

A programming model and language implementation for error-
tolerant networks of computation
Citation for published version (APA):
Stanley-Marbell, P. (2008). A programming model and language implementation for error-tolerant networks of
computation. (ES reports; Vol. 2008-03). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/da23ab8c-d1b4-41eb-96b8-dc63065c00d3

A Programming Model and Language
Implementation for Error-Tolerant
Networks of Computation

Phillip Stanley-Marbell

ES Reports
ISSN 1574-9517

ESR-2008-03
24 January 2008

Eindhoven University of Technology
Department of Electrical Engineering
Electronic Systems

People who are really serious about software
should make their own hardware. — Alan Kay

© 2008 Technische Universiteit Eindhoven, Electronic Systems.

All rights reserved.

http://www.es.ele.tue.nl/esreports

esreports@es.ele.tue.nl

Eindhoven University of Technology

Department of Electrical Engineering

Electronic Systems

PO Box 513

NL-5600 MB Eindhoven

The Netherlands

A Programming Model and Language Implementation for
ErrorTolerant Networks of Computation

Phillip Stanley-Marbell
Technische Universiteit Eindhoven
Den Dolech 2, 5612 WB Eindhoven

The Netherlands

ABSTRACT

Many embedded applications involve processing data from
noisy analog signals and displaying information for human
observation. In such systems, trade-offs often exist between
performance, energy usage, and the accuracy of data pro-
cessing. To achieve the combination of both low idle-power
consumption and high peak performance often required in
embedded systems, there is an increasing trend towards
the use of multiple processing elements instead of a single
high performance processor. Combined with the presence of
correctness-performance trade-offs, this trend provides inter-
esting new programming language challenges.

This paper introduces a programming model, its runtime
system, and a language implementation, targeted at systems
containing multiple resource-constrained processors which
may be able to trade off performance or power consump-
tion, for correctness and timeliness of computation. The pro-
gramming model makes it straightforward to achieve parti-
tioning of program implementations across the code storage
memories of multiple resource-constrained processors, and
introduces the idea of program-level constraints that permit
compile- and run-time trade-offs between performance and
correctness to be exercised. The ideas are presented in the
context of two different hardware platforms we developed
that benefit from the facilities of the programming model.

1. INTRODUCTION
With continually declining semiconductor device costs,

there is an ongoing shift towards the use of programmable el-
ements as building blocks of systems, in much the same way
as logic gates formed the basis of traditional digital systems.
This trend has particularly been on the rise in embedded sys-
tems, where requirements such as short design cycles, low
cost, performance adaptability, and reliability, have all made
the use of multiple microcontroller designs a natural choice.

Besides integrated systems containing multiple processing
elements, there have also been an increasing number of ap-
plications which employ multiple separate computing sys-
tems, each of which contains one or more processing ele-
ments. One such example is the area of sensor networks, in
which multiple sensor node platforms coordinate to achieve
some task, such as monitoring temperature and air quality
in a building and raising an alarm in the case of a detected
fire.

Quite often, embedded applications involve processing
data from noisy analog signal sources such as sensors, or dis-
playing the results of computations solely for human obser-
vation. In such systems, trade-offs often exist between per-

Compile-time assumptions about

failure rates on interconnect

μC

inte
rco

nne
ct

Interconnect

with performance vs.

correctness/timeliness

tradeoffs Resource-constrained computing devices

(e.g., μ-controllers with 1kB RAM, 32kB flash)

inte
rco

nne
ct

Partitioned application executing over runtime system.

Program-level tolerance constraints used to guide compile- and run-time

performance vs. correctness tradeoffs. Violations of static assumptions

trigger runtime actions.

app
lica

tion

Application

implemented with program-

level error-tolerance

constraints

Figure 1: Illustration of the motivating hardware platforms of in-

terest in this paper.

formance, energy usage and the accuracy of data process-
ing. For example, data representing pixel values destined
for a graphical display, might incur errors in individual bits
or complete bytes, with no adverse effect on system utility.
On the other hand, in applications such as anti-lock braking
systems, such data corruption is not tolerable. It therefore
desirable for the manner and occasions on which correctness
constraints may be relaxed, to be explicitly specifiable.

This paper introduces a programming model, its run-
time system, and a language implementation, targeted at
systems containing multiple resource-constrained processors
employed in the execution of a single application, and which
may be able to trade-off performance or power consumption
for correctness and timeliness of computation. An illustra-
tive organization of such platforms is depicted in Figure 1.
The programming model introduces the idea of program-
level value deviation constraints, inter-module communication
latency constraints, and inter-module communication failure tol-

1

erance constraints; we refer to these constraints collectively
as language-level error-tolerance constraints. The programming
model and language implementation are intended to facili-
tate three primary goals:

1. Partitioning without replication, of applications, over a
network of computing devices, in order to fit the parti-
tions in devices with very limited memory resources.

2. Language constructs for specifying value deviation, value
loss, and latency-tolerance constraints, and the change of
program control flow when these constraints are vio-
lated.

3. Program transformations that trade off performance for reli-
ability or correctness.

This paper addresses the first two of these goals. We present
these ideas in the context of two different hardware plat-
forms we developed, one being a low-power, performance-
scalable, 24-microcontroller module, and the other a mobile
computing platform that employs four embedded processors
in its implementation.

1.1 Contributions
The specific contributions of this paper include:

• The concepts of value deviation, value loss and latency tol-
erance constraints in a programming language.

• A programming model which provides a natural
means of expressing the language-level tolerance
constraints in the context of applications executing
over multiple resource-constrained programmable el-
ements.

• A runtime system to support the programming model.

• A concrete language design implementing the pro-
gramming model.

• A demonstration of concrete motivating hardware plat-
forms that benefit from the programming model, run-
time system, and programming language.

• Presentation of a minimal core language (a simply-
typed lambda calculus with deviation-tolerant types)
that captures the ideas of error-tolerances on typed pro-
gram variables.

In the following section, we present an overview of two
hardware platforms we developed as part of our effort to
study the benefits of error-tolerance trade-offs. These plat-
forms provide concrete examples of hardware in which it is
beneficial to employ a large number of programmable ele-
ments, and in which it is possible to trade-off performance
and power consumption for correctness. Section 3 introduces
the programming model. The implementation of a language
which implements the programming model, and which has
constructs for value deviation, latency and erasure-tolerance
constraints, is presented in Section 4, through an example. It
is followed in Section 5 with an overview of the runtime sys-
tem necessary to support the programming model and lan-
guage implementation. Preliminary measurements demon-
strating performance versus correctness tradeoffs in hard-
ware are presented in Section 6, alongside a discussion of
challenges such as type-checking in the presence of tolerance

Processing elementInterconnect; majority of interconnect

routed on bottom layer of circuit board

53 mm
(2.1 in.)

102 mm
(4.0 in.)

Figure 2: A 24-microcontroller system. Taking full advan-
tage of its capabilities and trade off opportunities requires
appropriate language and runtime system support.

constraints on variables. Section 7 presents an overview of
relevant related research, and the paper concludes in Sec-
tion 8 with a summary and pointers to future research di-
rections.

2. MOTIVATING HARDWARE
To motivate and provide a concrete basis for the discus-

sions in the remainder of the paper, we briefly describe two
hardware platforms we developed to highlight applications
of the programming model and language implementation
presented in this paper.

2.1 A scalable lowpower multiprocessor
One challenge faced by many embedded systems, is the

opposing constraints of ultra-low power dissipation when
idle, and the availability of adequate program storage, run-
time memory and computing resources when needed. These
requirements are in conflict, since embedded processors with
more sophisticated peripherals and larger program memo-
ries typically have higher idle power dissipation. This is due
in part to the larger number of transistors needed to imple-
ment more functionality, as well as the large transistor cost of
the static RAM (SRAM) typically employed in such on-chip
memories. One solution to this problem is the use of sys-
tems comprising several microcontrollers, each of which can
be powered down when unneeded. In this case, applications
must now be partitioned for execution on such networks of
processing elements. The data exchanged between the pro-
gram partitions is carried over an interconnect network, and
in some communication architectures, it is possible to trade-
off communication data rates for the rate of bit-errors in the
exchanged data.

Figure 2 illustrates such a platform, comprising 24 ultra-
low-power microcontrollers interconnected in a communica-
tion network. The platform has power consumption over
an order of magnitude smaller than a state-of-the-art low-
power ARM microcontroller [2] with equivalent peak perfor-
mance; it however requires appropriate programming sup-
port to take full advantage of its capabilities. The network
topology employed, a Kautz network [10] topology chosen
for its performance and redundancy properties, admits mul-
tiple techniques for forwarding data between non-adjacent
nodes (routing). The choice of routing method enables a
trade-off between communication performance and power

2

(a) Handheld platform em-
ploying four processors.

A
n
 a
d
d
itio
n
a
l p
ro
c
e
s
s
o
r is

lo
c
a
te
d
 o
n
 th
e
 re
a
r o
f th
e
 c
irc
u
it b
o
a
rd

Processors

(b) With display removed,
highlighting locations of
three of four processors.

Figure 3: A handheld platform employing multiple pro-
cessing elements.

consumption. The firmware in the microcontrollers imple-
ments the different routing schemes with low overhead, and
may also adapt the bit-rate over a single hop. While high
data rates may generally be perceived as desirable, electrical
limitations lead to bit errors at very high data rates, yielding
yet another trade-off between high speed and possible bit-
level errors in communicated data. We are using this plat-
form as a low-power but high-peak performance processor
module for embedded systems.

2.2 A mobile multimicrocontroller device
Another example of a hardware platform in which there

are opportunities to trade off performance for correctness in
the presence of multiple processing elements, is the mobile
computing device shown in Figure 3. Of relevance to this
paper, the platform employs four microcontrollers — one
for system control functions, one for display processing, one
implementing the wireless communication medium access
control (MAC) protocol, and a fourth for compute-intensive
tasks. In this platform, the processors are connected in a
“star” topology, centered on the system controller. Commu-
nications to and from the display controller can be config-
ured at different data rates, with the highest data rates in-
creasing the chance of bit-errors. Communications with the
radio interface also exhibit these trade-offs, and in addition,
the system controller may buffer data destined for the wire-
less communication interface. This increases latency, but en-
ables more effective use of the radio interface, which con-
stitutes a large fraction of the system’s power consumption
when active. The platform is being employed to investi-
gate the construction of client platforms for sensor networks
which can be used in applications that require very long bat-
tery life (e.g., weeks) off a single charge.

2.3 Motivating observations
The foregoing hardware platforms are concrete examples

of systems built out of a network of resource-constrained
processing elements, for the express reasons of performance
and energy-efficiency. The platforms also highlight the chal-
lenges that programming such hardware may pose, and pos-

sible trade-offs between performance and correctness that
may exist in real systems. In particular, the following ob-
servations can be made:

• There are concrete practical advantages to building sys-
tems employing multiple low-power processing de-
vices; appropriate programming models are however
necessary to take advantage of such hardware plat-
forms.

• Platforms may exhibit trade-offs between performance
or energy-efficiency, and correctness. Examples of
trade-offs are between communication performance
and errors in communicated data, and between latency
of communications and the energy cost of communica-
tions.

The remainder of this paper presents a programming model,
runtime system, and language implementation designed to
take advantage of opportunities such as those observed
above.

3. THE PROGRAMMING MODEL
In this section, a programming model to enable the

partitioning of applications across networks of resource-
constrained devices, as well as the expression of application
tolerance constraints to enable performance versus correct-
ness tradeoffs, is presented. The programming model is in-
dependent of an actual implementation, and may be imple-
mented as a library, or with primitives built into a program-
ming language. In Section 4, we present an example applica-
tion in a language implementing the programming model.

3.1 Model overview
The underlying idea in the programming model is the con-

cept of name generators. A name generator is a self-contained
collection of program statements, analogous to functions or
procedures in Algol family languages. Each name genera-
tor is represented with a name in a runtime name space which
is facilitated by the runtime system. Unlike functions and
procedures which interact by explicit transfer of control flow
in function and procedure calls, name generators interact by
communication on these names.

Name generators, as their eponyms imply, may also gener-
ate new entries or names in the runtime name space. Names
have associated basic or structured types, analogous to types
in contemporary programming languages, with the addition
that basic types therein may include type modifiers which
add tolerance constraints; the nature of these tolerance con-
straints are discussed in detail in Section 3.7. Names are rep-
resented within name generators as channels. Channels are
constructs on which blocking read (write) operations may
be performed. The operations complete when a matching
write (read) is performed on the same instance of the con-
struct elsewhere in the program; their use in a program-
ming model thus implies concurrency. Channels as a pro-
gramming model and language construct are inherited from
Hoare’s CSP [8].

Channels may be made visible as names in the runtime
name space and vice versa. A small set of operations can be
performed on names (and the channels that represent them),
and these operations form the basis for execution of name
generators (equivalent to “calling” of functions) and commu-
nication between name generators. Figure 4 illustrates the

3

app
lica

tion

libr
ary

+

communication

Each name generator is compiled

into a separate executable

inte
rco

nne
ct

run
tim
e na

me
spa

ce

Figure 4: Illustration of the organization of applications
into name generators and the mapping of these to a network
of processing elements.

Table 1: The basic operators on names
Operator Description
name2chan Bind name in runtime system to a channel

in program
chan2name Make a channel in a program visible in

runtime system
nameread Read a name via the channel bound to it
namewrite Write to name via the channel bound to it

organization of applications into name generators and the
mapping of these to a network of processing elements. In
what follows, the implementation of the runtime system will
be treated abstractly, until Section 5, where we detail the data
structures necessary for its realization.

We will refer to name generators that are not in execution
as latent name generators; each such executable module is vis-
ible in the runtime system as a name. The behavior of exe-
cuting applications consists of sequences of statement execu-
tions acting on machine state, and operations on names for
interacting with other collections of code such as libraries, or
performing system calls. The set of operations that may be
performed on names is listed in Table 1, and the following
sections elaborate on their semantics.

3.2 The operator chan2name

The operator chan2name takes a channel within a pro-
gram and makes it visible within the runtime name space.
The implementation of channels might be achieved as a data
structure within an existing programming language, or, as
we present in Section 4, as a primitive within the program-
ming language. The type associated with an entry in the run-
time name space reflects the structure of the corresponding
channel from which it was created. In the implementation
we present in Section 4, the type of the generated entry in the
runtime name space is identical to that of the language-level
channel.

3.3 The operator name2chan

The operator name2chan is the most fundamental opera-
tor in the programming model. It operates on a name, and
yields as its result a channel. Names in the runtime system
may correspond to channels in executing name generators,
made visible in the runtime system via chan2name, and in
that case name2chan achieves the connection of channels in
two executing name generators.

As described previously, names may however also rep-
resent latent name generators, i.e., executable collections of
program statements, analogous to functions or procedures.

Application

a : namegen ():() =
{
 ...
}

a

c : namegen ():() =
{
 ...
}

c

runtime name space

name generator

name (in runtime name

space as a result of

presence of code)

b : namegen ():() =
{
 ...

 chan2name ch "x";
 chan2name y "y";
 ...

}

b x y

name (dynamically

created by running

code)

Figure 5: A simple name generator example.

A name2chan operation on such a latent name generator
initiates its execution, and yields a channel that can be read
from or written to, to communicate with the initiated name
generator. The type associated with such a channel corre-
sponds to the type or signature associated with the name gen-
erator. As described in more detail in Section 5, each such
instantiation of a name generator is analogous to an activa-
tion frame of a function, and the runtime system maintains
the necessary data structures to enable multiple or recursive
instantiations of name generators.

3.4 The operators nameread and namewrite

The nameread operator performs a synchronous (block-
ing) read on an entry in the runtime name space, through a
channel associated with the name; it yields a value whose
type is that of the name being read. Similarly, the operator
namewrite performs a blocking write to a channel associ-
ated with a given name in the runtime name space.

3.5 A simple name generator example
Figure 5 illustrates an application composed of three name

generators, a, b and c. The syntax in the figure is not specific
to the programming model, but hints at the language imple-
mentation that will be presented in Section 4. Each name
generator loaded onto an execution platform is visible in the
runtime system via a name, and thus on the runtime system
on which the application of Figure 5 is loaded, the names
a, b and c are visible. Information maintained by the run-
time system (Section 5) enables a hardware substrate to sup-
port multiple logical collections of such name generators, i.e.,
multiple applications.

In Figure 5, name generator b exposes the channels ch and
y as the names x and y in the runtime name space, using the
chan2name operator. These new entries (or any other ones)
in the name space can be bound to channels in programs via
the name2chan operator. Channels in different name gener-
ators bound in this manner to the same entry in the runtime
name space are effectively connected together, and data writ-
ten to one channel can be read from the other.

When the name2chan operator is applied to names which
represent an implementation of a name generator (such as a,
b or c in the example), they cause the activation of a new
instance of the name generator, with its own stack and acti-
vation record. The channel obtained as the result of such a
name2chan operation is a communication path to that par-
ticular activation of the name generator. Within each name
generator, its identifier (e.g., a, b or c in Figure 5) is a valid
channel that behaves just as though the identifier were ex-

4

Table 2: Basic types that may be associated with names.
Type Name Description
bool 1-bit value
nybble 4-bit unsigned value
byte 8-bit unsigned value
string Vector of 16-bit Unicode values
int 32-bit signed, two’s complement format
real 64-bit double precision, IEEE-754 format
fixed 16-bit fixed point

Table 3: Structured types (type collections).
Type Collection Description
array Vector of items of a single type
adt Aggregate data type
Tuple Unnamed adt. An unnamed collection

of items of possibly-different type
set Unordered collection of data items
list Recursive list

plicitly bound to a name in the runtime name space via
name2chan. Thus, when read, it blocks until a matching
write is performed on a channel tied to the name generator’s
identifier, by the entity that caused the name generator to be-
gin executing. It is in this manner that "callers" and "callee’s"
are uniquely linked.

If this application were compiled for execution on one of
the platforms illustrated in Section 2, each name generator
might be loaded into the memory of a different process-
ing element. The runtime system, which is system software
present on all the processors in the platform, facilitates the
generation and delivery of necessary communications be-
tween processors.

3.6 Types
Names in the runtime system have types associated with

them. Like variables in a programming language, these types
can be basic types or structured types. The set of basic types
in the name generator model is listed in Table 2. The basic
types may have error-tolerance type modifiers associated with
them, and these are discussed separately in more detail in
Section 3.7. The base types may also be used to form ag-
gregate types through a set of type collections or structured
types, shown in Table 3.

These types have relevance in two parts of a system im-
plementing the name generator model — in the runtime sys-
tem and in the programming language. Within the runtime
system, types are represented as bit-vectors or strings. In
our current implementation, canonical representations of the
structure of aggregate types are obtained by a post-order
walk of the parse tree for an aggregate type as it would ap-
pear in a language. These strings are represented in the run-
time system as literal ASCII-encoded strings, and an alter-
nate implementation may employ a more compact binary en-
coding thereof.

3.7 Errortolerance constraints on name and
channel types

As highlighted in Section 2, many hardware platforms, as
well as the applications executing on them, may have the
ability to trade off performance or energy-efficiency for some
notion of correctness. In the name generator model, the pre-

cise nature of such correctness constraints are constraints on
value deviations on the values taken on by data items sent on
channels, latencies on channel or name operations, and losses
(erasures1) on channel operations. By associating such con-
straints with entries in the runtime name space, it is possible
to adapt the interaction between portions of a program, par-
titioned across a hardware substrate, to take into considera-
tion the trade-offs that the program explicitly permits. The
following provide a more precise definition of the nature of
these tolerance constraints.

3.7.1 Channel value deviation constraints

A value deviation constraint on a channel c, is a list of ex-
pressions of the form

epsilon(m1, A1), . . . ,epsilon(mn, An),

applied to arithmetic members of the channel type, which
specifies the constraint that the numeric deviation incurred in
values transmitted over the channel should exceed value m

no more than a fraction A of the times the value is commu-
nicated. In other words, the time average fraction of reads
from, or writes to the channel, yielding deviation greater
than m, should be less than A. An alternative definition of
this construct could have been in terms of what is known as
the ensemble-average, denoting, in the general use of the term,
the average across all occurrences of a given event. Such a
definition is more difficult (and not always meaningful) to
associate with a single value in a program — it is more rea-
sonable to think of what a single value or variable does over

time2.

3.7.2 Channel latency tolerance constraints

In addition to a value deviation constraint, channels may
have constraints on their tolerable latency. This exposes to
programs the fact that the interconnect underlying an imple-
mentation of the programming model and runtime system is
not an idealized system, and communications have an asso-
ciated delay. A latency tolerance constraint on a channel c, is
a list of expressions of the form

tau(m1, A1), . . . ,tau(mn, An),

which specifies the constraint that the latency in microseconds
incurred on a channel read or write operation on c, should
exceed value m no more than a fraction A of the times the
channel is accessed. Such channel latency tolerance con-
straints expose to the runtime system the fact that a given
operation may be delayed for a given amount of time, with-
out violating the semantics of the application.

3.7.3 Channel erasure tolerance constraints

It is possible that the underlying interconnect supporting
the exchange of data between name generators may fail to
deliver a datum exchanged between two name generators,
or might wish to not deliver such data. The reasons for this
might be, e.g., to conserve energy resources, or to satisfy the
timing constraint of another name generator. An erasure tol-
erance constraint on a channel c, is a list of expressions of the

1The term erasure is borrowed from communication theory,
where it refers to ostensibly missing data in a data stream.
2In ergodic systems, in which each state may be visited in-
finitely often, the time- and ensemble-averages are by defini-
tion the same.

5

form

alpha(m1, A1), . . . , alpha(mn, An),

which specify the constraint that the number of failed or dis-
carded transactions occurring on a channel communication on
c, should exceed value m failures per second, no more than
a fraction A of the time.

3.8 Consequences of the model
Since all interactions between portions of an application

are through the abstraction of names, the components mak-
ing up an application can easily be placed on different pro-
cessing elements, and the connection between application
portions is achieved by the runtime system. Naturally,
the component name generators of an application might be
mapped to the same processing element if it has sufficient
memory resources. While analogies might be drawn be-
tween this partitioning and parallelization of programs, it is
important to note that in this case, the goal might not be to
achieve greater performance (even though that might be a
side effect), but rather to fit an application on a collection of
resource-constrained processing elements. For example, in
the hardware platform presented in Section 2.1, each of the 24
processing elements has only 32 KB of flash code storage and
1 KB of RAM, and the implementation of applications with
larger code and memory footprints is facilitated by mapping
their component name generators to different processing el-
ements.

The tolerance of applications to three kinds of errors — de-
viation in values communicated between program modules,
latencies of communications and missing data items in com-
munications, are made visible through type information as-
sociated with entries in the runtime system supporting the
programming model. In the following section, we illustrate
a concrete language implementing the name generator pro-
gramming model, through an example.

4. M: A NAME GENERATOR LANGUAGE
To illustrate the ideas presented thus far, we present a

small example program (Figure 6) in a language, M, which
implements the name generator programming model. The
example realizes a simple image processing algorithm, edge
detection. This specific example was chosen because its vari-
ants are relevant across a variety of domains, from their use
in workstation-class applications such as desktop publish-
ing, to embedded applications such as object recognition.
Since the algorithm processes values obtained from the en-
vironment (e.g., images), we can also use it as a vehicle to
demonstrate the role of language-level error-tolerance con-
straints.

Syntactically, programs in M are collections of implemen-
tations of name generators. Such a collection may imple-
ment a particular interface, called a program type. A program
type is a unit of modularity that defines a set of types, con-
stants, and name generators, and the unit of compilation of
programs is a single program type and its implementation.
This single complete program input to the compiler is used
to generate one or more compiled outputs, corresponding to
the pieces of the partitioned application. Partitioning at the
level of name generators is straightforward, since they share
no state. Due to the structure of the language, it is possible to
further partition a single name generator further into smaller
pieces. The reason for this ease is as follows: any component

1 EdgeDetect : progtype
2 {
3 READ : const true;
4 WRITE : const false;
5 img_row : namegen (bool, int,
6 byte epsilon(2.0, 0.01)):(byte);
7 init : namegen ():(args: list of string);
8 }
9

10 init =
11 {
12 x, y : int;
13 image : array [64] of chan of
14 (bool, int, byte epsilon(2.0, 0.01));
15
16 # Instantiate name generators to hold dynamic
17 # data structures across devices on network
18 for (i := 0; i < 64; i++) {
19 image[i] = name2chan img_row "img_row" 4E-6;
20 out_image[i] = name2chan img_row "img_row" 4E-6;
21 }
22
23 # Obtain channel to a hardware image sensor
24 # device which implements a name generator in HW
25 sensor := name2chan S.imgsensor "mem@0xA0FF";
26
27 # Read in image from sensor
28 for (x = 0; x < 64; x++) {
29 for (y = 0; y < 64; y++) {
30 sensor <-= (x, y);
31 image[x] <-= (WRITE, y, <-sensor);
32 }
33 }
34
35 # Now, loop over image and perform convolution
36 for (x = 0; x < 64; x++) {
37 for (y = 0; y < 64; y++) {
38 matchseq {
39 y == 0 || y == 64 => sum = 0;
40 x == 0 || x == 64 => sum = 0;
41 }
42
43 # Core of loop elided for clarity.
44
45 # Write result pixels to output image
46 out_image[x] <-= (WRITE, y, 255 - sum);
47 }
48 }
49 }
50
51 img_row =
52 {
53 row := array [64] of byte;
54
55 for (;;) match {
56 <-img_row => {
57 (op, idx, val) := <-img_row;
58 match {
59 op == WRITE => row[idx] = val;
60 op == READ => img_row <-= row[idx];
61 }
62 }
63 }
64 }

Figure 6: Illustrative example of an application imple-
mented in the M language.

of a program can be made visible in the runtime name space
through constructs provided in the programming model; as a
result, arbitrary cuts can be made in the data-flow graph, pro-
jecting live variables and channels at a given point into the
runtime name space, and projecting entries from the runtime
name space back into programs using a complementary set
of constructs.

The example in Figure 6 begins with the program type def-
inition, EdgeDetect, which declares two name generators,
img_row and init. In a system composed of multiple hard-
ware devices, each name generator definition (the code rep-

6

Activation Record (AR) Table
for name generators

ID name generator AR

Name Table
for name generators

type PCname

Channel Table for channels

remote

address

remote name

gen. ID

remote

channel

index

xformrendezvous timer

name gen.

channel

index

channel

ID

name

gen. ID

Figure 7: Structures underlying the implementation of the runtime system.

resenting the name generator) may reside on a different de-
vice, as partitioned at compile time. When instantiated, they
execute concurrently.

The syntax of name generator declarations specify the
name generator’s read and write types. The read and write
types specify the type structure of the channels resulting
from their instantiation, when read from, and written to, re-
spectively. In the example, the img_row name generator’s
read type includes a value deviation tolerance constraint,
epsilon(2.0, 0.01). This specifies that the program can
tolerate deviations in values communicated on the read in-
terface, from their correct values, of magnitude up to 2.0,
occurring an average one out of every hundred communi-
cations on the channel.

By convention, the name generator init is automatically
executed by the runtime system of the device on which it
is installed. In the init name generator, after a handful of
variable declarations, a for loop (with the same syntax as
in the C programming language) is used to create several in-
stances of the img_row name generator, via the name2chan
construct. The name2chan operator takes a name (string)
and a type, and if there exists an entry in the runtime with
an identical name and type, yields a channel. If the name rep-
resents a name generator implementation, a new executing
instance of the name generator is created (i.e., with a private
stack), on the device on which the code exists, and the chan-
nel will be a link to that instance. In the example, the last
term in the name2chan expression is a timeout in seconds.

The implementation of the img_row name generator de-
fines an array corresponding to a row of an image, and its
remainder facilitates reading from and writing to this array.
As a result of the loop on line 18 of init, there will be 64
rows of 64 pixels, each allocated on a (possibly different) de-
vice in the system.

5. THE RUNTIME SYSTEM
A collection of data structures supports the underlying op-

erations being performed by executing programs. At the
heart of the runtime system implementation is a set of three
tables maintained on each processing element in a hardware
platform: the name table, activation record table and the channel
table, illustrated in Figure 7.

5.1 The name table
The name table contains an entry for each name genera-

tor installed on a device, along with an entry representing
the type structure of the name generator. The name entries
are strings representing the name generator, qualified by the
program type (progtype type in the M language implemen-
tation) of which they are part. At runtime, new entries are
added to the name table whenever an executing name gener-
ator performs a chan2name operation, as well as whenever
new code is installed on a device. By convention, a name
generator with the identifier init immediately begins exe-
cuting once loaded. Loading an application implementation
with the same progtype as an extant one, into the runtime

system (e.g., on a different device) is equivalent to overwrit-
ing code memory of a running application in a traditional
program.

When a name generator performs a name2chan operation,
the local name table is first consulted. If no matching name
and type is found locally, the name tables of all devices in

the network are consulted3. If such an operation is success-
ful, i.e., the name and type match an entry in the local name
table, a new instance of the name generator (based on the
program counter (PC) entry) begins executing, with its own
private stack. Such an instance is termed a name generator
activation. The state for currently instantiated name genera-
tors is maintained in the activation record table.

5.2 The activation record table
The activation record table maintains the state correspond-

ing to each name generator instantiation (as created by a
name2chan, or an init name generator). The ID field
uniquely identifies an instantiated name generator, and is
used to identify name generators for all other operations. For
example, all channels are associated with a particular name
generator instance, and the instance’s identifier is used to
track this correspondence. An instantiation of a name gen-
erator may create new entries in the runtime name space, as-
sociated with variables or channels in the name generator;
these are only visible to the name generator that caused their
instantiation (and to themselves). Such dynamically created
entries are tracked in the channel table.

5.3 The channel table
The channel table contains entries for all channels associ-

ated with names in the runtime name space. A name gener-
ator that performs a send or receive operation on a channel
sleeps on a rendezvous structure in the channel table. When
the channel communication operation completes (e.g., mes-
sage successfully transmitted over network and an acknowl-
edgment received), the sleeping name generator is woken.
The xform field contains a matrix (logically a part of the
channel’s type) representing the transformations that must
be used to encode and decode the data exchanged between
devices, and is derived from the channel error-tolerance con-
straints. The messages on the network which are generated
as a result of operations on channels are described in the next
section.

5.4 Name communication protocol
A small alphabet of messages may be exchanged between

devices as a result of language-level constructs related to
channels. The list of messages in this alphabet is provided
in Table 4. The following details the effect of the receipt of
messages in Table 4, on the runtime system data structures,
and on execution at the recipient node.

3Logically, the query is a broadcast, but an implementa-
tion may perform any number of optimizations to make this
lookup more efficient.

7

Table 4: Name communication protocol.
Message Description Associated Parameters

M Language
Construct

Tname2chan Bind name to channel; name2chan name, type
if name is a name gen.
create instance

Rname2chan Response: channel index
or nil

Tnameread Channel receive Channel receive channel ID
expression (<-c)

Rnameread Response: type
structured data

Tnamewrite Channel send Channel send data,
expression channel ID
(c <-=)

Rnamewrite Acknowledgment

5.4.1 Tname2chan

Execution of a name2chan expression in a name gener-
ator will initiate the generation of a Tname2chan message
on the network. A device which contains a matching en-
try (on both name and type) in its name table responds with
a Rname2chan message. It is possible that no such device
might exist, in which case the language-level expression will
evaluate to a null value after the language-level-specified
timeout (e.g., as in lines 19 and 20 in Figure 6).

If the supplied name, in the name space, represents a latent
name generator, a new activation of the remote name gen-
erator is created, and corresponding entries are created for
the send and receive interface channel tuple in the remote
device’s channel table. The index of the allocated entry in
the remote name table is returned to the initiating device in
a Rname2chan message. A new entry is created in the lo-
cal channel table, and this entry is used to store the received
identifier (in its remote name generator ID field). The
entry also stores the address of the device on which the re-
mote name generator exists, in the remote address field.
Subsequent operations on the channel associated with this
name2chan operation will occur with the specific instantia-
tion of the remote name generator.

5.4.2 Tnamewrite, Tnameread

A channel send operation causes a Tnamewrite message
to be generated on the network. The message target is deter-
mined by a lookup in the local channel table for (1) the des-
tination network address (in the remote address field),
(2) the destination name generator identifier, and (3) the
destination name generator channel index (in the remote
channel index field). The latter identifies a channel in a
specific instance of the remote name generator that the val-
ues should be delivered to. The timer field of an entry in
the local channel table is updated with a timestamp, which is
used to determine timeouts. An equivalent set of operations
occurs for Tnameread and Rnameread messages.

6. DISCUSSION
The trade-offs that may be exercised as a result of error-

tolerance constraints in name generator programs, will de-
pend on the nature of the applications (e.g., how many con-
straints they impose, how loose those constraints are, and
so on). In this section, we evaluate the performance of ba-
sic channel communication primitives in the programming
model on the hardware platforms presented in Section 2, to

1000 104 105 106 107

0.2

0.4

0.6

0.8

1.0

Measured communication bit rate Hbits�secondL

N
o
rm

a
liz

e
d

M
e
a
s
u
re

d

S
ig

n
a
l
to

N
o
is

e
R

a
ti
o

(a) Normalized SNR for data rates from 490 b/s to
16 Mb/s

Jitter

Noise

Superposed bit streams yield "eye-diagram"

"1's"

"0's"

(b) Example eye-diagram hardware measure-
ment for communication at 16 Mb/s.

Figure 8: Measured normalized signal to noise ratio, (SNR)
(a predictor of bit-error rate) as a function of communica-
tion bit rate, for a representative link from the 24-processor
hardware platform of Figure 2.1 ((a), top). An example
of the eye-diagram hardware measurement from which the
SNR values were computed is shown in (b).

provide insight to the possible energy and performance ben-
efits of the tolerance constraints in the name generator pro-
gramming model.

Figure 8 illustrates the tradeoffs that exist in the platform
from Section 2.1, between the communication speed and the
signal to noise ratio, an indicator of the likelihood of bit er-
rors. The data in the figure was obtained by transmitting
a data stream over a representative link in the interconnect
of the 24-processor platform, and characterizing the separa-
tion between high ("1") and low ("0") logic values using an
eye-diagram. An eye-diagram measurement (Figure 8(b))
captures the superposition of all logic levels in a transmit-
ted data stream, and is often used to characterize the noise-
immunity of a communication channel. From Figure 8(a), we
see that there is a clear trade-off between data rate and like-
lihood of bit errors.

Despite our promising experiences with the name genera-
tor model and its implementations, there are open questions
that remain to be answered. One such question is the flex-
ibility afforded by the current method for specifying error-

8

T-INT

Γ ⊢ n, ε : int, ε

T-TRUE

Γ ⊢ true, ε : bool, ε

T-FALSE

Γ ⊢ false, ε : bool, ε

T-CONSTRAINTPRESERVATIONUNDERERROR

v : T1, ε1 Kε,ft
: v → v

p

Γ ⊢
〈t〉∼ft v

p : T, ε

T-ADD
Γ ⊢ v : T, ε1 Γ ⊢ w : T, ε2

Γ ⊢ v + w : T, q(ε1, ε2)

T-IF

Γ ⊢
〈t〉∼ft cond : bool, ε

Γ ⊢
〈t〉∼ft a : T, ε1 Γ ⊢

〈t〉∼ft b : T, ε2

Γ ⊢
〈t〉∼ft if cond then a else b : T, q(ε1, ε2)

T-ABS
Γ, x : T1, ε1 ⊢ y : T2, ε2

Γ ⊢ λx : T1, ε1.y : (T1, ε1 → T2, ε2)

T-APP
Γ ⊢ g : (T1, ε1 → T2, ε2) Γ ⊢ x : T1, ε1

Γ ⊢ g x : T2, ε2

T-LET
v : T, ε1 w : T, ε2

let v = w in e : T, r(ε1, ε2)

Figure 9: Type inference rules for a simply-typed lambda
calculus with deviation-tolerances in type annotation.

tolerance constraints. The most flexible form in which con-
straints specifying tolerable value deviation could be pro-
vided, would be as a tail distribution on value deviation. For
example, it might be desirable that the probability of value
deviation in a variable being greater than x should vary as
1

x
. The notational complexity of representing such value

deviation-tolerance constraints would be significant — since
it is logical for the deviation-tolerance constraint to be placed
in the type annotation, the type would then need to contain
an expression in a variable (x in the above example). This
approach is therefore avoided. Experience with the language
and deviation-tolerance constructs may necessitate revisiting
this restriction.

As an illustration of the idea of error-tolerance constraints
in a program’s type annotation, consider a small core lan-
guage, a typed lambda calculus, λε, in which the type as-
criptions have deviation-tolerance constraints. The type in-
ference rules for λε are shown in Figure 9. The first three
inference rules are straightforward. For example, the value
true with error-tolerance constraint ε has type bool, with
type error-tolerance constraint ε. The fourth type inference
rule, T-CONSTRAINTPRESERVATIONUNDERERROR is the key
component that captures the notion of error-tolerance trans-
formations on programs. The concept it embodies is that, if
v has type T and error-tolerance constraint ε, and Kε,ft is a
transformation that takes as parameters the error-tolerance
constraint ε and a set of assumptions about the hardware ft,
and transforms v to give vp , then under the occurrence of a
error conditions 〈t〉 which fall within the assumptions ft, vp

obeys the type and error-tolerance constraint ascriptions of
v.

7. RELATED RESEARCH
There have been several proposals for domain-specific lan-

guages targeting a variety of issues relating to resource-
constrained embedded systems. The nesC language [5],
for example provides a programming model and language
primitives that are a good match for event-driven systems,
such as the TinyOS operating system in which it is em-
ployed. While nesC provides what one might refer to as
node-level programming, other recent proposals such as Spa-
tialViews [15], Kairos [7], Pleiades [11] and Regiment [14]
target network-level macroprogramming, treating a collection of
embedded systems as a single programmable substrate. In
contrast to these existing programming models and language
implementations, the ideas presented in this paper are tar-
geted at general-purpose embedded system platforms con-
taining multiple resource-constrained processors. The name
generator programming model that we introduce is focused
on enabling the straightforward partitioning of single appli-
cations for such multi-processor systems, and to enable pro-
grams to expose their tolerance to runtime faults of various
types, which might be manifest after they have been so par-
titioned.

The observation that different portions of programs, or of
hardware, may require differing amounts of fault-protection,
has previously been applied to hardware systems, and re-
cently, to phases of programs [18]. Our treatment in this pa-
per of per-variable deviation-tolerance constraints is the first to
expose such constraints within the programming language.
There have recently been attempts to formalize the effects
of soft-errors on the behavior of programs [21]. In [21], the
model addressed is one in which the goal is to attempt to
nullify the effect of soft-errors (faults), by redundant compu-
tation — this is a different idea from our goal of bounding the
value deviation caused by faults.

One early description of a language structure to describe
concurrency is Hoare’s Communicating Sequential Processes
(CSP) [8]. Components of a CSP program, rather than in-
teracting by transfer of control flow, interact by commu-
nication over shared references called channels. As Hoare
points out, the shared references in CSP are fixed, and there
is no way to create new shared references at runtime. Lan-
guages based on, or influenced by CSP, such as Occam [12],
Newsqueak [16], Alef [22] and Limbo [23], although includ-
ing language-level channels, still require that to communi-
cate on a channel, a process must already hold a reference to
it.

The programming model that was introduced in Section 4
is influenced by ideas from models such as Hoare’s CSP [8]
(channels), Actors [1] (name generators are similar to actors,
and the use of names is similar to Actor mail addresses), the
π-calculus [13] (names are like names in the π-calculus),
Linda [3], and timed CSP [17]. Like in CSP and Actors,
the interaction between name generators is not by transfer
of control flow, but rather by communication. By explicitly
exposing the interaction between components of programs
as communication, we can apply correctness-performance
trade-off analyses, not just to the values of variables in pro-
grams, but also to their interactions. Like in CSP, but unlike
in dataflow machines and in Actors, the communication be-
tween the name generators introduced in Section 4, is syn-
chronous, rendezvous. Unlike Actors, name generators are
sequential processes, in much the same manner as processes
in CSP [8]; concurrency arises from the composition of these

9

sequential processes.
There have been previous attempts at introducing con-

structs in programming languages to enable fine-grain par-
allelization as in Jade [19] and in theoretical studies under
the ideas of closure conversion [20]. Languages built around
the ideas of streaming architectures, such as Brook [9] and
StreaMIT [6] hold as an underlying concept the construction
of programs as filters what act on streams. Yet other language
proposals such as Sing# from the Singularity system [4] pro-
vide language-level abstractions for fast messaging. Unlike
in this work, they are concerned with obtaining high perfor-
mance from reliable hardware substrates.

8. SUMMARY AND FUTURE RESEARCH

DIRECTIONS
The programming model, language implementation and

runtime system presented in this paper, are, to our knowl-
edge, the first to expose the idea of tolerance to errors at the
programming language level. By employing the program-
ming model abstraction of name generators, we facilitate the
partitioning of applications across networks of processing el-
ements, in which the communications between processors
may be prone to failures, or in which applications may be
able to trade off correctness of execution for application per-
formance, or performance for energy efficiency.

We are developing applications for the hardware plat-
forms described in Section 2, using an implementation of the
language M, illustrated in Section 4, which implements the
name generator programming model. Our immediate activ-
ities are focused on more detailed empirical evaluations of
these applications, to provide quantitative evidence of the
benefits of the performance, energy and correctness tradeoffs
enabled by the programming model.

9. REFERENCES
[1] G. Agha. An overview of actor languages. In

Proceedings of the 1986 SIGPLAN workshop on
Object-oriented programming, pages 58–67, New York,
NY, USA, 1986. ACM Press.

[2] Atmel, Inc. Datasheet, AT91 ARM Thumb-Based
Microcontrollers. 2006.

[3] N. Carriero and D. Gelernter. Linda in context.
Commun. ACM, 32(4):444–458, 1989.

[4] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson,
G. Hunt, J. R. Larus, and S. Levi. Language support for
fast and reliable message-based communication in
singularity os. SIGOPS Oper. Syst. Rev., 40(4):177–190,
2006.

[5] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesc language: A holistic approach
to networked embedded systems. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, pages
1–11, New York, NY, USA, 2003. ACM.

[6] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S.
Meli, A. A. Lamb, C. Leger, J. Wong, H. Hoffmann,
D. Maze, and S. Amarasinghe. A stream compiler for
communication-exposed architectures. In ASPLOS-X:
Proceedings of the 10th international conference on
Architectural support for programming languages and
operating systems, pages 291–303, New York, NY, USA,
2002. ACM Press.

[7] R. Gummadi, N. Kothari, R. Govindan, and
T. Millstein. Kairos: a macro-programming system for
wireless sensor networks. In SOSP ’05: Proceedings of
the twentieth ACM symposium on Operating systems
principles, pages 1–2, New York, NY, USA, 2005. ACM.

[8] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, Aug. 1978.

[9] M. Horowitz, P. Hanrahan, B.Mark, I. Buck, B. Dally,
B. Serebrin, U. Kapasi, and L. Hammond. Brook: A
Streaming Programming Language. 2001.

[10] W. H. Kautz. Bounds on directed (d,k) graphs. Theory of
cellular logic networks and machines, AFCRL-68-0668
Final report:20–28, 1968.

[11] N. Kothari, R. Gummadi, T. Millstein, and
R. Govindan. Reliable and efficient programming
abstractions for wireless sensor networks. In PLDI ’07:
Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, pages
200–210, New York, NY, USA, 2007. ACM.

[12] D. May. Occam. In IFIP Conference on System
Implementation Languages: Experience and Assessment,
Canterbury, Sept. 1984.

[13] R. Milner. Communicating and Mobile Systems: The
π-calculus. Cambridge University Press, 1999.

[14] R. Newton, G. Morrisett, and M. Welsh. The regiment
macroprogramming system. In IPSN ’07: Proceedings of
the 6th international conference on Information processing
in sensor networks, pages 489–498, New York, NY, USA,
2007. ACM.

[15] Y. Ni, U. Kremer, A. Stere, and L. Iftode. Programming
ad-hoc networks of mobile and resource-constrained
devices. In PLDI ’05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, pages 249–260, New York, NY, USA,
2005. ACM.

[16] R. Pike. The implementation of Newsqueak. Software —
Practice and Experience, 20(7):649–659, July 1990.

[17] G. M. Reed and A. W. Roscoe. The timed
failures-stability model for csp. Theoretical Computer
Science, 211:85–127, 1999.

[18] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I.
August, and S. S. Mukherjee. Software-controlled fault
tolerance. ACM Trans. Archit. Code Optim., 2(4):366–396,
2005.

[19] M. C. Rinard and M. S. Lam. The design,
implementation, and evaluation of jade. ACM Trans.
Program. Lang. Syst., 20(3):483–545, 1998.

[20] P. A. Steckler and M. Wand. Lightweight closure
conversion. ACM Transactions on Programming
Languages and Systems, 19(1):48–86, Jan. 1997.

[21] D. Walker, L. Mackey, J. Ligatti, G. Reis, and D. August.
Static typing for a faulty lambda calculus. In ACM
SIGPLAN International Conference on Functional
Programming, New York, NY, USA, September 2006.
ACM Press.

[22] P. Winterbottom. Alef Language Reference Manual. In
Plan 9 Programmer’s Manual, Murray Hill, NJ, 1992.
AT&T Bell Laboratories.

[23] P. Winterbottom, S. Dorward, and R. Pike. The limbo
programming language. In Proceedings of Compcon 97,
1997.

10

	Introduction
	Contributions

	Motivating Hardware
	A scalable low-power multiprocessor
	A mobile multi-microcontroller device
	Motivating observations

	The Programming Model
	Model overview
	The operator chan2name
	The operator name2chan
	The operators nameread and namewrite
	A simple name generator example
	Types
	Error-tolerance constraints on name and channel types
	Channel value deviation constraints
	Channel latency tolerance constraints
	Channel erasure tolerance constraints

	Consequences of the model

	M: A Name Generator Language
	The Runtime System
	The name table
	The activation record table
	The channel table
	Name communication protocol
	Tname2chan
	Tnamewrite, Tnameread

	Discussion
	Related Research
	Summary and Future Research Directions
	References

