

Metrics for analyzing the quality of model transformations

Citation for published version (APA):
Amstel, van, M. F., Lange, C. F. J., & Brand, van den, M. G. J. (2008). Metrics for analyzing the quality of model
transformations. In G. Falcone, Y. G. Guéhéneuc, C. F. J. Lange, Z. Porkoláb, & H. A. Sahraoui (Eds.),
Proceedings 12th ECOOP Workshop on Quantitative Approaches on Object Oriented Software Engineering
(QAOOSE08, Paphos, Cyprus, July 8, 2008 (co-located with ECOOP 2008)) (pp. 41-51)

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/4f5a23b7-2a5c-4620-8ff7-1cb464afb2a4

Metrics for Analyzing the
Quality of Model Transformations

M.F. van Amstel1, C.F.J. Lange2, M.G.J. van den Brand1

1 Department of Mathematics and Computer Science
Eindhoven University of Technology

Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{M.F.v.Amstel|M.G.J.v.d.Brand}@tue.nl
2 Federal Office for Information Technology
Barbarastraße 1, 50735 Cologne, Germany

mail@christian-lange.com

Abstract. Model transformations become increasingly important with
the emergence of model driven engineering of, amongst others, object-
oriented software systems. It is therefore necessary to define and evaluate
the quality of model transformations. The goal of our research is to make
the quality of model transformations measurable. This position paper
presents the first results of this ongoing research. We present the quality
attributes we have identified thus far and a set of metrics to assess these
quality attributes.

1 Introduction

Model driven engineering (MDE) is a software engineering discipline that fo-
cuses on models for the development of software. MDE combines domain-specific
modeling languages for modeling software systems and model transformations
for synthesizing them [1]. Model transformations thus become more and more
important. An example of a model transformation is adding getters and setters
to a UML class diagram. Similar to other software engineering artifacts, model
transformations have to be used by several developers, have to be changed ac-
cording to changing requirements and should preferably be reused. Because of
the prominent role of model transformations in today’s and future software en-
gineering, there is the need to define and assess their quality. Quality attributes
such as modifiability, understandability and reusability need to be understood
and defined in the context of MDE, i.e., for model transformations.

The goal of our research is to make the quality of model transformations mea-
surable. We therefore start by defining the meaning of several quality attributes
in the context of model transformations. We plan to do this by creating a quality
model specific for model transformations (similar to the general software quality
model described by Boehm et al. [2]). This model is a hierarchical decomposition
of a number of quality attributes. We propose a set of metrics for assessing these
quality attributes. Metrics have been studied extensively to assess the quality of
(object-oriented) software [3,4,5] and software designs [6]. Some of the metrics

41

defined in earlier studies can be adapted such that they can be used to measure
certain aspects of model transformations. We will also define new metrics that
are specific for model transformations.

This paper presents the first results of our research on the quality of model
transformations. In this paper we focus on model transformations created using
the ASF+SDF [7,8] term rewriting system, but we expect that our techniques
can be applied to model transformations created using different transformation
engines as well. An example of a model transformation created using ASF+SDF
can be found in [9]. In this paper we present the quality attributes we have
identified thus far and a set of metrics to assess these quality attributes.

The remainder of this paper is structured as follows. Section 2 shortly ex-
plains the term rewriting system ASF+SDF. In Section 3 we describe the quality
attributes we identified as applicable to model transformations. The metrics we
propose to assess these quality attributes are described in Section 4. In Section 5
the metrics are related to the quality attributes. Section 6 contains the conclu-
sions of our initial investigation and gives some directions for further research.

2 A Short Introduction to ASF+SDF

In this paper we consider quality attributes of model transformations defined
using the term rewriting system ASF+SDF. One of the main applications of
ASF+SDF is transformations between languages. These transformations are per-
formed between languages specified in the syntax definition formalism SDF using
conditional equations specified in the algebraic specification formalism ASF. The
two main advantages of ASF+SDF are its modularity and the syntax-safety it
guarantees. Syntax-safety in the context of model transformations means that
every syntactically correct source model is transformed into a syntactically cor-
rect target model. It is impossible to transform syntactically incorrect source
models using ASF+SDF.

A model transformation in ASF+SDF conceptually consists of multiple trans-
formation functions. Transformation functions transform language elements from
the source language into language elements of the target language. A transforma-
tion function is defined by signatures and equations. The signatures of a trans-
formation function consist of the name of the transformation function, followed
by a list of arguments and a return value. Signatures are defined in SDF. Apart
from function signatures, SDF is also used to define variables. An example of a
function signature and variable definition in SDF is depicted in Figure 1. Every
signature can have equations which form the implementation of a transformation
function. These equations have to conform to their signature. An equation can
have zero or more conditions. These conditions can be used, amongst others, to
assign values to variables. Equations are defined in ASF. An example of a func-
tion implementation with one condition (line 3) in ASF is depicted in Figure 2.

42

1 context -free syntax
2 transform(Attribute) -> Return_value
3 variables
4 "$Attribute" -> Attribute
5 "$Return_value" -> List[[Attribute]]

Fig. 1. Function signature and variable definition in SDF

1 equations
2 [transform -1]
3 $Return_value := [$Attribute]
4 ====>
5 transform($Attribute) = $Return_value

Fig. 2. Function implementation in ASF (equations)

3 Quality Attributes

This section contains a description of the quality attributes that we have iden-
tified as relevant for model transformations thus far. Most of these quality at-
tributes can be applied to software artifacts in general. Therefore we mention
their relevance for model transformations in particular.

We plan to create a quality model specific for model transformations similar
to Boehm’s general software quality model described in [2].

Understandability The amount of effort required to understand a model transfor-
mation. Understandability is related to modifiability and reusability. The easier
it is to understand a model transformation, the easier it is to modify or reuse.
Since a model transformation is defined on a source and target (meta)model,
their syntax and semantics should also be well understable to understand a
model transformation.

Modifiability The extent to which a model transformation can be adapted to
provide different or additional functionality. The main reason for modifying a
model transformation is changing requirements. Another reason is that the (do-
main specific) language in which the source and/or target model are described
may be subject to changes. Modifiability captures the amount of effort needed
to modify a model transformation such as to deal with changes in either the
requirements, or the source or target metamodel.

Reusability The extent to which (a part of) a model transformation can be reused
by other model transformations. Reusability refers to as-is reuse. Therefore it is
different from modifiability, which refers to modifying a model transformation.
Reusability is especially relevant for model transformations when a source model
has to be transformed into different target models, or vice versa.

43

Reuse Reuse is the counterpart of reusability. Reuse is the extent to which a
model transformation reuses parts of other model transformations. We consider
this as a quality attribute since it is good practice to reuse tested units.

MDE advocates reuse of models, i.e., a model is reused throughout the de-
velopment process and different artifacts are generated from a source model by
performing model transformations. Since model transformations in an MDE set-
ting have the same source model as starting point, it is to be expected that the
first few transformation steps in these model transformations are similar. So,
reuse could be a measure for how well a model transformation adheres to the
MDE paradigm.

Modularity The extent to which a model transformation is systematically struc-
tured. With systematically structured we mean that every module in a model
transformation should have its own purpose. Modularity is related to reusability.
If functionality is well spread over modules it is more likely that parts of it can
be reused for other model transformations. Therefore, the size of transformation
steps is also an important aspect of modularity.

Completeness The extent to which a model transformation is fully developed. A
model transformation is complete if it transforms a source model into a target
model according to its specifications, i.e., all functionality has been implemented.
An incomplete model transformation will result in an incomplete target model
or no target model at all.

Consistency The extent to which a model transformation contains no conflict-
ing information. Boehm [2] distinguishes two types of consistency: internal con-
sistency and external consistency. Internal consistency refers to the extent to
which a model transformation contains uniform notation. Internal consistency is
related to understandability. Internal inconsistency may lead to inconsistencies
in the target model. External consistency refers to the extent to which a model
transformation adheres to its specification.

Conciseness The extent to which a model transformation does not contain su-
perfluous information. Examples of superfluous information are code clones or
unnecessary function parameters.

4 Metrics

This section contains the metrics we have defined for assessing the quality at-
tributes for model transformations created using ASF+SDF. In [10] metrics are
defined for SDF. Those metrics are applicable to language definitions, but we
will focus on model transformations. ASF has the characteristics of a functional
language. Therefore we were able to adapt metrics for functional languages, like
the ones defined in [11], such that they can be applied to model transformations.

44

4.1 Size Metrics

The size of a model transformation can be measured in various ways. An obvious
size metric is the number of lines of code. However, different programming styles
may require different counting techniques which can lead to different measure-
ments [12]. Therefore we propose to measure the size of a model transformation
by counting the number of transformation rules. For ASF+SDF transformations
this results in the following metrics: number of functions, number of signatures,
and number of equations. Note that the number of signatures does not have to
be equal to the number of transformation functions since transformation func-
tions in ASF+SDF can be overloaded, i.e., a transformation function can have
multiple signatures each having different argument lists or return values.

A model transformation usually consists of a domain-specific part and a
domain-independent part, i.e., library functions. The proposed size metrics can
be adapted to measure the size of the domain-specific (or domain-independent)
part of a model transformation only.

4.2 Function Metrics

The size of a transformation function can be measured in different ways as well.
Section 2 states that a transformation function has one or more signatures and
that every signature has one or more equations. The size of a transformation
function can be expressed in terms of its number of signatures or equations. Also,
the size of the equations, defined as the number of conditions, can be included.
This leads to three different metrics for measuring the size of a transformation
function: number of signatures per function, number of equations per function,
and number of equations plus number of conditions per function.

A measurement for the complexity of a transformation function is the average
number of values it takes as arguments and the number of values it returns. These
metrics are known as val-in and val-out. Note that an ASF equation can return
only one value, but this can be a tuple consisting of multiple values.

Transformation functions generally depend on other transformation functions
to perform their task. The dependency of a transformation function f on other
transformation functions can be measured by counting the number of times
function f uses other functions. The dependency of transformation functions on
a transformation function f can be measured by counting the number of times
function f is used by other functions. These metrics are similar to fan-out and
fan-in as they are used to measure dependencies between components of software
architectures.

4.3 Module Metrics

One of the main benefits of ASF+SDF is that it allows the creation of model
transformations in a modular way. One aspect of the modularity of a transfor-
mation is the number of (library) modules that comprise the transformation.

45

A large number of modules is no guarantee for an understandable model
transformation. The modules should be balanced in terms of size and function-
ality. The balance of a module can be measured by comparing the number of
functions, signatures, and equations defined in that module with the average
over all modules. Actually, we measure unbalance in this way.

In a similar way as for functions the dependency of modules on other modules
can be measured. The dependency of modules on a module m can be measured
by counting the number of times module m is imported by other modules. The
dependency of module m on other modules can be measured by counting the
number of import declarations in module m. Also, the fan-in and fan-out of a
module can be measured. Fan-in is the number of times a function defined in
module m is used by another function that is not defined in module m. Fan-
out is the number of times a function defined in a module m uses a function
that is not defined in module m. These metrics can be combined to measure the
complexity of the information flow between modules as proposed in [13]:

Information flow complexity(M) = (fan-in(M) × fan-out(M))2.

In a similar way it is possible to combine the fan-in and fan-out metric of trans-
formation functions to measure the information flow complexity of a function.

In general it is good practice to let every module of a model transformation
have only one purpose, i.e., it should be concerned with one specific part of the
transformation. This leads to a better balance of functionality among modules,
and hence to a less complex model transformation. A module should thus con-
tain one main transformation function and helper functions. We consider the
function that is responsible for achieving the purpose of the module as the main
transformation function. Note that helper functions are of course also trans-
formation functions. If a module contains more than one main transformation
function, the module should be split into multiple parts, each containing one
main transformation function. Therefore, we propose to measure the number of
main functions per module. This can be done by creating a call-graph of the
module. A call-graph is a visual representation of the dependency of functions
on each other. A vertex in the call-graph of a module represents a function de-
fined in that module. A directed edge from vertex a to vertex b represents that
the function represented by vertex a uses the function represented by vertex b. A
main function f is a function which has only outgoing edges or incoming edges
originating from f itself in the call-graph. This metric can also help to iden-
tify obsolete functions. A main function that is not used by any function from
another module as well could be an unused function.

ASF+SDF enables the creation of parameterized modules. A parameterized
module is similar to a generic class in C++. Examples of parameterized modules
in ASF+SDF are the container modules list and table. These are generic lists
and tables that can be parameterized such that they can contain elements of
any type. Parameterized modules increase reusability. Therefore, we propose to
measure the number of parameterized modules in a model transformation.

46

4.4 Consistency Metrics

A transformation function is defined as a set of signatures and associated equa-
tions. It is possible that there is a signature for a transformation function, but
that there are no equations. This can happen for example when the model trans-
formation is still under development. To detect this type of inconsistency, we
propose to measure the number of signatures without equations. The other way
around, i.e., equations without signatures, will be detected by ASF+SDF itself
and therefore we will not introduce a metric for this inconsistency.

Usually variables are defined in a hiddens section of an SDF file. This means
that they can only be used within the same module. This implies that a variable
needs to be redefined if it is to be used in other modules. This may lead to
inconsistencies because the same variable name in one module can be related to
a different type in another module, or vice versa. Therefore, it makes sense to
measure the number of different variable names per type, the number of different
types per variable name, and the number of unused variables. Note that it is
possible in ASF+SDF to define an unlimited number of variables using the
Kleene star (*). For example the variable definition "var"[0-9]* means that
var can be postfixed with any number of digits, thus enabling the creation of an
unlimited number of var variables. We consider a variable unused in a module
if it is never used in the module it is defined in.

A transformation function can have multiple signatures. A possible reason for
this is that the transformation function is defined on a supertype and that each of
the signatures deals with a subtype. Since all these signatures and accompanying
equations have a similar purpose, it is likely that code clones are present. If the
number of code clones (per code clone) exceeds a certain threshold, it may be
advisable to create a function that covers the functionality of the code clones.
Therefore, we propose to measure the number of code clones.

A start-symbol defines a starting point of a transformation. During testing
and debugging it is likely that only parts of a transformation are used. To be
able to use only a part, a start-symbol has to be defined. If there is more than
one start-symbol present in a transformation, this could either mean that it is
a leftover of the testing and debugging phase or that the transformation can be
used in different ways. We propose to measure the number of start-symbols.

5 Relating Metrics to Quality Attributes

In this section we will discuss the relation between the metrics derived for
ASF+SDF model transformation and quality attributes. Table 1 summarizes
the discussion by indicating the relation between metrics and quality attributes.

Size (lines 1–6 in Table 1.) Size has a negative effect on the understandability
and modifiability of a model transformation. The larger a model transformation
is, the harder it is to understand or modify.

The size of the domain-specific part of a model transformation has a negative
effect on reusability and reuse. This part of a model transformation is specific for

47

a transformation and it is therefore unlikely that it can be reused for transforma-
tions or that parts from other transformations can be reused. It would however
be interesting to look for similarities among model transformations that have
the same source or target model. In this way reusability, and also reuse, can be
assessed more accurately.

The size of the domain-independent part has a positive effect on reuse. The
domain-independent part of a model transformation is defined as the part that
consists of library functions. Since these functions are in a library, they are
already being reused. It can also be the case that during the development of
a model transformation certain transformation functions are generic enough to
put them in a library. In this case the size of the domain-independent part of a
model transformation has a positive effect on reusability.

Function (lines 7–13 in Table 1.) The size of functions has a negative effect on
understandability and modifiability of a transformation. Moreover, the number
of signatures and equations per function has a negative effect on consistency. If
more similar signatures or equations have to be written, it is more likely that a
different style is used.

A high value for val-in or val-out generally means that a function is specific.
This has a negative effect on reusability. The number of input parameters and
return values also has a negative effect on understandability and modifiability.

A high fan-in value means that a function is often used by other functions.
This can be an indication that the function is generic, which benefits reusability.

A high fan-out value means that a function uses a lot of other functions,
among which may be library functions. Therefore fan-out benefits reuse.

Module (lines 14–21 in Table 1.) The number of modules is a metric for mea-
suring the modularity of model transformations, though not a very good one. It
needs to be combined with the metrics (un)balance and number of main func-
tions per module to get an impression of how well the functionality of a model
transformation is divided over modules.

Functions are put in a library to be reused. Therefore, the number of library
functions has a positive effect on reuse.

Similar to their variants for functions, fan-in and fan-out for modules also
have a positive effect on respectively reusability and reuse. The combination of
fan-in and fan-out, i.e., information complexity, is a measure of complexity. The
more complex a model transformation, the harder it is to understand. Therefore
this metric has a negative effect on understandability.

The purpose of a module with multiple main functions is unclear. Therefore
the number of main functions per module has a negative effect on understand-
ability. Modularity is also negatively influenced, since the module can be split
into modules with only one main function. Because the module is less under-
standable and could be more fine-grained, it is less reusable.

Parameterized functions are created to be used in multiple forms. Therefore
the number of parameterized functions has a positive effect on reusability. It

48

also has a positive effect on reuse, since container types like list and table are
parameterized library functions.

Metric Quality Attributes

U
nd

er
st

an
da

bi
lit

y
M

od
ifi

ab
ili

ty
R

eu
sa

bi
lit

y
R

eu
se

M
od

ul
ar

it
y

C
om

pl
et

en
es

s
C

on
si

st
en

cy
C

on
ci

se
ne

ss

Size metrics
1. Lines of code − −
2. Number of functions − −
3. Number of signatures − −
4. Number of equations − −
5. Size of domain-specific part − −
6. Size of domain-independent part + +
Function metrics
7. Number of signatures per function − − −
8. Number of equations per function − − −
9. Number of equations + conditions per function − −
10. Val-in − −
11. Val-out − −
12. Fan-in (function) +
13. Fan-out (function) +
Module metrics
14. Number of modules +
15. Number of library modules +
16. Unbalance (module size − avg. module size) −
17. Fan-in (module) +
18. Fan-out (module) +
Consistency metrics
19. Module information flow complexity −
20. Number of main functions per module − − −
21. Number of parameterized modules + +
22. Number of signatures without equations − − −
23. Number of variables per type − −
24. Number of types per variable − −
25. Number of unused variables − −
26. Number of code clones (per code clone) − − −
27. Number of start-symbols −

Table 1. Metrics related to quality attributes

49

Consistency (lines 22–27 in Table 1.) The inconsistency metrics obviously all
have a negative effect on consistency. Signatures without equations indicate that
parts of the transformation are not finished yet. Therefore this metric has a
negative effect on both completeness and reusability.

Variables with the same name but different types and variables with different
names but the same type are confusing. Therefore the metrics referring to these
inconsistencies have a negative effect on understandability.

Unused variables should be removed. Therefore the number of unused vari-
ables has a negative effect on completeness.

Code clones may be replaced by a function, such that the code has to be writ-
ten only once. This would make a model transformation more concise. Therefore
the number of code clones has a negative effect on conciseness. Also, if a part
of the model transformation containing code clones has to be modified this has
to be done in multiple places. Therefore this metric also has a negative effect on
modifiability and consistency.

6 Conclusions and Future Work

In this paper we presented the first results of our ongoing research on the qual-
ity of model transformations. The main contributions is a set of eight quality
attributes that can be used to assess the quality of model transformations. To
refine these quality attributes and make them tangible, we have presented a set
of metrics that can be used to assess these quality attributes. Our initial results
presented in this position paper are a basis for future work in the direction of
quality of model transformations.

To assess the quality of model transformations, first a clear definition of
quality is needed. In Section 3 we presented the eight quality attributes we
identified thus far. We plan to extend this set of quality attributes and relate
them in a quality model such as proposed in [2].

In this paper we focused on ASF+SDF model transformations. We expect
that our techniques can be generalized and applied to other model transforma-
tion formalisms, such as ATL [14] as well. The intended quality model will be the
same, but some metrics to assess the quality attributes need to be adapted to
the specifics of the transformation formalism. We proposed the metric number
of functions as a measure for the size of a transformation created in ASF+SDF.
For model transformations created with ATL the number of transformation rules
could be used to measure size. However, we expect that most metrics will be con-
ceptually the same for different transformation formalisms.

We want to verify our approach by means of empirical case studies. It is
infeasible and inaccurate to extract metrics from model transformations by hand.
Therefore we have to implement a tool that can automatically extract the values
of all of the metrics from a model transformation. Furthermore we would like to
visualize the values of metrics in such a way that outliers and striking values can
easily be observed. Something similar has been done for software designs [15].

50

Once we have identified quality problems in model transformations, we can
propose a methodology for improving their quality. This methodology will prob-
ably consist of a set of guidelines which, if adhered to, lead to high-quality model
transformations.

Acknowledgements This work has been carried out as part of the FALCON
project under the responsibility of the Embedded Systems Institute. This project
is partially supported by the Netherlands Ministry of Economic Affairs under
the Embedded Systems Institute (BSIK03021) program.

References

1. Schmidt, D.C.: Model-driven engineering. Computer 39(2) (2006) 25–31
2. Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., Macleod, G.J., Merrit, M.J.:

Characteristics of Software Quality. North-Holland (1978)
3. Rubey, R.J., Hartwick, R.D.: Quantitative measurement of program quality. In:

Proc. of the 1968 23rd ACM national conference, ACM (1968) 671–677
4. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous & Practical Approach.

2nd edn. PWS Publishing Co. (1996)
5. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice

Hall (1996)
6. Lange, C.F.J.: Assessing and Improving the Quality of Modeling: A Series of Em-

pirical Studies about the UML. PhD thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands (2007)

7. van den Brand, M.G.J., van Deursen, A., Heering, J., de Jong, H.A., de Jonge, M.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser,
E., Visser, J.: The ASF+SDF meta-environment: A component-based language
development environment. In Wilhelm, R., ed.: Proc. of the 10th International
Conference on Compiler Construction, Springer (2001) 365–370

8. van Deursen, A.: An overview of ASF+SDF. In van Deursen, A., Heering, J., Klint,
P., eds.: Language Prototyping: An Algebraic Specification Approach. Volume 5.
World Scientific Publishing (1996) 1–29

9. van Amstel, M.F., van den Brand, M.G.J., Protić, Z., Verhoeff, T.: Transforming
process algebra models into UML state machines: Bridging a semantic gap? To
appear in Proc. of the International Conference on Model Transformation (2008)

10. Alves, T., Visser, J.: SdfMetz: Extraction of metrics and graphs from syntax
definitions. In Sloane, A., Johnstone, A., eds.: Proceedings of the 7th Workshop
on Language Descriptions, Tools, and Applications. (2007) 97–104

11. Harrison, R.: Quantifying internal attributes of functional programs. Information
and Software Technology 35(10) (1993) 554–560

12. Jones, C.: Programmer Productivity. McGraw-Hill (1986)
13. Ince, D.C., Shepperd, M.J.: An empirical and theoretical analysis of an information

flow-based system design metric. In Ghezzi, C., McDermid, J.A., eds.: Proc. of the
2nd European Software Engineering Conference, Springer (1989) 86–99

14. Jouault, F., Kurtev, I.: Transforming models with ATL. In Bruel, J.M., ed.:
Satellite Events at the MoDELS 2005 Conference, Springer (2005) 128–138

15. Lange, C.F.J., Chaudron, M.R.V.: Supporting task-oriented modeling using inter-
active UML views. Journal of Visual Languages and Computing 18(4) (2007)

51

