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Abstract

We consider the inventory control of a single product in one location with two supply sources facing

stochastic demand. A premium is paid for each product ordered from the faster ‘emergency’ supply

source. Unsatisfied demand is backordered and ordering decisions are made periodically. The optimal

control policy for this system is known to be complex. For this reason we study a type of base-stock

policy known as the dual-index policy (DIP) as control mechanism for this inventory system. Under

this policy ordering decisions are based on a regular and an emergency inventory position and their

corresponding order-up-to-levels. Previous work on this policy assumes deterministic lead times and

uses simulation to find the optimal order-up-to levels. We provide an alternate proof for the result that

separates the optimization of the DIP in two one-dimensional problems. An insight from this proof allows

us to generalize the model to accommodate stochastic regular lead times and provide an approximate

evaluation method based on limiting results so that optimization can be done without simulation. An

extensive numerical study shows that this approach yields excellent results for deterministic lead times

and good results for stochastic lead times.

Keywords: inventory, dual-sourcing, dual-index policy, Markov Chain, approximation, lead times, D/G/c/c queue

1. Introduction

Research into inventory systems is mostly done under the assumption that only one supplier or

supply mode exists to procure, manufacture or ship goods. While many useful results have been

obtained under this assumption (e.g. News-vendor type results for many systems, see van Houtum

(2006) for an overview), these models nevertheless omit an important aspect of many real inventory

systems, namely that inventories can be replenished in more than one way. For example, it is

common that one item can be procured from different suppliers or manufactured in different plants.

Alternatively an item may be shipped over sea or by air (expediting). Even within the production

environment of a single plant the production lead time can be decreased by producing in overtime.
∗Corresponding author, E-mail: j.j.arts@tue.nl
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In all these examples there are multiple ways to replenish inventory with different lead times and

costs.

The situations described in the previous subparagraph can be approached in roughly two ways.

The first approach is to carefully select one of the supplier/supply modes and than source all

inventory from that supplier/supply mode. We refer to the problem of making this decision as

vendor selection. The second approach is to use both suppliers/supply modes simultaneously. This

paper is concerned with the latter approach which we refer to as dual-sourcing.

Suppliers are becoming more willing to offer different supply modes to their customers. Paccar

parts in Eindhoven, for example, which handles spare-part logistics for DAF trucks N.V., makes a

distinction between regular and emergency delivery modes for shipping parts to different locations

throughout Europe. Another situation where multiple supply modes occur naturally is in reman-

ufacturing systems. In this setting serviceable products can be produced from raw materials or

from remanufacturing returned items. These two modes of inventory replenishment are naturally

associated with different costs and lead-times. A similar situation also occurs in the inventory

control of spare parts. Spare parts are kept on stock so that a capital good can readily be made

available upon failure of a part. The failed part is then sent sent into normal or emergency repair

with associated different lead times and costs.

In this paper we study a general model for the inventory control in dual-sourcing systems. We

consider the inventory control of a single product in one location that is reviewed periodically and

has two supply sources with different lead times. The lead times are assumed to be integer multiples

of the review period. The faster supply source will be referred to as the emergency supplier while

the slower supply source will be called the regular supplier. Units procured from the emergency

supplier incur additional cost. Ordering from the regular channel may represent manufacturing

somewhere in Asia, while ordering through the emergency channel may represent ordering from a

more expensive local supplier. Other applications include, but are not limited to, shipping goods

by sea (‘regular’) or air (‘emergency’) freight and manufacturing with (‘emergency’) or without

(‘regular’) overtime. The problem we shall consider is the minimization of holding and ordering

costs subject to a service level constraint.

Models for the situations described above are difficult to analyze. Under specific restrictive

assumptions the analysis can become tractable such as the assumption of a unit lead time differ-

ence for which the optimal policy is known but the application area is very narrow. When lead

time differences are more than one period the optimal policy is known to be complex, difficult to
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implement and computationally hard to obtain (Whittmore & Saunders (1977), Feng et al. (2006a)

and Feng et al. (2006b)). In this paper we investigate exactly this context. For this reason we

consider a class of base-stock type policies and optimize within this class. Specifically we study the

dual-index policy (DIP) that has the attractive property of reducing to the optimal policy when

the lead time difference is only one period. This policy, originally proposed for re-manufacturing

systems, is easily implementable and performs very close to the optimal policy (Veeraraghaven &

Scheller-Wolf (2008)). Until now the DIP has resisted analytical or even approximate analytical

optimization so that resort had to be taken to simulation based procedures.

The DIP policy tracks two inventory positions: a regular inventory position (on-hand stock +

all outstanding order - backlog) and an emergency inventory position (on-hand stock + outstanding

orders that will arrive within the emergency lead time - backlog). In each period ordering decisions

are made to raise both inventory positions to their order-up-to-levels. Under this policy the emer-

gency inventory position can, and indeed usually does, exceed its corresponding order-up-to-level.

This excess is called the overshoot and plays a central role in the analysis of the DIP. Despite

its relatively simple form, optimization of the DIP still requires substantial computational effort

because it requires determining several overshoot distributions. In principle the overshoot distribu-

tion can be obtained exactly by solving a multidimensional discrete time Markov chain (DTMC).

However, this approach suffers from the curse of dimensionality and consequently the usual ap-

proach is to determine the overshoot distribution by simulation. Veeraraghaven & Scheller-Wolf

(2008) prove a separability result that drastically decreases the amount of simulation needed, but

the computational time remains substantial.

In this paper we revisit the model compared of Veeraraghavan & Scheller-Wolf (2008), and

generalize it by incorporating stochastic regular lead times. We provide an alternate proof of the

aforementioned separability result for both deterministic and stochastic lead times. An insight

from this proof is used to construct a one-dimensional DTMC that describes the overshoot process.

By approximating the transition probabilities for this DTMC based on limiting results we obtain

a computationally efficient optimization procedure.

This paper is organized as follows. In Section 2 we review the literature on dual-sourcing and

position our results with respect to earlier work. We then present the model with deterministic

lead times in Section 3 and introduce the dual-index policy formally. In section 4 we analyze this

policy and give limiting results to easily find approximately optimal settings. Next we generalize

our model to accommodate stochastic regular lead times in Sections 5 and 6. Section 7 provides
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an extensive numerical study on the accuracy of our approximation. We give conclusions and

directions for further research in Section 8.

2. Literature review

Minner (2003) provides a review of the literature pertaining to many different issues surrounding

multiple supply sources. Broadly speaking the research in multiple sourcing is divided into the

strategic approach, which studies issues such as exchange rate volatility, risk management and

vendor selection, and the operational approach that mainly studies the inventory control of such

systems. Among the different perspectives we focus on operational/tactical control of multiple

sourcing systems. One body of research focusses on the number of supply sources as a decision

variable and usually assumes that different sources are identical. In these situations replenishment

orders are split among the different supply sources and optimal order splitting is the object of study.

Another body of research considers situations with two suppliers that have different lead times.

Replenishing inventory from the faster supplier incurs additional cost. This paper contributes to

this body of research. As Minner (2003) provides an excellent review of research up to around 2001

we briefly discuss key results from before that time. Then we discuss relevant research since that

time.

Early research focusses on the structure of the optimal policy for periodic inventory systems with

dual-sourcing. Barankin (1961) considers the single period problem with instantaneous emergency

delivery and a regular lead time of one period. Fukuda (1964) formulates the problem as one of

negotiable lead-time for the infinite horizon case and gives an analytical derivation of the optimal

policy by discounted dynamic programming. He considers a system that operates in discrete time,

that has two suppliers whose lead-times are deterministic and differ by exactly one period. Sethi

et al. (2003) extend Fukuda’s (1964) model with fixed ordering costs and demand forecast updates

and show that the optimal policy is of the (s, S)-type. Yazlali & Erhun (2009) extend Fukuda’s

(1964) model with minimum and maximum capacity requirements for both suppliers, and derive

the optimal policy. The assumption that the lead times of both suppliers differs by only one period

is crucial to obtaining optimal policies with a simple structure. In 1977 Whittmore & Saunders and

more recently Feng et al. (2006a) and Feng et al. (2006b) showed that in the optimal policy ordering

decisions depend on the entire vector of outstanding orders for general lead time differences. Thus

the optimal policy is complex and not of the base-stock type when the lead time difference is more
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than one period.

Despite the fact that the optimal policy for general lead time differences has been known to be

complex since 1977, the focus on good policies with a simpler structure is rather recent. Scheller-

Wolf et al. (2003) consider the same setting as Whittmore & Saunders (1977) and propose the

single index policy under which ordering for both the emergency and regular supplier are based on

a single state parameter: the inventory position. This policy is simple and can easily be optimized

when demand distributions are mixtures of Erlangian distributions. When the lead time difference

is one period the single-index policy also reduces to the optimal policy. Kiesmüller (2003) proposes

the use of a policy that tracks two inventory positions associated with different lead times in the

context of a remanufacturing system. The key idea here is that the decision on the amount to order

at the emergency supplier should not be based on information about orders that will arrive after

this order. Veeraraghavan & Scheller-Wolf (2008) study this policy in the context of two supplier

models. They provide the aforementioned separability result for deterministic lead times. This

separability result separates the optimization of the DIP, which is a two-dimensional optimization

problem, to two one-dimensional optimization problems.

A completely different policy for this problem setting are standing order or constant order

policies. In these policies the regular supplier delivers a fixed quantity every period while the

emergency supplier may be controlled using various types of policies. This type of policy was first

studied by Rosenshine & Obee (1976). Recent contributions in this area are Chiang (2007), who

derives the optimal policy structure given that the regular order quantity is fixed and Allon & van

Mieghem (2008), who approximate the related Tailored Base Surge policy using Brownian motions.

A closely related problem is the expedition of orders after they have entered the pipeline. Lawson

& Porteus (2001) study this problem in a serial multi-echelon periodic review context. They show

that a type of base-stock policy, called a “top down base-stock policy” is optimal when orders can

be expedited and delayed at will in the entire supply chain. Gallego et al. (2007) study a single

stock-point in continuous time with the possibility of expediting existing orders and derive the

optimal policy under the assumption of Poisson demand.

All literature in dual-sourcing assumes deterministic lead times except for Song & Zipkin (2009)

and Gaukler et al. (2008). Song and Zipkin study a model of a stock-point facing Poisson demand

operating in continuous time. They assume a (S − 1, S)-type ordering policy and show how to

model this system as a network of queues with one or more overflow bypasses. Gaukler et al.

(2008) also consider a single stock-point operating in continuous time and propose a policy based
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on the classical (Q,R)-policy. They show how to find optimal parameter settings under a set of

specific assumptions.

The setting we consider is similar to the settings in Fukuda (1964), Whittmore & Saunders

(1977) and Veeraraghavan & Scheller-Wolf (2008). Our two most important contributions are (i)

the development of an efficient approximation for the overshoot distribution so that optimization of

the DIP becomes computationally more feasible and (ii) the incorporation of stochastic lead times

in the periodic review setting.

3. Model with deterministic lead times

Our model is similar to the model studied by Veeraraghavan & Scheller-Wolf (2008). We consider

the inventory control of a single product in one location with two supply sources facing stochastic

demand. A premium c is paid for each product ordered from the faster ‘emergency’ supply source.

Unsatisfied demand is backordered and ordering decisions are made periodically. Without loss of

generality we assume the length of a review period to be one. Demand per period is a sequence

of non-negative i.i.d. discrete random variables {Dn} with n a period index. We assume that

Pr(D > 0) > 0 and Pr(D <∞) = 1. The net inventory (stock on-hand - backlog) at the beginning

of period n will be denoted In. Any on-hand stock I+
n at the beginning of a period n incurs a holding

cost of h per SKU. (We use the standard notations x+ = max(0, x) and x− = max(0,−x)). We

denote the backlog at the beginning of a period Bn = I−n . Orders placed at the regular (emergency)

channel arrive after a deterministic lead-time lr (le) and we assume l := lr − le, l ≥ 1. Lead-times

are assumed to be an integer multiple of the review period. The regular (emergency) order placed

in period n is denoted Qrn (Qen). Later (in Section 5) we will relax the assumption that lr is

deterministic. A schematic representation of the situation described above is given in Figure 1.

Figure 1: Graphical representation of model with deterministic regular lead times

As control mechanism for this inventory system we study the dual-index policy (DIP), defined

by two parameters (Se, Sr), which operates as follows. At the beginning of each period n we review
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the emergency inventory position

IP en = In +
∑n−l

i=n−lr Q
r
i +

∑n−1
i=n−le Q

e
i (1)

and if necessary place an emergency order Qen to raise the emergency inventory position to its

order-up-to-level Se,

Qen = (Se − IP en)+. (2)

After placing the emergency order we inspect the regular inventory position

IP rn = In +
∑n−1

i=n−lr Q
r
i +

∑n
i=n−le Q

e
i = IP en +Qen +

∑n−1
i=n+1−lQ

r
i (3)

and place a regular order Qrn to raise the regular inventory position to its order-up-to-level Sr,

Qrn = Sr − IP rn . (4)

After ordering, shipments are received and demand for the period is satisfied or backordered if

there is no stock available. Thus within a period n the sequence of events can be summarized as

follows: (1) review the on-hand inventory and incur holding costs hI+
n ; (2) review the emergency

inventory position and place an emergency order Qen; emergency ordering costs are incurred as

cQen; (3) review the regular inventory position and place a regular order Qrn; (4) receive shipments

Qen−le and Qrn−lr ; (5) demand Dn occurs and is satisfied except for possible back-orders Bn. Note

that the emergency inventory position under this policy can, and indeed often does, exceed the

emergency order-up-to-level Se. The amount by which the emergency inventory position exceeds

the emergency order-up-to-level is called the overshoot. After ordering the emergency inventory

position is given by Se +On where On ∈ {0, 1, ..., Sr − Se} is the overshoot and satisfies

On = IP en +Qen − Se = (IP en − Se)+. (5)

Determining the stationary distribution of the overshoot O will play a key role in evaluating the

performance of a given policy (Sr, Se).

Our objective is the minimization of the long run average cost subject to a modified fill-rate

constraint. The modified fill-rate is defined as

γ = 1− E[B]/E[D]. (6)

The modified fill-rate is closely related to the regular fill-rate often denoted β. The γ service level

also bears on the possibility that back-orders take more than a single period to be filled when a
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backlog does occur. When service-levels are high, the modified fill-rate is a very tight lower bound

of the regular fill-rate.

The average costs related to our problem are the costs of emergency ordering and holding costs

given by

C(Se, Sr) = hE[I+] + cE[Qe]. (7)

We are now in a position to formulate the optimization problem P:

(P) min C(Se, Sr)

s.t. γ(Se, Sr) ≥ γ0

Se, Sr ∈ Z.

(8)

Here γ0 denotes the target service level. This problem is a non-linear integer programming problem

(NLIP). The integrality constraint on Se and Sr is the consequence of the discrete nature of demand.

Note that continuous demand distributions can also be used, but discretization has to be applied.

An overview of all introduced notations and some notations that will be introduced in later sections

is given in Table 1.

4. Analysis of model with deterministic lead times

This section is organized as follows. In section 4.1 we present the separability result and show how it

can be exploited to find the optimal DIP if the overshoot distribution can be determined. In section

4.2 we present an exact one-dimensional Discrete Time Markov Chain (DTMC) that describes the

overshoot. Following in section 4.3 we provide approximations for the transition probabilities such

that this DTMC can be utilized to approximate the overshoot distribution.

Throughout the analyses in this paper for any random variable Xn we define the stationary ex-

pectation and distribution as E[X] = limn→∞
1
n

∑n
i=1Xn and Pr(X ≤ x) = limn→∞

1
n

∑n
i=1 I{Xn ≤

x} where I{x} is the indicator function of the event x. Whenever we drop the index of a random

variable we are referring to the stationary random variables with mean and distribution defined

above. Additionally we denote the k-fold convolution of a random variable X as X(k) and the

squared coefficient of variance of a random variable X as c2
X := Var[X]

E2[X]
.

4.1 Optimization

In our analysis we shall see that the difference between Sr and Se plays an important role. Therefore,

we define ∆ := Sr − Se. This definition allows for the specification of a DIP as either (Se, Sr) or
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Table 1: Summary of notations
notation description

An Amount of ordered products that will not arrive within the emergency lead-time

in period n after ordering (:=
∑n

i=n+1−l Q
r
i )

Bn Backlog in period n

c Premium to buy one product at the emergency supplier

C(Se, Sr) Average holding and incremental ordering costs for policy (Se, Sr)

γ Modified fill rate

γ0 Target modified fill-rate

Dn Demand in period n, random variable

∆ Difference between regular and emergency order-up-to-level (:= Sr − Se)

h Inventory holding cost per period per SKU

In The net inventory (on-hand stock - backlog) at the beginning of period n

IP r
n Regular inventory position at the beginning of period n after ordering at the emergency supplier

IP e
n Emergency inventory position at the beginning of period n before ordering

le Replenishment lead-time for emergency orders

lr Replenishment lead-time (deterministic) for regular orders

l Difference between regular and emergency replenishment lead-time (:= lr − le)

n Period index

On Overshoot in period n (:= (IP e
n − Se)+)

Sr Regular order-up-to-level

Se Emergency order-up-to-level

Qr
n Regular order quantity placed in period n

Qe
n Emergency order quantity placed in period n

(Se, Se+ ∆). For the analysis it will be more convenient to consider Se and ∆ as decision variables.

In this section we show how to find the optimal Se for fixed ∆. This allows for a simple search

procedure over ∆ to find the optimal DIP.

First we investigate an interesting property of the DIP. Consider the pipeline stock that will

not arrive within the emergency lead time and denote this quantity An in period n after ordering:

An =
∑n

i=n+1−lQ
r
i . (9)

Lemma 4.1. (Key functional relation) Consider the dual-index policy for a system with determin-

istic lead times and An as defined in equation (9). Suppose that IP rk ≤ Sr for some k ∈ N0. Then

for all n ≥ k the dual-index policy ensures that the following identity holds

∆ = On +An. (10)

Proof. This is a special case of lemma 6.1; we defer the proof to there.
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Lemma 4.1 essentially states that An and On are complements so that any knowledge regarding

An implies knowledge regarding On. The identity ∆ = On + An also completely describes the

operation of the DIP as is evident from the proof. Before establishing our separability result we

need one more lemma which is originally due to Veeraraghavan & Scheller Wolf (2008).

Lemma 4.2. (Recursions for On, Qen and Qrn) Consider the model with deterministic lead times

operated by the dual-index policy. The overshoot On, emergency order quantity Qen and regular

order quantity Qrn satisfy the following recursions:

On+1 = (On −Dn +Qrn+1−l)
+, (11)

Qen+1 = (Dn −On −Qrn+1−l)
+, (12)

Qrn+1 = Dn −Qen+1. (13)

Proof. The proof of this lemma appears in Veeraraghavan & Scheller-Wolf (2008) as lemma 4.1 and

corollary 4.1. This lemma is also a special case of lemma 6.2; we defer the proof to there.

The recursions (11)-(13) are quite intuitive. Equation (11) describes that the overshoot dimin-

ishes each period with the demand and increases with the regular order that enters the information

horizon of the emergency inventory position. The emergency order quantity can also be thought of

as the ‘undershoot’, i.e., Qen = (Se − IP en)+ from which relation (12) follows. Relation (13) follows

from the property that in each period the total order amount equals the demand in the previous

period. With these results we now establish the separability result, part of which also appears

as proposition 4.1 in Veeraraghavan & Scheller-Wolf (2008). We remark again that our proof is

different.

Lemma 4.3. (Separability result) Consider the model with deterministic lead times operated by

the dual-index policy. The distributions of O, Qr and Qe depend on Sr and Se only through their

difference ∆ = Sr − Se.

Proof. This lemma is a special case of lemma 6.3; we defer the proof to there

Let us define O∆ as the stationary random variable O for a given ∆. Lemma 4.3 can be exploited

to obtain the optimal DIP for fixed ∆.

Theorem 4.4. (On the optimal choice for Se) Consider the dual-index policy for the control of our

model with determinisitc lead times. For fixed ∆ the optimal Se is the smallest integer that satisfies
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the following inequality:
∆∑
k=0

E

[(
D(Le+1) − Se − k

)+
]

Pr(O∆ = k) ≤ (1− γ0)E(D). (14)

Proof. As a consequence of lemma 4.3 the cost term related to emergency ordering, cE[Qe], becomes

a fixed constant when ∆ is fixed. Thus, for fixed ∆ the relevant cost function is given by C̃(Se) =

hE[I+] and the problem reduces to a one-dimensional optimization problem we shall call Q.

(Q) min C̃(Se)

s.t. γ(Se, Se + ∆) ≥ γ0

Se ∈ Z.

(15)

Now by the identity γ = 1 − (E[B]/E[D]) the service level constraint can be modified into a

constraint on E[B]. The expected backlog can be found by conditioning on the emergency inventory

position after ordering, using that demand is an i.i.d. sequence and recalling that by lemma 4.3

the distribution of O is already fixed:

E[B] =
∆∑
k=0

E

[(
D(Le+1) − Se − k

)+
]

Pr(O∆ = k) ≤ (1− γ0)E[D]. (16)

The objective function

hE[I+] =
∆∑
k=0

E

[(
Se + k −D(Le+1)

)+
]

Pr(O∆ = k) (17)

is non-decreasing in Se as can easily be shown by recalling that probabilities are non-negative and

using finite differences. This implies that the smallest integer Se that satisfies inequality (16) is the

optimal solution to Q, which completes the proof.

Remark It is also easy to show that E[B] is a non-increasing function of Se. Thus the optimal Se

given ∆ can easily be found using a simple method such as a bisection search.

The above result provides a simple way to find the optimal DIP if the distribution of O and E[Qe]

can be determined for fixed ∆. If this can be done one may simply perform a search procedure over

∆ to find the globally optimal DIP. To evaluate the cost term cE[Qe] for the objective function

of problem P we note that the first moment of O completely determines the first moment of

Qe through the relations E[Qr] = E[A]
l = ∆−E[O]

l and E[D] = E[Qr] + E[Qe]. Thus from the

distribution of O it is easy to determine the cost term cE[Qe]. In the next two subsections we

describe a one-dimensional Discrete Time Markov Chain (DTMC) that describes the overshoot.

Moreover, we provide approximations for its transition probabilities such that the overshoot can

be approximated efficiently.
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4.2 A one-dimensional Markov Chain for the Overshoot

Lemma 4.1 gives insight into the behavior of On. Instead of studying On we may study An that

has a straightforward physical interpretation as the pipeline stock that will not arrive within the

short lead time le. An obeys the following recurrence relation:

An+1 = ∆−On+1

= ∆−
(
∆−Dn −

∑n
i=n+2−lQ

r
i

)+
= ∆−

(
∆−Dn −An +Qrn+1−l

)+
= min(∆, An −Qrn+1−l +Dn).

(18)

In principle An can be modeled by a DTMC. To construct this DTMC for An however, we would

need to store the last l regular order quantities in the state information. This leads to an l-

dimensional Markov Chain. From equation (18) we retrieve that Qrn ∈ {0, 1, ...,∆} and so this

DTMC would have
∑∆

k=0

∑k
x1=0

∑k−x1
x2=0 · · ·

∑k−
∑l−1

i=1 xi

xl=0

(
k

x1,x2,...,xl

)
states. It is computationally in-

feasible to find the equilibrium distribution of this DTMC for most practical instances. To remedy

this we study a compacter DTMC with only one dimension and ∆ + 1 states. Observe that the

recurrence relation (18) completely defines a Markov Chain for An if the probability mass func-

tions of D and {Qrn+1−l|An} are known. This DTMC is defined by the transition probabilities

pij = Pr (An+1 = j|An = i) that can be obtained by distinguishing the cases j < ∆ and j = ∆.

First consider the case j < ∆, we have

pij = Pr(An+1 = j|An = i)

= Pr(An −Qrn+1−l +Dn = j|An = i)

=
∑j

k=0 Pr(Qrn+1−l = An +Dn − j|An = i,Dn = k) Pr(Dn = k)

=
∑j

k=0 Pr(Qrn+1−l = i+ k − j|An = i) Pr(D = k).

(19)

The case j = ∆ is very similar:

pi∆ = Pr(An+1 = ∆|An = i)

= Pr(An −Qrn+1−l +Dn ≥ ∆|An = i)

=
∑i

k=0 Pr(Dn ≥ ∆ +Qrn+1−l −An|An = i, Qrn+1−l = k) Pr(Qrn+1−l = k|An = i)

=
∑i

k=0 Pr(Qrn+1−l = k|An = i) Pr(D ≥ ∆ + k − i).

(20)

Now we organize these transition probabilities in the transition matrix P :

P =


p00 . . . p0∆

...
. . .

...

p∆0 . . . p∆∆

 . (21)
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If we let π(x) denote Pr(A = x), π = [π(0), . . . , π(∆)] and e = [1, 1, . . . , 1]T , then the stationary

distribution π can be found by solving the set of linear equations

πP = π, πe = 1. (22)

The distribution of D is assumed to be known, but the distribution of {Qrn+1−l|An} is in fact

unknown. In the next subsection we construct an approximation for this distribution based on

limiting results so that the introduced one-dimensional DTMC can be used to approximate the

overshoot distribution.

4.3 Approximations for the transition probabilities

To determine the transition probabilities in the DTMC of the previous section we need the proba-

bility mass functions of D and {Qrn+1−l|An}. The latter can be approximated using the following

(limiting) result.

Proposition 4.5. The following statements hold:

(i) As ∆→∞, Pr(Qrn+1 = x)→ Pr(Dn = x).

(ii) As ∆→∞, Pr
(
Qrn+1−l = x|An = y

)
→ Pr

(
Dn+1−l = x|

∑n
i=n+1−lDi = y

)
.

(iii) For ∆ = 1, Pr
(
Qrn+1−l = x|An = y

)
= Pr

(
Dn+1−l = x|

∑n
i=n+1−lDi = y

)
.

Proof. Part (i) and (ii) are special cases of proposition 6.5; we defer the proof to there. Part (iii)

holds trivially under the conditioning An = 0. For the conditioning An = 1 we need only show

that Pr(Qrn+1−l = 1|An = 1) = Pr(Dn+1−l = 1|
∑n

i=n+1−lDi = 1) because Pr(Qrn+1−l = 0|An = 1)

is the complement of Pr(Qrn+1−l = 1|An = 1). Recall the definition of An as the sum of l regular

orders. When An = 1, there is exactly one order of one SKU, and it can be any of the regular

orders included in An with probability 1/l, i.e., Pr(Qrn+1−l = 0|An = 1) = 1/l. Now we have

Pr
(
Dn+1−l = 1|

∑n
i=n+1−lDi = 1

)
=

Pr(D = 1) Pr
(
D(l−1) = 0

)
Pr(D(l) = 1)

=
Pr(D = 1) Pr(D = 0)l−1

lPr(D = 1) Pr(D = 0)l−1
(23)

= 1/l.

But 1/l = Pr(Qrn+1−l = 0|An = 1) as required.
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Intuitively parts (i) and (ii) of proposition 4.5 are obvious because ∆ =∞ corresponds to single

sourcing with the regular supplier, in which case Qrn+1 = Dn. Parts (ii) and (iii) of proposition 4.5

suggest that Pr
(
Dn+1−l = x|

∑n
i=n+1−lDi = y

)
can be used to approximate Pr

(
Qrn+1−l = x|An = y

)
as this approximation is exact for extremely small ∆ (∆ = 1) and extremely large ∆ (∆ → ∞).

Thus an approximation for Pr
(
Qrn+1−l = x|An = y

)
is given by

Pr
(
Qrn+1−l = x|An = y

)
≈ Pr

(
Dn+1−l = x|

∑n
i=n+1−lDi = y

)
(24)

=
Pr(D = x) Pr

(
D(l−1) = y − x

)
Pr
(
D(l) = y

) .

Using this approximation for Pr
(
Qrn+1−l = x|An = y

)
we can compute an approximation for Pr(A =

x) by solving the set of linear equations (22). Then by using relation (4.1) we obtain an approxi-

mation for the distribution of O as Pr(O = x) = Pr(A = ∆− x).

Remark Note that the above approximation is also exact when l = 1. Since the DIP is the optimal

policy for l = 1 this approach yields the globally optimal policy whenever l = 1.

Numerical experiments indicate that this approximation works well in a wide range and not

only closely approximates the first two moments of O but also the often unusual shape of its

distribution. To illustrate the unusual shape of the overshoot distribution four typical examples

are given in Figure 2, where the overshoot distribution as determined by simulation is shown in

conjunction with the approximation based on the above analysis. Results of a detailed numerical

study are presented in Section 7.

5. Model with stochastic lead times

The model we consider is identical to the model described in section 3 with one exception: now we

assume that Lrn is a stochastic integer and that the lower bound of its support is at least le + 1.

Define the random variable Ln as

Ln := Lrn − le. (25)

The support of L is constituted by the positive integers N. We can think of Lrn as consisting of a

deterministic part le and a stochastic part Ln. We will assume that {Ln} is an i.i.d. sequence and

Pr(L = ν) = qν . This implies that order crossover is possible and places us in a setting similar to

that of Robinson et al. (2001). Further we let ln and lrn denote realizations of the random variables

Ln and Lrn.
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Figure 2: Overshoot distributions for a few illustrative cases as determined by simulation and the

corresponding Markov Chain approximations

Inventory positions are now defined using set notation. Let Xn be the set of all period indices

such that at the beginning of period n before ordering, the regular orders from these periods have

not yet arrived in stock,

Xn = {k|k ≥ n− lrk, k < n}.

Additionally let Yn be the set of all period indices such that at the beginning of period n before

ordering the regular orders from these periods have not yet arrived in stock but will do so within

the emergency lead time:

Yn = {k|k ≥ n− lrk, k ≤ n− lk}.

Using these sets we can again define the emergency and regular inventory positions as

IP en = In +
∑

i∈Yn
Qri +

∑n−1
i=n−le Q

e
i (26)
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and

IP rn = In +
∑

i∈Xn
Qri +

∑n
i=n−Le

Qei = IP en +Qen +
∑

i∈Xn\Yn
Qri . (27)

Notice that these definitions reduce to the earlier definitions in case of deterministic regular

lead times. We also remark that we do not necessarily need to know the realizations of Lrn up to

time n for the inventory positions to be well defined. The only necessary information needed is

to know in real time when the order from period k will arrive within the emergency lead time le,

i.e., we need to know when k = n − lk. In essence the random variable Lrn consists of a random

component Ln and a deterministic component le. We assume that that the random component

becomes known before or at the time the remaining lead time of a regular order is le.

There are multiple ways for this information to become available in practice. First we may

know what the regular lead time will be as soon as we place an order. Second we may know when

a regular order will arrive within the emergency lead time because this time is naturally associated

with known events such as a shipment harboring at the port. In the context of manufacturing in

overtime or other use of flexible capacity this information may be available by simple inspection of

the job floor.

Ordering decisions are still given by equations (2) and (4) and the overshoot still satisfies the

original definition in equation (5). We now proceed to analyze the DIP when regular lead times

are stochastic.

6. Analysis of model with stochastic lead times

Our analysis will proceed along the same lines as the analysis for deterministic regular lead times,

i.e., we show how to find the optimal DIP for fixed ∆ (Section 6.1) and provide a one dimensional

DTMC that describes the overshoot (Section 6.2). We provide approximations for the transition

probabilities of this DTMC in Section 6.3.

6.1 Optimization

Let us turn again to the amount of pipeline stock that will not arrive within the emergency lead

time, An. Let Un be the set of all period indices such that in period n after ordering the regular

orders from these periods will not arrive within the emergency lead time:

Un = {k|k ≥ n− lk + 1, k ≤ n}. (28)
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Now the definition of An can be written as

An =
∑

i∈Un
Qri . (29)

Lemma 6.1. (Key functional relation) Consider the model with stochastic lead times operated by

the dual-index policy and An as defined in equation (29). Suppose that IP rk ≤ Sr for some k ∈ N0.

Then for all n ≥ k the dual-index policy ensures that the following identity holds

∆ = On +An. (30)

Proof. Reconsider the regular inventory position as given in equation (27),

IP rn = IP en +Qen +
∑

i∈Xn\Yn
Qri . (31)

Now we substitute the definition of the overshoot (from equation (5)) and add Qrn to both sides of

this equation,

IP rn +Qrn = Se +On +
∑

i∈Xn\Yn∪{n}Q
r
i . (32)

By supposition IP rn ≤ Sr so Qrn = Sr − IP rn and the left-hand side of (32) becomes Sr. When we

take a closer look at the set over which the sum in (32) runs it is straightforward to verify that

Un = Xn\Yn ∪ {n} so that we can substitute the definition of An to obtain

Sr = Se +On +An. (33)

Rearrangement and substitution of the identity ∆ = Sr − Se yields the result.

Lemma 6.1 is a direct generalization of lemma 4.1 and essentially states that An and On are

direct compliments also in the presence of stochastic regular lead times. Note also that lemma 6.1

holds for all stochastic processes {Ln}n∈N0 , not just i.i.d. sequences.

Now we introduce Vn the set of period indices such that at the beginning of period n after

ordering the regular orders from these periods will enter the information horizon of the emergency

inventory position in period n+ 1,

Vn = {k|k = n− lk + 1}. (34)

We emphasize that the sets Xn and Yn are defined before ordering while Un and Vn are defined after

ordering. As before we now turn attention to recursions for On, Qen and Qrn and then establish our

separability result.
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Lemma 6.2. (Recursions for On, Qen and Qrn) Consider the model with stochastic lead times as

defined in Section 5. The overshoot On, emergency and regular order quantities satisfy the following

recursions:

On+1 =
(
On −Dn +

∑
i∈Vn

Qri
)+
, (35)

Qen+1 =
(
Dn −On −

∑
i∈Vn

Qri
)+
, (36)

Qrn+1 = Dn −Qen+1. (37)

Proof. The emergency inventory position satisfies

IP en+1 = IP en +Qen −Dn +
∑

i∈Vn
Qri

= Se +On −Dn +
∑

i∈Vn
Qri .

(38)

Rewriting the definition of the overshoot (equation (5)) we obtain

On+1 = (IP en+1 − Se)+

= (Se +On −Dn +
∑

i∈Vn
Qri − Se)+

= (On −Dn +
∑

i∈Vn
Qri )

+.

(39)

Similarly for the emergency order quantity we have by rewriting (2):

Qen+1 = (Se − IP en+1)+

= (Dn −On −
∑

i∈Vn
Qri )

+.
(40)

The identity Qrn+1 = Dn −Qen+1−l follows immediately from the fact that the DIP ensures that in

each period the total amount ordered equals demand from the previous period.

With these results we can prove the same separability result that was shown to hold for deter-

ministic regular lead times.

Lemma 6.3. (Separability result) Consider the model with stochastic lead times as defined in

Section 5. The distributions of O and Qe and Qr depend on Sr and Se only through their difference

∆ = Sr − Se.

Proof. Recall the recursions in lemma 6.2. To make these equations independent of the start-

ing conditions we substitute the identity for On in lemma 6.1. This substitution also makes the

operation of the DIP explicit:

On+1 =
(

∆−Dn −
∑

i∈Un\Vn
Qri

)+
, (41)

Qen+1 =
(
Dn +

∑
i∈Un\Vn

Qri −∆
)+

, (42)

Qrn+1 = Dn −Qen+1. (43)
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For the summation
∑

i∈Un\Vn
Qri we read 0 whenever Un\Vn = ∅. These recursions completely

determine the stochastic processes {On}, {Qrn} and {Qen} once the stochastic sequences {Dn},

and {Ln} have been specified. Since the stochastic processes {On} and {Qen} and {Qrn} can be

described completely using Sr and Se only through their difference, it follows that their stationary

distributions are functions of Sr and Se only through their difference.

Remark In establishing lemma 6.3 we did not require that either {Dn} or {Ln} are i.i.d. sequences.

In principle the stationary overshoot distribution is well defined when ∆ is fixed for all processes

{Dn} and {Ln} such that Dn ∈ N0 and Ln ∈ N0 for all n ∈ N0. We do use that {Dn} and {Ln}

are i.i.d. in sections 6.2 and 6.3 to construct an efficient approximation for Pr(O = x). However

the distribution of O, Qe or Qr can be determined by simulation for more general processes {Dn}

and/or {Ln}.

Let us define O∆ as the stationary random variable O for a given ∆. Lemma 6.3 leads to the

following theorem on the optimal choice for Se for fixed ∆

Theorem 6.4. (On the optimal choice for Se) Consider the model with stochastic lead times as

defined in Section 5. For fixed ∆ the optimal Se is the smallest integer that satisfies the following

inequality
∆∑
k=0

E

[(
D(Le+1) − Se − k

)+
]

Pr(O∆ = k) ≤ (1− γ0)E(D). (44)

Proof. The proof is analogous to the proof of Theorem 4.4 and therefore omitted.

The optimal DIP for the system with stochastic lead times can also be found by a search

procedure over ∆. To find the cost term cE[Qe] for the objective function of problem P in this more

general situation, we make use of the identities E[Qr] = ∆−E[O]
E[L] and E[D] = E[Qr] +E[Qe]. In the

next two sections we describe a one-dimensional DTMC and transition probability approximations

for our generalized model.

6.2 A one-dimensional Markov Chain for the overshoot

As was the case for the model with deterministic lead times, lemma 6.1 allows us to study An to

find the distribution of O. An still has the appealing physical interpretation as the pipeline stock
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that will not arrive within the short lead time le and obeys the following recurrence relation

An+1 = ∆−On+1

= ∆−
(

∆−Dn −
∑

i∈Un\Vn
Qri

)+

= ∆−
(
∆−Dn −An +

∑
i∈Vn

Qri
)+

= min
(
∆, An −

∑
i∈Vn

Qri +Dn

)
(45)

It will be evident from the model with discrete lead times that an exact DTMC for this problem

suffers even more from the curse of dimensionality. For this reason we again turn our attention to

a one-dimensional DTMC that can be constructed in a manner analogous to that in Section 4.2.

This DTMC is given by the transition probabilities pij = Pr (An+1 = j|An = i):

pij =


∑j

k=0 Pr
(∑

i∈Vn
Qri = i+ k − j|An = i

)
Pr(D = k), if j < ∆;∑i

k=0 Pr
(∑

i∈Vn
Qri = k|An = i

)
Pr(D ≥ ∆ + k − i), if j = ∆.

(46)

To make this one-dimensional DTMC of use, it remains to find the distribution of
{∑

i∈Vn
Qri |An

}
or an approximation thereof. This will be done in the next subsection.

6.3 Approximations for the transition probabilities

To determine the transition probabilities in the DTMC of the previous section we need the proba-

bility mass functions of D and
{∑

i∈Vn
Qri |An

}
. The latter can be approximated using the following

limiting result.

Proposition 6.5. The following statements hold

(i) As ∆→∞, Pr(Qrn+1 = x)→ Pr(Dn = x)

(ii) As ∆→∞, Pr
(∑

i∈Vn
Qri = x|An = y

)
→ Pr

(∑n
i=n−|Vn|+1Di = x|

∑n
i=n−|Un|+1Di = y

)
Proof. We rewrite equation (45) to

An+1 = min
(
∆, An −

∑
i∈Vn

Qri +Dn

)
= min

(
∆,
∑

i∈Un
Qri −

∑
i∈Vn

Qri +Dn

)
= min

(
∆,
∑

i∈Un\Vn∪{n+1}Q
r
i −Qrn+1 +Dn

)
= min

(
∆, An+1 −Qrn+1 +Dn

)
.

(47)

Now if we let ∆ → ∞ and recall the condition Pr(D < ∞) = 1 we immediately retrieve part (i)

of the proposition. For part (ii) to hold we need to show that when ∆→∞, Qrn becomes an i.i.d.
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sequence, so that the distribution of An depends only on the stationary distribution of |Un|. This

follows from an induction argument on part (i) of this proposition and the assumption that Dn is

an i.i.d. sequence.

Remark When considering deterministic lead times we already showed in proposition 4.5 that the

approximation we propose is exact also for ∆ = 1. For stochastic Ln this is no longer the case.

The numerical results in Section 7 reflect this fact.

Part (ii) of proposition 4.5 suggests that Pr
(∑n

i=n−|Vn|+1Di = x|
∑n

i=n−|Un|+1Di = y
)

can be

used to approximate Pr
(∑

i∈Vn
Qri = x|An = y

)
. The computation of this approximation is however

not straightforward because it requires knowledge of the random variables |Un| and |Vn| which in

turn depend on the process {Ln}. Indeed for the computation of this probability we digress to

study the joint stationary distribution of |Un| and |Vn| when Ln is assumed to be a sequence of i.i.d

random variables with finite support. In principle one may study the joint distribution of |Un| and

|Vn| for different lead time processes {Ln}.

Let Kn denote the number of orders in the pipeline that will not arrive within the emergency

lead time in period n after ordering,

Kn = |Un|. (48)

Further let Λn denote the number of orders that are about to enter the information horizon of the

emergency inventory position,

Λn = |Vn|. (49)

We wish to determine the joint stationary distribution of these two quantities Pr(K = κ ∩ Λ =

λ). We do this recursively. Recall that the distribution of L is given by qν = Pr(L = ν), ν ∈

{1, 2, ..., Lmax}. Further we define

ϕκ,λ,ν = Pr(K = κ ∩ Λ = λ|orders were placed the last ν periods only (not before)) (50)

Obviously, this definition means that the distribution needed is given by

Pr(K = κ ∩ Λ = λ) = ϕκ,λ,Lmax := ϕκ,λ, (51)

since orders that were placed more than Lmax periods ago cannot belong to the sets Un or Vn. The

probabilities ϕκ,λ,ν can be computed recursively as follows:

ϕκ,λ,ν = ϕκ−1,λ−1,ν−1qν + ϕκ−1,λ,ν−1 ·
∑Lmax

m=ν+1 qm + ϕκ,λ,ν−1 ·
∑ν−1

m=1 qm. (52)
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The initial probabilities are straightforwardly seen to be

ϕ1,0,1 =
∑Lmax

m=2 qm, ϕ1,1,1 = q1, ϕκ,λ,1 = 0 otherwise. (53)

This concludes our derivation of the joint stationary distribution of |Un| and |Vn|.

Remark The process Kn can also be thought of as the number of customers in a discrete time

D/G/Lmax/Lmax-queue. Each period n a customer arrives (order is placed) and that customer

immediately enters service for a random time Ln (order stays in the set U for Ln periods). Thus

this D/G/c/c-queue has the special property that the service distribution has a finite support

on {1, ..., Lmax} while the interarrival time is 1. In general the evaluation of the steady state

distribution of D/G/c/c-queues cannot be done in polynomial time if it can be done at all. For

this specific case the evaluation can be done in O(L3
max) time. To see this, note that the number

of times we compute recursion (52) including the initialization before we obtain ϕκ,λ is given by∑Lmax+1
i=2

∑i
x=2 x = 1

6L
3
max + L2

max + 5
6Lmax. Thus the complexity is O(L3

max).

Now that the joint distribution of K and Λ is known, we can compute the approximation for

Pr
(∑

i∈Vn
Qri = x|An = y

)
by conditioning on the values of |Un| and |Vn|:

Pr
(∑

i∈Vn
Qri = x|An = y

)
≈ Pr

(∑n
i=n−Λ+1Di = x|

∑n
i=n−K+1Di = y

)
=

∑Lmax
κ=1

∑κ
λ=1 Pr(Λ = λ|K = κ) Pr

(
K = κ|

∑n
i=n−K+1Di = y

)
×Pr

(∑n
n−λ+1Di|

∑n
i=n−κ+1Di = y

)
=

∑Lmax
κ=1

∑κ
λ=1 Pr(Λ = λ|K = κ) Pr

(
K = κ|

∑n
i=n−K+1Di = y

)
×

Pr
(
D(λ) = x

)
Pr
(
D(κ−λ) = y − x

)
Pr
(
D(κ) = y

) . (54)

In expression (54) the probability Pr(K = κ|
∑n

i=n−K+1Di = y) is obtained by applying Bayes’

theorem:

Pr
(
K = κ|

∑n
i=n−K+1Di = y

)
=

Pr
(
D(K) = y|K = κ

)
Pr(K = κ)

Pr
(
D(K) = y

)
=

Pr
(
D(κ) = y

)
Pr(K = κ)∑Lmax

z=1 Pr
(
D(z) = y

)
Pr(K = z)

, (55)

while the probabilities Pr(Λ = λ|K = κ) are easily obtained from ϕκ,λ, the joint density of Λ and

K.

Using this approximation for Pr
(∑

i∈Vn
Qri = x|An = y

)
we can compute an approximation for

Pr(A = x) by finding the equilibrium distribution of the DTMC for An. Then by using relation

(30) we obtain an approximation for the distribution of O as Pr(O = x) = Pr(A = ∆− x).
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7. Numerical results

In this section we report on a numerical study to test the accuracy of the Markov Chain approxi-

mation that we propose. To this end a test bed of 1680 instances of problem P was created that is

a full factorial design of the parameter settings summarized in Table 2. The demand distributions

we used are the discrete two moment fits suggested by Adan et al. (1996), while the different types

of distributions for L are defined in Table 3.

Table 2: Test-bed of problem instances P
Parameter settings

E[D] 25

c2D
1
4 ,

1
2 , 1, 3

2 , 2

le 1, 2

E[L] 4, 8, 12

h 1

c 10, 20, 30, 40

γ0 0.95, 0.98

Distribution type of L U1, U2, S1, S2, LS, RS, DET

Table 3: Distribution types for L
Pr(L = x)

Distribution Type \x E[L]− 2 E[L]− 1 E[L] E[L] + 1 E[L] + 2

U1 (uniform1) 0 1
3

1
3

1
3 0

U2 (uniform2) 1
5

1
5

1
5

1
5

1
5

S1 (symmetric1) 0 1
4

2
4

1
4 0

S2 (symmetric2) 1
10

2
10

4
10

2
10

1
10

LS (left skewed) 0 4
10

3
10

2
10

1
10

RS (right skewed) 1
10

2
10

3
10

4
10 0

DET (deterministic) 0 0 1 0 0

For each instance we performed the optimization using the simulation approach suggested by

Veeraraghavan & Scheller-Wolf (2008), yielding the DIP (Ssime , Ssimr ) to be optimal. We also

performed the optimization with our approach involving approximate Markov Chains, which found

the DIP (SMC
e , SMC

r ) to be optimal. We then evaluated the total cost and modified fill-rate for

both solutions using simulation. The simulation was run such that the halfwidth of 99%-confidence

interval for cost was less than 1% of the point estimate. As measures of optimality we considered
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the relative deviation from the optimal DIP

∆C =
Csim

(
SMC
r , SMC

e

)
− Csim

(
Ssimr , Ssime

)
Csim (Ssimr , Ssime )

· 100%

and the absolute deviation from the target modified fill-rate

δγ = γsim
(
SMC
r , SMC

e

)
− γ0.

Figure 3 shows scatter-plots of ∆C versus δγ the problem instances with deterministic lead times,

stochastic lead times and the entire test-bed. In these Figures points close to the origin are close to

optimal. In fact points in the second quadrant indicate that solutions found using our approximate

method outperform simulation optimization. Thus this Figure shows that the approximation is

at least as good as simulation for deterministic lead times. For stochastic lead times there is a

small tendency to find solutions that are more expensive than optimal at an increase in service

relative to the target level. An explanation of the superior performance of the approximation for

deterministic lead times over stochastic lead times is to be found in the fact that the approximation

for deterministic lead times is based on limiting results for ∆→∞ and ∆ = 1. These Figures show

that the performance of our approximate method is excellent.

Figure 3: Quality of approximate optima

To understand how different problem parameters influence the performance of our approxima-

tion we tabulated the average, minimum, maximum and relative frequencies of ∆C for different

problem parameters in Table 4. We see that the approximation improves as demand variability

increases. This is a convenient property because dual-sourcing is a way o buffer demand variability.

Our approximation also becomes more accurate when the emergency lead time increases. This

is in line with expectation because holding cost can also be written as hE[(Se + O − D(le+1))+],

from which we see that the demand distribution (which we know exactly) influences holding cost

more when le is large. Accuracy also increases when the expedition premium goes up. This is
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because expediting becomes less attractive when c goes up, so that ∆ becomes larger and our

approximation works better. That our approximation becomes less accurate as E[L] increases can

be explained again by inspecting the holding cost hE[(Se + O − D(le+1))+]. The contribution of

O, which we know only approximately, compared to D(le+1) becomes smaller when E[L] decreases.

This is because ∆ (and therefore also O) increases with E[K] = E[L] (by Little’s law). The target

service level and different non-stochastic distributions for L do not influence accuracy much. We

do see as before that the approximation performs much better when lead times are deterministic.

Table 4: Quality of approximate solutions for different problem parameters
Relative cost deviation from optimal DIP [∆C ]

c2D avg. min max < −1 −1 - 0 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 > 5
1
4

2.13 -5.36 6.51 10.42 11.61 12.50 9.82 13.39 16.37 15.77 10.12
1
2

1.05 -2.78 4.30 5.36 16.96 22.92 30.06 19.94 4.46 0.30 0.00

1 0.32 -3.25 2.97 7.14 27.98 44.94 17.56 2.38 0.00 0.00 0.00
3
2

0.40 -1.10 2.07 1.04 25.00 56.94 16.67 0.35 0.00 0.00 0.00

2 0.06 -2.37 1.52 4.43 41.67 48.70 5.21 0.00 0.00 0.00 0.00

le avg. min max < −1 −1 - 0 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 > 5

1 0.80 -3.25 6.51 5.8 24.2 36.8 16.7 7.5 3.6 3.6 1.9

2 0.76 -5.36 6.36 5.7 26.1 37.1 14.4 6.9 4.8 2.9 2.1

c avg. min max < −1 −1 - 0 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 > 5

10 1.35 -5.36 6.40 1.2 14.8 36.7 21.9 11.2 4.8 5.5 4.0

20 0.84 -2.06 6.51 5.0 23.6 38.3 16.7 6.9 4.8 2.4 2.4

30 0.59 -3.25 5.95 6.7 29.0 37.6 13.1 5.2 4.0 3.3 1.0

40 0.35 -4.10 5.95 10.2 33.1 35.2 10.5 5.5 3.1 1.7 0.7

γ0 avg. min max < −1 −1 - 0 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 > 5

0.95 0.79 -4.10 6.51 7.4 24.4 34.9 17.0 6.4 3.2 3.6 3.1

0.98 0.77 -5.36 6.01 4.2 25.8 39.0 14.0 8.0 5.1 2.9 1.0

E[L] avg. min max < −1 −1 - 0 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 > 5

4 0.03 -5.36 4.72 11.4 38.0 38.6 8.8 2.5 0.5 0.2 0.0

8 0.95 -2.37 6.09 3.9 21.1 36.6 18.9 9.5 4.6 4.3 1.1

12 1.37 -1.56 6.51 2.0 16.3 35.7 18.9 9.6 7.3 5.2 5.0

Distribution type avg. min max < −1 −1 - 0 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 > 5

U1 0.88 -3.25 5.27 4.2 21.3 39.2 16.3 10.0 6.3 1.7 1.3

U2 0.98 -4.10 5.86 3.8 18.8 40.4 17.9 6.3 7.1 3.8 2.1

S1 1.01 -2.78 6.40 4.6 17.1 40.0 20.0 6.7 4.6 4.6 2.5

S2 1.13 -2.36 6.26 2.5 19.6 37.5 16.3 10.8 6.7 2.9 3.8

LS 1.06 -1.23 6.51 2.1 20.4 38.8 19.6 7.9 2.1 6.7 2.5

RS 0.90 -5.36 5.42 3.3 18.3 43.8 18.3 8.8 2.5 2.9 2.1

DET -0.48 -2.37 1.48 20.0 60.4 19.2 0.4 0.0 0.0 0.0 0.0

Total avg. min max < −1 −1 - 0 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 > 5

0.78 -5.36 6.51 5.8 25.1 37.0 15.5 7.2 4.2 3.2 2.0

Computational times for our approximation are also much shorter than for the simulation based

procedure. For this test-bed the optimization method based on the approximation was around 50

times faster than the simulation based method for problem instances with deterministic lead times
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and around 70 times faster for problem instances with stochastic lead times.

8. Conclusion and directions for future research

In this paper we presented two models. The first model deals with the dual-index policy for a

single stage dual-sourcing inventory system facing stochastic demand with deterministic lead times

controlled by the dual-index policy. Our main contributions here are to (i) provide an alternate

and insightful proof of the separability result that reduces the optimization of the DIP to two

one-dimensional optimization problems and (ii) provide an approximate evaluation method of the

dual-index policy using Markov Chains based on limiting results that does not require simulation,

thus making optimization more efficient.

The second model we presented was a generalization of the first by allowing regular lead times

to be stochastic. In this situation we (i) defined a dual-index policy with mild informational

requirements on the realizations of regular lead times; (ii) proved that the same separability result

holds as for the model with deterministic lead time and (iii) developed an approximate evaluation

method using Markov Chains based on limiting results again making optimization much more

efficient.

In an extensive numerical study we showed that the approximations we suggest perform very

well in finding a close to optimal dual-index policy and are faster by a factor 50-70 than the

simulation based procedure.

The research in this paper can be extended in several important ways. The most obvious and

possibly useful extension is to define and analyze the dual-index policy for multi-echelon inventory

systems. Consider for example a serial supply chain. Clark & Scarf (1960) showed that base-stock

policies are optimal for this system and that the optimal base-stock levels can be obtained by

successively solving newsvendor equations. This decomposition result relies on the fact that all

stock points in a serial supply chain face the same demand process. When the most downstream

stock point is the only stock point with two sources, this property is retained. In that case finding

the optimal echelon-DIP should be a straightforward task using the results in this paper.

When stock points other than the most downstream stock point have two sources the property

that each stock point essentially faces the same demand process is not preserved, because some

of the demand is ordered via the second source. Inventory control for this type of system is an

interesting new research direction.
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