of biology 

(Andrianantoandro et al., 2006), biotechnology is fragmented into highly specialized 

separate fields, each with its own set of focal problems, languages, intellectual goals, 

theories, accepted methods, publication outlets, and criteria for evaluating research 

(Pisano, 2006). As these separate fields do not even share a common lexicon (Hood, 

2004), communication is greatly hampered. Adding to this complexity is the fact the 

fields are still in development and therefore not stable (Endy, 2005; Pisano, 2006). 

Because biotechnology’s components are still under development, the configuration of 

these components is highly unstable, which severely hampers developments. In other 

words, currently, no stable configuration or ‘paradigm’ exists for biotechnology (Endy, 

2006), which implies the existence of many unknown unknowns (Knight, 1921) or strong 

                                                 
7 The oldest ancient fossil microbe-like objects are dated to be 3.8 billion years old (Fedo, Whitehouse, 

Camber, 2006) 
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uncertainty (Dosi, 1988; Pisano, 2006). A stable configuration or ‘paradigm’ identifies the 

core components to be developed and the relationship between these components. The 

emergence of a stable configuration or paradigm is important because it (1) facilitates 

cumulative progress, (2) provides an ‘architecture’ that facilitates specialization and 

integration, and (3) structures ecological processes between (populations) of 

organizations (Dosi, 1988; Pisano, 2006). Hence, the way forward for biotechnology is in 

the creation of a paradigm, as this decreases uncertainty and enables cumulative changes 

through specialization. To determine the progress towards this goal, we turn to the 

domain of synthetic biology.  

2.5.1 Synthetic biology 

Within the domain of synthetic biology, complex systems are designed by (re-) 

combining DNA into biological parts that represent biological functions 

(Andrianantoandro et al., 2006). Building and modifying these biological parts essentially 

implies a transition from reading the genetic code to writing it (Post, 2008). The basic 

design units are the biological parts, and these are extremely important because the ability 

to quickly and reliably engineer is a function of the libraries of standard interchangeable 

parts (Canton, Labno, & Endy, 2008). Historically, a reductionist approach (i.e., analysis) 

has been applied, and very successfully so, to develop models of the workings of life 

(Endy et al., 2008). However, the proof of the putting is in its eating. This means that we 

only know whether these models are correct when actually putting these parts back 

together and see what happens. With analysis, if data contradict the theory, the data can 

be neglected (or even adapted) to safeguard the theory (Benner & Sismour, 2005). In 

contrast, within synthetic biology, if the data do not fit the theory, the biological parts or 

systems simply do not work, and there is absolutely no room for inconsistencies and 

ambiguities. As such, synthesis essentially drives the evolution of paradigms (Benner & 

Sismour, 2005), and is the place where the rubber meets the road. 

 

“Synthesis defines an ambitious ‘put-a-man-on-the-moon’ goal. By doing so, it forces scientists 

and engineers to cross uncharted terrain in pursuit of the goal. This requires the solution of 

unscripted problems that are not normally encountered through either observation or analysis. 

Furthermore, the problems cannot be ignored if they contradict a paradigm. With analysis, if the 

data contradict the theory, the data are (as often as not) discarded to protect the theory. If one 

does this when putting an orbiter around Mars, however, the orbiter crashes” (Benner & 

Sismour, 2005: 534). 

 

So, how far are we from truly being able to perform synthetic biology? 

Essentially, the machine language is there, which are the genetic instructions encoded in 

DNA. This implies that synthetic biology relies heavily on two technologies, which are 
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DNA sequencing (i.e., reading DNA) and DNA synthesis (i.e., writing DNA). Regarding 

the sequencing of DNA, the National Human Genome Research Institute (a division of 

the US National Institutes of Health) has set the realistic target that by 2014, the entire 

human genome (i.e., a patient’s complete DNA or approximately three billion base pairs) 

can be sequenced for approximately $1000 in a relatively short time frame (Bourzac, 

2009).8 With respect to DNA synthesis, the genome of Mycoplasma genitalium was 

recently synthesized, which consists of 582,970 base pairs (Gibson et al., 2008). This 

figure approximately doubles every 14 months (Endy et al., 2008), which would imply 

that the human genome can be fully synthesized around the year 2020. So, both the 

reading and writing of DNA shows a geometric increase that is comparable to the one 

that characterizes information technology, better known as Moore’s law. 

Even though the technological potential is surely there, this potential does not yet 

translate into product improvements or price reduction like they do in information 

technology. We can thus ask ourselves what is needed to translate this technological 

potential into concrete products and processes to unleash the economic and social value 

that lies hidden in biotechnology. What is needed is a stable configuration (e.g., of 

resources and skills) that makes it possible to effectively take advantage of this 

technological progress. Clearly, this is not an easy task as biotechnology is a highly 

complex technological domain. However, according to Endy (2005), the only reason that 

biotechnology is so complex is because we have never made it simple. To make it simple, 

he proposes to apply the design principles from engineering, which are abstraction, 

decoupling, and standardization (Canton et al., 2008). Abstraction is a powerful 

technology for managing complexity, and according to Endy (2005: 451), “[t]he purpose 

of an abstraction hierarchy is to hide information and manage complexity.” He proposes 

four levels of abstraction, namely (1) DNA, (2) parts, (3) devices, and (4) systems, as in 

Figure 2.17. In this hierarchy, ‘DNA’ refers to the genetic material, ‘parts’ are basic 

biological functions (e.g., a DNA-binding protein), ‘devices’ are any combination of 

‘parts’ that perform a human-defined function, and ‘systems’ are any combination of 

‘devices’. Abstraction barriers (indicated by the line between abstraction levels) block all 

exchange of information between levels, while interfaces (the ‘gates’ between abstraction 

levels) enable the limited and principled exchange of information between levels of 

abstraction. For this abstraction hierarchy to be useful, individuals must be able to work 

independently at each level of the hierarchy. 

Decoupling means to separate a complex problem into simpler sub-problems 

that can be worked on independently, in such a way that the resulting work can 

eventually be combined into a functioning whole (Endy, 2005). The most obvious and 

basic decoupling within synthetic biology is to separate the design of DNA from the 

production (i.e., synthesis) of DNA. The ability to decouple DNA design from DNA 
                                                 
8 In 2007, the costs of sequencing an entire human genome were still roughly $1 million. 
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production is driven by the advancements in DNA synthesis. Currently, biological 

researchers spend about 50 per cent of their time fabricating the genetic material to be 

used in their experiments (Endy, 2005). So, separating design from production would 

lead to a two-fold increase in research output. Finally, with respect to standardization, 

standards are highly important in our modern societies, underlying many aspects of our 

modern world. In the context of biotechnology, even though several useful standards 

have already arisen, there are still tremendous costs because of a lack of standards (Endy, 

2005).  

 
Figure 2.19 An abstraction hierarchy that supports the engineering of integrated genetic systems 
(source: Endy, 2005) 

 

It goes without saying that the classical ideas of abstraction, decoupling, and 

standardization have to be adjusted to take into account the characteristics properties of 

biology (Andrianantoandro et al., 2006). However, viewed from an engineering 

perspective, parts are more suitable when they contribute independently to the whole 

(Benner & Sismour, 2005), also known as modularity (Henderson & Clark, 1990; Pisano, 

2006). It thus makes sense to search for independently interchangeable parts, which is 

why synthetic biology is currently making an effort to create these independent parts 

(e.g., consider the Biobricks initiative at MIT) that can be effectively recombined into 

devices and systems that actually work. However, because biological parts are highly 

specialized and specific, this is not an easy task and entails a great deal of redesigning 

existing components. Ultimately, synthetic biology succeeds to the extent to which this 

independence approximation can be reached or created (Benner & Sismour, 2005). This 
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independence would also facilitate a move of biotechnology from (university) labs to 

garages (Endy et al., 2008), also known as the do-it-yourself biotechnology or DIYBIO 

movement (Kuldell & Shetty, 2009), which is required to unleash the full creative 

potential of our society, much like the internet revolution several years ago. 

 

 



 



 

 

 

 

 

 

 

 

 

Part II Technology 
 

“Technology is a gift of God. After the gift of life it is perhaps the greatest of God’s 

gifts. It is the mother of civilizations, of arts and of sciences.” 

~ Freeman Dyson 

 



 



 

Chapter 3   
 

The Ecology of Technology 

3.1 Introduction 

Nowadays, it is commonly known that technology plays an important role in the 

evolution of our modern-day society. After all, it is widely recognized that technology 

drives economic growth, and structures the relationships between individuals, groups, 

and organizations (Barnett, 1990; Duysters, 1995; Marx, 1906; Schumpeter, 1943; 

Tushman & Nelson, 1990). Technological change has mainly been studied from the 

perspective of evolutionary economics, which is based on Schumpeter’s (1943) notion of 

technological change as an evolutionary process, as well as in the neoclassical tradition in 

economics, albeit less so. In the current chapter, we take a different route. Our key 

argument is that using insights from organizational ecology, a prominent sociological 

theory of the evolution of populations of organizations, will produce value added. We 

coin this new approach the ‘ecology of technology’. 

Although the Schumpeterian conception of technological change as an 

evolutionary process has been widely adopted in the literature, an in-depth understanding 

of what it precisely is (and does), is still argued to be in its infancy, at best (Fleming, 2001; 

Fleming & Sorenson, 2001). If so, this implies that a great challenge is to specify a really 

evolutionary process that explains how technological change comes about endogenously. 

The purpose of the current chapter is to move beyond a descriptive account of 

technological change, and to contribute to an explanation of the very nature of the 

growth pattern that is associated with endogenous technological change. To achieve this 

goal, as said, we will use notions from organizational ecology. In doing so, we will focus 

on the evolutionary – or ecological, for that matter – process of a technology’s growth. 

In organizational ecology, the focus is on the evolution of a population of organizations. 

Adopting a similar logic, we deal with the evolution of a population of inventions. More 

specifically, by conceiving of technology as a system composed of a set of interdependent 

populations of related inventions (i.e., technological components), we aim to determine 

to what extent the pattern of technological growth can be attributed to the structural 

characteristics of technology. It is in this sense that our approach deals with endogenous 

growth of a technology. 

In line with the work of Podolny and Stuart (1995), we claim that the notion of a 

technological niche offers a platform from which we can develop a deeper understanding 

and explanation of this process of endogenous technological growth. Accordingly, we 

define the niche at the level of a technological component (i.e., a population of related 

inventions), embedded within a technological system. As mentioned, our key aim is to 
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develop a theory of why growth rates differ across technological components due to the 

structural characteristics of technology. As we will argue in greater detail below, this 

process of endogenous technological growth is determined by the ‘ecological’ 

characteristics of a technological component and the way in which this component is 

embedded in the technological system and the larger technological environment. This 

makes the concept of a technological niche useful for the purpose of our study as it 

points to the important role of the structural characteristics internal to the technology in 

driving the process of technological growth. Such a structural view on technological 

growth is ill-developed, to date, apart from a few notable exceptions that we will discuss 

in detail below (Fleming, 2001; Stuart, 1999). 

Hence, the theoretical claim that this chapter makes is twofold. First and 

foremost, to come to a better understanding of the process of technological growth, we 

argue that a systemic perspective towards technology is warranted. That is, we perceive 

of a technological system as a set of interdependent components, which are embedded in 

the larger technological environment, commonly referred to as a technological landscape. 

In turn, this landscape can be conceived of as a population of technological systems. As a 

result, we can nicely bring in insights from organizational ecology, and produce value 

added. Second, these technological growth patterns are to a large extent determined by 

structural characteristics of technology (i.e., the characteristics of the technological 

environment in which the technology is embedded). After developing our theory, we will 

test specific hypotheses that follow from this ecological logic through an empirical 

analysis of patents and patent citations in biotechnology. Note that given our focus on 

patent data, we operationalize growth as entry (normally, growth is equated with net 

entry – i.e., entry minus exit), as patents do not exit.9 Hence, in the remainder, 

technological growth and entry are used interchangeably 

The major contribution of this chapter is, therefore, that we further our 

understanding of the process of endogenous technological growth by employing notions 

from organizational ecology, in developing a systemic perspective towards technology 

that may be coined the ‘ecology of technology’. In doing so, we extend the notion of the 

technological niche by adding internal diversity as a key structural feature, and illustrate 

the importance of adding a measure of technological diversity in evolutionary and 

ecological models of technological growth. Moreover, by applying models from 

organizational ecology to technological populations, we demonstrate how these concepts 

can be applied empirically, here in the context of biotechnology.  

                                                 
9 Even though the legal life span of a patent is approximately 20 years and the economic life span of most 

patents is considerably less, the technological life span of a patent can be much longer than 20 years. The 

reason is that technological development is cumulative, which means that future developments can build 

upon individual patented inventions long after its legal or economic life span.  



The Ecology of Technology 61 

The structure of this chapter is as follows. Section 3.2 describes the process of 

endogenous technological growth. We develop our theoretical model and associated 

hypotheses in Section 3.3. In Section 3.4, we elaborate on the empirical setting of our 

study, introduce our empirical measures, and explain our estimation methods. Section 3.5 

presents the results of our empirical analyses. And finally, in Section 3.6, the findings are 

discussed in relation to our theory and the broader literature. 

3.2 Endogenous technological growth 

In the previous century, Schumpeter (1943) presented an evolutionary theory of the 

workings of the capitalist system, driven by forces of technological change. He conceived 

technological change (i.e., growth) as a process of recombination, where (existing) 

components are brought together in new ways (Schumpeter, 1939). Since then, the 

conception of technological growth as a process of recombination has been widely 

adopted in the literature (Basalla, 1988; Fleming, 2001; Fleming & Sorenson, 2001; 

Henderson & Clark, 1990; Nelson & Winter, 1982). In this chapter, we continue in this 

tradition and view invention as a process of recombination of components, where 

components refer to the constituents of invention (Fleming, 2001). This notion implies 

technological lineage, where an invention builds upon antecedent inventions, and can 

subsequently become the basis for future (descendant) inventions itself (see Figure 1.3). 

Even though the notion of technological change as a process of recombination 

has been widely acknowledged, the precise workings hereof are rather ill-defined. This is 

mainly because a structural or systemic view is relatively underdeveloped, to date, apart 

from a few notable exceptions (Fleming, 2001; Stuart, 1999). In the current paper, our 

key aim is, therefore, to develop a theory of why growth rates differ across technologies 

due to the structural characteristics internal to technology itself. Our main claim is that, 

by viewing technologies as populations of related inventions, we can produce value 

added by bringing in insights from organizational ecology, a prominent sociological 

theory on the evolution of populations of organizations. More specifically, we view 

technology as a system that cuts across organizational boundaries (Barnett, 1990). In 

doing so, we basically focus on the aggregate pattern of development of all organizations 

that are active in a certain technological domain. Accordingly, we use Hawley’s (1950) 

ecological framework and study technology in terms of its elemental systems or 

components. So, in analogy with Ruef (2000), we define a technological system as a 

bounded set of technological components with a related identity. In turn, a technological 

component is defined as a population of related technological inventions. In doing so, we 

effectively develop a multi-level model of technological growth (see Figure 3.1 below). 

Because the phenomenon of technological growth is inherently of a multi-level nature, 

we are able to add insight and depth well beyond any single level of analysis (Tushman & 

Nelson, 1990). 
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Figure 3.1 A multi-level model of technology 

 

We study the entry of inventions into technological components, or the growth of 

component technologies. As can be seen in Figure 3.1, these components are embedded 

in a larger technological system (e.g., biotechnology), and are composed of populations 

of related inventions. In line with the work of Podolny and Stuart (1995), we claim that 

the notion of a technological niche offers a platform from which we can develop a 

deeper understanding and explanation of this process of endogenous technological 

growth. 

3.3 The technological niche 

The concept of the niche was first developed by Charles Elton (1927), and is still central 

to many ecological studies today, where it is used to delineate the relational position of an 

organism, population or species in an ecosystem. The niche has received widespread 

attention in numerous empirical studies (Baum & Singh, 1994b; Dobrev, Kim, & Carroll, 

2002b; Dobrev et al., 2003; Dobrev et al., 2001b; Freeman & Hannan, 1983; Hannan, 

Carroll, & Polos, 2003a; Lawless & Anderson, 1996; Podolny & Stuart, 1995; Podolny et 

al., 1996), as well as in theoretical work (Hannan et al., 2003a; Hannan et al., 2007; Peli, 

1997; Peli & Nooteboom, 1999; van Witteloostuijn & Boone, 2006). Here, we claim that 

building upon this wealth of research is fruitful to elucidate the process of the entry of 

inventions into our technological components. 

The technological niche was first developed by Podolny and Stuart (1995) to 

investigate the effects of crowding and status for the future importance of individual 

inventions. They defined the technological niche as the relational context of an invention 

that co-evolves with technological change. Podolny, Stuart, and Hannan (1996) 

subsequently applied the concept of the technological niche at the organizational level of 

analysis, to study the effects of crowding and status on organizational growth and 

survival. In this study, we want to continue in this tradition, and build on this notion of 

the technological niche. However, instead of applying the niche to individual inventions 

or to organizations, we define the niche at the level of a technological component. That 

Technological system 

Technological component Technological invention 
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is, we define the technological niche as the relational context of a technological 

component (e.g., genetic engineering), embedded within a technological system (e.g., 

biotechnology). To reiterate, we are thus investigating the aggregate pattern of 

development by all organizations active within a certain technological component or 

system. Our key dependent variable is growth of the technological component as 

reflected in entry by new inventions, coined component growth. 

According to Podolny and Stuart (1995), the growth of technological niches (or 

niche entry) mainly depends on three attributes, which are: (1) the characteristics of the 

technological component niche itself, (2) the embeddedness of the component niche in 

the technological system or landscape (i.e., the broader technological environment), and 

(3) the characteristics of the organizations populating the technological component 

niche. As argued, the aim of this study is to develop a model of endogenous 

technological change. We therefore choose to abstract from the organization, and mainly 

focus our attention on attributes (1) and (2). Below, we will subsequently discuss the 

dimensions of the niche central to our theory, focusing on both its internal (i.e., niche 

density and diversity) and external (i.e., crowding and status) features. Note that, given 

our application to component niches of biotechnology (see below for details), we often 

refer to the short-cut component or niche for component niche.  

3.3.1 Component density 

Researchers have observed a characteristic pattern of evolution of diverse organizational 

populations: initially, after a slow kick-off, population size increases rapidly, and then 

stabilizes or even declines in numbers (Carroll, 1984; Carroll & Hannan, 1989a; Carroll & 

Hannan, 2000; Hannan & Freeman, 1989). Intrigued by the universality of this typical S-

curved pattern, organizational ecologists have sought to explain this phenomenon. They 

were able to do so by integrating elements from ecological and institutional theories, into 

what is known as density dependence theory (Carroll & Hannan, 1989a). This theory 

posits that the two general forces of selection – i.e., social legitimation and diffuse 

competition – are linked to the density of organizational populations (Carroll & Hannan, 

2000). Basically, population density serves as a surrogate for the difficult-to-observe 

features of the material and social environment that affect organizational founding and 

mortality rates, particularly competition and legitimation (Hannan & Freeman, 1989).  

Legitimation refers to “the standing as a taken-for-granted element in a social structure” 

(Hannan et al., 2007: 78), and is especially important in the early stages of population 

development. After all, the capacity of an organizational form to mobilize resources is to 

a large extent dependent on the extent to which (extremely skeptical) resource controllers 

take the form for granted (Aldrich & Fiol, 1994; Carroll & Hannan, 2000). Legitimation 

is tied to density because, according to Hannan and Freeman (1987: 918), “if 

institutionalization means that certain forms assume a taken-for-granted character, then 
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simple prevalence of the form ought to legitimate it.” Legitimation processes thus 

produce a positive relationship between population density and founding rates.  

Density also has an obvious link with diffuse competition, which is defined as common 

dependence on the same resource pool. After all, if density increases linearly, the number 

of potential competitive links increases exponentially (Carroll & Hannan, 2000). This 

implies that density increases diffuse competition at an increasing rate, as more 

organizations fight for limited resources, resulting in declining founding rates and 

increasing mortality rates (Hannan & Freeman, 1987). The joint forces of legitimation 

(dominant at low density) and competition (dominant at high density) produce non-

monotonic density-dependent processes of organizational entry (reverse U-shaped) and 

exit (U-shaped), which together generate an S-shaped growth curve of population 

density.  

Even though the theory of density dependence has been primarily applied to 

organizational populations, and very successfully so, recent research illustrates that, due 

to its general nature, this argument can also be effectively applied in other settings, such 

as the birth and death rates of national laws  (de Jong & van Witteloostuijn, 2008; van 

Witteloostuijn, 2003; van Witteloostuijn & de Jong, 2009; van Witteloostuijn & Jong, 

2007) and organizational rules (March et al., 2000; Schulz, 1998). As such, we believe that 

density dependence logic can also fruitfully be used in the study of evolutionary 

processes within technological populations (cf. Pistorius & Utterback, 1997). After all, 

technology also displays characteristic patterns of growth (Dosi, 1988), and the S-shaped 

growth or logistics curve is also extensively documented for technology (Andersen, 1999; 

Griliches, 1957; Mansfield, 1961; Rogers, 1962; Young, 1993). However, we have to keep 

in mind that, even though similarities between technologies and organizations provide a 

useful platform for applying analytical concepts from one domain to the other, we have 

to be careful not to equate one sphere with the other (Pistorius & Utterback, 1997). This 

implies that we should carefully consider the extent to which processes of competition 

and legitimation operate in technological populations.  

It is widely acknowledged that technologies need to be legitimized (Aldrich & 

Fiol, 1994; Anderson & Tushman, 1990; Dosi, 1988; Duysters, 1995; Nooteboom, 2000; 

Zucker, 1989). According to DiMaggio and Powell (1983), organizations even adopt 

technology to enhance their own legitimacy. Hence, technologies are institutionalized and 

become a taken-for-granted means to accomplish organizational ends (Meyer & Rowan, 

1977). This process of legitimation is especially important in the formative stage of a 

technology (i.e., a technological component) when, akin to the initial stages of 

organizational populations, “important constituents, such as investors, founders, 

potential customers and employees lack a clear understanding of the newly emerging 

activity, hampering taken-for-grantedness and resource mobilization” (Bogaert, Boone, & 

Carroll, 2007: 3). Here, we believe that the denser the component’s technology (i.e., the 
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more technological inventions there are in the component’s niche), the better understood 

the technological component is, and the more it is taken-for-granted as the appropriate 

means to accomplish a certain goal (e.g., use rDNA technology to modify the genetic 

structure of living material). Obviously, this process enhances the growth of the 

technological component. So, analogous to the acceptance of a new organizational form 

by society, legitimacy of a new technological component increases with the number of 

technological inventions in the component’s niche. Hence, at low levels of component 

density, we expect to find a positive association between component density and 

component entry. 

Ideas and innovations compete with one another for the attraction of resources 

and attention (Basalla, 1988; Podolny & Stuart, 1995). That is, due to the scarcity of 

stakeholder resources, only a limited amount of resources and attention can be attributed 

to (a particular kind of) technological development at a certain point in time. Because a 

firm’s research budget or an investor’s capital is limited, alternative inventions compete 

for these scarce resources. Increasing density increases the number of inventions that 

depend upon these scarce resources for further development (e.g., successful 

introduction into the market; i.e., turning the invention into an innovation). So, when 

these resources become scarce (i.e., at high levels of component density), processes of 

competition start to develop between alternative inventions. Hence, at high levels of 

component density, we expect a negative association between component density and 

component entry. Our first hypothesis hence becomes 

 

Hypothesis 3.1: Component density is first positively and later negatively associated with component 

growth, implying a non-monotonic inverted U-shaped effect of component density on component 

growth. 

3.3.2 System density 

Over the years, density dependence theory has received considerable critique. This is 

mainly the result of the generality of the model. On the one hand, regarding the 

legitimation processes, opponents – mainly institutionalists – argue that legitimation is a 

multi-dimensional construct that cannot be adequately represented by a measure as crude 

as population density (Baum & Powell, 1995; Zucker, 1989). This critique argues that 

population evolution is highly dependent on idiosyncratic events (e.g., legislative changes, 

overt political support, and entrepreneurial initiatives) that are largely ignored when 

merely studying population numbers. Accordingly, ecologists argue that those events are 

indeed important, but can never be fully taken into account by any general theory, and 

therefore opt to control for such events instead (Carroll & Hannan, 1989b). As 

mentioned, it is our aim to develop a theory that allows for a systematic investigation of 
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technological growth (and, in a later stage, technological evolution), and we therefore 

choose to follow the ecological approach in this matter by controlling for specific events. 

On the other hand, the competitive aspect of the theory has also been challenged. 

It is argued that populations are not fully homogeneous and that segments of the 

population respond differently to (mainly) competitive processes (Baum & Shipilov, 

2006; Lomi, 1995). Indeed, recent research indicates that competitive processes are 

highly localized because competition is tied to material resources (i.e., plants, products, 

and people), and is therefore hampered by spatial and geographic boundaries (Baum & 

Shipilov, 2006; Carroll & Hannan, 2000; Lomi, 1995). In contrast, legitimation processes 

are tied to information, which flows more freely, and is therefore hampered less by 

boundaries. Accordingly, legitimation processes are argued to operate more broadly than 

competitive processes (Carroll & Hannan, 2000). This provides fertile ground for 

extending the original density dependence model.  

One of the proposed extensions is to employ multi-level models, where processes 

of legitimation are allowed to operate more broadly than competitive processes (Hannan, 

Dundon, Carroll, & Torres, 1995). Here, we follow this line of reasoning and argue that 

the flow of material resources (i.e., plants, products, and people) is not only disrupted by 

political and physical barriers (Carroll & Hannan, 2000), but also by technological 

boundaries. That is, we claim that technology also localizes competitive processes, whilst 

processes of legitimation operate on a broader technological scale. Hence, we expect 

density within the entire technological system to be tied to processes of legitimation (and 

not to competition). If this would not be the case, it would imply that the set of 

technological components does not really comprise a coherent technological system. 

After all, a set of components comprise a system only when these components form an 

integrated whole – that is, when the whole is greater than the sum of its parts. In other 

words, processes of legitimation at the system level imply that the components are 

interdependent. Our next hypothesis is thus 

 

Hypothesis 3.2: System density is positively associated with component growth. 

3.3.3 Component diversity 

As previously noted, density dependence theory has been criticized because it assumes 

that populations are homogeneous while recent research finds that population segments 

respond differently to processes of competition and legitimation. When investigating 

these processes within a population, it thus becomes important to consider whether the 

population is subdivided into segments (i.e., whether populations are homogeneous or 

diverse). In the context of our current study, three motives come to mind for considering 

diversity. First, according to Durkheim (1933), there is an inverse relationship between 

diversification (i.e., diversity) and competition. That is, if a population becomes more 
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diverse, the level of competitive intensity within the population decreases. So, according 

to this argument, as the rate of entry is tied to the competitive intensity within a 

technological component, we expect component entry to increase with component 

diversity. Second, diversity mitigates lock-in and provides flexibility in uncertain 

environments (Stirling, 2007). Because technological development within biotechnology 

is of a highly uncertain nature, flexibility is important by providing alternative directions 

for future development. In this sense, diversity is indicative of niche width, and 

increasing the diversity of the niche increases its potential applicability in the wider 

environment, implying that it is appealing to a greater variety of stakeholders, which 

positively affects the rate of component entry. Third, and finally, technological change is 

a process of recombination (Schumpeter, 1939), so increasing the number of 

subcomponents (in a component) increases the opportunities for their (re)combination, 

yielding further opportunities for new combinations. Hence, we expect diversity to have 

a positive effect on component entry because it (1) reduces competition, (2) mitigates 

lock-in by increasing flexibility, and (3) increases recombinatory potential. We thus have 

 

Hypothesis 3.3: Component diversity is positively associated with component growth. 

3.3.4 Component status 

Under component density, we have argued that processes of legitimation are tied to the 

occurrences of the componen’s inventions. Moreover, we have also argued that 

processes of legitimation are present at the system level under system density. Even 

though we do believe that processes of legitimation at the system level affect all 

components within the system, it is highly unlikely that system-level legitimation will 

affect all components equally. Furthermore, we also do not believe that component 

density is a proxy that accurately describes the distribution of system-level legitimation 

among components. After all, component (or population) density is not a panacea to all 

legitimation-related questions. This means that we need another way to distinguish 

between the legitimation of individual components relative to the other components 

within the technological system. A well-known construct that measures legitimation at 

the individual member level is status, which is defined as a focal member’s ‘perceived’ 

quality in relation to the ‘perceived’ quality of other population members (Podolny, 1993; 

Shrum & Wuthnow, 1988).  

As such, status is an instance of endogenous system or population structuring 

that results from the interactions among members in a population. Akin to the 

importance of legitimation in the formative (or uncertain) stages of population 

development, status is mainly used by resource controllers to guide their decisions in 

uncertain environments. Due to the uncertainty, the quality of population members 

cannot be objectively determined. And, as a result, resource controllers rely on status to 
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guide their decisions (Merton, 1968a; Shrum & Wuthnow, 1988). In the context of 

technological development, the role of status has been studied by Podolny and Stuart 

(1995) and Podolny, Stuart, and Hannan (1996).  

According to these studies, as the uncertain environment makes quality 

perceptions dependent on status, status becomes important in guiding the flow of 

resources in technological developments. More specifically, as other organizations build 

upon the focal organization’s technology, a certain legitimacy or status is conferred to 

that focal organization’s technology (Podolny & Stuart, 1995). Here, akin to the 

explanation at the organizational level, we argue that, when aggregate technological 

developments build upon a focal technological component, a certain legitimacy or status 

is transferred to the focal component as it provides a signal to the stakeholders of the 

technological system that the focal component is worthy of attention and resources. This 

logic is visualized in Figure 3.2. 

 
Figure 3.2 The flow of technology and status in technological development 

 

So, in times of uncertainty, high-status components offer an anchor for technological 

investment (i.e., resources), attracting component entry. Podolny, Stuart, and Hannan 

(1996: 669) refrain from hypothesizing about the main effect of status because, as they 

argue, “one cannot specify an average status effect independent of a meaningful 

assessment of the average crowding or uncertainty in a technological domain.” However, 

because technological developments within biotechnology can be characterized by high 

levels of average uncertainty (Pisano, 2006; Podolny et al., 1996), we expect status to 

have a positive main effect on component entry. Hence, we have 

 

Hypothesis 3.4: Component status is positively associated with component growth. 

3.3.5 Component crowding 

In ecological studies, niche crowding or overlap is usually equated with competition, as it 

implies a similarity in resource requirements (Baum & Mezias, 1992; Dobrev et al., 

2001b; Hannan & Freeman, 1977, 1989; Hannan et al., 2007; Podolny et al., 1996), and 

builds upon the notion that the potential for competition is directly proportional to the 

overlap of resource bases (Baum & Singh, 1994b). Here, we explore the extent to which 

Flow of technology 

Flow of status 

Focal technology Descendant technology 
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we can apply these arguments to our setting. This means that we first need to define the 

resource base of our technological components. We claim that the resource base of our 

technological components can be properly represented by the knowledge base on which 

organizations build to generate the inventions within the component. After all, especially 

when markets are not (yet) existent, technological development is to a large extent 

dependent on the underlying knowledge base (Duysters, 1995).  

Because inventions recombine technology from antecedent inventions, these 

antecedent inventions actually constitute the building blocks of these focal inventions. 

And, the uniqueness of the invention’s building blocks determines the uniqueness of the 

invention itself (Fleming, 2001). Aggregated to the component level, this means that the 

more that a focal technological component builds upon unique elements, the more 

unique the focal component itself is. So, we define the technological antecedents of our 

focal technological components as its knowledge and resource base, and claim that an 

overlap in technological antecedents increases the competition experienced by the 

component, because it decreases the uniqueness of the technological component. 

Consequently, we argue that competition not only occurs within a technological 

component (as argued under component density), but also between technological 

components.  

However, according to the extant literature, niche crowding can also contribute 

in a positive way to niche entry or growth, due to reputation and knowledge spillovers 

(Fleming & Sorenson, 2004; Jaffe, 1986; Levin, 1988), economies of standardization 

through a sharing of infrastructure (Baum & Haveman, 1997; Wade, 1995), and vicarious 

learning (Delacroix & Rao, 1994). This mutualistic relationship has been validated 

empirically in numerous studies (cf. Boone et al., 2004; Fleming, 2001; Jaffe, 1986; Levin, 

1988; Pontikes, 2007; Spence, 1984; Stuart, 1999). Here, we explore the extent which 

these arguments can also be applied in a purely technological setting (i.e., when looking at 

aggregate patterns of technological development). First, reputation spillovers are 

obviously related to the process of legitimation. As argued, technology can become a 

taken-for-granted means to accomplish an organizational objective, implying the 

existence of legitimation or reputation spillovers from (the use of) one technology to the 

(use of the) other. Furthermore, knowledge spillovers within technological development 

are also well-documented. This has a rather logical explanation. That is, as the usage of 

technology increases, the documentation of technology also increases – for example, in 

patent documents, manuals, and books. As a result, the characteristics and behavior of 

often used technologies are better known. Second, economies of standardization or 

infrastructure sharing relate to the costs of transportation, communication, and ease of 

supply (Baum & Haveman, 1997), which are also important in the case of technological 

development. Consider, for example, the use of active compounds (e.g., molecules and 

proteins) in biological tests. Reliance on compounds that are not readily available 
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obviously hampers technological development. Moreover, according to Pistorius and 

Utterback (1997), an emerging technology can benefit from the infrastructure that was 

created to accommodate the mature technology. Third, and finally, vicarious learning is 

possible through adaptation and avoidance of ideas, structures, and technologies 

(Delacroix & Rao, 1994), and by definition plays an important role in technological 

development. Accordingly, we also need to accommodate for a positive effect of 

component crowding on component growth.  

Now, a question that remains is: How can we accommodate for both a positive 

and negative effect of component crowding? As mentioned, according to organizational 

ecology logic, processes of competition are more localized than processes of legitimation. 

After all, more local or more similar organizations are more likely to vie for the same 

pool of resources (Barnett, 1997). In a similar vein, we argue that more local 

technological components compete for the same resources, such as venture capital, 

investments, and research budgets. That is, we claim that competitive processes are 

bound by technological systems. This means that we distinguish between two forms of 

crowing. On the one hand, local crowding refers to crowding of our focal components 

amongst themselves (i.e., crowding within our technological system). On the other hand, 

global crowding refers to crowding of our focal component by non-focal components 

(i.e., crowding of our focal components by components from other technological 

systems, so non-biotechnology). This is visualized in Figure 3.3.  

So, on the basis of the localized competition hypothesis, we expect that local (or 

within-system) crowding is mainly tied to competitive processes and global (or between-

system) crowding is mainly tied to processes of legitimation. Our next pair hypotheses 

can now be formulated as 

 

Hypothesis 3.5: Local crowding is negatively associated with component entry. 

Hypothesis 3.6: Global crowding is positively associated with component entry. 

 

 
Figure 3.3 Local versus global crowding (black nodes indicate the different forms of crowding) 

 

We have argued under component status that a certain amount of legitimacy is 

transferred to a focal organization when another organization builds upon the focal 

Technological landscape system 
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Non-focal component 
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organization’s technology. However, according to Podolny, Stuart, and Hannan (1996), 

such a technological tie between two organizations also implies that their technologies 

are similar, which increases the potential for competition between the two organizations. 

The authors reason that these technological ties have the most potent competitive impact 

in crowded regions of the network, resulting in clique-like structures among structurally 

equivalent organizations. They therefore claim that the effect of status is positive in 

uncrowded niches, and that this positive effect decreases with niche crowding. Similarly, 

we expect that these technological ties can also have competitive implications in our 

setting. However, because competitive processes are bound by technological systems, the 

effect of status only decreases with local crowding, and not with global crowding. This 

gives 

 

Hypothesis 3.7a: The interaction term of local crowding and component status is negatively associated 

with component growth. 

Hypothesis 3.7b: The interaction term of global crowding and component status is not negatively 

associated with component growth. 

3.4 Methodology 

Patents and patent citations provide the core of the data that we will use to test our 

hypotheses. Patents and patent citations have been used extensively in the study of 

technological change and organizational innovation (Fleming, 2001; Fleming & 

Sorenson, 2004; Podolny & Stuart, 1995; Sorensen & Stuart, 2000; Stuart, 1998; Stuart, 

2000). Especially within biotechnology, patents form a reliable indicator of technological 

developments (Orsenigo, Pammolli, & Riccaboni, 2001; Powell, Koput, & Smith-Doerr, 

1996), as all landmark innovations have been patented. Previous research has illustrated 

that the US patent system offers the most complete dataset for technological analysis, 

since the US is the world’s largest and most international marketplace (Podolny & Stuart, 

1995). Furthermore, because the US is a large and central market for biotechnology, it is 

standard practice of biotechnology companies from outside the US to patent in this 

country (Albert, Avery, Narin, & McAllister, 1991). We therefore use patent data from 

the United States Patent and Trademark Office (USPTO) in our empirical analysis.  

Patents are classified by the USPTO following a hierarchical classification system, 

known as the United States Patent Classification System (USPC), which is divided into 

375 main classes that jointly contain about 125,000 sub-classes. For a patent to be 

granted, the applicant must establish the novelty of the invention relative to all previous 

inventions. This novelty claim is established by identifying and citing what is referred to 

as “prior art”. These citations are usually supplemented during the review by the patent 

examiner (Fleming, 2001). Previous research has clearly demonstrated the importance of 

patent citations (Fleming, 2001; Hall, Jaffe, & Trajtenberg, 2001a; Jaffe, Trajtenberg, & 
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Fogarty, 2000; Lanjouw & Schankeman, 2004; Lanjouw & Schankerman, 1999; 

Trajtenberg, 1990). We therefore use these citations to delineate technological lineage 

and the embeddedness of a focal technological component in the broader technological 

environment.  

 

Table 3.1 Biotechnology’s technological component niches 
Niche Subclass Subclass description 
435001 435001100 Differentiated tissue or organ other than blood, per se, or differentiated tissue or organ 

maintaining 
435002 435002000 Maintaining blood or sperm in a physiologically active state or compositions thereof or 

therefor or methods of in vitro blood cell separation or treatment 
435003 435003000 Condition responsive control process 
435004 435004000 Measuring or testing process involving enzymes or micro-organisms 
435005 435041000 Micro-organism, tissue cell culture or enzyme using process to synthesize a desired 

chemical compound or composition 
435006 435440000 Process of mutation, cell fusion, or genetic modification 
435007 435173100 Treatment of micro-organisms or enzymes with electrical or wave energy (e.g., 

magnetism, sonic waves, etc.) 
435008 435174000 Carrier-bound or immobilized enzyme or microbial cell 
435009 435183000 Enzyme (e.g., ligases (6. ), etc.), proenzyme 
435010 435235100 Virus or bacteriophage, except for viral vector or bacteriophage vector 
435011 435325000 Animal cell, per se (e.g., cell lines, etc.) 
435012 435410000 Plant cell or cell line, per se (e.g., transgenic, mutant, etc.) 
435013 435242000 Spore forming or isolating process 
435014 435243000 Micro-organism, per se (e.g., protozoa, etc.) 
435015 435320100 Vector, per se (e.g., plasmid, hybrid plasmid, cosmid, viral vector, bacteriophage 

vector, etc.) bacteriophage vector, etc.) 
435016 435262000 Process of utilizing an enzyme or micro-organism to destroy hazardous or toxic waste, 

liberate, separate, or purify a preexisting compound or composition therefore 
435017 435283100 Apparatus 
435108 435317100 Miscellaneous (e.g., subcellular parts of micro-organisms, etc.) 
800001 800003000 Method of using a transgenic nonhuman animal in an in vivo test method (e.g., drug 

efficacy tests, etc.) 
800002 800004000 Method of using a transgenic nonhuman animal to manufacture a protein which is 

then to be isolated or extracted 
800003 800008000 Nonhuman animal 
800004 800021000 Method of making a transgenic nonhuman animal 
800005 800260000 Method of using a plant or plant part in a breeding process which includes a step of 

sexual hybridization 
800006 800276000 Method of chemically, radiologically, or spontaneously mutating a plant or plant part 

without inserting foreign genetic material therein 
800007 800277000 Method of producing a plant or plant part using somatic cell fusion (e.g., protoplast 

fusion, etc.) 
800008 800278000 Method of introducing a polynucleotide molecule into or rearrangement of genetic 

material within a plant or plant part 
800009 800295000 Plant, seedling, plant seed, or plant part, per se 

 

Biotechnology patents are registered in classes 435 and 800 of the USPC. The 

domain of biotechnology has an average of 57 per cent of self-citations, and can 

therefore be considered as highly autonomous and independent. As such, biotechnology 

offers a setting suitable for an empirical investigation of the kind proposed here. The 

biotechnology domain contains 27 main sub-classes (18 in class 435 Molecular and 

Microbiology, and 9 in class 800 Multicellular living organisms and unmodified parts 
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thereof and related processes), which are listed in Table 3.1. As argued, we define our 

technological niches (i.e., components) at this level of analysis. 

3.4.1 Measures 

Component growth, our dependent variable, is measured by the count of the number of 

patents that enter our focal components in a particular month in the period between 

1976 and 2003. As we have repeated observations for the same components, our data 

actually form a time-series – cross-sectional panel. This panel is unbalanced, though, as 

not all components were in existence at the start of our time window.  

Focal Component density or is a count of the total number of patents (divided by 

1000) in the focal component in the month prior to the date of measurement of our 

dependent variable. So, this measure represents the stock of patents contained in the 

focal component.  

System density is a count of the total number of patents (divided by 1000) within 

the domain of biotechnology (i.e., USPTO class 435 and 800) in the month prior to the 

date of measurement of our dependent variable. To avoid double counting, we subtract 

focal component density from system density. 

Component crowding refers to the extent to which our focal components have 

an overlap with other components. First of all, to provide for a baseline model to test our 

hypotheses regarding the distinction between local and global crowding, we calculate the 

aggregate measure of crowding (i.e., Total crowding). For this measure, we use the 

following formula: 
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where CCit refers to the crowding of component i at time t, Aikt to the set of 

technological antecedents of component i that come from component k at time t, Ajkt to 

the set of technological antecedents of component j that come from component k at 

time t, |.| to the cardinality of a set (i.e., the number of unique elements contained 

within the set), ∩ to the intersection of two sets (i.e., the common elements in both sets), 

and both J and K to the set of all components, so both focal and non-focal components. 

To make the number of non-focal components manageable, we have defined the non-

focal components at the class level instead of at the main sub-class level.10 

As mentioned before, we distinguish between local and global crowding to 

disentangle the processes of competition and legitimation that are associated with 

crowding. In our measure of Local crowding, we calculate the overlap of our focal 

                                                 
10 Strictly speaking, this implies that our non-focal components are actually composed of alternative 

technological systems (i.e., non-biotechnology). However, we exclude this from our main text to reduce the 

complexity of our arguments. 
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components using (3.1). However, in this case, J refers to the set of focal component 

only, while K refers to the set of both focal and non-focal components. In our measure 

of Global crowding, we measure the overlap of our focal components with the non-focal 

technological components. To calculate this measure, we again use (3.1), but now J refers 

to the set of all non-focal components, whilst K refers to the set of all components (so 

both focal and non-focal).  

Focal Component status is measured on the basis of patent citations. Patent 

citations reveal system-wide perceptions of the relative importance of patented 

technologies (Trajtenberg, 1990), and can therefore be used to measure the status of the 

component. Niche status is measured by the number of citations received by the 

technological component in the previous twelve months. In line with Podolny and Stuart 

(Podolny & Stuart, 1995), we use a ratio for component status to correct for the 

expanding risk set of patents in our components. The number of patent citations that a 

component receives is to a large extent dependent upon the number of inventions that 

are contained within the component (i.e., component density). So, therefore, we divide 

the number of patent citations by the density of the component. This also significantly 

reduces the correlation between, on the one hand, component status, and, on the other 

hand, component density and organizational density, reducing potential problems of 

multicollinearity. This implies 
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where Sit is the status of component i at time t, CRijt is the number of citations received 

by invention j in component i at time t, Dit is the density of component i at time t, and t 

refers to the 12 months prior to the month of observation of our dependent variable. 

Note that self-citations are excluded, as these does not adequately reflect the public 

deference process that this variable is supposed to represent (Podolny et al., 1996).  

Focal Component diversity is measured via the distribution of patents across sub-

components (or population segments) contained in the focal component over the 

previous twelve months. These sub-components are represented by the USPC sub-

classes that are associated with the focal component. To measure component diversity, 

we will use Shannon’s (1948) diversity measure, which is specified as 
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where CDit refers to the diversity of component i at time t, Pijt is the share of patents in 

sub-component j at time t in component i, J refers to the total number of sub-

components,  and t refers to the 12 months prior to the month of observation of our 

dependent variable. 



The Ecology of Technology 75 

Our first control variable is Organizational density, which is a count of the 

number of organizations (in thousands) active in the technological component in the 12 

months prior to the month of observation of our dependent variable. We expect a 

positive effect of organizational density on component growth. After all, the legitimation 

of technology is to a large extent determined by the number of organizations that adopt 

the technology (Duysters, 1995). Initially, increasing the number of organizations 

increases the rate of scientific discovery. However, at some point, increasing the number 

of organizations means that the chances for discovery decrease. Under these 

circumstances, the best defense or strategy for the organization is to control as much 

pieces of technology (Stuart, 1999), as these can be used as leverage (i.e., bargaining 

power) in the competitive arena. This leads to ineffective strategies of technological 

development, hereby depressing the technology’s growth. Hence, we expect to find an 

inverted U-shaped effect of organizational density on component growth. 

 

Table 3.2 Descriptive statistics of patent entry into biotechnology’s components 

Niche n mean SD variance min max dispersion 

435001 336 0.61 0.93 0.87 0 5 1.42 

435002 336 0.86 1.14 1.30 0 6 1.51 

435003 336 0.14 0.36 0.13 0 2 0.95 

435004 336 44.15 43.60 1901.21 1 217 43.06 

435005 336 26.58 21.00 440.94 1 113 16.59 

435006 336 2.49 3.50 12.28 0 16 4.94 

435007 336 0.41 0.74 0.55 0 3 1.34 

435008 336 1.71 1.43 2.06 0 7 1.20 

435009 336 9.08 8.43 71.10 0 45 7.83 

435010 336 1.31 1.71 2.92 0 9 2.22 

435011 336 6.68 8.23 67.81 0 37 10.15 

435012 336 0.87 1.21 1.45 0 7 1.68 

435013 336 0.04 0.22 0.05 0 2 1.30 

435014 336 5.74 4.51 20.36 0 21 3.54 

435015 243 3.00 3.41 11.65 0 24 3.89 

435016 336 2.74 2.73 7.46 0 14 2.73 

435017 336 5.20 4.19 17.56 0 25 3.38 

435018 336 0.04 0.21 0.04 0 1 0.96 

800001 121 0.66 0.89 0.79 0 4 1.20 

800002 159 0.24 0.52 0.27 0 2 1.14 

800003 177 1.53 1.92 3.71 0 10 2.43 

800004 203 0.32 0.63 0.40 0 3 1.24 

800005 336 1.27 2.76 7.61 0 21 5.97 

800006 225 0.06 0.23 0.05 0 1 0.95 

800007 336 0.02 0.16 0.03 0 2 1.27 

800008 200 4.11 4.61 21.27 0 21 5.18 

800009 336 3.94 7.03 49.43 0 31 12.53 

Legend: n = number of observations; SD = standard deviation; min = minimum; max = maximum; 
dispersion = variance/mean. 
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We also include Year dummies in all our analyses to control for year-specific 

effects. Furthermore, in accordance with prior research, we also add the number of 

previous entries and its square – Previous entry and Previous entry2 – to control for 

favorable conditions within the environment that may encourage niche entry (Delacroix 

& Carroll, 1983; Hannan et al., 1995). 

 

Table 3.3 Definition of variables 
Variable Description 

Component entry Number of patents entering the focal component in the current month 
Previous entry Number of patents entering the focal component in the previous month 

divided by 1000 
Organizational density Number of organizations active in the focal component in the previous 12 

months divided by 1000 
System density Cumulative number of patents in the focal system in the previous month 

excluding component density divided by 1000 
Component density Cumulative number of patents in the focal component in the previous month 

divided by 1000 
Component diversity Shannon’s diversity index of the distribution of patents over sub-components 

in the focal component in the previous 12 months 
Component status Patent citations received by focal component in the previous 12 months 

divided by component density 
Total crowding Niche overlap between focal component and all other components in the 

previous 12 months divided by 1000 
Local crowding Niche overlap between focal components in the previous 12 months divided 

by 100 
Global crowding Niche overlap between focal and non-focal components in the previous 12 

months divided by 100 

 

Table 3.4 Summary statistics 

Variable Mean SD Min Max 25th % 50th % 75th % 

Component entry 5.017 14.354 0.000 217.000 0.000 1.000 4.000 

Previous entry 0.005 0.014 0.000 0.217 0.000 0.001 0.004 

Organizational density 0.034 0.077 0.000 0.666 0.001 0.008 0.029 

Component density 0.669 1.628 0.001 15.139 0.022 0.085 0.571 

System density 16.554 11.166 2.879 44.954 7.701 12.551 22.606 

Component diversity 1.827 1.496 0.000 4.706 0.000 1.931 3.172 

Component status 0.302 0.710 0.000 20.000 0.000 0.142 0.384 

Total crowding 0.077 0.059 0.000 0.306 0.029 0.079 0.113 

Local crowding 0.093 0.081 0.000 0.380 0.028 0.081 0.141 

Global crowding 0.676 0.527 0.000 2.714 0.221 0.686 0.997 

 

The high correlations among organizational density, component density, and 

previous entries imply high multicollinearity, which means we have to proceed with some 

caution.11 

                                                 
11 Theoretically, multicollinearity is not a real issue, as our theory needs such a special model. Indeed, in by 

far the majority of empirical studies in the organizational ecology tradition, multicollinearity issues have to 

give way to what is required by theory. For example, to test the famous density dependence theory, density 
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Table 3.5 Correlation matrix 

  1   2   3   4   5   6   7   8   9   10   

1 Component entry 1.00          

2 Previous entry 0.93 1.00         

3 Organizational density 0.94 0.94 1.00        

4 Component density 0.88 0.88 0.95 1.00       

5 System density 0.11 0.12 0.15 0.10 1.00      

6 Component diversity 0.38 0.38 0.46 0.48 -0.08 1.00     

7 Component status 0.01 0.00 0.00 -0.02 0.17 -0.06 1.00    

8 Total crowding -0.11 -0.11 -0.10 -0.12 0.25 0.10 0.08 1.00   

9 Local crowding -0.08 -0.08 -0.07 -0.11 0.57 0.00 0.15 0.82 1.00  

10 Global crowding -0.11 -0.11 -0.11 -0.12 0.20 0.11 0.07 1.00 0.77 1.00 

3.4.2 Estimation 

In ecological studies, the number of entrants is a natural and intuitive dependent variable 

to use. In organizational ecology, indeed, organizational founding studies abound. 

Similarly, the entry of inventions or patents in our technological components can be 

considered as an arrival process. Arrival processes count the number of arrivals to some 

state. The natural baseline model for arrival processes is the Poisson specification 

(Hannan & Freeman, 1989). A Poisson process is a pure birth process with a constant 

hazard, which means that duration dependence is assumed to be absent. In our case, that 

would imply patents entering our technological components at a fixed interval, 

independent of time and other covariates. Obviously, a pure Poisson model is far too 

simple for our purposes. A standard extension adds effects of covariates. This gives the 

Poisson regression model of the general form (Hannan et al., 1995) 
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where λi is the deterministic function of the covariates.  

However, using the Poisson distribution for modeling economic events involves 

quite strong and empirically questionable assumptions (Cameron & Trivedi, 1986, 1998). 

Empirical research on patent rates rarely finds that the mean of a time series of arrivals 

equals the variance, as a Poisson process implies. Instead, the variance tends to exceed 

the mean. This gives so-called overdispersion. The sources of overdispersion include, for 

instance, unobserved heterogeneity and time dependence (Carroll & Hannan, 2000). 

 There is a simple test to determine whether a sample suffers from overdispersion. 

That is, when comparing the sample mean and variance of the dependent count variable, 

if the sample variance is more than twice the sample mean, the data most likely suffer 

                                                                                                                                            

and density squared have to be entered in the same model. The near-perfect multicollinearity in this type of 

models that emerges as an inevitable result does not undermine these models’ value added. 
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from overdispersion (Cameron & Trivedi, 1998). The reason is that regressors reduce the 

conditional variance of the dependent variable, but usually with no more than 50 per cent 

in social science research (Cameron & Trivedi, 1998). Obviously, this also applies in the 

case of underdispersion. So, in the unlikely case that underdispersion does exist, this 

becomes even more pronounced after the inclusion of the regressors. As can be seen 

from Table 3.2, most of our components clearly suffer from overdispersion, as the 

dispersion parameter (i.e., variance/mean) is in many cases far greater than 2. We do 

need to acknowledge that three components might even suffer from underdispersion, 

namely components 435003, 435018 and 800006. For simplicity’s sake, we choose to 

initially include these components in our analyses. However, we also estimate alternative 

models in which we exclude these components, compare the results, and report any 

inconsistencies that may arise. 

 One way to deal with overdispersion is to allow for inter-component 

heterogeneity by permitting component i’s arrival rate λi to vary randomly according to 

some probability law. When f(λi) is assumed to be a gamma distribution, we have a 

negative binomial specification (Cameron & Trivedi, 1986). The Poisson model can thus 

be seen as a limiting case of the negative binomial specification, both models being equal 

when there is no overdispersion. Since the negative binomial specification allows for an 

additional source of variation, the estimated standard errors are larger, and the 

conclusions drawn are hence less precise (Hausman, Hall, & Griliches, 1984).  

 As mentioned previously, our data reflect a panel structure. Panel models 

accommodate for the existence of serial correlation (i.e., unobserved heterogeneity) 

between the repeated observations of the observed entities (Hausman et al., 1984),  

technological components in our case. A negative binomial panel model can be 

represented by the following equation (Benner & Tushman, 2002) 

(3.6) λ β γε µ= + +exp( )it it i ix  

where xit is a vector of characteristics of component i at time t, γ is a correction for 

overdispersion, and µi is a time invariant effect for each entity or component i, reflecting 

micro-level heterogeneity. This parameter can be treated as either fixed or random. The 

fixed effects model limits the variation used in the analysis to within-component 

estimates. In the random effects version, the entity or component-specific term is drawn 

from a specified distribution (Cameron & Trivedi, 1998). According to Hausman, Hall 

and Griliches (1984), the random-effects negative binomial specification, which is in 

effect a Beta distribution, allows the variance of the effects to differ in the within and 

between dimensions. Hence, adding random effects essentially produces a ‘variance 

components’ version of the negative binomial specification. The restriction for the 

random-effects specification is that the entity-specific term is not significantly correlated 

with the regressors. To determine whether this is indeed the case, Hausman’s (1978) 

specification test can be used. Hausman’s specification statistic is, basically, a test of the 
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correlation between the regressors and unobserved heterogeneity or the error component 

in the model. The Hausman statistic is distributed as χ2, and is computed as follows 

(3.7) )()()(
1
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where βc is the coefficient vector from the consistent estimator, βe is the coefficient vector 

from the efficient estimator, Vc is the covariance matrix of the consistent estimator, and 

Ve is the covariance matrix of the efficient estimator. The number of degrees of freedom 

for the statistic is the rank of the difference in the variance matrices. 

It is important to control for unobserved heterogeneity in any analysis. However, 

in ecological studies, the potential problems that occur when not effectively dealing with 

unobserved heterogeneity are even more pervasive. As noted by Lomi (1995), models 

neglecting unobserved heterogeneity tend to overestimate the effect of density on 

founding rates. Regarding issues of unobserved heterogeneity or omitted variables bias, 

three options emerge (Podolny & Stuart, 1995): (a) do not control for quality differences 

at all; (b) treat quality differences as unobserved heterogeneity and device some method 

to control for these; and (c) rely on quality measures that are established in the relevant 

literature. In this chapter, we do both (b) and (c), as both niche density and previous 

entries are an operationalization of (b), and niche status of (c). Moreover, we use negative 

binomial dispersion models that account for unobserved heterogeneity (Carroll & 

Hannan, 2000). Finally, a panel structure controls for unobserved heterogeneity as well. 

Hence, unobserved heterogeneity should not be a problem in our analyses. To be 

completely confident, though, we will test for the presence of unobserved heterogeneity, 

as explained above. 

 As argued, the high correlation between our density measures (i.e., component 

density and organizational density) and the number of previous entries implies that we 

need to proceed with caution to ensure that our findings are not the result of 

multicollinearity. We therefore estimate alternative specifications of density dependence. 

Stability of our estimates over these alternative specifications increases our confidence 

that our findings are not the result of multicollinearity. In the organizational ecology 

literature, two models can be found to test the density dependence argument. The 

original model is known as the Generalized-Yule (GY) model, which is specified as 

follows 

(3.8) 2exp( )it it itC Cαλ β∝  

where λit is the rate of entry in component i at time t, and Cit refers to the density of 

component i at time t. An alternative model is the Log-Quadratic (LQ) specification, 

which has the following form 

(3.9) 2exp( )it it itC Cλ α β∝ +  

where, again, λit is the rate of entry in component i at time t, and Cit refers to the density 

of component i at time t. 
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 To determine which model is better, we need to compare the functional 

specifications of the different models. Closer investigation shows that the major 

distinction between these specifications is how processes of legitimation are represented. 

The GY model allows for a decreasing positive effect only, while the LQ specification 

also allows for an increasing positive effect. According to density dependence theory, 

each additional entry contributes less to the legitimation of the population. Therefore, 

Hannan and Carroll (1992) have a preference for the GY over the LQ model as it 

connects better to the original theory. The authors further stipulate that when GY 

models do not converge or when LQ models result in a much better fit, LQ models can 

also be used. We thus estimate both the GY and LQ model, and select the model that 

provides for the better fit. We first investigate what the best representation is of 

organizational density, as this is an important control variable, by estimating both the GY 

and LQ model for organizational density. Next, we look for the appropriate 

representation of component density, again by estimating both specifications.  

 Our data involve left-censoring, as information is missing for the beginning of 

the history of the population – that is, biotechnology. Patent citation data are not 

available for the pre-1975 period. This does not imply a survivor bias, though, as we do 

have all cohorts: none are missing. However, this could still distort our results because 

we do not have the full lifespan of our technologies. We do not think this poses a severe 

threat to our analyses, as the majority of developments within biotechnology have taken 

place after the discovery of recombinant DNA in 1972. Moreover, due to changes in 

patent law (i.e., the so-called Bayh Doyle Act, which allows the patenting of research 

findings funded by means of federal grants), commercial activity within biotechnology 

only took off after 1980 (Sorensen & Stuart, 2000). Furthermore, we have data on a 

cross-section of different technologies within biotechnology, implying that several new 

and emerging technologies are represented. Nonetheless, we should still treat our 

findings with caution (Carroll & Hannan, 2000).12 

3.5 Results 

Tables 3.7 and 3.8 present estimates for the random-effects negative binomial dispersion 

model of patent counts. The models were estimated with the ‘xtnbreg, re’ command in 

Stata 8.0 SE. To ensure that our findings are not the result of multicollinearity, we build 

up our initial density dependence model incrementally using stepwise regression. To 

determine whether or not progressive model extensions imply a significant improvement 

in model fit, we follow standard practice and compare twice the difference in the Log-

                                                 
12 Processes of legitimation are especially important in the formative stages of population development. So, 

left-censoring might result in finding competitive effects only, due to an under-representation of processes 

of legitimation. Hence, this implies that we should be especially wary if we find no evidence for 

legitimation processes. 
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likelihood to a χ2 distribution with degrees of freedom equal to the number of added 

variables. In doing so, stability of coefficient values over alternative models increases 

confidence in our findings. As argued, we estimate both the GY and the LQ specification 

for our density measures. The alternative models with which we start our analyses are 

displayed in Table 3.6. 

The estimates of Models 1 through 6 are reported in Table 3.7. Note that the 

parameter estimates are not standardized, which means that the coefficient values should 

be exponentiated before interpretation. Moreover, the exponentiated coefficients 

represent multiplier effects on the rate of component entry. 

 

Table 3.6 Alternative specifications for organizational, component, and system 
                  density dependence 
NR Type O Type C Type S Specification 

1 LQ n.a. n.a. 2exp( )it it itO Oλ α β∝ +  

2 GY n.a. n.a. 
2exp( )it it itO Oαλ β∝  

3 GY LQ n.a. 
2 2exp( )it it it it itO O C Cαλ β χ δ∝ + +  

4 GY GY n.a. 2 2exp( )it it it it itO C O Cα βλ χ δ∝ +  

5 GY GY LQ 
2 2 2exp( )it it it it it it itO C O C S Sα χλ χ δ ε φ∝ + + +  

6 GY GY GY 
2 2 2exp( )it it it it it it itO C S O C Sα β χλ δ ε φ∝ + +  

Legend: NR = Model number; Type = Specification of density dependence; LQ = Log-quadratic; GY = 
Generalized Yule; O = Organizational density; C = Component density; S = System density. 

 

Regarding the appropriate specification of organizational density, comparing the 

Log-likelihood values of Model 1 and Model 2 reveals that Model 2 provides for the 

better fit. The effect of organizational density on component entry has a similar pattern 

(i.e., a decreasing positive effect), the main difference being the magnitude of the effect 

(i.e., the GY specification has a much stronger effect than the LQ specification) and the 

location of the point of inflexion. As such, we are rather confident that our findings are 

not the result of multicollinearity between organizational density and previous entry. 

Because Model 2 provides for the better fit, we continue with this model as the 

baseline for our subsequent analyses. That is, to determine the appropriate specification 

for component density, we include the GY specification of organizational density. Model 

3 represents the GY specification of component density and Model 4 the LQ 

specification. Even though it appears as if the alternate specifications are highly 

dissimilar, the pattern of effects is largely similar, the major distinctions being twofold: 

(1) under the LQ specification, initially there is a slight negative effect of component 

density on component growth (i.e., up until a density of 11 inventions); and (2) the 

magnitude of the effect (i.e., again, the GY specification results in a stronger effect over 

the measure’s normal range). Comparing the Log-likelihood values of Models 3 and 4 in 

Table 3.7 clearly indicates that the GY specification is superior in representing 
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component density dependence as well. After all, the Log-likelihood of Model 4 is 

approximately 50 points higher (less negative) than Model 3’s Log-likelihood value. So, 

now our baseline for subsequent analyses is a GY specification for both organizational 

and component density.  

Next, we continue with investigating the appropriate specification of system 

density. Again, both the GY and the LQ specification are possible in this respect (see 

Table 3.6). As can be seen in Table 3.7, system density has a highly significant effect on 

component entry. However, in contrast to organizational and component density, the 

better fit is provided by the LQ specification (i.e., Model 5 in Table 3.7). Even though 

Model 5 reveals a significant negative coefficient for the quadratic term, the point of 

inflexion lies well above the maximum value of this measure, implying a decreasing 

positive effect (as expected).  

The estimates of Models 7 through 10 are reported in Table 3.8. Model 7 adds 

component diversity, component status and total crowding to our baseline model (i.e., 

Model 5). Comparing the Log-likelihood value of Model 5 (-11,559) with that of Model 7 

(-11,525) shows that Model 7 significantly improves model fit. After all, with a χ2 of 24 

(i.e., two times the difference in Log-likelihood) and three degrees of freedom, p is 

smaller than 0.01. Adding the interaction term of component status and total crowding in 

Model 8 does not significantly improve model fit (i.e., a χ2 value of 0 with one degree of 

freedom, so p = 0.16).  

Next, Model 9 makes a distinction between local and global crowding, 

significantly improving model fit. Compared to our baseline Model 5, Model 8 has a χ2 of 

74 with 4 degrees of freedom, so Model 8 has a significantly better fit than Model 5 (i.e., 

p < 0.01). Moreover, adding the interaction terms of, on the one hand, local crowding 

and niche status and, on the other hand, global crowding and niche status in Model 10 

also significantly improves model fit, both compared to Model 5 (i.e., χ2 value of 80 with 

6 degree of freedom, so p < 0.01) and to model 9 (i.e., χ2 value of 6 with 2 degree of 

freedom, so p < 0.05). As such, we use Model 10 to discuss the findings of our 

hypotheses. 13 We now continue with a discussion of results of our hypotheses. 

                                                 
13 Moreover, we have also estimated Model 10 using a fixed-effects specification, and conducted 

Hausman’s specification test to investigate the extent to which the random-effects specification is indeed 

appropriate. As mentioned, this test compares the coefficient estimates of the consistent (i.e., fixed-effects 

model) and the efficient (i.e., random-effects model) estimator. When these estimates do not deviate 

significantly, the efficient estimation can be used as it provides (roughly) the same coefficient estimates as 

the consistent estimator. Unfortunately, this test fails to meet the asymptotic assumptions of the Hausman 

test. However, visual inspection of the coefficient values of both the fixed effects and the random effects 

specifications reveals no large discrepancies between coefficient values under the alternative specifications. 

Moreover, in previous analyses, Hausman’s specification test has indicated that the random effects 

specification is indeed appropriate in our setting.  



 

Table 3.7 Negative binomial random effects panel regression estimates of alternative density specifications 
 Model 1       Model 2       Model 3       Model 4       Model 5       Model 6       

Previous entry 8.191*** 6.848*** 8.112*** 6.934*** 8.090*** 6.986*** 
 [1.764]       [1.040]       [1.192]       [1.011]       [1.046]       [1.033]       
Previous entry^2 -22.175*** -16.343*** -21.457*** -17.418*** -23.0405*** -18.400*** 
 [8.173]       [4.665]       [5.265]       [4.607]       [4.811]       [4.706]       
Organizational density 4.581***           
 [0.499]            
Ln(Organizational density*1000)  0.773*** 0.775*** 0.532*** 0.523*** 0.534*** 
  [0.021]       [0.022]       [0.032]       [0.032]       [0.032]       
Organizational density^2 -6.180*** -0.799*** -0.460*     -0.869*** -0.151       -0.561**   
 [0.559]       [0.156]       [0.271]       [0.240]       [0.299]       [0.268]       
Component density   -0.0484**      
   [0.022]          
Ln(Component density*1000)    0.269*** 0.292*** 0.282*** 
    [0.026]       [0.029]       [0.029]       
Component density^2   1.764*     0.234       0.621       1.891**   
   [1.031]       [0.456]       [0.849]       [0.746]       
Ln(System density*1000)      0.444*** 
      [0.155]       
System density     0.084***  
     [0.020]        
System density^2     -0.001**   0.000*** 
     [0.000]       [0.000]       
Constant 1.774*** -0.883*** -0.797*** -1.788*** -4.331*** -7.378*** 
 [0.074]       [0.103]       [0.112]       [0.138]       [0.461]       [1.661]       
Observations 8,021       8,021       8,021       8,021       8,021       8,021       
Number of components 27       27       27       27       27       27       
d.f. 31       31       33       33       35       35       
r 1.838       8.141       7.788       9.882       9.864       9.935       
s 0.769       3.970       3.698       5.046       4.889       4.973       
Log likelihood -12,353       -11,630       -11,627       -11,578       -11,559       -11,563       
Legend: * significant at 10%; ** significant at 5%; *** significant at 1%; standard errors in brackets. 



 

Table 3.8 Negative binomial random effects panel regression estimates of full model 

 Model 7       Model 8       Model 9       Model 10       

Previous entry 7.729*** 7.728*** 7.322*** 7.307*** 

 [1.048]       [1.048]       [1.065]       [1.061]       

Previous entry^2 -22.254*** -22.251*** -20.760*** -20.798*** 

 [4.774]       [4.775]       [4.817]       [4.799]       

LN(Organizational density*1000) 0.546*** 0.546*** 0.544*** 0.543*** 

 [0.033]       [0.033]       [0.033]       [0.033]       

Organizational density^2 -0.217       -0.218       -0.297       -0.315       

 [0.302]       [0.302]       [0.304]       [0.304]       

System density 0.082*** 0.082*** 0.083*** 0.081*** 

 [0.020]       [0.020]       [0.020]       [0.020]       

System density^2 -0.001**   -0.001**   -0.001**   -0.001**   

 [0.000]       [0.000]       [0.000]       [0.000]       

LN(Component density*1000) 0.319*** 0.319*** 0.322*** 0.329*** 

 [0.031]       [0.031]       [0.031]       [0.031]       

Component density^2 -0.034       -0.032       0.029       0.150       

 [0.848]       [0.851]       [0.848]       [0.848]       

Component diversity -0.073*     -0.073*     -0.079*     -0.080*     

 [0.041]       [0.041]       [0.041]       [0.041]       

Component status (CS) 0.193*** 0.193*** 0.192*** 0.194*** 

 [0.018]       [0.020]       [0.018]       [0.019]       

Total crowding (TC) -0.200       -0.194         

 [0.368]       [0.412]         

Interaction: CS * TC  -0.011         

  [0.344]         

Local crowding (LC)   -0.935**   -0.202       

   [0.444]       [0.535]       

Global crowding (GC)   0.07       -0.044       

   [0.057]       [0.073]       

Interaction: CS * LC    -1.550**   

    [0.614]       

Interaction: CS * GC    0.252**   

    [0.102]       

Constant -4.190*** -4.190*** -4.218*** -4.230*** 

 [0.458]       [0.458]       [0.457]       [0.456]       

Observations 8,021       8,021       8,021       8,021       

Number of components 27       27       27       27       

Degrees of freedom 38       39       39       41       

r 9.358       9.359       9.205       9.308       

s 4.353       4.353       4.283       4.352       

Log likelihood -11,525       -11,525       -11,522       -11,519       
Legend: * significant at 10%; ** significant at 5%; *** significant at 1%; standard errors in brackets. 

 

Hypothesis 3.1 argues that, due to processes of legitimation and competition, 

component density has an inverted U-shaped effect on component entry. This 

hypothesis is partially supported by our estimates because we only find a significant 

positive association between component density and component entry. So, only the 
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legitimation part of this hypothesis is supported. Increasing density from its first quartile 

to its median value increases component entry with 55 per cent. Further increasing 

component density from its median value to its third quartile increases the rate of 

component entry with as much as 87 per cent.  

According to Hypothesis 3.2, density at the system level is positively tied to 

component growth due to processes of legitimation at the system level. This hypothesis 

is fully supported by our findings. We find a consistent and highly significant positive 

effect for system density. Even though a significant negative coefficient is found for the 

squared term, this only results in a decreasing positive effect as the point of inflexion lies 

well outside this measure’s normal range, and even above its maximum value. That is, in 

Model 10, the point of inflexion is -0.0806/(2*-0.0006) = 67, while the maximum value 

for system density is 45 (i.e., 45,000 inventions). Regarding the effect of system density, 

subtracting a standard deviation from its mean value reduces component entry with 112 

per cent, while adding a standard deviation to its mean value increases the rate of entry 

with 81 per cent.  

Hypothesis 3.3 posits that component diversity is positively associated with the 

rate of component entry. This hypothesis is rejected by our estimates. Instead of a 

positive effect, we find a significant negative effect in all models that include diversity 

(i.e., Models 7 to 10). In Model 10, increasing the value of component diversity with one 

standard deviation decreases the rate of component entry with 11 per cent.  

Our analyses do substantiate Hypothesis 3.4, which claims that the main effect of 

component status on component entry is positive, by providing an anchor for investment 

in an uncertain environment. Although small, we do find a significant effect. Increasing 

the value of component status from its 1st quartile to its median value increases the rate 

of component entry with 3 per cent, and increasing component status from its median 

value to its 3rd quartile increases growth with 5 per cent.  

We also find full support for Hypothesis 3.5. According to this hypothesis, local 

crowding has a negative effect on component entry due to competitive processes. As can 

be seen in Models 7 and 8 in Table 3.10, crowding does not have a significant effect on 

component growth until separated into its local and global representation. The 

coefficient for local crowding is highly significant and negative. In Model 9, increasing 

local crowding with one standard deviation decreases the rate of component entry with 7 

per cent.  

In contrast to Hypothesis 3.5, we do not find full support for Hypothesis 3.6. 

This hypothesis states that global crowding is positively associated with component entry 

as a result of positive spillovers or network externalities. Even though we do find a 

positive coefficient for this variable, it is far from significant. However, in interaction 

with component status, we do find some support for the existence of positive spillovers.  
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Finally, Hypothesis 3.7 argues that the interaction of local crowding and 

component status is negative due to the formation of clique-like structures in locally (and 

not globally) crowded niches. This hypothesis is fully supported by our estimates, as we 

find a highly significant negative coefficient for the interaction term between component 

status and local crowding. Moreover, the interaction between component status and 

global crowding is positive and highly significant. Figures 3.4 and 3.5 visualize the effects 

of the interactions between these variables. As can clearly be seen, on the one hand, 

component status has a negative effect at high levels of local crowding. On the other 

hand, at high levels of global crowding, component status not only retains its positive 

effect on component entry, but this positive effect becomes even more pronounced. 
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Figure 3.4 Interaction component status and local crowding 

 

Regarding the results for our control variables, we want to note the following. To control 

for year-specific effects, we have included year dummies in our analysis (not reported 

here, for the sake of brevity: available upon request). No trend can be depicted from the 

period before 1992. Although many individual years have a significant effect on niche 

growth, a clear evolution in either way cannot be observed. However, after 1992, a clear 

downward trend emerges, where each consecutive year further decreases component 

growth, with the exception of 1996. An in-depth investigation of this downward trend in 

the post-1992 period would definitely be interesting, but is outside the scope of this 

chapter. Next, with respect to the effect of previous entry, the coefficient for the linear 
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term is positive and highly significant while the coefficient for the squared term is 

negative and highly significant, indicating a curvilinear effect of previous entry on 

subsequent entry. The point of inflexion (i.e., 0.18 or 180 inventions) lies well beyond 

this measure’s normal range, implying that previous entry increases subsequent entry at a 

decreasing rate. Finally, as already mentioned, organizational density has a highly 

significant effect on component growth. Increasing organizational density from its 1st 

quartile to its median value increases the rate of component entry with 156 per cent, 

while increasing the number of organizations from its median value to its 3rd quartile 

further increases component entry with another 97 per cent. 
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Figure 3.5 Interaction component status and global crowding 

3.6 Discussion and conclusion 

Even though technology fuels economic growth, the question of how technological 

changes come about endogenously has been left largely unanswered. One of the main 

reasons for this blind spot is that most studies view technology as a single component, 

without considering its multi-level nature. That is, these studies ignore the embeddedness 

of this component within a larger technological system, and thereby disregard the 

interdependence between components (Rosenkopf & Nerkar, 1999). Hence, a systemic 

or structural perspective is relatively underdeveloped. This study has addressed this gap, 

both theoretically and empirically, by developing and testing what we will coin the 

‘ecology of technology’. The pattern of significant findings provides clear evidence for an 
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ecologic dynamic of technological components within a technological system. Many 

ecological variables significantly impact upon a focal component’s growth (see Table 3.9). 

In all, we find full support for four hypotheses, and partial support for one. So, we 

believe that the ‘ecology of technology’ proposed here is certainly promising, by applying 

ecological logic at the level of a technological system. Of course, our study is only a first 

step. Unexpected findings and design limitations offer steppingstones for future work. 

Here, we would like to reflect on four of these. 

 

Table 3.9 Overview of our  hypotheses and findings 
Hypothesis Expected Found Significance Result 

3.1 Components density ∩ ↑ *** Partially supported 
3.2 System density ↑ ↑ *** Supported 
3.3 Component diversity ↑ ↓ * Rejected 
3.4 Component status (CS) ↑ ↑ *** Supported 
3.5 Local crowding (LC) ↓ ↓ *** Supported 
3.6 Global crowding ↑ ↑  Not supported 
3.7 Interaction CS & LC ↓ ↓ *** Supported 

Legend: * Significant at 10%; ** significant at 5%; *** significant at 1%. 

 

First, in developing a systemic view towards technological growth, we have 

assumed that our technological system is stable, with technological components behaving 

in reliable and predictable ways. In doing so, we have been able to demonstrate that 

biotechnology – or any other technology, for that matter – can effectively be studied as a 

technological system, composed of a set of interdependent and interacting technological 

components. However, by no means does this imply that we perceive technology as a 

stable system, with components behaving in reliable and predictable ways. Even though 

we acknowledge that some technologies could, at a certain point in time, be characterized 

by such a system-state, at this moment, biotechnology is most definitely not one of them. 

On the contrary, biotechnology can be characterized as a highly dynamic technology, 

with many components that are just being developed (e.g., consider the mean of the 

entry of inventions into component 800006 with the mean of component 435004 in 

Table 3.2). Obviously, this implies that the patterns of interactions between 

biotechnology’s components have not yet stabilized. So, we have merely developed a 

steppingstone for the analysis of technology as a set of interdependent components. That 

is to say, our model needs to be extended to investigate the dynamics between these 

components over time. As such, this could enable a distinction between the system’s core 

and peripheral components (Tushman & Murmann, 1998). In turn, this would allow for 

studying the evolution of a technological system, driven by the evolution of its core 

components (Rosenkopf & Tushman, 1994).  

 This naturally brings us to our second point – the evolution of technological 

components. In contrast to our expectations, we found a significant negative effect of 

component diversity on component growth. This seems to point to the presence of 
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competition between sub-components, which hampers the legitimation of the 

component within the larger environment. As such, it connects to the literature on 

dominant designs (Utterback & Abbernathy, 1975), originally conceived at the product 

level, but recently found to be more relevant at a component level (Tushman & 

Murmann, 1998). According to this literature, on the one hand, before a dominant design 

exists, actors recombine sub-components and interact socially in an effort to find or 

become part of the dominant configuration that will serve as the basis for the future 

development of the technological component. On the other hand, after a dominant 

design emerges, actors no longer invest in alternative configurations and focus their 

attention on working out the sub-component configuration represented in a dominant 

design. Our results thus point to the second stage of development, after a dominant 

design has been established. After all, in this stage, additional diversity does not 

contribute to the legitimation of the component and merely thwarts resources from the 

(explicitly or implicitly) agreed upon sub-component configuration represented by a 

dominant design. It thus seems that diversity, like density, plays a twin role in the 

evolution of a technology. As such, we expect that studying the role of diversity more 

directly in the evolution of technologies could lead to a better understanding of processes 

of endogenous technological change. In developing such a theory of diversity 

dependence in technological populations, both centripetal and centrifugal forces would 

have to be taken on board (Hawley, 1986). That is, we need a theory explaining when 

diversity stimulates or dampens technological growth (cf. Boone et al., 2004). 

 Third, an important limitation of our study is that we have abstracted from the 

role of the innovating organization. After all, our results clearly indicate that 

organizations play a major role in the growth process of a technological component. This 

signifies the importance of developing a co-evolutionary model, where both the 

evolution of technologies and the evolution of organizations are considered in unison. 

After all, it is well-recognized that technologies and organizations co-evolve (Anderson & 

Tushman, 1990; Rosenkopf & Nerkar, 1999). Here, we would like to briefly reflect on 

two obvious contributions that could be made when developing such a model. First of 

all, it could lead to a theory that explicates the role of different organizational forms in a 

model of endogenous technological change. Technological change plays a key role in the 

creation of new organizations, and especially in the creation of new forms of 

organizations (i.e., form emergence). Each wave of technological change produces new 

sets of opportunities. While sometimes these opportunities are exploited by members of 

existing organizational forms, quite often only new organizational forms can effectively 

meet the requirements that arise from the application of new technology (Hannan & 

Freeman, 1989).  

 Moreover, at the level of an individual organization, we can relate the dynamics 

of technological components to the characteristics of an organization’s technological 
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search behavior. Organizations search as members of a population (Podolny & Stuart, 

1995), and by focusing on technology we basically investigate the search pattern of a 

population of organizations (i.e., a technological community or industry). By relating an 

individual organization’s technological search to the pattern of search at the 

organizational population level, it is possible to determine whether the organization’s 

search behavior conforms to or conflicts with this aggregate search pattern. This links to 

work done by Fleming (2001), who finds an increase in the level of uncertainty and 

potential payoff of individual inventions when these inventions use more novel 

combinations. Moreover, this also connects to March’s (1991) notions of exploration and 

exploitation, and enables a simultaneous distinction between processes of exploration 

and exploitation at the organizational level and the level of an organizational population 

(i.e., industry or community). 

 Fourth and finally, another limitation is that our empirical setting is the domain 

of biotechnology. Studying this technological domain has the advantage that patents 

form a reliable indicator of processes of technological growth (Orsenigo et al., 2001; 

Powell et al., 1996), hereby enhancing the internal validity of our study. However, a study 

into a single domain generally puts limits on the extent to which our findings can be 

generalized. Biotechnology reflects a highly science-based innovation pattern, with an 

important role for universities and research institutes. This clearly differs from 

technologies that are developed through inter-firm interaction, such as (lead) users and 

(specialized) suppliers (Pavitt, 1984). So, different technologies are embedded in different 

patterns of interaction, which has consequences for the process of recombination. 

Studying such differential effects should be high on the agenda of future research in the 

realm of the ‘ecology of technology’. 

 



 

Chapter 4    
 

The Evolution of Technology 

4.1 Introduction 

In the previous chapter, we have argued that a structural or systemic perspective on 

technology is missing. Due to the hierarchical nature of technology, therefore, most 

studies on the evolution of technology are rather idiosyncratic and atheoretical 

(Rosenkopf & Nerkar, 1999). So, in an effort to contribute to the development of a 

structural or systemic perspective on technology, we have developed what we coin the 

‘ecology of technology’, by applying logic from organizational ecology to technological 

growth. In doing so, we have been able to elucidate some of the multi-level processes 

that drive technological growth. However, even though such a systemic perspective 

certainly contributes much to our understanding of the dynamics of technological 

change, the model itself was of a highly static nature. That is, we have assumed that 

technological growth is characterized by stable processes. Obviously, this poses severe 

limitations to the development of a formal model on the evolution of technology, which 

has already resulted in some anomalous empirical findings in the previous chapter. More 

specifically, contrary to our expectations, we have found a negative effect of component 

diversity on component growth. We have suggested that this might be related to different 

stages of technological development. In the current chapter, we investigate whether this 

is indeed the case.  

A vast amount of literature identifies two stages of technological development (or 

evolution), and generally distinguish between a stage of social construction and a stage of 

technological determinism (Rosenkopf & Tushman, 1994). Some of the better known 

examples are the work on dominant designs (Utterback & Abbernathy, 1975), 

technological guideposts (Sahal, 1985), the structuration of technology (Orlikowski, 

1992), technological paradigms (Dosi, 1982), technological focusing devices (Rosenberg, 

1976), punctuated equilibria theory (Rosenkopf & Tushman, 1994), product architectures 

(Henderson & Clark, 1990), and design hierarchies (Clark, 1985). Even though these 

literatures are extremely insightful, unfortunately, they mostly rely on rather subjective 

judgments and qualitative assessments to distinguish between these different stages of 

technological development. This stands in the way of the development of a formal theory 

of the evolution of technology. Moreover, because technology structures the relationship 

within and between organizations and industries, it also stands in the way of a thorough 

investigation of the evolution of organizations and industries. After all, technology drives 

the evolution of organizations and industries, and a detailed understanding hereof also 

requires a thorough understanding of the evolution of technology.  
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As it is our objective to contribute to the development of a formal theory of the 

evolution of technology, in the current chapter, we explore the extent to which we can 

apply formal quantitative models to distinguish between these different stages of 

development for an emerging (i.e., non-mature) technology. Several quantitative models 

are found in life cycle theory, which relies on the analysis of technological growth 

patterns to distinguish between different stages of development. However, as we will 

demonstrate in this chapter, unfortunately, these models are not really adequate when 

dealing with an emerging technology (e.g., biotechnology). The reason is that most of 

these models apply an ex post perspective to the evolution of technology. We therefore 

choose to develop an alternative, multi-level model, which is more tailored at the study of 

emerging technologies. After all, the evolution of technology is an inherently multi-level 

process (Tushman & Nelson, 1990). Using this model, we are able to distinguish between 

the two stages of technological development, and to demonstrate that these stages are 

characterized by distinct evolutionary processes. Moreover, by further taking the lineage 

of technology into account, we dig deeper into the embeddedness of our component 

niches in the technological landscape. More specifically, we add antecedent and 

descendant diversity as dimensions to the technological niche, and demonstrate that 

these significantly impact technological growth, and therefore technological evolution. 

The contribution of this paper is fourfold. First, we demonstrate that the 

components of an emerging technological system can be characterized by two stages of 

technological development, with distinct evolutionary processes that can be related to the 

twin processes of knowledge creation (i.e., the creation of a stable technological design 

configuration) and diffusion (i.e., the diffusion of a stable technological design 

configuration). In doing so, besides further illuminating the extensively studied process 

of knowledge diffusion, this also allows for the systematic analysis of knowledge creation 

processes, which have received much less scholarly attention. In this way, we increase our 

understanding of the evolution of technology, and how the processes of creation and 

diffusion relate to one another. Second, we develop a (hierarchically-nested) multi-level 

model of the evolution of technology, which permits to investigate of the emergence of 

technological stability and, hence, path dependence.  

That is, using this model, we can analyze how stable technological design 

configurations travel upwards that result in predictable patterns of growth and 

development at higher levels of analysis. As such, we further contribute to the 

development of a formal model of the evolution of technology, based upon microstate 

assumptions or microeconomic behavior. Third, by further taking into account the 

lineage of technology, we are able to extent the notion of the technological niche, and 

add the diversity of the niche’s antecedent and descendant technology as substantive 

dimensions. Fourth and finally, in doing so, we further illustrate the value of combining 
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evolutionary and ecological models in the study of technology, and provide a platform 

for the future study of the co-evolution of technologies and organizations. 

Regarding the organization of this chapter, Section 4.2 discusses the literatures on 

the evolution of technology, and develops associated hypotheses. Next, in Section 4.3, 

we discuss technological diversity and, again, formulate related hypotheses. Subsequently, 

Section 4.4 outlines our empirical sample and estimation methods. We discuss our results 

in Section 4.5. Finally, Section 4.6 discusses the limitations of our study, places our 

findings in the broader academic debate, and develops several thoughts on interesting 

avenues for further research. 

4.2 Evolution of technology 

Even though some pioneer economists already recognized the importance of 

technological progress (Marx, 1906), they generally captured technological change as a 

mere shift along the production function. As a result, the process of technological change 

has largely remained unexplored. This changed when Schumpeter (1934) presented an 

evolutionary theory of the workings of the capitalist system, driven by forces of 

technological change. Schumpeter (1939) conceived technological change as a process of 

recombination, where (existing) components are brought together in new ways. Since 

then, the process of technological change has no longer been treated as a ‘black box’ 

(Rosenberg, 1982), and has been – and still is, for that matter – receiving much attention. 

Especially the field of evolutionary economics, with at its heart a process of endogenous 

technological change, has contributed much to our understanding of the process of 

technological change. According to evolutionary economics, due to an agent’s limits in 

information-processing and problem-solving capacity, or bounded rationality (Simon, 

1957), there is a need to search and recombine locally from a limited set of components 

(Fleming, 2001). After all, if the number of components that an agent considers grows 

linearly, the number of potential (re-)combinations that can be made with these 

components and its associated cognitive load grow exponentially (Hannan et al., 2007). 

Therefore, agents rely on heuristics to reduce the cognitive load, rather than applying 

strict and rigid rules of optimization (Simon, 1957).  

At the organizational level, these heuristics translate into organizational routines 

that ensure regular and predictable patterns of behavior (Nelson & Winter, 1982) that 

result in organizational inertia (Hannan & Freeman, 1984) and path dependence. In the 

context of technological development, these heuristics are reflected in stable and 

predictable patterns of technological growth, which are well-documented in the received 

literature. According to Utterback and Abernathy (1975), technological development 

evolves from an uncoordinated process, characterized by fluid and unsettled 

relationships, into an efficient and tightly integrated system with highly specialized and 

interdependent actors. Rosenberg (1976) argues that technology acts as a focusing device, 
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where typical problems, opportunities and targets direct technological search (i.e., growth 

and development) in particular directions. Following Sahal (1981), technological 

guideposts and basic designs lay out definite paths of developments characterized by long 

periods of incremental improvements. In building upon Kuhn’s (1996) notion of 

scientific paradigms, Dosi (1982) posits that the characteristic habits and routines in 

searching and problem solving on the ground of a technological paradigm result in path-

dependence. And, according to Clark (1985), as development proceeds, technological 

diversity gives way to standardization, where performance criteria and processes are more 

clearly specified. Moreover, Anderson and Tushman (1990) distinguish between long eras 

of cumulative, incremental changes, on the one hand, and concise periods of ferment 

(i.e., brief periods of major discontinuities), on the other hand.  

This is just a small selection of research regarding stable patterns of technological 

development and growth. However, even though these literatures surely add considerable 

insight as to our understanding of the evolution of technology, they do not explicitly 

consider the fact that technology is embedded within a larger technological system, 

hereby largely ignoring the multi-level or systemic nature of technology. As the 

phenomenon of technology is inherently multi-level in character (Tushman & Nelson, 

1990), developing a systemic, multi-level model of the evolution of technology can add 

insights above and beyond a singular perspective. After all, a multi-level model allows for 

an analysis of how stable and predictable patterns emerge at lower levels of analysis, and 

how these travel upwards in the hierarchy of technology (Barley, 1990).  

In the previous chapter, we have already developed a systemic and multi-level 

model of technological growth. There, we demonstrated that biotechnology can be 

effectively studied as a technological system, with interdependent technological 

components. To do so, we relied on the limiting assumption that the system’s 

components are characterized by a stable pattern of behavior (i.e., by assuming fixed 

coefficients values over time). Because system behavior is an aggregation of its 

constituent components’ behaviors, this implies that we also assumed that the system 

itself is characterized by stable and predictable patterns of behavior. In other words, we 

took biotechnology to be a mature technology. This is a debatable assumption for two 

obvious reasons. First of all, it cannot be merely assumed that a technology 

spontaneously comes into existence as a mature technological system, associated with 

stable and predictable patterns of behavior. Second, even though biotechnology displays 

systemic properties, by no means can it be considered as a mature and, therefore, highly 

integrated technological system (cf. Paragraph 2.5). Therefore, it is the aim of this chapter 

to develop a more dynamic version of our systemic model.  

As mentioned, biotechnology is an emerging technology, not yet characterized by 

stable and predictable patterns of development. Or, put differently, a dominant 

configuration of biotechnology’s component technologies is missing. After all, a 
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dominant configuration of biotechnology’s components is only possible after (1) 

biotechnology’s principal components have been identified, and (2) these key 

components have become characterized by stable and predictable patterns of 

development. That is, through a process of recombination, the ‘optimal’ component 

configuration has been found that can be further improved upon. This implies that stable 

linkages (i.e., patterns of interaction) have developed between the system’s principal 

components. So, in accordance with Hawley (1950), instead of looking at the evolution 

of the system as a whole, we can focus our attention on the evolution of biotechnology’s 

principal components. In doing so, we will also get more insight into the evolution of an 

emerging technological system as a whole. Hence, again, we conceive of technology as a 

system composed of a set of interdependent components. However, instead of assuming 

that the system is stable, we allow the system’s components to evolve over time. More 

specifically, we argue that the system’s components can be characterized by two stages of 

technological development.  

4.3 Stages of technological development 

In Figure 4.1, we define the key elements of our conception of a technological system. 

 

 
Figure 4.1 A technological system composed of components, subcomponents, and inventions 

 

Moreover, as mentioned, technological evolution can be characterized by two 

stages of development. Initially, in the divergence or seed stage, technology is socially 
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construction by the technology’s stakeholders in the environment and developments are 

characterized by highly fluid patterns. This is in stark contrast with the subsequent 

convergence or growth stage, where stakeholders converge towards an agreed upon 

technological design configuration, and developments are much more of a path 

dependent (i.e., technologically deterministic) nature. These stages are visualized in 

Figure 4.2.  

 

 
Figure 4.2 Characteristics of the different stages of technological development 

 

In the beginning, just after a technological component is initially conceived (i.e., 

the discovery phase in Figure 4.2), developments within this newly discovered 

technological domain are characterized by chaotic patterns of search in highly uncertain 

environments. At the outset, these search patterns are directed at discovering the 

principal subcomponents of the newly discovered technological component (i.e., the 

exploration phase in Figure 4.2). After the principal subcomponents have been identified, 

they are combined with one another to find the dominant subcomponent configuration 

of the principal technological component (i.e., the recombination phase in Figure 4.2). 

Before a dominant subcomponent configuration has been established (i.e., in the seed 

stage of development in Figure 4.2), each set of actors (i.e., organization, group of 

organizations, and even entire communities) develops its own subcomponent 

configuration, accompanied with a unique set of performance criteria and specific 

motives as to why this subcomponent configuration is the better alternative. 

Because the principles (i.e., the subcomponent configuration) on which 

technological growth should be based are yet unknown, competition among legitimate 

methods, heuristics and designs ensues (Kuhn, 1996). Hence, this stage can be 

characterized by a high level of technological uncertainty. Moreover, because actors 

basically have to consider all possible alternatives, the cognitive burden is enormous, and 

resource distributions and research efforts are of a highly fragmented nature. For 

progress to be made, a deep structure (see Figure 4.2) or dominant subcomponent 

configuration is required, with stable and clear performance criteria that make it possible 

to compare competing practices (Nelson, 2008). In this stage, because objective criteria 

do not yet exist, actors must rely on their social and networking skills to generate enough 

support among the appropriate set of stakeholders (e.g., investors, employees, 
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government agencies, consumers and suppliers). Only when there is (implicit or explicit) 

agreement on the dominant subcomponent configuration of the technological 

component (i.e., in the growth stage of development) does cumulative growth become 

possible. Hence, the transition from this seed stage of chaotic development to a growth 

stage of ordered development is not so much a technical, but rather a sociological one 

(Anderson & Tushman, 1990).  

To reiterate, to enable cumulative technological development, actors must agree 

upon a dominant subcomponent configuration to provide the needed stability and reduce 

the level of uncertainty. This stage – to which we will subsequently refer as the growth 

stage of technological development – is characterized by convergence towards the 

collectively agreed-upon or socially-constructed dominant subcomponent configuration 

(i.e., the convergence phase in Figure 4.2). Hence, the stable subcomponent 

configuration provides a heuristic that directs the agent’s (i.e., stakeholders) search 

processes and enables specialization. This stage can therefore be characterized as 

technologically deterministic, as agents structure themselves according to the agreed-

upon dominant subcomponent configuration. In other words, actors stop investing in 

alternative configurations and are able to focus their attention on working out the 

dominant subcomponent configuration (Henderson & Clark, 1990).  

Over time, these patterns of behaviors stabilize as formal structures and routines 

become institutionalized (Cyert & March, 1963). Even though each incremental step 

might appear quite small, the cumulative economic consequences of incremental change 

are enormous (Hollander, 1965). After all, this dominant subcomponent configuration 

facilitates compatibility and integration in the technological system and wider 

technological environment (Baum, Korn, & Kotha, 1995; Katz & Shapiro, 1986). Hence, 

the technological component becomes skilled at what it does (Gersick, 1991), and 

becomes tightly coupled with and integrated in the technological system and overall 

technological landscape in which it is embedded through the development of formal 

governance structures. 

We are now ready to adapt our arguments from the previous chapter, while 

considering the existence of two different stages of technological development. First, in 

this section, we focus on the elements of our model that are not related to technological 

diversity. In the next section, we then add a new twist to the treatment of technological 

diversity. 

4.3.1 System density 

First, regarding system density, when a technological component is initially discovered, it 

is unclear how this component relates to the other (if any) components in the 

technological system, and linkages among the focal and other components have yet to be 

developed. This means that subcomponents are missing that link the focal components 
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to the other components in the system.14 Hence, the component and the system to which 

it belongs evolve rather independently from one another. Essentially, actors (i.e., 

organizations) need to (re-)combine the focal component with the system’s alternative 

component, to find the component’s dominant subcomponent design configuration (i.e., 

its role in the technological system). Hence, initially (i.e., in the seed stage of 

development), the component is not yet legitimated at the system level, because the role 

of the component within the system is still unclear. As such, we do not expect to find a 

significant relationship between system density and component growth in this stage.  

However, this changes when stable and reliable patterns of interaction develop 

between the focal and the alternative components of the system. Now, the role or the 

added value of the component in the technological system becomes apparent, and the 

component is legitimized at the system level. So, as the component forms an integral and 

essential part of the technological system as a whole, legitimation processes at the system 

level start to contribute to component growth, and the component is in the growth stage 

of development. We thus formulate our first hypothesis as 

 

Hypothesis 4.1: System density is positively associated with component growth in the growth stage of 

technological development.  

4.3.2 Component density 

In the previous chapter, we have argued that component density is tied to processes of 

legitimation and competition. Because we only found a positive main effect of 

component density on component growth, we argued that only the legitimation part of 

our hypothesis is supported. However, according to density dependence theory, 

legitimation increases at a decreasing rate (Carroll & Hannan, 2000). Because we did not 

find a decreasing positive effect in the previous chapter, component density might not be 

the best proxy to represent the legitimation process of technology. But, if this is indeed 

the case, what then caused the positive effect of component density on component 

growth? An obvious answer is network externalities or positive spillovers. After all, the 

connection between density and network externalities is well-established (Delacroix & 

Rao, 1994; Dosi, 1982; Jaffe, 1986; Wade, 1995). If density is indeed tied to positive 

externalities, it should have a significant positive effect in both stages of technological 

development, and this positive effect should not be significantly weaker in the growth 

stage of development. Our next hypothesis thus becomes 

 

                                                 
14 Initially, these linkage technologies (i.e., subcomponents) are developed in the component itself. In a 

later stage, this can eventually flesh out into full-blown components. 
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Hypothesis 4.2: Component density is positively associated with component entry, and the positive 

effect is not significantly weaker in the growth stage of development. 

4.3.3 Organizational density 

In the previous chapter, we abstracted from the organization, and merely included 

organizational density as a control in our analyses. The strong effect of organizational 

density on component growth signifies that organizational density plays a highly 

important role in the development of technology, though. In conjunction with our 

finding that component density might not be a good proxy for the legitimation process 

of technology, we suggest that the legitimation of technology is mainly tied to the 

number of organizations adopting the technology (Duysters, 1995). This is the result of a 

process called mimetic isomorphism, where, under conditions of high uncertainty, actors 

imitate each others’ behavior (Dimaggio & Powell, 1983). This process is mainly 

important in the seed stage of the component’s development, when the component’s role 

in the system is unknown, objective performance criteria are absent, and development is 

characterized by extreme levels of uncertainty. As a result, actors have to resort to 

alternative means to determine whether the component is worthy of their resources and 

attention, and imitate one another’s behavior.  

Hence, especially in the seed stage of development, organizational density has a 

legitimating effect on technology and, therefore, a positive effect on component growth. 

Obviously, in the growth stage of development, legitimation of technology remains 

important, and technological developments are still characterized by high levels of 

uncertainty. However, as the role of the component is outlined in the (implicit or 

explicit) dominant subcomponent design configuration, uncertainty is significantly 

lowered, and legitimation processes start to operate more and more at the system level. 

Therefore, we expect legitimation effects of organizational density to be less strong in the 

growth stage of development. In conclusion, we expect a stronger positive effect of 

organizational density on component growth in the seed stage than in the growth stage 

of a technological component. So, our next hypothesis is 

 

Hypothesis 4.3: Organizational density is positively associated with component growth, and more 

strongly so in the seed stage of development. 

4.3.4 Component status 

As mentioned previously, in environments characterized by high levels of uncertainty 

(i.e., in the seed stage of development), resource controllers cannot rely on objective 

quality measures of technology (Podolny & Stuart, 1995). As a consequence, resource 

controllers need other means to decide where to invest their scarce resources (such as 

capital, product demand, and endorsements). Hence, resource controllers or stakeholders 
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‘scan’ the environment for signals to determine whether a certain technological 

component deserves their attention and resources. In the previous section, we already 

stated that the number of organizations that adopt the technological component 

contributes significantly to that component’s legitimacy. An alternative and well-known 

proxy for the amount of legitimacy of an entity is its status or reputation in the wider 

environment (i.e., among resource controllers and stakeholders). In the context of 

technological development, status refers to the importance of the component’s 

contributions to previous technological developments, and higher status components 

attract a greater amount of resources, by providing an anchor for investments in murky 

waters. Because the seed stage of technological development is characterized by much 

higher levels of uncertainty than the growth stage of development, component status has 

a stronger effect on component growth in the seed stage of development. This gives 

 

Hypothesis 4.4: Component status is positively associated with component growth, and more strongly 

so in the seed stage of development. 

4.3.5 Component crowding 

In the previous chapter, we already stipulated that component crowding is tied to 

competition, as it implies an overlap in resource requirements (Hannan & Freeman, 

1977), and therefore has a negative effect on component growth. However, due to 

knowledge and reputation spillovers (Fleming & Sorenson, 2004; Jaffe, 1986; Levin, 

1988), economies of standardization through sharing of infrastructure (Baum & 

Haveman, 1997; Wade, 1995) and vicarious learning (Delacroix & Rao, 1994), 

component crowding also contributes positively to component growth. On the basis of 

the localized competition hypothesis (Barnett, 1997), we made a distinction between local 

and global crowding to disentangle the twin effects of crowding. Here, we take a slightly 

different approach. That is, we explore the extent to which we can disentangle the twin 

effects by distinguishing between the different stages of technological evolution. 

 In the seed stage, technological developments are of a highly uncertain nature, as 

the configuration of the component and its role within the system are still unclear. In this 

stage, using highly crowded, well-developed and, therefore, legitimated components 

reduces some of the uncertainty surrounding the developments, which results in positive 

knowledge and reputation spillovers that contribute positively to the component’s 

development. Hence, in the seed stage of development, component crowding is tied to 

positive externalities, as the component benefits from the legitimation and 

institutionalization of the knowledge base (i.e., resources) on which it builds.  

 In the growth stage, in contrast, uncertainty is significantly lowered as the 

dominant subcomponent configuration provides stability by guiding technological 

developments and specifying the added value of the component in the technological 
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system. Now, using highly crowded and well-developed components implies less room 

for technological developments, and a depletion of technological options surrounding 

the technological component. This implies that there is less room for improvements or 

maneuvering at all, as all key developments are already history. Consequently, component 

crowding has a negative effect on component growth in the growth stage of 

development. Hence, we have 

 

Hypothesis 4.5: Component crowding is positively (negatively) associated with component growth in 

the seed (growth) stage of development. 

4.4 Technological diversity 

In the previous chapter, we have argued that technological diversity plays a key role in 

the evolution of technology. However, instead of the expected positive association 

between component diversity and component entry, we instead found a significant 

negative effect of component diversity on component growth. We have already 

suggested that this finding seems to point to the existence of different stages of 

technological development, too, and to the key differential role of diversity in these 

different stages. Therefore, in the current chapter, besides merely considering the role of 

component diversity, we dig deeper into the concept of technological diversity in the 

different stages of technological development. More specifically, in the previous chapter, 

we illustrated that, when considering the lineage of technology, it is possible to 

distinguish between a focal invention, the antecedent inventions on which the focal 

invention builds, and the descendant inventions that build upon the focal invention (cf. 

Figure 1.3). Obviously, this logic not only applies to individual inventions, but can also 

be applied at higher levels of aggregation. That is to say, at the component level, the 

antecedent technology refers to the set of inventions on which the component builds, 

while the descendant technology refers to the set of inventions that build upon the 

component’s technology. Therefore, besides considering the role of component diversity 

in component growth, we also consider the extent to which the diversity of the 

antecedent and descendant technology impact the focal component’s growth. 

4.4.1 Component diversity 

Component diversity represents the degree to which technological development within 

the component takes place within different subcomponents. As we already suggested in 

the previous chapter, this has different implications in the different stages of 

technological development. On the one hand, in the seed stage of development, more 

subcomponents imply more alternative subcomponent configurations, which is 

associated with more flexibility that prevents lock-in or path dependence (Stirling, 2007). 

In this respect, component diversity represents the broadness or niche width of the 
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technological component. The broader the appeal of the component to resource 

controllers, the more the component is able to mobilize resources from these actors in 

different regions of the technological environment, which stimulates component growth. 

Moreover, increasing the number of subcomponents also increases the potential for their 

recombination. The greater this recombination potential, the greater the technological 

opportunities within this component and therefore the greater the potential value of the 

component in the larger technological system. Hence, we expect a positive effect of 

component diversity on component growth in the seed stage of development.  

On the other hand, in the growth stage of development, the potential appeal of the 

component’s technology to stakeholders in the wider technological environment is no 

longer relevant. After all, the component’s stakeholders have collectively agreed upon 

working on the dominant subcomponent configuration, specified in the component’s 

dominant design. This enables actor specialization and facilitates cumulative 

developments, hereby transforming the component’s potential value into real techno-

economic value. In doing so, a (broad) direction of technological development for the 

component has been chosen, and alternative directions (i.e., alternative subcomponent 

configurations) have been foreclosed. As this stage is associated with convergence 

towards the dominant subcomponent configuration or deep structure (see the 

convergence phase in Figure 4.2), diversity (i.e., divergence) implies a fragmentation of 

resources, hampering convergence towards the component’s dominant design. As a 

result, it hampers the legitimation of the (dominant subcomponent configuration of the) 

component in the technological system, and the flow of resources that goes with it. Our 

next hypothesis thus is 

 

Hypothesis 4.6: Component diversity is positively (negatively) associated with component growth in 

the seed (growth) stage of development. 

4.4.2 Antecedent diversity 

The technological antecedents of the component niche can be seen as the knowledge 

base on which the component builds, where knowledge base refers to the component’s 

constituents (Fleming, 2001). After all, the technological antecedents are the ingredients 

that are used in the component’s recombination process to generate the inventions 

contained within the technological component. The development of the technological 

component is to a large extent dependent on the underlying knowledge base (Duysters, 

1995). Hence, the more diverse this knowledge base, the higher the recombination 

potential of the technological component. So, antecedent diversity yields a potential for 

novel combinations to emerge. We therefore expect antecedent diversity to positively 

impact subsequent component growth.  
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However, although the number of possible combinations can literally grow to 

infinity, given the limited number of potential components that an inventor can 

simultaneously consider (Fleming, 2001), it will become increasingly difficult for the 

involved actors to develop a sensible interpretation of all the potential novel 

combinations. After all, since every component can be incorporated in further re-

combinations, an actor’s combinatory potential (Weitzman, 1996) and associated 

cognitive burden (Hannan et al., 2007) grow explosively. Consequently, individuals, 

organizations and even entire communities cannot have more than an infinitesimal 

understanding of all these potential combinations and relationships. As a result, actors 

must focus, and recombine locally from a limited set of components and combinations, 

as too much diversity diminishes the likelihood that sensible meaning to novelty can be 

attached (Levinthal & March, 1993; Nooteboom, 2000). This implies the need for a 

stable or dominant subcomponent configuration (i.e., a dominant design) that enables 

sense-making and provides both positive heuristics that determine where to search, as 

well as negative heuristics that specify where not to search (Dosi, 1982).  

Conversely, before a dominant subcomponent configuration or sense-making 

structure emerges, actors need to literally consider all potential (re-)combinations, as they 

can all become the basis of the future dominant design. Increasing the diversity of the 

knowledge base in this (seed) stage actually diminishes possibilities for sense-making and 

absorption, and yields high integration costs. Hence, in the seed stage of development, 

antecedent diversity results in a fragmentation of resources and a duplication of research 

efforts. Therefore, it negatively affects legitimation processes, and might even hamper 

the emergence of a dominant subcomponent configuration altogether. Hence, our next 

hypothesis becomes 

 

Hypothesis 4.7: Antecedent diversity is negatively (positively) associated with component growth in the 

seed (growth) stage of development. 

4.4.3 Descendant diversity 

The technological descendants of the focal niche can be seen as the technological 

extensions or applications of the component’s technology. In other words, the 

technological descendants represent the diffusion of the component’s technology in the 

broader technological environment or landscape. The more diverse the component’s 

technological descendants are, the more the component’s technology is diffused, and the 

more attractive the component technology becomes for potential adopters. After all, 

technologies develop as they diffuse, and, as they progress, they become more attractive 

for potential adopters (Podolny & Stuart, 1995), offering useful and sufficient ‘feedstock’ 

for subsequent descendant technologies. Obviously, increasing the attractiveness of the 
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technological component enhances its subsequent growth. We therefore formulate our 

last hypothesis as 

 

Hypothesis 4.8: Descendant diversity is positively associated with component growth. 

4.5 Data and methodology 

Within innovation and technology studies, there is a long history of using patent data 

(Griliches, 1990; Jaffe, 1986; Smookler, 1966). The reason is that patent data provide an 

extremely useful data source, given their coverage, transparency and accessibility (Van 

Looy, Magerman, & Debackere, 2006). Therefore, patent data are considered by many as 

the most direct, detailed and objective measures of innovation (Griliches, 1981; Thoma 

& Torrisi, 2007). In the words of Zvi Griliches (1990: 1661), who was one of the first to 

study technological change empirically, “in this desert of data, patent statistics loom up as 

a mirage of wonderful plentitude and objectivity.” Especially within biotechnology, 

patent statistics are a good indicator of the evolution of technology (Orsenigo et al., 

2001; Powell et al., 1996).  

For many ‘dedicated biotechnology firms’ or DBFs, a common strategy is to 

patent and subsequently license out or sell their technological knowledge. Large 

pharmaceutical firms also use patents strategically – for example, as leverage or 

bargaining chips in negotiations, or to stifle developments by competitors. Furthermore, 

since the Bayh-Doyle act – which allows the patenting of research findings funded by 

means of federal grants – research institutes, such as universities, are also highly active to 

patent their newly discovered technology. As a result, all landmark innovations within 

biotechnology have been patented. Therefore, many firmly believe that patent data are 

well suited to delineate different stages of technological evolution and the characteristics 

of these stages. Even though we acknowledge that patent data only represent the explicit 

portion of technological knowledge contained within an organization or industry, due to 

the importance of patents within biotechnology, it is also a fair proxy for the tacit portion 

of technological knowledge. 

We use patent data from the United States Patent and Trademark Office 

(USPTO), as this is the most complete dataset for technology analysis (Podolny & Stuart, 

1995). Furthermore, because the US is the largest marketplace for biotechnology, it is 

standard practice for non-US organizations to patent in the US (Albert et al., 1991). 

Additionally, because of the tight linkage between biotechnology and science, 

biotechnology is a relatively autonomous technology that does not primarily depend on 

developments within other technologies. This makes biotechnology the ideal setting for 

an empirical analysis of the kind that we are proposing here. Within the USPTO, 

biotechnology is represented by main classes 435 and 800. We define our technological 
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components at the subclass level of biotechnology, which contains a total of 27 

subclasses (i.e., 18 subclasses in class 435, and 9 subclasses in class 800), see Table 3.1. 

4.5.1 Measures 

Component growth, our dependent variable, is a count of the number of patents that 

enter our technological component in a particular month from January 1976 until 

December 2003. Because we have repeated observations for the same components, our 

data constitute a cross-sectional time-series or panel data structure. This panel is 

unbalanced, though, as not all niches were in existence at the start of our time window.  

Regarding our density measures, System density is a count of the total number of 

patents (divided by 1000) contained within the domain of biotechnology (i.e., USPTO 

class 435 and 800) in the month prior to our dependent variable. To avoid double 

counting, we have subtracted focal component density. Next, Organizational density is a 

count of the number of organizations active in the component in the previous twelve 

months. Finally, focal Component density is a count of the total number of patents 

(divided by 1000) in the focal component in the month prior to the dependent variable, 

implying that this measure represents the stock of patents contained in the focal 

component.  

Because patent citations are a fair proxy of the perceived importance of the 

technology in the community (Trajtenberg, 1990), these form the basis for our measure 

of Component status. However, because the number of citations that a component 

received is to a large extent dependent upon the size of the risk set (i.e., the number of 

inventions contained within the component or component density), we divide the 

number of citations by the density of the component to account for this expanding risk 

set (Podolny & Stuart, 1995). This implies 
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where Sit is the status of component i at time t, CRijt is the number of citations received 

by invention j in component i at time t, J is the total set of inventions within component 

i, and Cit is the density of component i at time t. 

Component crowding measures the extent to which a technological component 

builds upon the same knowledge base or antecedent technology as other components 

(i.e., both inside and outside our technological system). This means 
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where CCit refers to the crowding of component i at time t, Aikt to the set of 

technological antecedents of component i that come from component k at time t, Ajkt to 
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the set of technological antecedents of component j that come from component k at 

time t, |.| to the cardinality of a set (i.e., the number of unique elements contained 

within the set), ∩ to the intersection of two sets (i.e., the common elements in both sets), 

and both J and K to the set of all components, so both focal and non-focal components. 

Again, for simplicity’s sake, we represent the components outside our technological 

system at the USPTO class level.  

Component diversity represents the extent to which developments take place in 

subcomponents, and is measured by the distribution of patents across the component’s 

subcomponents over the previous twelve months. Subcomponents are represented by 

the USPTO subclasses associated with the focal component. To measure component 

diversity, we will use Shannon’s (1948) diversity measure, which implies 
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where Dit denotes to the diversity of component i at time t, and Pijt is the share of patents 

in subcomponent j at time t in component i, time t refers to the twelve-month period 

prior to the month of observation of our dependent variable, and J denotes the number 

of subcomponents associated with the component. 

The component’s Antecedent diversity is calculated over the previous twelve 

months according to (4.3), but now Pijt refers to the share of citations made from focal 

component j to antecedent component i at time t. Correspondingly, the niche’s 

Descendant diversity is calculated over the previous twelve months using (4.3), where Pijt 

is the share of citations received from descendant component i to focal component j at 

time t. 

 

Table 4.1 Definition of variables 
Variable Description 

Component growth Number of patents entering the focal component in the current month 
Previous entry Number of patents entering the focal component in the previous month 

divided by 1000 
System density Cumulative number of patents in the focal system in the previous month 

excluding component density divided by 1000 
Component density Cumulative number of patents in the focal component in the previous month 

divided by 1000 
Organizational density Number of organizations active in the focal component in the previous 12 

months divided by 1000 
Component status Patent citations received by focal component in the previous 12 months 

divided by component density. 
Component crowding Component overlap between focal component and all other components in 

the previous 12 months divided by 1000 
Component diversity Shannon’s diversity index of the distribution of patents over subcomponents 

in the focal component in the previous 12 months 
Antecedent diversity Shannon’s diversity index of the distribution of citations made by the 

component to main USPTO classes in the previous 12 months 
Descendant diversity Shannon’s diversity index of the distribution of citations received by the 

component from main USPTO classes in the previous 12 months 
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We also add a number of control variables. First, we include the number of 

previous entries and its square – Previous entry and Previous entry2 – to allow for the 

estimation of dynamic models (Greene, 2003). This pair of measures effectively controls 

for the favorable conditions within the environment that may encourage component 

entry (Delacroix & Carroll, 1983; Hannan et al., 1995). We also include a number of Year 

dummies in all our analyses to control for year-specific effects. More specifically, we 

include year dummies for the years 1999 until 2003, because our analysis in the previous 

chapter has indicated that these years are characterized by significantly lower entry rates. 

In Table 4.1, we provide an overview of the variables and their definitions. Descriptive 

statistics of the variables are provided in Table 4.2, and our correlation matrix is provided 

in Table 4.3. 

 

Table 4.2 Descriptive statistics 

Variable mean S.D. min max 25th % 50th % 75th % 

Component growth 5.017 14.354 0.000 217.000 0.000 1.000 4.000 

Previous entry 0.005 0.014 0.000 0.217 0.000 0.001 0.004 

System density 16.554 11.166 2.879 44.954 7.701 12.551 22.606 

Component density 0.669 1.628 0.001 15.139 0.022 0.085 0.571 

Organizational density 0.034 0.077 0.000 0.666 0.001 0.008 0.029 

Component status 0.302 0.710 0.000 20.000 0.000 0.142 0.384 

Component crowding 0.077 0.059 0.000 0.306 0.029 0.079 0.113 

Component diversity 1.827 1.496 0.000 4.706 0.000 1.931 3.172 

Antecedent diversity 1.791 1.209 0.000 4.270 0.683 2.040 2.790 

Descendant diversity 1.820 1.056 0.000 3.940 1.053 2.060 2.650 

 

Table 4.3 Correlation matrix 

  Variable 1 2 3 4 5 6 7 8 9 10

1 Component entry 1.00   

2 Previous entry 0.93 1.00   

3 System density 0.11 0.12 1.00  

4 Component density 0.88 0.88 0.10 1.00  

5 Organizational density 0.94 0.94 0.15 0.95 1.00  

6 Component status 0.01 0.00 0.17 -0.02 0.00 1.00  

7 Component crowding -0.11 -0.11 0.25 -0.12 -0.10 0.08 1.00  

8 Component diversity 0.38 0.38 -0.08 0.48 0.46 -0.06 0.10 1.00  

9 Antecedent diversity 0.34 0.34 0.30 0.39 0.42 0.05 0.50 0.63 1.00 

10 Descendant diversity 0.29 0.29 0.34 0.36 0.37 0.06 0.44 0.55 0.84 1.00

4.5.2 Stages of evolution 

To test our hypotheses, we need to conduct our analysis in two steps. That is, we first 

need to identify the different stages of technological development before we can actually 

test our hypotheses regarding the existence of different processes in these stages. As 

mentioned, the different stages of technological evolution are well documented in the 

literature. In what is considered as one of the first scientific works that treats the 
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development of new technology as an economic phenomenon, Zvi Griliches (1957) 

found that the penetration of corn seeds follows a characteristics S-shaped growth 

pattern (i.e., Pearl Reed/Logistics curve). Since then, numerous empirical studies have 

contributed to establishing the S-shaped pattern as a general rule for technological 

growth and the diffusion of innovation (Bass, 1969; Foster, 1986; Mansfield, 1961; 

Pistorius & Utterback, 1997).  

On the basis of this characteristics growth curve, numerous forecasting models 

have been developed (Young, 1993), which can be used to delineate the different stages 

of technological evolution. Basically, this methodology implies estimating the Logistics 

growth curve, and then distinguishing between the different stages using threshold values 

of the cumulative density function of this estimated growth curve. These so-called 

‘technology life cycle’ or TLC models usually distinguish between four stages of 

technological evolution, namely the (1) seed, (2) growth, (3) maturity and (4) decline stage 

of development. Commonly used threshold values for the cumulative density function to 

distinguish between these four stages are provided in Table 4.4 below. 

 

Table 4.4 Stages of technological evolution and threshold values of the cumulative density 
function (adapted from Van Looy, Debackere, Martens, & Bouwen, 2005) 
Stage of evolution Cumulative density 
Seed 0.00-0.16 
Growth 0.16-0.84 
Maturity  0.84-0.99 
Decline 0.99-1.00 

 

Unfortunately, because most of these models rely on the cumulative density 

function of the Logistics distribution, they can only be used effectively when the upper 

limit of technological development is known (i.e., when the cumulative density is at its 

maximum value of 1) or when the upper limit can be estimated in a reliable way – for 

example, on the basis of the growth patterns of highly similar technologies. This implies 

that these models only have a limited applicability for completely new and emerging 

technologies, for which the upper limit is not known and cannot be reasonably estimated.  

An alternative model that does not rely on the cumulative density function is 

Bass’s (1969) model. This so-called rate of change model is basically an empirical version 

of Roger’s (1962) innovation diffusion model and is one of the most widely applied 

models in management science (Bass, 2004). The reason is that it is associated with a 

simple and elegant theory that explains the existence of an empirical generalization. 

Interestingly, there is a striking similarity between the Bass model and the density-

dependence model from organizational ecology. To be precise, both models use density 

to explain an empirical generalization, where the former focuses on the diffusion of 

technology (i.e., adoption of products and innovations), while the latter seeks to explain 

the evolution of organizational forms (i.e., organizational entry into and exit from 
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organizational populations). More specifically, according to the Bass model, the 

probability that a technology will be initially adopted is a linear function of the number of 

previous adopters. The basic Bass (1969) model has the following functional form:  

(4.4) 2( ) ( ) ( ) / ( )S T pm q p Y T q mY T= + − −  

where the constant p is the coefficient of innovation (i.e., the probability of initial 

adoption), the constant q is the coefficient of imitation, the constant m reflects the 

market potential for first time adoptions, S(T) represents the predicted number of 

adopters at time T, and Y(T) is the cumulative number of previous adopters.  

 As mentioned, Bass’s model is mainly used to study the number of initial 

adoptions of a technological product or invention. However, in the context of the 

present study, we are not so much interested in the adoption of the technology, but 

rather in the creation of technology (i.e., the entry of technological inventions into 

technological components). Therefore, we adjust the Bass model to estimate the pattern 

of component entry on the basis of component density. So, in the context of this study, p 

remains the coefficient of innovation, q remains the coefficient of imitation, the constant 

m stands for the potential for technological inventions, S(T) represents the predicted 

number of component entries, and Y(T) is the cumulative number of entries or 

component density. In estimating the parameters, p, q and m from discrete time series 

data, the following analogue can be used (Bass, 1969): 

(4.5) 2

1 1t t tCE C Cα β ϕ− −= + +  

where CEt represents the number of entries of inventions into our components, α 

represents pm in Equation (4.4), β represents (q-p) in Equation (4.4), φ represents –q/m in 

Equation (4.4), and Ct-1 is the cumulative number of entries time t-1 (i.e., component 

density at t-1).  

However, if we apply this model to the growth of our technological components, 

it results in a severe misspecification (i.e., many of our components cannot be estimated).  

This is most likely attributed to the fact that we try to apply a linear model to a count 

process, and we therefore use a count specific model instead. That is, the dependent 

variable in this model is the number of inventions that enter the technological 

components at a certain point in time, which is a count measure. The baseline model for 

analyzing count data is the Poisson distribution. After adding covariates to the 

distribution, this gives the Poisson regression model, which can be specified as 
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We then have 

(4.7) λ α β ϕ= = + + 2( | ) exp( )t t t t tE y x C C  

where λt is the deterministic function of the covariates, and Ct is component density at 

time t. 
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However, the restriction of applying the Poisson distribution in linear regression 

analysis is that, after adding covariates, the sample mean and conditional variance of the 

dependent variable have to be equal (Cameron & Trivedi, 1998). If this is not the case, 

unobserved heterogeneity results in so-called over- or underdispersion, which means that 

the regression model is incomplete. After all, if the model would be complete, all 

heterogeneity would be explained, and the condition of mean-variance equality would be 

met. There are several ways to account for unobserved heterogeneity. Most importantly, 

under- and overdispersion are dealt with in different ways. For example, underdispersion 

can be accounted for by applying a weighted Poisson distribution (cf. Ridout, 2004). In 

contrast, overdispersion is usually modeled using a negative binomial model, which 

basically adds a dispersion parameter to the Poisson regression model. In the previous 

chapter, we already established that our data suffer from overdispersion (cf. Table 3.2). 

Therefore, we accommodate for this by adding a dispersion parameter δ. We thus get 

(4.8) λ α β ϕ ε λ δ′ = + + ⋅ =2exp( ) exp( )t t t t t tC C  

The negative binomial regression model (i.e., NB2 in Cameron & Trivedi, 1998) then 

becomes 
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4.5.3 Multi-level model 

Even though we most definitely acknowledge the added value of the Bass model, an 

important limitation is that it is a singular model that does not consider the 

embeddedness of technology within the environment. In other words, it does not 

consider the multi-level nature of technology. Therefore, we also develop an alternative 

model to distinguish between the different stages of technological development by 

explicitly taking into account the multi-level nature of technology. After all, as illustrated 

in the previous chapter, our technological components (e.g., recombinant DNA) do not 

evolve in isolation or autonomously, but do so in the context of a technological system 

(i.e., biotechnology as a whole). That is, components only provide the basic functionality, 

and interfaces and linkages are needed to allow communication between and to physically 

connect the component parts (Rosenkopf & Tushman, 1994). So, complementary 

inventions and components are necessary to unleash the full potential of the component 

technology. Only then is it possible to translate the basic functionality of the component 

into (products and processes that generate) economic value in the marketplace. And 

when the component generates economic value, its added value and role within the 

technological system become apparent. Obviously, this intensifies component 

development considerably. Therefore, we assume that this is the actual moment that the 

component enters the growth stage of development.  
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This naturally connects to the theory of multi-level density dependence, where 

processes of legitimation at the system level of analysis contribute in a positive way to 

component growth. Clearly, this is only the case when the component has a legitimate 

role in the system – i.e., when the function or added value of the component in the 

system is evident. Only after the components are discovered (i.e., recognized as such) and 

are related to one another do they comprise a technological system. That is, as 

components are (re-)combined with one another, and linkages and interfaces between 

components develop and strengthen, a system begins to form. As a result, legitimation 

processes start to operate at the system level, as the system as a whole starts to attract 

resources (e.g., venture capital, industry investment funds and institutional support) and 

components are legitimized within the technological system. This implies that we assume 

that the growth stage of a component is entered when the component is legitimized by 

the system – i.e., when legitimation processes at the system level (represented by system 

density) contribute positively to component growth. 

 To determine when the coefficient value of system density is consistently positive 

and significant, we employ a structural break model. As the name implies, a structural 

break model allows an investigation of whether a time series features a structural break, 

which means that there is a significant change in the effects of the model between two 

(or more) periods (Greene, 2003). The general structural break model allows for a change 

both in the intercept and in the slope of one or more variables. However, because we do 

not expect a sudden change in the intercept to occur between different stages, we do not 

need to allow for a change in both intercept and coefficient values. Instead, we expect a 

change only in the effect of system density on component growth. Our structural break 

model can thus be specified as 
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where Y refers to our dependent variable (i.e., component growth), Ss to system density 

in the seed stage, Sg to system density in the growth stage, X to variables whose 

coefficient values are not expected to change, β to the coefficient vector, and ε to the 

associated error term. 

So, by estimating this structural break model for each of our technological 

components individually, we are able to determine at which point system density has a 

significant positive effect on component entry that marks the beginning of the growth 

stage of our components. The dependent variable for this model is component growth, 

as reflected by the entry of inventions into our components. Because our components 

are characterized by overdispersion (cf. Table 4.1), we will employ a negative binomial 

model. As independent variables, we have system density, which we split on a yearly basis 

into a before (i.e., seed) and after (i.e., growth) part to determine the location of the 

structural break, if present. For example, for the year 1980, we distinguish between 
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system density before 1/1/1980 (i.e., 1976-1979) and system density after 1/1/1980 (i.e., 

1980-2003), to then investigate the coefficient values of the before and after part of 

system density. We accept the structural break as the distinction between the seed and 

growth stage if (1) we find a non-significant effect for ‘before system density’ – that is, 

system density in the seed stage of development – and (2) we find a significant positive 

effect for ‘after system density’ –  that is, system density in the growth stage of 

development. In the case of multiple valid options, we select the breakpoint with the 

higher Log-likelihood value (i.e., the best fitting model).  

We also add several controls. First, we include the previous number of entries 

and its square as a control for favorable conditions (Delacroix & Carroll, 1983; Hannan 

et al., 1995). In other words, we use a dynamic regression model to control for 

unobserved heterogeneity or serial correlation. Moreover, we control for organizational 

and component density using the Generalized Yule specification, which means that we 

include the logarithmic and quadratic term of both organizational and component density 

as controls (cf. Chapter 3). We thus use the negative binomial model as specified in (4.9) 

and adjust (4.8) accordingly, which gives us 

(4.11) λ β ω α γ ρ ς υ ε λ δ′ = ⋅ ⋅ + + + + ⋅ =2 2exp( ) exp( )t t t t t st gt t t tO C C O S S  

where Ot is organizational density at time t, Ct is component density at time t, Sst is system 

density in the seed stage of development at time t, and Sgt is system density in the growth 

stage of development at time t. 

4.5.4 Estimation 

After we have delineated the different stages of technological development for our 

individual components, we can continue and test our hypotheses. As we have monthly 

observations from 1976 to 2003 for 27 technological components, we are dealing with a 

cross-sectional time-series or panel data structure. When modeling panel data, there are 

basically two options: employing a dynamic regression model or a panel regression 

model. We already apply a dynamic regression model because we include the previous 

occurrences of our dependent variable (i.e., previous entry) in our analysis. We also 

employ a panel regression model, which comes in two basic flavors: (1) a fixed effects 

model, which adds a dummy per panel, and so effectively removes all variance between 

panels – this is therefore also referred to as a within-variance model; and (2) a random 

effects model, which assumes that heterogeneity is randomly distributed and therefore 

makes it possible to utilize both the within and between panel variance. More specifically, 

according to Hausman, Hall, and Griliches (1984), the random effects negative binomial 

model allows the variance of the effects to differ in the within and between dimensions, 

and is essentially a ‘variance components’ version of the negative binomial. When this 

random effect is drawn from Gamma distribution, mixing this a Gamma distribution 
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with the Poisson distribution (i.e., the baseline to model count data) effectively creates a 

Beta distribution, with two parameters (i.e., r and s). This yields the model 
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In the random effects overdispersion model, δi is allowed to vary randomly across 

groups, and 1/(1+ δi) ~ Beta(r,s). As the name already indicates, the random effects 

model has the limiting assumption that the unobserved heterogeneity is randomly 

distributed, and therefore independent from the regressors. To determine whether this is 

indeed the case, we apply Hausman’s specification test, which basically tests whether the 

coefficients from the consistent (i.e., the fixed effect) model are similar to the coefficients 

from the efficient (i.e., the random effects) model.  

4.6 Results 

In Table 4.5, we report the estimates of the Bass model to delineate the stages of 

development of our individual components using a negative binomial specification. 

According to Bass (1969), before applying estimates from a limited number of 

observations, the estimates should be closely examined. In doing so, a number of 

anomalies seem to arise. As can be seen in Table 4.5, all estimates of α are negative, 

which would implies that pm in (4.4) is negative, and therefore cannot be logically 

interpreted. However, because we are applying an exponential model instead of a linear 

model, the interpretation is somewhat more involved and besides the scope of the 

current chapter. The model does provides a rather good fit for most of our components, 

as can be seen by the improvement in Log-likelihood for the full model (LL Full) 

compared to the Log-likelihood of the Null model (LL Null) or the Pseudo R2 value, and 

the significance of nearly all coefficient values. We therefore do use these estimates to 

construct the cumulative density function of our individual technological components. 

In Table 4.6, we report the threshold values on the basis of the estimates from 

the Bass model. In column 2, the point of inflexion is calculated – i.e., the value of 

component density when the entry of inventions into the technological component is at 

its maximum and when development is halfway (i.e., the cumulative density function has 

a value of 0.5). Using this value, we can determine the upper limit (L) of component 

density in column 5 (i.e., when the cumulative density function is at its maximum of 1). 

So, on the basis of the estimates from the Bass model, we can estimate the full 

cumulative density function of the individual components. However, as can be seen by 

comparing the actual component density at December 2003 in column 7 with the 

theoretical maximum component density according to the Bass model (L) in column 2, 
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the estimates from the Bass models appear to underestimate the maximum of 

component density considerable. After all, according to these estimates, biotechnology’s 

technological components would, at this moment, all be in a mature stage of 

technological development, which is extremely unlikely. This finding is in line with 

Heeler and Hustad (1980), who report a significant underestimation of the Bass model 

when investigating the performance of the model for non-US data. Moreover, according 

to Bass (1969) himself, the model should be supplemented with additional information, 

and cannot be applied blindly. Hence, the Bass model does not seem to perform 

particularly well in our case. Notwithstanding this apparent underestimation, we do use 

these estimates to distinguish between the different stages, if only to provide a baseline 

for our multi-level model. The distinction between the different stages of development 

on the basis of these estimates is given in Table 4.8. 

 

Table 4.5 Negative binomial regression estimates of Bass model for biotechnology’s 
components 

Component α       β       φ       LL Null LL Full Pseudo R2 

435001 -3.38*** 52.81*** -178.49*** -544.48 -378.57 0.30 

435002 -2.63*** 27.18*** -56.02*** -650.83 -503.34 0.23 

435003 -4.06*** 112.10*** -1,267.23*** -267.89 -239.50 0.11 

435004 -0.71*** 1.79*** -0.10*** -3,060.63 -2,576.30 0.16 

435005 -0.96*** 1.67*** -0.12*** -3,589.61 -3,196.77 0.11 

435006 -1.55*** 14.90*** -13.73*** -818.23 -563.55 0.31 

435007 -4.08*** 63.08*** -217.32*** -479.61 -338.49 0.29 

435008 -2.40*** 17.12*** -21.00*** -1,208.70 -886.65 0.27 

435009 -1.53*** 3.87*** -0.77*** -2,525.89 -2,059.81 0.18 

435010 -2.51*** 21.28*** -29.56*** -828.49 -597.34 0.28 

435011 -0.90*** 6.72*** -2.44*** -1,235.17 -902.56 0.27 

435012 -1.97*** 28.38*** -72.08*** -471.44 -377.82 0.20 

435013 -5.78*** 430.83*** -13,230.30*** -131.83 -120.62 0.09 

435014 -1.96*** 5.45*** -1.63*** -2,230.51 -1,833.68 0.18 

435015 -0.62*** 11.33*** -11.65*** -562.52 -437.59 0.22 

435016 -2.34*** 6.59*** -2.67*** -1,862.30 -1,613.96 0.13 

435017 -2.03*** 5.61*** -1.75*** -2,272.29 -1,816.64 0.20 

435018 -6.55*** 556.65*** -20,671.40*** -98.51 -84.38 0.14 

800001 -1.53*** 71.47*** -780.08*** -139.60 -128.43 0.08 

800002 -2.82*** 176.79*** -3,701.94*** -98.88 -89.52 0.09 

800003 -1.21*** 33.14*** -100.14*** -307.82 -241.49 0.22 

800004 -2.89*** 116.11*** -1,208.71*** -151.45 -128.94 0.15 

800005 -2.69*** 39.00*** -77.98*** -607.74 -440.48 0.28 

800006 -3.51*** 286.64       -21,157.20       -50.69 -49.89 0.02 

800007 -6.62*** 1,984.18**   -230,183.00**   -33.28 -29.74 0.11 

800008 -0.35*** 11.50*** -11.17*** -512.13 -412.43 0.19 

800009 -1.06*** 12.69*** -8.20*** -721.91 -561.88 0.22 
Legend: * significant at 10%; ** significant at 5%; *** significant at 1%; standard errors in brackets. 
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Table 4.6 Threshold values different stages of technological evolution according to estimates 
from the negative binomial Bass model 

Component - β/(2φ) L 0.16L 0.84L 0.99L 31/12/2003 

435001 148 296 47 249 293 219 

435002 243 485 78 408 480 328 

435003 44 88 14 74 88 74 

435004 8,775 17,550 2,808 14,742 17,375 15,239 

435005 6,866 13,731 2,197 11,534 13,594 10,983 

435006 543 1,086 174 912 1,075 829 

435007 145 290 46 244 287 164 

435008 408 815 130 685 807 667 

435009 2,503 5,007 801 4,206 4,957 3,698 

435010 360 720 115 605 713 486 

435011 1,375 2,750 440 2,310 2,722 2,253 

435012 197 394 63 331 390 291 

435013 16 33 5 27 32 30 

435014 1,671 3,342 535 2,807 3,308 2,388 

435015 486 973 156 817 963 727 

435016 1,236 2,471 395 2,076 2,447 1,346 

435017 1,601 3,203 512 2,690 3,171 2,187 

435018 13 27 4 23 27 19 

800001 46 92 15 77 91 80 

800002 24 48 8 40 47 38 

800003 165 331 53 278 328 168 

800004 48 96 15 81 95 66 

800005 250 500 80 420 495 436 

800006 7 14 2 11 13 14 

800007 4 9 1 7 9 8 

800008 515 1,030 165 865 1,019 818 

800009 773 1,547 247 1,299 1,531 1,306 

 

In Table 4.7, we provide the estimates of our multi-level structural break model 

on the basis of the effect of system density on component entry. To reiterate, to 

distinguish between the seed and growth stage of development, we select a certain point 

in time (i.e., a certain year) as composing a structural break if (1) we find a non-significant 

effect for system density in the seed stage of development, and (2) we find a significant 

positive effect for system density in the growth stage of development. Moreover, if 

multiple candidate structural break points are found, we select the point that provides the 

best model fit (i.e., with the highest Log-likelihood value). As can be seen from Table 4.7, 

13 out of a total of 27 components enter the growth stage during our period of 

observation. All of these 13 components demonstrate significant model improvements 

when using the suggested structural break point. The improvement in model fit can be 

determined by comparing two times the difference in the Log-likelihood to a χ2 

distribution with one degree of freedom (column 8 of Table 4.7). Even though 

component 800001 does not show a significant coefficient value for community density 

in the growth stage of development (i.e., Sg in Table 4.7), we do use the time of the break 
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in our subsequent analysis. The reason is that the coefficient value is consistently positive 

after its structural break point and the model improvement is significant (i.e., p < 0.05). 

 

Table 4.7 Negative binomial regression estimates of multi-level structural break model of 
biotechnology’s components  

Component S        LL Base Growth Ss Sg        LL ML χ2        

435001 0.271*** -298.91 1/1987 0.100 0.292*** -292.75 12.32*** 

435002 0.464*** -368.42 1/1976 n.a. n.a.             n.a. n.a.       

435003 -0.053       -137.24 n.a. n.a. n.a.             n.a. n.a.            

435004 0.063       -1,202.77 1/1979 0.067 0.142*** -1,199.34 6.86*** 

435005 0.385*** -1,123.33 1/1976 n.a. n.a.             n.a. n.a.       

435006 0.098*** -482.18 1/1981 -0.167 0.130*** -478.74 6.88*** 

435007 0.181*** -216.34 1/1986 0.063 0.246*** -213.91 4.86**   

435008 -0.083**   -553.06 n.a. n.a. n.a.             n.a. n.a.           

435009 0.295*** -868.42 1/1976 n.a. n.a.             n.a. n.a.           

435010 0.305*** -437.80 1/1976 n.a. n.a.             n.a. n.a.           

435011 0.117       -670.91 1/1984 0.109 0.189*** -668.58 4.66**  

435012 0.134**   -356.59 1/1984 0.029 0.185*** -354.16 4.86**   

435013 0.033       -46.67 n.a. n.a. n.a.             n.a. n.a.           

435014 0.002       -743.54 n.a. n.a. n.a.             n.a. n.a.           

435015 0.214*** -420.27 1/1984 n.a. n.a.             n.a. n.a.           

435016 0.081       -583.04 1/1976 n.a. n.a.             n.a. n.a.           

435017 -0.013       -751.86 n.a. n.a. n.a.             n.a. n.a.           

435018 0.485*** -55.19 1/1990 0.169 0.438*** -52.63 5.12**   

800001 0.347       -116.09 1/1996 -0.769 0.101       -113.17 5.84**   

800002 0.848*** -78.29 1/1991 n.a. n.a.             n.a. n.a.           

800003 0.290*** -211.29 1/1992 -0.818 0.295*** -208.82 4.94**    

800004 0.180*** -124.32 1/1991 0.022 0.380*** -118.3 12.04*** 

800005 0.099*     -402.28 1/1996 0.062 0.902**   -398.92 6.72*** 

800006 1.193*** -40.97 1/1988 -0.592 1.067*** -39.2 3.54*        

800007 0.051       -28.99 n.a. n.a. n.a.             n.a. n.a.            

800008 0.060       -363.91 n.a. n.a. n.a.             n.a. n.a.            

800009 0.083       -471.99 1/1986 -0.082 0.162**    -468.06 7.86*** 
Legend: * significant at 10%; ** significant at 5%; *** significant at 1%; standard errors in brackets; S = 
system density; Ss = system density in the seed stage of development; Sg = system density in the growth 
stage of development; LL = Log likelihood; Base = comparison model; ML = multi-level structural break 
model; Growth = month of start growth stage component; χ2 = Chi square value of multi-level model = -2 * 
(LL Base – LL ML). 

 

For the remaining components, we did not find a structural break on the basis of 

our criteria or algorithm. This implies that these components are in the same stage of 

development for the whole period of observation. The question then becomes whether 

they are in the seed or growth stage of development during our period of observation. 

Again, on the basis of the effect of system density on component entry, we can 

determine the appropriate stage. Our findings are reported in column 4 of Table 4.7. As 

can be seen in column 3, components 435002, 435005, 435009, 435010, 435015, 435016 

and 800002 are assumed to be in the growth stage from the start of our observation 

period. After all, with the exception of component 435016, the effect of system density 
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on component growth is significantly positive. The reason that we assume that 

component 435016 is in the growth stage of development is that (1) the effect of system 

density on component growth is consistently positive, (2) the mean of component entry 

is 2.74, which is the 10th highest of all components, and (3) maximum component entry is 

14 components per month, which is 12th highest of all components. The other 

components (i.e., components 435003, 435008, 435013, 435014, 435017, 800007, and 

800008) are assumed to be in the seed or formative stage during the observation period. 

In Table 4.8, we juxtapose the start dates of the growth stage according to the 

adjusted Bass and multi-level models. Moreover, in column 4, we also include a model 

that distinguishes between the seed and growth stage of development using a process of 

random assignment (i.e., by randomly selecting the period in which the component 

enters the growth stage) as a baseline model to determine the performance of the 

adjusted Bass and multi-level models. According to the adjusted Bass model, at the end 

of the observation period (i.e., 31/12/2003), all components are in a growth stage of 

development, which would imply biotechnology as a whole to be in a growth stage of 

development as well (to be precise, as of January 1998, the date when the final 

component enters the growth stage of development). In contrast, our multilevel model 

assumes that seven components are still in a formative stage of development, implying 

biotechnology as w whole to be in the formative seed stage of development at the end of 

our observation period. Hence, on the basis of our discussion in Paragraph 2, we can 

already conclude that our multilevel model better represents the evolution of 

biotechnology. 

We still compare the performance of our different models empirically. To do so, 

we combine our technological components (or individual panels) into one analysis for 

two reasons. First, otherwise we do not have enough observations when we add our 

substantive variables. Second, as mentioned, we do not aim to explain the pattern of 

evolution of individual components, but rather to develop a formal systemic model. In 

Table 4.9, we report the results of our analysis of the alternative structural break models 

(i.e., according to the distinction between the stages of development according to Table 

4.8). We want to make the following observations. First of all, the pattern of findings for 

the different models is highly similar, with little difference in significance levels and 

model fit. However, this is mainly a reflection of the temporal structure of our models. 

After all, the seed period is always situated at the start of the period and the growth 

period is always situated at the end. This has important implications for the 

distinctiveness of these models. For example, from the 8,021 observations in total, the 

overlap in observation between the Bass model and Random Assignment model is 4,611 

in the seed period and 1,627 in the growth period. This means that only 1,783 

observations are actually assigned to different periods by the two models, and that 6,238 

out of a total of 8,021 observations overlap – i.e., roughly 78%. This illustrates that it 
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should be no surprise that the models appear to have little distinguishing power 

according to the small difference in Log-likelihood values of the models. 

 

Table 4.8 Start date of growth stage according to different models 
Component Bass model Multi-level model Random assignment model 
435001 1/1990 1/1987 08/1976 
435002 1/1984 1/1976 03/1986 
435003 1/1976 n.a. 1/1978 
435004 2/1990 1/1979 2/1987 
435005 11/1976 1/1976 10/1977 
435006 9/1995 1/1981 8/1993 
435007 8/1988 1/1986 3/2001 
435008 7/1977 n.a. 3/1984 
435009 1/1976 1/1976 11/1994 
435010 2/1988 1/1976 6/1996 
435011 9/1995 1/1984 12/2002 
435012 7/1991 1/1984 9/2001 
435013 1/1976 n.a. 7/1989 
435014 1/1976 n.a. 10/2000 
435015 2/1995 1/1984 8/1982 
435016 1/1976 1/1976 4/1985 
435017 1/1976 n.a. 9/2003 
435018 1/1976 1/1990 10/1988 
800001 9/1997 1/1996 6/1985 
800002 1/1997 1/1991 10/1997 
800003 1/1998 1/1992 3/1980 
800004 1/1996 1/1991 8/1995 
800005 9/1993 1/1996 6/2000 
800006 6/1988 1/1988 10/1997 
800007 1/1976 n.a. 12/1988 
800008 6/1997 n.a. 9/1987 
800009 11/1997 1/1986 6/1995 

 

The Log-Likelihood value of the baseline model (i.e., without a structural break 

for all our components) is 11,582 with 18 degrees of freedom (not reported here, for the 

sake of brevity: available upon request). This implies that all models (i.e., adjusted Bass, 

multi-level, and random assignment) provide a significantly better fit than the baseline 

model. After all, as can be seen in Table 4.9, the worst fitting model (i.e., the random 

assignment model in column 4) already improves model fit significantly (i.e., a χ2 value of 

82 with 7 degrees of freedom means that p < 0.01). 

As can be seen in Table 4.9, our multi-level model provides for the best fit (Log-

likelihood value of 11,522). Furthermore, even though the different models assign many 

observations to the same stage, the observations that do differ with respect to the stage 

to which they are assigned do make for a big difference for some variables. Especially 

with respect to diversity and antecedent diversity, some interesting distinctions between 

our multi-level model and the alternative specifications become apparent. For example, 

diversity has a significant negative effect in both stages of development in all but our 

multi-level model, where it is not significant and even positive in the seed stage. With 

respect to antecedent diversity, in our multi-level model it has a significant negative 
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effect, while the other models do not support this finding. This illustrates the importance 

of correctly specifying the model to be estimated, as a small difference can have dramatic 

implications.  

However, we do have to note that due to the specifications of structural break 

models, correlations between variables are substantially amplified (due to the great 

number of zero values), implying that problems of multicollinearity arise. We therefore 

do not draw strong conclusions from the coefficient values of our measures from these 

models. However, because multicollinearity has no effect on model fit, we are completely 

confident that our multi-level model provides a better fit. Before we continue with this 

analysis, though, we first have a look at the confidence interval of our dependent variable 

(i.e., component entry) to determine whether the different stages of technological 

development are indeed different. 

As can be seen in Table 4.10, the mean count of patents that enter our 

technological components (entry) in the growth stage is significantly higher than in the 

seed stage of development. However, this is rather obvious because the seed stage is 

temporally positioned before the growth stage and the entry of inventions increases over 

time. So, this does not say much about the quality of the structural break according to 

our multi-level model. However, as can be seen in Table 4.10, the growth rate (i.e., 

growth = entry/density) is also significantly higher in the growth stage. So, it appears that 

the distinction between the different stages of technological development is a substantive 

rather than a spurious one. Therefore, we proceed with this distinction in our subsequent 

analysis. More specifically, we estimate two negative binomial random-effects panel 

models, namely one for the seed period and one for the growth period, to prevent 

possible multicollinearity issues that would result from a structural break model. In 

Tables 4.11 and 4.12, we report the estimates of these models. 

To get a clear picture of the effects of status and crowding, we first estimate a 

model without the interaction term between crowding and status, and without antecedent 

and descendant diversity. This model is displayed in column 2 of Tables 4.11 and 4.12. 

Next, we add the interaction term between component crowding and component status 

in column 3. Finally, in column 4, we also add our measures of antecedent and 

descendant diversity. 
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Table 4.9 Negative binomial dynamic panel regression estimates of alternative structural break 
models 
     Bass model           Multi-level       Random       
Previous entry 8.127*** 6.971*** 7.556*** 
 [1.057]       [1.048]       [1.069]       
Previous entry -23.906*** -19.153*** -21.214*** 
 [4.798]       [4.763]       [4.849]       
LN(Organizational density*1000) 0.558*** 0.536*** 0.572*** 
 [0.032]       [0.033]       [0.033]       
Organizational density^2 -0.397       -0.482*     -0.559**   
 [0.264]       [0.263]       [0.264]       
LN(Component density*1000) 0.290*** 0.299*** 0.297*** 
 [0.035]       [0.030]       [0.030]       
Component^2 0.353       0.522       0.58       
 [0.499]       [0.499]       [0.511]       
Seed(System density) 0.023*** 0.020*** 0.016*** 
 [0.007]        [0.004]       [0.004]       
Growth(System density) 0.015*** 0.021*** 0.019*** 
 [0.003]       [0.003]       [0.003]       
Seed(Component status (CS)) 0.156*** 0.133*** 0.204*** 
 [0.028]       [0.043]       [0.035]       
Growth (Component status (CS)) 0.346*** 0.248*** 0.209*** 
 [0.036]       [0.018]       [0.019]       
Seed (Component crowding (CC)) 0.161       -0.004       0.621       
 [0.596]       [0.967]       [0.529]       
Growth (Component crowding (CC)) 0.044       0.426       0.007       
 [0.466]       [0.399]       [0.441]       
Interaction: Pre(CS) * Pre(CC) 2.707       -160.312**   -130.392**   
 [80.335]       [81.074]       [61.717]       
Interaction: Post(CS) * Post(CC) -244.537*** -263.771*** -261.787*** 
 [53.657]       [57.480]       [60.569]       
Seed (Component diversity) -0.149*** 0.099       -0.137*** 
 [0.051]       [0.064]       [0.050]       
Growth (Component diversity) -0.079*     -0.07       -0.094** 
 [0.047]       [0.044]       [0.044]       
Seed (Antecedent diversity) -0.059       -0.226*** -0.021       
 [0.053]       [0.064]       [0.042]       
Growth (Antecedent diversity) -0.043       -0.015       -0.076**   
 [0.034]       [0.035]       [0.039]       
Seed (Descendant diversity) 0.180*** 0.154**   0.154*** 
 [0.062]       [0.065]       [0.050]       
Growth (Descendant diversity) 0.160*** 0.172*** 0.184*** 
 [0.039]       [0.041]       [0.043]       
Constant -2.140*** -2.295*** -2.197*** 
 [0.144]       [0.137]       [0.131]       
Observations 8021       8021       8021       
Number of components 27       27       27       
Degrees of freedom 25       25       25       
r 8.342       9.103       8.394       
s 3.826       4.233       3.942       
LL Constant -14,582       -14,582       -14,582       
LL Comparison -11,736       -11,758       -11,773       
LL Full model -11,530       -11,522       -11,541       

Legend: * significant at 10%; ** significant at 5%; *** significant at 1%; standard errors in brackets. 
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Table 4.10 Confidence interval for entry and growth in different stages of technological 
development 
Variable Obs. Mean S.E. 95% confidence interval 
Growth (seed) 2996 0.0082 0.0008 0.0067 0.0097 
Growth (growth) 5052 0.0131 0.0008 0.0115 0.0146 
Entry (seed) 2996 1.8435 0.0623 1.7214 1.9655 
Entry (growth) 5052 6.8804 0.2481 6.3941 7.3668 

 

The first observation relates to the difference with the estimates from the 

structural break model. However, this is not alarming for two reasons. First, as 

mentioned, due to the large amount of zeros in the structural break models, 

multicollinearity among our measures increases considerably, which potentially distorts 

the results. Second, because we estimate separate models for the different periods in our 

final analysis (cf. Table 4.11 and 4.12), the coefficient variables for our remaining 

variables (e.g., previous entries, organizational density, and niche density) and the 

constant term are also allowed to vary, which basically results in completely different 

models altogether. Therefore, comparing these models is virtually a senseless exercise. 

For both stages, the complete model (i.e., Seed 3 and Growth 3) provides the better fit. We 

therefore use these models for reporting our results.  

Furthermore, we have performed Hausman’s specification test to determine 

whether the random effects specification is indeed appropriate. Hausman’s test indicates 

whether the coefficient estimates of the fixed effects (i.e., consistent) model are 

significantly different from the coefficient estimates of the random effects (i.e., efficient) 

model. If these coefficient values are not significantly different, this illustrates that the 

independent variables are not correlated with the random disturbance term, and that this 

model can indeed be appropriately applied. The results of Hausman’s specification test 

both for model Seed 3 and Growth 3 indicate that the random effects specification is 

indeed appropriate (not reported here, for the sake of brevity: available upon request). 

Next, we discuss the implications for our hypotheses. 

According to Hypothesis 4.1, system density is positively associated with 

component entry in the growth stage of development. Notwithstanding the fact that our 

estimates clearly seem to support this hypothesis, we cannot confirm this hypothesis. 

After all, we have used system density to distinguish between the different stages of 

development in the first place, so these findings are merely the result of our initial 

assumptions. As a result, we cannot directly confirm this hypothesis. However, indirectly, 

the pattern of findings (especially component diversity and antecedent diversity) seems to 

suggest that the distinction between stages on the basis of the effect of system density is 

indeed justifiable. In the growth stage of development, increasing the value of system 

density with one standard deviation increases the rate of entry with 44%. 
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Table 4.11 Negative binomial dynamic multi-level panel regression estimates of the seed stage of 
technological evolution 

 Seed 1       Seed 2       Seed 3       

Previous entry 35.136**   35.218**   33.287**   

 [13.888]       [13.905]       [13.896]       

Previous entry^2 -952.06       -1,014.65       -999.172       

 [662.814]       [664.760]       [663.722]       

LN(Organizational density*1000) 0.510*** 0.522*** 0.619*** 

 [0.069]       [0.069]       [0.071]       

Organizational density^2 -7.216       -7.097       -17.313       

 [10.410]       [10.368]       [10.626]       

System density 0.005       -0.001       0.004       

 [0.006]       [0.006]       [0.007]       

LN(Component density*1000) 0.284*** 0.295*** 0.289*** 

 [0.064]       [0.064]       [0.065]       

Component density^2 56.778*     70.859** 59.896*     

 [32.858]       [33.227]       [33.766]       

Component diversity 0.325*** 0.299*** 0.346*** 

 [0.107]       [0.105]       [0.102]       

Component status (CS) 0.181*** 0.055       0.066       

 [0.038]       [0.091]       [0.087]       

Component crowding (CC) -1.036       -2.318**   -1.63       

 [1.080]       [1.142]       [1.155]       

Interaction: CS * CC  4.033*** 4.175*** 

  [1.197]       [1.160]       

Antecedent diversity   -0.312*** 

   [0.067]       

Descendant diversity   0.167**   

   [0.066]       

Constant -2.208*** -2.104*** -2.154*** 

 [0.248]       [0.247]       [0.246]       

Observations 2976       2976       2976       

Number of components 20       20       20       

Degrees of freedom 15       16       18       

r 29.788       31.653       41.419       

s 8.058       8.59       11.095       

LL Constant -3,584       -3,584       -3,584       

LL Comparison -3,107       -3,103       -3,073       

LL Full model -3,077       -3,069       -3,058       
Legend: * significant at 10%; ** significant at 5%; *** significant at 1%; standard errors in brackets. 

 

Hypothesis 4.2 posits that, due to positive spillovers, component density is 

positively associated with component growth in both stages of technological 

development, and that this effect is not significantly weaker in the growth stage of 

development. We find strong support for this hypothesis. In the seed (growth) stage of 

development, moving niche density from its 1st quartile to its 3rd quartile increases niche 

entry with 22% (21%). To determine whether the effect of density is significantly weaker 

in the growth stage of development, we have estimated (not reported here; available 

upon request) a structural break model following (4.10) where component density was 
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split into its seed and growth part. According to this analysis, the effect of component 

density is not significantly lower in the growth stage of development, providing support 

for our hypothesis. 

 

Table 4.12 Negative binomial dynamic multi-level panel regression estimates of the growth stage 
of technological evolution 

 Growth 1       Growth 2       Growth 3       

Previous entry 6.887*** 6.806*** 7.156*** 

 [1.128]       [1.130]       [1.146]       

Previous entry^2 -18.860*** -18.552*** -19.662*** 

 [5.113]       [5.117]       [5.180]       

LN(Organizational density*1000) 0.499*** 0.497*** 0.480*** 

 [0.040]       [0.040]       [0.043]       

Organizational density^2 -0.712**   -0.724*** -0.551*   

 [0.278]       [0.278]       [0.283]       

System density 0.037*** 0.038*** 0.032*** 

 [0.003]       [0.003]       [0.004]       

LN(Component density*1000) 0.265*** 0.267*** 0.239*** 

 [0.034]       [0.034]       [0.036]       

Component density^2 1.424*** 1.453*** 0.906       

 [0.535]       [0.535]       [0.555]       

Component diversity -0.105**   -0.104**   -0.126*** 

 [0.046]       [0.046]       [0.048]       

Component status (CS) 0.207*** 0.220*** 0.220*** 

 [0.021]       [0.020]       [0.020]       

Component crowding(CC) -0.261       0.067       -0.283       

 [0.399]       [0.448]       [0.465]       

Interaction: CS * CC  -0.58       -0.383       

  [0.367]       [0.373]       

Antecedent diversity   0.026       

   [0.036]       

Descendant diversity   0.152*** 

   [0.043]       

Constant -1.957*** -1.996*** -1.999*** 

 [0.160]       [0.163]       [0.165]       

Observations 5045       5045       5045       

Number of components 20       20       20       

Degrees of freedom 15       16       18       

r 7.102       7.18       6.682       

s 3.654       3.704       3.439       

LL Constant -10,413       -10,413       -10,413       

LL Comparison -8,633       -8,633       -8,609       

LL Full model -8,426       -8,425       -8,417       
Legend: * significant at 10%; ** significant at 5%; *** significant at 1%; standard errors in brackets. 

 

Hypothesis 4.3 states that the number of organizations that adopt the 

technological component is a proxy for the legitimation of technology. Because 

legitimation processes are more important in the formative (seed) stage of development, 

a stronger positive effect is expected in this stage. Our estimates provide some, but no 
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full support for this hypothesis. We do find a stronger effect for the linear term of 

organizational density in the seed stage of development, and the quadratic term becomes 

significantly negative in the growth stage of development (cf. Table 4.11 and 4.12). So, 

the effect of organizational density is stronger in the seed stage than in the growth stage. 

However, additional analyses (not reported here, for the sake of brevity; available upon 

request) do not reveal a significant difference in the two functions. Even though the 

coefficients are not significantly different, the difference in effects is rather large. Moving 

organizational density from the 1st quartile to the 2nd quartile in the seed stage of 

development, increases component growth with 171%, compared to 77% in the growth 

stage. Moreover, moving organizational density from its median value to the 3rd quartile 

increases component growth with 245% in the seed stage of development, and increases 

component growth with 89% in the growth stage of development. 

Hypothesis 4.4 claims that, due to the inherent uncertainty of biotechnology 

developments during our period of observation, component status is positively 

associated with component growth in both stages of development. Due to a much higher 

level of uncertainty in the seed stage of development, the effect is expected to be 

stronger in the seed stage vis-à-vis the growth stage of development. Only the first part 

of this hypothesis is confirmed by our estimates. As can be seen in models Seed 1 and 

Growth 1 in Table 4.11 and Table 4.12, the effect of status is positive and significant in 

both stages of development. However, contrary to our expectations, the effect appears to 

be somewhat stronger in the growth stage of development. Comparison of the 

confidence intervals reveals that the effect is not significantly different (i.e., the 95% 

confidence interval of status is [0.11-0.26] in the seed stage of development, and [0.17-

0.25] in the growth stage of development). Regarding the size of the effect, in the seed 

(growth) stage of development, moving from the 1st quartile to the median value 

increases component entry with 2.6% (2.97%), while further increasing the value of 

component status from its median value to the 3rd quartile further decreases entry with 

another 4.48% (5.14%).  

According to Hypothesis 4.5, component crowding is positively (negatively) 

associated with component growth in the seed (growth) stage of development. In 

accordance with Chapter 3, we do not find a significant effect for the traditional measure 

of component crowding. In interaction with status, according to model Seed 2, the main 

effect of niche crowding is significantly negative in the seed stage of development. 

However, this negative effect disappears when we add antecedent and descendant 

diversity in model Seed 3, which leaves only the positive interaction term. This provides 

some support for the first part of our hypothesis. Obviously, we cannot draw any strong 

conclusion about the effect of component crowding in the different stages of 

development. 
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Hypothesis 4.6 argues that niche diversity is positively (negatively) associated with 

component entry in the seed (growth) stage of development. This hypothesis is fully 

confirmed by our estimates. In the seed (growth) stage of development, a standard 

deviation increase in niche diversity increases (decreases) niche entry with 66% (17%). 

Hypothesis 4.7 states that antecedent diversity is negatively (positively) associated 

with component entry in the seed (growth) stage of technological development. We only 

find partial support for this hypothesis. On the one hand, even though the effect of 

antecedent diversity is positive in the growth stage of development, this effect is non-

significant. On the other hand, antecedent diversity does have a significant negative 

effect on component growth in the seed stage, and increasing antecedent diversity with 

one standard deviation decreases component entry with 35%. We also find that the 

coefficients of antecedent diversity are significantly different in the two stages of 

development. The confidence interval of antecedent diversity is [-0.44, -0.18] in the seed 

stage of development, and [-0.04, 0.10] in the growth stage of development.  

Finally, Hypothesis 4.8, which postulates that descendant diversity has a positive 

effect in both stages of development, can also be confirmed by our estimates. Increasing 

the value of descendant diversity with one standard deviation in the seed (growth) stage 

of development, increases niche entry with 23% (14%). Further analysis indicates that 

there is no significant difference in the coefficient value for descendant diversity in the 

two stages of development. The 95% confidence interval for descendant diversity is 

[0.04, 0.30] in the seed stage of development, and [0.07, 0.24] in the growth stage of 

development.  

4.7 Discussion and conclusion 

Overall, our estimates generate broad support for many of our hypotheses (see Table 

4.13), providing evidence for our claim that there are indeed different stages of 

technological evolution. This allows us to move beyond a mere caricature of 

technological evolution as an S-shaped growth pattern, and enables an investigation into 

the processes that underlie this characteristic growth pattern. Our estimates reveal an 

intricate, but characteristic pattern of technological evolution, with different processes 

operating at different stages of development and at different levels of analysis. 

Obviously, this is not a surprising observation, as it is well documented that technological 

change is a highly complex, dynamic, and inherently multi-level phenomenon (Tushman 

& Nelson, 1990). Even though it is impossible to draw strong conclusions and 

implications on the basis of a single study, our pattern of significant findings (both in this 

chapter, as well as in the previous chapter) does demonstrate that further investigation is 

certainly warranted. Not only to further refine our theory, but also to validate our 

findings in other settings (e.g., for more mature technologies). Below, we provide some 

directions for future research and delineate the boundaries of our current investigation. 
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Table 4.13 Overview of hypotheses and results 
 
Hypothesis 

Expected                     Found 
Seed Growth           Seed           Growth 

4.1 System density  ↑            ↑ 
4.2 Organizational density ↑↑ ↑           ↑***           ↑*** 
4.3 Component density ↑ ↑           ↑***           ↑*** 
4.4 Component status ↑ ↑           ↑***           ↑*** 
4.5 Component crowding ↑ ↓           ↑           ↓ 
4.6 Component diversity ↑ ↓           ↑***           ↓*** 
4.7 Antecedent diversity ↓ ↑           ↓***           ↑ 
4.8 Descendant diversity ↑ ↑           ↑***           ↑*** 
Legend: * significant at 10%; ** significant at 5%; *** significant at 1%; standard errors in brackets. 

 

First, by conceiving of technology as a system composed of a set of 

interdependent components that evolve through different stages of technological 

development, we have effectively created a multi-level and systemic evolutionary model 

of technological growth. Our analysis demonstrates that this model is better suited for 

studying the growth of emerging technologies than the singular (adjusted) Bass model, 

which signifies the importance of considering the embeddedness of technology when 

considering its growth or evolution. According to our model, when a component 

develops a stable role within a technological system (i.e., after a dominant subcomponent 

configuration is established), it begins to form an integral part of that system, and the 

processes that direct the component’s growth and evolution change. 

On the one hand, before this dominant subcomponent configuration (i.e., in the 

seed stage of development), focal diversity has a positive effect on component growth. 

Hence, alternative subcomponent configurations attract resources and attention to 

further the development of this array of alternative technological structures (or 

technological options). However, despite the advantageous effect of alternative 

technological structures (i.e., subcomponent configurations), these alternative 

configurations should not be based upon diverse technological knowledge, which is 

indicated by the negative effect of antecedent diversity in this stage. That is, due to the 

lack of a dominant design, diverse knowledge reduces the sense-making capabilities and 

increases integration costs.  

On the other hand, after a dominant design has been established, the component 

is legitimated at the system level, which means that it now forms an integral part of the 

system’s structure. This means that alternative subcomponent configurations (i.e., 

indicated by component diversity) thwart resources and attention from the agreed-upon 

dominant subcomponent configuration, which hampers technological growth. Moreover, 

because the dominant design provides a means to make sense of the environment, 

knowledge-base diversity no longer has a negative effect on technological growth. The 

dominant subcomponent configuration (i.e., a dominant design) acts as some sort of 

filter or heuristic, which not only redirects resources and attention in the technological 

environment, but also acts as a sense-making structure with which to interpret the 
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environment. Hence, stability is needed to make sense of the world, hereby reducing 

uncertainty, enabling specialization, and facilitating cumulative changes. 

When taking this previous argument to a higher level of aggregation, after each 

component is identified and has established a stable role within the technological system, 

the system itself becomes a stable and predictable integrated whole, and enters the 

growth stage of development. That is, the system has formed a dominant component 

configuration, or a dominant system design. In other words, stability travels upward. This 

connects to Barley’s (1990) finding that technology-induced micro-social dynamics travel 

upwards in an orderly manner. By explicating how this stability develops from the 

bottom up, it is possible to elucidate the emergence of structures at higher levels of 

analysis. Furthermore, the model proposed here can be easily extended to include 

multiple levels of analysis. Then, it can allow for fine-grained analyses of technological 

systems and subsystems. For example, it is possible to conceive inventions bundled into 

components, components bundled into products and processes, and products and 

processes bundled into paradigms. Within such a hierarchically nested multi-level model, 

levels are nested within one another, and wholes are composed of elements at lower 

levels, which are themselves part of more extensive wholes (Baum, 1999). Indeed, more 

and more work recognizes the value added of paying explicit attention to the nested 

nature of multiple levels of analysis (Baum & Singh, 1994a). By investigating the 

formation of these stable configurations or structures at multiple levels of analysis, we 

can develop greater insight into the path-dependent nature of technology, and draw 

important managerial and policy implications. Obviously, our work here implies only an 

initial first step, and much work needs to be done to develop a solid foundation for the 

development of such a hierarchically nested, multi-level model of technology. 

Even though, on the basis of our finding in this chapter, we can provide some 

initial points of advice. The fact that diversity is positive in seed stages implies that policy 

and management should stimulate many alternatives in the initial stages of technological 

evolution. However, after the emergence of a dominant design, it is important to stop 

exploring and/or supporting alternatives, and instead focus on developing the dominant 

configuration that has been created. Hence, now, alternative programs could be 

terminated and resources could be redirected into developing the dominant technological 

design configuration.  

Second, the current literature on technology and innovation treats the origins of 

novelty as exogenous and random, and focuses mainly on processes of diffusion and 

absorption (Fleming, 2001; Gilsing & Nooteboom, 2006). In contrast, in the current 

study, by distinguishing between the seed and growth stage of development, separated by 

a dominant design, we focus on both the process of knowledge creation and the process 

of knowledge diffusion. On the one hand, the seed stage of development can be 

characterized by the (social) construction of a dominant design, in which the basic or 
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dominant structure of the technological component is created. On the other hand, in the 

growth stage of technological development, a dominant design exists that outlines the 

basic structure of the component and directs its future growth, development and 

evolution. So, the growth stage can be characterized as technologically deterministic, 

where the dominant design of the technology diffuses throughout the environment, and 

the actors and stakeholders in the environment adjust their structures and procedures to 

facilitate the development of the agreed upon dominant design configuration of the 

technological component. As such, our systemic multi-level evolutionary model enables 

an analysis of both the process of knowledge creation and the subsequent diffusion of 

the created knowledge. 

Third, by further taking into account the lineage of technology, we have added 

two additional dimensions to the technological niche, namely antecedent and descendant 

diversity. In doing so, we found that the embeddedness of a niche (i.e., how it relates to 

other technological niches) has a substantial effect on its growth rate, illustrating the 

importance of a socialized perspective towards technological change. Both sides of a 

niche’s technological lineage, namely the diversity of its antecedent technologies and of 

its descendant technologies, have a strong effect on the focal niche’s growth rate. As 

illustrated above, this has generated more insight into the twin processes of knowledge 

creation and diffusion, characterized by the different stages of technological 

development. Even though we have demonstrated the significance of the diversity of 

these dimensions of the technological component, it is also possible to conceive of other 

characteristics of these dimensions. For example, results from some preliminary analyses 

(available upon request) indeed indicate that antecedent and descendant stability also play 

an important role in the evolution and growth of technology. A thorough investigation of 

the effect of different characteristics of antecedent and descendant technology on 

technological development would surely contribute much to our understanding of the 

growth and evolution of technology. 

Fourth, to concentrate our attention on the evolution of technology, we have 

largely abstracted from the role of the organization. Obviously, the insights from this 

analysis should be integrated with extant knowledge about organizational evolution, first 

by means of theoretical exploration, and subsequently by means of empirical 

investigation. Here, we have opened the door to a plethora of highly interesting research 

questions that can be further developed and explored. More specifically, by providing a 

quantitative model that facilitates a distinction between different stages of technological 

evolution, it becomes possible to explore the consequence of these different stages for 

individual organizations, by examining the position of organizations within a 

technological component at different stages of development, and by relating this position 

to organizational performance and survival. Clearly, the stages of technological 

development can also be considered in unison with the technology strategy of the 
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organization. For example, we can consider an organization’s technology strategy or 

search behavior (i.e., divergence or technological exploration and convergence or 

technological exploitation) in different stages of technological development along the 

lines suggested in Figure 4.3. 
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Figure 4.3 The organization’s strategy and stages of technological development 

 

In the seed stage of technological divergence, due to the existence of alternative 

design configurations, the organization has two options. First, it can support alternative 

design configurations to guarantee that the organization will have a stake in the future 

dominant design configuration (i.e., applying a hedging strategy). Second, the 

organization can concentrate its attention by supporting one single design configurations 

under the expectation that this will become the future dominant design configuration 

(i.e., applying a strategy of placing all eggs in one basket). In the growth stage of 

technological convergence, a dominant design configuration does exist and the 

organization again has two options. First, it can work on alternative design configurations 

in an effort to overthrow the ‘current’ dominant design configuration. Alternatively, it 

can contribute to the development of (a part of) the dominant design configuration. 

Obviously, a mixture between strategies is also possible.  

At higher levels of analyses (i.e., at the level of an organizational population and 

community), we can relate the different stages of technological development to the 

processes of entry and exit of organizations and organizational forms. This would be an 

important contribution to the literature. After all, even though it is widely acknowledged 

that technology drives ecological processes, in population ecology, with few exceptions, 

connections between technological change and organizational evolution are not of 

central interest (Baum et al., 1995). Moreover, a formal model of the evolution of 

technology would allow a systematic investigation into the co-evolution of technologies 
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and organizations, a phenomenon that is recognized by many as being highly important 

(Anderson & Tushman, 1990; Barnett, 1990; Baum et al., 1995; Dosi, 1984; Nelson & 

Winter, 1982; Tushman & Anderson, 1986; Utterback & Suárez, 1993). After all, even 

though technology is structured (mainly) by organizations (i.e., through the creation of a 

dominant design), technology subsequently structures organizations (i.e., after a 

dominant design has been established). Hence, technological growth is highly path 

dependent. So, technology not only liberates us, but also entraps us (Winter, 2008). 

Hence, it is clear that technological change deserves a central role in any organization 

theory (Tushman & Nelson, 1990). In the remainder of this thesis, we therefore 

investigate further how these different stages affect organizational performance. 

 

 

 



 

 

 

 

 

 

 

 

 

Part III Organization 
 

“Organizations have to have continuity, and yet if there is not enough new challenge,  

not enough change, they become empty bureaucracies, awfully fast. ” 

~ Peter F. Drucker  



 



 

Chapter 5   
 

A Logical Formalization of the Theory of the 

Technological Niche 

5.1 Introduction 

In the previous two chapters, we have defined the technological niche at the level of a 

technological domain, to elucidate aggregate patterns of technological development. In 

so doing, we have developed insights that have important implications for individual 

organizations. However, before we can move to the organization-level analysis, we first 

need to define the technological niche at the organizational level. As mentioned 

previously, Podolny, Stuart, and Hannan (1996) have already defined the technological 

niche at the level of an individual organization. Hence, their work provides a natural 

starting point for our endeavors. It might have become clear by now that Podolny, 

Stuart, and Hannan (1996) define two dimensions for the organization-specific 

technological niche, namely technological crowding and technological status.  

 Their technological crowding argument builds upon the general notion that the 

intensity of the competitive pressure exerted by one entity on another is proportional to 

niche overlap (Hannan & Freeman, 1989; MacArthur, 1972).15 Because technology 

constitutes a core feature of the organization (Hannan & Freeman, 1984), technological 

crowding (i.e., overlap of an organizations’ technological niche) increases the competitive 

pressure on the organization, so reducing its performance. Their technological status 

argument builds upon the notion that, under conditions of uncertainty, resource 

controllers cannot readily observe the organization’s actual quality, and therefore rely on 

their perception of the organization’s quality, which is dependent upon the organization’s 

relative reputation (i.e., status). Because technological development is characterized by 

high levels of uncertainty, status has an important role in directing resources in 

technological development. And the more resources available to the organization, the 

higher are its chances of survival. 

 Even though Podolny, Stuart, and Hannan (1996) build upon general ecological 

and economic insights to construct their eloquent arguments, some of their assumptions 

                                                 
15 Even though ecologists recognize that the density-dependence argument of organization ecology clearly 

allows for legitimative effects of crowding in the formative years of a population (Hannan, Pólos, & 

Carroll, 2007; Boone, Wezel, & van Witteloostuijn, 2007), most ecological studies equate niche overlap 

with competition (McPherson, 1983; Baum, 1994; Podolny & Stuart, 1995; Podolny, Stuart, & Hannan, 

1996; Hannan, Carroll, & Pólos, 2003). 
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remain hidden because natural language is ambiguous. As a result, it is not precisely clear 

which conditions have to hold for their arguments to be valid or true. Accordingly, 

before we can integrate our insights into these arguments, we first need to explicate the 

underlying assumptions, resolve all ambiguity, and correct any possible flaw that might 

exist in their argumentation. To do so, we will use a process of logical formalization, 

which essentially implies that we translate their arguments into formal theory fragments. 

In doing so, we find that Podolny, Stuart, and Hannan (1996) equate technological 

crowding with competition only because they draw a sample of homogenous 

organizations from a highly competitive market. When relaxing this assumption, we 

accommodate the crowding argument for the existence of positive spillovers as well, 

hereby demonstrating that crowding cannot be universally equated with competition. 

Furthermore, in formalizing the technological status argument, we add technological 

quality as a dimension to the technological niche. Moreover, we demonstrate how the 

level of uncertainty surrounding the organization’s technology mediates the relation 

between, on the one hand, the organization’s technological status and quality, and, on the 

other hand, organizational performance.  

 The contribution of this chapter is threefold. First, we formalize the theory of the 

technological niche. By explicating its underlying assumptions, we make the theory more 

transparent, facilitating easy extension and cumulative development. Second, we extend 

the theory of the technological niche by distinguishing between technological space and 

market space (i.e., we distinguish between competitor versus non-competitor 

technological crowding). Furthermore, we add technological quality as a dimension to the 

technological niche, and demonstrate how uncertainty mediates the relationship between 

the organization’s technological status, its actual quality, and its perceived quality. Third 

and finally, we offer yet another demonstration of how logic can be used in theory 

analysis and development. 

 The structure of this chapter is as follows. The next section will provide an 

overview of the process of logical formalization. Section 5.3 will discuss the language that 

we will use for our logical formalization. Based on these steppingstones, we will 

formalize the theory of technological niche in Section 5.4, and provide more insight into 

the theory’s implicit assumptions. Finally, Section 5.5 concludes this chapter by placing 

our findings in the broader academic debate, and by suggesting several directions for 

future research. 

5.2  Logical formalization 

Within social sciences, most theory is stated in natural language. Events and entities in 

the real world are abstracted into labels and concepts, and are related to one another into 

a – preferably coherent and consistent – theory fragment or story. To facilitate the ease 

of communication, natural language does not require an explicit definition of each and 
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every label and concept used in this process. After all, explicitly defining all labels and 

concepts at the outset of each and every communication would make it an extremely 

strenuous process, severely reducing the flow of communication by increasing its costs. 

In the context of theory building, the use of natural language initially facilitates theory 

development. After all, the boundaries of a theory can be easily explored by applying the 

theory’s concepts and constructs to different contexts and at different levels of analysis. 

However, this extension of theory beyond its original domain can obscure the meaning 

of the theory’s core concepts and constructs. That is, because there is no requirement to 

explicitly define and relate all concepts and constructs to one another, concepts and 

constructs can take on a completely different meanings in different contexts. For 

example, consider the following two sentences (adapted from Gamut, 1991a): (1) 

“Innovation is the successful introduction of an invention in the marketplace”, and (2) 

“Innovation has ten letters”. In sentence (1), the expression ‘innovation’ refers to the 

process of converting inventions into successful products and processes in a market; in 

sentence (2), the exact same expression refers to a word.  

Obviously, when concepts take on different meanings in different contexts, 

contradictions and anomalies arise, which stifles the theory’s further development. Thus, 

to facilitate theory development in this stage, it is necessary to formally define and relate 

all concepts and constructs at all levels of analysis to elucidate the precise composition of 

the theory’s arguments. In doing so, contradictions can be resolved, and anomalies 

disappear. At this juncture, logical formalization is a extremely valuable tool as it enables 

us to systematically analyze the logical structure of an argument, and to “lay bare each 

argumentative step, thereby revealing potential loopholes (i.e., implicit assumptions), 

invalid references, and inconsistencies” (Bruggeman & Vermeulen, 2002: 185). A logical 

formalization essentially translates theoretical arguments (in natural language) into a 

formal theory. Formal theory is a set of sentences in a given formal language with an 

inference system. Subsequently, the set of sentences is closed under logical deduction and 

conclusions are validly inferred from premises according to the rules of inference 

(Bruggeman & Vermeulen, 2002). Hence, through a process of logical formalization, it is 

possible to eliminate anomalies by resolving contradictions, to end up with valid (i.e., if 

the premises are true, the conclusion logically follows from to the rules of inference) and 

explicit (i.e., all concepts are explicitly defined at the appropriate level of analysis) 

argumentative structures that provide the transparency needed for cumulative theory 

development.  

To conduct our logical formalization, we use the methodology outlined by 

Bruggeman and Vermeulen (2002), which entails five steps: (1) marking the core theory, 

(2) analyzing key concepts, (3) informal axiomatization, (4) formalization proper, and, 

finally, (5) formal testing. Next, we will explain these steps in a highly condensed manner. 

First, marking the core theory implies identifying the major claims and their supporting 
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arguments. To do so, Fisher (1988) has developed a useful methodology that basically 

entails scanning the text for conclusion, reason, and supposition indicators. A brief 

summary of this methodology is provided in Appendix C.  

Second, the arguments have to be analyzed to find out what the core concepts 

(i.e., objects) and their properties are, and how they relate to one another. This is 

basically the hardest part of any formalization, sounding much easier than it actually is. 

For this, you need to interpret the work and place it in the right context. When doing so, 

it is important to consider that logical formalization is not a neutral approach to theory, 

and that different formalizations stand for different interpretations (Péli, 2007). Most 

work originates from a certain paradigm (or theoretical perspective) with many implicit 

assumptions, which may not be contained in the original text. Therefore, in analyzing the 

core theory, it is extremely important to get thoroughly acquainted with the theory, and 

to also rely on related work by the author(s) and to relate to the broader theoretical 

domain from which the work originates. Ask (yourself) what the author could have 

intended with the particular argument. After all, natural language is highly ambiguous, 

and it is all too easy to criticize other people’s work.  

Third, the goal of informal axiomatization is to represent the core theory as a set 

of relatively simple sentences, with a clear logical structure. This means that complex 

sentences should be broken up into simple sentences, and that the structure of each 

individual part should be clarified by connecting the events by using the logical 

connectives or constants in Table 5.1. At this point, any logical ambiguity needs to be 

resolved, and premises need to be added to the theory to make it logically sound and 

complete. To display the logical structure of the theory, it is extremely useful to use a 

diagram or model (Bruggeman & Vermeulen, 2002; Fisher, 1988).  

Fourth, the formalization step entails the translation of the informal 

axiomatization into a formal language. A logical formalization can be done in many 

flavors or logical languages, and which language to use clearly depends on the issue at 

hand. A useful rule of thumb is to use the simplest language that can be used to complete 

the specific task (Bruggeman & Vermeulen, 2002). The simplest formal language is 

propositional logic, which is concerned with argumentative structures that only use the 

logical constants from Table 5.1 – anything else that affects the validity of arguments is 

left out (Gamut, 1991a). Next, first-order or predicate logic (FOL), accommodates the 

possibility of quantifying expressions (like ‘all’ and ‘some’) by adding the logical 

quantifiers (see Table 5.1), and is thus an extension of propositional logic. 

Notwithstanding the apparent simplicity of FOL, it provides for a rigorous and formal 

method to evaluate theory (Péli & Masuch, 1997), and has proven itself extremely 

valuable in many cases (Bruggeman & Vermeulen, 2002; Péli, 1997; Péli, Bruggeman, 

Masuch, & Nuallain, 1994).  
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Fifth and finally, regarding formal testing, for first-order logic software can be 

used to evaluate the soundness and consistency, and avoid human error. However, 

proving by hand helps to achieve a higher level of understanding of the theory and its 

logical structure, and logical problems can be discovered and repaired (Bruggeman & 

Vermeulen, 2002). This is also referred to as the process of “improving by proving” 

(Lakatos, 1976: 37). This concludes our process description of the formalization process. 

For a more in-depth description and application, we refer to Bruggeman and Vermeulen 

(2002), and Vermeulen and Bruggeman (2001). 

5.3 Non-monotonic logic 

We have already mentioned that first-order logic (FOL) is sufficient in most cases. 

However, unfortunately, FOL does not allow for exceptions. This implies that any 

contradiction results in a rejection of the whole theory, which makes it less suited for 

theory development. Therefore, in an attempt to develop a general foundation for 

organizational ecology, Hannan, Pólos, and Carroll (2007) use non-monotonic logic 

(NML), as this allows for empirical generalizations and exceptions. NML is therefore 

much better suited for theory building (Péli, 1997). In NML, when exceptions do occur 

that result in potential contradictions, the so-called specificity rule applies. This rule states 

that, when contradicting arguments exist, the more specific argument applies.  

The penguin example illustrates this point rather eloquently. Consider the following three 

statements: (1) birds can fly, (2) penguins are birds, and (3) penguins cannot fly. Viewed 

individually, these statements are all considered true. However, when these statements 

are considered jointly, it results in an obvious contradiction. After all, according to these 

statements, can penguins fly or not? This ‘problem’ cannot be easily resolved using FOL, 

as the resulting contradiction leads to a rejection of the whole theory.16 In NML, 

however, the specificity rule provides a rather simple way out of this contradiction.  

To come back to our example, to determine whether penguins can fly, there are 

two alternative arguments that result in a contradicting conclusion. The latter argument is 

given directly by statement 3, which argues that penguins cannot fly. The former 

argument is provided by combining statements 1 and 2 (i.e., penguin is a bird, and a bird 

can fly, so it logically follows that a penguin can fly). Because the former argument needs 

two statements to reach its conclusion, while the latter only needs one, the latter and 

                                                 
16 Even though it is possible to model this argument in FOL, this would entail altering the individual 

statement to prevent contradictions from arising in the first place. For example, in FOL, the first statement 

could be transformed so that all birds, except penguins, can fly. Obviously, taking into account all 

exceptions explicitly in general arguments makes the process of logical formalization rather cumbersome, 

especially for theory fragments that are currently being developed, and therefore subject to large amounts 

of change. 
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more specific argument applies. Essentially, it provides an exception to the alternative 

more general argument. It does so by using a set of alternative non-monotonic logical 

quantifiers (see Table 5.1). The argument then becomes as follows. Normally, (1) birds 

can fly; however, (2) a penguin is a specific kind of bird; and (3) a penguin cannot fly.  

In NML, if there is no clear specificity ordering between contradicting arguments (i.e., if 

the contradicting arguments are of the same length), the theory refrains from drawing 

any conclusions. This means that contradicting perspectives are allowed to co-exist side 

by side until more evidence resolves the contradiction, which more closely resembles the 

process of actual theory development. After all, theories are not rejected upon 

occurrence of a single anomalous or contradictory finding (Kuhn, 1996). Another 

difference between FOL and NML are the argumentation patterns (i.e., valid 

argumentative structures) that are part of the inference systems. More specifically, NML 

drops two argumentation patterns from its inference system, as these imply unwanted 

conditions for theory building (Hannan et al., 2007), see Appendix D. As it is our aim to 

further develop the technological niche within the general ecological framework of 

Hannan, Pólos, and Carroll (2007), we also opt for the non-monotonic logical flavor. For 

a more in-depth discussion of non-monotonic logic, we refer to Hannan, Pólos, and 

Carroll (2007); and for a good elementary textbook on logic in general, see Gamut 

(1991a; 1991b).  

Even though logical formalization is not a neutral approach to theory, and 

different formalizations stand for different interpretations (Péli, 2007), it opens the door 

for debate and for the resolution of inconsistencies, and thus facilitates the development 

of a sound and consistent theory (fragment). Hence, logical formalization enables the 

reconciliation of seemingly contradictory theory fragments, and to integrate middle range 

theories into more universal ones (Merton, 1968b). Some recent examples within the 

domain of organizational ecology are the integration of pre-entry ecologies and density-

delay theory by Kuilman, Vermeulen, and Li (2007), of Red Queen evolution and inertia 

theory by Peli (2007), and of different age dependence theory fragments by Hannan 

(1998) and Hannan, Pólos, and Carroll (2007). 

According to Weick (1979), any good scientific theory of organization must balance 

the scientific objectives of generality, simplicity, and accuracy. This balancing act implies 

that it is always a matter of choice what to include explicitly (i.e., in the foreground) in a 

logical formalization and what not (i.e., in the background). In other words, we need to 

select these elements in our analysis that make our arguments as general, simple, and 

accurate as possible. Here, we employ the four background assumptions that are listed in 

Appendix E. Table 5.1 summarizes the logical constants, quantifiers, set operators, 

predicates and functions used in our analysis. Now that we have explained our formal 

apparatus, we proceed with our logical formalization of the technological niche. We 

should note that we only report the outcome of our formalization of Podolny, Stuart, 
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and Hannan (1996; henceforth referred to as PSH), and do not describe the 

formalization process in detail.  

 

Table 5.1 Glossary of symbols 

Logical constants 

 ∧ conjunction (e.g., A and B) 

 ∨ disjunction (e.g., A and/or B) 

 → material implication (e.g., if A, then B) 

 ←→ material equivalence (e.g., A if and only if B) 

 ￢ Negation (e.g., not A) 

Logical quantifiers 

 ∃ classical existential quantifier (e.g., A exists) 

 ∀ classical universal quantifier (e.g., for all A) 

Non-monotonic logical quantifiers 

 N non-monotonic ‘normally’ quantifier (e.g., normally A) 

 A non-monotonic ‘ad-hoc’ quantifier (e.g., assumably A) 

 P non-monotonic ‘presumably’ quantifier (e.g., presumably A) 

Set operators 

 ∩ intersection of two sets (i.e., common elements in both sets) 

 ∪ union of two sets (i.e., all elements from both sets) 

 |·| cardinality of a set (i.e., the number of unique elements in the set) 

 \ set subtraction (i.e., subtract elements of one set from another set) 

Predicates 

 O(x) x is an organization 

 C(x,y) organization y actively competes with organization x 

Functions 

 CO(x,y) overlap of organization x’s technological competencies with organization y 

 CP(x) total competitive pressure experienced with organization x 

 LP(x) total legitimative pressure experienced with organization x 

 N(x) the novelty of organization x’s technology 

 NO(x,y) overlap of organization x’s technological niche by organization y 

 P(x) organization x’s performance 

 PQ(x) perceived technological quality of organization x 

 Q(x) technological quality of organization x 

 S(x) technological status of organization x 

 TA(x,y) overlap of organization x’s technological antecedents by organization y 

 UC(x) uncertainty surrounding the technology of organization x 
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5.4 Formalizing the theory of the technological niche 

In the previous chapter, we applied the technological niche at the level of technology, in 

an effort to illuminate aggregated patterns of technological development. This generated 

insights (i.e., the existence of different technological domains characterized by different 

stages of development) that are also important for individual organizations. However, 

before we can effectively transfer these insights to the organizational level of analysis, we 

need to make the current theoretical arguments logically consistent, sound, and complete. 

This also makes the arguments explicit and transparent, and thus enables an easy 

integration of the insights from the previous chapters.  

The organization-specific technological niche was first conceived by PSH, so we 

build upon their work to formalize our arguments. In their study, PSH do not provide a 

clear and strict separation between the dyadic and the organizational level of analysis. 

However, logically formalizing their arguments requires us to explicitly define the level of 

analysis at which to put forward our arguments. PSH’s main claims are formulated at the 

organizational level of analysis, making the case for formulating our arguments at this 

level as well. However, we choose to formulate our arguments mainly at the dyad level of 

analysis, as this facilitates the theoretical extensions we have envisioned in the next 

chapter. We can now continue with the actual formalization. 

5.4.1 Technological crowding 

PSH’s technological crowding argument builds upon the general crowding argument in 

organizational ecology, which states that the intensity of competition among 

organizations in a population is largely a function of the similarity in resource 

requirements. More specifically, the more similar the resource requirements, the greater 

the potential for competition (Baum & Singh, 1994b; Hannan & Freeman, 1977). The 

similarity in resource requirement is commonly referred to as niche overlap, and in the 

context of technological development, the “niche overlap between two organizations 

[…] can be regarded as a function of the degree of common dependence on prior 

inventions as foundations for their research activity” (Podolny et al., 1996: 665). After all, 

these prior inventions or technological antecedents are the organization’s constituents of 

innovation. Hence, the organization’s technological antecedents are the resources in the 

organization’s recombination process to generate novel technological recombinations or 

inventions. So, the more that two organizations share the same technological 

antecedents, the more similar are their resource requirements and, hence, the greater their 

technological niche overlap. Let O(x) be the predicate that indicates that x is an 

organization, and let TA(x,y) be the function that specifies the extent to which 

organization x shares technological antecedents with organization y. We can now define 
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TA(x,y) as follows (for brevity, we will frequently refer to a focal organization as ‘focal’ 

only, and to an alter organization as ‘alter’ only). 

 

Definition 5.1 

The extent to which focal shares technological antecedents with alter is equal to the 

cardinality of the intersection of the sets of technological antecedents of both 

organizations, divided by the cardinality of the technological antecedents of focal. 

( , )
x y

x

A A
TA x y

A

∩
=  

where Ax refers to the antecedents of the inventions of organization x, and Ay to the 

antecedents of the inventions of organization y, and |.| to the cardinality of a set (i.e., the 

number of unique elements contained within the set). Note that x and y can refer to the 

same organization at different times or to different organizations at the same time.17 

 

As can be deduced from the formula above, the overlap in technological 

antecedents is asymmetric. This implies that the overlap of the technological antecedents 

of organization x with organization y is not necessarily equal to the overlap of the 

technological antecedents of organization y with organization x. Now, let NO(x,y) be a 

function that specifies the overlap of organization x’s technological niche with 

organization y. We now have all our ingredients to formulate our first postulate. 

 

Postulate 5.1 

The more that focal shares technological antecedents with alter, the greater the overlap 

of focal’s technological niche by alter. 

N x,x',y,y' [TA(x,y) > TA(x',y')  → NO(x,y) > NO(x',y')] 

 

On page 66, PSH subsequently argue that “a like pattern of technological 

antecedents implies a similarity – or even redundancy – in technological competencies.” 

Strictly following their argument would thus require us to formally relate the 

organizations’ shared technological antecedents to an overlap in technological 

competencies. However, we choose not to do so, and thus to deviate from their original 

argument. Instead, we argue that the organizations’ niche overlap actually leads to an 

overlap in their technological competencies. There are two reasons for our alternative 

logic. First of all, this makes the argument logically sound. Otherwise, it would be 

                                                 
17 In the current chapter, we do not explicitly take into account time in our logical formalization for two 

reasons. First of all, it is not required to formalize the arguments of PSH. Second, excluding time makes 

the formalization easier to understand for laymen. However, in our next chapter, we step it up a notch, and 

do include time in our formalization. 
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impossible to directly relate niche overlap to an overlap in technological competencies in 

a formal way. As can be seen in Figure 5.1, according to the original argument, both 

niche overlap and competencies overlap are a function of shared technological 

antecedents. This implies that increasing niche overlap in the original argument does not 

necessarily lead to an increase in competencies overlap. Naturally, this also has severe 

consequences for the relation of niche overlap to organizational performance, as 

indicated by the suggested theorem.18 

 
Figure 5.1 Original and new argumentative structure of the crowding theorem 

 

In contrast, according to the new argument, the overlap in technological 

competencies is a function of niche overlap, and not of shared technological 

antecedents.19 This means that increasing niche overlap does increase the overlap in 

technological competencies, implying that the theorem between niche overlap and 

organizational performance is not conditional on the origin of the increase in niche 

overlap. This naturally brings us to our second motive for deviating from the original 

argument. We want to provide a foundation for a general framework that, amongst 

                                                 
18 In the original argument, the suggested theorem would be as follows: increasing niche overlap through 

increasing shared technological antecedents increases organizational mortality. 
19 An alternative solution would be to relate shared technological antecedent and niche overlap to one 

another using material equivalence (see Table 5.1) – i.e., to equate an overlap in technological antecedent 

with niche overlap. Even though this would also make the theorem logically sound, this would not allow 

niche overlap to result from anything else than sharing technological antecedents. 
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others, relates (technological) niche overlap to organizational performance. Because 

niches are multidimensional, we need to allow for the possibility that niche overlap 

between two organizations results from more than just an overlap in technological 

antecedents. After all, niche overlap can also increase due to other reasons than an 

increase in shared technological antecedents.  

For example, consider the distinction between two organizations that develop 

highly similar technology (e.g., recombinant DNA and monoclonal antibodies) versus 

highly distinct technology (e.g., biotech and automotive). It goes without saying that the 

organizations with technologies that are more intimately linked have a greater niche 

overlap than the organizations with unrelated technologies. So, by accommodating for 

the possibility that niche overlap increases due to other reasons than an increase in 

shared technological antecedents, we open the door for future work into the 

multidimensionality of (technological) niche overlap. Furthermore, different research 

questions require emphasizing different (combinations of) dimensions, and thus different 

measures of niche overlap. Let CO(x,y) be the function that specifies the overlap or 

organization x’s technological competencies by organization y, we then have all the 

necessary elements for our next assumption 

 

Postulate 5.2 

The greater (equal) the overlap of focal’s technological niche by alter, the greater (equal) 

the overlap of focal’s technological competencies by alter. 

N x,x',y,y' [NO(x,y) > NO(x',y')  → CO(x,y) > CO(x',y') ∧ (NO(x,y) = NO(x',y')  → 

CO(x,y) = CO(x',y'))] 

 

As previously noted, in analogy to standard organizational ecology logic, PSH 

argue that an overlap in technological competencies leads to competition. However, they 

studied the effects of crowding and status among 113 merchant and major captive 

producers in the semiconductor industry, with more than $10 million in sales. In doing 

so, the authors make the implicit assumption of homogenous actors operating in a single, 

crowded market. As a consequence, all actors use their technological competencies to 

actively compete in this crowded market. Therefore, the fact that they are able to equate 

technological niche overlap with competition is merely a reflection of drawing a sample 

from a competitive market (Pontikes, 2007), and is not an appropriate representation of 

the complete theoretical space. As we will demonstrate in this chapter, an alternative 

research design would lead to different conclusions.  

We thus need to add the limitation that for niche overlap to result in competition, 

the actors have to be active in a competitive market – or, in other words, they have to be 

competitors. We therefore introduce the predicate C(x,y) that specifies that two 

organizations are actively competing. Now we can formally relate an overlap in 
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technological competencies to an increase in the competitive pressure experienced by the 

focal organization. Let CP(x) be the competitive pressure experienced by organization x. 

Our last predicate specifies the competitive pressure at the organizational level of 

analysis, while the overlap in technological competencies is specified at the dyad level of 

analysis. This means that to formally relate these to one another, we need to aggregate 

the dyad level to the organizational level.  

However, before we can do so, we first need introducing two dyadic coefficients, 

to delineate the legitimation and competition effect of one organization on another. By 

defining two coefficients, we allow the competition and legitimation effects to differ. 

Moreover, these coefficients allow organizations to partially compete and/or legitimate 

one another. After all, organizations can compete in some but not all markets, hereby 

altering the competitive pressure that one exerts on the other. Other processes can also 

alter the competitive intensity between two organizations, such as multimarket 

competition (Barnett, 1991; Witteloostuijn, 1990), strategic alliances (Doz & Hamel, 

1998), and (market) resource partitioning (Carroll & Hannan, 2000). Without doubt, the 

legitimative strength alters between sets of organizations as well. 

 

Postulate 5.3 

Focal does not compete with itself and if focal and alter are actively competing, their 

competition coefficient is greater than their legitimation coefficient, and when they are 

not actively competing, their competition coefficient is smaller than their legitimation 

coefficient. 

P x,y [￢C(x,x) ∧ C(x,y) → γxy > λxy  ∧ ￢C(x,y) → γxy < λxy] 

 

 Next, we need to define an auxiliary assumption to set the competitive and 

legitimative effect between pairs of organizations equal to one another. This allows us to 

easily compare pairs of organizations without the need to consider the implications of 

different competitive and legitimative effects between pairs of organizations. In the next 

chapter, we will relax this assumption and do consider the implications. 

 

Auxiliary assumption 5.1 

The competitive and legitimative pressure between pairs of (non-) competing 

organizations is equal. 

A x,x',y,y' [(￢C(x,y) ∧ ￢C(x',y')) ∨ (C(x,y) ∧ C(x',y')) → (γxy – λxy) = (γx'y' – λx'y')] 
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Definition 5.2 

The total competitive pressure at the organizational level is equal to the sum of the 

organization’s dyadic competitive pressures which is equal to the dyadic competition 

multiplier times the dyadic competencies overlap. 

γ= = ⋅∑ ∑( ) ( , ) ( , )
Y Y

xy

y y

CP x CP x y CO x y  

where y refers to an individual element of the set of all organizations Y.20 

 

Hence, an overlap in technological competencies only results in competition if 

both organizations are competitors (i.e., if C(x,y) is true or γxy = 1). The question that 

remains is what happens if this limiting assumption is relaxed – that is, what happens if 

focal and alter are not actively competing with one another (i.e., if C(x,y) is false or γxy = 

0)? Allowing for the possibility that the organizations are not actively competing implies 

a distinction between crowding in technological space and crowding in market space. 

This was already recognized by Pontikes (2007). By distinguishing between competitor 

and non-competitor technological (knowledge) crowding she demonstrates that, due to 

the existence of knowledge spillovers, technological crowding by non-competitors has a 

positive effect on the organizations performance. 

However, not only knowledge spillovers generate a positive effect of niche 

crowding. After all, according to density dependence theory, in the formative stage of a 

market, crowding has a positive influence due a process of legitimation as well (Hannan 

et al., 2007).21 Moreover, crowding is argued to enhance the development and 

accumulation of common knowledge (Fleming & Sorenson, 2004; Jaffe, 1986; Levin, 

1988), to enable a sharing of infrastructure and the creation of economies of 

standardization (Baum & Haveman, 1997; Wade, 1995), and to facilitate vicarious 

learning (Delacroix & Rao, 1994). This means that we clearly need to accommodate for a 

positive effect of crowding as well. Let LP(x) be the total legitimative force experienced 

by organization x. Again, our last predicate specifies the legitimative force at the 

organizational level of analysis, while the overlap in technological competencies is 

specified at the dyad level of analysis. This means that to formally relate these to one 

another, we again need to aggregate the dyad level to the organizational level. We do so 

by the following definition. 

 

 

                                                 
20 By applying the summation in Definition 5.2, we implicitly move from a first order to a second order 

logical formalization. 
21 Even though the concept of legitimation is mainly used in the context of density dependent legitimation 

of organizational forms, we believe that it can also be effectively used at the level of individual 

organizations. 
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Definition 5.3 

The total legitimative force at the organizational level is equal to the sum of the 

organization’s dyadic legitimative pressures which is equal to the dyadic legitimation 

multiplier times the dyadic competencies overlap. 

λ= = ⋅∑ ∑( ) ( , ) ( , )
Y Y

xy

y y

LP x LP x y CO x y  

where y refers to an individual element of the set of all organizations Y. 

 

Even though PSH focus on the organization’s life chances in their hypotheses, 

the hypotheses are actually tested using sales growth data. They subsequently argue that 

“the arguments about the effects of status and crowding on life chances potentially apply 

to a range of measurable outcomes: mortality rates, growth rates, profitability, success in 

attracting employees or external partners, and so forth” (1996: 671). Hence, we also opt 

for a general construct (i.e., organizational performance) in our logical formalization, 

which includes multiple outcomes that can be more (e.g., organizational mortality) or less 

(e.g., organization innovation) distant in time. 

So, now that we have defined the competitive and legitimative forces at the 

organizational level, we can relate this to the organization’s performance. Following 

standard economic logic, and under the ceteris paribus assumption, the more 

competition is experienced by the organization, the lower its performance; similarly, the 

more legitimation is experienced by the organization, the higher its level of performance 

(Hannan & Freeman, 1989). Let P(x) be the predicate that specifies organization x’s 

performance. This leads us to our following postulates. 

 

Postulate 5.4 

If the legitimation experienced by focal is not greater than the legitimation experienced 

by alter, and the competition experienced by focal is greater than the competition 

experienced by alter, then the performance of focal is lower than the performance of 

alter. 

N x,x' [LP(x) ≤ LP(x') ∧ CP(x) > CP(x')  → P(x) < P(x')] 

 

Postulate 5.5 

If the competition experienced by focal is not greater than the competition experienced 

by alter, and the legitimation experienced by focal is greater than the legitimation 

experienced by alter, then the performance of focal is greater than the performance of 

organization alter. 

N x,x' [CP(x) ≤ CP(x') ∧ LP(x) > LP(x')  → P(x) > P(x')] 
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Now, we have all the necessary elements to prove our theorems (i.e., to formally 

relate niche overlap to the organization’s performance). 

 

Theorem 5.1 

If focal and alter are competitors, the greater the overlap of the focal organization’s 

technological niche by alter, the lower the focal organization’s performance. 

P x,x',y,y' [C(x,y) ∧ C(x',y') ∧ NO(x,y) > NO(x',y')  ∧ ∀z,z' [y ≠ z ∧ y' ≠ z' ∧ ∑zCP(x,z) ≥ 

∑z'CP(x',z') ∧ ∑wLP(x,z) ≤ ∑w'LP(x',z')] → P(x) < P(x')] 

 

Proof for this theorem is provided by auxiliary assumption 5.1, postulates 5.2, and 5.5, 

and definition 5.2 and 5.3 (see Appendix F). 

 

Theorem 5.2 

If focal and alter are not competitors, then greater the overlap of the focal organization’s 

technological niche by alter, the higher the focal organization’s performance. 

P x,x',y,y' [¬C(x,y) ∧ ¬C(x',y') ∧ NO(x,y) > NO(x',y')  ∧ ∀z,z' [y ≠ z ∧ y' ≠ z' ∧ 

∑zCP(x,z) ≤ ∑z'CP(x',z') ∧ ∑wLP(x,z) ≥ ∑w'LP(x',z')] → P(x) < P(x')] 

 

Proof for this theorem is provided by auxiliary assumption 5.1, postulates 5.2, and 5.5, 

and definition 5.2 and 5.3 (see Appendix F). 

 

 
Figure 5.2 Structure of technological crowing argument 
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We have already mentioned that a diagram or model is useful to display the 

structure of our argument. We therefore include this diagram in Figure 5.2. In this 

picture, P refers to postulates, D to definitions, and A to auxiliary assumptions. This 

concludes the formalization of the crowding theorem. We now continue with formalizing 

our second technological niche dimension – technological status. 

5.4.2 Technological status 

Technological development is characterized by pervasive uncertainty (Rosenberg, 1996), 

even for basic and well-established technologies (Podolny & Stuart, 1995). In this 

uncertain environment, resource controllers or stakeholders (e.g., investors, employees, 

customers, and government officials) must decide where to invest their resources. 

However, due to the inherent uncertainty, an organization’s technical properties or 

technological characteristics fail as a reliable guide (Anderson & Tushman, 1990; Podolny 

& Stuart, 1995). To cope with the uncertainty surrounding the organization’s 

technological quality, resource controllers have to resort to other information on which 

to base their resource allocations. Therefore, resource controllers rely on the 

organizations’ reputations to determine where to invest their scarce resources. More 

specifically, they consider an organization’s reputation relative to the reputation of all 

other organizations in the population, also referred to as an organization’s status.  

Status thus represents the position of an organization – or any other actor, for 

that matter – in the social structure or hierarchy. As such, it is an instance of endogenous 

population structuring that results from the dynamics of the interactions of organizations 

in the population (Podolny et al., 1996). To be precise, status arises from acts of 

deference from other organizations (Podolny, 1993). In the context of technological 

development, status refers to the organization’s perceived technological quality, and is a 

function of the importance of the organization’s previous contributions to the 

advancement of technology (Podolny et al., 1996). Accordingly, as other organizations 

build upon the focal organization’s technology, a certain legitimacy or status is conferred 

on the focal organization’s technology. Now, let S(x) be the predicate that refers to the 

status of organization x. We can now define status as follows. 

 

Definition 5.4 

The technological status of an organization is the organization’s share of the total acts of 

deference of all organizations in the population. 

( ) x

Y

y

y

D
S x

D

=

∑
 

where Dx refers to the acts of deference that organization x receives, Dy refers to acts of 

deference that organization y receives, and Y refers to all organizations in the population.  
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Again, we do not strictly follow the line of thought of Podolny, Stuart, and 

Hannan (1996). Undeniably, we do recognize the importance of status in contributing to 

the perceived quality of the organization’s technology. However, instead of equating 

status with the perceived quality of the organization’s technology, we argue that an 

organization’s perceived quality is influenced not only by the organization’s status (i.e., 

the contribution of the organization to past technological developments), but also by the 

actual quality of the organization’s technology. Let Q(x) be the function that specifies the 

organization’s actual technological quality, which we define as follows. 

 

Definition 5.5 

The technological quality of an organization is the organization’s share of the total 

technology of all organizations in the population. 

( ) x

Y

y

y

T
Q x

T

=

∑
 

where Tx refers to the share of technology that is owned by organization x, Ty refers to 

the share of technology that is owned by organization y receives, and Y refers to all 

organizations in the population.  

 

Consequently, instead of assuming that the actual quality of the organization’s 

technology is completely obscured, we argue that the extent to which the organization’s 

technological quality is masked is determined by the level of uncertainty surrounding its 

technology. After all, in a relatively certain environment, where technological standards 

are well known and change is of a highly incremental and cumulative nature, the quality 

of an organization’s technology can be readily observed by resource controllers in the 

environment. That is, only when members of the technological community are unable to 

perceive the actual quality of the organization’s technology do they need to rely on the 

organization’s past quality or status. Hence, the perceived quality of the organization’s 

technology is dependent on both its status and its actual technological quality, and this 

relationship is mediated by the level of uncertainty surrounding an organization’s 

technology. Before we can continue and define precisely how uncertainty mediates this 

relationship, we need to define uncertainty.  

Let us assume that UC(x) is the level of uncertainty surrounding organization x’s 

technology, and let us furthermore assume that the level of uncertainty can be 

represented by an interval that ranges between 0 (complete certainty) to 1 (complete 

uncertainty). For simplicity, we do not assume that uncertainty reaches its extreme values 

of 0 or 1.  
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Postulate 5.6 

The uncertainty function of an organization’s technology maps organizations to the 〈0,1〉 

interval. 

N x [0 < UC(x) < 1] 

 

We can now define how the relationship between the organization’s perceived 

quality and its status and actual quality is mediated by the level of uncertainty. Let PQ(x) 

be the perceived quality of organization x’s technology, let S(x) be organization x’s status, 

and let Q(x) be the actual quality of organization x’s technology. We can now add the 

following definition to our knowledge base. 

 

Definition 5.6 

The perceived quality of the organization is defined as the sum of the effect of status and 

quality. 

( ) (1 ( )) ( ) ( ) ( )PQ x UC x Q x UC x S x= − ⋅ + ⋅  

 

As can be deduced from definition 5.6, the extent to which a change in 

uncertainty actually increases or decreases the perceived quality of the organization 

depends on both the level of the organization’s technological status and quality. On the 

one hand, if the organization’s status is higher than its quality (recall that both status and 

quality are defined relative to all population members), decreasing uncertainty decreases 

the perceived quality of the organization. On the other hand, if the quality is higher than 

its status, decreasing uncertainty increases the organization’s perceived quality. Now, we 

continue and relate the organization’s perceived quality to its ability to mobilize 

resources. 

As mentioned above, resource controllers or stakeholders use the perceived 

technological quality to guide their decisions on where to invest their resources. This 

means that increasing the perceived technological quality of the organization relieves the 

organization’s problem of mobilizing resources to build, to sustain, and to expand its 

operations (Podolny, 1993; Stinchcombe, 1965). That is, increasing the perceived quality 

of the organization’s technology increases the organization’s ability to mobilize resources, 

which in turn, according to standard economic logic, increases the organization’s 

performance. Let MR(x) be organization x’s ability to mobilize resources. We can now 

add the following propositions to our theory. 

 

Postulate 5.7 

If the perceived quality of focal is larger than the perceived quality of alter, the focal’s 

ability to mobilize resources is greater than the ability of alter to mobilize resources. 

N x,x' [PQ(x) > PQ(x') →  MR(x) > MR(x')] 
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Postulate 5.8 

If the ability of focal to mobilize resources is larger than the ability of alter to mobilize 

resources, then focal’s performance is greater than alter’s performance. 

N x,x' [MR(x) > MR(x') →  P(x) > P(x')] 

 

Now we have everything in place to formally relate the organization’s 

technological status and quality to its performance, which is done in the theorems below. 

 

Theorem 5.3 

If (a) the uncertainty surrounding focal’s technology is equal to the uncertainty 

surrounding alter’s technology, (b) the quality of focal’s technology is not smaller than 

the technological quality of alter, and (c) the status of focal is greater than the status of 

alter, then the performance of focal is greater than the performance of alter. 

P x,x' [UC(x) = UC(x') ∧ Q(x) ≥ Q(x') ∧ S(x) > S(x') → P(x) > P(x')] 

 

Proof for this theorem is provided by definition 5.6, and postulates 5.7 and 5.8 (see 

Appendix F). 

 

Theorem 5.4 

If (a) the uncertainty surrounding focal’s technology is equal to the uncertainty 

surrounding alter’s technology, (b) the status of focal is not smaller than the status of 

alter, and (c) the quality of focal’s technology is greater than the technological quality of 

alter, then the performance of focal is greater than the performance of alter. 

P x,x' [UC(x) = UC(x') ∧ Q(x) > Q(x') ∨ S(x)  ≥ S(x')  → P(x) > P(x')] 

 

Proof for this theorem is provided by definition 5.6, and postulates 5.7 and 5.8 (see 

Appendix F). 

 

Theorem 5.5 

If (a) focal’s status is higher than its quality, (b) focal’s status is not smaller than the status 

of alter, (c) focal’s quality is not smaller than the quality of alter, and (d) the uncertainty 

surrounding focal’s technology is higher than the uncertainty surrounding the technology 

of alter, then the performance of focal is higher than the performance of alter. 

P x,x' [S(x) > Q(x) ∧ S(x) ≥ S(x') ∧ Q(x) ≥ Q(x') ∧ UC(x) > UC(x') → P(x) > P(x')] 

 

Proof for this theorem is provided by definition 5.6, and postulates 5.6 to 5.8 (see 

Appendix F). 
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Theorem 5.6 

If (a) focal’s status is lower than its quality, (b) focal’s status is not greater than the status 

of alter, (c) focal’s quality is not greater than the quality of alter, and (d) the uncertainty 

surrounding focal’s technology is higher than the uncertainty surrounding the technology 

of alter, then the performance of focal lower than the performance of alter. 

P x,x' [S(x) < Q(x) ∧ S(x) ≤ S(x') ∧ Q(x) ≤ Q(x') ∧ UC(x) > UC(x') → P(x) < P(x')] 

 

Proof for this theorem is provided by definition 5.6, and postulates 5.6 to 5.8 (see 

Appendix F). 

 

Theorems 5.5 and 5.6 imply that, on the one hand, high-status, low-quality 

organizations (i.e., low-quality incumbents) benefit most from uncertainty. On the other 

hand, high-quality, low-status organizations (i.e., high-quality new entrants) benefit most 

from certainty. 

To determine the level of uncertainty surrounding the quality of the 

organization’s technology, PSH use the level of crowding (i.e., niche overlap) of the 

organization’s technological niche as a proxy. More specifically, they argue that an 

organization that has few potential competitors with similar technological antecedents 

has a more novel technology than an organization in a niche crowded with organizations 

with similar technological antecedents. Furthermore, they argue that the more novel an 

organization’s technology, the more uncertain the quality of the technology. This means 

that PSH implicitly assume that uncertainty is an organizational characteristic only. 

However, we believe that this is merely an auxiliary assumption to complete their model. 

After all, in their discussion of status on page 667, PSH themselves argue that uncertainty 

is also property of a technological community or domain. We therefore represent this as 

an auxiliary assumption, and not as a substantive part of the theory. Let N(x) be the 

novelty of the organization’s technology. We can now formulate the following auxiliary 

assumptions. 

 

Auxiliary assumption 5.2 

If the overlap or focal’s technological niche is greater than (equal to) the overlap of the 

technological niche of alter, then the novelty of focal’s technology is smaller than (equal 

to) the novelty of the technology of alter. 

A x,x' [NO(x) > NO(x') → N(x) < N(x') ∧ NO(x) = NO(x') → N(x) = N(x')] 

 

Auxiliary assumption 5.3 

If the novelty of focal is greater than (equal to) the novelty of alter, then the uncertainty 

surrounding focal’s technology is greater than (equal to) the uncertainty surrounding the 

technology of alter. 
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A x,x' [N(x) > N(x') → UC(x) > UC(x') ∧ N(x) = N(x') → UC(x) = UC(x')] 

 

Using these auxiliary assumptions, we can reformulate our theorems to make 

them consistent with the argumentative structure of PSH. 

 

Theorem 5.7 

If (a) the overlap of focal’s technological niche is equal to the overlap of the 

technological niche of alter, (b) the quality of focal’s technology is not smaller than the 

quality of alter, and (c) the status of focal is greater than the status of alter, then the 

performance of focal is greater than the performance of alter. 

P x,x' [NO(x) = NO(x') ∧ Q(x) ≥ Q(x') ∧ ST(x) > ST(x') → P(x) > P(x')] 

 

Proof for this theorem is provided by auxiliary assumptions 5.2 and 5.3, definition 5.6, 

and postulates 5.7 and 5.8 (see Appendix F). 

 

Again, we provide a diagram of the argumentative structure of our status 

argument, now in Figure 5.3. In this diagram, the theorems are not so clearly 

distinguishable, as the intricate relationship between uncertainty, actual quality, status, 

and the perceived quality requires specifying all relationships in all theorems. 

 

 
Figure 5.3 Structure of technological status argument 
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Only theorem 5.7 is distinct from the others because it also includes niche 

overlap (NO) and technological novelty (N), while theorems 5.3 to 5.6 do not. Again, P 

refers to postulates, D to definitions, and A to auxiliary assumptions. This concludes our 

logical formalization. Next, we will discuss our findings in greater detail, place them in 

the wider academic debate, and provide several avenues for future research. 

5.5 Discussion and conclusion 

The basis of our work is the organization-specific technological niche as conceived by 

PSH. By formalizing their arguments, we have explicated its underlying assumptions, 

supplemented assumptions where necessary, and corrected some minor inconsistencies 

in the argumentative structure. In all, we have developed two logically sound, consistent, 

and complete theoretical arguments (and provide the formal proof for their arguments in 

theorems 5.1 and 5.7, see Appendix F). In doing so, we have also extended the theory of 

the organization-specific technological niche. More specifically, by distinguishing 

competitor from non-competitor technological crowding, we demonstrate that the effect 

of technological crowding on organizational performance is conditional upon whether 

the organizations actually compete in the marketplace. In doing so, we essentially 

distinguish between crowding in technological space and crowding in market space 

(Pontikes, 2007).  

In this chapter, we accommodate for the distinction between competitor and 

non-competitor technological crowding by introducing a competition and a legitimation 

coefficient, and posit that (not) actively competiting organizations have a higher (lower) 

competition coefficient than a legitimation coefficient. This allows plugging in – and thus 

an analysis of – characteristics that are known to impact the degree of competition and 

legitimation between organizations, such as, for example, multimarket competition 

(Barnett, 1991; Witteloostuijn, 1990), strategic alliances (Doz & Hamel, 1998), and 

(market) resource partitioning (Carroll & Hannan, 2000). An interesting question in this 

respect is what precisely determines the relationship between the competition and 

legitimation coefficient. 

Moreover, a distinction between market and technology space also opens the 

door for further investigation into the interdependence between crowding in the 

different spaces or domains in which the organization is active. For example, a possible 

distinction would be between science, technology, and market space. Of course, more 

fine-grained distinctions are also possible (e.g., market space can be further subdivided 

into labor market space, capital market space, and product market space). In conjunction 

with the distinction between the real and fundamental niche (Hannan & Freeman, 1989), 

it is possible to connect these different domains or spaces. For example, the real niche in 

science space forms the basis for the fundamental niche in technological space, and the 

realized niche in technological space provides the basis for the fundamental niche in 
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market space. Obviously, such a unidirectional relationship between science, technology, 

and market-space is rather simplistic, and more intricate relationships are closer to reality. 

However, in our view, this unidirectional relationship could provide a baseline that would 

allow a more process-oriented analysis (of the evolution) of organizations.  

 In addition, we have added relative technological quality as a dimension to the 

organization-specific technological niche. We demonstrate how the effect of 

technological quality and status on organizational performance is mediated by the level of 

uncertainty surrounding the organization’s technology. In doing so, we demonstrate that, 

on the one hand, high-quality, low-status organizations should try to minimize the level 

of certainty, while, on the other hand, low-quality, high-status organizations should strive 

to maximize the uncertainty surrounding their technology (cf. Theorems 5.5 and 5.6) 

However, underlying this conclusion is the implicit assumption that the uncertainty 

surrounding the organization’s technology is an organizational characteristic only, which 

affects all the organization’s technologies in exactly the same way. We have already 

demonstrated in the previous chapter that this is an incorrect assumption. After all, 

uncertainty is to a large extent a property of a technological domain, and is influenced by 

the stage of development of that domain. Hence, relaxing the assumption that 

uncertainty is an organizational characteristic only also allows relaxing the implicit and 

incorrect assumption of a single and homogeneous technological domain. 

As mentioned above, by explicating the assumptions, we make the theory of the 

organization-specific technological niche more transparent, hereby facilitating theory 

extension. We will demonstrate this in the next chapter, where we integrate some of our 

findings from the previous chapters in the theory of the organization-specific 

technological niche. More specifically, we will accommodate the theory for the existence 

of multiple technological domains in different stages of development. Another avenue 

that we have briefly touched upon in this chapter, which is worth exploring in greater 

detail, is the multidimensionality of the technological niche and, as a obvious 

consequence, the multidimensionality of niche overlap. Even though we have only used 

one dimension in determining niche overlap, our theory allows adding several other 

dimensions, such as: (i) the extent to which organizations actually develop the same 

technology (e.g., extent to which technologies are classified in the same categories or 

domains), (ii) the extent to which organizations build on each other’s technology (e.g., by 

investigating cross-citation patterns), (iii) the extent to which organization combine the 

same technological components (cf. Fleming, 2001), and (iv) the extent to which 

organizations share the same technology alliance partners. The potential dimensions are 

plentiful, and which ones to focus on depends on the research question at hand (Hannan 

& Freeman, 1989). 



 



 

Chapter 6   
 

A Logical Extension of the Theory of the 

Technological Niche 

6.1 Introduction 

In Chapter 5, we have formalized the theory of the technological niche to make its 

argumentative structure more transparent, logically sound and complete. In doing so, we 

have revealed several of its underlying assumptions. By relaxing the assumption of 

homogenous actors operating in a single, highly competitive market, we have extended 

the theory beyond technological space to include market space. In addition, we have also 

introduced quality as a dimension of the technological niche. In the current chapter, our 

aim is to further extend our formal arguments, by integrating several of our major 

findings from Chapters 3 and 4. That is to say, we will assume that (1) organizations are 

embedded in a technological landscape that consists of multiple technological systems, 

(2) technological systems can be characterized by two stages of technological 

development (i.e., seed and growth), (3) technological systems provide distinct sets of 

opportunities, and, finally, (4) technological systems provide a distinct level of 

uncertainty.  

As we will demonstrate in this chapter, these four assumptions not only have far-

reaching consequences for our existing arguments, but also result in two additional 

arguments. First, when considering the lineage of technological development (cf. Figure 

1.3), again, three dimensions of technological diversity can be conceived (i.e., antecedent 

diversity, focal diversity, and descendant diversity) that can be nicely linked to existing 

organizational concepts (such as structural inertia, absorptive capacity, niche width, and 

technological diffusion). Second, viewing a technological system’s distinctive set of 

opportunities in the context of bounded rationality and local search makes the notion of 

technological opportunities important to consider as well. 

 The contribution of this chapter is threefold. First, by integrating the growth and 

evolution of technology into the organization-specific technological niche, we 

significantly extent the theory, that results in a more realistic model that better resembles 

the processes actually taking place. Second, by presenting our theory in formal logic, we 

facilitate the debate and systematic investigation of the role of technology in organization 

theory. Furthermore, our formal model can also be easily extended (e.g., to include 

additional stages of development), and our theorems can be easily recast into hypotheses 

for empirical validation (cf. Chapter 7). Third, by explicitly considering the role of 

technology, we can further recombine several theory fragments from organizational 
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ecology and evolutionary economics, and reveal some of the fertile grounds that lay 

between these theories. In doing so, we contribute to the ongoing debate between 

environmental selection and organizational adaptation, suggesting technology as one of 

the missing links in this debate. 

In the next section of this chapter, we will formalize several of our findings from 

Chapters 3 and 4 to subsequently integrate them into the theory of the technological 

niche. That is, in Section 6.3, we will revisit the crowding argument from chapter five and 

develop theorems that result from our additional assumptions, while Section 6.4 

reformulates the status argument in the light of our added knowledge. We will develop 

our technological diversity argument in Section 6.5, introduce the concept of 

technological opportunities in Section 6.6, and discuss organizational performance in 

Section 6.7. Finally, in Section 6.8, we will discuss our findings in the context of the 

wider academic debate. 

6.2 Modeling the Evolution of Technology 

In Chapters 3 and 4, we have analyzed the technological niche at the level of a 

technological component, to elucidate aggregate patterns of technological development. 

In doing so, we found that technological development within biotechnology displays 

systemic properties, which can be effectively studied as a technological system composed 

of a set of interdependent components. Moreover, in Chapter 4, we found that an 

emerging technology can be characterized by two stages of technological development, 

namely (1) a seed stage in which a dominant design configuration is established by the 

technology’s stakeholders, and (2) a growth stage during which stakeholders structure 

themselves according to this dominant design configuration.22 We found evidence for the 

existence of these different stages at the component level, and suggest here that these 

stages can also operate at the system level.  

In the current chapter, we concentrate on the system level for two reasons. First, 

Podolny, Stuart, and Hannan (1996) originally conceive of the organization-specific niche 

at the system level. To illustrate, they investigate semiconductor technology, which is 

composed of different technological components (such as photo-masking, doping, 

etching, PMOS, CMOS, and NMOS technology). Therefore, by concentrating on the 

system level, we stay closer to their original arguments. Second, concentrating on the 

system level allows us to develop a general model without getting lost in the details. In a 

later stage, this model can be easily adapted to study processes at alternative levels of 

                                                 
22 We acknowledge that additional stages of technological development can be identified, such as a stage of 

maturity and a stage of decline. However, we are dealing with an emerging technology, which, to our belief, 

if far from mature. So, in the present setting, these stages are not yet relevant. Moreover, the extension 

from a two stage model to a four stage model is rather straightforward as the basic ingredients are already 

there. 
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analysis. As noted, we represent these findings in a formal way to integrate them into our 

previously formalized theory fragments. In doing so, we will make use of the background 

assumptions of Chapter 5 (cf. Appendix E). A description of the logical symbols, 

predicates, and functions used in the analysis is provided in Appendix G.  

What distinguishes between our different stages of technological development is 

a dominant design configuration of the system’s components. That is, on the one hand, 

the seed stage is characterized by the fact that a dominant design is lacking, implying the 

existence of multiple design configurations. On the other hand, the growth stage is 

characterized by the existence of a dominant design configuration that the stakeholders 

collectively agree upon. To model our different stages of technological development, we 

need to introduce a temporal dimension. Besides introducing time to distinguish between 

different stages of technological development, we also include time into our original 

arguments to demonstrate the ease of extending our logical arguments from the previous 

chapter. Let DD(s,t) be the predicate that specifies that a dominant design configuration 

exists in technological system s at time t, and let G(s,t) be the predicate that indicates that 

technological system s is in the growth stage of development at time t. Now, we are 

equipped to define our first postulate. 

 

Postulate 6.1 

If, at a certain point in time, there exists a dominant design configuration for a 

technological system, then the period prior to point is called the non-growth (i.e., seed) 

stage of technological development, and the period after this time point is labeled the 

growth stage of technological development. 

N s ∃ t' [DD(s,t') → ∀t [t ≥ t' → G(s,t) ∧ t' > t → ¬G(s,t)] 

 

Now that we have defined our different stages of technological development, we 

can define the characteristics of these different stages. Most importantly, in the seed stage 

of development, technological development is characterized by high uncertainty (Dosi, 

1982, 1988). After all, in this stage, due to the existence of multiple design configurations, 

the future basis of technological development is unknown. In contrast, in the growth 

stage of technological development, organizations stop investing in alternative 

configurations, and instead invest their resources and attention in understanding the 

dominant component configuration (Henderson & Clark, 1990). As a result, the 

dominant component configuration is refined and elaborated, and progress takes the 

form of improvements in the components within the framework of a stable 

configuration (Henderson & Clark, 1990).  

This implies that, in the growth stage of development, uncertainty is not only 

lower than in the seed stage, but also decreases over time (Clark, 1985; Podolny et al., 

1996) as organizations gain experience with technological components, and with their 
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combinations and interactions (Fleming, 2001; Mead & Conway, 1980). Hence, over 

time, organizations learn which components and combinations are useful, and which are 

better left ignored, which helps them to improve their inventive abilities. This reduces 

the level of technological uncertainty (Dosi, 1982). So, uncertainty peaks in the seed stage 

of development and decreases following convergence on a dominant component design 

configuration (Anderson & Tushman, 1990; Klepper, 1997), as visualized in Figure 6.1. If 

we let UC(s,t) be the function that specifies the level of uncertainty in technological 

system s at time t, we then have all the ingredients to formally define the level of 

uncertainty in the different stages of technological development. In view of that, we 

formulate our next postulates as follows. 
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Figure 6.1 Stage-dependent uncertainty 

 

Postulate 6.2 

A technological system that is in the non-growth (i.e., seed) stage of technological 

development has a higher level of uncertainty than a system in the growth stage of 

technological development. 

N s,s',t,t' [¬G(s,t) ∧ G(s',t') → UC(s,t) > UC(s',t')] 

 

So, according to this postulate, technological uncertainty is not merely a 

characteristic of an organization, but also of a technological system. And, as we will 

demonstrate later in this chapter, this has far reaching consequences for our status 

argument. 
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Postulate 6.3 

The level of uncertainty in a technological system in the growth stage of technological 

development decreases over time. 

N s,t,t' [G(s,t) ∧ G(s,t') ∧ t' > t → UC(s,t) > UC(s,t')] 

 

Not only is the level of uncertainty different in alternative technological systems, 

the technological opportunities within these systems are also different. Technological 

opportunities refer to variations in the cost and difficulty of innovation in technological 

systems (Jaffe, 1986). Obviously, these opportunities can change over time and are, to a 

large extent, dependent upon the system’s stage of development. So, different systems 

present different sets of opportunities. At this moment, we do not know how these 

opportunities differ precisely. However, the fact that they do already has important 

implications. We thus make it a formal part of our theory. Let TS(s) be the predicate that 

indicates that s is a technological system, and let TO(s,t) be the function that specifies the 

level of opportunities in a technological system s at time t. We can now formulate the 

following postulate. 

 

Postulate 6.4 

All technological systems have a certain amount of technological opportunities at all 

points in time. 

N s [TS(s) → ∀t [TO(s,t)]] 

 

Now that we have developed our postulates regarding the different characteristics 

of technological systems, we can continue and revisit the theory of the technological 

niche. This means that we will extent our arguments regarding technological crowding 

and status with the technological insights by using postulates 6.1 to 6.4, also adding two 

additional dimensions on the basis of these insights. 

6.3 Crowding revisited 

To begin with, we need to reformulate our definition of an overlap in technological 

antecedents to accommodate for the existence of multiple different technological 

systems. This implies that we need to distinguish between overlap in different 

technological systems. Hence, we let the predicate TA(x,y,s,t) be the function that 

specifies the extent to which organization x’s shares technological antecedents from 

technological system s with organization y at time t.  
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Definition 6.1 

The extent to which focal shares technological antecedents from a certain technological 

system with alter is equal to the cardinality of the intersection of both the organization’s 

sets of antecedents from that technological system, divided by the cardinality of the 

antecedents of focal from that system. 

( , , , )
xst yst

xst

A A
TA x y s t

A

∩
=  

where Axst refers to the antecedents of organization x from technological system s at time 

t, Ayst to the antecedents of organization y from technological system s at time t, |.| to the 

cardinality of a set, and ∩ to the intersection of two sets. 

 

Once more, we argue that increasing the shared technological antecedents 

between two organizations increases the overlap of their technological niches. The only 

difference is that we, again, need to accommodate for the existence of multiple 

technological systems. Naturally, the same applies for the relationship between niche 

overlap and an overlap in technological competencies. So, let NO(x,y,s,t) be the function 

that specifies the overlap of organization x’s technological niche with organization y at 

time t in technological system s, and let CO(x,y,s,t) be the function that specifies the 

overlap of organization x’s technological competencies in system s with organization y at 

time t. We can now adjust our postulates accordingly. 

 

Postulate 6.5 

The more focal shares technological antecedents from a given technological system with 

alter, the greater the overlap of focal’s technological niche with alter in that same 

technological system. 

N x,x',y,y',s,t,t' [TA(x,y,s,t) > TA(x',y',s,t')  → NO(x,y,s,t) > NO(x',y',s,t')] 

 

Postulate 6.6 

The greater (equal) the crowding of focal organization’s technological niche with alter at 

a certain point in time in a certain technological system, the greater (equal) the overlap of 

focal’s technological competencies with alter in that same technological system. 

N x,x',y,y',s,t,t' [NO(x,y,s,t) > NO(x',y',s,t') → CO(x,y,s,t) > CO(x',y',s,t') ∧ NO(x,y,s,t) = 

NO(x',y',s,t') → CO(x,y,s,t) = CO(x',y',s,t')] 

 

In the previous chapter, the effect of an overlap in technological competencies 

between two organizations was conditional upon whether these organizations actually 

use these competencies to actively compete with one another. In the current chapter, we 

also need to take into account the different stages of technological development, as these 
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are characterized by different processes of competition and legitimation. In the seed 

stage of technological development, (scientific) progress yields a widening pool of design 

configurations (Dosi, 1988), which results in frequent and deep debates over legitimate 

methods, problems, and standards of solution (Kuhn, 1996). The environment is thus 

characterized by high uncertainty and ambiguity as it is unclear which of the several or 

many designs-configurations will prevail. This implies that competition takes place 

between alternative design configurations (in an effort to become the dominant design 

configuration) rather than within the dominant design configuration. It logically follows 

that, in this stage, competition does not occur between organizations supporting the 

same design configuration, but rather between organizations supporting alternative, 

competing, design configurations.  

The organization’s competencies are directly related to the design configuration 

that the organization builds upon, so an overlap in technological competencies implies an 

overlap in design configurations. Accordingly, increasing the overlap in technological 

competencies increases the degree to which other organizations are betting on the same 

(part of) the design configuration. This increases the likelihood that this (part of) the 

design configuration will actually be selected as (or become part of) the dominant one. In 

other words, crowding reduces the number of alternative designs-configurations and 

legitimates the supported design configuration. In the seed stage of technological 

development, crowding thus breeds legitimation (McKendrick, Jaffee, Carroll, & 

Khessina, 2003; Ruef, 2000), as it strengthens the competitive ability of the supported 

design configuration vis-à-vis its alternatives. Logically, this implies that non-crowding 

(Baum & Singh, 1994c) should increase the competitive pressure as it represents the 

collective of organizations that are backing alternative design configurations in the 

system. So, when formally relating crowding to organizational performance, we need to 

control for the effect of non-crowding. Thus, before we continue, we will first develop 

the basic non-crowding definitions and postulates. Let NT(x,y,s,t) be the degree of non-

sharing of technological antecedents between organization x and y in technological 

system s at time t, which is formally defined below. 

 

Definition 6.2 

The non-sharing of technological antecedents between focal and alter in a technological 

system is equal to the cardinality of the union of the sets of antecedents of both 

organizations minus the intersection of the sets of antecedents of both organizations, 

divided by the cardinality of the set of antecedents of focal. 

' '\
( , , , )

xst yst xst yst

xst

A A A A
NT x y s t

A

∪ ∩
=  

where Axst refers to the antecedents from technological system s of organization x at time 

t, and Ayst reflects the antecedents from technological system s of organization y at time t', 
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\ denotes set subtraction, |.| refers to the cardinality of a set, ∩ is the intersection of 

two sets, and ∪ refers to the union of two sets. 

 

Next, let NN(x,y,s,t) be the function that specifies the non-overlap of 

organization x’s technological niche with organization y in system s at time t, and let 

NC(x,y,s,t) be the non-overlap of organization x’s technological competencies with 

organization y in system s at time t. We now formulate our non-crowding postulates. 

 

Postulate 6.7 

The greater (equal) the non-sharing of technological antecedents from a certain 

technological system between focal and alter at a certain point in time, the (equal) greater 

the non-overlap of focal’s technological niche with alter in that system. 

N x,x',y,y',s,t,t' [NT(x,y,s,t) > NT(x',y',s,t') → NN(x,y,s,t) > NN(x',y',s,t') ∧ NT(x,y,s,t) = 

NT(x',y',s,t') → NN(x,y,s,t) = NN(x',y',s,t')]] 

 

Postulate 6.8 

The greater (equal) the non-crowding of focal’s technological niche by alter at a certain 

point in time in a certain technological system, the greater (equal) the non-overlap of 

focal’s technological competencies with alter in that technological system. 

N x,x',y,y',s,t,t' [NN(x,y,s,t) > NN(x',y',s,t') → NC(x,y,s,t) > NC(x',y',s,t') ∧ NN(x,y,s,t) = 

NN(x',y',s,t') → NC(x,y,s,t) = NC(x',y',s,t')] 

 

Because we want to aggregate the effects of crowding and non-crowding to the 

organization, we need to sum up the effects across the individual technological systems 

that are in different stages of technological development. Therefore, we will first consider 

the effects of crowding and non-crowding in the growth stage of development before 

formalizing the effects on organizational performance.  

As mentioned above, the growth stage of technological development starts when 

the technology’s stakeholders (explicitly or implicitly) agree upon a dominant design 

configuration, which defines the core configuration of the technology’s components. A 

dominant design configuration identifies the principal components and the relationship 

between them. As a result, competition no longer mainly takes place between alternative 

design configurations, but rather within the dominant design configuration. That is, 

organizations stop investing in alternative designs, and instead focus their resources and 

attention on further developing the configuration outlined in the dominant design 

(Henderson & Clark, 1990). This suggests that, in the growth stage of technological 

development, an overlap in technological competencies does result in competition. 

Regarding the effect of non-crowding in the growth stage of development, since there 

are no alternative design configurations, all organizations are exclusively focused on 
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exploiting the direction specified in the dominant design configuration. Non-crowding 

thus implies organizations concentrating on different, complementary parts of the 

dominant design configuration. Hence, non-crowding has a legitimating effect in the 

growth stage of technological development. Now that we have outlined the effects of 

crowding and non-crowding in the different stages of development (see Table 6.1 below), 

we can aggregate the effects to the organizational level of analysis. 

 

Table 6.1 The effect of technological crowding and non-crowding in different stages of 
technological development 
 Stage of technological development 
 Seed Growth 
Technological crowding Legitimation Competition 
Technological non-crowding Competition Legitimation 

 

Due to the differential effects of crowding and non-crowding in the different 

stages of development, we need to create a switch before we can aggregate the 

competitive and legitimative effects to the organizational level of analysis. As this is not a 

substantive part of our theory, we present it formally as an auxiliary assumption. 

 

Auxiliary assumption 6.1 

If technological system s is in the seed stage of development at time t, then φst is 1; 

otherwise, it is 0. 

A s,t [¬G(s,t) → φst = 1 ∧ G(s,t) → φst = 0] 

 

Next, we introduce dyad-specific competition and legitimation coefficients to 

allow the strength of competition and legitimation to vary between sets of organizations. 

 

Postulate 6.9 

The legitimation coefficient between a pair of organizations maps dyads to the [0,1] 

interval. 

P x,y,t [0 ≤ λxyt ≤ 1] 

 

Postulate 6.10 

The competition coefficient between a pair of organizations maps dyads to the [0,1] 

interval. 

P x,y,t [0 ≤ γxyt ≤ 1] 

 

Let the predicate LP(x,t) be the predicate that specifies the legitimative force that 

is experienced by organization x at time t, and let CP(x,t) indicate the competitive force 

experienced by organization x at time t. We can now formally aggregate the dyadic (non-
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)overlap of technological competencies to competition and legitimation at the 

organizational level. We do so by the following set of definitions. 

 

Definition 6.5 

The legitimative pressure at the organization level is the sum of competencies overlap in 

systems that are in the non-growth stage of development plus the sum of non-

competencies overlap in systems in the growth stage of development, or formally 

, ,

( , ) ( , , , ) (1 ) ( , , , )
S Y S Y

st xyt st xyt

s y y x s y y x

LP x t CO x y s t NC x y s tϕ λ ϕ λ
≠ ≠

= ⋅ ⋅ + − ⋅ ⋅∑ ∑ ∑ ∑  

where λxyt is the dyad-specific legitimation coefficient between organizations x and y at 

time t, S refers to the set of all technological systems, Y refers to the set of all 

organizations in the population, and ϕst is the switch to distinguish between different 

stages of technological development. 

 

Definition 6.6 

The competitive pressure at the organization level is the sum of competencies overlap in 

systems that are in the growth stage of development plus the sum of non-competencies 

overlap in systems in the seed stage of development, or formally 

, ,

( , ) (1 ) ( , , , ) ( , , , )
S Y S Y

st xyt st xyt

s y y x s y y x

CP x t CO x y s t NC x y s tϕ γ ϕ γ
≠ ≠

= − ⋅ ⋅ + ⋅ ⋅∑ ∑ ∑ ∑  

where γxyt is the dyad-specific competition coefficient between organizations x and y at 

time t, S refers to the set of all technological systems, Y refers to the set of all 

organizations in the population, and ϕst is the switch to distinguish between different 

stages of technological development. 

 

Because our theorems will combine the dyadic level of analysis with the 

organizational level of analysis (e.g., to outline the effect of dyadic niche overlap on 

organizational performance), we formulate two auxiliary assumptions that allows us to 

disaggregate the competitive and legitimative pressure at the organizational level into 

their dyadic components, which effectively allows us to to aggregate the dyadic level to 

the organizational level at a later stage. Let LP(x,y,t) be the function that specifies the 

legitimative pressure that organization x experiences from organization y at time t, and let 

CP(x,y,t) be the function that specifies the legitimative pressure that organization x 

experiences from organization y at time t. 

 

Auxiliary assumption 6.2 

The legitimative pressure at the organizational level equals the sum of the legitimative 

pressures resulting from two mutually exclusive sets of organizations. 
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A x,y,z,t [x ≠ y ∧ y ≠ z  ∧ x ≠ z → LP(x,t) = LP(x,y,t) + LP(x,z,t)] 

 

Auxiliary assumption 6.3 

The competitive pressure at the organizational level equals the sum of the competitive 

pressures resulting from two mutually exclusive sets of organizations. 

A x,y,z,t [x ≠ y ∧ y ≠ z  ∧ x ≠ z → CP(x,t) = CP(x,y,t) + CP(x,z,t)] 

 

Next, we need to relate the competitive and legitimative forces to organizational 

performance before we can develop our theorems. 

 

Postulate 6.11 

If the legitimative pressure on focal is not greater than the legitimative pressure on alter, 

and the competitive pressure on focal is greater than the competitive pressure on alter, 

then the performance of focal is lower than the performance of alter. 

N x,x',t,t' [LP(x,t) ≤ LP(x',t') ∧ CP(x,t) > CP(x',t')  → P(x,t) < P(x',t')] 

 

Postulate 6.12 

If the competitive pressure on focal is not greater than the competitive pressure on alter, 

and the legitimative pressure on focal is greater than the legitimative pressure on alter, 

then the performance of focal is higher than the performance of alter. 

N x,x',t,t' [LP(x,t) > LP(x',t') ∧ CP(x,t) ≤ CP(x',t') → P(x,t) > P(x',t')] 

 

From these postulates, we can develop the theorems that logically follow from 

our postulates using a modified version of a so-called truth table (cf. Appendix H). In a 

truth table, essentiall all combinations of the statements of interest are specified, by using 

all statements (e.g., LP(x,t) > LP(x',t')) as columns, and listing all possible combinations 

of truth values for these statements in rows (i.e., develop all possible scenarios), and 

subsequently indicating whether or not the combined statements are true. For the sake of 

brevity, we exclude the scenarios that are false, and thus only list a modified partial-truth 

table in Appendix H. 

 

Theorem 6.1 

If (a) the technological system remains in the seed stage of development, (b) the dyadic 

overlap of focal’s technological niche is greater than alter’s, (c) the dyadic non-overlap of 

focal’s technological niche is not greater than alter’s, (d) focal’s legitimation coefficient is 

not smaller than alter’s, (e) focal’s competition coefficient is not greater than alter’s, (f) 

focal’s remaining legitimative pressure is not smaller than alter’s, and (f) focal’s remaining 
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competitive pressure is not greater than alter’s, then the performance of focal is greater 

than the performance of alter. 

P x,x',y,y',s,t,t' [¬G(s,t) ∧ ¬G(s,t') ∧ NO(x,y,s,t) > NO(x',y',s,t') ∧ NN(x,y,s,t) ≤ 

NN(x',y',s,t') ∧ λxyt ≥ λx'y't' ∧ γxyt  ≤ γx'y't' ∧ ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ ∑zLP(x,z,t) ≥ 

∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≤ ∑zCP(x',z',t')] → P(x,t) > P(x',t')] 

 

Proof for this theorem is provided by auxiliary assumption 6.1 to 6.3, definition 6.5 and 

6.6, and postulate 6.6, 6.8, and 6.12 (see Appendix J). 

 

Theorem 6.2 

If (a) the technological system remains in the seed stage of development, (b) the dyadic 

overlap of focal’s technological niche is not smaller than alter’s, (c) the dyadic non-

overlap of focal’s technological niche is not greater than alter’s, (d) focal’s legitimation 

coefficient is greater than alter’s, (e) focal’s competition coefficient is not greater than 

alter’s, (f) focal’s remaining legitimative pressure is not smaller than alter’s, and (f) focal’s 

remaining competitive pressure is not greater than alter’s, then the performance of focal 

is greater than the performance of alter. 

P x,x',y,y',s,t,t' [¬G(s,t) ∧ ¬G(s,t') ∧ NO(x,y,s,t) ≥ NO(x',y',s,t') ∧ NN(x,y,s,t) 

≤ NN(x',y',s,t') ∧ λxyt > λx'y't' ∧ γxyt  ≤ γx'y't' ∧ ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ ∑zLP(x,z,t) ≥ 

∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≤ ∑zCP(x',z',t')] → P(x,t) > P(x',t')] 

 

Proof for this theorem is provided by auxiliary assumption 6.1 to 6.3, definition 6.5 and 

6.6, and postulate 6.6, 6.8, and 6.12 (see Appendix J). 

 

Theorem 6.3 

If (a) the technological system remains in growth stage of development, (b) the dyadic 

overlap of focal’s technological niche is greater than alter’s, (c) the dyadic non-overlap of 

focal’s technological niche is not greater than alter’s, (d) focal’s legitimation coefficient is 

not greater than alter’s, (e) focal’s competition coefficient is not smaller than alter’s, (f) 

focal’s remaining legitimative pressure is not greater than alter’s, and (f) focal’s remaining 

competitive pressure is not smaller than alter’s, then the performance of focal is smaller 

than the performance of alter. 

P x,x',y,y',d,t,t' [G(s,t) ∧ G(s,t') ∧ NO(x,y,s,t) > NO(x',y',s,t') ∧ NN(x,y,s,t) ≤ 

NN(x',y',s,t') ∧ λxyt ≤ λx'y't' ∧ γxyt  ≥ γx'y't' ∧ ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ ∑zLP(x,z,t) ≤ 

∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≥ ∑zCP(x',z',t')] → P(x,t) < P(x',t')] 

 

Proof for this theorem is provided by auxiliary assumption 6.1 to 6.3, definition 6.5 and 

6.6, and postulate 6.6, 6.8, and 6.11 (see Appendix J). 
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Theorem 6.4 

If (a) the technological system remains in the growth stage of development, (b) the 

dyadic overlap of focal’s technological niche is not smaller than alter’s, (c) the dyadic 

non-overlap of focal’s technological niche is not greater than alter’s, (d) focal’s 

legitimation coefficient is not greater than alter’s, (e) focal’s competition coefficient is 

greater than alter’s, (f) focal’s remaining legitimative pressure is not greater than alter’s, 

and (f) focal’s remaining competitive pressure is not smaller than alter’s, then the 

performance of focal is smaller than the performance of alter. 

P x,x',y,y',s,t,t' [G(s,t) ∧ G(s,t') ∧ NO(x,y,s,t) ≥ NO(x',y',s,t') ∧ NN(x,y,s,t) ≤ 

NN(x',y',s,t') ∧ λxyt ≤ λx'y't' ∧ γxyt  > γx'y't' ∧ ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ ∑zLP(x,z,t) ≤ 

∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≥ ∑zCP(x',z',t')] → P(x,t) < P(x',t')] 

 

Proof for this theorem is provided by auxiliary assumption 6.1 to 6.3, definition 6.5 and 

6.6, and postulate 6.6, 6.8, and 6.11 (see Appendix J). 

 

Theorem 6.5 

If (a) the technological system remains in the seed stage of development, (b) the dyadic 

overlap of focal’s technological niche is not greater than alter’s, (c) the dyadic non-

overlap of focal’s technological niche is greater than alter’s, (d) focal’s legitimation 

coefficient is not greater than alter’s, (e) focal’s competition coefficient is not smaller 

than alter’s, (f) focal’s remaining legitimative pressure is not greater than alter’s, and (f) 

focal’s remaining competitive pressure is not smaller than alter’s, then the performance 

of focal is smaller than the performance of alter. 

P x,x',y,y',s,t,t' [¬G(s,t) ∧ ¬G(s,t') ∧ NO(x,y,s,t) ≤ NO(x',y',s,t') ∧ NN(x,y,s,t) > 

NN(x',y',s,t') ∧ λxyt ≤ λx'y't' ∧ γxyt  ≥ γx'y't' ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ ∑zLP(x,z,t) ≤ 

∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≥ ∑zCP(x',z',t')] → P(x,t) < P(x',t')] 

 

Proof for this theorem is provided by auxiliary assumption 6.1 to 6.3, definition 6.5 and 

6.6, and postulate 6.6, 6.8, and 6.11 (see Appendix J). 

 

Theorem 6.6 

If (a) the technological system remains in the seed stage of development, (b) the dyadic 

overlap of focal’s technological niche is not greater than alter’s, (c) the dyadic non-

overlap of focal’s technological niche is not smaller than alter’s, (d) focal’s legitimation 

coefficient is not greater than alter’s, (e) focal’s competition coefficient is greater than 

alter’s, (f) focal’s remaining legitimative pressure is not greater than alter’s, and (f) focal’s 

remaining competitive pressure is not smaller than alter’s, then the performance of focal 

is smaller than the performance of alter. 
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P x,x',y,y',s,t,t' [¬G(s,t) ∧ ¬G(s,t') ∧ NO(x,y,s,t) ≤ NO(x',y',s,t') ∧ NN(x,y,s,t) ≥ 

NN(x',y',s,t') ∧ λxyt ≤ λx'y't' ∧ γxyt  > γx'y't' ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ LP(x,z,t) ≤ 

LP(x',z',t') ∧ CP(x,z,t) ≥ CP(x',z',t')] → P(x,t) < P(x',t')] 

 

Proof for this theorem is provided by auxiliary assumption 6.1 to 6.3, definition 6.5 and 

6.6, and postulate 6.6, 6.8, and 6.11 (see Appendix J). 

 

Theorem 6.7 

If (a) the technological system remains in the growth stage of development, (b) the 

dyadic overlap of focal’s technological niche is not greater than alter’s, (c) the dyadic non-

overlap of focal’s technological niche is greater than alter’s, (d) focal’s legitimation 

coefficient is not smaller than alter’s, (e) focal’s competition coefficient is not greater 

than alter’s, (f) focal’s remaining legitimative pressure is not smaller than alter’s, and (f) 

focal’s remaining competitive pressure is not greater than alter’s, then the performance of 

focal is greater than the performance of alter. 

P x,x',y,y',s,t,t' [G(s,t) ∧ G(s,t') ∧ NO(x,y,s,t) ≤ NO(x',y',s,t') ∧ NN(x,y,s,t) >NN(x',y',s,t') ∧ 

λxyt ≥ λx'y't' ∧ γxyt  ≤ γx'y't' ∧ ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ ∑zLP(x,z,t) ≥ ∑zLP(x',z',t') ∧ 

∑zCP(x,z,t) ≤ ∑zCP(x',z',t')] → P(x,t) > P(x',t')] 

 

Proof for this theorem is provided by auxiliary assumption 6.1 to 6.3, definition 6.5 and 

6.6, and postulate 6.6, 6.8, and 6.12 (see Appendix J). 

 

Theorem 6.8 

If (a) the technological system remains in the growth stage of development, (b) the 

dyadic overlap of focal’s technological niche is not greater than alter’s, (c) the dyadic non-

overlap of focal’s technological niche is not smaller than alter’s, (d) focal’s legitimation 

coefficient is greater than alter’s, (e) focal’s competition coefficient is not greater than 

alter’s, (f) focal’s remaining legitimative pressure is not smaller than alter’s, and (f) focal’s 

remaining competitive pressure is not greater than alter’s, then the performance of focal 

is greater than the performance of alter. 

P x,x',y,y',s,t,t' [G(s,t) ∧ G(s,t') ∧ NO(x,y,s,t) ≤ NO(x',y',s,t') ∧ NN(x,y,s,t) ≥NN(x',y',s,t') ∧ 

λxyt > λx'y't' ∧ γxyt  ≤ γx'y't' ∧ ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ ∑zLP(x,z,t) ≥ ∑zLP(x',z',t') ∧ 

∑zCP(x,z,t) ≤ ∑zCP(x',z',t')] → P(x,t) > P(x',t')] 

 

Proof for this theorem is provided by auxiliary assumption 6.1 to 6.3, definition 6.5 and 

6.6, and postulate 6.6, 6.8, and 6.12 (see Appendix J). 
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This concludes our (non-)crowding argument, which is graphically displayed in Figure 

6.2. Next, we consider the consequences for our arguments when accommodating for 

the existence of multiple technological systems with multiple stages of technological 

development.  

 

 
Figure 6.2 Argumentative structure crowding 

 

6.4 Status revisited 

As mentioned in Chapter 5, status is used by resource controllers when the quality of 

technology cannot be objectively determined due to the uncertainty surrounding the 

technology. Moreover, in situations of relative certainty, resource controllers rely less on 

status as the actual quality can be (partly) observed. Thus, the effect of status or actual 

quality is mediated by the level of uncertainty surrounding the technology. 

Because technological uncertainty is to a large extent a property of a 

technological system, we claim that status is tied to specific technological systems. After 

all, it is only logical to assume that resource controllers only use the organization’s past 

quality or status that is relevant to the focal technological system. To illustrate this with 
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an example, it is highly unlikely that a high-status car manufacturer can effectively utilize 

its status to mobilize resources in biotechnology. Even though a large part of our 

argumentative structure essentially remains the same, we have to adapt all definitions and 

postulates to allow for the existence of multiple technological systems and different 

stages of technological development. Recall from the previous chapter that status is 

defined as the organization’s share of acts of deference from actors in the system, and 

that quality is defined as the organization’s share of the system’s technology. Let S(x,s,t) 

be the predicate that specifies the level of status that organization x has in technological 

system s at time t, and let Q(x,s,t) be the technological quality that organization has in 

system s at time t. Now, we can formally define quality and status as follows. 

 

Definition 6.7 

The technological status of an organization in a technological system at a certain time is 

the organization’s share of the total acts of deference from all organizations active in that 

system. 

( , , ) xst

Y

yst

y

DA
S x s t

DA

=

∑
 

where DAxst refers to the acts of deference that organization x receives from system s at 

time t, DAyst to acts of deference that organization y receives from system s at time t, and 

Y to all organizations in the population.  

 

Definition 6.8 

The technological quality of an organization in a technological system at a certain time is 

the organization’s share of the total technology in that system. 

( , , ) xst

Y

yst

y

T
Q x s t

T

=

∑
 

where Txst refers to the share of technology in system s that is owned by organization x at 

time t, Tyst to the share of technology that is owned by organization y in technological 

system s at time t, and Y to all organizations in the population.  

Again, we assume that the effect of quality and status on the perceived quality of 

an organization is mediated by uncertainty. However, instead of uncertainty merely being 

an organizational characteristic, we now assume that uncertainty is a system-specific 

feature as well (Podolny et al., 1996). Let us also assume that the level of uncertainty is a 

ratio between 0 (complete certainty) to 1 (complete uncertainty). We assume that the 

extremes (i.e., complete certainty and complete uncertainty) never occur, because the 

future is never completely certain (i.e., it cannot be precisely predicted) or uncertain (i.e., 
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certain things do remain the same). This is represented by the following auxiliary 

assumption. 

 

Postulate 6.13 

The uncertainty function of a technological system maps system and time points to the 

〈0,1〉 interval.  

P s,t [0 < UC(s,t) < 1]  

 

Using postulate 6.13, we can formally define the functional relationship between 

an organization’s quality, status and its perceived quality. Let Q(x,s,t) be the function that 

specifies organization x’s technological quality in system s at time t, let S(x,s,t) be 

organization x’s status in system s at time t, and let PQ(x,s,t) be the perceived quality of 

organization x’s technology in technological system s at time t.  

 

Definition 6.9 

The perceived quality of an organization in a technological system can be defined as 

( , , ) (1 ( , )) ( , , ) ( , ) ( , , )PQ x s t UC s t Q x s t UC s t S x s t= − ⋅ + ⋅  

 

Next, we link the organization’s perceived quality to its ability to mobilize 

resources within a technological system. Let MR(x,s,t) be organization x’s ability to 

mobilize resources in technological system s at time t. We can now define our next 

postulate accordingly. 

 

Postulate 6.14 

The greater the perceived quality of an organization’s technology within a technological 

system, the greater is that organization’s ability to mobilize resources. 

N x,x',s,t,t' [PQ(x,s,t) > PQ(x',s,t') →  MR(x,s,t) > MR(x',s,t')]  

 

We need to aggregate the ability to mobilize resources within a technological 

system to the organizational level before we can formulate propositions regarding the 

consequences for the organization’s performance.  

 

Definition 6.10 

The organization’s ability to mobilize resources is the sum of the abilities to mobilize 

resources in the technological systems in which the organization is active. 
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Now, we can continue at the organizational level and relate the ability to mobilize 

resources to the mortality of the organization, implying that, after our next postulate, we 

are fully equipped to proof our theorems. 

 

Postulate 6.15 

The greater the organization’s ability to mobilize resources, the greater is the 

performance of that same organization. 

N x,x',t,t' [MR(x,t) > MR(x',t') →  P(x,t) > P(x',t')]  

 

Again, we will use a modified truth table (cf. Appendix I) to develop the 

theorems that logically follow from our collection of postulates, assumptions, and 

definitions.  

 

Theorem 6.9 

If (a) the uncertainty within a technological system remains equal whilst (b) the quality of 

focal is greater than the quality of alter, (c) the technological status of focal is not smaller 

than the status of alter, and (d) focal’s ability to mobilize resources in the remaining 

technological systems is not smaller than alter’s ability to do so, then the performance of 

focal is greater than the performance of alter. 

P x,x',s,t,t' [UC(s,t) = UC(s,t') ∧ Q(x,s,t) > Q(x',s,t') ∧ S(x,s,t) ≥ S(x,s,t')  ∧ ∀ z [s ≠ z  ∧ 

∑zMR(x,z,t) ≥ ∑zMR(x',z,t')]  →  P(x,t) > P(x',t')] 

 

Proof for this theorem is provided by definition 6.9 and 6.10, and postulates 6.14 and 

6.15 (see Appendix J). 

 

Theorem 6.10 

If (a) the uncertainty within a technological system remains equal whilst (b) the 

technological quality of focal is not smaller than the quality of alter, (c) the status of focal 

is greater than the status of alter, and (d) focal’s ability to mobilize resources in the 

remaining technological systems is not smaller than alter’s ability to do so, then the 

performance of focal is greater than the performance of alter. 

P x,x',s,t,t' [UC(s,t) = UC(s,t') ∧ Q(x,s,t) ≥ Q(x',s,t') ∧ S(x,s,t) > S(x',s,t') ∧ ∀ z [s ≠ z  ∧ 

∑zMR(x,z,t) ≥ ∑zMR(x',z,t')] →  P(x,t) > P(x',t')] 

 

Proof for this theorem is provided by definition 6.9 and 6.10, and postulates 6.14 and 

6.15 (see Appendix J). 
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Theorem 6.11 

When (a) the uncertainty for focal is lower than the uncertainty for alter, (b) the 

technological quality of focal is not greater than the quality of alter, (c) the status of focal 

is not greater than the status of alter, (d) the quality of focal is smaller than its status, and 

(e) focal’s ability to mobilize resources in the remaining technological systems is not 

greater than alter’s ability to do so, then the performance of focal is smaller than the 

performance of alter. 

P x,x',s,t,t' [UC(s,t) < UC(s,t') ∧ Q(x,s,t) ≤ Q(x',s,t') ∧ S(x,s,t) ≤ S(x',s,t') ∧ 

Q(x,s,t) < S(x,s,t)  ∧ ∀ z [s ≠ z  ∧ ∑zMR(x,z,t) ≤ ∑zMR(x',z,t')] →  P(x,t) < P(x',t')] 

 

Proof for this theorem is provided by definition 6.9 and 6.10, and postulates 6.14 and 

6.15 (see Appendix J). 

 

Theorem 6.12 

When (a) the uncertainty for focal is greater than the uncertainty for alter, (b) the 

technological quality of focal is not greater than the quality of alter, (c) the status of focal 

is not greater than the status of alter, (d) the quality of focal is greater than its status, and 

(e) focal’s ability to mobilize resources in the remaining technological systems is not 

greater than alter’s ability to do so, then the performance of focal is smaller than the 

performance of alter. 

P x,x',s,t,t' [UC(s,t) > UC(s,t') ∧ Q(x',s,t') ≤ Q(x',s,t) ∧ S(x,s,t) ≤ S(x,s,t') ∧ 

Q(x,s,t) > S(x,s,t) ∧ ∀ z [s ≠ z  ∧ ∑zMR(x,z,t) ≤ ∑zMR(x',z,t')]  →  P(x,t) < P(x',t')] 

 

Proof for this theorem is provided by definition 6.9 and 6.10, and postulates 6.14 and 

6.15 (see Appendix J). 

 

Next, we consider what happens when taking into account the different stages of 

technological development. 

 

Theorem 6.13 

When (a) the technological quality and status of an organization do not decrease, (b) 

while its technological quality is higher than its status and (c) the technological system is 

in the growth stage of development, and (e) the organization’s ability to mobilize 

resources in the remaining technological systems does not decrease, then increasing time 

increases the organization’s performance. 

P x,s,t,t' [G(s,t) ∧ t' > t  ∧ Q(x,s,t) ≤ Q(x,s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ Q(x,s,t) > S(x,s,t)  ∧  

∀ z [s ≠ z  ∧ ∑zMR(x,z,t) ≤ ∑zMR(x,z,t')] →  P(x,t) < P(x,t')] 
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Proof for this theorem is provided by definition 6.9 and 6.10, and postulates 6.3, 6.14, 

and 6.15 (see Appendix J). 

 

Theorem 6.14  

When (a) the technological quality and status of an organization do not decrease whilst 

(b) its technological quality is higher than its status, and (c) the organization’s ability to 

mobilize resources in the remaining technological systems does not decrease, then a 

transition of the technological system from the seed into the growth stage of 

development increases the organization’s performance. 

P x,s,t,t' [¬G(s,t) ∧ G(s,t') ∧ Q(x,s,t) ≤ Q(x,s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ 

Q(x,s,t) > S(x,s,t) ∧ ∀ z [s ≠ z  ∧ ∑zMR(x,z,t) ≤ ∑zMR(x,z,t')]  →  P(x,t) < P(x,t')] 

 

Proof for this theorem is provided by definition 6.9 and 6.10, and postulates 6.2, 6.14, 

and 6.15 (see Appendix J). 

 

Theorem 6.15 

When (a) the technological quality and status of an organization do not increase whilst 

(b) its technological quality is lower than its status, (c) the technological system is in the 

growth stage of development, and (d) the organization’s ability to mobilize resources in 

the remaining technological systems does not decrease, then increasing time decreases 

the organization’s performance. 

P x,s,t,t' [G(s,t) ∧ t > t' ∧ Q(x,s,t) ≤ Q(x,s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ Q(x,s,t) 

< S(x,s,t) ∧ ∀ z [s ≠ z  ∧ ∑zMR(x,z,t) ≤ ∑zMR(x,z,t')] →  P(x,t) < P(x,t')] 

 

Proof for this theorem is provided by definition 6.9 and 6.10, and postulates 6.3, 6.14, 

and 6.15 (see Appendix J). 

 

Theorem 6.16 

When (a) the technological quality and status of an organization do not increase whilst 

(b) its technological quality is lower than its status, and (c) the organization’s ability to 

mobilize resources in the remaining technological systems does not decrease, then a 

transition of the technological system from the seed into the growth stage of 

development decreases the organization’s performance. 

P x,s,t,t' [¬G(s,t') ∧ G(s,t) ∧ Q(x,s,t) ≤ Q(x,s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ 

Q(x,s,t) < S(x,s,t)  ∧ ∀ z [s ≠ z ∧ ∑zMR(x,z,t) ≤ ∑zMR(x,z,t')] →  P(x,t) < P(x,t')] 

 

Proof for this theorem is provided by definition 6.9 and 6.10, and postulates 6.2, 6.14, 

and 6.15 (see Appendix J). 
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This concludes our status argument, which is displayed in Figure 6.3. Relaxing the 

assumption of a single homogenous technological system not only requires reformulating 

the arguments of crowding and status, it also points to yet another dimension of the 

technological niche, namely diversity, which we will investigate in more detail in the next 

section. 

 

 
Figure 6.3 Argumentative structure status 

6.5 Technological diversity 

In analogue to the biological question “Why are there so many kinds of animals?” 

(Hutchinson, 1959: 145), organizational ecologists have been concerned with the 

question “Why are there so many kinds of organizations?” (Hannan & Freeman, 1977: 

929). Diversity also is a central notion in evolutionary economics (Nelson & Winter, 

1982), where it is considered to form a crucial condition for the creation of inventions, 

and  where it is connected to the idea that diversity is the ultimate source of novelty. In 

light of this, it comes as no surprise that diversity also plays an important role in 

technological development at the organizational level of analysis. As we have seen in 

Chapter 4, diversity plays an intricate role in technological development at aggregate 

levels of analysis. When considering the existence of multiple technological systems in 
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conjunction with technological lineage (cf. Figure 1.3) at the organizational level of 

analysis, again, three dimensions of technological diversity naturally emerge, namely: (1) 

focal diversity – i.e., the extent to which an organization’s developments take place in 

different technological systems, (2) antecedent diversity – i.e., the extent to which an 

organization’s knowledge comes from different technological systems, and (3) 

descendant diversity – i.e., the extent to which an organization’s technology is diffused 

among different technological systems. Next, we define these dimensions of 

technological diversity in a formal way. 

 

Definition 6.11 

An organization’s focal diversity is defined as 

ln(1/ )
S

xft xst xst

s

D τ τ=∑  

where τxst refers to the share of focal technology from organization x that comes from 

technological system s at time t, and S to the set of all technological systems. 

 

Definition 6.12 

The organization’s antecedent diversity is defined as 

ln(1/ )
S

xat xst xst

s

D θ θ=∑  

where θxst is the share of technological antecedents of organization x at time t that come 

from technological system s, and S refers to the set of all technological systems.  

 

Definition 6.13 

The organization’s descendant diversity is defined as 

ln(1/ )
S

xdt xst xst

s

D υ υ=∑  

where υxst is the share of technological descendants of organization x at time t that come 

from technological system s, and S refers to the set of all technological systems. 

 

Next, we will explore what the effects are of these different dimensions of 

diversity on organizational performance. First, regarding focal diversity, developments in 

different technological systems essentially refers to the width or scope of the technology 

that the organization possesses. Hence, it represents the organization’s realized 

technological niche, and thus pertains to the distinction between technological generalism 

and specialism (Hannan et al., 2007). Following the principle of allocation, there is a 
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tradeoff between niche width and strength of appeal (Hannan & Freeman, 1977).23 As a 

result, due to the cost of carrying slack, specialists do better in stable environments, while 

generalists are assumed to do better in changing environments (Hannan & Freeman, 

1977; Péli, 1997). So, according to ecological logic, contingent upon environmental 

conditions, focal diversity can have both a positive and a negative effect on 

organizational performance and mortality.  

This dual role of focal diversity also becomes apparent when contemplating 

evolutionary economics logic. According to this literature, focal diversity provides 

alternatives that enhance the organization’s flexibility, hereby preventing path 

dependence (Stirling, 2007). However, added value will only be created when the 

organization is able to generate spillovers between the competencies it holds in different 

systems (Nesta & Saviotti, 2005). The costs of generating spillovers between 

competencies from unrelated systems increase substantially (Ahuja & Katila, 2004; 

Fleming & Sorenson, 2001), and too much diversity can thus hold the organization at a 

competitive disadvantage. 

This twin role of technological diversity also becomes apparent when we consider 

the effect of antecedent diversity on organizational performance. Antecedent diversity 

refers to the diversity of the organization’s knowledge base. The more diverse this 

knowledge base, the higher the organization’s recombination potential. After all, the co-

existence of diverse knowledge elicits the sort of learning that yields innovation (Simon, 

1985). It also connects to the notion of absorptive capacity, which is a function of the 

organization’s prior related knowledge (Cohen & Levinthal, 1990; Van den Bosch, 

Volberda, & de Boer, 1999; Zahra & George, 2002). However, because any knowledge 

component can be combined with every other component, the organization’s 

recombination potential grows explosively (Fleming, 2001; Weitzman, 1996). And, as a 

result, organizations have no more than an infinitesimal understanding of the possible 

combinations and relationships (Fleming, 2001). This requires them to recombine locally, 

from a limited set of well-known components (Nelson and Winter, 1982; Sahal, 1985, 

Utterback, 1996; Fleming, 2001). That is, too much antecedent diversity decreases the 

probability that additional diversity can be interpreted in a sensible manner (Levinthal 

and March, 1993; Nooteboom, 2000). 

The diversity of the organizations technological descendants indicates the extent 

to which organizations from different technological systems use the organization’s 

technology as input in their recombination process. It thus reflects the degree to which 

the organization’s technology is diffused throughout the technological landscape. Again, 

this is a two-edged sword. The reason is that a direct technological tie cannot be 

interpreted in a unique sense (Podolny et al., 1996). On the one hand, it suggests that the 

                                                 
23 Péli (1997) has formalized niche theory in first-order logic, and Hannan, Pólos, and Carroll (2007) have 

done so in non-monotonic logic. 
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organization’s technology contributes to a broad array of developments, thus legitimating 

its technology. On the other hand, it also implies that more organizations are 

technological proximate to the organization, hereby increasing the competitive potential. 

So, in a similar vein, the effect of descendant diversity on organizational performance is 

contingent upon the precise circumstances. 

From the discussion above, it becomes clear that the effect of diversity on 

organizational performance is conditional upon organizational and environmental 

characteristics. Hence, explicitly modeling the effects of the different dimensions of 

technological diversity on organizational performance is a rather involved endeavor. 

Undeniably, a one-size-fits-all strategy is not appropriate, as each dimension of 

technological diversity connects to numerous arguments in the extant literature and, as 

such, deserves a separate investigation. So, instead of fully explicating all the potential 

effects separately, we develop a general model where each dimension of diversity can 

both have a positive or a negative effect on organizational performance, and leave it to 

future work to connect these dimensions to the appropriate constructs and concepts in 

the different literatures. An advantage of this approach is that it also leaves the door 

open for any literature that might be relevant to the research question at hand. 

 Let D(x,d,t) be the predicate the specifies the diversity of organization x’s 

dimension d at time t, let M(x,d,t) be the predicate that refers to the effect of diversity of 

organization x’s dimension d at time t, let Opp(x,t) represent the number of opportunities 

that organization x has at time t, and let Cost(x,t) be the predicate that specifies 

organization x’s costs at time t. We can now formulate our auxiliary assumptions and 

postulates. 

 

Auxiliary assumption 6.4 

An organization’s technological diversity consists of three dimensions, namely focal 

diversity, antecedent diversity, and descendant diversity.  

A x,d,t [D(x,d,t) → d = antecedent ∨ d = focal ∨ d = descendant] 

 

The above assumption specifies that the organization’s technological diversity has 

three dimensions. Because each of these dimensions can imply either opportunities or 

threats for the organization, we accommodate for both scenarios. We thus define a time-, 

organization-, and dimension-specific multiplier that allows the magnitude of the effect 

to differ between organizations, dimensions, and over time.  

 

Postulate 6.16 

Each dimension of an organization’s technological diversity has a multiplier that ranges 

between the values -1 and 1. 

N x,d,t [D(x,d,t) > 0 → -1 ≤ M(x,d,t) ≤ 1] 
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Depending on the value of this multiplier, the effect of diversity can either be 

positive (i.e., more opportunities) or negative (i.e., more threats) for the organization. 

Next, we formulate the effects of changing the level of diversity or the value of the 

multiplier formally using the following postulates. 

 

Postulate 6.17 

When (a) focal’s diversity multiplier is greater than zero, (b) focal’s diversity multiplier is 

not smaller than alter’s diversity multiplier, and (c) the technological diversity of focal is 

greater than the diversity of alter, than focal’s opportunities are greater than alter’s 

opportunities.  

N x,x',d,t,t' [D(x,d,t) > D(x',d,t') ∧ M(x,d,t) ≥ M(x',d,t') ∧ M(x,d,t) > 0 →  

Opp(x,t) > Opp(x',t')] 

 

Postulate 6.18 

When (a) alter’s diversity multiplier is smaller than zero, (b) focal’s diversity multiplier is 

not greater than alter’s diversity multiplier, and (c) the technological diversity of focal is 

greater than the diversity of alter, than focal’s costs are greater than alter’s costs. 

N ∀x,x',d,t,t' [D(x,d,t) > D(x',d,t') ∧ M(x,d,t) ≤ M(x',d,t') ∧ M(x',d,t') < 0 →  

Cost(x,t) > Cost(x',t')] 

 

Postulate 6.19 

When (a) alter’s diversity multiplier is greater than zero, (b) focal’s diversity multiplier is 

greater than alter’s diversity multiplier, and (c) the technological diversity of focal is not 

smaller than the diversity of alter, than focal’s opportunities are greater than alter’s 

opportunities. 

N x,x',d,t,t' [D(x,d,t) ≥ D(x',d,t') ∧ M(x,d,t) > M(x',d,t') ∧ M(x',d,t') > 0 →  

Opp(x,t) > Opp(x',t')] 

 

Postulate 6.20 

When (a) alter’s diversity multiplier is smaller than zero, (b) focal’s diversity multiplier is 

smaller than alter’s diversity multiplier, and (c) the technological diversity of focal is not 

smaller than the diversity of alter, than focal’s costs are greater than alter’s costs. 

N x,x',r,t,t' [D(x,d,t) ≥ D(x',d,t') ∧ M(x,d,t) < M(x',d,t') ∧ M(x',d,t') < 0 → 

Cost(x,t) > Cost(x',t')] 

 

Next, we can relate changes in opportunities and threats to the organization’s 

performance in the following manner. 
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Postulate 6.21 

If the opportunities of focal are greater than alter’s opportunities while the costs of focal 

are not greater than alter's, then focal’s performance is greater than alter’s performance. 

N x,x',r,t,t' [Cost(x,t) ≤ Cost(x',t') ∧ Opp(x,t) > Opp(x',t') → P(x,t) > P(x',t')] 

 

Postulate 6.22 

If the costs of focal are smaller than alter’s costs while the opportunities of focal are not 

smaller than alter's, then focal’s performance is greater than alter’s performance. 

N x,x',r,t,t' [Cost(x,t) < Cost(x',t') ∧ Opp(x,t) ≥ Opp(x',t') → P(x,t) > P(x',t')] 

 

Now, we are fully equipped to formulate the theorems that naturally follow from 

our postulates, definitions, and assumptions. 

 

Theorem 6.17 

When (a) alter’s diversity multiplier is greater than zero, (b) alter’s diversity multiplier is 

not greater than focal’s multiplier, and (c) focal’s technological diversity is greater than 

alter’s technological diversity, then focal’s performance is greater than alter’s 

performance. 

P x,x',d,t,t' [D(x,d,t) > D(x',d,t') ∧ M(x,d,t) ≥ M(x',d,t') ∧ M(x',d,t') > 0 → P(x,t) 

> P(x',t')] 

 

Proof for this theorem is provided by postulate 6.17 and 6.21 (see Appendix J). 

 

Theorem 6.18 

When (a) alter’s diversity multiplier is smaller than zero, (b) alter’s diversity multiplier is 

not smaller than focal’s multiplier, and (c) focal’s technological diversity is greater than 

alter’s technological diversity, then focal’s performance is smaller than alter’s 

performance. 

P x,x',d,t,t' [D(x,d,t) > D(x',d,t') ∧ M(x,d,t) ≤ M(x',d,t') ∧ M(x',d,t') < 0 → 

P(x,t) < P(x',t')] 

 

Proof for this theorem is provided by postulate 6.18 and 6.22 (see Appendix J). 

 

Theorem 6.19 

When (a) alter’s diversity multiplier is greater than zero, (b) alter’s diversity multiplier is 

smaller than focal’s multiplier, and (c) focal’s technological diversity is greater than alter’s 

technological diversity, then focal’s performance is greater than alter’s performance. 

P x,x',d,t,t' [D(x,d,t) ≥ D(x',d,t') ∧ M(x,d,t) > M(x',d,t') ∧ M(x',d,t') > 0 → 
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P(x,t) > P(x',t')] 

 

Proof for this theorem is provided by postulate 6.19 and 6.21 (see Appendix J). 

 

Theorem 6.20 

When (a) alter’s diversity multiplier is smaller than zero, (b) alter’s diversity multiplier is 

greater than focal’s multiplier, and (c) focal’s technological diversity is not smaller than 

alter’s technological diversity, then focal’s performance is smaller than alter’s 

performance. 

Px,x',r,t,t' [D(x,d,t) ≥ D(x',d,t') ∧ M(x,d,t) < M(x',d,t') ∧ M(x',d,t') < 0 → P(x,t) 

< P(x',t')] 

 

Proof for this theorem is provided by postulate 6.20 and 6.22 (see Appendix J). 

 

This concludes our diversity argument, which is graphically displayed in Figure 

6.4. The existence of multiple technological systems with distinct growth rates naturally 

draws our attention to yet another dimension of the technological niche, namely 

technological opportunities. 

 

 
Figure 6.4 Argumentative structure diversity 

6.6 Technological opportunities 

We have already argued that, due to an organization’s bounded rationality, its 

technological search processes are highly localized (Fleming, 2001; Nelson & Winter, 

1982), and therefore highly path dependent (Podolny et al., 1996). Because technology is 

considered as one of the core features of the organization, this also connects to 

organizational ecology’s structural inertia theory (Hannan & Freeman, 1984). Thus, 

organizations are highly dependent on the environment in which they are currently active 

and the opportunities that are provided in this environment. It logically follows that the 

organization’s technological opportunities are a function of the opportunities within the 

technological systems in which it is currently active. We define this formally as follows. 
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Definition 6.14 

The technological opportunities of an organization are defined as 

( , ) ( , )
S

xst

s

TO x t T s tτ= ⋅∑  

where τxst refers to the share of patents that organization x has in technological system c 

at time t, and T(s,t) to the opportunities in technological system s at time t. 

 

Obviously, an increase in the organization’s technological opportunity, ceteris 

paribus, results in higher performance improvements (Dosi, 1988). Now, we can 

formulate our next postulate. 

 

Postulate 6.23 

Increasing an organization’s technological opportunities increases the organization’s 

general opportunities. 

N x,x',r,t,t' [TO(x,t) ≥ TO(x',t') → Opp(x,t) > Opp(x',t')] 

 

Postulate 6.20 already relates the organization’s opportunities to its performance. 

This means that we have all the necessary ingredients to develop the theorems that 

follow from this logic. 

 

Theorem 6.21 

If (a) an organization’s share in a technological system remains equal, (b) the 

technological opportunities in that technological system increase, and (c) the remaining 

technological opportunities do not decrease, then the organization’s performance 

increases. 

P x,s,t,t' [τxst = τxst' ∧ TO(s,t) > TO(s,t') ∧ ∀ w [s ≠ w  ∧ ∑wτxwt· TO(w,t) ≥ ∑wτxwt'· TO(w,t')] 

→ P(x,t) > P(x,t')] 

 

Proof for this theorem is provided by definition 6.14 and postulates 6.21 and 6.23 (see 

Appendix J). 

 

Theorem 6.22 

If (a) focal’s share of opportunities in a technological system is greater than alter’s share, 

while (b) that technological system has a higher growth rate than all other systems, and 

(c) focal’s remaining opportunities are not smaller than alter’s remaining opportunities, 

then the performance of focal is greater than the performance of alter. 

P x,x',s,t,t' [τxst > τx'st'  ∧ ∀ w [TO(s,t) > TO(w,t')] ∧ ∀ z [z ≠ w  ∧ ∑zτxzt· TO(z,t) ≥ ∑zτxzt'· 

TO(z,t')] → P(x,t) > P(x',t')] 
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Proof for this theorem is provided by definition 6.14 and postulates 6.21 and 6.23 (see 

Appendix J). 

 

This concludes our technological opportunities argument, which is graphically 

displayed in Figure 6.5. 

 

 
Figure 6.5 Argumentative structure technological opportunities 

6.7 Organizational performance 

In Chapter 5, we have already argued that organizational performance is a general 

construct that can be measured in various ways. This, as such, facilitates investigating the 

effects of crowding and status on multiple organizational outcomes. However, as we 

have completely left out the temporal dimension of organizational performance in our 

formalization, these arguments are of a rather static nature. In the current chapter, we 

have added time to this equation, which enables a more dynamic investigation. 

Obviously, different performance measures require different temporal structures. For 

example, consider the temporal dimension of an effect of the organization’s 

technological niche on its rate of innovation (cf. Chapter 7) versus its mortality hazard. 

Clearly, organizational innovation is temporally much more proximate to our arguments 

than organizational mortality. This implies that an analysis with the organization’s rate of 

innovation as the performance measure would require a shorter time span that an 

analysis with organizational mortality as the outcome construct-of-interest. To facilitate 

the testing of such diverse research questions, we define organizational performance as a 

matrix that consists of two dimensions, namely (1) performance characteristics and (2) 

time or duration. This creates a flexible, general model that allows for a systematic 

investigation of the characteristics of an organization’s technological niche on different 

performance characteristics over time.  
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Definition 6.15 

Organizational performance is defined as a two dimensional matrix 

11 1
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where x is an organization, and ]it is the score on performance characteristic i at time t 

 

As noted above, numerous performance characteristics can be easily imagined, 

such as organizational innovation, profits, sales, growth, the ability to attract capital, 

employees or partners, and the ultimate performance measures, organizational survival.  

6.8 Discussion and conclusion 

In the current chapter, we have integrated some of our major findings regarding the 

growth and evolution of technology from Chapters 3 and 4 into our formalized theory 

fragments from Chapter 5. More specifically, we place organizations in a technological 

landscape composed of multiple technological systems in different stages of 

development. In all, we put forward numerous theorems that can be easily translated into 

hypotheses for empirical validation. In so doing, not only do we extend the theory of the 

organization-specific technological niche as such, but we also provide opportunities for 

further theory extension. In the current section, we like to reflect on five of these.  

 First, the effect of technological (non-)crowding on the organization’s 

performance is conditional on the stage of development of the particular technology, and 

on the dyad-specific competition and legitimation coefficient of the crowding 

organizations. This suggests that the effect of crowding on organizational mortality can 

change due to (1) a change in the degree of crowding by either one of the crowding 

organizations (i.e., focal or alter), (2) convergence on a dominant design (i.e., the 

transition of a technological system from the seed to the growth stage development) and, 

finally, (3) through changing the competition or legitimation coefficient. While the 

second option is clearly the result of integrating the evolution of technology into the 

argument of technological crowding, the third option opens the door to include 

processes that alter the legitimation or competition coefficient (e.g., by engaging in a 

strategic alliance, by entering or exiting markets, or through market-partitioning 

processes). Obviously, this allows to include other organizational characteristics (e.g., the 

distinction between profit and non-profit organizations, size distinctions, industry 

membership, age, and so on and so forth) as well, to investigate processes that alter either 

one of these coefficients. The coefficients can thus be viewed as a function that is 

dependent upon the distance or similarity of the vectors of organizational characteristics 

of focal and alter. 
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Second, we have added non-crowding to represent the competitive processes 

between alternative design configurations in the seed stage of development, and to 

represent legitimation processes between organizations working on alternative parts of 

the dominant design configuration in the growth stage of development. These effects are 

mediated by the respective coefficients. The general effects of crowding and non-

crowding in the different stages of technological development are displayed in Table 6.1. 

However, this logic is based on the assumption that in the growth stage of technological 

development no alternative design configurations exists, and that in the seed stage of 

development alternative design configurations do exist. Undeniably, this is a limiting 

assumption, but relaxing this assumption at this stage would make our model overly 

complex. It does, however, provide an interesting avenue for future research. In this 

context, fuzzy set theory (cf. Hannan et al., 2007) offers a valuable toolkit to determine 

the extent to which different design configurations can be identified, and to determine 

the extent of support for these design configurations by both individual and populations 

of organizations. In view of this, connecting the existence of alternative design 

configurations to the level of uncertainty within a technological domain is certainly an 

interesting avenue to explore. 

 Third, partly due to our focus on emerging technology, only two stages of 

technological development have been identified (i.e., seed and growth). Clearly, additional 

stages can be readily conceived, such as the maturity and decline stages of technological 

evolution. Extending our arguments from a two-stage theory to a four-stage theory is 

rather straightforward, as all elements are already present. It goes without saying that we 

are only referring to the logic part of such an extension, and not to the substantive 

arguments regarding the processes in the different stages. Regarding the substantive 

arguments, modeling the decline stage of technological development requires relating the 

stages of development of different systems to one another. That is, the decline stage only 

sets in when the focal technological system experiences competition from an alternative 

(more fit) technological system. Another extension would be to also consider the 

situation where the dominant design configuration is overthrown by an alternative design 

configuration from within, implying a revolutionary stage of the system (i.e., a revisit to 

the seed stage to redefine the dominant design configuration). These two alternative 

scenarios are displayed in Figure 6.6 below. 
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Figure 6.6 Alternative effects of system changes 
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This links nicely to our previous discussion about the existence of alternative 

design configurations in the growth stage of technological development. Moreover, 

allowing for a revolutionary stage in which the basic design configuration is redefined 

also connects rather well to the punctuated equilibrium framework as conceived by 

Gould and Eldredge (1972), which has already been applied to technology by Tushman 

and Anderson (1986). Even more ambitious is to relate the different stages of 

technological development at different levels of analysis, for example, by relating the 

evolution of technological components to the evolution of technological systems (or 

even technological landscapes, for that matter).  

 Fourth, by simultaneously considering the lineage of technology and multiple 

technological systems, we were able to define three dimensions of technological diversity 

(i.e., antecedent, focal, and descendant diversity). Viewing these dimensions over time 

(i.e., dynamically) allows for a process analysis of the organization’s technological niche 

(i.e., the position of the organization in the technological landscape). This opens the door 

to a dynamic investigation of how organizations search and move through the 

technological landscape. Another avenue is to study how re-combinations (or novelty) 

enter the organization, by connecting these dimensions to the work done by Fleming 

(2001). Even though we have concentrated our attention on the diversity of technological 

lineage, other characteristics are also possible, some examples being variety (MacArthur, 

1965), balance (Pielou, 1969), similarity (Tversky, 1977), and disparity (Solow & Polaski, 

1994; Weitzman, 1992). Because we have chosen for a rather general formal model, it can 

be rather easily extended to include these dimensions. Eventually, after empirical 

evidence has narrowed down the possibilities and options, a more informed model might 

even be constructed that explains the processes of competition and legitimation even 

more accurately. 

Fifth, by adding technological opportunities as a dimension to the theory of the 

technological niche, it becomes possible to decompose an organization’s growth into an 

environmental part (i.e., external opportunities) and an organization-specific part (i.e., 

internal capabilities). In other words, this implies a distinction between the opportunities 

that are presented to the organization as a result of its position in the environment (i.e., 

being in the right place at the right time), and between the organization’s ability to 

translate these opportunities into performance (i.e., being able to take advantage of the 

opportunities encountered). Consequently, technology might be the missing link in the 

debate between organizational adaptation and environmental selection perspectives. 

Sixth, we have defined organizational performance as a two-dimensional matrix, 

consisting of performance characteristics and time duration. This specification allows us 

to insert different performance characteristics with different lag structures, effectively 

creating a flexible model to relate the dimension of an organization’s (technological) 

niche to organizational performance. In so doing, we facilitate the investigation of the 
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validity of our arguments and theorems using different performance characteristics and 

temporal structures. This, in turn, enables distinguishing between processes that are more 

distant (e.g., exploration) and more proximate (e.g., exploitation) in time, and analyzing 

the tradeoffs that might be involved in these processes. Important in this respect is a 

multidimensional operationalization of the concept of fit to determine the alignment of 

organizations along different dimensions of the multi-layered, multi-dimensional 

environment. With such a generalized econometric framework for the measurement of 

fit or alignment becoming available now (Parker and van Witteloostuijn, 2009), there is 

an opportunity for a significant advancement of research on the technological alignment 

of an organization in its environment. This new methodology uses a generalized model 

of (organizational) performance in combination with a new set of test statistics (based on 

the concept of Incremental Contribution) that unifies existing approaches to estimating 

fit, and moves beyond the current state-of-the-art by offering the opportunity to increase 

the estimation’s explanatory power and limit the danger of obtaining biased estimates. In 

conjunction with the different dimensions of the technological niche, such an analysis 

would provide important insights in the process of technological and organizational 

change. 



 



 

Chapter 7   
 

An Empirical Test of the Extended Theory of the 

Technological Niche 

7.1 Introduction 

In the previous chapter, we have extended the theory of the organization-specific 

technological niche by integrating knowledge about the growth and evolution of 

technology. Through the use of formal logic, we have ensured that our extended 

arguments are logically sound and complete. However, this does not mean that the 

substantive part of our arguments is also valid. For this, empirical evidence is needed. 

After all, according to the scientific method, hypotheses need to be formulated and 

tested. Therefore, the aim of the current chapter is to translate several of our theorems 

from the previous chapter into hypotheses, to subsequently test them using sophisticated 

multivariate analysis. Our empirical setting is the biotechnology industry from 1980 until 

2005. In doing so, we substantiate some of the theorems from the previous chapter. To 

be precise, we demonstrate that technological diversity also plays an intricate role in 

technological development at the organizational level of analysis, and that an 

organization’s technological quality and technological opportunities also contribute 

significantly to an organization’s rate of innovation (as measured by awarded patents). 

Nevertheless, we also encounter some anomalous findings, which provide an opportunity 

to further calibrate the theoretical arguments. 

The contribution of this chapter is threefold. First of all, we validate part of our 

extension of the theory of the technological niche in the previous chapter, hereby 

providing support for the further integration of theories of technology and organization. 

Second, in so doing, we demonstrate the ease of translating theorems into hypotheses for 

empirical validation, which exemplifies the added value of using logical rigor in theory 

analysis and development. Third, by developing further insight in the process of 

technological growth and associated path dependence at the organizational level of 

analysis, we can close part of the chasm in the ongoing debate between organizational 

adaptation and environmental selection, and suggest that technology might be one of the 

important missing links in this debate. 

 The structure of this chapter is as follows. First, in Section 7.2, on the basis of 

selected theorems from the previous chapter, we will develop several hypotheses that 

relate the dimensions of the technological niche to organizational innovation. Next, 

Section 7.3 describes our empirical setting (i.e., biotechnology) and elaborates on the 

associated measures and methods used in our analysis. The results of our analysis are 
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provided in Section 7.4. Finally, Section 7.5 discusses our results in the context of this 

dissertation and the wider academic debate.  

7.2 The Technological Niche and Organizational Innovation 

In the previous chapter, by integrating knowledge of the growth and evolution of 

technology, we have logically extended the theory of the organization-specific 

technological niche. In doing so, we have developed several theorems that presents the 

core of our knowledge in highly condensed, eloquent logical formulas. In the current 

chapter, as mentioned, we aim to find out whether some of these theorems hold their 

ground when subjected to a thorough empirical test. This implies that we will keep the 

theoretical discussion in this chapter to a minimum, and instead concentrate our 

attention on testing the previously developed theorems as much as possible. However, 

before we can effectively do so, we need to translate these theorems into specific 

hypotheses that can be empirically validated. In the current chapter, the performance 

measure of interest is organizational biotechnology innovation, as reflected in the 

number of granted patents. The reason for choosing this particular performance measure 

is threefold. First, this performance measure stands relatively close to the dimensions of 

the technological niche, which implies that the time lag between our dependent and 

independent variables can be kept to a minimum. This makes it possible to make optimal 

use of our data, as longer time lags reduce the number of observations that can be 

effectively used in the analysis. Second, because of the importance placed on patents 

within biotechnology (i.e., all landmark innovations have been patented), patent-based 

measures accurately reflect the outcome of organizational innovation processes. Third 

and finally, because of the importance placed on innovation and patents within 

biotechnology, there is a tight link between organizational innovation and the ultimate 

organizational performance measure, organizational survival.24 That is, an organization’s 

survival chances within a particular technological system – and its related downstream 

(product) markets – are intimately related to the organization’s innovative capabilities 

within that same technological system. After all, in time, without the necessary 

technological competencies, the organization is bound to lose its position to better 

equipped and, therefore, more fit competitors. Now that we know the performance 

measure of interest, we continue with the formulation of our hypotheses. 

                                                 
24 We have decided to focus on organizational innovativeness rather than survival because measuring 

organizational exit from biotechnology is anything but easy. Key is to decide on the duration of non-

patenting that signals exit from biotechnology. We leave this issue for future research. 
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7.2.1 Crowding 

First of all, according to our crowding argument, the effects of crowding and non-

crowding are conditional upon the stage of development of the technological system. As 

we have argued in Chapter 4 of this dissertation, from a systemic point of view, 

biotechnology is not yet in a growth stage of technological development. This view is 

supported by Pisano (2006), who argues that biotechnology consists of several, distinct 

components that are still in development, rapidly evolving, and highly immature. So, 

even though biotechnology already displays systemic properties, many of its component 

technologies have only just been discovered and have yet to be integrated. Only after this 

integration is complete (i.e., after a dominant design configuration has been established), 

will growth become truly cumulative and can biotechnology be considered as being in the 

growth stage of development. Regarding the effect of crowding in the seed stage of 

technological development, due to the existence of multiple, competing design 

configurations, crowding increases the legitimation of the supported design 

configuration, and enhances its competitive potential vis-à-vis competing design 

configurations. It therefore strengthens the competitive position of the set of supporting 

organizations versus all other organizations in the population. According to Theorem 6.1, 

crowding contributes to the organization’s performance by increasing the likelihood that 

the supported design configuration will become the dominant one. Accordingly, it also 

raises the chances of additional innovations by the organization in the technological 

system. This also implies that non-crowding increases the competitive potential of 

alternative design configurations, and thus decreases the organization’s innovative 

potential (i.e., Theorem. 6.5). Our next pair of hypotheses thus becomes as follows. 

 

Hypothesis 7.1: The overlap of an organization’s biotechnological niche is positively associated with its 

rate of biotechnology innovation. 

Hypothesis 7.2: The non-overlap of an organization’s biotechnological niche is negatively associated 

with its rate of biotechnology innovation. 

7.2.2 Status 

Following our status argument, the relationship between, on the one hand, the 

organization’s status and its rate of innovation, and, on the other hand, the organization’s 

technological quality and its rate of innovation is mediated by the level of uncertainty 

within a technological system. However, due to the fact that technological development 

can never be characterized by complete uncertainty or uncertainty, both the 

organization’s biotechnology status (i.e., Theorem 6.9) and biotechnology quality (i.e., 

Theorem 6.10) contribute positively to the organization’s rate of innovation. This is 

represented by the following set of hypotheses. 
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Hypothesis 7.3: An organization’s biotechnology status is positively associated with its rate of 

biotechnology innovation. 

Hypothesis 7.4: An organization’s biotechnology quality is positively associated with its rate of 

biotechnology innovation. 

7.2.3 Global focal diversity 

The general nature of our diversity argument causes the translation of these theorems 

into concrete hypotheses to be somewhat more involved. In the current chapter, because 

we are investigating the rate of innovation within a specific technological system – i.e., 

biotechnology – we can define the dimensions of technological diversity at two obvious 

levels of analysis. First, an organization’s technological diversity can be defined at the 

level of a technological landscape, by taking into account the distribution of patents (i.e., 

for our measure of focal diversity) or patent citations (i.e., for our measures of 

antecedent and descendant diversity) among alternative technological systems. Second, 

focusing in on biotechnology, an organization’s technological diversity can also be 

defined within this particular technological system, by considering the distribution of 

patents (i.e., for our measure of biotechnological diversity) or patent citations (i.e., for 

our measures of biotechnological antecedent and descendant diversity) among 

biotechnology’s component technologies. Hence, in the current paper, we will define 

technological diversity at both levels of analysis. We start at the level of a technological 

landscape. 

 As argued in the previous chapter, focal diversity refers to the width of the 

organization’s technological niche, increasing the organization’s innovative potential by 

increasing flexibility and preventing path dependence. However, according to the 

principle of allocation, there is a tradeoff between niche width and strength of appeal, 

implying that flexibility comes at a price. As we are concerned with the innovative 

potential within one particular system (i.e., biotechnology), the flexibility to switch 

between alternative technological systems has no added value whatsoever. In other 

words, the width of the organization’s technological niche within the landscape 

contributes little to developments within one particular system. So, from the perspective 

of a single technological system, there are only costs associated with focal diversity, as 

inter-system slack implies a reduction in resources that can be devoted to intra-system 

developments. Thus, we expect focal diversity to have a negative effect on the 

organization’s rate of biotechnology innovation. We build upon Theorem 6.18 to 

construct our next hypothesis. 

 

Hypothesis 7.5: An organization’s global focal diversity is negatively associated with its rate of 

biotechnology innovation. 



An empirical test of the extended theory of the technological niche 195 

7.2.4 Global antecedent diversity 

Antecedent diversity refers to the extent to which the organization’s knowledge comes 

from different systems in the technological landscape (recall that the organization’s 

technological antecedents are the knowledge on which the organization builds in 

constructing its focal technology). The more diverse the organization’s knowledge base, 

the higher the organization’s absorptive capacity. After all, an organization’s absorptive 

capacity is a function of its prior related knowledge (Cohen & Levinthal, 1990; Van den 

Bosch et al., 1999; Zahra & George, 2002). And because the unknown (i.e., new 

knowledge) always has to be related to what is known (i.e., old knowledge), increasing 

what is known increases the capacity to absorb new knowledge. As such, it increases the 

organization’s recombination potential or, in other words, its ability to put old things in 

new combinations and new things in old combinations (Weick, 1979), which elicits the 

sort of learning and problem solving that yields innovation (Simon, 1957). Hence, in 

accordance with Theorem 6.19, we expect a positive effect of antecedent diversity on the 

organization’s rate of biotechnology innovation, and formulate the following hypothesis. 

 

Hypothesis 7.6: An organization’s global antecedent diversity is positively associated with its rate of 

biotechnology innovation. 

7.2.5 Global descendant diversity 

Descendant diversity refers to the extent to which the organization’s technology is 

diffused throughout the technological landscape. Because a direct technological tie 

cannot be uniquely interpreted (Podolny et al., 1996), descendant diversity is a two-edged 

sword. On the one hand, it implies legitimation of the organization’s technology. On the 

other hand, the presence of technological developments highly similar to the 

organization’s developments increases the potential for competition. From this, we might 

formulate two alternative hypotheses. In line with Theorem 6.17, the effect of 

descendant diversity is expected to be positive. However, in accordance with Theorem 

6.18, we expect descendant diversity to have a negative effect on the organization’s rate 

of biotechnology innovation, due to the fact that status is argued to capture the positive 

effect. Our next pair of hypotheses becomes as follows.  

 

Hypothesis 7.7: An organization’s global descendant diversity is positively associated with its rate of 

biotechnology innovation. 

Hypothesis 7.7alt: An organization’s global descendant diversity is negatively associated with its rate 

of biotechnology innovation. 
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7.2.6 Biotechnology-specific focal diversity 

Next, we consider the role of the different dimensions of diversity at the system level – 

i.e., biotechnology-specific diversity. Focal biotechnology diversity is indicative of the 

width of the organization’s biotechnological niche. Even though our diversity argument 

from the previous chapter allows for both a positive and a negative effect, which would 

suggest two alternative hypotheses, we expect focal biotechnology diversity to contribute 

in a positive way to the organization’s rate of biotechnology innovation for two reasons. 

First, biotechnology is in a seed stage of development, which implies that several or many 

alternative design configurations exist. Increasing focal biotechnology diversity increase 

the organization’s support for alternative design configurations (i.e., the extent to which 

the organization is actually part of the alternative design configurations), hereby 

providing flexibility and preventing path dependence (i.e., supporting technological dead 

ends) in a highly uncertainty environment. Second, focal (landscape) diversity already 

captures the negative effects of fragmentation and the cost of carrying unrelated slack. 

The slack that is represented by focal biotechnology diversity is highly related to 

biotechnology developments. Hence, we build upon Theorem 6.19 in constructing our 

next hypothesis. 

 

Hypothesis 7.8: An organization’s biotechnology-specific focal diversity is positively associated with its 

rate of biotechnology innovation. 

7.2.7 Biotechnology-specific antecedent diversity 

Obviously, antecedent diversity can also be defined at the level of a specific technological 

system. As such, it refers to the extent to which an organization’s system specific 

knowledge is distributed among the system’s components. Thus, in our case, it refers to 

the extent to which the organization’s biotechnological knowledge is distributed among 

biotechnology’s component technologies. In analogy to global antecedent diversity, 

biotechnology-specific antecedent diversity also has a positive effect on the 

organization’s rate of biotechnology innovation. After all, an organization’s absorptive 

capacity is largely a function of its prior related knowledge, and biotechnology-specific 

knowledge is obviously highly related to any development within biotechnology. 

Furthermore, increasing knowledge about biotechnology’s component technologies 

increases the organization’s knowledge about any alternative design configurations of 

these components, which increases the flexibility of the organization. Hence, we expect 

that biotechnological antecedent diversity is positively related to the organization’s rate of 

biotechnology innovation. On the basis of Theorem 6.19, we thus formulate the 

following hypothesis.  
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Hypothesis 7.9: An organization’s biotechnology-specific antecedent diversity is positively associated 

with its rate of biotechnology innovation. 

7.2.8 Biotechnology-specific descendant diversity 

In a similar vein, descendant diversity can also be defined at the level of a specific 

technological system, and, as such, refers to the extent to which the organization’s 

technology is diffused among the system’s component technologies. Again, this type of 

descendent diversity is a two-edged sword: the legitimative effect of a direct technological 

tie suggests a positive relationship, and the competitive effect a negative one. The 

positive effect is in line with Theorem 6.17, and the negative impact with Theorem 6.18. 

We formulate our next pair of hypotheses accordingly. 

 

Hypothesis 7.10: An organization’s biotechnology-specific descendant diversity is positively associated 

with its rate of biotechnology innovation. 

Hypothesis 7.10alt: An organization’s biotechnology-specific descendant diversity is negatively 

associated with its rate of biotechnology innovation. 

7.2.9 Biotechnological opportunities 

Due to bounded rationality and local search, organizations are essentially bound to the 

(local) environment in which they are currently active. Therefore, in the previous chapter, 

we have argued that an organization’s technological opportunities are a function of the 

technological opportunities in the technological system(s) in which the organization is 

active. Despite the fact that the organization’s biotechnology-specific opportunities are 

clearly correlated with its global technological opportunities, it obviously makes more 

sense to consider the technological opportunities specific to the technological system 

under investigation. This also connects to our finding that biotechnology’s component 

technologies provide distinct sets of opportunities in Chapters 3 and 4. Therefore, in 

concordance with Theorem 6.21, we expect that the organization’s biotechnological 

opportunities are positive related to its rate of biotechnology innovation. Our next 

hypothesis thus becomes as follows. 

 

Hypothesis 7.11: An organization’s biotechnological opportunities are positively associated with its 

rate of biotechnology innovation. 

7.3 Data and methodology 

Because patent data are the most direct and objective measure of innovation (Griliches, 

1981; Thoma & Torrisi, 2007), patent data are used extensively in innovation and 

technology studies (cf. Fleming, 2001; Nooteboom, Vanhaverbeke, Duysters, Gilsing, & 
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van den Oord, 2007; cf. Podolny et al., 1996; Verspagen, 2005). Due to the importance 

placed on patents within biotechnology, all landmark innovations have been patented. As 

a result, patents form a reliable indicator of technological developments within 

biotechnology (Orsenigo et al., 2001; Powell et al., 1996). Thus, it should come as no 

surprise that we, again, heavily rely on patent data to test our hypotheses. More 

specifically, because previous research illustrates that the US patent system offers the 

most complete dataset for technology analysis (Podolny et al., 1996), we also rely on 

patent data from the United States Patent and Trademark Office (USPTO) in our 

analysis. 

 Our sample consists of all organizations that have ten or more biotechnology 

patents (represented by USPTO classes 435 and 800) as of January 2006.25 The reason 

for this approach is threefold. First, because we are using yearly observations in our 

analysis, we keep the number of zeros in our analysis within an acceptable range. Because 

our period of observation is from 1980 to 2005 (i.e., 26 years), including all organizations 

with less than 10 patents in biotechnology would result in a great deal of zero values for 

our dependent variable. Second, this increases the likelihood that our substantive 

measures can be meaningfully constructed. Because many of our substantive variables are 

based on patent information, we need sufficient information to calculate these variables 

in such a way that they distinguish between organizations and over time. Moreover, a 

lack of variance in our measures could also result in problems of multicollinearity. Third 

and finally, this effectively leaves out all organizations that have an ‘accidental’ stake in 

biotechnology, and hereby focuses our attention on organizations with a true interest in 

biotechnology developments. 

 To construct our control variables, we have linked the USPTO data with 

numerous financial databases. These databases are, amongst others, Worldscope 1997, 

Compustat Global 2005, Compustat North America 2005, Amadeus editions 1996 and 

2007, and Bioscan 2007. To delineate the ownership structure for aggregation purposes, 

we have used the Amadeus editions of 1996 and 2007, Thomson’s Mergers and 

Acquisitions data (formerly known as SDC platinum) 2006, Bioscan 2007, and Bioworld 

2007. Because no unique identifier exists across these databases (i.e., existing ID’s such as 

SEDOL and CUSIP are not used consistently in the individual databases), the linking of 

these databases has been a colossal task (which implies a fourth reason for sample 

restriction). In each database, organizations are named slightly (or even completely) 

different due to several reasons, some of which are: (1) the complex legal structures of 

organizations (with many subsidiaries and holding companies), (2) spelling variations and 

errors, (3) additions (e.g., of legal forms, such as inc or nv), (4) acronyms  (e.g., SRI, 

which stands for Stanford Research Institute), (5) abbreviations (e.g., inc. for 

incorporated) and (6) special characters (e.g., ß and ü). As a result, the matching of the 
                                                 
25 This implies that our sample is biased. This should be kept in mind whilst interpreting the findings. 
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organizations in different databases was done via a rather complex algorithm that 

involves numerous manual and automated steps. Basically, because a unique identifier 

does not exist, one has to be created in each database in such a way that it is similar in 

the individual databases. However, because there is no guarantee that the organizations 

represented by similar identifiers in different databases are indeed one and the same, 

visual inspection was necessary to make the final decision. In all, this has proven to be a 

rather complex and iterative process, as outcomes of intermediate steps revealed 

unforeseen anomalies that required redesigning and fine-tuning of our algorithm, the 

subject which deserves a study of its own. 

7.3.1 Measures 

Biotechnology patents, our dependent variable, is a count of the number of issued (i.e., 

awarded, so excluding rejected) patents. Our data constitute a cross-sectional time-series, 

as we have repeated observations for the same organizations. This is an unbalanced 

panel, though, as organizations enter and exit during our period of observation. 

Biotechnology crowding measures the extent to which an organization’s 

antecedents from its biotechnology patents are crowded by other organizations (i.e., the 

extent to which these other organizations also cite these antecedents). This implies 
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where Axbt refers to organization x’s antecedents from its biotechnology patents at time t, 

and Ayt to organizations y’s antecedents at time t', and Y to the set of all organizations in 

the population. Moreover, ∩ denotes the intersection of two sets, and |.| symbolizes the 

cardinality of a set. 

Biotechnology non-crowding measures the extent to which an organization’s 

antecedents from its biotechnology patents are non-crowded by other organizations. This 

means 
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where Axbt refers to organization x’s antecedents from biotechnology at time t, Ayt to 

organizations y’s antecedents at time t', and Y to the set of all organizations in the 

population, ∩ denotes the intersection of two sets. Moreover, ∪ denotes the union of 

two sets, \ set subtraction, and |.| the cardinality of a set. 

Our measure of Biotechnology status is constructed using patent citations, as 

these provide a fair proxy of the perceived importance in a technological community 

(Hall, Jaffe, & Trajtenberg, 2005; Trajtenberg, 1990). This implies 
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(7.3) 
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where DAxt refers to the acts of deference (i.e., patent citations) that organization x 

receives from biotechnology at time t, DAyt to acts of deference that organization y 

receives from biotechnology at time t, Y to all organizations in the population, and t to 

the five years prior to our the measurement date of dependent variable.  

Next, Biotechnology quality represents the share of biotechnology that is owned 

by the organization. This is 
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where Txbt refers to the share of technology in biotechnology that is owned by 

organization x at time t, Tybt to the share of technology that is owned by organization y in 

biotechnology at time t, Y to all organizations in the population, and t to the five years 

prior to the date of measurement of our dependent variable.  

 Biotechnology opportunities involve the technological opportunities that an 

organization encounters within biotechnology due to its current position within 

biotechnology’s component technology and their respective growth rates. This means 
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where δxtc refers to the share of patents that organization x has in technological 

component c at time t, ζct to the growth rate of component c at time t, C to the set of all 

components within B (i.e., biotechnology), and t to the five years prior to the date of 

measurement of our dependent variable.  

 Antecedent diversity measures the extent to which the organization’s knowledge 

originates from different technological systems, which implies 
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where θxst is the share of technological antecedents of organization x at time t that come 

from technological system s, and S refers to the set of all technological systems.  

 Focal diversity refers to the extent to which the organization’s technological 

developments take place in different technological systems, which is 

(7.7) 
1

ln(1/ )
s S

xt xst xst

s

FD τ τ
=

=

=∑  

where τxst refers to the share of focal technology from organization x that comes from 

technological system s at time t, and S to the set of all technological systems. 
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Descendant diversity is a measure of the extent to which the organization’s 

technology has diffused throughout the technological landscape. Thus, 
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where υxst is the share of technological descendants of organization x at time t that come 

from technological system s, and S refers to the set of all technological systems. 

Bio-antecedent diversity is the extent to which the organization’s 

biotechnological knowledge originates from biotechnology’s components. 
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where φxct is the share of technological antecedents of organization x at time t that come 

from technological component c, and C refers to the set of all technological components 

from biotechnology or B. 

Likewise, Bio-focal diversity is indicative of the extent to which the organization’s 

developments within biotechnology take place in different components. Hence, 
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where ωxct is the share of patents of organization x at time t that come from technological 

component c, and C refers to the set of all technological components from biotechnology 

(B). 

Bio-descendant diversity refers to the extent to which the organization’s 

technology is diffused among biotechnology’s components. So, 
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where ηxct is the share of technological descendants of organization x at time t that come 

from technological component c, and C refers to the set of all technological components 

from biotechnology (B). 

We include a number of control variables. First, we have the number of Previous 

entries to control for favorable conditions within the environment that may encourage 

entry (Delacroix & Carroll, 1983; Hannan et al., 1995). Essentially, this controls for some 

of the serial correlation that might remain in the data. Additionally, we add the total 

number of biotechnology patents, Biotechnology density, to account for the experience 

that the organization has in applying for patents in biotechnology. Furthermore, we also 

include the total number of patents in our measure of Global density, to control for the 

experience that the organization has with the general process of applying for patents. To 

avoid double counting, we exclude the number of biotechnology patents from this 

measure. Next, Biotechnology focus refers to the extent to which the organization is 
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focused on biotechnology, represented by the share of biotechnology patent in the 

organization’s portfolio. This implies 

(7.12) xt
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where BPxt refers to the number of patents that organization x has in biotechnology at 

time t, Pxt to the total number of patents of organization x at time t, and t to the five years 

prior to the date of measurement of our dependent variable.  

Organizational age is measured in years. We have taken the natural log of 

Employees in thousands, the natural log of R&D expenditures in trillions of US dollars, 

the natural log of Revenues in billion of US dollars, and the natural log of Assets in 

billions of US dollars as measures of organizational features. Finally, we also include Year 

dummies to control for any year-specific effects. In Table 7.1, we provide descriptive 

statistics. The correlation matrix is presented in Table 7.2.  

 

Table 7.1 Summary statistics 

Variable n mean S.D. min max 25th % 50th % 75th % 

Biotechnology patents 4,896 9.21 15.37 0.00 212.00 1.00 3.00 10.00 

Biotechnology crowding (thousands) 4,896 0.03 0.08 0.00 3.06 0.01 0.02 0.04 

Biotechnology non-crowding (millions) 4,896 0.00 0.01 0.00 0.09 0.00 0.00 0.00 

Biotechnology status 4,896 0.00 0.00 0.00 0.03 0.00 0.00 0.00 

Biotechnology quality 4,896 0.00 0.00 0.00 0.03 0.00 0.00 0.00 

Biotechnology opportunities 4,896 0.10 0.04 0.00 0.38 0.08 0.10 0.12 

Global antecedent diversity 4,896 2.60 1.02 0.00 4.87 1.93 2.44 3.04 

Global focal diversity 4,896 2.26 1.09 0.00 4.73 1.50 2.05 2.65 

Global descendant diversity 4,896 2.64 1.02 0.00 4.89 1.89 2.52 3.23 

Bio-antecedent diversity 4,896 1.39 0.49 0.00 2.49 1.07 1.46 1.75 

Bio-focal diversity 4,896 1.20 0.59 0.00 2.32 0.80 1.26 1.69 

Bio-descendant diversity 4,896 1.43 0.49 0.00 2.59 1.11 1.51 1.79 

Previous entries 4,896 9.61 15.37 0.00 212.00 1.00 4.00 11.00 

Biotechnology focus 4,896 0.14 0.20 0.00 1.00 0.01 0.05 0.16 

Biotechnology density (thousands) 4,896 0.13 0.17 0.00 1.30 0.02 0.06 0.17 

Global density (millions) 4,896 0.01 0.01 0.00 0.05 0.00 0.00 0.01 

Age (thousands) 4,896 0.11 0.08 0.00 0.34 0.06 0.10 0.14 

Employees (thousands) 4,896 0.05 0.07 0.00 0.34 0.00 0.02 0.06 

R&D expenditures (trillion $) 4,896 0.00 0.00 0.00 0.07 0.00 0.00 0.00 

Revenues (trillion $) 4,896 0.02 0.04 0.00 0.53 0.00 0.01 0.02 

Assets (billion $) 4,896 0.02 0.07 0.00 0.65 0.00 0.00 0.01 
Legend: n = number of observations; S.D. = standard deviation; min = minimum value; max = maximum 
value; 25th = 25th percentile; 50th = 50th percentile; 75th = 75th percentile. 

 



 

Table 7.2 Correlation matrix 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1 Biotechnology patents 1.00                     

2 Biotechnology crowding (thousands) -0.06 1.00                    

3 Biotechnology non-crowding (millions) -0.17 0.40 1.00                   

4 Biotechnology status 0.46 0.01 -0.24 1.00                  

5 Biotechnology quality 0.56 -0.10 -0.26 0.71 1.00                 

6 Biotechnology opportunities 0.26 -0.03 0.15 -0.06 -0.03 1.00                

7 Global antecedent diversity 0.12 -0.02 -0.16 0.39 0.28 -0.10 1.00               

8 Global focal diversity 0.10 -0.03 -0.15 0.38 0.27 -0.11 0.97 1.00              

9 Global descendant diversity 0.10 0.01 -0.10 0.35 0.24 -0.07 0.93 0.94 1.00             

10 Bio-antecedent diversity 0.29 -0.11 -0.32 0.28 0.29 0.08 0.12 0.14 0.14 1.00            

11 Bio-focal diversity 0.39 -0.11 -0.34 0.38 0.42 0.11 0.12 0.11 0.12 0.71 1.00           

12 Bio-descendant diversity 0.23 0.00 -0.14 0.24 0.28 0.05 0.10 0.11 0.16 0.60 0.61 1.00          

13 Previous entries 0.77 -0.04 -0.18 0.47 0.63 0.29 0.11 0.09 0.10 0.32 0.42 0.25 1.00         

14 Biotechnology focus 0.00 0.02 0.03 -0.23 -0.12 0.19 -0.54 -0.55 -0.55 -0.12 -0.10 -0.30 0.03 1.00        

15 Biotechnology density (thousands) 0.53 0.07 -0.20 0.60 0.63 0.09 0.22 0.19 0.23 0.42 0.53 0.39 0.67 -0.12 1.00       

16 Global density (millions) 0.26 0.06 -0.15 0.54 0.36 -0.05 0.67 0.69 0.67 0.26 0.30 0.25 0.28 -0.36 0.55 1.00      

17 Age (thousands) 0.32 -0.04 -0.21 0.54 0.55 -0.13 0.30 0.29 0.30 0.27 0.41 0.38 0.33 -0.46 0.52 0.43 1.00     

18 Employees (thousands) 0.18 0.12 -0.10 0.22 0.07 0.08 0.40 0.40 0.42 0.23 0.29 0.22 0.19 -0.28 0.38 0.61 0.31 1.00    

19 R&D expenditures (trillion $) 0.15 0.07 -0.11 0.17 0.14 0.01 0.22 0.21 0.22 0.19 0.26 0.17 0.18 -0.20 0.31 0.35 0.27 0.40 1.00   

20 Revenues (trillion $) 0.15 0.07 -0.09 0.36 0.23 -0.04 0.59 0.60 0.58 0.18 0.25 0.20 0.17 -0.29 0.34 0.73 0.37 0.52 0.38 1.00  

21 Assets (billion $) 0.04 0.12 -0.03 0.26 0.03 -0.01 0.37 0.37 0.36 0.12 0.17 0.06 0.07 -0.14 0.33 0.63 0.23 0.64 0.25 0.50 1.00 
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As can be seen in Table 7.2, the high correlations within (and not between) our 

sets of global and biotechnology-specific diversity measures, among some of our control 

variables (i.e., employees, revenues, assets, and R&D expenditures), and among status, 

quality, age, biotechnology density, and global density warrants us to proceed with some 

caution to ensure that our estimates do not suffer from multicollinearity. 

7.4 Estimation 

As mentioned before, our dependent variable is a yearly count of the number of 

biotechnology patents granted to our focal organizations. The baseline for modeling 

count data is the Poisson distribution, and adding covariates gives the Poisson regression 

model. Due to the mean-variance equality restriction of the Poisson distribution, after 

regression, the variance has to be roughly equal to the mean of the dependent variable. A 

useful rule of thumb is that the variance cannot be more than roughly twice the mean, 

since social science data never explain more than 50 per cent of the variance (Cameron & 

Trivedi, 1998). In the case that the variance is larger, the dependent variable suffers from 

what is called overdispersion, due to unobserved heterogeneity. This implies that the 

distribution of this variable has a fat tail, with many extreme observations that 

significantly increase the variance. As can readily be observed from Table 7.1, the mean 

of our measure of Biotechnology patents is 9.121, while its variance is greater than 236 

(i.e., 15.372). So, our dependent variable clearly suffers from overdispersion. Therefore, 

the Poisson regression model is not appropriate for our purposes, and we turn to the 

negative binomial regression model instead. The negative binomial regression model 

explicitly models overdispersion by adding a dispersion parameter to the Poisson 

regression model. Because our data constitute a cross-sectional time-series or panel 

structure, we need to use the panel version of the negative binomial model, which can be 

specified as follows (Cameron & Trivedi, 1986). 
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A negative binomial panel model comes in two basic flavors, namely a random effects 

and a fixed effects model. The random effects specification assumes that the dispersion 

parameter is drawn randomly from a certain distribution, usually a Gamma distribution, 

effectively creating a Beta distribution with parameters r and s. This enables the random 

effects specification to effectively use both the within and the between-variance of the 

panels (i.e., organizations in our case). Therefore, we have a slight preference for this 

model. However, the restriction of the random effects model is that the individual 

random effects are independent from the model’s regressors (i.e., an assumption of 
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orthogonality of the random effects and the regressors). To determine whether this is 

indeed the case, Hausman’s (1978) specification test can be used, which is distributed as 

χ2 and can computed 

(7.15) 1( ) ( ) ( )c e c e c eH V Vβ β β β−′= − − −  

where βc is the coefficient vector from the consistent estimator, βe the coefficient vector 

from the efficient estimator, Vc the covariance matrix of the consistent estimator, and Ve 

the covariance matrix of the efficient estimator. The degrees of freedom for this test 

statistic follow from the matrix rank of the variance of the difference between the 

coefficients of the two estimators. 

As the name already indicates, the fixed effects specification adds a fixed effect 

for each panel. Consequently, it is also referred to as a within-variance model, as the 

individual fixed effect effectively removes all variance between panels, and provides the 

consistent estimator for the specification test in Equation (7.15) (Hausman, 1978). 

However, the conditional – conditional because the fixed effects are conditioned out of 

the likelihood equation – fixed effects negative binomial model as conceived by 

Hausman, Hall, and Griliches (1984) is not a true fixed effects specification (Allison & 

Waterman, 2002; Guimarães, 2008). The reason is that the model is based on a regression 

decomposition of the overdispersion parameter, rather than the usual regression 

decomposition of the mean (Allison & Waterman, 2002). As a result, the model only 

removes individual fixed effects equal to the logarithm of the overdispersion parameter 

(Guimarães, 2008). Because this condition is rather restrictive, the conditional fixed 

effects specification does not control for all stable covariates, and is therefore not a true 

fixed effects model. This implies that there is no guarantee that the conditional fixed 

effects negative binomial is completely free from serial correlation. Hence, the 

conditional fixed effects model does not provide for the consistent estimator required for 

Hausman’s (1978) specification test in Equation (7.15). Common software packages, 

such as Stata and Limdep, have implemented the conditional fixed effects negative 

binomial specification of Hausman, Hall, and Griliches (1984). This becomes evident 

when you are allowed to include time-invariant covariates in the analysis, something 

which is usually not possible with conditional fixed effects models, as they effectively 

filter out all between-panel variance. 

According to Allison and Waterman (2002), a good alternative is to specify a 

conventional non-panel negative binomial model (i.e., NB2 in Cameron & Trivedi, 1998), 

and manually add dummy variables to control for the fixed effects. Because the 

individual fixed effects are not conditioned out of the likelihood function, but are 

explicitly modeled using dummy variables, we will subsequently refer to this specification 

as the unconditional fixed effects negative binomial model. Nevertheless, the 

unconditional fixed effects negative binomial model does not come without problems 

either. To be precise, in the case that T (i.e., the number of time periods – or, in our case, 
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years) is fixed and N (i.e., the number of panels – or, in our case, organizations) goes to 

infinity, the number of parameters in a fixed effects specification increases with the 

number of cross-sectional observations, which results in biased coefficient estimates 

(Hsiao, 2003), as it renders the maximum likelihood estimator inconsistent (Greene, 

2003). This is referred to as the incidental parameters problem.26 However, despite an 

irrefutable theoretical inconsistency (Greene, 2001), Allison and Waterman (2002) find 

no evidence for any incidental parameter bias for the unconditional fixed effects model 

in a simulation study of 100 panels and two time periods (i.e., N = 100 and T = 2). Our 

sample contains roughly 440 organizations and, on average, approximately 10 years (i.e., 

N = 440 and T = 10). Due to the relative likeness to Allison and Waterman’s sample, we 

do not expect our data to suffer from the incidental parameters problem.27 Nonetheless, 

just to be on the safe side, we estimate both the conditional and unconditional fixed 

effects specification, as well as the random effects specification. Even though the 

random effects and the conditional fixed effects specification might suffer from serial 

correlation, and the unconditional fixed effects might suffer from incidental parameter 

bias, when estimating all specifications, consistency of estimates across different 

specifications increases confidence in our findings. After all, according to Hausman, Hall, 

and Griliches (1984), model choice is always a choice between some “disturbance” in the 

equation.  

7.5 Results 

We have used Stata 8.0 SE to estimate our models. To be precise, our random effects 

negative binomial dispersion models (RE NB) were estimated with the ‘xtnbreg, re’ 

command and the conditional fixed effects models (CFE NB) with the ‘xtnbreg, fe’ 

command. To estimate our unconditional fixed effects models (UFE NB), we have 

manually added panel dummies and used the ‘nbreg’ command. Our estimates are 

provided in Table 7.4, and the different specifications provide, with a few exceptions, 

highly consistent estimates for most our variables.28 Because we are currently unaware of 

how the different specifications impact on our analysis, we will not expand in great detail 

on the differences between alternative model specifications. Instead, we will concentrate 

our attention on reporting the consistent findings across alternative specifications. To 

make sure that our estimates are not the result of multicollinearity, we have also 

estimated numerous alternative models (not reported here, for the sake of brevity: 

                                                 
26 Because conditional models condition out the fixed effects, these models do not suffer from the 

incidental parameters problem (Allison and Waterman, 2002). 
27 Actually, our sample is somewhat better than Allison and Waterman's (2002) because we have a larger T 

value (i.e., 10 instead of 2) and a lower N/T ratio (i.e., 44 instead of 50). 
28 Due to space restrictions, in the current section, we only report the coefficient values and significance 

levels, but exclude the standard errors, which are reported in Tables 1 and 2 in Appendix K. 
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available upon request), in which we systematically exclude all highly correlating variables. 

Stability of coefficients and significance levels across these different models further 

strengthen our confidence that the results of our analysis are not caused by 

multicollinearity.  

Model 1 estimates our restricted (i.e., including all control variables) random 

effects negative binomial model, and Models 2 and 3 estimate the restricted conditional 

and unconditional fixed effects, respectively. Model 4 estimates our unrestricted (i.e., 

without financial controls) random effects negative binomial model, while Model 5 and 6 

estimate the restricted conditional and unconditional fixed effects specification, 

respectively. As most of our coefficient estimates are highly consistent across alternative 

specifications, we are confident that our findings are not coincidental or spurious. In all, 

we end up with approximately 441 organizations and 4,896 observations for our 

restricted model, and approximately 921 organizations and 14,186 observations for our 

unrestricted model.29 This implies an average of 11.1 and 15.4 observations per 

organization for our restricted and unrestricted models, respectively. Even though our 

data are highly skewed towards North American organizations (see Table 7.3 below), 

additional analyses (not reported here, for the sake of brevity: available upon request) 

indicate that both the coefficients and significance levels are highly similar when 

excluding North American organizations from our analysis.  

 We use Model 2 to report our findings because this model has the lowest log-

likelihood value. Because all models suffer from some disturbance that can potentially 

result in biased estimates, our choice is merely one of convenience and does not imply 

that this model is better in any way. 

 

Table 7.3 Number of organizations and observations from different regions used in our analyses 
 Organizations Observations Organizations Observations 

Region Restricted Restricted Unrestricted Unrestricted 

Asia 64 521 124 2,093 

Europe 100 1,156 164 2,921 

Oceania 1 5 9 102 

North America 276 3,214 624 9,070 

Total 441 4,896 921 14,186 

 

Our estimates do not support Hypothesis 7.1, which argues that system crowding 

has a positive effect on the organization’s rate of innovation due to existence of 

alternative design configurations. Quite the opposite, we find a consistent and highly 

significant negative effect. Increasing the value of crowding from its 1st quartile to its 

                                                 
29 The number of organizations and observations for our conditional fixed effects models is slightly lower 

due to exclusion of single observations and zero group outcomes. 



Chapter 7 208

median value decreases the rate of innovation with 7 per cent, while further increasing 

crowding to the 3rd quartile decreases the rate of innovation with another 13 per cent. 

 In contrast, Hypothesis 7.2 is confirmed by our estimates, implying that non-

crowding is negatively related to organizational innovation in biotechnology due to 

competition from alternative design configurations. Increasing non-crowding from its 1st 

to its 2nd quartile decreases the rate of innovation with 1 per cent, and further increasing 

non-crowding to its 3rd quartile decreases the rate of entry with another 3 per cent. 

 Hypothesis 7.3 states that, due to the high uncertainty level of biotechnology 

developments, biotechnology status has a positive effect on the rate of innovation. This 

hypothesis is rejected by our estimates. Status has a highly significant negative effect in all 

fixed effects specifications, while it has an insignificant negative effect in both random 

effects specifications.  

 Next, according to Hypothesis 7.4, quality has a positive effect on the 

organization’s innovative capabilities. This hypothesis is fully confirmed by our estimates. 

Increasing the value of biotechnology quality from its first to its second quartile increases 

the rate of innovation with 6 per cent, and increasing its value from the median to the 

third quartile increases the multiplier with an additional 18 per cent. 

 Hypothesis 7.5 argues that focal diversity has a negative effect on the rate of 

innovation due to the cost of carrying “between-system slack” that has no value within 

one particular system – i.e., biotechnology. Even though the coefficient is consistently 

negative in all our restricted models, it is consistently positive in our unrestricted models. 

Hence, we refrain from drawing any conclusions regarding the effect of focal diversity. 

Following the logic of Hypothesis 7.6, antecedent diversity increases the 

organization’s absorptive capacity, being positively associated with the rate of 

biotechnology innovation. Our estimates do support this hypothesis and reveal a rather 

strong effect, indicating the importance of this measure. Increasing the value of 

antecedent diversity with one standard deviation increases the rate of innovation with as 

much as 102 per cent. 

Hypothesis 7.7 claims that the legitimation effect is positive, whereas Hypothesis 

7.7alt argues that the competitive potential of descendant diversity is negatively related to 

biotechnology innovation. Neither hypothesis can be confirmed by our estimates. The 

coefficient is significant in all but one of our models. Moreover, the sign of the 

coefficient switches, indicating an ambiguity that prevents us from drawing any 

conclusions regarding the effect of descendant diversity. 

Our findings are consistent with Hypothesis 7.8, which asserts that focal 

biotechnology diversity is positively associated with the rate of biotechnology innovation 

by providing flexibility. Increasing the value of bio-focal diversity with one standard 

deviation increases the organization’s rate of biotechnology innovation with 13 per cent. 



 

Table 7.4 Restricted negative binomial panel regression estimates 

 1       2       3       4       5       6       

 RE NB R       CFE NB R       UFE NB R       RE NB U       CFE NB U      UFE NB U      

Biotechnology crowding (thousands) -5.931*** -7.024*** -9.096*** -6.020*** -9.878*** -9.25*** 

Biotechnology non-crowding (millions) -34.151*** -19.342*** -16.379*** -29.503*** -30.475*** -11.275*** 

Biotechnology status -4.424       -18.165*** -19.180**   -1.439       -10.469**   -13.958**   

Biotechnology quality 67.959*** 73.983*** 72.934*** 84.723*** 90.424*** 99.192*** 

Biotechnology opportunities 2.786*** 2.577*** 1.595**   3.191*** 2.862*** 4.968*** 

Global antecedent diversity 0.609*** 0.686*** 0.727*** 0.261*** 0.187*** 0.293*** 

Global focal diversity -0.121       -0.210**   -0.507*** 0.121**   0.044       0.178*** 

Global descendant diversity -0.173*** -0.098       0.250*** -0.139*** -0.244*** -0.078**   

Bio-antecedent diversity 0.01       0.014       -0.131**   -0.030       -0.219*** -0.132*** 

Bio-focal diversity 0.350*** 0.203*** 0.242*** 0.322*** 0.263*** 0.226*** 

Bio-descendant diversity -0.125*** -0.185*** -0.297*** -0.071*** -0.240*** -0.254*** 

Previous entries 0.003*** 0.003*** 0.008*** 0.007*** 0.008*** 0.016*** 

Biotechnology focus 0.870*** 0.178       -0.241       0.197**   -0.796*** 0.312*** 

Biotechnology density (thousands) 0.772*** 0.614*** 0.814*** -0.131       -0.886*** -1.331*** 

Global density (millions) -2.895       -3.109       -9.270*     3.517       8.414*** 2.202       

Age (thousands) 3.033***      

LN(Employees (thousands)) 0.065*** 0.043*     0.095***    

LN(R&D expenditures (trillion $)) 0.183       0.103       0.225          

LN(Revenues (trillion $)) -0.168*** -0.079**   -0.227***    

LN(Assets (billion $)) 0.054*     0.086*** 0.072**      

Constant -0.68         -2.429***   

Alpha   0.168***   0.239*** 

r, of Beta(r,s) 3.292***   3.228***   

s, of Beta(r,s) 4.692***   3.421***   

Observations 4,896       4,838       4,896       14,186       14,133       14,186       

Number of organizations 441       417       441       921       907       921       

Degrees of freedom 43       42       483       38       38       959       

Log likelihood -11,826       -9,692       -10,968       -26,987       -22,859       -25,426       
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 Next, Hypothesis 7.9 specifies that, in analogy to Hypothesis 7.6, antecedent 

biotechnology diversity has a positive effect on the rate of biotechnology innovation, as it 

represents the diversity of biotechnology-specific knowledge. Our estimates do not 

provide support for this hypothesis. Moreover, the coefficient of bio-antecedent switches 

sign between models, even though not in a significant way.  

 According to Hypothesis 7.10alt, parallel to Hypothesis 7.7alt, descendant 

biotechnology diversity is negatively related to the rate of innovation, again, due to the 

competitive potential it represents. This hypothesis is fully confirmed by our estimates. 

Increasing descendant biotechnology diversity with one standard deviation decreases the 

rate of biotechnology innovation with 9 per cent. As a mirror image this implies that no 

evidence is found for the legitimation effect predicted by Hypothesis 7.10. 

 Finally, Hypothesis 7.11 states that, due to the local character of an organization’s 

(technological) search, the biotechnology opportunities encountered by an organization 

contribute positively to the rate of biotechnology innovation. Again, this hypothesis is 

fully confirmed by our analysis. Increasing biotechnology opportunities with one 

standard deviation increases the rate of innovation with 12 per cent. 

 Regarding our control variables, the number of previous entries has a highly 

significant positive effect on the rate of biotechnology innovation, implying that 

favorable entry conditions or serial correlations significantly affect our results. 

Biotechnology focus does not have a consistent effect on the rate of biotechnology 

innovation. Both densities (i.e., global and biotechnology) also do not have a consistent 

effect, but the switch in sign appears to be caused by the difference between our 

restricted and unrestricted model. Furthermore, the effect of organizational age has a 

strong positive and significant effect on the rate of innovation in Model 1. The size of 

the organization, measured by number of employees or assets, also has a positive effect 

on the rate of biotechnology innovation. In contrast, the amount of revenues seems to 

have a significant negative effect, while the R&D expenditures have a non-significant 

positive effect. Finally, with respect to our yearly dummies (not reported here, for the 

sake of brevity: available upon request), although many years significantly impact the rate 

of innovation, no clear trend can be identified. 

7.6 Discussion and conclusion 

In the previous chapter, we have integrated knowledge about the growth and evolution 

of technology in the theory on the organization-specific technological niche. In doing so, 

we have considerably extended the theory by adding several theorems. However, even 

though such a theoretical extension certainly adds to our knowledge, the proof of the 

pudding is in its eating, or in our case, the empirical validation of hypotheses derived 

from these theorems. This is, in a nutshell, what this chapter has been about. The pattern 

of significant findings provides strong support for our extended theory of the 
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organization-specific technological niche. In all, we have found strong support for 6 out 

of a total of 11 hypotheses (see Table 7.5), which illustrates the importance of a structural 

perspective towards technological change and organizational innovation. 

Clearly, our study is not free of design limitations and, in combination with 

anomalous findings, provides ground for further research. In the current section, we like 

to reflect on four of these. First, even though our estimates provide strong evidence for 

the presence of competitive processes, our estimates do not fully comply with our 

expectations. More specifically, instead of finding a positive effect that results from the 

legitimation of the associated design configuration, we find an opposite negative effect 

for technological crowding. Regarding the effect of non-crowding, our estimates are in 

line with our expectations. In our view, there are three alternative explanations for our 

findings, which are: (1) design configurations and associated processes of legitimation 

and competition are better defined at the component level; (2) biotechnology is in the 

growth stage of developments, and alternative design configurations exist that aim to 

overthrow the dominant design configuration; or (3) biotechnology has entered the 

growth stage of development during our period of observation so that, due to the strong 

competitive effect, we do not find evidence for legitimation. 

 

Table 7.5 Signs and significance levels of coefficient estimates under alternative specifications 
 Models 

Variables RE NB R1 CFE NB R1 UFE NB R2 RE NB R1 CFE NB R1 UFE NB R2 

Crowding†       ↓***       ↓***       ↓***       ↓***       ↓***       ↓*** 

Non-crowding       ↓*** .     ↓***       ↓***       ↓***       ↓***       ↓*** 

Status†       ↓             ↓***       ↓**         ↓             ↓**         ↓**   

Quality       ↑***       ↑***       ↑***       ↑***       ↑***       ↑*** 

Opportunities       ↑***       ↑***       ↑***       ↑***       ↑***       ↑*** 

Global antecedent diversity       ↑***       ↑***       ↑***       ↑***       ↑***       ↑*** 

Global focal††       ↓             ↓**         ↓***       ↑**         ↑             ↑*** 

Global descendant diversity††       ↓***       ↓             ↑***       ↓***       ↓***       ↓**   

Bio-antecedent diversity††       ↑       ↑             ↓**         ↓             ↓***       ↓*** 

Bio-focal diversity       ↑***       ↑***       ↑***       ↑***       ↑***       ↑*** 

Bio-descendant diversity       ↓***       ↓***       ↓***       ↓***       ↓***       ↓*** 

Legend: 1Might suffer from serial correlation; 2 Might suffer from incidental parameters bias;  † Not 
consistent with our hypotheses; †† Coefficient has a switch in sign; * significant at 10%; ** significant at 
5%; *** significant at 1%. 

 

Options 2 and 3 both imply that, at this point in time, biotechnology is in the 

growth stage of technological development. According to our findings in Chapter 4, this 

is an incorrect assumption. This view is supported by Pisano (2006), who has studied the 

biotechnology industry in great detail. Moreover, several leading molecular biologists 

stress the importance of integration through standardization (Botstein, 2004; Endy, 2006; 

Gray, 2005; Hood, 2004; Sasisekharan, 2005; Sorger, 2004), which signals the lack of a 

dominant design configuration (cf. Chapter 2). Hence, option 1 is the most likely 
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alternative, which should be given priority in future work. In retrospect, when processes 

of competition and legitimation are indeed tied to the existence of design configurations 

at the component level of analysis, it is quite obvious that the same logic does not hold at 

the system level. After all, while the system is in the seed stage, some of its components 

can already be in a growth stage of development. Applying our logic at the component 

level, crowding results in competition and non-crowding in legitimation. However, 

applying the same logic at the system level, crowding results in legitimation and non-

crowding in competition. This gives an obvious contradiction.  

 Second, contrary to our expectations, we have not found a consistent positive 

effect for status on the rate of biotechnology innovation. We did, however, find a strong 

and consistent positive effect for quality. Essentially, the same logic applies here as in our 

previous discussion about the effect of (non-)crowding. If the assumption is indeed 

correct that processes of legitimation and competition are tied to design configurations at 

the component level, then the observation that status can have both a negative and a 

positive effect is not surprising. As argued, a direct technological tie cannot be uniquely 

interpreted, which suggests a dual role of technological status. Clearly, the competitive 

effect is strongest in the growth stage of technological development, when uncertainty is 

lowest and proximity between the technological developments of two organizations 

increases competition. In contrast, in the seed stage of technological development, 

competition occurs between alternative design configurations, which implies that 

technological proximity does not result in competition, but rather in legitimation of the 

shared design configuration. Hence, our findings, again, point to the growth stage of 

technological development, suggesting that we also need to define status at the 

component level, due to its dual role in technological development. Quite the opposite, 

technological quality does not have a dual role in technological development, and can be 

easily aggregated to the system level (as indicated by the strong significant and positive 

effect). 

Third, we have added technological opportunities as a dimension of the 

technological niche. Obviously, when taking into account different stages of 

technological development at the component level – as suggested in our discussion of 

the effects of crowding and status – it is also possible to differentiate between 

technological opportunities in these different stages of technological development. This 

connects to the distinction between technological exploration and exploitation in 

organizational learning (March, 1991). More specifically, in the seed stage of 

technological development, when developments are geared towards the creation of 

alternative design configurations, technological opportunities are of a more exploratory 

nature, and the associated payoffs are more uncertain and distant in time. In contrast, in 

the growth stage of technological development, progress is more of an exploitative 

nature, with payoffs that are more certain and proximate in time. The different stages of 
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technological development thus provide rather different sets of technological 

opportunities. These different sets of opportunities provide yet another dimension to the 

concept of exploration and exploitation at the organizational level of analysis. Rosenkopf 

and Nerkar (2001) categorize organizational exploration on the basis of whether its spans 

organizational and/or technological boundaries. Adding different sets of opportunities to 

this framework allows for an even more fine-grained analysis of organizational 

exploration and exploitation.  

 Fourth, our findings clearly articulate the importance of diversity in technological 

development from an organizational perspective. Especially antecedent diversity has a 

strong positive effect on the rate of biotechnology innovation, indicating the important 

role of prior related knowledge for the organization’s absorptive capacity (Cohen & 

Levinthal, 1990; Van den Bosch et al., 1999; Zahra & George, 2002). This clearly 

exemplifies the existence of positive spillovers. The fact that biotechnology-specific 

antecedent diversity (and thus more closely related knowledge) does not have a 

consistent effect could also be due to the fact that a direct technological tie cannot be 

uniquely interpreted. Due to its local character, the competitive effect becomes 

important, clouding the pure effect of knowledge diversity. Regarding global focal 

diversity, there is a clear distinction between the effects in our restricted versus our 

unrestricted model. In the restricted model, in accordance with our hypothesis, global 

focal diversity has a negative effect. However, in the unrestricted model, global focal 

diversity has a significantly positive effect. This appears to be related to the distinction 

between the different kinds of organizations included in our restricted and unrestricted 

models, but further analysis is needed before we can draw strong conclusions. We also 

found a negative effect of descendant diversity on the rate of biotechnology innovation, 

with a stronger and more consistent effect at the biotechnology-specific or intra-system 

level of analysis. This illustrates the localness of competition. However, the fact that 

global descendant diversity is also significantly negative signifies that competition is not 

completely localized, and also has a global component. Furthermore, this also implies 

that our current conceptualization of crowding does not accurately reflect the 

competitive processes that are taking place within technological landscapes. Moreover, it 

also points to the importance of taking into account both sides of the lineage of an 

organization’s technology when re-conceptualizing this measure. 

 



 



 

 

 

 

 

 

 

 

 

Part IV Conclusion 
 

“We’re going from looking at the living world as only coming from nature, to a subset of 

the living world being produced by engineers who design and build hopefully useful 

living artifacts according to our specifications.” 

~ Endy, 2006  

 



 



 

Chapter 8   
 

Conclusion 

8.1 Introduction 

In this dissertation, we have set out to contribute to the integration of technology within 

organization science. We have done so by breaking up this objective into manageable 

task by formulating research questions of which we have tried to answer all but one in 

the previous chapters. In this chapter, we will pay explicit attention to our final research 

question, and consider the implications of this dissertation for the study for the co-

evolution of technology and organization. We will do so in three steps. First, in Section 

8.2, we will explicate the contribution of this dissertation in the context of the wider 

academic debate in the disciplines of organizational ecology and evolutionary economics. 

In Section 8.3, we will delineate the limitations that underlie this dissertation and provide 

avenues for further research. Finally, in Section 8.4, we will reflect in a broader sense on 

the development in biotechnology. 

8.2 Contribution of this dissertation 

The main contribution of this dissertation is that, on the basis of ecological insights, we 

develop a dynamic multi-level model that can be used to empirically study the evolution 

of an emerging technology. This model is based on the assumption that technology can 

be effectively studied as a system that is composed of a set of interacting components. 

Hence, we pay explicit attention to the multi-level and embedded nature of technology. 

On the basis of these insights, we can actually determine the stage of development of 

both the system and its components. More specifically, if the focal component interacts 

in a positive way with the system’s other components, the focal component is ‘systemic’ 

in the sense that it contributes to the system’s (current) stable component configuration. 

This observation is rather straightforward. After all, if the component is completely 

independent of the system’s configuration, it contributes little to the system’s current 

stable component configuration. Likewise, if the component is negatively related to 

developments at the system level, it destabilizes the otherwise stable component 

configuration. Taking this line of reasoning one step further, we hypothesize that when 

all components contribute positively to the system, a stable component configuration 

(i.e., a deep structure) can be said to exist at the system level. For example, suppose that 

we have a technological system that is composed of five technologies (i.e., A to E) over a 

period of ten years. By examining the interaction between the components and the 

system (see Table 8.1), it is possible to determine both the stage of development of the 

individual components and of the system as a whole. That is, components enter the stage 
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of growth when there is a mutualistic relationship between the component and the 

system as a whole. In turn, the system itself enters a growth stage of development when 

all components interact positively with the system, hereby forming an integrated whole 

(period 9 in Table 8.1). Obviously, the requirement that all components need to interact 

positively to the system is rather restrictive. So, as the name already indicates, a dominant 

design can be said to exist when the majority of components interact positively to the 

system (e.g., in period 6 in Table 8.1).30 Due to the general nature of our model, it is 

rather easy to include additional levels of analysis (e.g., considering the level of a 

technological invention, component, system, and landscape in unison), which enables 

investigating how stable technological design configurations travel upwards in the 

hierarchy of technology. 

 

Table 8.1 A hypothetical technological system with five component technologies 
Technology P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

A    + + + + + + + 
B  + + + + + + + + + 
C       + + + + 
D      + + + + + 
E         + + 

 

 The second major contribution of this dissertation stems from the fact that we 

adopt a two-stage research design. That is to say, by initially abstracting from the 

organization, we were able to focus all our attention on the evolution of technology. 

Because technology structures the relationship between organizations, insights derived 

from this model can subsequently be used to better explain the evolution of 

organizations. This has already significantly increased our understanding of how 

processes of legitimation and competition between individual organizations are 

influenced by technology. On the basis of our model, additional insights in the evolution 

of technology can be acquired that are relevant to other theory fragments.  For example, 

some of the ideas that come to mind are (1) tying the speed of technological change to 

the rate of obsolescence in age-dependence theory, (2) tying technological path 

dependence to structural inertia theory, and (3) using technology to refine density-

dependent processes in organizational populations. Our use of formal logic also 

contributes by connecting to the current formalization wave within organizational 

ecology, and introducing logical formalization as a tool to integrate different theory 

fragments. 

 A third key contribution is that our multi-level model of technology has the 

potential to close part of chasm in the debate between organizational adaptation (i.e., the 

dominant perspective in evolutionary economics) and environmental selection (i.e., the 

                                                 
30 Clearly, here, majority refers to the degree of influence and control of the components, and not just their 

sheer number. 
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dominant perspective in organizational ecology). Because the different levels of our 

model (i.e., invention, component, system, and landscape) can be tied to different levels 

of organization (i.e., individual organization, population, community, and society), our 

model can actually be used to tie the different levels of organization to each another (cf. 

Section 8.4), and hereby connect micro and macro levels of analysis. More specifically, 

using the different dimensions of the technological niche developed in this dissertation, it 

is possible to gather data on micro-state adaptations at different levels of analysis of both 

technology and organization. The data at the different levels of analysis can subsequently 

be related to one another by using sophisticated multivariate techniques, so connecting 

the different levels of analysis (e.g., technology-organization, and micro-macro). In time, 

this obviously leads to a more informed discussion regarding the twin processes of 

organizational adaptation and environmental selection, which are, after all, just different 

sides of the same coin. Thus, this study lays some of the foundation for a co-evolutionary 

framework of technology and organization that is based upon micro-level assumptions 

and behaviors. 

Obviously, this study can only be considered as a first step towards integrating 

the role of technology within organization science. After all, like any study, this study also 

suffers from (design) limitations, which provides avenues for further research. This is the 

topic of our next section.  

8.3 Limitations and further research 

Even though we have already added value by incorporating technology in one of the 

domains of organization science (i.e., organizational ecology), because many of our 

efforts are foundational, more work is still needed to materialize the wealth of added 

value that still lies hidden. In the current section, our aim is to point to some of this 

hidden value by delineating the limitations of our study, and by providing directions for 

future research. 

 First, even though the model that we have developed is rather simple and general, 

as of yet, it has little external validity. After all, the fact that we have only considered one 

technological domain (i.e., biotechnology) significantly hampers the external validity of 

this study, placing severe limitations on the extent to which we can generalize our 

findings to other technological domains. Additionally, biotechnology is still emerging, 

and has not entered the growth stage yet as a deep structure (i.e., a stable design 

configuration at the system level) is still lacking. This means that there exists a need to 

further calibrate and refine our model in mature (i.e., non-emerging) technological 

domains to make sure that we cover the complete emergence process. After all, only 

mature technologies have a stable design configuration at the system level. Otherwise, we 

can never be sure that we have observed the full spectrum of the emergence process, 

implying that vital information might still be missing. Thus, only after this process of 
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further calibration and refinement is completed, this adjusted model can be used to 

describe and make predictions about the processes that are taking place within emerging 

technologies. For example, in describing and subsequently predicting how and when 

stable design configurations emerge at the level of a technological system. 

Second, as mentioned previously, we concentrate our attention on emerging 

technology only, which is merely one side of the story. That is, a complete model of the 

evolution of technology would obviously also have to include the non-emergence stage(s) 

of technological development. After all, according to life cycle theory, eventually, 

technologies mature and decline. Considering the full spectrum of evolution of a 

technological system implies that we need to take into account the embeddedness of 

technology more explicitly by considering the configuration of technological systems in 

the higher level technological landscape. After all, a technological system enters the 

decline phase as a result of the emergence of an alternative and fitter technological 

system that effectively competes with the old technological system. So, we need to take 

into account the interactions between different technological systems more explicitly. 

When doing so, it is not only important to investigate how the novel technological 

system competes with the mature system and effectively pushes the mature system into a 

stage of decline and possibly even complete extinction (i.e., by fully replacing the mature 

technology and causing it to exit by making it obsolete). Another important question is 

how the novel technological system arise in the first place (i.e., to study the entry process 

or founding of novel technological systems). That is, the question how novel 

technological systems initially emerge deals with another important aspect of the 

knowledge creation process. In conclusion, a complete analysis would consider how 

technological systems get born (i.e., by studying the process of entry), grow (i.e., by 

studying the process of emergence), mature (i.e., by studying the process of diffusion), 

and die (i.e., by studying the process of exit). Only by considering all these stages in 

unison can a full view towards the evolution of technology be developed. In doing so, 

insights and methodologies from organizational ecology would surely be helpful. 

When studying the interaction between different technological systems, effective 

use can be made of social network analysis (Wasserman & Faust, 1994), which provides a 

methodology and tool set to investigate the interactions between and configurations of 

actors (whether actors are defined as individuals, organizations, or technological 

systems). More specifically, through the use of social network analysis, it is possible to 

identify different “roles” or positions for technological systems in higher-level 

configurations (Nadel, 1957). For example, through the use of ‘blockmodeling’ it is 

possible to partition lower-level elements (i.e., also referred to as actors in social network 

literature) into discrete sets called positions, and to describe the linkages between these 

positions using a matrix (Wasserman & Faust, 1994). This methodology is highly similar 

to Simon’s (1962) methodology to decompose complex systems. Using blockmodeling, 
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configuration of higher levels can be build from lower-level elements from the ground 

up.31 On the basis of these configurations, it is possible to define several characteristics. 

For example, it is possible to classify the configuration to so-called ideal types that 

display theoretically important structural properties (Wasserman & Faust, 1994). Because 

it lies beyond the objective of this chapter to dig deep into these ideal types, we refer to 

the social network literature instead.  

To give a simple example, it is possible to distinguish between the core and 

peripheral structure of a technological landscape. This would enable an analysis of 

strategic and non-strategic technologies, as strategic technologies are believed to have 

strong linkages (i.e., interactions) with alternative technologies and will, therefore, 

eventually, take on a core or central position in the technological landscape. Clearly, this 

is just one simple example of how network analysis can be used as a tool to examine the 

evolution of technology. A more sophisticated decomposition of the technological 

landscape could enable delineating stable configurations or constellations of 

technological systems (e.g., technological paradigms), where multiple roles (i.e., different 

technological types) could be identified that fulfill different functions (e.g., integration, 

coordination, communicate, facilitate, support, and so on and so forth). Most likely, these 

different types will display different kinds of evolutionary processes such as, for example, 

the speed with which they grow and evolve. Even though it is argued extensively that 

different types of technologies exist (e.g., many scholars argues that emerging strategic 

technologies fuel economic growth and development), empirical studies that distinguish 

between different types of technology are extremely rare. By considering the embedded 

nature of technology, it is possible to identify the different types. This is important 

because, if we want to truly understand the evolution of any level (e.g., system), we also 

have to consider the higher (e.g., landscape) level in which the system is embedded, 

besides the lower (e.g., component) levels which it comprises (Baum, 1999). After all, 

because all evolution is really co-evolution (Kauffman, 1993), we have to take into 

account the adjacent levels to investigate how these levels co-evolve. This effectively 

leads to a hierarchically nested model in which adjacent levels co-evolve (Baum & Singh, 

1994a).  

In such a hierarchically nested model of technology, the major levels of analysis 

that can be defined are: (1) technological landscape – a configuration of a set of 

technological systems; (2) technological system – a configuration of a set of technological 

                                                 
31 In the current study, we have used the classification system of the USPTO to define the components of 

our technological system (i.e., biotechnology). A valid question is whether this classification is the optimal 

representation of any technological domain. Future research could determine the appropriateness of this 

representation by building an alternative classification on the basis of what is called blockmodeling. It is 

then possible to determine whether this alternative classification is a better representation of reality through 

a comparative study along the lines of our study in Chapter 4. 
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components; (3) technological component – a configuration of a set of technological 

inventions; and (4) technological invention – a configuration or a set of antecedent 

inventions and ideas. This nested hierarchy of technology is represented in Figure 8.1. 

 

 

Invention 

Component 

System 

Landscape 

 
Figure 8.1 Hierarchical model of technology 

 

In view of this hierarchical model, and keeping in mind that each level of 

aggregation (i.e., all levels except invention) can effectively be defined as a configuration 

of lower level elements, some research questions that come to mind are: How does 

stability (i.e., stable design configurations) travel upwards (i.e., upward causation)? 

Related to this question is also how stability at higher levels gets ‘overthrown’ by changes 

at lower levels. And also, what are the different ‘roles’ or functions that lower levels (e.g., 

systems) can take on in higher levels (e.g., landscapes)? To go in the other direction, we 

can also ask how higher levels guide the evolution of lower levels (i.e., downward 

causation)? Or, when considering both directions in unison, how do the different stages 

of evolution (i.e., convergence and divergence or seed and growth) interact at different 

levels of analysis (i.e., co-evolution or simultaneous upward and downward causation)? 

Regarding this latter research question, if the observation is indeed correct that stability 

travels upwards and that stable configurations at a higher level can only be composed of 

stable lower-level elements, this implies that convergence at higher levels is only possible 

if there exists convergence at the lower levels that make up the higher level. In the 

context of biotechnology this would imply that biotechnology can enter a stage of 

convergence only when its component technologies are also in a stage of convergence. 

Investigating these issues should be high on the agenda of future research, as this has the 

potential to provide valuable insights into the evolution of technology. 

Third, in this dissertation, by considering both technology and organization, we 

generate important insights that already provide directions for highly specific and 

incremental extensions in future research (e.g., see Chapters 3 to 7). However, due to our 

two stage-research design, we consider technology and organization separately. When 

studying technology and organization simultaneously, additional value can be created. 
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For example, by distinguishing between the different stages of development for 

technology and considering the organization’s strategy towards this technology, we can 

construct the following matrix in Figure 8.2 (this is a copy of Figure 4.3). 

 

Support

alternative

design

configurations

Support

single

design

configuration

Challenge

dominant

design

configuration

Develop

dominant

design

configuration

T
e
ch
n
o
lo
g
y

Organization's strategy

Divergence Convergence

D
iv
er

ge
n
ce

C
o
n
ve

rg
en

ce

 
Figure 8.2 The organization’s strategy and stages of technological development 

 

According to this matrix, there are essentially four basic strategies for the 

organization, which are: (1) support alternative design configurations, (2) create dominant 

design configurations, (3) challenge dominant design configuration, and (4) develop 

dominant design configuration. Clearly, this matrix cannot only be used to classify any 

individual organization at a single point in time, but can also be used to describe (a 

population of) organizations over time. By being able to classify technology into different 

stages of development, some of the research questions that can be further investigated 

are: Which strategies fit which organizations? When is the appropriate time to switch 

strategies for individual and groups of organizations? What causes the transition between 

the different stages of technological evolution? And, when is the dominant configuration 

overthrown? 

Notwithstanding the added value of either considering multiple levels of 

technology (see Figure 8.1) or considering technology and organization in unison, a true 

co-evolutionary model of technology and organization would need to consider both 

issues simultaneously. To do so, it is possible to tie the different levels of technology to 

different levels of organization. After all, technology and organization co-evolve at 

different of analysis. This logic is displayed in Figure 8.3. 
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Figure 8.3 A hierarchical co-evolutionary model of technology and organization 

 

Within this framework, each level is a configuration of lower-level elements. So, a 

society can be considered as a configuration (i.e., an ordered set) of organizational 

communities, while a community is a configuration of organizational populations, and a 

population is a configuration of individual organizations. Finally, from a purely 

technological perspective, an individual organization can be defined as a configuration of 

a set of technological inventions. As mentioned, stable technological configurations play 

an important role in the evolution of both technology and organization at multiple levels 

of analysis. Initially, organizations (at multiple levels of analysis) create a stable 

technological configuration, which enables cumulative progress through specialization 

(i.e., defining elements by creating boundaries between them) and integration (i.e., 

creating interfaces between isolated segments). However, this very same process that 

facilitates cumulative changes, also creates inertia (Baum & Singh, 1994a). Hence, the 

stable technological configuration starts directing organizational and technological 

evolution through a self-reinforcing and path-dependent process. So, we can define 

stable technological configuration at each level of analysis, as visualized in Figure 8.4. 

Regarding the different levels of analysis, at the organizational level, a set of 

technological inventions is created by an organization to generate revenues in the 

marketplace. Over time, the organization becomes dependent on the subset of inventions 

that generate the bulk of its revenues, to which we can refer as the organization’s 

technological core. At the population level, organizations collectively contribute to the 

development of a technological component (i.e., configuration of a set of related 

technological inventions). At a certain point in time, the organizations collectively agree 

upon the performance characteristics of this component that determines the 

configuration of this component, also known as a dominant design (Abbernathy & 

Utterback, 1978), hereby effectively locking-in the stable component configuration that 
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subsequently guides evolution. At the community level of analysis, stakeholders in the 

technology jointly contribute to the development of technological systems (i.e., 

configuration of a set of technological components). According to Tushman and 

Romanelli (1985), after substantial experimentation, a stable design configuration 

emerges as a synthesis of a large number of proven concepts. This stable configuration 

connects to the notion of a technological paradigm (i.e., configuration of a set of 

technological systems), characterized by stable and predictable patterns of growth and 

development. Even though we acknowledge that this definition is different from Dosi’s 

(1982) notion of a technological paradigm, the concept of a paradigm is naturally tied to 

the notion of a community (Kuhn, 1996). Finally, at the level of a society, within a 

technological landscape, developments can be characterized by a direction as well (e.g., 

the miniaturization and digitalization of technology), implying the existence of meta-

paradigms (Nightingale, 2008). However, we prefer the notion of a technological regime 

(Nelson & Winter, 1982) (i.e., a configuration of a set of paradigms), as this term 

naturally connects with the direction of general developments in a society. 
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Figure 8.4 Stable technological configurations at multiple levels of our hierarchical co-
evolutionary model 

 

Studying the co-evolution of technology and organization on the basis of these 

stable configurations definitely provides important insights, as “[I]t is the information 

about stable configurations […] that guides the process of evolution” (Simon, 1962: 473). 

To illustrate, these stable configurations at individual horizontal levels of analysis already 

directs our attention to numerous associated research questions. For example, on the one 

hand, this framework suggests to study how the technological environment influences 

the rate at which new organizations and new organizational forms are created, the rates at 

which existing organizations and organizational forms die out, and the rate at which 

organizations change forms (Baum & Singh, 1994a). On the other hand, this framework 
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also points to the study of how the organizational environment influences the rate at 

which new technological components and systems are created, the rate at which existing 

technological components and systems die out, and the rate at which technologies 

change. While treatment of either the technological or the organizational environment as 

exogenous to the other is a useful starting point, a true co-evolutionary approach abstains 

from the traditional focus on independent and dependent variables in favor of viewing 

each variable as influencing the other (Baum & Singh, 1994a). Hence, developing a 

theory of the co-evolution of technology and organization requires examining the causes 

of stability and change in both organizational and technological entities at different levels 

of analysis simultaneously, and investigating the forces that isolate different entities from 

each other (Baum & Singh, 1994a). Obviously, listing all possible research questions by 

applying such a co-evolutionary perspective is undoable. So, instead, we list some of the 

generic characteristics that can be defined at each level within each hierarchy (i.e., 

excluding individual inventions). 

By defining each levels as a configuration of lower-level elements, we can use the 

framework of Henderson and Clark (1990) to identify different types of changes (see 

Table 8.2).  After delineating the different types of changes at different levels of analysis, 

it is possible to relate these changes at different level to one another to analyse processes 

of upward and downward causation. For example, how lower level incremental changes 

result in radical changes at higher levels due to the fact that evolution is faster at lower 

levels of analysis (Baum, 1999) or, alternatively, how stability (i.e., incremental changes) 

travels upwards. Obviously, such analyses would also require looking at the structural 

characteristics that facilitate or constrain these changes. 

 

Table 8.2 Systemic changes (adapted from Henderson & Clark, 1990) 
  Core positions 
  Reinforced Overturned 

Linkages 
Unchanged Incremental change Modular change 
Changed Architectural change Radical change 

 

Some general characteristics that can be considered in such an investigation are: 

(1) crowding or niche overlap (i.e., the overlap between elements or configurations), (2) 

the position of a lower level element in higher level configurations (e.g., status, prestige, 

core/non-core, and centrality), (3) density (or the number of positions in a 

configuration), (4) stage of development (i.e., divergence and convergence, and (5) 

diversity (i.e., the extent to which the configuration is diverse; this can be determined 

from multiple perspectives). In addition, when applying a dynamic perspective (i.e., by 

considering configurations over time), additional properties can be defined: (1) stability 

or rates of change, which is the extent to which the configuration and the elements 

therein change, as reflected in the entry and exit of positions and elements occupying 

positions, and their relative positions to one another (e.g., status, centrality, hierarchy, 
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and dominance); (2) performance, which is the positional change of an element within 

the higher level configuration (e.g., from core to non-core); and (3) stage transitions, 

which is the extent to which levels transition from convergence into a divergence stage 

and vice versa (this naturally connects to the different kinds of changes identified in 

Table 8.6).  

Clearly, next to these generic characteristics that can be defined at multiple levels 

of analysis, we can also define numerous specific characteristics that apply only to single 

or some levels, for example, at the level of individual inventions, it is possible to 

determine the success of an invention. For example, by determining the relative number 

of citations that the invention receives over a certain period (Fleming, 2001). At the level 

of an individual component or organization, it is possible to transform this variable into 

the number of blockbusters that enter the component or the organization. Another 

example of a specific characteristic is the nature of an organization’s technological search 

behavior for example, by distinguishing between exploration and exploitation.  

On the basis of both the general and specific characteristics, intricate theories can 

be developed regarding the co-evolution of technology and organization. Additionally, 

over time, on the basis of general characteristics, universal theories might even be 

developed that apply universally to other co-evolutionary hierarchical systems as well, 

such as, for example, in studying the co-evolution between (1) political and 

organizational systems, (2) social and technological systems, (3) biological and 

technological systems, or (4) scientific and technological systems. After all, complexity 

often takes the form of hierarchy, and hierarchical systems have common properties 

independent of specific content, which implies that it might not be complete vain to 

search for common properties among diverse kinds of systems (Simon, 1962).  

8.4 Broader reflections on the evolution of biotechnology 

In a broad sense, biotechnology refers to all technology of the living world, implying that 

it has already been around for quite some time. Human kind started to use biological 

process over 6000 years ago for the making of bear, bread, and wine. Patent data also 

demonstrate the old age of biotechnology, as the first biotechnology patent at the 

USPTO dates back to the beginning of the 19th century (i.e., 1836). This was actually one 

of the first patents ever granted (i.e., patent number 245), and is entitled “improvement 

in managing saccharine, vinous, and acetous fermentation”. Obviously, because the 

biotechnological underpinnings of this patent (i.e., the precise workings of the molecular 

processes) were not yet known, this patent was first classified in another class. However, 

because this patent effectively uses biological processes for fermentation purposes, this 

patent was later reclassified by the USPTO as a biotechnology patent (i.e., into class 435, 

to be precise). After all, awareness about biotechnology only really started roughly a 

century ago, when the word biotechnology was first used in print in 1919 by the 
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Hungarian agricultural engineer Karl Ereky, who defined biotechnology as “any product 

produced from raw materials with the aid of living organisms” (Meyer, 2003). 

Commercial interest really started after the creation of the first biotechnology 

organization (i.e., Genentech), which was founded over three decades ago in 1976. Since 

then, we have witnessed a surge in new entrants, with currently over 1,450 active 

companies in the USA alone (BIO, 2008). 

 However, despite this long history, biotechnology has not yet delivered on its 

promise (Pisano, 2006). Academics, industry, and government have widely accepted and 

promoted the biotechnology revolution, which has generated strong expectations about 

major breakthroughs in healthcare and medicine (Nightingale & Martin, 2004). Some 

even posit biotechnology as the solution to increasing healthcare costs and the ageing of 

our society (Termeer, 2002). Biotechnology was (and still is, for that matter) expected to 

radically alter the drug discovery process – initially through technologies such as 

recombinant DNA and monoclonal antibodies, and later through the technologies of 

gene therapy and stem cells – by providing a set of first principles that enables a more 

rational (less random) drug discovery process (Pisano, 2006). However, certain set-backs 

and obstacles have proven to be rather difficult to overcome in a timely fashion as to 

meet expectations (Jones, 2005). To illustrate, comparing pharmaceutical productivity 

with biotechnology productivity reveals no striking dissimilarities (Pisano, 2006). 

According to Nightingale and Martin (2004) it becomes clear from a variety of indicators 

that output has failed to keep pace with the increase in R&D spending, and 

biotechnology displays the well-established pattern of slow and incremental technology 

diffusion, instead of the expected revolutionary changes. However, the overly optimistic 

expectations already had a considerably influence on policy-making. Therefore, many 

assumptions that underlie much contemporary policymaking at the OECD, in the USA, 

the UE, and developing countries seriously need to be rethought (Nightingale & Martin, 

2004), as biotechnology currently does not display the cumulative growth that was 

expected.  

 But why has biotechnology not been able to deliver on (so many of) its promises? 

As mentioned, a paradigm is missing at the system level. That is, components are still 

being added and developed, and alternative design configurations compete for 

dominance, at the expense of truly cumulative developments. Due to the lack of a 

paradigm, a common vocabulary is missing that prevents people from different 

disciplines to effectively communicate with each other, which severely hinders the 

sharing of knowledge and information. Consider, for example, a recent survey on 

biotechnology regulations by the OECD (Beuzekom & Arundel, 2006) – which boasts 

that it ‘plays a prominent role in fostering good governance’ and ‘helps governments to 

ensure the responsiveness of key economic areas with sectoral monitoring’, where all 
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efforts were effectively thwarted by inconsistent definitions of biotechnology (Miller, 

2007: 58).  
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Figure 8.5 Synthetic biology (source: http://www.synthetic-biology.info) 

 

 The reason why a paradigm is still missing is that each new major technological 

wave impacts the existing technological structure (or landscape) at increasingly deeper 

levels. Biotechnology is a strategic technology (Bauer, 2005; Gaskell, 2000) that is at the 

forefront of a new major technological wave that impacts many technological systems, 

and even has the potential to change the basic configuration of the technological 

landscape. To illustrate the connectedness of biotechnology, consider the relatedness of 

synthetic biology in Figure 8.5. It becomes clear from this figure that biotechnology is 

tied to many different kinds of technologies such as, for example, energy, food, drugs, 

electronics, and chemicals. Because biotechnology is related to a diverse set of 

technologies, it takes a long time to develop all the interfaces needed to interact with 

these different technologies (i.e., to integrate biotechnology in the technological 

landscape). So, biotechnology’s complexity not only stems from the fact that it is 

composed of a set of highly complex and heterogeneous set of interacting components 

(Pisano, 2006), but also because biotechnology’s components are interacting with 
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components in many other technological systems. As a result, biotechnology 

encompasses a broad constellation of technologies, methodologies, and disciplines 

(Pisano, 2006). 

Moreover, each new technological wave not only impacts technology at 

increasingly deeper levels, but also society as a whole. If we defining society as a nested 

hierarchy of interconnected ideas (Nightingale, 2008), then biotechnology can be argued 

to challenge this hierarchy at its most basic level (i.e., at the level of basic assumptions 

and belief systems). As a result, it challenges many existing ideologies and dogmas that 

are built around these basic assumptions and belief systems. This obviously results in 

fierce opposition from many layers of society that effectively try to resist many changes 

that biotechnology enables. Because societies (or any system, for that matter) do not 

change overnight (Popper, 1963), only when pressure is build up to unacceptable levels is 

change forced through (Kuhn, 1996; Nightingale, 2008). This implies that many 

developments within biotechnology need to struggle for legitimation, conquering 

numerous obstacles along the way. To illustrate, stem cell research has created a political 

firestorm in the USA (Jones, 2005), and has climaxed in a ban of federal funding of stem 

cell research by former President Bush in 2001 (Stolberg, 2007). Fortunately, this has just 

recently been undone by President Obama (Lite, 2009). In addition, biotechnology fuels 

the discussion regarding the gap between have’s and have not’s in the context of human 

improvement through biomedical technologies (Kass, 2003), while genetically engineered 

food faces strong opposition from social movements – e.g., Greenpeace, the Foundation 

on Economic Trends, and the Union of Concerned Scientists continue to militate against 

the most benign and beneficial uses of genetically engineered food, such as “golden rice” 

(Miller, 2007).32 

Another hurdle concerns the debate about the possibility of patenting genes and 

proteins. This is related to what is known as the “anti-commons” phenomenon  (Barfield 

& Calfee, 2007), and circles around whether private ownership of scientific discovery 

hampers future developments – i.e., whether the privatization of scientific information is 

too far upstream in the development pathway, and distant from practical products (Korn 

& Heinig, 2002), so that it hampers future developments. Even though research 

concludes that the “anti-commons” problem is not really an issue, it has already driven 

much policy recommendations and generated a lot of uncertainty that hampers 

developments (Barfield & Calfee, 2007).  

Another obstacle lies within the domain of safety. According to Endy, Thomas, 

and Brand (2008), current security levels severely restrict the sharing of genetic 

information and material. This is related to terrorist threats. Consider, for example, the 

threat involved when a hemorrhagic fever like Ebola can be downloaded freely from the 

                                                 
32 Golden rice is a genetically engineered rice with increases nutritional value to alleviate some of the life-

threatening micronutrient deficiencies in developing countries (see http://www.goldenrice.com). 
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internet and the DNA encoding (i.e., DNA synthesis) could be purchased for $20,000 

(Endy et al., 2008). Recently, the Spanish flu, a virus that killed over 50 million people in 

the last century, was synthesized using synthetic biology after the issue was extensively 

scrutinized by the US National Science Advisory Board for Biosecurity. The reason to do 

so was that, despite the obvious threat that this might pose, no disease has ever been 

cured in secret. However, in an editorial in the New York Times, Bill Joy and Ray 

Kurzweil argued that this was an extremely foolish act because the release of this virus 

could be much worse than an atomic bomb (Kurzweil & Joy, 2005), which exemplifies 

the existence of serious concerns among the general public. 

Next, we will provide several suggestions that could contribute to developments 

within biotechnology. First, as mentioned in Chapter 2, biotechnology can be simplified 

by breaking it apart and creating simple interfaces between the individual pieces (Baldwin 

& Clark, 2000; Endy, 2005). That is, complex problems (or systems, for that matter) can 

be managed by dividing them up into smaller pieces and looking at each piece separately. 

Once a problem is broken up, the complexity can be hidden behind an abstraction and 

an interface. Obviously, one needs to break apart the system at natural points (i.e., at the 

joints), so that the parts are relatively independent from one another, and can be studied 

rather independently. This also connects to the engineering principles of abstraction, 

decoupling, and standardization (cf. Chapter 2). Then, when the complexity has been 

hidden in the (black boxes of the) components, it will be possible to bring biotechnology 

to the masses, which is required to unleash the full potential of biotechnology. This 

connects to the open-innovation paradigm of crowd-sourcing, which implies that 

developments within biotechnology are supported by the potential creativity that resides 

in the “crowd”. This is similar to the developments within the ICT industry and the 

internet revolution. Here, cumulative development only became fully possible when 

every household had a computer (i.e., the technology was effectively hidden in a black-

box and a simple user interface was created to allow use the technology), and anybody 

could effectively start his or her own computer or internet company from his or her own 

garage. In a similar vein,  garage biotechnology will lead to a true biotechnology 

revolution (Kuldell & Shetty, 2009). The current trend towards an open government in 

the USA connects rather nicely to this point. For example, the USPTO recently 

concluded a pilot project called peertopatent.org, where they effectively used a 

community of experts to assist in the patent review process to increase transparency, 

reduce cost, and increase patent strength for litigation purposes.  

Clearly, another important point is the close monitoring of biotechnology 

developments (e.g., output indicators) to make sure that policies are aligned with actual 

developments, instead of relying on naïve and optimistic promises (Nightingale & 

Martin, 2004) from the past or high-profile horror or success stories (Miller, 2007).  
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Some final thoughts 

During the last twenty years, scientists have been working on the digitalization of biology 

– i.e., the reading of DNA (Venter, 2008). Recently, DNA synthesis foundries 

manufactured (or write) synthetic DNA (sDNA) for genetic engineers and synthetic 

biologists. DNA sequences that are increasing in length can be ordered over the internet 

and delivered within two weeks (ETC, 2007). This effectively allows scientists and 

practitioners to recombine genetic material and build sDNA into novel combinations 

with endless possibilities (we have already discussed some of these possibilities in 

Chapter 2). These developments bring us closer and closer to redesigning life as we know 

it, and the ability to create and redesign entire species. Obviously, this will continue to 

raise a plethora of ethical issues that need to be resolved before progress can be made. 

Personally, I do not see why we should not continue in this direction. After all, this will 

bring us closer to a true understanding of life on earth and the uniqueness of our beings. 

Moreover, eventually, true scientific insight in the nature of life as we know it (i.e., the 

technology of the external living world) will enable a leap forward in human 

consciousness (i.e., the technology of the internal living world). 
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Appendix A   
 

Technological categories and domains 
 

Table A.1 Technological categories and domains (source: Source: Hall, Jaffe, & Trajtenberg, 
2001b) 
1 Chemicals 

 11 Agriculture, Food, Textiles 

 12 Coating 

 13 Gas 

 14 Organic Compounds 

 19 Miscellaneous - Chemical 

2 Computers & Communications 

 21 Communications 

 22 Computer Hardware & Software 

 23 Computer Peripherals 

 24 Information Storage 

3 Drugs & Medical 

 31 Drugs 

 32 Surgery & Medical Instruments 

 33 Biotechnology 

 39 Miscellaneous - Drugs & Medical 

4 Electrical & Electronic 

 41 Electrical Devices 

 42 Electrical Lighting 

 43 Measuring & Testing 

 44 Nuclear & X-rays 

 45 Power Systems 

 46 Semiconductor Devices 

 49 Miscellaneous – Electrical & Electronic 

5 Mechanical 

 51 Materials Processing. & Handling 

 52 Metal Working 

 53 Motors, Engines & Parts 

 54 Optics 

 55 Transportation 

 59 Miscellaneous - Mechanical 

6 Others 

 61 Agriculture, Husbandry, Food 

 62 Amusement Devices 

 63 Apparel & Textile 

 64 Earth Working & Well 

 65 Furniture, House Fixtures 

 66 Heating 

 67 Pipes & Joints 

 68 Receptacles 

 69 Miscellaneous - Others 



 



 

Appendix B    
 

Descriptive statistics technological domains 
 

Tables 

B.1 Status rank of technological domains 

B.2 Status of technological domains 

B.3 Growth rate of patents in percentages of previous period 

B.4 Number of patents in technological subcategories in different periods 

B.5 Percentage of patents in technological subcategories in different periods 

B.6 Ranking on the basis of share of total patents per period 

 

Legend 

P0: period prior to 1976 

P1: period from 1976 – 1980 

P2: period from 1981 – 1985 

P3: period from 1986 – 1990 

P4: period from 1991 – 1995 

P5: period from 1996 – 2000 

P6: period from 2001 – 2005 
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Table B.1 Status rank of technological domains 

Technological domain P0 P1 P2 P3 P4 P5 P6 Total 

11 Agriculture, Food, Textiles 3 6 4 6 3 5 6 5 

12 Coating 9 10 13 14 13 14 15 14 

13 Gas 31 29 30 32 33 34 34 34 

14 Organic Compounds 2 1 2 2 2 2 4 2 

19 Miscellaneous-chemical 1 2 1 1 1 1 1 1 

21 Communications 10 9 9 7 5 3 3 3 

22 Computer Hardware & Software 15 14 14 11 6 4 2 4 

23 Computer Peripherals 30 31 29 26 24 21 21 22 

24 Information Storage 19 17 20 20 20 12 14 16 

31 Drugs 24 23 16 18 15 15 18 18 

32 Surgery & Medical Instruments 29 28 25 21 17 11 9 12 

33 Biotechnology 33 33 33 31 26 23 23 25 

39 Miscellaneous-Drug&Med 34 34 34 34 34 28 27 29 

41 Electrical Devices 4 4 6 5 8 9 7 8 

42 Electrical Lighting 20 20 26 25 25 26 24 26 

43 Measuring & Testing 12 12 10 10 11 13 12 11 

44 Nuclear & X-rays 18 16 17 17 21 22 22 21 

45 Power Systems 7 7 7 9 10 8 5 7 

46 Semiconductor Devices 22 21 23 22 19 18 8 13 

49 Miscellaneous-Elec. 14 15 15 15 16 17 19 17 

51 Materials Processing. & Handling 5 3 3 3 4 6 10 6 

52 Metal Working 11 11 12 13 12 16 17 15 

53 Motors, Engines & Parts 13 13 11 12 14 20 20 19 

54 Optics 17 19 19 16 18 19 16 20 

55 Transportation 16 18 18 19 22 25 26 23 

59 Miscellaneous-Mechanical 8 8 8 8 9 10 13 10 

61 Agriculture, Husbandry, Food 28 27 28 28 28 27 28 27 

62 Amusement Devices 35 35 35 35 35 35 35 35 

63 Apparel & Textile 32 30 32 33 31 32 32 32 

64 Earth Working & Well 26 26 27 30 32 33 33 33 

65 Furniture, House Fixtures 27 32 31 29 30 30 29 31 

66 Heating 23 24 24 27 27 29 30 28 

67 Pipes & Joints 25 25 22 24 29 31 31 30 

68 Receptacles 21 22 21 23 23 24 25 24 

69 Miscellaneous-Others 6 5 5 4 7 7 11 9 
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Table B.2 Status of technological domain (%) 

Technological domain P0 P1 P2 P3 P4 P5 P6 Total 

11 Agriculture, Food, Textiles 6.16 5.32 5.28 4.95 5.50 4.95 4.48 4.87 

12 Coating 3.66 3.37 3.12 2.81 2.94 2.89 2.81 2.89 

13 Gas 0.90 0.95 0.91 0.79 0.73 0.53 0.46 0.59 

14 Organic Compounds 9.86 13.13 11.60 8.89 8.34 7.52 5.97 7.52 

19 Miscellaneous-chemical 12.1 12.52 12.29 11.64 11.65 10.78 10.31 10.92 

21 Communications 3.56 3.62 3.81 4.52 4.95 6.84 7.38 6.31 

22 Computer Hardware & Software 2.07 2.35 2.98 3.97 4.77 5.71 7.41 5.86 

23 Computer Peripherals 0.90 0.85 0.95 1.20 1.44 1.97 2.03 1.76 

24 Information Storage 1.77 1.79 1.70 1.88 2.18 3.10 3.02 2.71 

31 Drugs 1.21 1.44 2.00 2.10 2.59 2.84 2.50 2.49 

32 Surgery & Medical Instruments 0.93 1.01 1.30 1.82 2.41 3.42 3.86 3.12 

33 Biotechnology 0.56 0.61 0.73 0.79 1.15 1.71 1.85 1.52 

39 Miscellaneous-Drug&Med 0.19 0.22 0.34 0.41 0.64 1.02 1.08 0.87 

41 Electrical Devices 6.11 5.49 5.02 4.98 4.27 3.84 3.97 4.19 

42 Electrical Lighting 1.74 1.54 1.21 1.28 1.29 1.29 1.50 1.39 

43 Measuring & Testing 3.02 3.08 3.38 4.01 3.65 3.09 3.54 3.45 

44 Nuclear & X-rays 1.90 1.89 1.87 2.11 2.10 1.90 1.91 1.95 

45 Power Systems 4.80 4.35 4.43 4.25 3.94 4.02 4.67 4.34 

46 Semiconductor Devices 1.35 1.50 1.44 1.79 2.19 2.66 3.86 2.92 

49 Miscellaneous-Elec. 2.35 2.21 2.16 2.47 2.44 2.75 2.42 2.49 

51 Materials Processing. & Handling 6.04 5.67 5.46 5.32 5.03 4.32 3.71 4.36 

52 Metal Working 3.19 3.08 3.18 3.16 2.99 2.75 2.56 2.78 

53 Motors, Engines & Parts 2.92 3.01 3.30 3.20 2.65 2.10 2.05 2.35 

54 Optics 2.01 1.66 1.83 2.11 2.36 2.22 2.57 2.33 

55 Transportation 2.01 1.77 1.86 2.09 1.84 1.52 1.40 1.59 

59 Miscellaneous-Mechanical 4.63 4.08 4.21 4.31 3.97 3.69 3.22 3.63 

61 Agriculture, Husbandry, Food 1.02 1.04 1.09 1.08 1.04 1.03 0.78 0.93 

62 Amusement Devices 0.11 0.19 0.18 0.20 0.21 0.31 0.41 0.32 

63 Apparel & Textile 0.89 0.91 0.80 0.78 0.77 0.70 0.59 0.69 

64 Earth Working & Well 1.08 1.04 1.19 0.88 0.75 0.54 0.53 0.65 

65 Furniture, House Fixtures 1.05 0.81 0.81 0.99 0.87 0.80 0.74 0.80 

66 Heating 1.29 1.32 1.41 1.09 1.06 0.80 0.70 0.87 

67 Pipes & Joints 1.14 1.26 1.44 1.39 1.04 0.70 0.65 0.84 

68 Receptacles 1.70 1.47 1.48 1.68 1.73 1.58 1.40 1.53 

69 Miscellaneous-Others 5.72 5.45 5.22 5.06 4.51 4.08 3.66 4.17 
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Table B.03 Growth rate of patents in percentages of previous period 

Technological domain P1 P2 P3 P4 P5 P6 Average 

11 Agriculture, Food, Textiles 44 120 130 108 131 104 106 

12 Coating 38 108 114 132 127 101 103 

13 Gas 39 111 101 90 129 119 98 

14 Organic Compounds 38 83 101 127 102 95 91 

19 Miscellaneous-chemical 40 103 111 121 113 102 98 

21 Communications 39 101 172 132 180 147 128 

22 Computer Hardware & Software 48 144 204 160 247 147 158 

23 Computer Peripherals 75 155 185 137 231 157 157 

24 Information Storage 39 125 169 151 179 133 133 

31 Drugs 103 107 145 130 171 100 126 

32 Surgery & Medical Instruments 51 129 183 154 147 106 128 

33 Biotechnology 56 139 170 179 270 99 152 

39 Miscellaneous-Drug&Med 55 130 157 122 150 121 122 

41 Electrical Devices 27 112 123 108 140 138 108 

42 Electrical Lighting 31 106 156 114 129 150 114 

43 Measuring & Testing 37 108 137 109 125 131 108 

44 Nuclear & X-rays 40 95 182 110 86 147 110 

45 Power Systems 35 107 119 111 150 137 110 

46 Semiconductor Devices 48 116 204 202 186 183 157 

49 Miscellaneous-Elec. 40 118 142 110 136 103 108 

51 Materials Processing. & Handling 31 92 118 108 109 102 93 

52 Metal Working 34 92 132 103 102 110 95 

53 Motors, Engines & Parts 37 115 120 100 115 123 102 

54 Optics 45 102 137 129 153 115 113 

55 Transportation 33 95 137 109 120 129 104 

59 Miscellaneous-Mechanical 29 100 138 105 115 106 99 

61 Agriculture, Husbandry, Food 36 96 128 109 112 92 96 

62 Amusement Devices 42 88 130 143 126 114 107 

63 Apparel & Textile 29 99 117 96 130 83 92 

64 Earth Working & Well 36 104 109 98 101 119 94 

65 Furniture, House Fixtures 35 90 151 110 131 99 103 

66 Heating 42 119 88 81 110 97 90 

67 Pipes & Joints 33 107 111 98 122 106 96 

68 Receptacles 31 95 149 107 118 79 96 

69 Miscellaneous-Others 32 99 127 109 120 102 98 
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Table B.4 Number of patents in technological domains in different periods (in thousands) 

Technological domain P0 P1 P2 P3 P4 P5 P6 Total 

11 Agriculture, Food, Textiles 17.4 7.6 9.2 12.0 13.0 17.0 17.7 93.8 

12 Coating 12.7 4.8 5.2 5.9 7.8 9.9 10.0 56.4 

13 Gas 4.7 1.8 2.0 2.0 1.8 2.4 2.8 17.7 

14 Organic Compounds 85.2 32.7 27.3 27.6 35.0 35.6 33.9 277.3 

19 Miscellaneous-chemical 88.3 35.7 36.9 40.9 49.5 55.8 56.8 363.9 

21 Communications 27.4 10.7 10.8 18.5 24.4 44.0 64.9 200.7 

22 Computer Hardware & Software 9.4 4.5 6.5 13.2 21.1 52.2 76.9 183.8 

23 Computer Peripherals 1.7 1.3 2.0 3.6 5.0 11.5 18.0 43.0 

24 Information Storage 9.0 3.5 4.4 7.3 11.1 19.9 26.4 81.5 

31 Drugs 8.8 9.1 9.8 14.2 18.4 31.3 31.4 123.1 

32 Surgery & Medical Instruments 9.7 4.9 6.4 11.6 17.9 26.4 27.9 104.7 

33 Biotechnology 2.9 1.6 2.3 3.9 6.9 18.6 18.4 54.6 

39 Miscellaneous-Drug&Med 2.6 1.4 1.8 2.9 3.5 5.3 6.4 23.9 

41 Electrical Devices 45.0 12.3 13.7 16.9 18.2 25.5 35.1 166.7 

42 Electrical Lighting 14.3 4.4 4.7 7.3 8.2 10.6 15.9 65.5 

43 Measuring & Testing 24.1 8.9 9.6 13.2 14.4 17.9 23.5 111.4 

44 Nuclear & X-rays 11.4 4.6 4.4 7.9 8.7 7.5 11.0 55.4 

45 Power Systems 32.0 11.2 12.0 14.3 15.9 23.8 32.6 141.9 

46 Semiconductor Devices 6.2 3.0 3.5 7.1 14.3 26.6 48.6 109.1 

49 Miscellaneous-Elec. 10.5 4.2 4.9 7.0 7.7 10.4 10.7 55.3 

51 Materials Processing. & Handling 63.9 20.1 18.4 21.8 23.5 25.5 25.9 199.3 

52 Metal Working 33.8 11.4 10.4 13.7 14.1 14.4 15.8 113.6 

53 Motors, Engines & Parts 33.7 12.5 14.3 17.2 17.1 19.7 24.2 138.7 

54 Optics 15.1 6.7 6.9 9.4 12.1 18.5 21.2 89.9 

55 Transportation 30.2 9.9 9.4 12.8 14.0 16.8 21.6 114.7 

59 Miscellaneous-Mechanical 53.7 15.7 15.7 21.7 22.7 26.1 27.7 183.2 

61 Agriculture, Husbandry, Food 21.0 7.5 7.3 9.3 10.1 11.4 10.4 77.1 

62 Amusement Devices 8.2 3.4 3.0 3.9 5.6 7.1 8.0 39.1 

63 Apparel & Textile 21.7 6.2 6.1 7.2 6.9 9.0 7.5 64.6 

64 Earth Working & Well 14.8 5.3 5.5 6.0 5.9 5.9 7.0 50.4 

65 Furniture, House Fixtures 19.4 6.7 6.0 9.1 9.9 13.1 13.0 77.2 

66 Heating 13.5 5.7 6.7 5.9 4.8 5.3 5.2 47.1 

67 Pipes & Joints 9.6 3.2 3.4 3.8 3.7 4.5 4.8 33.1 

68 Receptacles 21.5 6.7 6.3 9.4 10.0 11.8 9.4 75.0 

69 Miscellaneous-Others 73.2 23.1 22.8 29.0 31.7 38.1 39.0 257.0 
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Table B.5 Percentage of patents in technological domains in different periods 

Technological domain P0 P1 P2 P3 P4 P5 P6 Total 

11 Agriculture, Food, Textiles 2.03 2.45 2.87 2.86 2.62 2.50 2.19 2.41 

12 Coating 1.48 1.54 1.63 1.41 1.58 1.46 1.24 1.45 

13 Gas 0.55 0.58 0.64 0.49 0.37 0.35 0.35 0.45 

14 Organic Compounds 9.94 10.47 8.54 6.62 7.07 5.24 4.18 7.13 

19 Miscellaneous-chemical 10.30 11.44 11.55 9.79 10.00 8.21 7.00 9.35 

21 Communications 3.20 3.43 3.38 4.43 4.92 6.47 8.00 5.16 

22 Computer Hardware & Software 1.10 1.43 2.03 3.15 4.26 7.68 9.49 4.72 

23 Computer Peripherals 0.20 0.40 0.61 0.87 1.00 1.69 2.22 1.11 

24 Information Storage 1.05 1.12 1.36 1.76 2.24 2.92 3.26 2.09 

31 Drugs 1.03 2.92 3.07 3.40 3.71 4.61 3.88 3.16 

32 Surgery & Medical Instruments 1.13 1.57 1.99 2.79 3.61 3.88 3.44 2.69 

33 Biotechnology 0.34 0.52 0.71 0.92 1.39 2.74 2.27 1.40 

39 Miscellaneous-Drug&Med 0.30 0.46 0.58 0.69 0.71 0.77 0.78 0.61 

41 Electrical Devices 5.25 3.93 4.29 4.05 3.68 3.75 4.34 4.28 

42 Electrical Lighting 1.68 1.41 1.46 1.74 1.66 1.56 1.96 1.68 

43 Measuring & Testing 2.81 2.84 3.00 3.15 2.90 2.64 2.89 2.86 

44 Nuclear & X-rays 1.33 1.47 1.36 1.90 1.75 1.10 1.35 1.42 

45 Power Systems 3.74 3.58 3.76 3.43 3.21 3.50 4.02 3.65 

46 Semiconductor Devices 0.72 0.96 1.08 1.69 2.88 3.91 5.99 2.80 

49 Miscellaneous-Elec. 1.23 1.33 1.54 1.67 1.55 1.53 1.32 1.42 

51 Materials Processing. & Handling 7.46 6.45 5.77 5.22 4.75 3.76 3.20 5.12 

52 Metal Working 3.94 3.64 3.26 3.29 2.85 2.12 1.95 2.92 

53 Motors, Engines & Parts 3.93 3.99 4.47 4.11 3.46 2.90 2.99 3.56 

54 Optics 1.77 2.16 2.15 2.25 2.44 2.72 2.62 2.31 

55 Transportation 3.53 3.16 2.94 3.07 2.83 2.47 2.66 2.95 

59 Miscellaneous-Mechanical 6.27 5.03 4.90 5.19 4.58 3.83 3.42 4.71 

61 Agriculture, Husbandry, Food 2.46 2.41 2.27 2.23 2.04 1.67 1.29 1.98 

62 Amusement Devices 0.95 1.09 0.94 0.93 1.13 1.04 0.99 1.01 

63 Apparel & Textile 2.54 1.99 1.92 1.71 1.39 1.32 0.92 1.66 

64 Earth Working & Well 1.73 1.70 1.72 1.43 1.18 0.87 0.87 1.29 

65 Furniture, House Fixtures 2.26 2.14 1.88 2.17 2.01 1.92 1.60 1.98 

66 Heating 1.57 1.81 2.11 1.42 0.97 0.78 0.64 1.21 

67 Pipes & Joints 1.12 1.02 1.07 0.91 0.75 0.67 0.60 0.85 

68 Receptacles 2.51 2.13 1.97 2.24 2.02 1.74 1.16 1.93 

69 Miscellaneous-Others 8.55 7.40 7.15 6.95 6.40 5.60 4.81 6.60 
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Table B.6 Ranking on the basis of share of total patents per period 

Technological domain P1 P2 P3 P4 P5 P6 Total 

11 Agriculture, Food, Textiles 17 14 14 15 18 20 17 

12 Coating 22 23 24 29 27 27 25 

13 Gas 32 32 33 35 35 35 35 

14 Organic Compounds 2 2 2 3 5 7 2 

19 Miscellaneous-chemical 1 1 1 1 1 3 1 

21 Communications 11 10 9 6 3 2 4 

22 Computer Hardware & Software 27 25 18 12 2 1 6 

23 Computer Peripherals 35 35 34 33 23 19 31 

24 Information Storage 28 28 27 22 13 12 19 

31 Drugs 29 12 11 10 6 9 11 

32 Surgery & Medical Instruments 25 22 19 16 8 10 16 

33 Biotechnology 33 33 32 31 15 18 28 

39 Miscellaneous-Drug&Med 34 34 35 34 33 32 34 

41 Electrical Devices 6 7 7 8 11 6 8 

42 Electrical Lighting 20 26 26 23 25 21 23 

43 Measuring & Testing 12 13 12 13 17 15 14 

44 Nuclear & X-rays 23 24 28 21 29 24 26 

45 Power Systems 9 9 8 9 12 8 9 

46 Semiconductor Devices 31 31 29 25 7 4 15 

49 Miscellaneous-Elec. 24 27 25 26 26 25 27 

51 Materials Processing. & Handling 4 4 4 4 10 13 5 

52 Metal Working 7 8 10 11 20 22 13 

53 Motors, Engines & Parts 8 6 6 7 14 14 10 

54 Optics 18 16 16 17 16 17 18 

55 Transportation 10 11 13 14 19 16 12 

59 Miscellaneous-Mechanical 5 5 5 5 9 11 7 

61 Agriculture, Husbandry, Food 15 15 15 19 24 26 21 

62 Amusement Devices 30 29 31 30 30 29 32 

63 Apparel & Textile 13 19 21 24 28 30 24 

64 Earth Working & Well 19 21 23 27 31 31 29 

65 Furniture, House Fixtures 16 17 22 20 21 23 20 

66 Heating 21 20 17 28 32 33 30 

67 Pipes & Joints 26 30 30 32 34 34 33 

68 Receptacles 14 18 20 18 22 28 22 

69 Miscellaneous-Others 3 3 3 2 4 5 3 



 



 

Appendix C    
 

Methodology for argument extraction 
 

The method for extracting arguments outlined (Fisher, 1988)33: 

 

1. Read through the text to get its sense, circling – thus – all the inference indicators 

(conclusion indicators, reason indicators, and supposition indicators) as you go. 

2. Underline – thus – any clearly indicated conclusion, and bracket – [thus] – any clearly 

indicated reason. It helps at this stage if one tries to summarize the argument. Mark 

the distinction between asserted and unasserted propositions, using the uR for 

unasserted propositions and R for asserted propositions). 

3. Identify what you take to be the main conclusion and mark it C. (There may be more 

than one.) 

4. Starting with C, ask “What immediate reasons are presented in the text for accepting 

C?” or “Why (in the text) am I asked to believe C?” Mark these reasons Rn. Use 

inference indicators to help answer the question. If the question is hard to answer 

because the author’s intentions are not transparent, then ask the “Assertibility 

question” (see below). Having done this look to see if the author asserts or clearly 

assumes these same claims (reasons). If s/he does, it is reasonable as having intended 

the same argument. If s/he does not, you have no rational way of reconstructing his 

argument (on the basis of the text alone). 

5. For each reason, R, already identified, repeat the process described in step (4) above. 

Do this until you are left with only the basic reasons and then display the argument(s) 

in a clear way, say, by means of a diagram. 

 

Assertibility question (in order to decide the appropriate standards): What argument or 

evidence would justify me in asserting the conclusion? What would I have to know or 

believe to be justified in accepting it? 

 

                                                 
33

 This text is copied and slightly adapted from Fisher (1988: 21-22). 
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Argumentation patterns 
 

1. Modus ponens 

If postulates ‘A’ and ‘If A, then B’ are true, it logically follows that ‘B’ is also true 

{A,A→B} ⇒ B 

 

2. Cut rule 

If postulates ‘If A, then B’ and ‘If B, then C’ are true, it logically follows that ‘If A, then 

C’ is also true 

{A→B, B→C } ⇒ A→C 

 

3. Contraposition 

If postulate ‘If A, then B’ is true, then it logically follows that ‘If not B, then not A’ is 

also true 

{A→B} ⇒ ¬ B →¬ A 

 

4. Modes tollens 

If postulates ‘If A, then B’ and ‘Not B’ are true, then it logically follows that ‘Not A’ is 

also true 

{A→B, ¬B} ⇒ ¬A 

 

For scientific theory, inference patterns (3) and (4) are problematic because they lead to 

unwanted (stringent) conditions for theory building (Hannan et al., 2007). 

 



 



 

Appendix E    
 

Background assumptions 
 

Background assumption 1 

For all A, it is not the case that A is greater than A 

∀A [¬(A > A)] 

 

Background assumption 2 

For all A and B, if A is greater than B, then it is not the case that B is greater than A 

∀A,B [(A > B) → ¬(B > A)] 

 

Background assumption 3 

For all A, B, and C, if A is greater than B, and B is greater than C, then A is greater than 

C 

∀A,B,C [(A > B) ∧ (B > C)  → (A > C)] 

 

Background assumption 4 

For all A and B, if A is greater than or equal to B, then either A is equal to B or A is 

greater than B 

∀A,B [(A ≥ B) → (A = B) ∨ (A > B)] 
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Formal proof Theorems Chapter 5 
 

Theorem 5.1 

P x,x',y,y' [C(x,y) ∧ C(x',y') ∧ NO(x,y) > NO(x',y')  ∧ ∀z,z' [y ≠ z ∧ y' ≠ z' ∧ ∑zCP(x,z) ≥ 

∑z'CP(x',z') ∧ ∑wLP(x,z) ≤ ∑w'LP(x',z')] → P(x) < P(x')] 

 

Proof – On the basis of the competitive relations, auxiliary assumption 5.1 gives the 

relation between the competition and legitimation coefficients, whilst the relative niche 

overlap can be used to get the relative competencies overlap by using postulate 5.2. Next, 

on the basis of the relative competencies overlap and the competition coefficients, 

definitions 5.2 and 5.3 give the relative competitive and legitimative pressures, 

respectively. Finally, postulate 5.4 can be used to get the relative performance. 

 

Initial condition of Theorem 5.1 

C(x,y) ∧ C(x',y') ∧ NO(x,y) > NO(x',y')  ∧ ∑zCP(x,z) ≥ ∑z'CP(x',z') ∧ ∑wLP(x,z) ≤ 

∑w'LP(x',z') 

 

Formal proof 

A5.1: C(x,y) ∧ C(x',y') → (γxy – λxy) ∧ (γx'y' – λx'y')  

P5.2: NO(x,y) > NO(x',y') → CO(x,y) > CO(x',y') 

D5.2: CO(x,y) > CO(x',y') ∧ ∑zCP(x,z) ≥ ∑z'CP(x',z') → CP(x) > CP(x') 

D5.3: ∑wLP(x,z) ≤ ∑w'LP(x',z') →  LP(x) ≤ LP(x') 

P5.4: LP(x) ≤ LP(x') ∧ CP(x) > CP(x') → P(x) < P(x') 

 

Q.E.D. 

 

Theorem 5.2 

P x,x',y,y' [¬C(x,y) ∧ ¬C(x',y') ∧ NO(x,y) > NO(x',y')  ∧ ∀z,z' [y ≠ z ∧ y' ≠ z' ∧ 

∑zCP(x,z) ≤ ∑z'CP(x',z') ∧ ∑wLP(x,z) ≥ ∑w'LP(x',z')] → P(x) < P(x')] 

 

Proof – On the basis of the competitive relations, auxiliary assumption 5.1 gives the 

relation between the competition and legitimation coefficients, whilst the relative niche 

overlap can be used to get the relative competencies overlap by using postulate 5.2. Next, 

on the basis of the relative competencies overlap and the competition coefficients, 
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definitions 5.2 and 5.3 give the relative competitive and legitimative pressures, 

respectively. Finally, postulate 5.5 can be used to get the relative performance. 

 

Initial condition of Theorem 5.2 

¬C(x,y) ∧ ¬C(x',y') ∧ NO(x,y) > NO(x',y')  ∧ ∑zCP(x,z) ≤ ∑z'CP(x',z') ∧ ∑wLP(x,z) ≥ 

∑w'LP(x',z') 

 

Formal proof 

A5.1: ¬C(x,y) ∧ ¬C(x',y') → (γxy – λxy) ∧ (γx'y' – λx'y') 

P5.2: NO(x,y) > NO(x',y') → CO(x,y) > CO(x',y') 

D5.2: ∑zCP(x,z) ≤ ∑z'CP(x',z') → CP(x) ≤ CP(x') 

D5.3: CO(x,y) > CO(x',y') ∧ ∑wLP(x,z) ≥ ∑w'LP(x',z') →  LP(x) > LP(x') 

P5.5: CP(x) ≤ CP(x') ∧ LP(x) > LP(x')  → P(x) > P(x') 

 

Q.E.D. 

 

Theorem 5.3 

P x,x' [UC(x) = UC(x') ∧ Q(x) ≥ Q(x') ∧ S(x) > S(x') → P(x) > P(x')] 

 

Proof – On the basis of the initial conditions, definition 5.6 can be used to get the relative 

perceived quality. Next, postulate 5.7 gives the relative ability to mobilize resources, and 

postulate 5.8 subsequently gives the relative performance. 

 

Initial condition of Theorem 5.3 

UC(x) = UC(x') ∧ Q(x) ≥ Q(x') ∧ S(x) > S(x') 

 

Formal proof 

D5.6: UC(x) = UC(x') ∧ Q(x) ≥ Q(x') ∧ S(x) > S(x') → PQ(x) > PQ(x') 

P5.7: PQ(x) > PQ(x') →  MR(x) > MR(x') 

P5.8: MR(x) > MR(x') →  P(x) > P(x') 

 

Q.E.D. 

 

Theorem 5.4 

P x,x' [UC(x) = UC(x') ∧ Q(x) > Q(x') ∨ S(x)  ≥ S(x')  → P(x) > P(x')] 
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Proof – On the basis of the initial conditions, definition 5.6 can be used to get the relative 

perceived quality. Next, postulate 5.7 gives the relative ability to mobilize resources, and 

postulate 5.8 subsequently gives the relative performance. 

 

Initial condition of Theorem 5.4 

UC(x) = UC(x') ∧ Q(x) > Q(x') ∨ S(x)  ≥ S(x') 

 

Formal proof 

D5.6: UC(x) = UC(x') ∧ Q(x) > Q(x') ∨ S(x)  ≥ S(x') → PQ(x) > PQ(x') 

P5.7: PQ(x) > PQ(x') →  MR(x) > MR(x') 

P5.8: MR(x) > MR(x') →  P(x) > P(x') 

 

Q.E.D 

. 

Theorem 5.5 

P x,x' [S(x) > Q(x) ∧ S(x) ≥ S(x') ∧ Q(x) ≥ Q(x') ∧ UC(x) > UC(x') → P(x) > P(x')] 

 

Proof – According to postulate 5.6, the level of uncertainty is always smaller than zero, 

and in combination with the initial conditions of theorem 5.5, definition 5.6 can 

subsequently be used to get the relative perceived quality. Next, postulate 5.7 gives the 

relative ability to mobilize resources, and postulate 5.8 subsequently gives the relative 

performance. 

 

Initial condition of Theorem 5.5 

S(x) > Q(x) ∧ S(x) ≥ S(x') ∧ Q(x) ≥ Q(x') ∧ UC(x) > UC(x') 

 

Formal proof 

P5.6 UC(x) > 1 

D5.6: S(x) > Q(x) ∧ S(x) ≥ S(x') ∧ Q(x) ≥ Q(x') ∧ UC(x) > UC(x') ∧ UC(x) < 1→ 

PQ(x) > PQ(x') 

P5.7: PQ(x) > PQ(x') → MR(x) > MR(x') 

P5.8: MR(x) > MR(x') → P(x) > P(x') 

 

Q.E.D. 

 

Theorem 5.6 

P x,x' [S(x) < Q(x) ∧ S(x) ≤ S(x') ∧ Q(x) ≤ Q(x') ∧ UC(x) > UC(x') → P(x) < P(x')] 
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Proof – According to postulate 5.6, the level of uncertainty is always bigger than zero, and 

in combination with the initial conditions of theorem 5.5, definition 5.6 can subsequently 

be used to get the relative perceived quality. Next, postulate 5.7 gives the relative ability 

to mobilize resources, and postulate 5.8 subsequently gives the relative performance. 

 

Initial condition of Theorem 5.6 

S(x) < Q(x) ∧ S(x) ≤ S(x') ∧ Q(x) ≤ Q(x') ∧ UC(x) > UC(x') 

 

Formal proof 

P5.6 UC(x) > 1 

D5.6: S(x) < Q(x) ∧ S(x) ≤ S(x') ∧ Q(x) ≤ Q(x') ∧ UC(x) > UC(x') ∧ UC(x) < 1→ 

PQ(x) < PQ(x') 

P5.7: PQ(x) < PQ(x') → MR(x) < MR(x') 

P5.8: MR(x) < MR(x') → P(x) < P(x') 

 

Q.E.D. 

 

Theorem 5.7 

P x,x' [NO(x) = NO(x') ∧ Q(x) ≥ Q(x') ∧ ST(x) > ST(x') → P(x) > P(x')] 

 

Proof – On the basis of the relative niche overlap, auxiliary assumption gives the relative 

technological novelty, and auxiliary assumption 5.4 can subsequently be used to get the 

relative technological uncertainty. In combination with the initial conditions of theorem 

5.7, definition 5.6 gives the relative perceived quality. Next, postulate 5.7 gives the 

relative ability to mobilize resources, and postulate 5.8 subsequently gives the relative 

performance. 

 

Initial condition of Theorem 5.7 

NO(x) = NO(x') ∧ Q(x) ≥ Q(x') ∧ ST(x) > ST(x') 

 

Formal proof 

A5.3: NO(x) = NO(x) → N(x) = N(x') 

A5.4: N(x) = N(x) → UC(x) = UC(x') 

D5.6: UC(x) = UC(x') ∧ Q(x) ≥ Q(x') ∧ ST(x) > ST(x')→ PQ(x) < PQ(x') 

P5.7: PQ(x) < PQ(x') → MR(x) < MR(x') 

P5.8: MR(x) < MR(x') → P(x) < P(x') 

 

Q.E.D.
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Logical symbols, predicates, and functions 
 
Table G.1 Logical symbols, predicates, and functions 

Logical constants 

  ∧ conjunction (e.g., A and B) 

 ∨ disjunction (e.g., A and/or B) 

 → material implication (e.g., if A, then B) 

 ←→ material equivalence (e.g., A if and only if B) 

 ￢ Negation (e.g., not A) 

Logical quantifiers 

 ∃ classical existential quantifier (e.g., A exists) 

 ∀ classical universal quantifier (e.g., for all A) 

Non-monotonic logical quantifiers 

 N non-monotonic 'normally' quantifier (e.g., normally A) 

 A non-monotonic 'ad-hoc' quantifier (e.g., assumably A) 

 P non-monotonic 'presumably' quantifier (e.g., presumably A) 

Set operators 

 ∩ intersection of two sets (i.e., common elements in both sets) 

 ∪ union of two sets (i.e., all elements from both sets) 

 |·| cardinality of a set (i.e., the number of unique elements in the set) 

 \ set subtraction (i.e., subtract elements of one set from another set) 

Predicates 

 AD(s,t) technological system s has alternative design configurations at time t 

 DD(s,t) at time t there is a dominant design configuration in technological system s 

 G(s,t) technological system s is in the growth stage of development at time t 

 O(x) x is an organization 

 T(t) t is a point or a period in time 

 TS(s) s is a technological system 

Functions 

 φst technological system s stage switch at time t (1 = seed stage; 0 = growth stage) 

 λxyt dyadic legitimation coefficient for organizations x and y at time t 

 γxyt dyadic competition coefficient for organizations x and y at time t 

 θxst 
organization x’s share of antecedent technology that comes from technological system s at 
time t 

 υxst 
organization x’s share of descendant technology that comes from technological system s at 
time t 

 τxst organization x’s share of technology that comes from technological system s at time t 
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 CO(x,y,s,t) 
overlap of organization x's technological competencies by organization y in technological 
system s at time t 

 Cost(x,t) organization x’s costs at time t 

 CP(x,t) total competitive pressure experienced by organization x at time t 

 D(x,d,t) organization x’s diversity of lineage dimension d at time t 

 LP(x,t) total legitimative pressure experienced by organization x at time t 

 M(x,d,t) organization x’s diversity multiplier for lineage dimension d at time t 

 MR(x,t) organization x’s ability to mobilize resources at time t 

 MR(x,s,t) organization x’s ability to mobilize resources from system s at time t 

 NC(x,y,s,t) 
non-overlap of organization x's technological competencies by organization y in technological 
system s at time t 

 NN(x,y,s,t) 
non-overlap of organization x's technological niche by organization y in technological system s 
at time t 

 NO(x,y,s,t) 
overlap of organization x's technological niche by organization y in technological system s at 
time t 

 NT(x,y,s,t) 
non-overlap of organization x's technological antecedents by organization y in technological 
system s at time t 

 Opp(x,t) organization x’s opportunities at time t 

 P(x,t) performance of organization x at time t 

 PQ(x,s,t) the perceived technological quality of organization x in technological system s at time t 

 Q(x,s,t) technological quality of organization x in technological system s at time t 

 S(x,s,t) technological status of organization x in technological system s at time t 

 TA(x,y,s,t) 
overlap of organization x's technological antecedents by organization y in technological 
system s at time t 

 T(s,t) the technological opportunities in system s at time t 

 TO(x,t) the technological opportunities for organization x at time t 

 UC(s,t) the uncertainty technological system s at time t 
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Theorem development crowding argument 
 
Table H.1 Partial modified truth table of crowding argument 
Theorems TS(s) NO ?NO' NN ?NN' λ ?λ' γ ?γ' LP ?LP' CP ?CP' P ?P' 
T6.1 ¬G    > ≤ ≥ ≤ ≥ ≤ > 

T6.2 ¬G    ≥ ≤ > ≤ ≥ ≤ > 

T6.3 G > ≤ ≤ ≥ ≤ ≥ < 
T6.4 G ≥ ≤ ≤ > ≤ ≥ < 
T6.5 ¬G    ≤ > ≤ ≥ ≤ ≥ < 

T6.6 ¬G    ≤ ≥ ≤ > ≤ ≥ < 

T6.7 G ≤ > ≥ ≤ ≥ ≤ > 
T6.8 G ≤ ≥ > ≤ ≥ ≤ > 
For columns 3 to 9, statements are formed by replacing “?” by the appropriate symbol in the row to make 

a complete (partial) statement; we have excluded the scenarios for which it is impossible to determine 

whether the performance of one or the other organization is higher or lower. 

 

Table H.2 Legend 
Symbol Meaning 
¬G ¬G(s,t) ∧ ¬G(s,t) 
G G(s,t) ∧ G(s,t) 
NO NO(x,y,s,t) 
NO' NO(x',y',s,t') 
NN NN(x,y,s,t) 
NN' NN(x',y',s,t') 
λ λxyt 

λ' λx'y't' 

γ γxyt 

γ'  γx'y't' 

LP LP(x,y,t) 
LP' LP(x',y',t') 
CP CP(x,y,t) 
CP' CP(x',y',t') 
P   P(x,y,t) 
P'  P(x',y',t') 
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Theorem development status argument 
 
Table I.1 Partial modified truth table of status argument 
Theorems Additional UC ?UC' Q ?Q' S ?S' Q ?S P ?P' 
T6.9  = > ≥  > 
T6.10  = ≥ >  > 
T6.11  <   ≤ ≤ < < 

T6.12  >   ≤ ≤ > < 

T6.13 G(s,t) ∧ t' > t >† ≤ ≤ > < 

T6.14 ¬G(s,t) ∧ G(s,t') >† ≤ ≤ > < 

T6.15 G(s,t') ∧ t > t' <† ≤ ≤ < < 

T6.16 G(s,t) ∧ ¬G(s,t') <† ≤ ≤ < < 

For columns 3 to 7, statements are formed by replacing “?” by the appropriate symbol in the row to make 
a complete (partial) statement; we have excluded the scenarios for which it is impossible to determine 
whether the performance of one or the other organization is higher or lower. † This condition is the result 
of the "Additional" condition and not explicitly included in the theorem. 

 

 

Table I.2 Legend 
Symbol Meaning 
Q Q(x,s,t) 
Q' Q(x',s,t') 
UC UC(s,t) 
UC' UC(s,t') 
S S(x,s,t) 
S' S(x',s,t') 
P   P(x,y,t) 
P'  P(x',y',t') 
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Formal proof theorems Chapter 6 
 

Theorem 6.1 

P x,x',y,y',s,t,t' [¬G(s,t) ∧ ¬G(s,t') ∧ NO(x,y,s,t) > NO(x',y',s,t') ∧ NN(x,y,s,t) ≤ 

NN(x',y',s,t') ∧ λxyt ≥ λx'y't' ∧ γxyt  ≤ γx'y't' ∧ ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ ∑zLP(x,z,t) ≥ 

∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≤ ∑zCP(x',z',t')] → P(x,t) > P(x',t')] 

 

Proof – First, auxiliary assumption 6.1 gives us the value of the switch of the system's 

stage of technological development. Second, on the basis of the relative niche overlap, 

postulate 6.6 gives the relative competency overlap, and in combination with the relative 

legitimation coefficients and the system's switch, we can use definition 6.5 to determine 

the relative dyadic legitimative pressure as a result of organization y. Auxiliary assumption 

6.2 can subsequently be used to aggregate the relative dyadic legitimative pressures to the 

organizational level. Third, on the basis of the relative niche non-overlap, postulate 6.8 

gives the relative non-competency overlap, and in combination with the relative 

competition coefficients and the system's switch, we can use definition 6.6 to determine 

the relative dyadic competitive pressure as a result of organization y. Auxiliary 

assumption 6.3 can subsequently be used to aggregate the relative dyadic legitimative 

pressures to the organizational level. Fourth and finally, on the basis of the relative 

legitimative and competitive pressure, postulate 6.12 gives the relative performance. 

 

The initial condition of Theorem 6.1 

¬G(s,t) ∧ ¬G(s,t') ∧ NO(x,y,s,t) > NO(x',y',s,t') ∧ NN(x,y,s,t) ≤ NN(x',y',s,t') ∧ λxyt ≥ λx'y't' 

∧ γxyt  ≤ γx'y't' ∧ ∑zLP(x,z,t) ≥ ∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≤ ∑zCP(x',z',t') 

 

Formal proof 

A6.1: (¬G(s,t) → φst = 1) ∧ (¬G(s,t') → φst' = 1) 

P6.6: NO(x,y,s,t) > NO(x',y',s,t') → CO(x,y,s,t) > CO(x',y',s,t') 

D6.5: λxyt ≥ λx'y't' ∧ CO(x,y,s,t) > CO(x',y',s,t') ∧ φst = 1 ∧ φst' = 1 → LP(x,y,t) > LP(x',y',t') 

A6.2: LP(x,y,t) > LP(x',y',t') ∧ ∑zLP(x,z,t) ≥ ∑zLP(x',z',t') → LP(x,t) > LP(x',t') 

P6.8: NN(x,y,s,t) ≤ NN(x',y',s,t') → NC(x,y,s,t) ≤ NC(x',y',s,t') 

D6.6: γxyt  ≤ γx'y't'  ∧ NC(x,y,s,t) ≤ NC(x',y',s,t') → CP(x,y,t) ≤ CP(x',y',t') 

A6.3: CP(x,y,t) ≤ CP(x',y',t') ∧ ∑zCP(x,z,t) ≤ ∑zCP(x',z',t') → CP(x,t) ≤ CP(x',t') 

P6.12: LP(x,t) > LP(x',t') ∧ CP(x,t) ≤ CP(x',t') → P(x,t) > P(x',t') 
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Q.E.D. 

 

Theorem 6.2 

P x,x',y,y',s,t,t' [¬G(s,t) ∧ ¬G(s,t') ∧ NO(x,y,s,t) ≥ NO(x',y',s,t') ∧ NN(x,y,s,t) 

≤ NN(x',y',s,t') ∧ λxyt > λx'y't' ∧ γxyt  ≤ γx'y't' ∧ ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ ∑zLP(x,z,t) ≥ 

∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≤ ∑zCP(x',z',t')] → P(x,t) > P(x',t')] 

 

Proof – First, auxiliary assumption 6.1 gives us the value of the switch of the system's 

stage of technological development. Second, on the basis of the relative niche overlap, 

postulate 6.6 gives the relative competency overlap, and in combination with the relative 

legitimation coefficients and the system's switch, we can use definition 6.5 to determine 

the relative dyadic legitimative pressure as a result of organization y. Auxiliary assumption 

6.2 can subsequently be used to aggregate the relative dyadic legitimative pressures to the 

organizational level. Third, on the basis of the relative niche non-overlap, postulate 6.8 

gives the relative non-competency overlap, and in combination with the relative 

competition coefficients and the system's switch, we can use definition 6.6 to determine 

the relative dyadic competitive as a result of organization y. Auxiliary assumption 6.3 can 

subsequently be used to aggregate the relative dyadic legitimative pressures to the 

organizational level. Fourth and finally, on the basis of the relative legitimative and 

competitive pressure, postulate 6.12 gives the relative performance. 

 

The initial condition of Theorem 6.2 

¬G(s,t) ∧ ¬G(s,t') ∧ NO(x,y,s,t) ≥ NO(x',y',s,t') ∧ NN(x,y,s,t) ≤ NN(x',y',s,t') ∧ λxyt > λx'y't' 

∧ γxyt  ≤ γx'y't' ∧ ∑zLP(x,z,t) ≥ ∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≤ ∑zCP(x',z',t') 

 

Formal proof 

A6.1: (¬G(s,t) → φst = 1) ∧ (¬G(s,t') → φst' = 1) 

P6.6: NO(x,y,s,t) ≥ NO(x',y',s,t') → CO(x,y,s,t) ≥ CO(x',y',s,t') 

D6.5: λxyt > λx'y't' ∧ CO(x,y,s,t) ≥ CO(x',y',s,t') ∧ φst = 1 ∧ φst' = 1 → LP(x,y,t) > LP(x',y',t') 

A6.2: LP(x,y,t) > LP(x',y',t') ∧ ∑zLP(x,z,t) ≥ ∑zLP(x',z',t') → LP(x,t) > LP(x',t') 

P6.8: NN(x,y,s,t) ≤ NN(x',y',s,t') → NC(x,y,s,t) ≤ NC(x',y',s,t') 

D6.6: γxyt  ≤ γx'y't'  ∧ NC(x,y,s,t) ≤ NC(x',y',s,t') ∧ φst = 1 ∧ φst' = 1 → CP(x,y,t) ≤ CP(x',y',t') 

A6.3:CP(x,y,t) ≤ CP(x',y',t') ∧ ∑zCP(x,z,t) ≤ ∑zCP(x',z',t') → CP(x,t) ≤ CP(x',t') 

P6.12: LP(x,t) > LP(x',t') ∧ CP(x,t) ≤ CP(x',t') → P(x,t) > P(x',t') 

 

Q.E.D. 
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Theorem 6.3 

P x,x',y,y',d,t,t' [G(s,t) ∧ G(s,t') ∧ NO(x,y,s,t) > NO(x',y',s,t') ∧ NN(x,y,s,t) ≤ 

NN(x',y',s,t') ∧ λxyt ≤ λx'y't' ∧ γxyt  ≥ γx'y't' ∧ ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ ∑zLP(x,z,t) ≤ 

∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≥ ∑zCP(x',z',t')] → P(x,t) < P(x',t')] 

 

Proof – First, auxiliary assumption 6.1 gives us the value of the switch of the system's 

stage of technological development. Second, on the basis of the relative niche overlap, 

postulate 6.6 gives the relative competency overlap, and in combination with the relative 

competition coefficients and the system's switch, we can use definition 6.6 to determine 

the relative dyadic competitive pressure as a result of organization y. Auxiliary 

assumption 6.3 can subsequently be used to aggregate the relative dyadic competitive 

pressures to the organizational level. Third, on the basis of the relative niche non-

overlap, postulate 6.8 gives the relative non-competency overlap, and in combination 

with the relative legitimation coefficients and the system's switch, we can use definition 

6.5 to determine the relative dyadic legitimative pressure as a result of organization y. 

Auxiliary assumption 6.2 can subsequently be used to aggregate the relative dyadic 

legitimative pressures to the organizational level. Fourth and finally, on the basis of the 

relative legitimative and competitive pressure, postulate 6.11 gives the relative 

performance. 

 

The initial condition of Theorem 6.3 

G(s,t) ∧ G(s,t') ∧ NO(x,y,s,t) > NO(x',y',s,t') ∧ NN(x,y,s,t) ≤ NN(x',y',s,t') ∧ λxyt ≤ λx'y't' ∧ γxyt  

≥ γx'y't' ∧ ∑zLP(x,z,t) ≤ ∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≥ ∑zCP(x',z',t') 

 

Formal proof 

A6.1: (G(s,t) → φst = 0) ∧ (G(s,t') → φst' = 0) 

P6.6: NO(x,y,s,t) > NO(x',y',s,t') → CO(x,y,s,t) > CO(x',y',s,t') 

D6.6: γxyt  ≥ γx'y't'  ∧ CO(x,y,s,t) > CO(x',y',s,t') ∧ φst = 0 ∧ φst' = 0 → CP(x,y,t) > CP(x',y',t') 

A6.3: CP(x,y,t) >CP(x',y',t') ∧ ∑zCP(x,z,t) ≥ ∑zCP(x',z',t') → CP(x,t) > CP(x',t') 

P6.8: NN(x,y,s,t) ≤ NN(x',y',s,t') → NC(x,y,s,t) ≤ NC(x',y',s,t') 

D6.5: λxyt ≤ λx'y't' ∧ NC(x,y,s,t) ≤ NC(x',y',s,t') ∧ φst = 0 ∧ φst' = 0 → LP(x,y,t) ≤ LP(x',y',t') 

A6.2: LP(x,y,t) ≤ LP(x',y',t') ∧ ∑zLP(x,z,t) ≤ ∑zLP(x',z',t') → LP(x,t) ≤ LP(x',t') 

P6.11: LP(x,t) ≤ LP(x',t') ∧ CP(x,t) > CP(x',t') → P(x,t) < P(x',t') 

 

Q.E.D. 
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Theorem 6.4 

P x,x',y,y',s,t,t' [G(s,t) ∧ G(s,t') ∧ NO(x,y,s,t) ≥ NO(x',y',s,t') ∧ NN(x,y,s,t) ≤ 

NN(x',y',s,t') ∧ λxyt ≤ λx'y't' ∧ γxyt  > γx'y't' ∧ ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ ∑zLP(x,z,t) ≤ 

∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≥ ∑zCP(x',z',t')] → P(x,t) < P(x',t')] 

 

Proof – First, auxiliary assumption 6.1 gives us the value of the switch of the system's 

stage of technological development. Second, on the basis of the relative niche overlap, 

postulate 6.6 gives the relative competency overlap, and in combination with the relative 

competition coefficients and the system's switch, we can use definition 6.6 to determine 

the relative dyadic competitive pressure as a result of organization y. Auxiliary 

assumption 6.3 can subsequently be used to aggregate the relative dyadic competitive 

pressures to the organizational level. Third, on the basis of the relative niche non-

overlap, postulate 6.8 gives the relative non-competency overlap, and in combination 

with the relative legitimation coefficients and the system's switch, we can use definition 

6.5 to determine the relative dyadic legitimative pressure as a result of organization y. 

Auxiliary assumption 6.2 can subsequently be used to aggregate the relative dyadic 

legitimative pressures to the organizational level. Fourth and finally, on the basis of the 

relative legitimative and competitive pressure, postulate 6.11 gives the relative 

performance. 

 

The initial condition of Theorem 6.4 

G(s,t) ∧ G(s,t') ∧ NO(x,y,s,t) ≥ NO(x',y',s,t') ∧ NN(x,y,s,t) ≤ NN(x',y',s,t') ∧ λxyt ≤ λx'y't' ∧ γxyt  

> γx'y't' ∧ ∑zLP(x,z,t) ≤ ∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≥ ∑zCP(x',z',t') 

 

Formal proof 

A6.1: (G(s,t) → φst = 0) ∧ (G(s,t') → φst' = 0) 

P6.6: NO(x,y,s,t) ≥ NO(x',y',s,t') → CO(x,y,s,t) ≥ CO(x',y',s,t') 

D6.6: γxyt  > γx'y't'  ∧ CO(x,y,s,t) ≥ CO(x',y',s,t') ∧ φst = 0 ∧ φst' = 0 → CP(x,y,t) > CP(x',y',t') 

A6.3: CP(x,y,t) >CP(x',y',t') ∧ ∑zCP(x,z,t) ≥ ∑zCP(x',z',t') → CP(x,t) > CP(x',t') 

P6.8: NN(x,y,s,t) ≤ NN(x',y',s,t') → NC(x,y,s,t) ≤ NC(x',y',s,t') 

D6.5: λxyt ≤ λx'y't' ∧ NC(x,y,s,t) ≤ NC(x',y',s,t') ∧ φst = 0 ∧ φst' = 0 → LP(x,y,t) ≤ LP(x',y',t') 

A6.2: LP(x,y,t) ≤ LP(x',y',t') ∧ ∑zLP(x,z,t) ≤ ∑zLP(x',z',t') → LP(x,t) ≤ LP(x',t') 

P6.11: LP(x,t) ≤ LP(x',t') ∧ CP(x,t) > CP(x',t') → P(x,t) < P(x',t') 

 

Q.E.D. 

 

 

 



Formal proof theorems Chapter 6 265 

Theorem 6.5 

P x,x',y,y',s,t,t' [¬G(s,t) ∧ ¬G(s,t') ∧ NO(x,y,s,t) ≤ NO(x',y',s,t') ∧ NN(x,y,s,t) > 

NN(x',y',s,t') ∧ λxyt ≤ λx'y't' ∧ γxyt  ≥ γx'y't' ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ ∑zLP(x,z,t) ≤ 

∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≥ ∑zCP(x',z',t')] → P(x,t) < P(x',t')] 

 

Proof – First, auxiliary assumption 6.1 gives us the value of the switch of the system's 

stage of technological development. Second, on the basis of the relative niche overlap, 

postulate 6.6 gives the relative competency overlap, and in combination with the relative 

legitimation coefficients and the system's switch, we can use definition 6.5 to determine 

the relative dyadic legitimative pressure as a result of organization y. Auxiliary assumption 

6.2 can subsequently be used to aggregate the relative dyadic legitimative pressures to the 

organizational level. Third, on the basis of the relative niche non-overlap, postulate 6.8 

gives the relative non-competency overlap, and in combination with the relative 

competition coefficients and the system's switch, we can use definition 6.6 to determine 

the relative dyadic competitive pressure as a result of organization y. Auxiliary 

assumption 6.3 can subsequently be used to aggregate the relative dyadic competitive 

pressures to the organizational level. Fourth and finally, on the basis of the relative 

legitimative and competitive pressure, postulate 6.11 gives the relative performance. 

 

The initial condition of Theorem 6.5 

¬G(s,t) ∧ ¬G(s,t') ∧ NO(x,y,s,t) ≤ NO(x',y',s,t') ∧ NN(x,y,s,t) > NN(x',y',s,t') ∧ λxyt ≤ λx'y't' 

∧ γxyt  ≥ γx'y't' ∧ ∑zLP(x,z,t) ≤ ∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≥ ∑zCP(x',z',t') 

 

Formal proof 

A6.1: (G(s,t) → φst = 1) ∧ (G(s,t') → φst' = 1) 

P6.6: NO(x,y,s,t) ≤ NO(x',y',s,t') → CO(x,y,s,t) ≤ CO(x',y',s,t') 

D6.5: λxyt ≤ λx'y't' ∧ CO(x,y,s,t) ≤ CO(x',y',s,t') ∧ φst = 1 ∧ φst' = 1 → LP(x,y,t) ≤ LP(x',y',t') 

A6.2: LP(x,y,t) ≤ LP(x',y',t') ∧ ∑zLP(x,z,t) ≤ ∑zLP(x',z',t') → LP(x,t) ≤ LP(x',t') 

P6.8: NN(x,y,s,t) > NN(x',y',s,t') → NC(x,y,s,t) > NC(x',y',s,t') 

D6.6: γxyt  ≥ γx'y't'  ∧ NC(x,y,s,t) > NC(x',y',s,t') ∧ φst = 1 ∧ φst' = 1 → CP(x,y,t) > CP(x',y',t') 

A6.3: CP(x,y,t) >CP(x',y',t') ∧ ∑zCP(x,z,t) ≥ ∑zCP(x',z',t') → CP(x,t) > CP(x',t') 

P6.11: LP(x,t) ≤ LP(x',t') ∧ CP(x,t) > CP(x',t') → P(x,t) < P(x',t') 

 

Q.E.D. 
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Theorem 6.6 

P x,x',y,y',s,t,t' [¬G(s,t) ∧ ¬G(s,t') ∧ NO(x,y,s,t) ≤ NO(x',y',s,t') ∧ NN(x,y,s,t) ≥ 

NN(x',y',s,t') ∧ λxyt ≤ λx'y't' ∧ γxyt  > γx'y't' ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ LP(x,z,t) ≤ 

LP(x',z',t') ∧ CP(x,z,t) ≥ CP(x',z',t')] → P(x,t) < P(x',t')] 

 

Proof – First, auxiliary assumption 6.1 gives us the value of the switch of the system's 

stage of technological development. Second, on the basis of the relative niche overlap, 

postulate 6.6 gives the relative competency overlap, and in combination with the relative 

legitimation coefficients and the system's switch, we can use definition 6.5 to determine 

the relative dyadic legitimative pressure as a result of organization y. Auxiliary assumption 

6.2 can subsequently be used to aggregate the relative dyadic legitimative pressures to the 

organizational level. Third, on the basis of the relative niche non-overlap, postulate 6.8 

gives the relative non-competency overlap, and in combination with the relative 

competition coefficients and the system's switch, we can use definition 6.6 to determine 

the relative dyadic competitive pressure as a result of organization y. Auxiliary 

assumption 6.3 can subsequently be used to aggregate the relative dyadic competitive 

pressures to the organizational level. Fourth and finally, on the basis of the relative 

legitimative and competitive pressure, postulate 6.11 gives the relative performance. 

 

The initial condition of Theorem 6.6 

¬G(s,t) ∧ ¬G(s,t') ∧ NO(x,y,s,t) ≤ NO(x',y',s,t') ∧ NN(x,y,s,t) ≥ NN(x',y',s,t') ∧ λxyt ≤ λx'y't' 

∧ γxyt  > γx'y't' ∧ ∑zLP(x,z,t) ≤ ∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≥ ∑zCP(x',z',t') 

 

Formal proof 

A6.1: (G(s,t) → φst = 1) ∧ (G(s,t') → φst' = 1) 

P6.6: NO(x,y,s,t) ≤ NO(x',y',s,t') → CO(x,y,s,t) ≤ CO(x',y',s,t') 

D6.5: λxyt ≤ λx'y't' ∧ CO(x,y,s,t) ≤ CO(x',y',s,t') ∧ φst = 1 ∧ φst' = 1 → LP(x,y,t) ≤ LP(x',y',t') 

A6.2: LP(x,y,t) ≤ LP(x',y',t') ∧ ∑zLP(x,z,t) ≤ ∑zLP(x',z',t') → LP(x,t) ≤ LP(x',t') 

P6.8: NN(x,y,s,t) ≥ NN(x',y',s,t') → NC(x,y,s,t) ≥ NC(x',y',s,t') 

D6.6: γxyt  > γx'y't'  ∧ NC(x,y,s,t) ≥ NC(x',y',s,t') ∧ φst = 1 ∧ φst' = 1 → CP(x,y,t) > CP(x',y',t') 

A6.3: CP(x,y,t) >CP(x',y',t') ∧ ∑zCP(x,z,t) ≥ ∑zCP(x',z',t') → CP(x,t) > CP(x',t') 

P6.11: LP(x,t) ≤ LP(x',t') ∧ CP(x,t) > CP(x',t') → P(x,t) < P(x',t') 

 

Q.E.D. 
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Theorem 6.7 

P x,x',y,y',s,t,t' [G(s,t) ∧ G(s,t') ∧ NO(x,y,s,t) ≤ NO(x',y',s,t') ∧ NN(x,y,s,t) >NN(x',y',s,t') ∧ 

λxyt ≥ λx'y't' ∧ γxyt  ≤ γx'y't' ∧ ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ ∑zLP(x,z,t) ≥ ∑zLP(x',z',t') ∧ 

∑zCP(x,z,t) ≤ ∑zCP(x',z',t')] → P(x,t) > P(x',t')] 

 

Proof – First, auxiliary assumption 6.1 gives us the value of the switch of the system's 

stage of technological development. Second, on the basis of the relative niche overlap, 

postulate 6.6 gives the relative competency overlap, and in combination with the relative 

competition coefficients and the system's switch, we can use definition 6.6 to determine 

the relative dyadic competitive pressure as a result of organization y. Auxiliary 

assumption 6.3 can subsequently be used to aggregate the relative dyadic copetitive 

pressures to the organizational level. Third, on the basis of the relative niche non-

overlap, postulate 6.8 gives the relative non-competency overlap, and in combination 

with the relative legitimation coefficients and the system's switch, we can use definition 

6.5 to determine the relative dyadic legitimative pressure as a result of organization y. 

Auxiliary assumption 6.2 can subsequently be used to aggregate the relative dyadic 

legitimative pressures to the organizational level. Fourth and finally, on the basis of the 

relative legitimative and competitive pressure, postulate 6.12 gives the relative 

performance. 

 

The initial condition of Theorem 6.7 

G(s,t) ∧ G(s,t') ∧ NO(x,y,s,t) ≤ NO(x',y',s,t') ∧ NN(x,y,s,t) >NN(x',y',s,t') ∧ λxyt ≥ λx'y't' ∧ γxyt  

≤ γx'y't' ∧ ∑zLP(x,z,t) ≥ ∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≤ ∑zCP(x',z',t') 

 

Formal proof 

A6.1: (G(s,t) → φst = 0) ∧ (G(s,t') → φst' = 0) 

P6.6: NO(x,y,s,t) ≤ NO(x',y',s,t') → CO(x,y,s,t) ≤ CO(x',y',s,t') 

D6.6: γxyt  ≤ γx'y't'  ∧ CO(x,y,s,t) ≤ CO(x',y',s,t') ∧ φst = 0 ∧ φst' = 0 → CP(x,y,t) ≤ CP(x',y',t') 

A6.3: CP(x,y,t) ≤ CP(x',y',t') ∧ ∑zCP(x,z,t) ≤ ∑zCP(x',z',t') → CP(x,t) ≤ CP(x',t') 

P6.8: NN(x,y,s,t) > NN(x',y',s,t') → NC(x,y,s,t) > NC(x',y',s,t') 

D6.5: λxyt ≥ λx'y't' ∧ NC(x,y,s,t) > NC(x',y',s,t') ∧ φst = 0 ∧ φst' = 0 → LP(x,y,t) > LP(x',y',t') 

A6.2: LP(x,y,t) > LP(x',y',t') ∧ ∑zLP(x,z,t) ≥ ∑zLP(x',z',t') → LP(x,t) > LP(x',t') 

P6.12: LP(x,t) > LP(x',t') ≤ CP(x,t) > CP(x',t') → P(x,t) > P(x',t') 

 

Q.E.D. 
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Theorem 6.8 

P x,x',y,y',s,t,t' [G(s,t) ∧ G(s,t') ∧ NO(x,y,s,t) ≤ NO(x',y',s,t') ∧ NN(x,y,s,t) ≥ NN(x',y',s,t') 

∧ λxyt > λx'y't' ∧ γxyt  ≤ γx'y't' ∧ ∀ z,z' [x ≠ y  ∧y ≠ z  ∧ y' ≠ z'  ∧ ∑zLP(x,z,t) ≥ ∑zLP(x',z',t') ∧ 

∑zCP(x,z,t) ≤ ∑zCP(x',z',t')] → P(x,t) > P(x',t')] 

 

Proof – First, auxiliary assumption 6.1 gives us the value of the switch of the system's 

stage of technological development. Second, on the basis of the relative niche overlap, 

postulate 6.6 gives the relative competency overlap, and in combination with the relative 

competition coefficients and the system's switch, we can use definition 6.6 to determine 

the relative dyadic competitive pressure as a result of organization y. Auxiliary 

assumption 6.3 can subsequently be used to aggregate the relative dyadic copetitive 

pressures to the organizational level. Third, on the basis of the relative niche non-

overlap, postulate 6.8 gives the relative non-competency overlap, and in combination 

with the relative legitimation coefficients and the system's switch, we can use definition 

6.5 to determine the relative dyadic legitimative pressure as a result of organization y. 

Auxiliary assumption 6.2 can subsequently be used to aggregate the relative dyadic 

legitimative pressures to the organizational level. Fourth and finally, on the basis of the 

relative legitimative and competitive pressure, postulate 6.12 gives the relative 

performance. 

 

The initial condition of Theorem 6.7 

G(s,t) ∧ G(s,t') ∧ NO(x,y,s,t) ≤ NO(x',y',s,t') ∧ NN(x,y,s,t) ≥NN(x',y',s,t') ∧ λxyt > λx'y't' ∧ γxyt  

≤ γx'y't' ∧ ∑zLP(x,z,t) ≥ ∑zLP(x',z',t') ∧ ∑zCP(x,z,t) ≤ ∑zCP(x',z',t') 

 

Formal proof 

A6.1: (G(s,t) → φst = 0) ∧ (G(s,t') → φst' = 0) 

P6.6: NO(x,y,s,t) ≤ NO(x',y',s,t') → CO(x,y,s,t) ≤ CO(x',y',s,t') 

D6.6: γxyt  ≤ γx'y't'  ∧ CO(x,y,s,t) ≤ CO(x',y',s,t') ∧ φst = 0 ∧ φst' = 0 → CP(x,y,t) ≤ CP(x',y',t') 

A6.3: CP(x,y,t) ≤ CP(x',y',t') ∧ ∑zCP(x,z,t) ≤ ∑zCP(x',z',t') → CP(x,t) ≤ CP(x',t') 

P6.8: NN(x,y,s,t) ≥ NN(x',y',s,t') → NC(x,y,s,t) ≥ NC(x',y',s,t') 

D6.5: λxyt > λx'y't' ∧ NC(x,y,s,t) ≥ NC(x',y',s,t') ∧ φst = 0 ∧ φst' = 0 → LP(x,y,t) > LP(x',y',t') 

A6.2: LP(x,y,t) > LP(x',y',t') ∧ ∑zLP(x,z,t) ≥ ∑zLP(x',z',t') → LP(x,t) > LP(x',t') 

P6.12: LP(x,t) > LP(x',t') ≤ CP(x,t) > CP(x',t') → P(x,t) > P(x',t') 

 

Q.E.D. 
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Theorem 6.9 

P x,x',s,t,t' [UC(s,t) = UC(s,t') ∧ Q(x,s,t) > Q(x',s,t') ∧ S(x,s,t) ≥ S(x,s,t')  ∧ ∀ z [s ≠ z ∧ 

∑zMR(x,z,t) ≥ ∑zMR(x',z,t')]  →  P(x,t) > P(x',t')] 

 

Proof – On the basis of the relative uncertainty, quality, and status, definition 6.9 can be 

used to determine the relative perceived quality within a technological system. Next, on 

the basis of this relative perceived quality we use postulate 6.14 to get the relative ability 

to mobilize resources with that technological system, and in combination with the ability 

to mobilize resources in the alternative technological domains, we can use definition 6.10 

to aggregate the ability to mobilize resources to the organizational level, while postulate 

6.15 can subsequently be employed to determine the relative performance. 

 

Initial condition Theorem 6.9 

UC(s,t) = UC(s,t') ∧ Q(x,s,t) > Q(x',s,t') ∧ S(x,s,t) ≥ S(x,s,t')  ∧ ∑zMR(x,z,t) ≥ ∑zMR(x',z,t') 

 

Formal proof 

D6.9: UC(s,t) = UC(s,t') ∧ Q(x,s,t) > Q(x',s,t') ∧ S(x,s,t) ≥ S(x,s,t') →  PQ(x,s,t) > 

PQ(x',s,t') 

P6.14: PQ(x,s,t) > PQ(x,s,t') →  MR(x,s,t) > MR(x',s,t') 

D6.10: MR(x,s,t) > MR(x',s,t') ∧ ∑zMR(x,z,t) ≥ ∑zMR(x',z,t') →  MR(x,t) > MR(x',t') 

P6.15: MR(x,t) > MR(x',t') →  P(x,t) > P(x',t') 

 

Q.E.D. 

 

Theorem 6.10 

P x,x',s,t,t' [UC(s,t) = UC(s,t') ∧ Q(x,s,t) ≥ Q(x',s,t') ∧ S(x,s,t) > S(x',s,t') ∧ ∀ z [s ≠ z ∧ 

∑zMR(x,z,t) ≥ ∑zMR(x',z,t')] →  P(x,t) > P(x',t')] 

 

Proof – On the basis of the relative uncertainty, quality, and status, definition 6.9 can be 

used to determine the relative perceived quality within a technological system. Next, on 

the basis of this relative perceived quality we use postulate 6.14 to get the relative ability 

to mobilize resources with that technological system, and in combination with the ability 

to mobilize resources in the alternative technological domains, we can use definition 6.10 

to aggregate the ability to mobilize resources to the organizational level, while postulate 

6.15 can subsequently be employed to determine the relative performance. 

 

Initial condition Theorem 6.10 

UC(s,t) = UC(s,t') ∧ Q(x,s,t) ≥ Q(x',s,t') ∧ S(x,s,t) > S(x,s,t')  ∧ ∑zMR(x,z,t) ≥ ∑zMR(x',z,t') 
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Formal proof 

D6.9: UC(s,t) = UC(s,t') ∧ Q(x,s,t) ≥ Q(x',s,t') ∧ S(x,s,t) > S(x,s,t') →  PQ(x,s,t) > 

PQ(x',s,t') 

P6.14: PQ(x,s,t) > PQ(x,s,t') →  MR(x,s,t) > MR(x',s,t') 

D6.10: MR(x,s,t) > MR(x',s,t') ∧ ∑zMR(x,z,t) ≥ ∑zMR(x',z,t') →  MR(x,t) > MR(x',t') 

P6.15: MR(x,t) > MR(x',t') →  P(x,t) > P(x',t') 

 

Q.E.D. 

 

Theorem 6.11 

P x,x',s,t,t' [UC(s,t) < UC(s,t') ∧ Q(x,s,t) ≤ Q(x',s,t') ∧ S(x,s,t) ≤ S(x',s,t') ∧ 

Q(x,s,t) < S(x,s,t)  ∧ ∀ z [s ≠ z ∧ ∑zMR(x,z,t) ≤ ∑zMR(x',z,t')] →  P(x,t) < P(x',t')] 

 

Proof – On the basis of the relative uncertainty, quality, and status, definition 6.9 can be 

used to determine the relative perceived quality within a technological system. Next, on 

the basis of this relative perceived quality we use postulate 6.14 to get the relative ability 

to mobilize resources with that technological system, and in combination with the ability 

to mobilize resources in the alternative technological domains, we can use definition 6.10 

to aggregate the ability to mobilize resources to the organizational level, while postulate 

6.15 can subsequently be employed to determine the relative performance. 

 

Initial condition Theorem 6.11 

UC(s,t) < UC(s,t') ∧Q(x,s,t) ≤ Q(x',s,t') ∧ S(x,s,t) ≤ S(x',s,t') ∧ Q(x,s,t) < S(x,s,t) ∧ 

∑zMR(x,z,t) ≤ ∑zMR(x',z,t') 

 

Formal proof 

D6.9: UC(s,t) < UC(s,t') ∧ Q(x,s,t) ≤ Q(x',s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ Q(x,s,t) < S(x,s,t) →  

PQ(x,s,t) < PQ(x',s,t')34 

P6.14: PQ(x,s,t) < PQ(x,s,t') →  MR(x,s,t) < MR(x',s,t') 

D6.10: MR(x,s,t) < MR(x',s,t') ∧ ∑zMR(x,z,t) ≤ ∑zMR(x',z,t') →  MR(x,t) < MR(x',t') 

P6.15: MR(x,t) < MR(x',t') →  P(x,t) < P(x',t') 

 

Q.E.D. 

 

 

                                                 
34 The reason that the relative perceived quality logically follows is that, because the level of uncertainty is 

smaller than 1, Q(x,s,t) – Q(x',s,t') + UC(s,t) * (S(x,s,t) - Q(x,s,t)) – UC(s,t') * (S(x',s,t') - Q(x',s,t')) is always 

smaller than 0 
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Theorem 6.12 

P x,x',s,t,t' [UC(s,t) > UC(s,t') ∧ Q(x',s,t') ≤ Q(x',s,t) ∧ S(x,s,t) ≤ S(x,s,t') ∧ 

Q(x,s,t) > S(x,s,t) ∧ ∀ z [s ≠ z ∧ ∑zMR(x,z,t) ≤ ∑zMR(x',z,t')]  →  P(x,t) < P(x',t')] 

 

Proof – On the basis of the relative uncertainty, quality, and status, definition 6.9 can be 

used to determine the relative perceived quality within a technological system. Next, on 

the basis of this relative perceived quality we use postulate 6.14 to get the relative ability 

to mobilize resources with that technological system, and in combination with the ability 

to mobilize resources in the alternative technological domains, we can use definition 6.10 

to aggregate the ability to mobilize resources to the organizational level, while postulate 

6.15 can subsequently be employed to determine the relative performance. 

 

Initial condition Theorem 6.12 

UC(s,t) > UC(s,t') ∧Q(x,s,t) ≤ Q(x',s,t') ∧ S(x,s,t) ≤ S(x',s,t') ∧ Q(x,s,t) > S(x,s,t) ∧ 

∑zMR(x,z,t) ≤ ∑zMR(x',z,t') 

 

Formal proof 

D6.9: UC(s,t) > UC(s,t') ∧ Q(x,s,t) ≤ Q(x',s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ Q(x,s,t) > S(x,s,t) →  

PQ(x,s,t) < PQ(x',s,t')35 

P6.14: PQ(x,s,t) < PQ(x,s,t') →  MR(x,s,t) < MR(x',s,t') 

D6.10: MR(x,s,t) < MR(x',s,t') ∧ ∑zMR(x,z,t) ≤ ∑zMR(x',z,t') →  MR(x,t) < MR(x',t') 

P6.15: MR(x,t) < MR(x',t') →  P(x,t) < P(x',t') 

 

Q.E.D. 

 

Theorem 6.13 

P x,s,t,t' [G(s,t) ∧ t' > t ∧ Q(x,s,t) ≤ Q(x,s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ Q(x,s,t) 

> S(x,s,t)  ∧ ∀ z [s ≠ z ∧ ∑zMR(x,z,t) ≤ ∑zMR(x',z,t')] →  P(x,t) < P(x,t')] 

 

Proof – On the basis postulate 6.3, we can determine the relative uncertainty at the 

different points in time in the technological system. Then, on the basis of the relative 

uncertainty, quality, and status, definition 6.9 can be used to determine the relative 

perceived quality within a technological system. Next, on the basis of this relative 

perceived quality we use postulate 6.14 to get the relative ability to mobilize resources 

                                                 
35 The reason that the relative perceived quality logically follows is that, because the level of uncertainty is 

smaller than 1, Q(x,s,t) – Q(x',s,t') + UC(s,t) * (S(x,s,t) - Q(x,s,t)) – UC(s,t') * (S(x',s,t') - Q(x',s,t')) is always 

smaller than 0 
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with that technological system, and in combination with the ability to mobilize resources 

in the alternative technological domains, we can use definition 6.10 to aggregate the 

ability to mobilize resources to the organizational level, while postulate 6.15 can 

subsequently be employed to determine the relative performance. 

 

Initial condition Theorem 6.13 

G(s,t) ∧ t' > t  ∧ Q(x,s,t) ≤ Q(x,s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ Q(x,s,t) 

> S(x,s,t)  ∧ ∑zMR(x,z,t) ≤ ∑zMR(x',z,t') 

 

Formal proof 

P6.3: G(s,t) ∧ t' > t  →  UC(s,t) < UC(s,t') 

D6.9: UC(s,t) < UC(s,t') ∧ Q(x,s,t) ≤ Q(x',s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ Q(x,s,t) > S(x,s,t) →  

PQ(x,s,t) < PQ(x',s,t')36 

P6.14: PQ(x,s,t) < PQ(x,s,t') →  MR(x,s,t) < MR(x',s,t') 

D6.10: MR(x,s,t) < MR(x',s,t') ∧ ∑zMR(x,z,t) ≤ ∑zMR(x',z,t') →  MR(x,t) < MR(x',t') 

P6.15: MR(x,t) < MR(x',t') →  P(x,t) < P(x',t') 

 

Q.E.D. 

 

Theorem 6.14 

P x,s,t,t' [¬G(s,t) ∧ G(s,t') ∧ Q(x,s,t) ≤ Q(x,s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ 

Q(x,s,t) > S(x,s,t) ∧ ∀ z [s ≠ z ∧ ∑zMR(x,z,t) ≤ ∑zMR(x,z,t')]  →  P(x,t) < P(x,t')] 

 

Proof – On the basis postulate 6.2, we can determine the relative uncertainty at the points 

in time in the technological system. Then, on the basis of the relative uncertainty, quality, 

and status, definition 6.9 can be used to determine the relative perceived quality within a 

technological system. Next, on the basis of this relative perceived quality we use postulate 

6.14 to get the relative ability to mobilize resources with that technological system, and in 

combination with the ability to mobilize resources in the alternative technological 

domains, we can use definition 6.10 to aggregate the ability to mobilize resources to the 

organizational level, while postulate 6.15 can subsequently be employed to determine the 

relative performance. 

 

 

 

                                                 
36 The reason that the relative perceived quality logically follows is that, because the level of uncertainty is 

smaller than 1, Q(x,s,t) – Q(x',s,t') + UC(s,t) * (S(x,s,t) - Q(x,s,t)) – UC(s,t') * (S(x',s,t') - Q(x',s,t')) is always 

smaller than 0 



Formal proof theorems Chapter 6 273 

Initial condition Theorem 6.14 

¬G(s,t) ∧ G(s,t') ∧ Q(x,s,t) ≤ Q(x,s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ Q(x,s,t) > S(x,s,t) ∧ 

∑zMR(x,z,t) ≤ ∑zMR(x,z,t') 

 

Formal proof 

P6.2: ¬G(s,t) ∧ G(s,t')  →  UC(s,t)  < UC(s,t') 

D6.9: UC(s,t) < UC(s,t') ∧ Q(x,s,t) ≤ Q(x',s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ Q(x,s,t) > S(x,s,t) →  

PQ(x,s,t) < PQ(x',s,t')37 

P6.14: PQ(x,s,t) < PQ(x,s,t') →  MR(x,s,t) < MR(x',s,t') 

D6.10: MR(x,s,t) < MR(x',s,t') ∧ ∑zMR(x,z,t) ≤ ∑zMR(x',z,t') →  MR(x,t) < MR(x',t') 

P6.15: MR(x,t) < MR(x',t') →  P(x,t) < P(x',t') 

 

Q.E.D. 

 

Theorem 6.15 

P x,s,t,t' [G(s,t) ∧ t > t' ∧ Q(x,s,t) ≤ Q(x,s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ Q(x,s,t) < S(x,s,t) ∧ ∀ z 

[s ≠ z ∧ ∑zMR(x,z,t) ≤ ∑zMR(x,z,t')] →  P(x,t) < P(x,t')] 

 

Proof – On the basis postulate 6.3, we can determine the relative uncertainty at the points 

in time in the technological system. Then, on the basis of the relative uncertainty, quality, 

and status, definition 6.9 can be used to determine the relative perceived quality within a 

technological system. Next, on the basis of this relative perceived quality we use postulate 

6.14 to get the relative ability to mobilize resources with that technological system, and in 

combination with the ability to mobilize resources in the alternative technological 

domains, we can use definition 6.10 to aggregate the ability to mobilize resources to the 

organizational level, while postulate 6.15 can subsequently be employed to determine the 

relative performance. 

 

Initial condition Theorem 6.15 

G(s,t) ∧ t > t' ∧ Q(x,s,t) ≤ Q(x,s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ Q(x,s,t) < S(x,s,t) ∧ ∑zMR(x,z,t) 

≤ ∑zMR(x,z,t') 

 

Formal proof 

P6.3: G(s,t) ∧ t > t'  →  UC(s,t)  > UC(s,t') 

                                                 
37 The reason that the relative perceived quality logically follows is that, because the level of uncertainty is 

smaller than 1, Q(x,s,t) – Q(x',s,t') + UC(s,t) * (S(x,s,t) - Q(x,s,t)) – UC(s,t') * (S(x',s,t') - Q(x',s,t')) is always 

smaller than 0 
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D6.9: UC(s,t) > UC(s,t') ∧ Q(x,s,t) ≤ Q(x',s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ Q(x,s,t) > S(x,s,t) →  

PQ(x,s,t) < PQ(x',s,t')38 

P6.14: PQ(x,s,t) < PQ(x,s,t') →  MR(x,s,t) < MR(x',s,t') 

D6.10: MR(x,s,t) < MR(x',s,t') ∧ ∑zMR(x,z,t) ≤ ∑zMR(x',z,t') →  MR(x,t) < MR(x',t') 

P6.15: MR(x,t) < MR(x',t') →  P(x,t) < P(x',t') 

 

Q.E.D. 

 

Theorem 6.16 

P x,s,t,t' [¬G(s,t') ∧ G(s,t) ∧ Q(x,s,t) ≤ Q(x,s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ 

Q(x,s,t) < S(x,s,t)  ∧ ∀ z [s ≠ z ∧ ∑zMR(x,z,t) ≤ ∑zMR(x,z,t')] →  P(x,t) < P(x,t')] 

 

Proof – On the basis postulate 6.2, we can determine the relative uncertainty at the points 

in time in the technological system. Then, on the basis of the relative uncertainty, quality, 

and status, definition 6.9 can be used to determine the relative perceived quality within a 

technological system. Next, on the basis of this relative perceived quality we use postulate 

6.14 to get the relative ability to mobilize resources with that technological system, and in 

combination with the ability to mobilize resources in the alternative technological 

domains, we can use definition 6.10 to aggregate the ability to mobilize resources to the 

organizational level, while postulate 6.15 can subsequently be employed to determine the 

relative performance. 

 

Initial condition Theorem 6.16 

¬G(s,t) ∧ G(s,t') ∧ Q(x,s,t) ≤ Q(x,s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ Q(x,s,t) > S(x,s,t) ∧ 

∑zMR(x,z,t) ≤ ∑zMR(x,z,t') 

 

Formal proof 

P6.2: ¬G(s,t) ∧ G(s,t')  →  UC(s,t)  > UC(s,t') 

D6.9: UC(s,t) > UC(s,t') ∧ Q(x,s,t) ≤ Q(x',s,t') ∧ S(x,s,t) ≤ S(x,s,t') ∧ Q(x,s,t) > S(x,s,t) →  

PQ(x,s,t) < PQ(x',s,t')39 

P6.14: PQ(x,s,t) < PQ(x,s,t') →  MR(x,s,t) < MR(x',s,t') 

D6.10: MR(x,s,t) < MR(x',s,t') ∧ ∑zMR(x,z,t) ≤ ∑zMR(x',z,t') →  MR(x,t) < MR(x',t') 

                                                 
38 The reason that the relative perceived quality logically follows is that, because the level of uncertainty is 

smaller than 1, Q(x,s,t) – Q(x',s,t') + UC(s,t) * (S(x,s,t) - Q(x,s,t)) – UC(s,t') * (S(x',s,t') - Q(x',s,t')) is always 

smaller than 0 
39 The reason that the relative perceived quality logically follows is that, because the level of uncertainty is 

smaller than 1, Q(x,s,t) – Q(x',s,t') + UC(s,t) * (S(x,s,t) - Q(x,s,t)) – UC(s,t') * (S(x',s,t') - Q(x',s,t')) is always 

smaller than 0 
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P6.15: MR(x,t) < MR(x',t') →  P(x,t) < P(x',t') 

 

Q.E.D. 

 

Theorem 6.17 

P x,x',d,t,t' [D(x,d,t) > D(x',d,t') ∧ M(x,d,t) ≥ M(x',d,t') ∧ M(x',d,t') > 0 → P(x,t) > 

P(x',t')] 

 

Proof – On the basis of the relative diversity and the relative diversity multipliers, 

postulate 6.17 gives the relative opportunities, and postulate 6.21 can subsequently be 

used to determine the relative performance of focal and alter 

 

Initial condition Theorem 6.17 

D(x,d,t) > D(x',d,t') ∧ M(x,d,t) ≥ M(x',d,t') ∧ M(x',d,t') > 0 

 

Formal proof 

P6.17: D(x,d,t) > D(x',d,t') ∧ M(x,d,t) ≥ M(x',d,t') ∧ M(x',d,t') > 0 → Opp(x,t) > Opp(x',t')  

P6.21: Opp(x,t) > Opp(x',t') → P(x,t) > P(x',t') 

 

Q.E.D. 

 

Theorem 6.18 

P x,x',d,t,t' [D(x,d,t) > D(x',d,t') ∧ M(x,d,t) ≤ M(x',d,t') ∧ M(x',d,t') < 0→ P(x,t) < P(x',t')] 

 

Proof – On the basis of the relative diversity and the relative diversity multipliers, 

postulate 6.18 gives the relative costs, and postulate 6.22 can subsequently be used to 

determine the relative performance of focal and alter 

 

Initial condition Theorem 6.18 

D(x,d,t) > D(x',d,t') ∧ M(x,d,t) ≤ M(x',d,t') ∧ M(x',d,t') < 0 

 

Formal proof 

P6.18: D(x,d,t) > D(x',d,t') ∧ M(x,d,t) ≤ M(x',d,t') ∧ M(x',d,t') < 0 → Costs(x,t) > 

Costs(x',t')  

P6.22: Costs(x,t) > Costs(x',t') → P(x,t) > P(x',t') 

 

Q.E.D. 
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Theorem 6.19 

P x,x',d,t,t' [D(x,d,t) ≥ D(x',d,t') ∧ M(x,d,t) >M(x',d,t') ∧ M(x',d,t') > 0 → P(x,t) > P(x',t')] 

 

Proof – On the basis of the relative diversity and the relative diversity multipliers, 

postulate 6.19 gives the relative opportunities, and postulate 6.21 can subsequently be 

used to determine the relative performance of focal and alter 

 

Initial condition Theorem 6.19 

D(x,d,t) ≥ D(x',d,t') ∧ M(x,d,t) > M(x',d,t') ∧ M(x',d,t') > 0 

 

Formal proof 

P6.19: D(x,d,t) ≥ D(x',d,t') ∧ M(x,d,t) > M(x',d,t') ∧ M(x',d,t') > 0 → Opp(x,t) > Opp(x',t')  

P6.21: Opp(x,t) > Opp(x',t') → P(x,t) > P(x',t') 

 

Q.E.D. 

 

Theorem 6.20 

Px,x',r,t,t' [D(x,d,t) ≥ D(x',d,t') ∧ M(x,d,t) < M(x',d,t') ∧ M(x',d,t') < 0 → P(x,t) < P(x',t')] 

 

Proof – On the basis of the relative diversity and the relative diversity multipliers, 

postulate 6.20 gives the relative costs, and postulate 6.22 can subsequently be used to 

determine the relative performance of focal and alter 

 

Initial condition Theorem 6.20 

D(x,d,t) ≥ D(x',d,t') ∧ M(x,d,t) < M(x',d,t') ∧ M(x',d,t') < 0 

 

Formal proof 

P6.20: D(x,d,t) ≥ D(x',d,t') ∧ M(x,d,t) < M(x',d,t') ∧ M(x',d,t') < 0 → Costs(x,t) > 

Costs(x',t')  

P6.22: Costs(x,t) > Costs(x',t') → P(x,t) > P(x',t') 

 

Q.E.D. 

 

Theorem 6.21 

P x,s,t,t' [τxst = τxst' ∧ TO(s,t) > TO(s,t') ∧ ∀ w [s ≠ w  ∧ ∑wτxwt· TO(w,t) ≥ ∑wτxwt'· TO(w,t')] 

→ P(x,t) > P(x,t')] 
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Proof – On the basis of our initial assumptions, we can use definition 6.14 to get the 

relative technological opportunities at the organizational level of analysis. Postulate 6.23 

can then be used to determine the relative opportunities, while postulate 6.21 gives the 

relative performance between focal and alter. 

  

Initial condition Theorem 6.21 

τxst = τxst' ∧ TO(s,t) > TO(s,t') ∧ ∑wτxwt· TO(w,t) ≥ ∑wτxwt'· TO(w,t')  

 

Formal proof 

D6.14: τxst = τxst' ∧ TO(s,t) > TO(s,t') ∧ ∑wτxwt· TO(w,t) ≥ ∑wτxwt'· TO(w,t') → TO(x,t) > 

TO(x',t') 

P6.23: TO(x,t) > TO(x',t') → Opp(x,t) > Opp(x',t') 

P6.21: Opp(x,t) > Opp(x',t') → P(x,t) > P(x',t') 

 

Q.E.D. 

 

Theorem 6.22 

P x,x',s,t,t' [τxst > τx'st'  ∧ ∀ w [TO(s,t) > TO(w,t')] ∧ ∀ z [z ≠ w  ∧ ∑zτxzt· TO(z,t) ≥ ∑zτxzt'· 

TO(z,t')] → P(x,t) > P(x',t')] 

 

Proof – On the basis of our initial assumptions, we can use definition 6.14 to get the 

relative technological opportunities at the organizational level of analysis. Postulate 6.23 

can then be used to determine the relative opportunities, while postulate 6.21 gives the 

relative performance between focal and alter. 

 

Initial condition Theorem 6.22 

τxst > τx'st'  ∧ TO(s,t) > TO(w,t') ∧  ∑zτxzt· TO(z,t) ≥ ∑zτxzt'· TO(z,t') 

 

 

Formal proof 

D6.14: τxst > τx'st'  ∧ TO(s,t) > TO(w,t') ∧  ∑zτxzt· TO(z,t) ≥ ∑zτxzt'· TO(z,t') 

P6.23: TO(x,t) > TO(x',t') → Opp(x,t) > Opp(x',t') 

P6.21: Opp(x,t) > Opp(x',t') → P(x,t) > P(x',t') 

 

Q.E.D. 



 



 

Appendix K    
 

Regression estimates 
 
Table K.1 Restricted negative binomial panel regression estimates 
  1. RE NB R       2. CFE NB R       3. UFE NB R       

Biotechnology crowding (thousands) -5.931*** -7.024*** -9.096*** 

 [0.801]       [0.877]       [0.852]       

Biotechnology non-crowding (millions) -34.151*** -19.342*** -16.379*** 

 [6.746]       [6.550]       [5.143]       

Biotechnology status -4.424       -18.165*** -19.180** 

 [6.572]       [7.002]       [7.574]       

Biotechnology quality 67.959*** 73.983*** 72.934*** 

 [6.491]       [6.763]       [7.440]       

Biotechnology opportunities 2.786*** 2.577*** 1.595**   

 [0.652]       [0.721]       [0.749]       

Global antecedent diversity 0.609*** 0.686*** 0.727*** 

 [0.083]       [0.091]       [0.093]       

Global focal diversity -0.121       -0.210**   -0.507*** 

 [0.089]       [0.100]       [0.108]       

Global descendant diversity -0.173*** -0.098       0.250*** 

 [0.058]       [0.064]       [0.070]       

Bio-antecedent diversity 0.01       0.014       -0.131**   

 [0.053]       [0.056]       [0.053]       

Bio-focal diversity 0.350*** 0.203*** 0.242*** 

 [0.051]       [0.053]       [0.053]       

Bio-descendant diversity -0.125*** -0.185*** -0.297*** 

 [0.046]       [0.048]       [0.051]       

Previous entries 0.003*** 0.003*** 0.008*** 

 [0.001]       [0.001]       [0.001]       

Biotechnology focus 0.870*** 0.178       -0.241       

 [0.165]       [0.204]       [0.266]       

Biotechnology density (thousands) 0.772*** 0.614*** 0.814*** 

 [0.162]       [0.173]       [0.184]       

Global density (millions) -2.895       -3.109       -9.270*     

 [4.005]       [4.374]       [5.071]       

Age (thousands) 3.033***   

 [0.522]         

LN(Employees (thousands)) 0.065*** 0.043*     0.095*** 

 [0.022]       [0.022]       [0.023]       

LN(R&D expenditures (trillion $)) 0.183       0.103       0.225       

 [0.178]       [0.065]       [0.209]       

LN(Revenues (trillion $)) -0.168*** -0.079**   -0.227*** 

 [0.040]       [0.039]       [0.042]       

LN(Assets (billion $)) 0.054*     0.086*** 0.072** 

 [0.030]       [0.031]       [0.035]       

Constant -0.68         

 [0.798]         

Alpha   0.168*** 

   [0.007]       

r, of Beta(r,s) 3.292***   

 [0.291]         

s, of Beta(r,s) 4.692***   

 [0.509]         

Observations 4,896       4,838       4,896       

Number of organizations 441       417       441       

Degrees of freedom 43       42       483       

Log likelihood -11,826       -9,692       -10,968       

Legend: * significant at 10; ** significant at 5; *** significant at 1; standard errors in brackets. 
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Table K.2 Unrestricted negative binomial panel regression estimates 

 4. RE NB U       5. CFE NB U       6. UFE NB U       

Biotechnology crowding (thousands) -6.020*** -9.878*** -9.25*** 

 [0.516]       [0.566]       [0.52]       

Biotechnology non-crowding (millions) -29.503*** -30.475*** -11.275*** 

 [3.305]       [3.546]       [2.548]       

Biotechnology status -1.439       -10.469**   -13.958**   

 [4.743]       [4.946]       [5.895]       

Biotechnology quality 84.723*** 90.424*** 99.192*** 

 [4.570]       [4.723]       [5.852]       

Biotechnology opportunities 3.191*** 2.862*** 4.968*** 

 [0.334]       [0.336]       [0.388]       

Global antecedent diversity 0.261*** 0.187*** 0.293*** 

 [0.044]       [0.046]       [0.05]       

Global focal diversity 0.121**   0.044       0.178*** 

 [0.052]       [0.054]       [0.062]       

Global descendant diversity -0.139*** -0.244*** -0.078**   

 [0.032]       [0.032]       [0.038]       

Bio-antecedent diversity -0.03       -0.219*** -0.132*** 

 [0.031]       [0.030]       [0.032]       

Bio-focal diversity 0.322*** 0.263*** 0.226*** 

 [0.029]       [0.029]       [0.031]       

Bio-descendant diversity -0.071*** -0.240*** -0.254*** 

 [0.027]       [0.026]       [0.030]       

Previous entries 0.007*** 0.008*** 0.016*** 

 [0.001]       [0.001]       [0.001]       

Biotechnology focus 0.197** -0.796*** 0.312*** 

 [0.086]       [0.088]       [0.121]       

Biotechnology density (thousands) -0.131       -0.886*** -1.331*** 

 [0.112]       [0.114]       [0.129]       

Global density (millions) 3.517       8.414*** 2.202       

 [2.344]       [2.515]       [3.059]       

Constant -2.429***   

 [0.112]         

Alpha   0.239*** 

   [0.007]       

r, of Beta(r,s) 3.228***   

 [0.175]         

s, of Beta(r,s) 3.421***   

 [0.215]         

Observations 14,186       14,133       14,186       

Number of organizations 921       907       921       

Degrees of freedom 38       38       959       

Log likelihood -26,987       -22,859       -25,426       

Legend: * significant at 10; ** significant at 5; *** significant at 1; standard errors in brackets. 
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Summary 
 

 

In this day and age, arguing that technology is a powerful force that drives many 

economic processes is like preaching to the choir. Nevertheless, despite the widespread 

realization of the important role of technology in our modern day society, an intimate 

understanding of the process of technological change is still lacking. This study seeks to 

provide more insight into the concept of technological change by characterizing it as a 

socio-cultural evolutionary process of variation, selection and retention. According to 

this logic, variety (or novelty) is created by (random or non-random) mutations (i.e., 

organizations and individuals that (re-) combine existing components in novel ways). 

This variety is subsequently selected out by the stakeholders in the environment, such as 

individuals, organizations, and institutions. In other words, the variety is then retained in 

the structural characteristics of the environment, commonly referred to as organizational 

routines and technological paradigms. Finally, these structural characteristics 

subsequently provide the context in/from which new mutations (or variations) are 

created. From there, the cycle can be repeated. 

Because, nowadays, technology is mostly developed in an organizational context, 

the appropriate place to study technology and technological change is in the context of 

organization science, which is an academic discipline that studies all facets of 

organization. Even though technology deserves a central role in any organization theory, 

technology has not yet penetrated fully the domain of organization science. The only 

domain in which technology has a central role is within evolutionary economics, a school 

of economic thought that was influenced by evolutionary biology. Even though 

evolutionary economics has surely added much to our understanding of the process of 

technological change, in our view, this school of thought mainly concentrates its 

attention on idiosyncratic accounts of variety creation and their subsequent selection by 

the environment. Much less attention has been attributed to how the selection 

environment (or the structural characteristics thereof) determines the variety creation. 

Consequently, insights from organizational ecology, which has its center of gravity at the 

selection environment, can add value over and above the ones originating from 

evolutionary economics. The key source of inspiration of organizational ecology is bio-

ecology, which makes it evolutionary economics’ counterpart in sociology.  

In this study, we therefore seek to close the evolutionary circle by developing a 

structural or ecological perspective of technological change. After all, holding both links 

between variety and selection in focus at the same time (i.e., how variety is selected by 

the environment, and how the selection environment facilitates and constrains the 

creation of variety) provides for a truly evolutionary model of technological change. 

Accordingly, we define our research objective as follows:  
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Research objective: To develop an ecology of technology in organization science. 

 

Because this objective is rather vague and abstract, we formulate several research 

questions to provide more direction in our quest to fulfill our objective. We formulate 

our first research question as follows. 

 

Research question 1: What is the importance of biotechnology? 

 

Providing an answer to this research question is the subject of Chapter 2. As a 

means of introducing biotechnology, we first describe biotechnology’s central dogma 

(i.e., DNA as the building block of life). Moreover, we provide a timeline to get a certain 

feel of the history and evolution of biotechnology, and list numerous socio-economic 

trends to get an idea of the importance of biotechnology in society. These trends clearly 

illustrate that biotechnology drives important social and economic events. Next, we 

evaluate biotechnology’s position in the overall technological landscape. Our main 

finding is that, despite its sharply increasing societal and economic importance, 

biotechnology still has not yet conquered a place in the technological core of our society. 

Reviewing the developments within synthetic biology (in this domain, complex systems 

are designed by (re-)combining DNA into biological parts that represent biological 

functions and, as such, is the domain where all aspects of biotechnology come together), 

it becomes clear that biotechnology as a whole is not yet in the growth stage of 

technological convergence that is characterized by a stable configuration of component 

technologies (i.e., a dominant design). Moreover, on the basis of the future expectations 

of experts, we conclude that biotechnology is a strategic technology that is nowhere near 

its peak influence, and that we can expect the importance to increase even further over 

the coming years. Obviously, whether biotechnology can deliver on its promise and 

materialize the expectations of insiders is not certain. Even when biotechnology delivers 

on only a small part of the promise, though, its impact will already be gigantic. For 

example, consider the fact that, in a 2007 interview, Craig Venter – who is one of the 

most well-renowned biotechnologists today – said that, in 20 years time, synthetic 

genomics is going to become the standard for making anything (Aldhous, 2007). So, in 

conclusion, biotechnology is a technology that is still emerging and does yet not display a 

stable and predictable pattern of growth that characterizes mature (i.e., non-emerging) 

technologies. Our next research question thus is as follows. 

 

Research question 2: How to study the growth of an emerging technology? 

 

In Chapter 3, on the basis of ecological insights and principles, we develop a 

structural or systemic view towards technology, and hereby take into explicit account the 
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embedded nature of technology. That is, we propose that it adds value to view 

technology as a system composed of a set of interdependent components (or 

subsystems). More specifically, by relying on density dependence theory from 

organizational ecology, we effectively develop a multilevel framework that can be used to 

empirically study emerging technologies. Moreover, we employ the concept of the 

technological niche from organizational ecology, with its associated dimensions of 

crowding (associated with processes of competition) and status (associated with 

processes of legitimation), and add diversity as a key dimension. Through sophisticated 

multivariate analysis of biotechnology patents from the United States Patent and 

Trademark Office (USPTO), we validate this model, which we label the ‘ecology of 

technology’. However, we also discover some anomalies, which point to the limitations 

of our model, the most important being its rather static nature. Because emerging 

technologies are characterized by fluid patterns of growth, a static model is a severe 

misrepresentation of the evolution of emerging technologies. Our next research question 

naturally follows from this. 

 

Research question 3: How to study the evolution of an emerging technology? 

 

On the basis of insights from evolutionary economics, Chapter 4 distinguishes 

between two stages of technological development, namely the stages of divergence and 

convergence (that connect nicely with the seed and growth stage of life cycle theory). The 

focal element is what is generally referred to as the deep structure (in the context of 

technology also commonly referred to as a dominant design) that facilitates cumulative 

changes by reducing uncertainty and enabling specialization and integration through 

standardization. The stage of divergence is characterized by the absence of a deep 

structure, while the stage of convergence is characterized by its presence. So, in the latter 

stage, there is a relatively stable configuration of the system’s component technologies 

that results in relatively stable and predictable patterns of growth. On the basis of these 

insights, we adapt our multi-level model to identify these different stages of development 

at the component level. More specifically, if there is a mutualistic relationship between a 

component and the system (i.e., if system density contributes positively to component 

entry), the component is argued to have a dominant design. As we are dealing with an 

emerging technology, our main interest lies in the transition from the initial seed stage of 

technological divergence (i.e., the absence of a deep structure) to a growth stage of 

technological convergence (i.e., the existence of a deep structure), or the creation of a 

deep structure. This means that we do not take into account the revolutionary transition 

from a stage of convergence into divergence (i.e., the maturity and decline stage in life 

cycle theory).  
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Not only do we refine our predictions regarding the effects of our existing 

dimensions (i.e., multilevel density dependence, crowding, status, and focal diversity), 

but, by further taking into account the lineage of technology, we refine our dimension of 

diversity by adding antecedent and descendant diversity as additional dimensions to the 

technological niche. This results in an intricate model that can be used to study the 

growth and evolution of an emerging technology. We demonstrate this by an empirical 

investigation of biotechnology patents from the USPTO and hereby provide further 

support for our ‘ecology of technology’. In the light of our research objective, before we 

answer the question of what the precise consequences are for organizations, we ask 

ourselves how we can effectively integrate our findings at the organizational level of 

analysis. We thus formulate our next research question accordingly. 

 

Research question 4: How can we integrate technology into the theory of the organization specific 

technological niche? 

 

In Chapter 5, we use a process of logical formalization to represent the theory of 

the organization-specific technological niche in a formal logical language. The reason for 

doing so is threefold. First, this forces us to explicate all underlying assumptions and to 

remove any inconsistencies to make the argument logically sound. Second, this requires 

us to supplement the theory so that it is complete, without missing elements. Third and 

finally, it results in a logically sound and complete theory fragment ready for extension by 

integrating the insights from the study of the evolution of technology. We choose non-

monotonic logic as the language in which we represent our arguments because non-

monotonic logic is better suited for theory building, and this connects better to the 

current wave of formalization in non-monotonic logic in organizational ecology. On the 

basis of this analysis, we already make two important theoretical extensions. First, by 

distinguishing between crowding in technological and market space, we tie technological 

crowding to both competition and legitimation. To be precise, technological crowding 

results in competition mainly if the crowding organization is a competitor of the focal 

organization. Second, uncertainty mediates the relationship between the perceived and 

actual technological quality of the organization. More specifically, under uncertainty, the 

actual quality of an organization’s technology cannot be readily observed so that resource 

controllers have to rely on status (i.e., historic technological quality) instead. With this 

formalized, logically sound and complete theory fragment in hand, we can turn to the 

question of the organizational consequences. We thus pose our next research question as 

follows. 

 

Research question 5: What are the consequences of integrating several technological insights into the 

theory of the organization-specific technological niche? 



Summary 307 

In Chapter 6, we integrate four technological insights from Chapters 3 and 4 into 

our formalized theory fragment from the previous chapter. These insights are: (1) 

multiple technological domains exist that have (2) different stages of development, (3) 

different levels of uncertainty, and (4) different growth rates. On the basis of these four 

insights, we extend the theory of the organization-specific technological niche 

considerably. For crowding, we demonstrate that the effect of crowding is not only 

conditional upon the identity of the other organization, but also on the stage of 

technological development. We also add non-crowding to the mix. Regarding the effect 

of (non-)crowding, in the stage of divergence, multiple competing design configurations 

exist, and crowding (non-crowding) increases (decreases) the competitiveness of the 

supported design configuration, having a legitimating (competition) effect. In contrast, in 

the stage of convergence, crowding (non-crowding) loses its legitimating (competition) 

function and results in competitive (legitimation) pressure. For status, the most 

important consequences are that: (1) status is domain dependent, and (2) its effect is 

dependent upon the stage of technological development (i.e., the effect of status is higher 

in the stage of divergence). We also add two additional dimensions, which are (1) 

technological opportunities (that can be represented by the growth rate of the domain), 

and (2) technological diversity (measured by the distribution of activities over alternative 

domains). By operationalizing performance as a two-dimensional vector, we suggest that 

the dimensions of the technological niche are related to different performance measures 

in distinct temporal relationships. However, even though this theoretical extension is 

certainly valuable, the subsequent question is whether these extensions hold when 

subjected to advanced empirical tests. We therefore formulate our next research question 

as follows 

 

Research question 6: Can we find proof for our extended theory of the organization-specific 

technological niche? 

 

In Chapter 7, we empirically test several of our theoretical extensions of the 

organization-specific technological niche. Our dependent variable is biotechnology 

innovation (i.e., the number of biotechnology patents). Through a sophisticated empirical 

analysis, we find strong support for our extended theory. However, we also encounter 

some inconsistencies and anomalies. This seems to connect to the fact that processes of 

competition and legitimation are more appropriately defined at lower levels of analysis 

(i.e., at the component instead of at the system level). Moreover, due to the dual role of a 

direct technological tie (i.e., it can have both a competing and a legitimating function) 

that forms the basis for our measure of status, status is better defined at the component 

level of analysis. In contrast, biotechnological quality can be aggregated to the system 

level without losing significance. We thus find strong support for this dimension. 
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Furthermore, we also clearly demonstrate the importance of taking into account the 

different dimensions of technological diversity (i.e., antecedent, focal, and descendant), 

with a vital role for antecedent diversity, which logically connects with the notion of 

absorptive capacity. The subsequent question is what this means for the broader 

academic debate regarding the (co-)evolution of technology and organization. We 

formulate our next research question accordingly. 

 

Research question 7: What are the implications for the study of the (co-)evolution of technology and 

organization? 

 

In the final chapter of this dissertation, we start by stating the main contribution of this 

dissertation, which is that we develop a dynamic multilevel model that can be used to 

empirically study the evolution of an emerging technology. As this model is based on the 

assumption that technology can effectively be studied as a system composed of an 

interacting set of components, we pay explicit attention to the embedded nature of 

technology. Hence, when studying the evolution of technology, it is inappropriate to 

focus on a single level of analysis and using a multilevel perspective adds value over and 

above any single level study. That is, technology (e.g., biotechnology) is composed of a 

set of technological components (e.g., biotechnology’s component technologies) while, at 

the same time, being embedded in a larger technological system (i.e., technological 

landscape). It is precisely this multilevel nature of technology that gives it the potential to 

close part of the chasm in the debate between organizational adaptation (i.e., the 

dominant perspective in evolutionary economics) and environmental selection (i.e., the 

dominant perspective in organizational ecology). More specifically, by defining 

technology at different levels of analysis (e.g., invention, component, system, and 

landscape), it is possible to tie the evolution of technology to the evolution of 

organization at different levels of analysis (i.e., individual organization, population of 

organizations, community, and society). This enables studying the evolution of 

technology and organization in unison, and thus provides the basis for a co-evolutionary 

model of technology and organization. Employing a multilevel perspective to both 

technology and organization at the same time, and defining technology and organization 

as nested hierarchies tied together at multiple levels of analysis, effectively allows an 

analyzes of how stable configurations travels upwards in this hierarchy. After all, “it is the 

information about stable configurations […] that guides the process of evolution” 

(Simon, 1952: 473). 



 

About the author 
 

Ad van den Oord was born on February 20, 1972. In 1990, he started his Bachelor of 

Architectural Engineering and Economics at the Avans University of Applied Sciences in 

's-Hertogenbosch (the Netherlands). After graduation, in 1995, he studied International 

Business at Maastricht University (the Netherlands). During the academic year 1998-

1999, in cooperation with KMPG Alliances (Amstelveen, the Netherlands), he wrote his 

Master's thesis on Alliance Networks. During the final part of his study period, he did an 

internship at the International Center for Alliances, Networks, and Strategic Innovation 

(ICANSI) in Silicon Valley (Santa Clara, USA), where he translated many ideas and 

concepts from his Master's thesis into concrete products and services. One of these 

products, called the Alliance Information System, was even spun-off into a new business 

venture called the Centre for Global Corporate Positioning (CGCP, the Netherlands). 

After graduating in December 1999, he started working as a researcher at 

Eindhoven University of Technology (the Netherlands). However, in response to the 

opportunities created during his internship at ICANSI, he co-founded The Brillianz 

Group (Eindhoven, the Netherlands) to materialize upon these opportunities. During 

this period, he was a jack-of-all-trades and, amongst others, he managed The Brillianz 

Group, he managed the development process of the Alliance Information System at 

CGCP, he was a contract teacher at Compu’Train (Utrecht, the Netherlands) and 

Eduvision (Arnhem, the Netherlands), he was involved in the development of several 

new internet business concepts (e.g., Beurz.nl which was later successfully taken over by 

IEX.nl and is now better known as Guruwatch.nl), he designed and developed numerous 

websites, and was a contract researcher at Eindhoven University of Technology.   

Towards the end of 2002, due to his academic aspirations, Ad started working 

full-time at Eindhoven University of Technology again. However, it was not until the 

beginning of 2004 that his ideas regarding his dissertational research really started to 

solidify. During this period, he worked on his PhD next to his tasks as a researcher. As 

of January 2007, he formally became a PhD student to focus all his attention on his 

dissertation and to enable his stay as a visiting PhD student at the University of Antwerp 

(Belgium). As of June 2009, Ad works as a researcher at the Antwerp Centre for 

Evolutionary Demography, which is a center of excellence at the department of 

management of the University of Antwerp that has been established by Prof. Arjen van 

Witteloostuijn through the Odysseus program of the Flemish Science Foundation 

(FWO).  

 

 
 


	Preface
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	Part I Introduction
	1. Introduction
	2. Biotechnology
	Part II Technology
	3. The Ecology of Technology
	4. The Evolution of Technology
	Part III Organization
	5. A Logical Formalization of the Theory of theTechnological Niche
	6. A Logical Extension of the Theory of the Technological Niche
	7. An Empirical Test of the Extended Theory of the Technological Niche
	Part IV Conclusion
	8. Conclusion
	Appendices
	References
	Summary
	About the author

