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Abstract

The investigation and quantification of cardiac movement is important for assessment of cardiac
abnormalities and treatment effectiveness. Therefore we consider new aperture problem-free methods
to track cardiac motion from 2-dimensional MR tagged images and corresponding sine-phase images.
Tracking is achieved by following the movement of scale-space maxima, yielding a sparse set of linear
features of the unknown optic flow vector field. Interpolation/reconstruction of the velocity field is then
carried out by minimizing an energy functional which is a Sobolev-norm expressed in covariant derivatives
(rather than standard derivatives). These covariant derivatives are used to express prior knowledge about
the velocity field in the variational framework employed. They are defined on a fiber bundle where sections
coincide with vector fields. Furthermore, the optic flow vector field is decomposed in a divergence free and
a rotation free part, using our multi-scale Helmholtz decomposition algorithm that combines diffusion
and Helmholtz decomposition in a single non-singular analytic kernel operator. Finally, we combine this
multi-scale Helmholtz decomposition with vector field reconstruction (based on covariant derivatives) in
a single algorithm and present some experiments of cardiac motion estimation. Further experiments on
phantom data with ground truth show that both the inclusion of covariant derivatives and the inclusion
of the multi-scale Helmholtz decomposition improves the optic flow reconstruction.

1 Introduction

In cardiology literature [10] it has been noted that variation in thickness of the cardiac wall may provide
quantitative indication of the health of the cardiac muscle. Cardiac motion extraction is therefore an impor-
tant area of research, since monitoring and quantification of irregular cardiac wall deformation may help in
early diagnosis of cardiac abnormalities such as ischemia, area of tissue resulting from obstruction of blood
circulation, as well as in providing information about the effectiveness of treatment. In order to characterize
the contracting behavior of the cardiac muscle, non-invasive acquisition techniques such as MR tagging can
been applied. This methodology allows to superimpose artificial brightness patterns on the image, which
deform according to the cardiac muscle and aid to retrieve motion within the heart walls.

The problem of extracting motion in image sequences is of primary interest for the computer vision and
image analysis community. Optic flow measures apparent motion of moving patterns in image sequences,
providing information about spatial displacements of objects in consecutive frames. At the beginning of the
eighties Horn and Schunck introduced a mathematical formulation of optic flow assuming that intensities
associated to image objects did not change along the sequence, [25]. This formulation has been referred as
the Optic Flow Constraint Equation (OFCE):

fxu + fyv + ft = 0 (1.1)

where (x, y, t) → f(x, y, t) : R2 × R+ → R is an image sequence, fx, fy, ft are the spatial and temporal
derivatives; v(·, t) is a vector field on R2 given by v(x, y, t) = (u(x, y, t), v(x, y, t))T , where u and v are
unknown and x, y and t are the spatial and temporal coordinates respectively. Since scalar-valued functions
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u and v are unknown, equation (1.1) does not generate unique solution, providing the so-called ”aperture
problem” and therefore Horn and Schunck added a homogeneous smoothness constraint based on gradient
magnitude to a data term, equation (1.1), and minimized the energy functional using a variational approach
[25]. A similar scheme has been employed in more recent and sophisticated techniques by Bruhn et al. [6]
and Zimmer et al.[52], who used an anisotropic smoothness term and carried out tests on the Yosemite
sequence and Middlebury benchmark outperforming the results of most of the current optic flow methods.
A multi-scale extension of equation (1.1) has been investigated by Florack et al.[14] and an application to
cardiac tagged MR images has been further explored in [38, 45, 2, 13]. Extraction of object displacements
has been studied also by means of feature tracking. Thyrion [46] has investigated a technique, where the
brightness is preserved and the features are driven to the most likely positions by forces. Janssen et al. and
Van Dorst et al. [8, 29] propose multi-scale feature based optic flow methods, where the reconstruction of
the dense flow field is obtained from a sparse set of velocities associated to multi-scale anchor points.

These methods, however, are rather general and do not take into account physical properties of the velocity
field generated by rotation and compressibility of the cardiac tissue. Local rotation and contraction of the
cardiac muscle can be calculated by investigating the divergence free and rotation free parts of the well-known
Helmholtz decomposition [23, 1]. Exploring this decomposition may play a fundamental role in the clinical
diagnosis procedure, since it reveals abnormalities in tissue deformation, such as stiffness. Therefore, for
applications such as cardiac motion extraction, blood flow calculation and fluid motion analysis information
of such properties may be more suitable and lead to an more accurate velocity field estimation in comparison
to general approaches. Examples of such optic flow methods have been provided by [20, 7, 32].

In this work we extract 2-dimensional cardiac wall motion by employing an optic flow method based
on features points such as maxima, minima and saddles. The dense flow field has been reconstructed by
employing variational methods; in the smoothness term we include information obtained by our multi-scale
Helmholtz decomposition and we describe the regularization components in terms of covariant derivatives
biased by a gauge field. Advantages of this approach are significant:

(i) We do not suffer from the aperture problem.

(ii) The features are not depending on constant brightness, since critical points such as maxima will retain
their characterization even after presence of fading in the image. Therefore, the algorithm can be
robustly applied on image sequences (like tagged MR images) where the intensity constancy is not
preserved.

(iii) The proposed technique takes into account physical properties of contractibility and rotation of the
heart muscle by means of a multi-scale Helmholtz decomposition.

(iv) The algorithm takes the advantages provided by a multi-scale approach:

– A scale selection scheme for the feature points will be further discussed in the paper.

– In our multi-scale we analytically pre-compute the concatenation of linear diffusion operator com-
bined with Helmholtz decomposition in a single non-singular kernel operator in order to avoid
grid artefacts. Here we do not use more elaborate, discrete multi-scale Helmholtz decompositions,
cf. [47], which act by means of nonlinear diffusions on the potentials, since in our linear recon-
struction algorithm we need to keep track of a consistent and basic notion of scale, avoid sensitive
nonlinear diffusion parameters, diffuse the field itself and finally we need efficient computation.

(v) Finally we investigate a new regularization component described in terms of covariant derivatives in a
fiber bundle, where sections coincide with the graphs of functions. The regularization term includes
information from a so-called gauge field and allows a better flow field reconstruction with respect to
the one provided by similar techniques, which use standard derivatives [5] instead. For a different optic
flow approach where pre-knowledge in the regularization term is included we refer to Nir et al. [39].

(vi) Both the computation of the gauge field and the subsequent reconstruction framework (with given
gauge field) are stable linear operators (due to the coercivity of the covariant Laplacian).
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In the experiment we assess the algorithm performance with a phantom from which the ground truth was
known and tests have been carried out with real data obtained from a patient and a healthy volunteer.
Quantitative and qualitative analysis shows reliability of the extracted motion field.

Outline of algorithm and article

An overview of the proposed algorithm is provided in figure 1 and every step is described as follows. In
section 2 we illustrate preprocessing steps followed to convert raw data in phase images. In section 3,
we define the scale space framework, use the winding number as a tool to extract critical points in scale
space and a technique to refine the position of retrieved feature points up to sub-pixel location. Section
4 describes a methodology used to calculate velocity features including a scale selection scheme. Section
5 is dedicated to the multi-scale Helmholtz decomposition of vector fields, where we analytically compute
the effective kernel operator that arises by concatenation of the (commuting) linear diffusion operator and
Helmholtz-decomposition operator.

In sections 6, 7 we introduce the concept of covariant derivatives. Subsequently, in Section 8 we con-
sider dense motion field reconstruction by energy minimization where the data-term is obtained by our
methodology explained in Section 3 and Section 4 and where the smoothness term takes care of Tikhonov
regularization expressed in the covariant derivatives of Section 7. Here we derive the corresponding Euler-
Lagrange equations and prove that the explicitly derived solutions are stable, both in the continuous and
the discrete setting (using a B-spline basis). Then in Section 9 we put everything together and include the
multi-scale Helmholtz decomposition in the dense motion field reconstruction. Here we distinguish between
two options, a pragmatic one which consists of two separate reconstruction algorithms for divergence and
rotation free part and a theoretic one where we merge everything into a single energy minimization yielding
a related but more difficult Euler-Lagrange system. Finally in section 10 and 11 we present and discuss the
outcomes of the experiments we have carried out.

Figure 1: Overview of the algorithm. Input tagged images and first preprocessing steps are discussed in
section 2. The feature tracking procedure is described in Sections 3 and 4. Sections 6 and 7 explain
the concept of covariant derivatives and in Section 5 we present our multi-scale Helmoltz decomposition
algorithm. The box on the right shows how these two techniques are applied in the dense motion field
reconstruction which we present in Sections 8 and 9.

2 Image data set and sine-phase images

Tagging is a noninvasive technique based on local perturbing the magnetization of the cardiac tissue via radio
frequency impulses. MR Tags are artificial patterns, represented as dark stripes and superimposed on the
MR images with the aim to improve the visualization of the deforming tissue[51]. An example of a tagged
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heart image is displayed in figure 2, column 1. In order to increase the number of tags in the image, Axel
and Dougherty [3] spatially modulated the degree of magnetization in the cardiac tissue, whereas Osman et
al. [40] proposed the so-called harmonic phase (HARP) method, which converts MR images in phase images.
In our experiments we apply a similar technique and we extract phase images by means of Gabor filters [16]
(figure 2, column 2). Such images allow to extract feature points such as maxima minima and saddles with
high accuracy. The calculated phase images (in the experiment we employ the sine function for smoothing
purposes) have been combined in order to create a chessboard-like grid from which critical points have been
retrieved. Throughout this article we will apply our methods to phase images as can be seen in Figure 2,
column 3.

Figure 2: Column 1: Short axis view of patient left ventricle. Column 2. Sine-phase images. Column 3. Sum
of sine-phase images. This sum of sine phase images serves as input in our algorithms and will be denoted
by f(x, t) where x = (x, y) ∈ R2 denotes position and t > 0 denotes time.

3 Extraction of critical points in scale space

Our visual system observes (objects in ) an image simultaneously at multiple scales. The Gaussian scale
space representation I : R2×R+ of a 2-dimensional static image x 7→ f(x) ∈ L2(R2) is defined by the spatial
convolution with a Gaussian kernel

I(x, s) = (f ∗ φs)(x) , with φs(x) =
1

4πs
exp(−‖x‖

2

4s
) , s > 0, (3.2)

where x = (x, y) ∈ R2 and where s > 0 represents the scale of observation [26, 49, 34, 35, 31, 21, 12]. Recall
that (3.2) is the solution of a diffusion system on the upper half space s > 0, so ∂

∂sI = ∆I and lim
s↓0

I(·, s) = f

lim
s→∞

I(·, s) = 0 where both limits are taken in L2-sense. This procedure naturally extends to a multiple scale

representation of a dynamic image (x, y, t) 7→ f(x, y, t):

I(x, y, s, t) := (Gs ∗ f(·, ·, t))(x, y), t, s > 0,x = (x, y) ∈ R2,

A convenient tool to extract and classify critical points at different scales is represented by the so-called
topological number [44]. The topological number characterizes the local structure of a function by exploring
the neighborhood of a certain point. For 2-dimensional functions topological number is denoted as winding
number and represents the integrated change of the angle of the gradient when traversing a closed curve in
a plane. The winding number is always an integer multiple of 2π and its value classifies intrinsically the
extracted critical point. The winding number is zero for regular points, it is +2π for extrema, and −2π for
saddle points.
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3.1 Critical point position refinement

Due to signal discretization, the retrieved critical point location (for example computed by means of the
winding number) does not correspond most likely to the real extremum or saddle point position (figure 3).
This problem can be solved by describing a fixed time frame image I(·, s, t), with s, t > 0 fixed, in terms of
Taylor series such that

∇I(xa, s, t) =[
Ix(xe, s, t) + (xa − xe)Ixx(xe, s, t) + (ya − ye)Ixy(xe, s, t)
Iy(xe, s, t) + (xa − xe)Iyx(xe, s, t) + (ya − ye)Iyy(xe, s, t)

]
(3.3)

where xa = (xa, ya) and xe = (xe, ye) represent the true and the estimated critical point location respectively.
At critical point positions the image gradient vanishes, therefore the l.h.s. of equation (3.3) vanishes, hence

xa =
[
xa

ya

]
=

[
xe

ye

]
−

[
Ixx(xe, s, t)Ixy(xe, s, t)
Iyx(xe, s, t)Iyy(xe, s, t)

]−1 [
Ix(xe, s, t)
Iy(xe, s, t)

]
(3.4)

Equation (3.4) provides position estimation at subpixel level and can be iterated until the desired accuracy
has been reached. In the remainder of this article refined critical points positions will be abbreviated as
follows x = xa.

Figure 3: Critical point refinement. Left: a continuum gaussian signal in 1 dimension versus its discretized
correspondent. The discrete image shows maxima at two nearby positions(points in red), which are at
different locations from real maximum (point in green). Right: 2 dimensional representation of the left
image. Red points are the retrieved maxima, whereas the green point is true maximum obtained after the
refinement.

4 Calculation of sparse velocity features

The chessboard like pattern displayed in Figure 2 consists of stripes that move along with the moving tissue,
as a property of MR tags. We are interested in tracking critical points that occur at and between the tags
crossing. Critical points move along with the tissue as part of the tags and are locations where the image
gradient vanishes. Fading is one of MR tag artifacts and occurs due to relaxation time T1 and T2. This
property, however, does not affect the image vanishing gradient and therefore does not affect the critical
point localization.

In tracking critical points over time we satisfy the equation

∇I(xq
s(tk), s, tk) = 0 (4.5)

where ∇ denotes the spatial gradient and I(xq
s, s, tk) represents intensity at position xq

s, scale s and time
frame tk, where xq

s(t) = xq
s(0) +

∫ t

0
ṽq(xq

s(τ))dτ such that d
dtx

q
s(t) = ṽq(xq

s(t)) with v(x(t), t) = ṽ(x(t)).
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Index k = 1...K corresponds to the time frame number and q = 1...NB represents the branch of a certain
critical point. K and NB denote the amount of frames and critical points respectively. Differentiating
equation (4.5) with respect to time tk and applying the chain rule for the implicit functions yields

d

dt
[∇I(xq

s(t), s, t)]
∣∣∣∣
t=tk

=
[
Ixx(xq

s(tk), s, tk)ũq(xq
s(tk)) + Ixy(xq

s(tk), s, tk)ṽq(xq
s(tk)) + Ixt(xq

s(tk), s, tk)
Iyx(xq

s(tk), s, tk)ũq(xq
s(tk)) + Iyy(xq

s(tk), s, tk)ṽq(xq
s(tk)) + Iyt(xq

s(tk), s, tk)

]
= 0

(4.6)

where d
dt is the total time derivative. In order to extract the critical point velocities, we can rewrite equation

(4.6) as:
[
ũ(xq

s(tk))
ṽ(xq

s(tk))

]
=

[
u(xq

s(tk), tk)
v(xq

s(tk), tk)

]
= −(HI(·, ·, tk)(xq

s, s))
−1 ∂(∇I(xq

s, s, tk))T

∂tk
(4.7)

where H represents the spatial Hessian matrix of image I. The scalars ũ(xq
s(tk) and ṽ(xq

s(tk) are the
horizontal and vertical components of a velocity vector at position xq

s at the time tk at scale s > 0.
In the remainder of this article we will abbreviate the velocity vectors at the critical points as follows

dk
q :=

(
dk,1

q

dk,2
q

)
:=

(
ũ(xq

s(tk))
ṽ(xq

s(tk))

)
. (4.8)

In the subsequent section we will consider a scale selection scheme per extremal branch indexed by q and
per time-frame t > 0.

4.1 Scale selection for features at fixed time frames

So far we assumed that velocities are retrieved at a certain scale without specifying the size of basis function
(gaussian filter) applied at each critical point location. The choice of scale higher than zero may provide
more robustness with respect to the noise due to smoothing related to the increase of scale, moreover, the
appropriate scale at different locations of cardiac muscle may be different, since the heart presents different
deformations in different regions.

In choosing the scale, we consider the strength of blobs moving in the image sequence. The stronger a
blob is in scale space, the more vertical is its critical path and the higher is the scale of the corresponding
annihilation point (top point). A top point (x, s) is a singular point in scale space where the gradient and
the determinant of the spatial Hessian with respect to an image I vanish [33, 41], i.e.

∇I(x, s, t) = 0 and det HI(x, s, t) = Ixx(x, s, t)Iyy(x, s, t)− (Ixy(x, s, t))2 = 0 (4.9)

and as a result top points are the singular points where spatial extrema (where eigenvalues of the Hessian
share the same sign) and spatial saddles merge (where eigenvalues of the Hessian have different signs).

On the other hand we need to avoid extreme dislocation of spatial extrema in scale space and instable
parts of critical curves. Typically, the slope of the tangent vector along a critical branch s 7→ (xq

s(t), s) in
scale space provides a measure on the stability and dislocation. At scale 0 an extremal branch of a strong
extremum (i.e. s∗q(t) À 0 ) is nearly vertical whereas at top-point scale s∗q(t) the slope is horizontal, cf. [11].
Therefore, for each fixed time t > 0, we propose the following scale selection per q-th critical branch:

sq(t) := max
{

s = smin e2τ ∈ [0, s∗q(t)) | for all s′ = smin e2τ ′ ∈ [0, s) we have

arccos( β√
‖ d

dτ xq
s(t)|

τ=τ′‖2+β2
) < ϑ

}
(4.10)

where the tangent vector along the critical curve in scale space is given by

d

dτ
xq

s(t) = 2s
d

ds
xq

s(t) = −2s[HI(xq
s(t), s, t)]

−1∆∇I(xq
s(t), s, t),

6



as derived in [36, p.189], where ϑ is an a priori threshold angle, and where β is a parameter with physical
dimension [Length] according to the dimensionally consistent, translation and scaling invariant metric tensor

dx⊗ dx + dy ⊗ dy + β2dτ ⊗ dτ = dx⊗ dx + dy ⊗ dy + β2(2s)−2ds⊗ ds

that we impose on scale space R2 × R+ to introduce slope in scale space. In our experiments we set
β = (∆τ)−1

√
(∆x)2 + (∆y)2, where ∆x, ∆y, ∆τ denote step-sizes.

In this way the top point scale is discarded in the experiments (by setting 0 < ϑ ¿ π/2), which avoids
similar problems as with top points matching and symmetric structures [41] such as the chessboard like
structure created by combining frames with horizontal and vertical tags, cf. Figure 2.

Now sq(t) is the scale of the intersection of the qth extremal branch s 7→ (xq
s(t), s) ∈ R2 × R+ and the

cilinder ‖x − xq
0(t)‖ ≤ δ, where δ denotes the Euclidean distance between the location of the computed

critical point at scale 0, xq
0(t), and the projection (xq

s(t), 0) at scale 0 of the critical point at scale sq(t). A
simple (but less robust) alternative scale selection would therefore be

sq(t) := max{0 < s < s∗q(t) | ∀s′∈[0,s)‖xq
s(t)− xq

0(t)‖ < δ̃} (4.11)

where δ̃ is a threshold on extrema dislocation.

Figure 4: Left image: white lines represent critical paths in scale space (where we keep time t fixed) of certain
blobs: (0, 0, 1) direction is the scale direction. The red dot on the critical path is the so-called top-point,
Eq. (4.9). Right image: Scale Selection. Scale s∗q denotes the top point scale. We choose the highest scale
sq such that the slope (in scale space) of the tangent vectors along the part of this critical path below this
scale sq is below a certain a priori angle ϑ. The corresponding spatial dislocation of the critical path (due
to diffusion) is denoted by δ.

5 Vector field decomposition

The behavior of cardiac muscle is characterized by twistings and contractions, which can be studied inde-
pendently by application of the so-called Helmholtz decomposition. In 1858 Helmholtz [23] showed that
any vector field, with properties described below, can always be decomposed in irrotational and solenoidal
components. Given a bounded domain Ω ⊆ R3 and smooth vector field v, in our case the reconstructed
cardiac motion field, v ∈ C0(Ω) and v ∈ C1(Ω), where Ω = Ω

⋃
∂Ω, there exist functions Φ and A ∈ C1(Ω)

such that

v(x) = ∇Φ(x) +∇×A(x) (5.12)

and

∇ ·A(x) = 0 (5.13)

where x = (x, y) ∈ R3 . In equation (5.21) functions Φ and A are the so-called scalar potential and vector
potential, whereas ∇Φ(x) and ∇×A(x) represent the irrotational and solenoidal components of vector field
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v. However in our cardiac MRI tagging application we consider Ω ⊆ R2 and in R2 one does not have an
outer product at hand and therefore we need the following definition and remarks.

Definition 5.1 Recall that the rotation1 of a vector field in 3D is in Euclidean coordinates expressed as

rot v = ∇× v =




∂yv3 − ∂zv
2

∂zv
1 − ∂xv3

∂xv2 − ∂yv1


 . (5.14)

In this article we define the rotation of a 2D-vector vector field in Euclidean coordinates as follows

rot v := ∂xv2 − ∂yv1 . (5.15)

and we define the rotation of a scalar field in Euclidean coordinates by

r̃otF :=
(

∂yF
−∂xF

)
(5.16)

The theory of Helmholtz decomposition in 3D is easily extended to 2D by replacing the rotation (5.14) con-
sistently by respectively (5.15) and (5.16). For example, the fundamental identity underlying 3D-Helmholtz
decomposition is

∆v = grad divv− rot rotv

which now in 2D becomes

∆v = grad divv− r̃ot rotv .

In order to derive an explicit composition (5.21), we derive a solution to the Poisson equation in Ω such that

4ξ(x) = v(x) (5.17)

by means of

ξ(x) = ((G2D ∗ (1Ωv1))(x), (G2D ∗ (1Ωv2))(x)) =
∫

Ω

G2D(x− x′)v(x′)dx′ (5.18)

where 1Ω denotes the indicator function on Ω and where the fundamental solution for the 2 dimensional
Laplacian which is given by

G2D(x− x′) =
1
2π

ln ‖(x− x′)‖ . (5.19)

Moreover, ξ(x) satisfies the identity

4ξ(x) = ∇(∇ · ξ(x))− r̃ot (rot ξ(x)) (5.20)

therefore combining

v = ∆ξ = grad div ξ − r̃ot rot ξ = gradΦ + r̃otA (5.21)

(the 2D equivalent of(5.12)), (5.17) and (5.20), we obtain

Φ(x) = ∇ · ξ(x) and A(x) = −rot ξ(x). (5.22)

However, the decomposition (5.21) is of course not unique. For example if we replace ξ 7→ ξ + h with h
some arbitrary Harmonic vector field we have ∆(ξ + h) = ∆ξ = v. Furthermore, if both the divergence

1Geometric differential operators such as rotation, divergence and the Laplacian can be introduced coordinate-independently
by Hodge-duals and exterior derivatives. This would help avoiding (5.15) and (5.16), but it is beyond the scope of this article.
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and rotation of a vector field vanish then this vector field equals the gradient of some Harmonic function.
However, the decomposition is unique is we prescribe the field to vanish at the boundary and if moreover we
prescribe both the divergence and rotation free part at the boundary, see Lemma 5.1 below. In practice we
can not assume that the field vanishes at the boundary, therefor we subtract the Harmonic infilling so that
the difference is determined by

v(x) = ∇
∫

Ω

∇x ·G2D(x− x′)ṽ(x′)dx′−

r̃ot
∫

Ω

rot xG2D(x− x′)ṽ(x′)dx′ + ψ(x)
(5.23)

where vector field ṽ(x) = v(x)−ψ(x) vanishes at the boundaries, with ψ = (v|∂Ω)H as the unique harmonic
infilling (as defined below).

Definition 5.2 The Harmonic infilling ψ = (v|∂Ω)H of the field v|∂Ω restricted to the boundary ∂Ω is by
definition the unique solution of{

4ψ(x) = 0 x ∈ Ω
ψ|∂Ω = v|∂Ω

As the Helmholtz decomposition (5.21) is not unique, we briefly motivate our particular choice of decompo-
sition (5.23) by the next lemma and subsequent remark.

Lemma 5.1 Suppose a vector field vanishes at the boundary v|∂Ω = 0 then the divergence free and rotation
free part are unique if we prescribe them at the boundary.

Proof Suppose v = v1 + v2 = u1 + u2 with divv1 = divu1 = 0 and rotv2 = rotu2 = 0. Then
div (v1 − u1) = 0 and rot (v1 − u1) = 0 so u1 − v1 = ∇h1 with ∆h1 = 0. With similar arguments
u2 − v2 = ∇h2 with ∆h2 = 0. Now ∇(h1 + h2) = 0 and v vanishes at the boundary. Consequently,
∆(h1 + h2) = 0 and ∂(h1+h2)

∂n

∣∣∣
∂Ω

= 0 so h1 = −h2 and v1 = u1 +∇h1 and v2 = u2 − ∇h1 with ∆h1 = 0.

Now as the rotation free and div free part are prescribed we have (vk − uk)|∂Ω = 0, k = 1, 2. So ∆h1 = 0
and ∂h1

∂n

∣∣
∂Ω

= 0 and consequently h1 = h2 = 0 from which the result follows. ¤

Remark 5.1 Now a different choice to determine ξ uniquely is to impose ξ|∂Ω = 0 besides (5.17). This
would boil down to

ṽ = grad divDṽ− r̃ot rotDṽ , (5.24)

where D is the Dirichlet operator, i.e ξ = Dṽ ⇔ ∆ξ = ṽ and ξ|∂Ω = 0. However, the Dirichlet kernel
on a rectangle, see [28][App.A], is not as tangible (for computation purposes) as the (periodic) convolution
operator ξ = Gṽ = (G2D ∗ ṽ1 1Ω, G2D ∗ ṽ2 1Ω) with ṽ = (ṽ1, ṽ2) with kernel G2D(x − y). Here we note that
both ∆D = ∆G = I and akin to (5.24) we can rewrite (5.23) as

ṽ = grad divGṽ− r̃ot rotGṽ. (5.25)

Besides the Dirichlet operator is not a true (periodic) convolution as it is not translation invariant, whereas
our choice G given by (5.18) is translation invariant.

5.1 Multi-scale Helmholtz decomposition of the optical flow field

Instead of using standard derivatives in the Helmholtz decomposition (5.23) and (5.25), we can differentiate
the involved Green’s functions by Gaussian derivatives, i.e. convolving with a derivative of a Gaussian kernel.
In this procedure the kernel is affected by a diffusion, which depending on parameter s = 1

2σ2, the scale.
This diffusion removes the singularity at the origin and, therefore, discretization artefacts. Next we explicitly

9



compute the diffused first order derivative (with respect to x) of the Green’s function by means of Fourier
transform of the derivative of the Green’s function :

∂xG2D
s (x) = F−1

(
(ω1, ω2) 7→ ıω1

2π(ω2
1+ω2

2)
exp(−s(ω2

1 + ω2
2))

)
(x)

= F−1
(
(ω1, ω2) 7→ ıω1

2π

∫∞
s

exp(−t(ω2
1 + ω2

2)) dt
)
(x, y)

=
∫∞

s
F−1

(
(ω1, ω2) 7→ ıω1

2π exp(−t(ω2
1 + ω2

2))
)
(x, y) dt

=
∫∞

s

x exp(− x2+y2

4t )

8πt2 dt = x
2π

1−exp(− x2+y2

4s )

x2+y2

(5.26)

where ω1 and ω2 denote the frequency variables. The derivative of the Gaussian blurred Green’s function
with respect to y can be calculated using the same approach, hence

∂yG2D
s (x) =

y

2π

1− exp(−x2+y2

4s )
x2 + y2

, x = (x, y). (5.27)

We notice that if the scale s > 0 tends to zero the diffused/blurred Green function derivatives tend to
the ordinary derivatives of the Green’s function

lim
s→0

∂xG2D
s (x) =

1
2π

x

x2 + y2

lim
s→0

∂yG2D
s (x) =

1
2π

y

x2 + y2

(5.28)

where x 6= 0. Figure 5 shows the graphs of the derivatives of the blurred Green’s function G2D
s (x) for s = 0

and s = 1. So, in total we get a first improvement over a standard numerical approximation of (5.25) using
numerical integration (such as midpoint rule) and finite differences by combining (5.25), (5.26), (5.27) into

ṽs := grad (Gs,xṽ1 + Gs,y ṽ2)− r̃ot (−Gs,y ṽ1 + Gs,xṽ2). (5.29)

with Gs,xi ṽj := (∂xiG2D
s ∗ ṽj 1Ω), for i, j = 1, 2 with x1 = x, x2 = y . Now (5.29) still requires to apply

differential operators grad and r̃ot and we would like to avoid rough finite differences or small scale Gaussian
derivatives. Therefore in the next section we combine everything in a single analytic kernel operator, to obtain
maximimum accuracy.

5.1.1 Effective analytic convolution operators of the multi-scale Helmholtz decomposition

The Helmholtz decomposition (5.23) and (5.25) can be expressed as a sum of two vector valued convolution
kernels that can be pre-computed for computational efficiency. To this end we note that the Helmholtz
decomposition commutes with the diffusion operator and we can replace both the div and gradient operator
in ∇ by Gaussian derivatives in (5.25). Regarding the first term (rotation free part) we get

∇( s
2 ) div ( s

2 ) G ṽ =
2∑

i=1

(∇∂xiGs
2D ∗ ṽi)(x) =

2∑

i=1

(krf,s
i ∗ ṽi)(x) :=

2∑

i=1

((krf,s,1
i ∗ ṽi)(x), (krf,s,2

i ∗ ṽi)(x))T ,

with x1 = x, x2 = y, where for example ∇( s
2 ) denotes the Gaussian gradient at scale s

2 given by

∇( s
2 )f = ∇(φ s

2
∗ f) = (∇φ s

2
∗ f)

and where the vector valued convolution kernels krf,s
i = (krf,s,1

i , krf,s,2
i )T , i = 1, 2 are given by

krf,s
1 (x, y) = (∇∂xGs

2D(x, y))T = e−
x2+y2

4s

4πs(x2+y2)2


 −2

(
e

x2+y2

4s − 1
)

s(x2 − y2) + x2(x2 + y2)

−4xy
(
e

x2+y2

4s − 1
)

s + xy(x2 + y2)


 ,

krf,s
2 (x, y) = (∇∂yGs

2D(x, y))T = e−
x2+y2

4s

4πs(x2+y2)2


 −4xy

(
e

x2+y2

4s − 1
)

s + xy(x2 + y2)

2
(
e

x2+y2

4s − 1
)

s(x2 − y2) + y2(x2 + y2)




(5.30)
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for (x, y) 6= 0 and krf,s
1 (0, 0) = ( 1

8π , 0) and krf,s
2 (0, 0) = (0, 1

8π ). One can apply a similar computation for
the divergence free part,

(−r̃ot
( s

2 ) rot ( s
2 )Gṽ)(x) =

2∑

i=1

(kdf,s
i ∗ ṽi)(x) ,

but it is simpler to use φs ∗ ṽ = ∇( s
2 ) div ( s

2 )Gṽ− r̃ot
( s

2 ) rot ( s
2 )Gṽ so that we immediately see that

kdf,s
1 = (φs − krf,s,1

1 ,−krf,s,2
1 )T and kdf,s

2 = (−krf,s,1
2 ,−krf,s,2

2 + φs)T (5.31)

where φs(x) denotes the Gaussian kernel (3.2). So in total we have

2∑

i=1

(krf,s
i ∗ ṽi)(x) +

2∑

i=1

(kdf,s
i ∗ ṽi)(x) = (φs ∗ ṽ)(x) , (5.32)

with s = 1
2σ2 > 0 small (for example s = 1 · (step size)2), where in our algorithms krf,s

i and kdf,s
i are

analytically precomputed via Eq. (5.30) and Eq. (5.31).

Figure 5: Plots of derivative (5.26) of 2 dimensional Green’s function G2D
s with respect to x and y. The two

plots on the left display plots of the first order derivatives of the Green’s function at scale s = 0. The two
plots on the right show the case s > 0. At scale s > 0 the kernel no longer has a singularity at the origin and
thereby one avoids sampling errors, grid artefacts and moreover one uses Gaussian-derivatives which are, in
contrast to standard derivatives, bounded operators on L2(R2).

5.2 Experiments on vector field reconstruction

In order to assess the accuracy of the extracted rotation free and divergence free components, as well as
the accuracy of the reconstructed vector field, we create a phantom displaying a combination of divergence
and rotation, cf. Figure 7 first row. We furthermore compare the performance of the decomposition method
described in Section 5.1 and its refinement in Section 5.1.1. The rotation free and divergence free part of
the proposed phantom are given by

v(x, y) = (xe1 + ye2)
1

4πγ
exp(−x2 + y2

4γ
)

︸ ︷︷ ︸
∇Φideal

− (ye1 − xe2)
1

4πγ
exp(−x2 + y2

4γ
)

︸ ︷︷ ︸
r̃otAideal

(5.33)

(x, y) ∈ [−1, 1] × [−1, 1], γ = 1
50 (i.e. standard deviation of 1

5 ) fixed where e1 = (1, 0)T and e2 = (0, 1)T

represent a cartesian orthonormal basis. If we apply a diffusion with scale s > 0 on the phantom field v
given by (5.33) we obtain the following ground truth analytic multi-scale Helmholtz decomposition

vs(x) := (Gs ∗ v)(x) = −2γ

(
∂xφs+γ(x)
∂yφs+γ(x)

)
− 2γ

( −∂yφs+γ(x)
∂xφs+γ(x)

)
. (5.34)

where φs denotes the Gaussian kernel, recall Eq. (3.2). The decomposition and reconstruction of the
phantom’s vector field has been carried out at scale s = 1(step size)2 on a equidistant discrete 101 × 101
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krf,s
1 krf,s

2 kdf,s
1 kdf,s

2

Figure 6: Effective kernels of the multi-scale Helmholtz decomposition (5.32) at a fixed scale s > 0. Top
row: first component of respectively from left to right krf,s

1 ,krf,s
2 ,kdf,s

1 ,kdf,s
2 . Bottom row: second component

of respectively from left to right krf,s
1 ,krf,s

2 ,kdf,s
1 ,kdf,s

2 .

grid with step size 1
50 and has been evaluated using error measurements such as the `∞-norm error and the

average angular error (AAE) (5.35) given by

AE =
1

(101)2

50∑

i,j=−50

arccos(
vHD

s (xij)
‖vHD

s ‖ · vs(xij)
‖vs(xij)‖ ), (5.35)

xij = 1
50 (i, j), where vHD

s represents the sum of the divergence free and rotation free part of the Helmholtz-
decomposition algorithm and vs is the analytically diffused phantom field (ground truth). The proposed
algorithm in Section 5.1.1 shows high accuracy in the vector field decomposition; an overview of the error
measurements is displayed in table 1, highlighting that the method described in Section 5.1.1 is an improve-
ment of the method described in Section 5.1. In figure 7 we show a comparison between the analytic phantom

Error Method Section 5.1, Eq. (5.29) Error Method Section 5.1.1, Eq. (5.32)

AAE ε∞ AAE rel. `∞-Norm
Rotation Free Vector Field 0.35◦ 0.28 1.6◦ × 10−3 1.6× 10−5

Divergence Free Vector Field 0.35◦ 0.28 1.6◦ × 10−3 1.6× 10−5

Reconstructed Vector Field 0.4◦ 0.3 4.3◦ × 10−4 2.0× 10−5

Table 1: Performance of the proposed vector decomposition methods (at a fixed scale s = 1 · (step size)2).
We used the Average Angular Error (AAE), expressed in degrees and the relative `∞-norm given by ε∞ =
‖vs−vHD

s ‖∞
‖vs‖∞ , where ‖vs‖∞ = maxj∈{1,2},x∈Ω |vj

s(x)|. Best performances are achieved by method described in
Section 5.1.1, Eq. (5.32), showing AAE = 1.6◦ × 10−3 and ε∞ = 1.6× 10−5 for rotation and divergence free
components, and AAE = 4.3◦ × 10−4 and ε∞ = 2.0× 10−5 for the reconstructed vector field.

and its components (first row) and the reconstructed vector field and its components (second row).
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Figure 7: Helmholtz decomposition (top row) of the Phantom field vs, s = 1 · (step size)2, given by (5.34)
and the output vHD

s of the Helmholtz decomposition algorithm (bottom row, cf. Eq. (5.32)) on domain
[−1, 1]× [−1, 1]. From left to right: the field, rotation free part of the field, diverging free part of the field.
Most right image shows the harmonic infilling, Definition 5.2, which we amplified by 104 since it is extremely
small on [−1, 1]× [−1, 1].

6 A brief motivation for using covariant derivatives.

Usually one considers the derivative of a scalar-valued grey-value image (for example the components of a
vector-field) f : Ω → R by means of a Gaussian derivative

∂(s)
x f = ∂x(φs ∗ f) = (∂xφs) ∗ f

or by a finite difference (i.e. replace first order Gaussian by the discrete [1,−1]-stencil filter).
However, there is a short-coming to such an operator. Namely it only compares the difference of local

luminous intensities {f(x + y) | ‖y‖ < 2σ} with f(x) and it does not take into account the actual values
f(x+y) of local luminous intensities. Basically a directional derivative, say ∂xf(x) of an image f evaluated
at position x compares the graph of an image locally to the graph of a constant image and we have

∂(s)
x (f) = ∂(s)

x (f + C) , for all s > 0 and all constants C > 0 .

In other words the local slope, say in the x-direction, of the graph at (x, f(x)) is measured by ∂
(s)
x (f)(x)

is independent of the local hight f(x). Visual perception, however, does not work like this. Consider for
example Figure 8. Slope in dark areas are often perceived differently as slopes in light areas. This could
be due to the fact that the visual system has some a priori gauge function that it expects due to typical
surrounding. If this a priori gauge function is not constant then this gauge-pattern sets an a priori correlation
between the slope and hight of the graph of the image.
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Figure 8: The left-visual illusion illustrates that because of the surrounding grey-values a gradient is perceived
in the rectangle, although the rectangle has constant brightness (so computation of a ordinary gradient in
the rectangle yields zero). The right visual illusion illustrates the opposite dependence: due to different
surrounding gradient structure the same brightness is perceived differently. Along the diagonal cross sections
of the square the brightness is perceived higher than along the horizontal cross sections.

We will explain the concept of covariant derivatives of vector fields in Subsection 7. However, in order to
provide a road map to covariant derivatives of vector fields in a vector bundle we first explain the covariant
derivative of a scalar function f : Ω → R with respect to an a priori gauge function h : Ω → R as introduced
by T. Georgiev [17] (in an Adobe Photoshop inpainting application) and subsequently studied in [30, 5].
Such a covariant derivative is given by

Dhf(x, y) = Df(x, y)− 1
h(x, y)

Dh(x, y) f(x, y) (x, y) ∈ Ω ⊂ R2, if h(x, y) 6= 0. (6.36)

Note that the covariant derivative is invariant under scalar multiplication of the gauge function, so that

Dλhf = D|h|f = Dhf , (6.37)

for all h 6= 0. To get a quick preview on the use of covariant derivatives let us return to our visual perception
of the gradient in Figure 8 (left figure). As we show in Figure 9 this visual perception can be explained by
means of covariant derivatives (and not by standard derivatives).

Figure 9: As the rectangle has constant brightness (say 1/2) the visual perception of a gradient can not be
explained using standard derivatives, since the regular gradient vanishes within the rectangle. However if we
define gauge functions as indicated by white dashed boxes in the image, i.e. hi(x̃, y) = x̃ − x + hi(0) then
for points within the rectangle we have Dhif(x, y) = Df(x, y)− 1

hi(x,y) Dhi(x, y) f(x, y) = 0 + 1
hi(0) (−1, 0).

Here we consistently put the origin of coordinate in the middle of the rectangles. Black vectors indicate
covariant gradients whereas white vectors indicate regular gradients. The gauge function/patch index i is
indicated by different dashing.
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7 Covariant derivatives

Consider the vector2 bundle

E := (Ω× R2, π, Ω)

where Ω ⊂ Rd, d = 2, 3, is the image domain, where the fundamental projection π : Ω×R2 → Ω is given by

π(x, y, v1, v2) = (x, y) , (x, y, v1, v2) ∈ Ω× R. (7.38)

The augmented v1-direction represents the velocity-magnitude in x-direction. The augmented v2-direction
represents the velocity-magnitude in x-direction.

A fiber in this vector bundle is the two dimensional vector space π−1(x, y) = {(x, y, v1, v2) | v1, v2 ∈ R}
3. A section σ in the vector bundle is the surface which basically represents the graph of some vector-valued
function v : Ω → R2:

σv(x, y) = {(x, y, v1, v2) ∈ Ω× R2 | v1 = v1(x, y), v2 = v2(x, y)} , v = (v1, v2)T ,

note that π ◦ σv = idΩ, i.e. (π ◦ σv)(x, y) = (x, y) for all (x, y) ∈ Ω, (i.e. σv is a section in a vector bundle).
Now that we have set the very basic ingredients for the vector bundle (E, π, Ω). We stress that we do

not work in the much more common tangent bundle setting (Ω×T (Ω), π̃, Ω) where sections are vector fields
and where π̃(x, y,v(x, y)) = (x, y). Consequently, we have to rely on the more general concept of covariant
derivatives in vector bundle rather than the covariant derivative in the tangent bundle, which we explain
next.

7.1 A Tool from Differential Geometry: Connections on the Vector Bundle E

A connection on a vector bundle is by definition a mapping D : Γ(E) → L(Γ(T (Ω)), Γ(E)) from the space
of sections in the vector bundle Γ(E) to the space of linear mappings L(Γ(T (Ω)),Γ(E)) from the space of
vector fields on Ω denoted by Γ(T (Ω)) into the space of sections Γ(E) in the vector bundle E such that

Dv+wσ = Dvσ + Dwσ ,
Dfvσ = fDvσ ,
Dv(σ + τ) = Dvσ + Dvσ ,
Dv(fσ) = v(f)σ + fDvσ

(7.39)

for all vector fields v =
∑2

i=1 vi∂xi ,w =
∑2

i=1 wi∂xi ∈ Γ(T (Ω)) (i.e. sections in tangent bundle T (Ω)) and
all f ∈ C∞(Ω,R) and all sections σ ∈ Γ(E) in the vector bundle E. Note that we used the common short
notation Dvσ = (Dσ)(v). One can verify that (7.39) implies that

((Dσv)(X))(c(t)) = D(v1σ1 + v2σ2)(X)(c(t))

=
2∑

j=1

X|c(t) (vj) σj +
2∑

j=1

2∑
i=1

vj(c(t)) ċi(t) (D∂xi σj)(c(t)) ∈ Γ(E), (7.40)

where σ1(x, y) = (x, y, 1, 0) and σ2(x, y) = (x, y, 0, 1) denote the unit sections in x and y-direction and where
X|c(t) =

∑2
i=1 ċi(t) ∂xi |c(t) denotes a vector field on Ω tangent to a curve c : (0, 1) → Ω is a smooth curve

in the image domain Ω ⊂ R2, with ċ(t) = d
dtc(t) and components ci(t) = 〈dxi, ċ(t)〉 obtained by the dual

basis vector fields dx1,dx2 in the co-tangent bundle T ∗(Ω).
Formula (7.40) tells us that the connection is entirely determined by its output on the (constant) basis

sections σj and the basis vector fields ∂xi , i.e. D is uniquely determined by {D∂xi σj}i,j=1,2. Now for
each i, j = 1, 2 this output D∂xi σj is a section and consequently there exist unique functions Γk

ij : Ω → R
(Christoffel-symbols) such that

(D∂i
x
σj)(c(t)) = Γk

ij(c(t))σk .

2In previous work we called (R2×R+, π, Ω) a vector bundle, but formally speaking this is not right R+ is not a vector space.
3Here we stress that we do not assume that this two dimensional vector space is the tangent space T(x,y)(Ω), since our vector

bundle is not a tangent bundle
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7.2 Covariant derivatives on the Vector Bundle E induced by gauge fields.

In this article we restrict ourselves to the diagonal case (no interaction between the components)

Γk
ij = Ak

i δk
j , with Ak

i := Γk
ik, (7.41)

We impose this restriction for pragmatic reasons: It keeps the implementation relatively simple. Moreover,
this choice is a straightforward generalization of our previous work on reconstruction of scalar valued functions
using covariant derivatives [30]. Although this choice does not affect the rules for covariant derivatives on a
vector bundle (7.39), this restriction may not be a necessary.

Consequently, we have

(Dv1σ1)(∂xi) = (∂xiv1 + A1
i v1) σ1 , for i = 1, 2.

D∂xiσv = (Dσv)(∂xi) = (∂xiv1 + A1
i v1)σ1 + (∂xiv2 + A2

i v2)σ2 with v =
2∑

i=1

viσi ∈ Γ(E)
(7.42)

Now the next step is to choose {Aj
i} such that an a priori given section σh (a so-called gauge-field, [30])

(x, y) 7→ σh(x, y) with σh(x, y) = (x, y, h1(x, y), h2(x, y)) ,h = (h1, h2)T ,

is “invisible” with respect to the covariant derivative, i.e. we must solve for

(Dσh)(∂xi) = 0 for all i = 1, 2 ⇔
(∂xih1 + A1

i h
1) σ1 + (∂xih2 + A2

i h
2)σ2 = 0 σ1 + 0 σ2 for all i = 1, 2 ⇔

Aj
i = −∂xi hj

hj for all i, j = 1, 2,

(7.43)

so that the covariant derivative Dh induced by gauge-field σh ∈ Γ(E) is given by

(Dh
∂xiσv)(x) = (∂xiv1(x)− ∂xih1(x)

h1(x) v1(x)) σ1 + (∂xiv2(x)− ∂xih2(x)

h2(x) v2(x))σ2

= ((∂xi)h1)(x)σ1 + ((∂xi)h2)(x)σ2 .

Now that we introduced everything in a formal differential geometry setting we will simplify our notations.
In the remainder of this article, we will identify sections σv in E with the corresponding vector-functions
v : Ω → R2

σv=v1,v2(x) = (x, v1(x), v2(x)) ↔ v(x) = (v1(x), v2(x))T , for all x ∈ R2,
σ1 = (0, 0, 1, 0) ↔ e1 := (1, 0)T ,
σ2 = (0, 0, 0, 1) ↔ e2 := (0, 1)T .

(7.44)

and briefly write ∂h
xiv : Ω → R2 for the vector function corresponding to the section Dh

∂xiσv : Ω → E, i.e. :

(x, y, ∂h
xiv(x, y)) = (Dh

∂xiσv)(x, y) .

where we applied short notation ∂h
xiv := Dh

∂xiσv.
Note that covariant derivatives are invariant under sign-transitions.

Aj
i = −∂xihj

hj
= −∂xi |hj |

|hj | for all i, j = 1, 2. (7.45)

The covariant Laplacian can be explicitly expressed in components

(Dh)∗Dhv =
2∑

j=1

2∑
i=1

((
∂hj

xi

)∗
∂hj

xi vj
)
ej ,

=
2∑

j=1

(
−∆vj + ∆hj

hj vj
)
ej

(7.46)
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where we recall our identifications (7.44). With respect to this covariant Laplacian we recall that

(∂xi)hj

vj = ∂xivj −
∂hj

∂xi

hj
vj (7.47)

so that its L2-adjoint defined by
(
(∂xi)hj

vj , φ
)
L2(Ω)

=
(
φ,

(
(∂xi)hj

)∗
vj

)
L2(Ω)

for all φ ∈ L2(Ω),

is given by

(
(∂xi)hj

)∗
vj = −∂xivj − ∂xihj

hj
vj . (7.48)

If we compare the adjoint covariant derivative to the covariant derivative we see that the multiplicator part
is maintained whereas the derivative-part contains an extra minus sign. So that indeed by straightforward
computation one finds the fundamental formula:

2∑
i=1

(
∂hj

xi

)∗
∂hj

xi vj =
2∑

i=1

− ∂
∂xi

(
∂

∂xi

)hj

vj −
∂hj

∂xi ( ∂

∂xi )
hj

vj

hj

=
2∑

i=1

− ∂
∂xi

(
∂vj

∂xi − ∂hj

∂xi
vj

hj

)
−

∂vj

∂xi

(
∂vj

∂xi − ∂hj

∂xi
vj

hj

)

hj

= −∆vj + ∆hj

hj vj .

(7.49)

Now, that we have introduced the covariant Laplacian we mention two preliminary issues that directly arise
from (7.49) and which will be addressed in the remainder of this article.

Remark 7.2 At first sight the covariant derivatives and their associated (inverse) Laplacian, seem to be
numerically ill-posed as the gauge-field components should not vanish, likewise in the previous works [17, 30,
5]. However, the crucial scaling property of covariant derivatives, Eq. (6.37) allows us to scale away from 0
and numerical singular behavior is avoided by adding a tiny 0 < δ ¿ 1 in the computation of

∆hj(x, y)
hj(x, y)

≈ ∆hj(x, y) + δ

hj(x, y) + δ
= −∆(− log |hj(x, y) + δ|) + ‖∇ log |hj(x, y) + δ|‖2.

Furthermore, as we will see later in Section 7.3, regarding stability, the Dirichlet kernel of the coercive
covariant Laplacian behaves similar to the Dirchlet kernel of the regular Laplacian (with the advantage that
it locally adapts to concave and convex behavior of the gauge function). Finally, we will show how the
manifest stability of our algorithms, depends on the choice of gauge field.

Remark 7.3 Covariant derivatives of sections (vectorvalued functions) in the vector bundle E given by
(7.42) in general do not coincide with covariant derivatives of sections (vector fields) in ((Ω, T (Ω)), π̃, Ω).
The components in (7.47) are coordinate dependent and not compatible with respect to orthogonal coordinate
transformations (such as rotations). This incompatibility is due to our restriction (7.41) and we return to
this issue in Section 8.

7.2.1 Interpolation between conventional derivatives and covariant derivatives

In this section we briefly explain that a monotonic transformation on the components of the gauge field takes
care of the interpolation between standard derivatives and covariant derivatives. For the sake of illustration
we restrict ourselves to the scalar valued case (with positive gauge function h : Ω → R+, recall (7.45)) as
the vector valued case follows by applying everything on the two separate components. By applying a the
monotonic transformation h 7→ hη on the gauge function we obtain the following covariant derivative

Dhη

f = f −D(log hη)f = f − η(D log h)f . (7.50)
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If η = 0 the expression (7.50) provides a conventional derivative, whereas the case η = 1 yields a covariant
derivative with respect to gauge function h.

On the one hand we want to preserve the influence of the gauge field (initial guess) h. On the other
hand outliers in the magnitude of the gauge field h get too much influence in the final reconstruction if
η ≥ 1. Furthermore we have to keep track of error-propagation4 where η should neither be too large nor too
small. So we observe a trade-off situation for the choice of η in our application. This will also appear in the
experimental section, Section 10, Figure 15.

7.3 Fundamental properties of the self-adjoint covariant laplacian

In this section we shall show that covariant Laplacian has more or less the same fundamental properties as
the ordinary Laplacian. These basic fundamental properties include self-adjointness, negative definiteness
and coercivity, that are important for wellposed symmetric inverse problems that shall arise from Euler
Lagrange equations for vector field interpolation later on in Section 8 and Section 9.

Definition 7.3 Let H be a Hilbert space with inner product (·, ·). An unbounded operator A : H → H on a
Hilbert space H with domain D(A) is self-adjoint if

(Af, g) = (f, Ag) for all f, g ∈ D(A) ,

and if the domain of the adjoint D(A∗) coincides with the domain of A, i.e. D(A∗) = D(A). Such an
operator is coercive if there exists a positive constant c > 0 s.t.

(Af, f) ≥ c(f, f)

for all f ∈ D(A).

Now suppose that the gauge field is twice continuously differentiable and suppose that the multipliers

∆hj

hj
, j = 1, 2 are bounded. (7.51)

Then the covariant Laplacian is just like the ordinary Laplacian an unbounded negative definite operator on
L2(Ω) with domain

D

 ∑

i=1,2

(
∂hj

xi

)∗
∂hj

xi


 = H0

2(Ω) := {f ∈ H2(Ω) : f |∂Ω = 0}. (7.52)

Note that ∂hj

xi is not even a normal operator
(
∂hj

xi

)∗
∂hj

xi 6= ∂hj

xi

(
∂hj

xi

)∗
.

The covariant Laplacian operator
(
∂hj

xi

)∗
∂hj

xi is negative definite

−

 ∑

i=1,2

(
∂hj

xi

)∗
∂hj

xi f, f



L2(Ω)

=
(
∂hj

xi f, ∂hj

xi f
)
L2(Ω)

> 0

for all f with5 f 6= 0 regardless the choice of hj as long as ∆hj

hj is bounded, which we will assume form now
on. Now by assumption the gauge field is twice differentiable and as a result ∆hj

hj is continuous on a compact
domain Ω, so there exists some xj

0 ∈ Ω such that

−∆hj

hj
≤ −∆hj(xj

0)
hj(xj

0)
. (7.53)

4The condition number associated with linear system (8.75) describes the error propagation.
5Note that f ∈ H0

2 with ∂hj

xi f = 0 implies that f is scalar multiple of hj which violates our assumption (7.51) if f 6= 0.
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Now minus the covariant Laplacian is an operator of Sturm-Liouville (p, q)-type [24] with p = 1 and q =
qj := −∆hj

hj , recall Eq. (7.49), with qj ≤ q(xj
0). Consequently, the covariant Laplacian is self-adjoint and the

corresponding self-adjoint resolvent operator

I −

∑

i=1,2

(
∂hj

xi

)∗ (
∂hj

xi

)


−1

(7.54)

is compact and thereby there exists a complete orthonormal set of strictly positive eigenvalues and eigen-
functions [42, Thm 13.33] such that




− ∑

i=1,2

(
∂hj

xi

)∗ (
∂hj

xi

)
f j

n = λj
nf j

n , j = 1, 2,

f j
n

∣∣
∂Ω

= 0, j = 1, 2,
⇔

{
∆(f j

n) + qj f j
n = λj

nf j
n j = 1, 2,

f j
n

∣∣
∂Ω

= 0, j = 1, 2,

where we stress that λn = 0 would yield the trivial solution only, as Dhj

f j = 0 implies f j = λhj which for
λ 6= 0 would contradict (7.53) since f j

n

∣∣
∂Ω

= 0. Now the resolvent of the covariant Laplacian is compact
with a domain H0

2(Ω) that is compactly embedded in L2(Ω) and consequently, 0 is the only density point of
the spectrum of the resolvent. Consequently, the spectrum of the minus covariant Laplacian is contained in

σ


−

∑

i=1,2

(
∂hj

xi

)∗
∂hj

xi


 ⊂ [ch(Ω),∞)

for some ch(Ω) > 0 and by the Sturm-Liouville theory [19] the spectrum only consists of eigenvalues so that
ch(Ω) equals the smallest eigen value λj

1(h) of the covariant Laplacian restricted to its domain (7.52) which
can be expressed by the Rayleigh quotient

λj
1(h) = min

f∈H0
2(Ω)

∑
j=1,2

∫
Ω
−fj(x)∆fj(x)+qj(x)f2(x) dx

∑
j=1,2

∫
Ω(fj)2(x)dx

= min
f∈H0

2(Ω)

∑
j=1,2

∫
Ω

(∇fj ·∇fj)(x)+qj(x)f2(x) dx

∑
j=1,2

∫
Ω (fj)2(x)dx

.

We conclude that the covariant Laplacian is just like the regular Laplacian a coercive operator on the domain
H0

2(Ω) with a complete orthogonal basis of eigenfunctions. This coercivity is important for the stability of the
numerical algorithms (via the Lax-Milgram theorem, [37]) later on, since inverting the covariant Laplacian
boils down to inverting all the eigenvalues.

Remark 7.4 The smallest eigen value λ1(1) in case of a constant gauge field corresponds to the Poincaré
constant [50] of the regular Laplacian with domain H2

0(Ω). In case of a rectangular domain, Ω = [0,M ]×[0, L]
we have

λj
1(1) = π2

(
1

M2
+

1
L2

)
,

since the eigen functions of the regular Laplacian on the rectangle Ω = [0,M ]× [0, L] with domain H0
2(Ω) are

given by

{sin
(mxπ

M

)
sin

(nyπ

L

)
| m,n = 1, 2, . . .}

with corresponding eigen values π2
(

m2

M2 + l2

L2

)
. However, since the qj need not be positive, it in general is

hard to derive an explicit formula for the lower bound for the smallest eigenvalues of the covariant Laplacian
with domain H0

2(Ω).

In general it is apparent from the essential formula (7.49), that the more convex the gauge field, the more
well-posed the inversion of the covariant Laplacian and the covariant resolvent (7.54) is. See the typical
Example 1 and Example 2 below, where we respectively consider basic gauge fields that are convex and
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Figure 10: The graphs of the gauge functions and corresponding Laplacian in Example 1 (convex case, γ = 1,
in red) and Example 2 (concave case, α = 3

8 , in blue).

mainly locally concave. As the covariant Laplacian (7.49) of a vector field acts componentwise, we will (for
the sake of simple illustration) consider examples of a covariant Laplacian

(Dh)∗Dhf = −∆f +
∆h

h
f

of a scalar field f with respect to a scalar field h. See Figure 10. Here the reader should keep in mind that
in the applications later on f is the component of a vector field v and h is a component of the gauge field h.

Example 1 Consider the case where Ω = [0, 1]× [0, 1] and h(x, y) = λ e−γ(x+y)), with γ ≥ 0, λ 6= 0, then

∆h

h
= γ2 ≥ 0

and we have (Dh)∗Dh = −∆+γ2 I and the smallest eigenvalue of the covariant Laplacian equals is 2π2 +γ2,
which shows that the covariant Dirichlet problem is better posed than a regular Dirichlet problem in case of
a convex gauge field.

In our applications the gauge-field usually is a superposition of Gaussians. Typically Gaussians inhibit
concave areas around the mean. To investigate the influence of these concave areas on the stability of inverse
problems based on covariant Laplacians we consider the following example.

Example 2 Consider the case where Ω = [0, 1]× [0, 1] and the gauge function is a Gaussian kernel h(x, y) =

λ( 1
2πσ2 e−

(x2+y2)
2σ2 ), with λ > 0 arbitrary, then the Gaussian kernel is concave for x2+y2 < 2σ2. For convenient

computation set α := 1
2σ2 = 3

8 in which case the gauge function is concave on Ω, see Figure 10. A brief
computation yields q(x, y) = ∆h(x,y)

h(x,y) = 4α(α(x2 + y2) − 1) and if we now apply the standard method of
separation on −∆ + q we find

µ1 + µ2 − 4α =
4α2x2X(x)−X ′′(x)

X(x)
− 4α2y2Y (y)− Y ′′(y)

Y (y)
− 4α = λ

with X(0) = X(1) = 0 and Y (0) = Y (1) = 0. So set X(x) = e−αx2
X̃(2

√
αx) and Y (y) = e−αy2

Ỹ (2
√

αy)
and set ξ = 2

√
αx and η = 2

√
αy then we arrive at the Hermite differential equation

X̃ ′′(ξ)− 2ξX̃ ′(ξ)− 1
2X̃(ξ) = −µ1

2αX̃(ξ) ,

X̃(0) = X̃(2
√

α) = X̃
(√

3
2

)
= 0

and an analogous Hermite differential equation for Ỹ (η). Now we arrive at the Hermite polynomials Hn(x)
of order n, where the lowest order that could possibly fit the boundary conditions is n = 3. So

µ1

2α
− 1

2
= 6 = 2n ⇒ µ1 = 13α ,

and the eigen function with smallest eigenvalue of the covariant Laplacian is

e−α(x2+y)2H3(−2
√

αx)H3(−2
√

αy)

with eigenvalue λ = µ1 + µ2 − 4α = 26α− 4α = 22α ≈ 8.25 which is less than π2 ≈ 9.87, but the difference
is rather small.
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7.3.1 The Green’s function of the covariant Laplacian and an explicit coercivity bound

Although that the coercivity constant ch(Ω) is harmless in Example 1 and Example 2, it does not say much
on the general case where the coercivity constant depends on the gauge function h : [0, 1] × [0, 1] → R+.
In the general case, where h ∈ C2([0, 1] × [0, 1]) is arbitrary, we can get a grip on the coercivity constant
ch(Ω) by considering the Green’s function of the covariant Laplacian. Here we employ the decomposition
−∆f + ∆h

h f = (Dh)∗Dhf and we partially follow Sturm-Liouville theory, which does not fully apply since
h−1∆h need not be positive. To obtain the coercivity constant for (Dh)∗Dh we may restrict ourselves to
the 1 dimensional case since

(−∆ +
∆h

h
)f = −∂2f

∂x2
+

∂2h
∂x2

h
f − ∂2f

∂y2
+

∂2h
∂y2

h
f =

2∑

i=1

(
∂h

∂xi

)∗(
∂h

∂xi

)
f,

so that if we find a lower-bound c̃h̃([0, 1]) on the 1D- covariant Laplacian

H2
0([0, 1]) 3 f̃ 7→ Dh̃f̃ = −f̃ ′′ +

h̃′′

h̃
f̃ ∈ L2(0, 1) ,

then by means of the estimate

1∫

0

1∫

0

∣∣∣∣
∂hf(x, y)

∂x

∣∣∣∣
2

dxdy ≥
1∫

0

c̃h(·,y)([0, 1])

1∫

0

|f(x, y)|2 dx dy

we obtain the following lower bound on the 2D covariant Laplacian

−∆ +
∆h

h
> ch([0, 1]× [0, 1]) := min

x∈[0,1]
{c̃h(x,·)([0, 1])}+ min

y∈[0,1]
{c̃h(·,y)([0, 1])}. (7.55)

Therefore, in the remainder of this subsection and Appendix A we consider the 1D gauge function h and 1D
input function f and for the sake of sober notation we thereby omit the tildes and write h ∈ C2(0, 1) with
h > 0 and f ∈ L2(0, 1). However, we actually consider the cases h̃(x) = h(x, y) and f̃(x) = f(x, y) for a
fixed y or h̃(y) = h(x, y) and f̃(y) = f(x, y) for a fixed x in (7.55).

In Appendix A we show that the Green’s function of the 1D covariant Laplacian f 7→ (Dh)∗Dhf =
−f ′′ + h′′

h f is given by

kh(x, y) =
h(x)h(y)
Qh(1)

·
{

Qh(x)(Qh(1)−Qh(y)) for x ≤ y ,
Qh(y)(Qh(1)−Qh(x)) for x > y

where Qh(x) :=
x∫
0

(h(v))−2 dv. See Figure 11 Furthermore, in Appendix A we show that the kernel operator

Kh : L2([0, 1]) → H2
0([0, 1])

Khf(x) =

1∫

0

kh(x, y)f(y) dy (7.56)

is the right-inverse of the covariant Laplacian

(Dh)∗DhKhf = f for all f ∈ L2([0, 1]). (7.57)

Now the operator norm of the bounded operator Kh can be estimated by the Hilbert-Schmidt norm

‖Kh‖ ≤ |||Kh||| =
√

traceK∗
hKh = ‖kh‖L2([0,1]×[0,1]) ≤ 2‖h−1‖L2(0,1)‖h‖L2(0,1) (7.58)

and as a result from (7.57) and (7.58) we find the following lower bound for the 1D-covariant Laplacian

(Dh)∗Dh ≥ 1
|||Kh||| ≥ c̃h([0, 1]) ≥ 1

2
‖h−1‖−1

L2(0,1)‖h‖−1
L2(0,1) . (7.59)
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Figure 11: The graphs of gauge functions h and the corresponding Green’s functions kh(·, y) of the covariant
Laplacian (where delta-spikes are respectively placed at y = 0.25, 0.5, 0.75). In red: gauge function of
Example 1 (convex case, γ = 3). In blue: gauge function of Example 2 (concave case, σ = 1

4

√
3). In

dashed black: Green’s function with respect to constant gauge functions (i.e. Green’s function of standard
Laplacian). The Green’s function is convex (concave) if the gauge field is convex (concave) in accordance
with Lemma A.4 in Appendix A.

So that Eq. (7.59) and Eq. (7.55) provide a general lower-bound ch([0, 1] × [0, 1]) for the the 2D case that
explicitly depends on the gauge field

−∆ + ∆h
h > ch([0, 1]× [0, 1])

≥ 1
2 min

x∈[0,1]
‖h−1(x, ·)‖L2(0,1)‖h(x, ·)‖L2(0,1) + 1

2 min
y∈[0,1]

‖h−1(·, y)‖L2(0,1)‖h(·, y)‖L2(0,1) . (7.60)

Furthermore, we note that Kh is a compact operator due to (7.58), since every Hilbert Schmidt operator
is compact, moreover both operator (Dh)∗Dh (unbounded on L2([0, 1])) and operator Kh are self-adjoint
(with kh(x, y) = k(y, x)) and by the spectral decomposition theorem for compact self-adjoint operators they
share a common orthonormal basis of eigen functions. Consequently, the sharpest coercivity lower bound
c̃h([0, 1]) coincides with the smallest eigenvalue of operator (Dh)∗Dh and largest eigenvalue of operator Kh.

Finally, we note that the invariance of scaling the gauge function

(Dh)∗Dh = (Dλh)∗Dλh and Kh = Kλh and ch = cλh, , λ 6= 0,

is also reflected in the estimate (7.60).

8 The Euler-Lagrange equations for Tikhonov regularized optic
flow reconstruction in covariant derivatives

In order to formulate Tikhonov regularization in covariant derivatives, we first have to derive a gauge field.
Such a gauge field imposes an a priori balance between velocity magnitude and velocity field changes and
thereby it is supposed to be close to the velocity field that we would like to reconstruct from a sparse set of
features. There are several options to choose the gauge field as an initial guess for the velocity field. One
could take the velocity field vk−1 of the previous time frame as a gauge field if one can assume that an a priori
balance between velocity magnitude and velocity field changes is preserved over time. In the general setting
however, it is better to use the standard Tikhonov regularization reconstruction with standard derivatives
as a gauge field for the subsequent Tikhonov regularization reconstruction using covariant derivatives. The
latter step is then to be considered as a refinement of the first.

In both two steps one needs the same algorithm as the standard Tikhonov regularization reconstruction
with conventional derivatives coincides Tikhonov regularization reconstruction with covariant derivatives
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using a constant gauge field. Summarizing, the velocity field at time-step vk = vk,1e1 + vk,2e2 is obtained
by first minimizing

Eλ,hk,dk

(vk) := λEhk

reg(vk) + Edk

data(v
k) :=

λ
∫
Ω

|||Dhk

vk(x)|||2 dx +
NB∑
q=1

wk
q

2∑
j=1

|(φq
k, vk,j)L2(Ω) − dk,j

q |2 (8.61)

for hk = (1, 1) yielding optimal field say (vk)∗ which produces the gauge field hk := (vk)∗ for the final step
where again (8.61) is minimized (but now with a non-constant gauge field hk := (vk)∗). The parameter
λ > 0 balances between regularization part (prior term) and the soft constraints (data term).

Firstly, we note that the soft constraints are due to

(φq
k, vk,j)L2(Ω) = (φsq

∗ vkj)(xq) = dk,j
q , (8.62)

where k indexes time, q enumerates the extremal branches, j ∈ {1, 2} enumerates the vertical and horizontal
component of the field,

φq
k(x) := φsq

(x− xq) (8.63)

denotes the Gaussian kernel (3.2) centered around xq with scale sq > 0, recall Figure 4 and where the sparse
velocity components dk,j

q , Eq. (4.8), are derived by solving Eq. (4.7). Too simplify our notation in the sequel
we shall write

dk := (dk,1,dk,2)T

dk,j := (dk,j
1 , dk,j

2 , . . . , dk,j
NB

)T ∈ RNB .
(8.64)

Secondly, we note that |||Dhk

vk(x)||| in (8.61) denotes the Hilbert-Schmidt norm of the tensor field
Dhk

vk(x) =
∑2

i,j=1 ∂hk,j

xi vk,j(x) dxi ⊗ ∂j , i.e.:

|||Dhk

vk(x)|||2 =
2∑

i=1

2∑

j=1

|∂hk,j

xi vk,j(x)|2 .

Finally, we note that for λ = 0 (and hard-constraints, i.e. wk
q → ∞) the minimizer is obtained by

L2-projection, [9][ch:3.4], and for λ > 0 we arrive at the minimization framework on a space of Sobolev-
type, [9][ch:3.4.2.1], where we must set R = (−(Dhk

)∗Dhk

+ I)
1
2 to construct the complete Sobolev-space

D(R) = {v ∈ L2(R2) | Rf ∈ L2(R2)} (depending on the gauge field) on which the minimization problem
takes place.6

The Euler-Lagrange equations for the unique minimizer of (8.61) are derived by

lim
ε→0

Eλ,hk,dk

(vk + εδ)− Eλ,hk,dk

(vk)
ε

= 0

which is supposed to hold for all infinitely smooth perturbations that are compactly within the interior of
Ω, i.e. δ ∈ D(Ω). Now straightforward computations in the general continuous Tikhonov regularization
framework yield

∀δ∈D(Ω)
2 ((−λ (Dhk

)∗Dhk

)vk + S∗kΛkSkvk − S∗kdk, δ) = 0
⇔

(−λ (Dhk

)∗Dhk

+ S∗kΛkSk)vk = S∗kΛkdk

(8.65)

where Sk : L2(Ω) → R2×NB is given by

(Skvk)(q) = (φq
k,vk) := (φq

k, vk,1)L2(Ω)e1 + (φq
k, vk,2)L2(Ω)e2.

6According to the general theory in [9] the minimization problem can be extended to the full space L2(R2) by means of the
Gelfand-triple D(R) ↪→ L2(R2) ↪→ (D(R))∗, but this is a minor technical issue.

23



and where Λk ∈ RNB×NB is the diagonal matrix consisting of the corresponding feature weights:

Λk = diag{(wk
q )NB

q=1}.

Recall that NB denotes the number of features (the number of extremal branches in our scale space repre-
sentation, recall (4.1)). Note that the adjoint S∗k : R2×NB → L2(Ω) operator for each fixed discrete time
k ∈ N is defined by

(S∗kΦ,vk)L2(Ω) = (Φ,Skvk)R2×NB ,

or more explicitly by

∫
Ω

((S∗kΦ)(x))1vk,1(x) + ((S∗kΦ)(x))2vk,2(x) dx =
2∑

j=1

NB∑
q=1

(Φ(q))j (Skvk(q))j =
2∑

j=1

NB∑
q=1

(φq
k, vk,j)(Φ(q))j

=
∫
Ω

(
NB∑
j=1

ej

(
NB∑
q=1

(Φ(q))jφq
k(x)

))
· vk(x)dx

so that the adjoint is simply given by

(S∗kΦ)(x) =
2∑

j=1

ej

(
NB∑
q=1

(Φ(q))jφq
k(x)

)

This allows to write down the Euler-Lagrange equations (8.65) in more explicit form:

NB∑
q=1

wk
q

(
(φq

k, vk,j)L2(Ω) − (dk
q )j

)
φq

k(x)

+λ
(
−∆|vk,j |(x) + η ∆|hk,j |(x)

|hk,j |(x)
vk,j(x)

)
= 0

(8.66)

for j = 1, 2, x ∈ R2. Recall from Section 7.2.1 that we can interpolate between regular and covariant
derivatives with the parameter η. We will use (8.66) as a starting point for our implementations where all
field components are expanded in a B-spline basis. Nevertheless, the more structured abstract form (8.65)
clearly reveals the relevance of a negative (semi)-definite covariant derivative and the addition of a L2-norm
in the energy minimization. To this end we note that S∗kΛkSk is bounded from below (see subsection 7.3)
so that

((−λ (Dhk

)∗Dhk

+ S∗kΛkSk)v,v)L2(Ω) > c(Ω) λ(v,v)L2(Ω)

and thereby the operator −λ (Dhk

)∗Dhk

+ α I + S∗kΛkSk is invertible and we can write the unique stable
solution of (8.61) as

vk = (−λ (Dhk

)∗Dhk

+ S∗kΛkSk)−1S∗kΛk dk . (8.67)

8.1 Algorithm: Solving the Euler-Lagrange Equations by Expansion in B-splines

Next we express the Euler-Lagrange equations entirely in B-spline coefficients. The computational advan-
tages of using B-splines for variational approaches are well-known in signal in image processing, [48, 27, 15].
We will first provide a few basic properties on B-splines that we will need for our algorithm and the analysis
of its stability later on.

The n-th order B-spline is given by n− 1-fold convolution with B0

Bn(x) =
(
B0 ∗n−1 B0

)
(x) with B0(x) = 1[− 1

2 , 1
2 ](x). (8.68)
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where f∗g(x) =
∫∞
−∞ f(y)g(x−y)dy. Thereby the n-th order B-spline is compactly supported on 1[−n

2− 1
2 , n

2 + 1
2 ].

In the discrete setting we sample on a uniform integer grid, so for example if n is odd we find n non-zero-
samples. Next we provide a list of Z-transforms of B-splines sampled on a uniform grid with stepsize 1:

ZB2(z) = 1
2!22 (z−1 + 3 + z) ,

ZB3(z) = 1
3! (z

−1 + 4 + z) ,
ZB4(z) = 1

3!23 (z−2 + 76z−1 + 230 + 76z + z2) ,
ZB5(z) = 1

5! (z
−2 + 26z−1 + 66 + 26z + z2) ,

ZB6(z) = 1
6!26 (z−3 + 722z−2 + 10543z−1 + 23548 + 10543z + 722z2 + z3).

(8.69)

The regular derivative of a B-spline of order n is expressed in B-splines of order n− 1

d

dx
Bn(x) = Bn−1(x + 1/2)−Bn−1(x− 1/2)

and nicely matches the well-known a finite difference stencil. Consequently, for even order derivatives of
B-splines we have

(Bn)(2k)(x) =
k∑

l=−k

(−1)l

(
k

|l|
)

Bn−2k(x− l) .

so for example for 2k = 2 we see (Bn)(2)(x) = Bn−2(x+1)− 2Bn−2(x)+Bn−2(x− 1), which nicely matches
the finite difference [1,−2, 1]-stencil for a second order derivative.

Next we express the unknown velocities vk,j : Ω → R, j = 1, 2, at time-frame t = k∆t, in periodic
B-splines

vk,j(x, y) =
L−1∑

l=0

M−1∑
m=0

ckj
lm Bn

(
x

a
−m Mod

M

a

)
Bn

(
y

b
− l Mod

L

b

)
(8.70)

for all (x, y) ∈ Ω = [0,M ] × [0, L]. In our algorithms we set the resolution parameters a = b = 1. One can
choose them differently, like in [27], as long as the n-th B-spline is properly sampled on [0, M ] and [0, L], i.e.

M

a
> n + 1 and

L

b
> n + 1 . (8.71)

Recall that we always ensure our velocity fields to vanish at the boundaries, since we first extract the
Harmonic infilling:

vk 7→ vk − (
vk

∣∣
∂Ω

)
H

Recall (5.23), which allows us to use periodic B-splines. By property (8.68) and assuming (8.71) we have
the following formula for the components of rank-2 tensor on RP :

T pp′

P,k := 1
a

∫ P

0
(Bn)(k)(x

a − p Mod P
a ) Bn(x

a − p′ Mod P
a ) dx

= 1
a

∫ P
2

−P
2
(Bn)(k)(x

a − p Mod P
a ) Bn(x

a − p′ Mod P
a ) dx

= (B2n)(k)(p− p′ Mod P ) .

with P ∈ {M, L}. Now after straightforward but intense computations one can rewrite the energy (8.61) as

Eλ,α,hk,dk(vk,vk−1,dk) = Eλ,hk,dk(ck,dk) :=
2∑

j=1

(ckj , Rλ
k,jc

kj)`2({1,...,LM}) + ‖Λ1/2
k (Sck,j − dk,j)‖2`2({1,...,NB})

(8.72)

with

ck = ((ck,1)T , (ck,2)T )T =
(
ck,1
11 , ck,1

12 , . . . , ck,1
1M , ck,1

21 , ck,1
22 , . . . , ck,1

2M , . . . , . . . , ck,1
L1 , ck,1

L2 , . . . , ck,1
LM ;

(ck,2
11 , ck,2

12 , . . . , ck,2
1M , ck,2

21 , ck,2
22 , . . . , ck,2

2M , . . . , . . . , ck,2
L1 , ck,2

L2 , . . . , ck,2
LM

)T

∈ R2M∗L
(8.73)
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and where the matrix representation of the covariant Laplacian expressed in the B-spline basis is given by

Rλ
k,j = λ(−TL,0(y

b )⊗ TM,2(x
a )− TL,2(y

b )⊗ TM,0(x
a ) + λ

M−1∑
x=0

L−1∑
y=0

γj
k(x, y)(T̃L,0(y

b )⊗ T̃M,0(x
a )) (8.74)

where

(ck,j , RL,0 ⊗RM,0ck,j) =
L−1∑

l,l′=0

M−1∑

m,m′
ck,j
lm ck,j

l′m′(RL,0)ll′(RM,0)mm′

and A ⊗ B denotes the Kronecker product of matrices (related to the tensor product of the corresponding
tensors) and where

T̃P,k(u) = [(T̃P,k(u)]pp′ = (Bn)(k)(u− p)Bn(u− p′)

with p, p′ ∈ {1, . . . , P} (note that we either set P = M and p = m, p = m′ or P = L and p = l, p = l′ in
(8.74)) and where the

γk,j(x, y) =
∆hk,j(x, y)
hk,j(x, y)

= −∆(− log |hk,j + δ|)(x, y) + ‖∇ log |hk,j + δ|(x, y)‖2 ,

is dimensionless and where 1 À>> δ > 0 is added to the gauge field to avoid singularities.
The mapping S in (8.65) expressed in B-spline coefficients ck is given by

Sck(q) =
2∑

j=1

ej

(
L−1∑

l=0

M−1∑
m=0

ck,j
lm

(
φq

k , Bn
( ·

a
−m + Mod(M)

)
Bn

( ·
b
− l + Mod(L)

)))

If we expand the feature vectors {φq
k}NB

q=1 as well

φq
k =

M−1∑

m′=1

L−1∑

l′=0

c̃k,q
l′m′B

n
( ·

a
−m′ Mod(M)

)
Bn

( ·
b
− l′ Mod(L)

)
,

then we may rewrite the mapping S : R2LM → Rq as

Sck(q) =
L−1∑
l,l′=0

M−1∑
m,m′=0

c̃kq
lm′Tmm′

M,0 T ll′
L,0c

kj
lm = (c̃kq)T (TL,0 ⊗ TM,0) ckj

In order to derive the minimizer of the discrete functional (8.72) which coincides with the minimizer of the
continuous functional (8.65), (8.67) if we restrict ourselves to velocities vk which are within the (closed)
subspace spanm=0,...,M−1,l=0,...,L−1{Bn

( ·
a −m Mod(M)

)
Bn

( ·
b − l Mod(L)

)}, we simply set

∇ckEλ,hk,dk(ck) = 0 ,

which yields (expressed in the natural matrix-representation S ∈ RNB×LM of the isomorphic mappings
ck1 7→ S(ck1,0) and ck2 7→ S(0, ck2))

(Rλ
k + ST ΛkS)ck,j = ST Λkdk,j for j = 1, 2,

with dk,j given by (8.64) Now for n ≤ 3 we find (akin to (8.67)) the unique solution by inversion

ck,j = (Rλ
k,j + ST ΛkS)−1ST Λkdk,j , (8.75)

which we solved by a BiCSTAB algorithm (Conjugate gradient is not suitable since the matrix Rλ
k is not

symmetric due to the fact that the adjoint of a covariant derivative is not equal to minus the covariant
derivative, recall (7.48)). Here we have exploited the direct product structure of the terms in the matrix
Rλ

k (8.74): For numerical efficiency one only needs to store the product M ×M or L × L matrices such as
TM,0 and TL,0 using the computation scheme explained in [22] in the BiCSTAB algorithm whenever a matrix
product occurs.
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8.1.1 Stability Analysis of the Linear System in the Euler Lagrange Equations

In this paragraph we will analyse the stability of the inversion scheme (8.75) which is basically the matrix
representation of operator equation (8.67). In the latter case the theoretic continuous operator

−λ (Dhk

)∗Dhk

+ S∗kΛkSk (8.76)

can be inverted in (8.67) since by our results in Section 7.3 (and the Lax-Milgram theorem [37]) we have

−λ (Dhk

)∗Dhk ≥ λ chk and
S∗kΛkSk ≥ 0 ,

where chk is the Poincar’e constant of the covariant Laplacian, which depends on the choice of gauge field
hk, which can be slightly smaller than the Poincar’e constant of regular Laplacian in specially designed
examples where the gauge field is (nearly) everywhere concave such as in Example 2, but which is in practice
(where gauge fields are mainly convex in Ω) larger than the Poincaré constant of the regular Laplacian. On
a rectangle Ω = [0,M ] × [0, L] this means chk ≥ π2(M−2 + L−2). In the remainder of this section we shall
assume that chk is given. For lower bounds on chk see Appendix A.

Let us return to the finite matrix representations Rλ
k,j + ST ΛkS, j = 1, 2 of operator (8.76) with respect

to the periodic B-spline basis (8.70). We would like to get estimates for the smallest eigen value of this finite
matrix and we would like to investigate how this smallest eigenvalue depends on the order of the B-splines.

First of all we observe that the data matrix ST ΛkS is only positive semi -definite. The problem is that
the matrix representation of S is of size RNB×LM , where in general we have a sparse set of features, i.e.
LM >> NB , i.e. even in the case where all features are linearly dependent S has a lot of linear dependence
in its columns, i.e. S is not injective, S has a very large nil-space and ST ΛkS is not invertible. So we should
not expect global stability from the data-matrix. However, the smoothness matrix Rλ

k,j for each component
j ∈ {0, 1} satisfies

Rλ
k,j ≥ chk λ TL,0 ⊗ TM,0 (8.77)

since substitution of (8.70) into (v,v)L2(Ω), Ω = [0,M ]× [0, L], gives

2∑
j=1

(ckj , Rλ
k,jc

kj)`2({1,...,LM}) = (−λ (Dhk

)∗Dhk

v,v)L2(Ω) ≥

chk(v,v)L2(Ω) = chk λ
2∑

j=1

(ckj , TL,0 ⊗ TM,0ckj)`2({1,...,LM}) .

Now (8.77) relates the stability of matrix TL,0 ⊗ TM,0 with inverse (TL,0 ⊗ TM,0)−1 = T−1
L,0 ⊗ T−1

M,0 to the
stability of Rλk,j . Now the eigenvalues of TL,0⊗ TM,0 are direct products of the eigenvalues of TL,0 with the
eigenvalues of TM,0 so in order to find a lower-bound of the smallest eigenvalue of Rλ

k,j we derive the smallest
eigenvalue of TP,0 with P ∈ {M,L}. Now TP,0 = [TP,0]pp′ = [B2n(p − p′ Mod P )]pp′ is a circulant Toeplitz
matrix whose columns add up to one. This matrix is not symmetric (due to periodicity) so its eigen values
need not be real-valued. It is positive definite though and since

(ckj , TL,0 ⊗ TM,0ckj)`2({1,...,LM}) = (ckj ,
1
2
(TL,0 ⊗ TM,0 + (TL,0 ⊗ TM,0)T ) + ckj)`2({1,...,LM}) ,

we are only interested in the real part of the eigenvalues Re(λ) = 1
2 (λ + λ). The Gerschgorin circle theorem

[18] shows that the eigenvalues are contained within the circles

|λ−B2n(0)| ≤ 1−B2n(0) ⇔
√
|Re(λ)−B2n(0)|2 + |Im(λ)|2 ≤ 1−B2n(0) , (8.78)

where we note that 2B2n(0)− 1 is strictly positive iff n ≤ 3. In fact n = 3 yields B6(0) = 235486!
26 = 5887

11520 ≈
0.511 which is already close to a half. The eigenvalues and eigenvectors of circulant Toeplitz matrices can
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be computed explicitly, in fact it is well-known that the eigenvalues of a circulant Toeplitz matrix coincide
with the Discrete Fourier Transform (DFT) of the first row of such a matrix:

λp =
P−1∑
p′=0

B2n(p′)e
−2πp′pi

P ,

Re(λp) = 1
2

P−1∑
p′=0

B2n(p′)e
−2πp′pi

P + 1
2

P−1∑
p′=0

B2n(p′)e
+2πp′pi

P

= 1
2B2n(0) + 1

2 (ZB2n)(e
−2πpi

P ) ,

(8.79)

with corresponding eigenvector (1, e−
2πip

P , e−
2πip(P−1)

P )T ∈ RP , p = 0, . . . , P−1. Here our list of Z-transforms
of B-splines (8.69) comes at hand. Within the list one finds that

(ZB2n)(z) =
n∑

p′=−n

c2n
p′ z

−p′ ,

with c2n
p′ ∈ R+ monotonically decreasing with c2n

0 = B2n(0) and therefore

B2n(0) +
P−1∑

p′=1

(−1)p′c2n
p′ = Re(λp=P/2) ≤ Re(λp) = B2n(0) +

P−1∑

p′=1

c2n
p′ cos

(
2πpp′

P

)
≤ Re(λ0) = 1 ,

so that the minimal real part of the eigenvalues equals

min
p=0,...,P−1

{<(λp)} = B2n(0) +
P−1∑

p′=1

(−1)p′c2n
p′ =

P−1∑

p′=0

(−1)p′c2n
p′ > 0 .

Now clearly this minimal real part depends on the order of the B-splines n. Exact computations for n ≤ 10
indicate that it is monotonically decreasing with n with values (rounded off in 3 digits) 0.625, 0.404, 0.298,
0.244, 0.212, 0.192, 0.178, 0.167, 0.157, 0.150 for respectively n = 1, . . . , 10. So for example in our algorithms
we set n = 3 and we obtain

Rλ
k,j ≥ chk λ (0.2977)2 ,

with chk À π2(M−2 + L−2) ≈ 0.0023, with M = L = 93 and λ = 100.06 ≈ 1.15 (these parameter settings
produced good results in our application in the experimental section, Section 10) which shows that the
real part of the smallest eigenvalue of the matrix we inverted stays sufficiently far from 0. Hence we have
established a theoretical underpinning of the stability of our algorithm (8.75) where we included the efficient
Kronecker product computation scheme explained in [22] in the BiCSTAB algorithm to invert the matrix.

8.2 Rotation covariance

Clearly our algorithm commutes with translations, i.e. translation of input image f : R2×R+ → R results in
a translated optical flow vector field v. With respect to rotations this commutation property is not a priori
satisfied as we will show next. Subsequently, we explain why this violation is hardly visible in practice and
we also show how to formally adapt the energy to obtain a fully rotation covariant algorithm.

Rotation of the input scalar field is given by f 7→ fR whereas rotation of the output optic flow vector
field is given by vk 7→ vk

R, k = 1, . . . , K, where

fR(x, t) = f(R−1x, t) and vR(x, t) = Rv(R−1x, t) .

Note that rotation covariance of the algorithm would follow by rotation invariance of the mappings (vk,hk,dk) 7→
Eλ,hk,dk

(vk), k ∈ Z, i.e.

Eλ,hk
R,(Rdk

q )
NB
q=1(vk

R) = Eλ,hk,(dk
q )

NB
q=1(vk) (8.80)
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for all R ∈ SO(2), k = 1, . . . , K. But the problem is that (8.80) is formally only a priori satisfied if R is a
rotation over nπ/2, with n ∈ Z as will show next.

Rotation of the input dynamic image f yields a rotated data vector dq
k 7→ Rdq

k and

E(Rdq
k)

NB
q=1

data (vR) = E(dq
k)

NB
q=1

data (v)

for all planar rotations R ∈ SO(2). So the data-term is rotation invariant, but the regularization term
satisfies

Ehk
R(vk

R) =
∫
Ω
|||DhR

vR(x)|||2 dx =
∫
Ω

∑2
i,j=1 |∂

hk,j
R

xi vk,j
R (x)|2 dx

=
∫
Ω

2∑
i,j=1

∣∣∣∣∣
2∑

i′,j′=1

(R−1)i
i′R

j
j′

(
∂yi′ vk,j′(y)− vk,j′(y)∂yi′ log |∑

l′
Rj

l′h
k,l′(y)|

)∣∣∣∣∣

2

dy

=
∫
Ω

2∑
i,j=1

∣∣∣∣∂yivk,j(y)− vk,j(y)∂yi log |∑
l′

Rj
l′h

k,l′(y)|
∣∣∣∣
2

dy ,

with y = R−1x. Now it is easily verified that (8.80) is satisfied if R is a rotation over nπ/2, where we recall
(7.45). For the other cases it depends on the spherical fluctuations between on the fraction of slope and hight
of the graph of the projected gauge field and the fraction of slope and hight of the graph of the projected
velocity field, where projections take place on each orientation n ∈ S2.

In principle one can obtain strict rotation covariance by using the following regularization term of the
energy instead

Ẽhk

reg(v
k) =

∫ 2π

0

‖Dhk(x)·n(θ)(vk(x) · n(θ))‖2 dθ , (8.81)

with n(θ) = (cos θ, sin θ)T . Note that Ehk

reg(v
k) is a course sampling of Ẽhk

reg(v
k) (sampled at {0, π

2 , π, 3π
2 }),

one may improve rotation invariance by including the orientation angles {π
4 , 3π

4 } as well. This is included in
the algorithm by means of the replacement:

(Dhk

)∗Dhk

vk(x) =
2∑

i,j=1

((
∂

∂xi

)hk,j
)∗ (

∂
∂xi

)hk,j

vk,j(x) ej =

→
2π∫
0

2∑
i=1

((Dhk
θ )∗Dhk

θ vk
θ )(x) n(θ) dθ =

2π∫
0

(−∆vk
θ (x) + ∆hk

θ (x)

hk
θ (x)

vk
θ (x)) n(θ) dθ

(8.82)

where we applied short notation vk
θ := vk · n(θ) and hk

θ := hk · n(θ).
At this point we recall Remark 7.3: For properly defined 2-tensors t on a circle one has∫ 2π

0
t(n(θ),n(θ)) dθ =

∑
k∈{0,1} t(n(k π

2 ),n(k π
2 )) = trace(t). In order to show that (8.81) has a minor cor-

recting effect so that (8.82) is not needed in our applications, we show two typical experiments. We apply
the proposed algorithm to a sequence presenting horizontal translation and to its rotate version (45 degrees);
then we rotate the output of the horizontal translating sequence of 45 degrees and finally we compare the
outcome of both sequences (cf. first two rows in Figure (12)). We applied a similar experiment but now to
a real sequence of the contracting heart, where we rotated over 20 degrees. Again we see that the second
column is visually close to the third column which coincides with our practical observation that the more
expensive fully rotation covariant option (8.81) with corresponding replacement (8.82) is not really necessary.

Finally, we note that none of our experiments in section 10 show a bias towards the horizontal and vertical
axis, despite the fact that we used Ehk

reg(v
k), Eq. (8.61), rather than Ẽhk

reg(v
k), Eq. (8.81).

9 The Euler-Lagrange equations of Tikhonov regularization in co-
variant derivatives using multi-scale Helmholtz decomposition

So far we have considered the multi-scale Helmholtz decomposition and the flow field reconstruction (or
rather interpolation) based on Tikhonov regularizations using covariant derivatives. These two techniques
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Figure 12: Rotation Covariance. We show two experiments displaying the output of the proposed algorithm
for a translating sequence, displaying two time-frames t = 3 and t = 6 (top two rows) and for a cardiac
image sequence, (bottom two rows). The first column shows the output v(x, y, t) = (v(f))(x, y, t) depicted
on top of the original input dynamic image f(x, y, t), the second column shows the rotated output of the
original input image i.e. R(v(f))(R−1x, t) is depicted on top of fR(x, t) = f(R−1x, t), where R is the
counterclockwise rotation over 45◦ resp. 20◦ degrees (using linear interpolation). The third column shows
the output (v(fR))(x, y, t) depicted on top of the input dynamic image fR(x, y, t).

are combined in our complete scheme depicted in Figure 1.
Although the scheme in Figure 1 produces good results in practice (as we will see in Section 10) it

is remarkable that the output in the dense motion field reconstruction in Figure 1 is a sum of two Euler
Lagrange optimizations separately performed on the rotation and divergence free part. To this end we
also decompose the boundary conditions (8.62) (“sparse velocities”) over the divergence and rotation free
part as follows: We apply a reconstruction by means of a Tikhonov regularization scheme with standard
derivatives and very small 0 < λ ¿ 1 to obtain a (full) regularized velocity field that (nearly) satisfies the
hard constraints (as 0 < λ ¿ 1). Then we apply a Helmholtz decomposition on this field (with small scale)
and from the Helmholtz decomposition we obtain the divergence free part and rotation free part vector at
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the position of interest xq. In the sequel we shall denote these vectors as follows

dk,j = dk,j,rf + dk,j,df (9.83)

where the label ‘df’ stands for divfree and the label ‘rf’ stands for rotfree. Note that (9.83) corresponds to
the right green box “Helmholtz Decomposition of Sparse velocities” in Figure 1. Furthermore, the red boxes
in Figure 1 correspond to minizing the energy (8.61) by means of Eq. (8.65) or more precisely by its dicrete
version, Eq. (8.75), obtained by expressing Eq. (8.65) in a B-spline basis. Finally, we recall that the middle
blue box is explained in Sections 3 and 4 yielding feature values dk,j;q and feature vectors φq

k, recall (8.62)
and (8.63).

9.1 Towards a single Euler Lagrange system involving covariant derivatives and
Helmholtz decomposition

In this subsection we will consider a single Euler-Lagrange system involving both multi-scale Helmholtz
decomposition and covariant derivatives. We will see direct analogy with our approach in Figure 1. However,
serious technical issues arise when trying to solve the single Euler-Lagrange system, due to the fact that
Helmholtz decomposition is expressed in standard derivatives, whereas the energies we would like to minimize
are expressed in covariant derivatives.

At a given fixed time frame t = k∆t we minimize the following positive functional one

Eλ,hk,dk

(vk) :=
∫
Ω

λ |||D(hk)divfree
vk,divfree(x)|||2 dx+

∫
Ω

λ |||D(hk)rotfreevk,rotfree(x)|||2 dx

+
NB∑
q=1

wk
q

2∑
j=1

|(φq
k, vk,j)L2(Ω) − dk,j

q |2
(9.84)

where again ||| · ||| denotes the Hilbert-Schmidt norm and where we again first consider the simple case
hk = (1, 1)T (where all covariant derivatives become standard derivatives) yielding a unique solution that
we set as our gauge field hk. So from now on we assume hk is given. Then setting the first order variation
of the energy given by Eq. (9.84) with respect to arbitrary smooth perturbation δ ∈ (D(Ω))2 yields

(
−λ(Dhk,rf

)∗Dhk,rf
vk,rf − λ(Dhk,df

)∗Dhk,df
vk,df + S∗kΛkSk(vk,rf + vk,df) + S∗k(dk,j,rf + dk,j,rf), δdf + δrf

)
= 0.

(9.85)

where the label ‘df’ stands for divergence free and the label ‘rf’ stands for rotation free, so vk,df is the
divergence free part of the optical flow vector field vk at the kth time frame whereas for example hk,rf stand
for the rotation free part of the gauge field hk at the kth time frame.

Now since the perturbation δ is arbitrary in a test-space dense in L2(Ω) the vector field in the left slot
vanishes for the optimal vector field vk. This also means that its divergence free part and rotation free part
vanishes7 but at this point we must be careful vk divergence free and hk divergence free does not imply that
the covariant derivative Dhk

vk is divergence free.
The next lemmas show how to proceed.

Lemma 9.2 Let a and b be two smooth vector fields on Ω ⊂ R2. Then we have (Da)∗Dab) = −∆b + Qab,

with Qab =
2∑

j=1

∆aj

aj bjej with e1 = (1, 0)T and e2 = (0, 1)T in a cartesian coordinate frame.

This result follows by direct computation.

Lemma 9.3 Let q be a smooth vector field with compact support within Ω. If (q, δdf) = 0 for all divergence
free perturbations δdf then rot q = 0. If (q, δrf) = 0 for all rotation free perturbations δrf then div q = 0. If
(q, δdf) = 0 for all divergence free perturbations δd then r̃ot q = 0.

7In case the vector field does not vanish at the boundary, one must subtract the harmonic infilling as in Eq. (5.23).
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Proof follows directly from the Helmholtz decomposition (5.23) (the harmonic infilling vanishes) and inte-
gration by parts yields

∫
Ω

r̃otA · ∇φdx = 0.
From these lemmas we conclude that the Euler-Lagrange equations of (9.84) are given by

1. rot
(
−λ(Dhk,df)∗Dhk,dfvk,df + SkΛkSkvk,df

)
= 0 ,

2. div
(
−λ(Dhk,df)∗Dhk,dfvk,df + SkΛkSkvk,df

)
= ∆ϕ ,

3. rot
(
−λ(Dhk,rf)∗Dhk,rfvk,rf + SkΛkSkvk,rf

)
= 0 ,

4. rot
(
−λ(Dhk,rf)∗Dhk,rfvk,rf + SkΛkSkvk,rf

)
= −∆A ,

5. rot
(
vk,rf

)
= 0 ,

6. div
(
vk,df

)
= 0 ,

7. rot
(
hk,rf

)
= 0 ,

8. div
(
hk,df

)
= 0 ,

(9.86)

where ϕ and A are smooth scalar fields such that

−λ(Dhk,df)∗Dhk,df
vk,df + SkΛkSkvk,df = ∇ϕ ,

−λ(Dhk,rf)∗Dhk,rf
vk,rf + SkΛkSkvk,rf = r̃otA.

Note that

∆ϕ = div Qhk,df
vk,df ,

−∆A = r̃otQhk,rf
vk,rf.

Now in our algorithm depicted in Figure 1 we have set ϕ = A = constant which means that we have dropped
5. and 6. in (9.86). To this end we note that the solutions of the remaining equations (under the assumption
ϕ = A = constant)

vk,df := (−λ(Dhk,df
)∗Dhk,df + SkΛkSk)−1S∗kΛkdk,df ,

vk,rf := (−λ(Dhk,rf
)∗Dhk,rf

+ SkΛkSk)−1S∗kΛkdk,rf ,

need not be divergence free and rotation free. However, in practice we have observed that they are respectively
nearly divergence free and rotation free, since the relative error δ = ‖V−Vrotfree/divfree‖

‖V ‖ << 10%.

10 Experiments

In order to assess accuracy of the proposed optic flow method depicted in Figure 1, we reconstruct/interpolate
motion fields of two different phantoms from which we know the ground truth. Phantom one is a sequence
consisting of 19 time-frames with size 99×99 pixels of purely contracting and expanding patterns (Figure 13
column 2), whereas phantom 2 consists of 13 frames of 93× 93 pixels in size and displays non rigid rotation
(13, column 4). Equations for phantom 1 have been provided in [5], whereas detailed description of phantom
2 has been carried out in [43]. Both phantoms vanish at the boundaries. Extraction of the motion field has
been carried out at several spatial scales s = {1, 1.22, 1.48, 1.81, 2.21, 2.69, 3.28, 4.} with time scale 1. In table
1 we display performance of the optic flow method, where the smoothness component has been described
in terms of standard derivatives, covariant derivatives, and covariant derivatives combined with Helmholtz
decomposition. In the assessment we employ the error measure based on the average angular error (AAE)
[4],expressed in degrees, the L2 norm and their correspondent standard deviation. Algorithm evaluation has
been performed on frame 5, 6 and 7 for phantom 1 and frame 3, 4 and 5 for phantom 2. We show that
the proposed algorithm provides the most accurate reconstruction reaching AAE = 0.97± 0.62 degrees and
L2 norm error of 3.3 × 10−2 ± 0.03 for phantom 1 and AAE = 6.68 ± 9.48 degrees and L2 norm error of
0.16± 0.24 for phantom 2.

Since our approach consists of separate reconstruction of the divergence and rotation free part we index
our parameters accordingly. For example λ1 controls the degree of smoothness in the dense flow field
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reconstruction of the rotation free part and η2 denotes the interpolation parameter between covariant and
standard derivatives of the dense flow field reconstruction of the divergence free part.

Increasing the value of λ > 0 increases the smoothness of the reconstructed motion field. We choose λ
such that minimizes the AAE and L2 norm error of our phantoms with ground truth, where we set a range
of values defined beforehand such as λ = {10−2, 10−1, 1, 10, 100, 103, 104, 105, 106} and we normalize them
with respect to the frame size. The reconstruction method based on conventional derivatives showed best
results at λ = 10−2 and λ = 1 for phantom 1 and phantom 2 respectively. The reconstruction method based
on covariant derivative performed best at λ = 102 and λ = 10 for phantom 1 and phantom 2 respectively.

In case of reconstruction based on covariant derivatives and Helmholtz decomposition, we assign a fixed
component λ2 = 102 and λ1 = 102 for phantom 1 and phantom 2 respectively and we choose the other λ
component from the already defined range. In figure 14 we displayed the AAE behavior for phantom 1 and
2 using the proposed technique imposing different values to λ1 for phantom 1 and to λ2 for phantom 2.
Here the horizontal axis is expressed in a logarithmic scale with base 10. Best performance are achieved at
λ1 = 10−2 (log10 λ1 = −5.99) and at λ2 = 103 (log10 λ2 = 0.06) for phantom 1 and phantom 2 respectively.

Once the choice of the λi parameter is established, we investigate parameter ηi, i = 1, 2 which takes into
account the influence of the gauge field in the velocity field reconstruction, recall Subsection 7.2.1.

In the experiments we impose a gauge field equal to the outcome of optic flow method based on conven-
tional derivatives (Figure 1). This is only one of the possible gauge field choices. Again we select parameter
η from a range of a values η = {0.5, 0.7, 0.9, 1., 1.1, 1.3} such that AAE is minimized. The reconstruction
method based on covariant derivatives achieved best results for η = 0.7 and η = 0.9 for phantom 1 and 2
respectively. In case of the reconstruction method based on covariant derivative and Helmholtz decomposi-
tion we assign a fixed η, η2 = 0.5 and η1 = 0.5 for phantom 1 and 2 respectively, and we choose the other
ηi from the defined range. In figure 15 we display the behavior of AAE for phantom 1 and 2 for different
values of η. The proposed reconstruction method provides best performance for η1 = 0.9 and η2 = 0.7 for
phantom 1 and 2 respectively.

Error Measurements Phantom 1 Error Measurements Phantom 2

Reconstruction Methodology AAE L2 Norm AAE L2 Norm
Conventional Derivatives 1.26◦ ± 1.11◦ 4.2× 10−2 ± 0.04 8.05◦ ± 9.09◦ 0.21± 0.26

Covariant Derivatives 1.20◦ ± 1.01◦ 3.6× 10−2 ± 0.03 7.30◦ ± 9.81◦ 0.19± 0.25
Helmholtz Dec. and Covariant Derivatives 0.97◦ ± 0.62◦ 3.3× 10−2 ± 0.03 6.68◦ ± 9.48◦ 0.16± 0.24

Table 2: Performance of the proposed optic flow method using different reconstruction modalities. In the
experiments the Average Angular Error (AAE), is expressed in degrees, L2 norm and their correspondent
standard deviation have been employed as error measurement. Best performances are obtained by Helmholtz
Decomposition and Covariant Derivative reconstruction method, AAE = 0.97◦±0.62◦ and L2 = 3.3×10−2±
0.03 for phantom 1, and AAE = 6.68◦ ± 9.48◦ and L2 = 0.16± 0.24 for phantom 2.

Divergence free and rotation free parts of the vector field may be employed to reveal and quantify
abnormal deformation in the tissue. In the experiments we compare behavior of motion fields extracted
from a healthy volunteer and from a patient, whose heart displays infarcted areas as indicated in Figure 16.
Acquisition of heart images has been performed during systolic phase; we assess 11 frames with resolution of
86× 86 pixels and pixel size of 1.2 mm. In figure 17 we respectively show the sampled motion field (column
1), rotation free (column 2) and divergence free (column 3) parts of frame 3,6 and 8 for the healthy heart
case (row 1,2,3) and the diseased case (row 4,5,6) respectively. By means of our Helmholtz decomposition
we observe that the healthy cardiac muscle starts to systole with intense rotation (row 1, column 3) and
little contraction (row 1, column 2). At halfway the systolic phase, the contribution of rotation free parts
becomes qualitative similar to the contribution of the divergence free part, that is, vectors inside the cardiac
walls present similar absolute length (row 2, column 2 and 3). At the end of the systolic phase, contraction
becomes more relevant (row 3, column 2), whereas rotation is almost absent (row 3, column 3). In the
investigated diseased case, the heart exerts modest rotation through the whole sequence (row 4,5,6 and
column 3), leaving contraction as the almost only contribution to the heart beat (row 4,5,6 and column 2).
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Figure 13: Phantoms and reconstructed vector fields. Column 1 and 2 display frame 5 of the expanding and
contracting phantom: ground truth (column 1) and reconstructed vector field using the proposed algorithm
(column 2). Column 3 and 4 display frame 3 of the rotating phantom: ground truth (column 3) and
reconstructed vector field using the proposed algorithm (column 4).
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Figure 14: Performance of velocity field reconstruction method based on covariant derivatives and Helmholtz
decomposition using different values for smoothing parameter λ (expressed in logarithmic scale). The ex-
periments have been carried out with fixed λ2 = 102 for phantom 1 and η1 = 102 for phantom 2, and
we vary parameter η1 for phantom 1 and η2 for phantom 2 according to a predefined range, such that
λ = {10−2, 10−1, 1, 10, 100, 103, 104, 105, 106}. Left plot displays AAE behavior for phantom 1. Best perfor-
mance AAE = 0.97◦± 0.62◦ for λ1 = 10−2 (log10 λ1 = −5.99). Right plot shows AAE behavior for phantom
2. Best results AAE = 6.68◦ ± 9.48◦ are achieved for λ2 = 103 (log10 λ2 = 0.06).
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Figure 15: AAE behavior for different values of parameter η for the reconstruction method based on both
covariant derivatives and Helmholtz decomposition. Parameter η takes into account influence of gauge
field, recall Subsection 7.2.1. In the experiments we keep fixed η2 = 0.5 for phantom 1 and η1 = 0.5 for
phantom 2, and we vary parameter η1 for phantom 1 and η2 for phantom 2 according to a predefined
range η = {0.5, 0.7, 0.9, 1., 1.1, 1.3}. Left plot shows AAE behavior for phantom 1. Best performance
AAE = 0.97◦ ± 0.62◦ is obtained for η1 = 0.9. Right plot shows AAE behavior for phantom 2. Best results
AAE = 6.68◦ ± 9.48◦ are achieved for η2 = 0.7.

11 Discussion and Conclusion

In this paper we introduce an new approach to estimate cardiac motion by means of gauge fields and
Helmholtz decomposition, and we provide a tool to explore the heart behavior.

The proposed optic flow technique contains regularization components described in terms of covariant
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Figure 16: Diseased Heart. Arrows show areas where infarction occurred

derivatives, ∂
(hj)
xi vj = ∂vj

∂xi −
∂hj

∂xi

hj vj , where v = (v1, v2)T and h = (h1, h2)T are respectively the unknown
optical flow vector field and chosen gauge field. Gauge fields influence the regularization of the flow field
reconstruction (see Section 6 and 8) and in the energy minimization process they typically put an a priori
balance between magnitude and spatial variations of velocities. In this new approach the smoothness term
does not penalize for changes from an imposed global assumption such as isotropic or anisotropic smoothness,
like in many methods in the literature, but rather penalizes for deviations from a predefined motion model:
in our case the gauge field.

We have shown that the covariant Laplacian is coercive and as result the Euler lagrange system of the
minimization problem is well-posed. By expansion in B-splines we re-express the Euler Lagrange system in
a discrete setting and we derive the stable solutions of this system numerically. Furthermore, we include a
fast multi-scale Helmholtz decomposition with the aim to reconstruct the divergence free and rotation free
parts of the vector field separately.

We have tested the method with two different phantoms and the extracted motion fields have been
compared with the outcomes of similar techniques, for which the smoothness component was expressed in
terms of conventional derivatives and covariant derivatives only. The proposed approach provided the best
performance and shows the advantage of both using covariant derivatives and using Helmholtz decomposi-
tion. Besides improving the quality of reconstruction, Helmholtz decomposition is used as a tool to study
cardiac behavior, since vector field decomposition allows to analyze cardiac contraction and cardiac rotation
independently.

Finally, we have applied our method on real tagged MR images displaying the left ventricle of a healthy
volunteer and a patient. Qualitative results illustrate the reliability of the estimated motion field.

Future work and further improvements

In the algorithm we use gauge fields obtained from outcomes of optic flow equations based on standard
derivatives. This is just one of the possible choices. Gauge fields could also be deformed according to
criteria that specifically reflect the heart behavior. Finally, the assessment has been carried out on 2 real
data-sets. It would be interesting to apply the proposed technique on a larger population of images acquired
from different volunteers and patients, with the aim to extract parameters that characterize cardiac healthy
behavior from presence of diseases.

From the theoretical point of view we would like to investigate if it is possible to choose the Christoffel
symbols (7.41) differently such that the Hilbert-Schmidt norm |||Dhv||| of the covariant derivatives is invari-
ant under rotation of both the unknown flow field v and the gauge field h. Furthermore, we would like to
derive an algorithm that solves the single Euler-Lagrange system explained in Subsection 9.1.
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A Derivation Green’s function of the 1D covariant Laplacian and
related (in)equalities

In this section we derive the Green’s function and prove equalities (7.56), (7.57), (7.58) and (7.59) and
investigate how sharp the lower bound is if applied to Example 1 and Example 2.

Let h ∈ C2([0, 1]), h > 0 and Consider the following PDE system on [0, 1]

(Dh)∗Dhf = δy

and f ∈ H1
0([0, 1]), i.e. f ∈ H1

0([0, 1]) and f(0) = f(1) = 0.

This system has a unique solution, this follows by the the Riesz Theorem (or in particular Lax-Milgram
Theorem). Recall that point evaluation ψ 7→ δy(ψ) = ψ(y) is a continuous linear functional on H1

0([0, 1])
and the left hand side is a bounded, coercive sesquilinear form on H1

0([0, 1]) due to the compact embedding
of H1

0([0, 1]) into L2([0, 1]).
Now we set φ = Dhf ∈ L2([0, 1]) then (Dh)∗φ = 0 implies that −φ′ − h′

h φ = 0. this is equivalent to

φh′ + φ′ h = 0 ⇔ h(x)φ(x) = c1

for every x ∈ [0, 1] and some constant c1 > 0. The substitution φ(x) = f ′(x)− h′(x)
h(x) f(x) yields

f ′(x)h(x)− h′(x)f(x) = c1 .

This first order ODE has as homogeneous solution f = c2h and by variation of constants formula we find
the standard solutions

f(x) = c2h(x) + c1 h(x)Q(x), with Qh(x) :=
∫ x

0

h(v)−2dv .

Now within this class we find solutions f0 and f1 with f0(0) = 0, f0(1) = 1, f1(0) = 1 and f1(1) = 0 such
that

f0(x) = h(x)Qh(x) and f1(x) = h(x)(Qh(1)−Qh(x)) ,

The (constant) Wronskian of these solutions equals W = f ′0(0)f1(0)− f0(0)f ′1(0) = 1
Qh(1)h(1)h(0) . Now the

kernel operator Kh given by (7.56) or equivalently

(Khf)(x) =
1
W

{
f0(x)f1(y) x ≤ y,
f0(y)f1(x) x > y,

=
1
W


f1(x)

x∫

0

f0(y)f(y) dy + f0(x)

1∫

x

f0(y)f(y) dy




is the right inverse of the operator (Dh)∗Dh, where we note that Khf ∈ H2
0([0, 1]) and

(Dh)∗DhKhf = f .

This equality can be straightforwardly verified where we note

Kf ′′(x) =
1
W

(
f ′′1 (x)

∫ x

0

f0(y)f(y)dy − f ′′0 (x)
∫ 1

x

f1(y)f(y)dy −Wf(x)
)

,

so that indeed −(Kf)′′ + h′′
h Khf = f .

Regarding (7.59) we note that kh(x, y) = kh(y, x) and

‖Kh‖2 ≤ |||Kh|||2 = trace{K∗
hKh} = ‖kh‖2L2([0,1]×[0,1])

≤ 2
(Qh(1))2

1∫
0

y∫
0

h2(x)h2(y)Q2
h(x)(Qh(1)−Qh(y))2dxdy

= 2
(Qh(1))2

∫ 1

0
h2(y)(Qh(1)−Qh(y))2

(∫ y

0
h2(x)Q2(x)dx

)
dy

≤ 2(Qh(1))2‖h‖4L2([0,1]) = 2
(

1∫
0

h−2(y)dy

)2 (
1∫
0

h2(y)dy

)2

,
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where we used that 0 ≤ Q(x) ≤ Q(1).
Finally, we note the following result (which can also be observed in Figure 11).

Lemma A.4 if the gauge function h > 0 is convex (respectively concave) then the corresponding Green’s
function k(·, y) = ((Dh)∗)Dh)−1δy of the covariant Laplacian is convex (respectively concave) as well.

Proof This follows from the fact that both f0 and f1 and their Wronskian are positive (due to 0 ≤ Q(x) ≤
Q(1)), so for example suppose x ≤ y then ∂2

∂x2 kh(x, y) = W−1f ′′0 (x)f1(y) = +h′′(x)
h(x) (W−1f0(x)f1(x)) ¤
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optic flow field rot-free part div-free part

Healthy volunteer

Patient

Figure 17: Cardiac motion field behavior for a healthy volunteer and a patient. We assess frame 3, 6 and 8
(row 1,2 and 3 healthy volunteer, row 4,5 and 6 patient) of a sequence of 11 frames displaying the cardiac
muscle in phase of systole. Column 1 shows the extracted motion fields, column 2 shows the rotation free
part, whereas column 3 shows the divergent free part.
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