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0 Introduction

Metastability is a phenomenon where a physical, chemical or biological system,
under the influence of a noisy dynamics, moves between different regions of
its state space on different time scales. On short time scales the system is in a
quasi-equilibrium within a single region, while on long time scales it undergoes
rapid transitions between quasi-equilibria in different regions (see Fig. 1).

Examples of metastability can be found in:

• biology : folding of proteins;
• climatology : effects of global warming;
• economics : crashes of financial markets;
• materials science: anomalous relaxation in disordered media;
• physics : freezing of supercooled liquids.
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Fig. 1. The paradigm picture of metastability.

The task of mathematics is to formulate microscopic models of the relevant
underlying dynamics, to prove the occurrence of metastable behavior in these
models on macroscopic space-time scales, and to identify the key mechanisms
behind the experimentally observed universality in the metastable behavior
of whole classes of systems. This is a challenging program!

The mathematics of metastability started around 1935, with the work of
Eyring, Kramers and Wigner on diffusions in potential wells. It further devel-
oped in the 1970’s, through the work of Lebowitz and Penrose on metastable
states in van der Waals theory [25] and Freidlin and Wentzell on randomly
perturbed dynamical systems [15]. It accelerated in the 1980’s with the im-
plementation of Freidlin-Wentzell theory in statistical physics by Capocaccia,
Cassandro, Galves, Kotecký, Martinelli, Neves, Olivieri, Schonmann, Scoppola
and Vares. Presently, metastability is a highly active subfield of probability
theory and statistical physics.

Two approaches to metastability are central within mathematics:

• Pathwise approach: This was initiated in 1984 by Cassandro, Galves,
Olivieri and Vares [11], and is based on monitoring the full trajectory of
the dynamics, in the spirit of Freidlin-Wentzell theory.

• Potential-theoretic approach: This was initiated in 2001 by Bovier, Eckhoff,
Gayrard and Klein [5], [6], and is based on an electric network perspective
of the dynamics, focussing on crossing times via estimates on capacities.

The latter approach is highlighted in the paper by Bovier in the present vol-
ume [4]. For recent overviews of metastability, see the monograph by Olivieri
and Vares [24] and the review papers by den Hollander [17] and Bovier [3].
Earlier review papers include Penrose and Lebowitz [25], Schonmann [28],
[29], Scoppola [31], Vares [32], Olivieri and Scoppola [23].

In Lectures 1–3 below we describe the metastable behavior of Ising spins
subject to Glauber dynamics and of lattice gas particles subject to Kawasaki
dynamics, both in two dimensions. Attention focusses on the identification of
the geometry of the critical droplet for the crossover from the metastable state
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to the stable state, and on the estimation of the crossover time. We consider
three cases:

(1) finite systems at low temperature;
(2) large systems at low temperature;
(3) moderate systems at positive temperature.

These cases are progressively more challenging, and for the latter two work is
still in progress.

1 Lecture 1: Finite systems at low temperature,

definitions

In Lecture 1, we define two models: (I) Ising spins subject to Glauber dy-
namics; (II) lattice gas particles subject to Kawasaki dynamics. We fix the
metastable regimes of interest and introduce the notions of communication
height and communication level set between metastable states. In Lecture 2,
we formulate two theorems for these two models that quantify their metastable
behavior.

1.1 Glauber dynamics and Kawasaki dynamics

Let Λ ⊂ Z2 be a large finite box. We consider two types of configurations:

(I) Ising spins : η = {η(x) : x ∈ Λ} ∈ X = {−1, +1}Λ;
−1 = down-spin, +1 = up-spin (see Fig. 2).

(II) Lattice gas : η = {η(x) : x ∈ Λ} ∈ X = {0, 1}Λ;
0 = vacant, 1 = occupied (see Fig. 3).

+ − − + −

− + + + −

+ − − + −

+ − − − +

− − + − −

Ising spins

periodic boundary

Fig. 2. A configuration in model (I).

On the configuration space X , we consider the following Hamiltonians assign-
ing an energy to each configuration:
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0 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 1 0 0
Lattice gas

open boundary

Fig. 3. A configuration in model (II).

(I) : H(η) = −J
2

∑

x,y∈Λ
x∼y

η(x)η(y) − h
2

∑

x∈Λ

η(x),

(II) : H(η) = −U
∑

x,y∈int(Λ)
x∼y

η(x)η(y) + ∆
∑

x∈Λ

η(x),
(1)

where int(Λ) = Λ\∂Λ and x ∼ y means that x and y are neighboring sites.
In (I) we pick periodic boundary conditions, in (II) we pick open boundary
conditions (see (5)–(6) below). The parameters are:

(I) J > 0 the ferromagnetic pair potential and h ∈ R the magnetic field ;
(II) U > 0 the binding energy and ∆ > 0 the activation energy.

Definition 1.1. The Metropolis dynamics at inverse temperature β ∈ (0,∞)
is the continuous-time Markov process X = (X(t))t≥0 on X with transition
rates

c(η, η′) = exp {−β[H(η′) − H(η)]+} , η, η′ ∈ X , (2)

(where [·]+ denotes the positive part) and allowed transitions

(I) : η′ = ηx, x ∈ Λ,

(II) : η′ = ηx,y, x, y ∈ Λ, x ∼ y,
(3)

where

ηx(y) =

{

η(y), y 6= x,
−η(x), y = x,

ηx,y(z) =







η(z), z 6= x, y,
η(x), z = y,
η(y), z = x.

(4)

In words, for Ising spins the dynamics consists of spin-flips at single sites,
called Glauber dynamics, while for the lattice gas it consists of exchange of
occupation numbers between neighboring sites, called Kawasaki dynamics.

In the second dynamics, we also allow particles to enter and exit at ∂Λ.
To that end, we also allow transitions

(II) : η′ = η∗,x, x ∈ ∂Λ, (5)

where
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η∗,x(y) =

{

η(y), y 6= x,
1 − η(x), y = x.

(6)

View this as mimicking the presence of an infinite gas reservoir in Z2\Λ with
density e−β∆, which inserts particles at the sites of ∂Λ at rate e−β∆ and
removes particles from the sites of ∂Λ at rate 1.

A key observation is the following. The Metropolis dynamics has the Gibbs
measure

µ(η) =
1

Z
e−βH(η), η ∈ X , (7)

with Z the normalizing partition sum, as its reversible equilibrium, i.e.,

µ(η)c(η, η′) = µ(η′)c(η′, η), ∀ η, η′ ∈ X . (8)

Note that the two Hamiltonians in (1) can be transformed into each other
via the transformation

η(x) ↔
1

2
[1 + η(x)], h ↔ 2U − ∆, J ↔

1

2
U (9)

(modulo constant terms and boundary terms). However, the allowed transi-
tions for the two dynamics cannot be transformed into each other. Indeed,
the first dynamics is non-conservative, the second dynamics is conservative
(except at the boundary ∂Λ).

In what follows, we write Pη to denote the law of X given X(0) = η. For
A ⊂ X , we write

τA = inf{t ≥ 0: X(t) ∈ A, X(t−) /∈ A} (10)

to denote the first entrance time of A by X .

1.2 Metastable regimes

We will study the two dynamics in the low temperature limit β → ∞, in their
so-called metastable regimes :

(I) : 0 < h < 2J, (II) : U < ∆ < 2U. (11)

The dynamics will start in the configurations

(I) : � = all spins down, (II) : � = all sites vacant, (12)

and we will be interested in how the dynamics tunnels to the configurations

(I) : � = all spins up, (II) : � = all sites occupied. (13)

To understand the restrictions in (11), let us consider the energy of an
` × ` droplet inside Λ, i.e.,
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(I) : E(`) = H(η`×`) − H(�), (II) : E(`) = H(η`×`) − H(�). (14)

(Note that H(�) = 0, while H(�) < 0 when Λ is large enough depending on
J and h.) An easy computation gives

(I) : E(`) = J [4`]− h`2, (II) : E(`) = −U [2`(`− 1)] + ∆`2. (15)

In both cases, ` 7→ E(`) is a downward parabola that goes through a max-
imum at ` = 2J

h
, respectively, ` = U

2U−∆
. Hence, if both these ratios are

non-integer, then the critical droplets (i.e., the droplets with maximal energy
on the parabola) are somewhere between a square of size `c − 1 and a square
of size `c, where

(I) : `c =

⌈

2J

h

⌉

, (II) : `c =

⌈

U

2U − ∆

⌉

, (16)

are the critical droplet sizes. The regimes in (11) correspond to `c ∈ (1,∞).
In configuration space, we have the following qualitative picture:

metastable
state

critical
droplet

stable
state

state (X )

energy (H)

Fig. 4. The paradigm picture of the energy landscape.

The metastable regimes in (11) correspond to the situation where � and
� are local minima of the energy (lying at the bottom of a larger valley),
� and � are global minima, and for the dynamics to move from one to the
other it has to “go over an energetic hill”. In physics language, we say that
� and � are metastable states, � and � are stable states, and the top of the
hill separating them are critical droplets. We will address the following two
questions (see Fig. 4):

(A) What are the critical droplets for the transitions � → � and � → �?
(B) How large are the crossover times τ� and τ� starting from � and �,

respectively?
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1.3 Communication height and level set

Write ω : η → η′ to denote a path of allowed transitions from η to η′.

Definition 1.2. The communication height between � and � is defined as

(I) : Γ = Γ (�, �) = min
ω : �→�

max
ξ∈ω

[H(ξ) − H(�)]. (17)

The corresponding communication level set is

(I) : S = S(�, �) =
{

ζ ∈ X : ∃ω : � → � with ω 3 ζ such that

max
ξ∈ω

[H(ξ) − H(�)] = H(ζ) − H(�) = Γ
}

.
(18)

Similar definitions apply for �, � (with H(�) = 0).

In words, Γ is the minimal amount the energy has to increase in a path that
achieves the crossover, called the activation energy, while S is the set of all
saddle point configurations in the path (recall Fig. 4).

Our intuitive guess for the answer to question (A) is that the critical
droplets are the configurations in S, and for the answer to question (B) that

τ�, τ� ≈ eβΓ as β → ∞. (19)

We will show in Lecture 2 that (19) is correct, obtaining in fact sharp estimates
on E�(τ�) and E�(τ�), but that the critical droplets actually form a smaller
set of configurations than S, with an interesting geometry. We will see that
models (I) and (II) show interesting similarities and differences.

2 Lecture 2: Finite systems at low temperature,

theorems

In this lecture, we formulate two theorems that quantify the metastable be-
havior of models (I) and (II) in the regimes (11) by providing detailed answers
to questions (A) and (B).

2.1 Glauber dynamics

Theorem 2.1. (Neves and Schonmann [22], Bovier and Manzo [10])

(a) There exists a set of configurations C∗ ( S such that

lim
β→∞

P�(τC∗ < τ� | τ� < τ�) = 1, (20)

while this fails for any smaller set.
(b) The configurations in C∗ are those where the up-spins form an `c×(`c−1)
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quasi-square, with a single protuberance on one of the sides of length `c.
(c) The entrance distribution on C∗ is asymptotically uniform:

lim
β→∞

P� (X(τC∗) = η | τC∗ < τ�) = |C∗|−1 ∀ η ∈ C∗. (21)

(d) There exists a constant 0 < K = K(Λ, `c) < ∞ such that

lim
β→∞

e−βΓ E�(τ�) = K (22)

with
Γ = H(C∗) = J [4`c] − h[`c(`c − 1) + 1], (23)

and
lim

β→∞
P�(τ� > tE�(τ�)) = e−t ∀ t ≥ 0. (24)

(e) For all Λ,

K(Λ, `c) =
3

4(2`c − 1)

1

|Λ|
. (25)

Parts (a)–(b), together with the crude estimate limβ→∞(1/β) log E�(τ�) = Γ ,
were proved in [22]. Parts (c)–(e) were proved in [10].

`c

`c − 1

Fig. 5. A critical droplet for model (I): The up-spins lie inside the shaded area, the
down-spins outside.

Theorem 2.1(a) says that the configurations in C∗ are the critical droplets
that represent the gate for the crossover. According to Theorem 2.1(c), the
entrance distribution of this gate is uniform.

Theorem 2.1(b) is explained as follows (see Fig. 6). Since the dynamics
flips one spin at a time, on its way from � to � it must pass through a
configuration that has `c(`c − 1) up-spins. Among the configurations with
precisely this number of up-spins, those where the up-spins form an `c×(`c−1)
quasi-square (of any location and orientation) have the smallest energy (due
to a discrete isoperimetric inequality; see e.g. Alonso and Cerf [1]). Continuing
on its way from � to �, the dynamics must flip one more spin upwards. The
configurations with smallest energy are those where this spin is attached to
one of the sides of the quasi-square, forming a protuberance (see Fig. 5). Next,
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if this protuberance sits on one of the sides of length `c, then the dynamics can
proceed downwards in energy by successively flipping up the spins next to the
protuberance, to end up in an `c×`c square. This square is “over the hill” (see
Fig. 4), because both its side lengths are supercritical (recall (16)). On the
other hand, if the protuberance sits on one of the sides of length `c − 1, then
the dynamics can proceed downwards in energy to form an (`c − 1)× (`c + 1)
rectangle, but this rectangle is “not over the hill”, because one of its side
lengths is subcritical.

−1

+1

Γ

Fig. 6. A nucleation path.

Here is an explanation of Theorem 2.1(d–e). The exponential law comes
from the fact that the crossover only occurs after many unsuccessful attempts
to create a critical droplet and “go over the hill”. The average time needed to
enter C∗ is

1

|C∗|
eβΓ [1 + o(1)] as β → ∞. (26)

Let π(`c) denote the average probability with respect to the uniform entrance
distribution that the critical droplet is exited in the direction of � rather than
�. Then the average number of attempts to go over the hill after reaching the
top is

1

π(`c)
[1 + o(1)] as β → ∞. (27)

The product of (26) and (27) is the average crossover time, and so

K =
1

|C∗|π(`c)
. (28)

Now,
|C∗| = |Λ| 4`c, (29)

because the droplet can be centered anywhere in Λ, has 2 possible orientations,
and the protuberance can sit in 2`c places. Moreover,
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π(`c) =
1

`c

(

2
1

2
+ (`c − 2)

2

3

)

. (30)

Indeed, if the protuberance sits at one of the two extreme ends of a side of
length `c, then the probability is 1

2 that its one neighboring spin on the same
side flips upwards before the protuberance flips downwards. On the other
hand, when the protuberance sits at one of the `c − 2 other locations on this
side, then it has two neighboring spins on the same side and so the probability
for one of them to flip upwards before the protuberance flips downwards is 2

3 .
Combining (28–30), we get (25).

In Theorem 2.1(a), an example of a configuration in S\C∗ is obtained by
picking any configuration in C∗, flipping down any spin next to the protu-
berance (at gain h) and afterwards flipping up any spin at a corner of the
quasi-square (at cost h). For the dynamics, this configuration is a dead-end.
Indeed, the last flip must be reversed before the dynamics can initiate the
motion downhill to the `c × `c square.

2.2 Kawasaki dynamics

Theorem 2.2. (den Hollander, Olivieri and Scoppola [19], Bovier, den Hollander

and Nardi [8])

(a) There exists a set of configurations C∗ ( S such that

lim
β→∞

P�(τC∗ < τ� | τ� < τ�) = 1, (31)

while this fails for any smaller set.
(b) The configurations in C∗ are those where the particles either form an
(`c − 2) × (`c − 2) square, with four bars attached to the four sides of total
length 3`c−3 and 1 free particle, or form an (`c −1)× (`c−3) rectangle, with
four bars attached to the four sides of total length 3`c − 2 and 1 free particle.
(c) The entrance distribution on C∗ is asymptotically uniform:

lim
β→∞

P� (X(τC∗) = η | τC∗ < τ�) = |C∗|−1 ∀ η ∈ C∗. (32)

(d) There exists a constant 0 < K = K(Λ, `c) < ∞ such that

lim
β→∞

e−βΓ E�(τ�) = K (33)

with
Γ = H(C∗) = −U(2`2

c − 4`c + 2) + ∆(`2
c − `c + 2), (34)

and
lim

β→∞
P�(τ� > tE�(τ�)) = e−t ∀ t ≥ 0. (35)

(e) As Λ → Z2,

K(Λ, `c) ∼
3

4π`2
c(`

2
c − 1)

log |Λ|

|Λ|
. (36)
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Part (a), together with a partial description of C∗ and the crude estimate
limβ→∞(1/β) logE�(τ�) = Γ , were proved in [19]. Parts (b)–(e) were proved
in [8].

`c

`c−1

1
0

Λ

Fig. 7. A critical droplet for model (II): The occupied sites lie inside the shaded
areas, the vacant sites outside.

Comparing Theorem 2.2(b) with Theorem 2.1(b), we see that the critical
droplet for Kawasaki is more complicated than for Glauber. Once the dy-
namics has created a protocritical droplet (= quasi-square plus protuberance
without free particle), it must wait for the next particle to arrive from the
boundary (which is the free particle in Fig. 7). This takes a time of order
eβ∆. Because ∆ > U , this time is much larger than eβU , the time for the
dynamics to make moves that cost U . Therefore the droplet will “explore” all
shapes that can be reached from its protocritical shape via a U -path, i.e., a
path between two configurations with the same energy that never goes more
than U above this energy. For instance, the protuberance may detach itself
from the side of length `c and reattach itself to the side of length `c − 1. But
it is also possible for particles to slide along the boundary of the droplet, in a
train-like motion around corners (see Fig. 8), so as to modify the four bars in
the annulus of the droplet.

Theorem 2.1(d–e) is explained as follows. Write C to denote the set of
protocritcal droplets. The average time needed to enter C∗ is

1

|C| |∂Λ|
eβΓ [1 + o(1)] as β → ∞. (37)

Let π(Λ, `c) denote the average probability with respect to the uniform en-
trance distribution that the critical droplet is exited in the direction of �

rather than �. Then the average number of attempts to go over the hill after
reaching the top is

1

π(Λ, `c)
[1 + o(1)] as β → ∞. (38)

The product of (26) and (27) is the average crossover time, and so
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

Fig. 8. Motion along the border of the droplet. Configurations (3–13) form a U -path.

K =
1

|C| |∂Λ|π(Λ, `c)
. (39)

Now,

|C| ∼ |Λ|
1

3
`2
c(`

2
c − 1) as Λ → Z2, (40)

where the first factor comes from centering the droplet anywhere in Λ not
touching ∂Λ, while the second factor comes from a combinatorial calculation
counting the number of sizes and locations of the four bars in the annulus.
Moreover,

|∂Λ|π(`c, Λ) ∼
4π

log |Λ|
as Λ → Z2. (41)

Indeed, the right-hand side is the probability that a particle detaching itself
from the critical droplet reaches ∂Λ and exits Λ before reattaching itself. This
probability is asymptotically independent of the shape and the location of
the critical droplet, due to the fact that the free particle moves like a two-
dimensional simple random walk (which is recurrent on Z2). By reversibility,
the reverse motion has the same probability, which is the left-hand side. Com-
bining (39–41), we get (36).

In Theorem 2.1(a), an example of a configuration in S\C∗ is an `c×(`c−1)
quasi-square plus a dimer at distance 1. For the dynamics, this configuration
is a dead-end. Indeed, one particle of the dimer must jump back to the droplet
and create a protuberance (at cost 0), and the remaining free particle must
attach itself next to this protuberance (at gain U) to initiate the motion
downhill to the `c × `c square.
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2.3 Potential-theoretic approach

We give a sketch of the techniques that are used to obtain the fine asymptotics
of the average crossover time in Theorems 2.1(d–e) and 2.2(d–e). A key role
is played by the notion of capacity between two sets of configurations, in
particular, between the metastable state and the stable state. We refer to
Section 3–5 in Bovier [4] for the general background of this notion within the
context of metastability and for other applications.

Define

E(h) =
1

2

∑

η,η′∈X

µ(η)c(η, η′)[h(η) − h(η′)]2, h : X → [0, 1]. (42)

This is the Dirichlet form associated with the dynamics, whose argument is a
potential function on the configuration space X . Given two non-empty disjoint
sets A,B ⊂ X , the capacity of the pair A,B is defined as

CAP(A,B) = min
h : X→[0,1]

h|A≡1,h|B≡0

E(h), (43)

where the infimum runs over all potential functions whose restriction to A and
B equals 1 and 0, respectively. If we think of an electric network with nodes
labelled by X and with conductivities µ(η)c(η, η′) between nodes η, η′ ∈ X ,
then E(h) is the energy produced by an electric current flowing through this
network when the potential on the nodes is given by h. The capacity is the
minimal energy when the nodes of A are kept at potential 1 and the nodes of
B are kept at potential 0 (“Thompson’s principle”). The minimum in (43) is
unique, and the minimizer h∗ has the interpretation

h∗(η) = Pη(τA < τB) for η /∈ A ∪ B. (44)

What is important about (43) is that upper bounds can be obtained by in-
serting test functions for h, while lower bounds can be obtained by removing
transitions from X × X (“Rayleigh’s short-cut rule”). This gives great flexi-
bility in the calculations.

We henceforth focus on model (II), but the claims made below apply
equally well to model (I). A key ingredient is the following fact, implying
that {�, �} is a metastable pair for low temperature.

Proposition 2.1. (den Hollander, Nardi, Olivieri and Scoppola [18])

For all η ∈ X\{�, �},
Γ (η, {�, �}) < Γ, (45)

where
Γ (A,B) = min

η∈A,η′∈B
min

ω : η→η′
max
ξ∈ω

[H(ξ) − H(η)] (46)

is the communication height between A,B ⊂ X , A ∩ B = ∅, A,B 6= ∅.



14 Frank den Hollander

Proposition 2.1 implies that no matter where the dynamics starts, it reaches
the set {�, �} faster than it manages to achieve the crossover from � to
�. In words, there are “no deep pits” in the energy landscape that trap the
dynamics for a time comparable to the crossover time.

The key to the fine estimate in Theorem 2.2(d–e) is the following fact,
relating the average crossover time to the capacity and relying crucially on
Proposition 2.1.

Proposition 2.2. (Bovier, den Hollander and Nardi [8])

E�(τ�) = [1 + o(1)]/[ZCAP(�, �)] as β → ∞.

Thus, to estimate the average crossover time from � to �, it suffices to esti-
mate the capacity of the pair �, �. This proceeds in several steps.

(1) A crude a priori estimate yields that for every pair A,B there exist con-
stants 0 < C1 < C2 < ∞ (depending on A,B but not on β) such that

C1 ≤ eβΓ (A,B)ZCAP(A,B) ≤ C2. (47)

The lower bound is obtained by picking a minimax path ω in (46) and from
(42) remove all transitions η → η′ that are not in ω. The upper bound is
obtained by picking a test function h in (43) that is ≡ 1 on the Γ -valley
around A and ≡ 0 on the Γ -valley around B. (The Γ -valley around a set of
configurations S is the set of configurations S ′ ) S whose communication
height with S is < Γ .)

(2) With the help of (47), it is possible to obtain sharp bounds on the min-
imizer h∗ of (43) via so-called renewal-type estimates. These estimates
show that h∗ is exponentially close (in β) to 1 on the Γ -valley around �

and exponentially close (in β) to 0 on the Γ -valley around �. Since the
configurations with energy > Γ are negligible, because of the Gibbs factor
in (42), it follows that the sharp asymptotics of CAP(�, �) = E(h∗) is
determined by the values of h∗ on S = S(�, �) and on ∂extS, the exterior
boundary of S.

(3) Due to the above, the variational problem in (43) on the full configuration
space X reduces to a variational problem restricted to S ∪ ∂extS. This
reduced variational problem has a much simpler structure, and can be
understood in terms of the geometry of the configurations that are critical
droplets or are close to critical droplets.

(4) For Kawasaki, the reduced variational problem involves the creation of
a free particle when the droplet is protocritical, the motion of this free
particle towards the droplet, and the attachment itself. Since this is a
problem about simple random walk travelling between ∂Λ and a proto-
critical droplet somewhere inside Λ, the reduced capacity can be sharply
estimated.

For Kawasaki, S∪∂extS contains plateaus, wells and dead-ends, and hence
a closed form computation of K = K(`c, Λ) is not feasible. Fortunately, for
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large Λ the details of the geometry of S ∪ ∂extS turn out to be only partly
relevant, and the asymptotics of K can be identified, resulting in (36). For
Glauber, the reduced variational problem turns out to be zero-dimensional,
and K = K(`c, Λ) can be computed in closed form, resulting in (25).

Remark: Most of the results desribed above can be extended to other types
of dynamics, such as Glauber dynamics for Ising spins with an anisotropic
interaction or in a staggered magnetic field, or Ising spins subject to a par-
allel dynamics given by a probabilistic cellular automaton (see den Hollander
[17] for references). Similarly, most of the results can be extended to three
dimensions, despite the more complex geometry of critical droplets (see Ben
Arous and Cerf [2], den Hollander, Nardi, Olivieri and Scoppola [18] for the
necessary background).

3 Lecture 3: Large systems at low temperature and

moderate systems at positive temperature, conjectures

In this lecture we move away from finite systems and investigate what happens
in growing volumes, both at low and at positive temperature. Most of what
is described below consists of target theorems and work in progress.

Glauber dynamics for large systems at low temperature was studied in
Dehghanpour and Schonmann [12], [13], Schonmann and Shlosman [30], and
Manzo and Olivieri [21], using the pathwise approach. Current work focusses
on trying to improve their results using the potential-theoretic approach, and
on extending the analysis to Kawasaki dynamics.

3.1 Large systems at low temperature

Glauber dynamics

Let Λ = Λβ depend on β such that

|Λβ | = eΘβ, Θ ∈ [0,∞). (48)

Let

– R ⊂ X denote those configurations where the circumscribed rectangles of
all clusters of up-spins in Λβ are contained in non-interacting protocritical
quasi-squares (recall Fig. 9).

The initial configuration X(0) of the dynamics is drawn according to the
conditional Gibbs measure

µR(η) =
µ(η)1R(η)

µ(R)
, η ∈ Xβ , (49)
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Fig. 9. A configuration in R.

where µ is defined in (7) and µ(R) =
∑

η∈R µ(η). Our goal will be to estimate
the first time a critical droplet appears anywhere in Λβ , i.e., the first exit time
of R.

As before, we will be interested in the metastable regime

h ∈ (0, 2J), β → ∞. (50)

Write Pη to denote the law of the dynamics X = (X(t))t≥0 starting from
X(0) = η, and put PµR =

∑

η∈R µR(η)Pη . Let

τRc = min{t ≥ 0: X(t) /∈ R} (51)

denote the first time the dynamics exits R. Write � for asymptotic equality
modulo constants.

Conjecture 3.1. (Bovier, den Hollander and Spitoni [9])

If
Θ ∈ [0, Γ − Ξ) with Ξ = h(`c − 2), (52)

then

EµR (τRc) �
1

|Λβ|
eβΓ as β → ∞. (53)

The idea behind Conjecture 3.1 is simple. The dynamics grows and shrinks
droplets essentially independently in different local boxes. Consequently, a
critical droplet appears randomly in one of the local boxes, after a time that
is the local crossover time divided by the number of local boxes in |Λβ|. This
is the regime of homogeneous nucleation.

Γ is the local energy of the critical droplet, which plays the role of the local
activation energy for the crossover. Ξ is the local energy needed to evaporate
the largest subcritical droplet. The regime in (52) corresponds to the situation
where any subcritical droplet has a tendency to evaporate in a time much
smaller than the crossover time.
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Kawasaki dynamics

Keep (48). This time, let

– R ⊂ X denote those configurations where all clusters of particles in Λβ are
either strictly contained in a protocritical quasi-square plus protuberance
(recall Fig. 7), or are equal to a protocritical quasi-square plus protuber-
ance with an empty annulus of size, say, 10`c (see Fig. 10).

Λ
?

Λβ

`c

`c − 1

Fig. 10. A configuration in R.

The initial configuration X(0) of the dynamics is again drawn according
to (49). We run the dynamics associated with the Hamiltonian in the second
line of (1) without the activity term. Indeed, this term is no longer needed,
because Λβ is so large that it takes over the role of the gas reservoir. In fact,
we will supply Λβ with periodic boundary conditions, so that no particle
enters or exits Λβ at positive times. Our choice to start from the conditional
equilibrium with activity, given by (49), is needed at time zero only, and is
made for convenience. Thus, the particle density inside Λβ is e−β∆ at time
zero and remains fixed in the course of time.

In order to have particles at all we must pick Θ > ∆. We will be interested
in the regime

∆ ∈ (U, 2U), Θ ∈ (∆,∞), β → ∞. (54)

Conjecture 3.2. (Gaudilliere, den Hollander, Nardi, Olivieri and Scoppola [16],

Bovier, den Hollander and Spitoni [9])

Suppose that `c ≥ 3. If

Θ ∈ (∆, Γ − Ξ) with Ξ = 2U + (`c − 3)(2U − ∆), (55)

then

EµR (τRc) � β
1

|Λβ |
eβΓ as β → ∞. (56)

Because of the low particle density, as before, droplets grow and shrink
more or less independently in different local boxes, causing homogeneous nu-
cleation.
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3.2 Moderate systems at positive temperature

In equilibrium statistical physics, for a system that is at a first-order phase
transition a macroscopically large droplet of one phase inside the other phase
takes on the Wulff shape, i.e., the droplet minimizes its total surface tension
subject to a total volume constraint. This observation, which is over a century
old, has been put on a rigorous microscopic basis since only fifteen years or
so. For the two-dimensional ferromagnetic nearest-neighbor Ising model at
low temperature, Dobrushin, Kotecký and Shlosman [14] proved that a large
droplet of the plus-phase inside the minus-phase has the Wulff shape. This
result was subsequently extended up to the critical temperature, and its proof
was simplified, by Pfister [26], Ioffe [20] and Pisztora [27].

The Wulff construction requires a careful coarse-graining analysis. The
microscopic phase boundary is approximated on a mesoscopic scale by a poly-
gon consisting of many segments, which decouple on the mesoscopic scale.
Each segment contributes to the surface tension in a way that depends on its
direction relative to the lattice axes. To handle the fluctuations of the bound-
ary around the polygon, large deviation arguments are required. The polygon
tends to a smooth curve in the macroscopic limit, and this curve enters into
the Wulff variational problem, whose solution is the actual phase boundary.

To study Wulff droplets in the presence of a stochastic dynamics is part
of non-equilibrium statistical physics and therefore is quite a different matter.
The question of interest is whether macroscopically large critical droplets for
metastable transitions between two phases under a stochastic local dynamics
assume the Wulff shape or not.

In this lecture we allow the box Λ to grow but only moderately, in a way
that depends not on β but on the parameters in the Hamiltonian.

Glauber dynamics

We suppose that Λ = Λh with

|Λh| = C
1

h
, 1 � C < ∞. (57)

We assume that β > βc, the critical inverse temperature at h = 0 for Λ = Z2.
The system starts at X(0) = �, the Glauber dynamics is applied for small
h > 0, and the limit h ↓ 0 is taken. The dynamics eventually brings the system
to equilibrium, close to the plus-phase at h = 0, but it needs a long time to
do so. In the limit h ↓ 0, the critical droplet becomes macroscopically large.
The goal is to show that the critical droplet scales to the equilibrium Wulff
shape and appears after a time that scales like the exponential of the Wulff
free energy. The size of the box is taken to scale in such a way that the critical
droplet occupies a finite fraction of the box.
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Theorem 3.1. (Schonmann and Shlosman [30])

For β > βc and C sufficiently large,

lim
h↓0

h log E�(τm(J,β)) =
W (J, β)2

4m(J, β)
, (58)

where τm(J,β) is the first time the total magnetization inside Λh equals m(J, β),
the spontaneous magnetization on Z2, and W (J, β) is the total surface tension
of the Wulff droplet of unit volume.

Note that the left-hand side of (58) refers to a non-equilibrium quantity, while
the right-hand side only contains quantities from equilibrium. This is why the
result in (58) is deep.

The idea behind (58) is that, in the macroscopic scaling limit, the critical
droplet has a length ` that maximizes the free energy function

f(`) = −m(J, β)h`2 + W (J, β)`. (59)

This is a macroscopic version of the parabola encountered in (15)!) The max-
imum is taken at `max = W (J, β)/2m(J, β)h, giving free energy

f(`max) =
W (J, β)2

4m(J, β)h
. (60)

This is the exponential of the time needed to create a droplet at a given
location.

Schonmann and Shlosman [30] analyze the problem also on Z2 instead of
on Λh subject to (57). They show that, in infinite volume, the critical droplet
typically is not created close to the origin, but rather is created far away
and subsequently invades the origin by growing. As a result, the exponential
is three times smaller, because the critical droplet may occur anywhere in a
space-time cone of this smaller size and invade the origin afterwards.

Kawasaki dynamics

This time we suppose that Λ = Λ∆ with

|Λ∆| = C
1

2U − ∆
, 1 � C < ∞. (61)

We assume that β > βc, the critical inverse temperature for the Hamilto-
nian without activity term for Λ = Z2. The system starts at X(0) = �, the
Kawasaki dynamics is applied for ∆ < 2U , and the limit ∆ ↑ 2U is taken.
This is the limit of weak supersaturation, when the critical droplet becomes
macroscopically large.
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Conjecture 3.3. (Bovier, den Hollander and Ioffe [7])

For β > βc and C sufficiently large,

lim
∆↑2U

(2U − ∆) log E�(τρ(U,β)) =
W (U, β)2

2ρ(β, U) − 1
, (62)

where τρ(U,β) is the first time the particle density inside Λ∆ equals ρ(U, β),
the density of the liquid phase on Z2, and W (U, β) is the total surface tension
of the Wulff droplet of unit volume.

The right-hand side of (62) is the same as that of (60), with J being
replaced by U/2, because of the link between the Hamiltonians of models (I)
and (II) in (1). The reason is that, as already observed above, the right-hand
side of (62) only contains quantities from equilibrium.

A proof of Conjecture 3.3 is currently being attempted, with the help of the
potential-theoretic techniques mentioned in Section 2.3, for a version of the
model where the interaction is of Kac-Dyson type, i.e., quasi-mean-field. The
hard part is that, for growing volumes at positive temperature, both spatial
and temporal entropy need to be controlled. We need to understand the typical
way in which the dynamics grows and shrinks large droplets, absorbing and
emitting large numbers of particles with the surrounding gas phase in the box
while keeping the droplet close to the Wulff shape. Droplets are expected to
grow and shrink via “motion by curvature”.
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