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Abstract. Petri nets can be used to capture the behavior of a process
in a formal and precise way. However, Petri nets are less suitable to
communicate the process to its owner, as simple routing constructs in
the process might require a large number of transitions. This paper in-
troduces a translation from labelled P/T nets to EPCs in such a way
that many transitions can be translated into one EPC connector. The
algorithm even allows for translating a set of transitions into an OR con-
nector, even though the concept of OR connectors (especially the OR
join connector) has no real equal in Petri nets. Using this translation
presented here, labelled P/T nets may be communicated to the process
owner by means of the created EPC.

Introduction

In the scientific world, Petri nets are a well-known modelling language for pro-
cesses, having a clear executable semantics. Petri nets consist of places, transi-
tions, and arcs, where places capture the set of possible states the process can
be in, transitions capture the set of possible activities in the process, and the
arcs link the activities to the states (which activity can be performed in which
state, and to which state would its execution lead?).

In the business world however, Petri nets are less known for describing busi-
ness processes, since real life processes often contain complex routing constructs
between activities. In Petri nets, these routing constructs need to be captured
by transitions and places as well, making them very hard to express. If Petri nets
are used for describing real life processes, the identity of a transition that corre-
sponds to some routing construct is of no importance, whereas the identity of a
transition that corresponds to an activity is of high importance. As a result, a
distinction between these two classes of transitions has to be made. One way of
doing this is by adding a label to every transition that corresponds to an activity,
and to keep the other transitions unlabelled. The class of Petri nets including
this distinction is called labelled P/T nets.

Typically, a process owner will be more aware of the activities in the process
and less of the routing constructs connecting them and even if we distinguish
two classes of transitions, if a model contains many unlabelled transitions, the



process owner might not be able to see the wood for the trees. Therefore, even
a labelled P/T net is not really suitable to communicate a process to its owner.
Instead, other modelling languages are more appropriate, as they are better
suited to cope with more complex routing constructs. One example of such a
modelling language is the language of Event-driven Process Chains [5], or EPCs
for short. In our opinion, EPCs are better suited to communicate a process to its
owner, as EPCs contain functions to model activities, and connectors to model
routing. Furthermore, EPCs allow for OR connectors, which enables complex
routing constructs to be expressed in a rather simple way.!

This paper investigates a sensible way to translate labelled P/T nets into
EPCs. The EPCs that result from this translation should contain as few con-
nectors as is possible, while retaining as much of the behavior as possible. Of
course, this is a trade-of situation, in which some choices need to be made. This
paper presents a set of choices which we believe to be appropriate, and which
result in proper EPCs.

The remainder of this paper is organized as follows. First, we introduce a
running example that we use to explain the issues at hand. Figure 1 shows the
labelled P/T net for this running example. Second, we introduce the concepts
of labelled P/T nets and EPCs. Third, we introduce the concepts of spheres
and sphere types, which underly the choices made in this paper. Basically, a
sphere of some transition is the largest part in the net that converges onto that
transition, and we will translate every sphere into one EPC connector. Finally,
we introduce the algorithm that actually translates a labelled P/T net into an
EPC using these spheres and sphere types and we conclude the paper with some
general conclusions.

1 Preliminaries

As we mentioned in the introduction, we will consider a special class of Petri nets,
called labelled P/T nets, which we translate to EPCs using the concept of
spheres. In this section, we introduce these concepts one by one, using a running
example which is presented in Figure 1.

1.1 Petri nets

Petri nets are a formal language that can be used to specify processes. Since the
language has a formal and executable semantics, processes modelled in terms of
a Petri net can be executed by an information system. For an elaborate introduc-
tion to Petri nets, the reader is referred to [3, 6, 7]. The Petri nets we use in this
paper correspond to a subclass of Petri nets, namely labelled Place/Transition
nets. A labelled Place/Transition net (or labelled P/T net) consists of a num-
ber of places, a number of transitions, a flow relation between these places and
transitions, and a number of transition labels.

! Note that this holds only on the conceptual level. When looking at the execution
level, the semantics of the OR join are extremely complex.
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Fig. 1. The running example.



Definition 1 (Labelled P/T net). Let P, T, L be finite, non-empty and mu-
tually disjoint sets. Furthermore, let T be a constant, such that 7 € L. Let
F,:T—>P,F,:T— P,andl:T — L. The tuple (P,T,F;,F,,L,l) is a
labelled P/T net. Set P is the set of places, set T is the set of transitions, func-
tion F; maps every transition to a set of input places, function F, maps every
transition to a set of output places, and function | maps every transition onto a
label. We say transition t is labelled if and only if I(t) # 7.

Figure 1 shows a process described as a labelled P/T net, containing the
labels “A” through “H”. The transitions that are colored black correspond to
the transitions that serve routing purposes only and these are the unlabelled
transitions (i.e. I(t) = 7). For places and transitions, the following preset/postset
notation is standard, and is also used in this paper.

Definition 2 (Preset, postset). Let N = (P, T, F;, F,, L,1) be a labelled P/T
net. For a transition t € T, its preset is defined as F;(t), denoted ot. For a place
p € P, its preset is defined as {t € T|p € F,(t)}, denoted op. For a transition
t € T, its postset is defined as F,(t), denoted t e . For a place p € P, its postset
is defined as {t € T|p € F;(t)}, denoted pe .

Using the normal semantics of Petri nets, we know that transitions can fire
if and only if their input places are marked. This is no different for labelled P/T
nets. However, since the goal of these P/T nets is to describe a process, we are
only interested in the relation between labelled transition, i.e. which labelled
transition can be fired next? It is not important which unlabelled transitions
have to be fired in between. We exploit this concept in the translation to EPCs.

1.2 Event-driven Process Chains

The idea behind Event-driven Process Chains (EPCs) is to provide an intu-
itive modelling language to model business processes. EPCs were introduced by
Keller, Niittgens and Scheer in 1992 [5]. Tt is important to realize that the lan-
guage is not intended to be a formal specification of a business process. Instead,
it serves mainly as a means of communication. In contrast of Petri nets, EPCs
lack a simple executable semantics. However in this paper, we are interested in
communicating our process to a process-owner, which is the reason EPCs were
developed.
An EPC consists of three main elements:

Functions, which are the basic building blocks. A function corresponds to an
activity (task, process step) which needs to be executed. A function is drawn
as a box with rounded corners.

Events, which describe the situation before and/or after a function is executed.
Functions are linked by events. An event may correspond to the postcondi-
tion of one function and act as a precondition of another function. Events
are drawn as hexagons.
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Connectors, which can be used to connect functions and events. This way, the
flow of control is specified. There are three types of connectors: A (AND),
x (XOR) and V (OR). Connectors are drawn as circles, showing the type in
the center of the circle.

By connecting these elements, the EPC defines the flow of a business process
as a chain of events and functions reacting on these events. Functions, events
and connectors can be connected with edges in such a way that

1. events have at most one incoming edge and at most one outgoing edge, but
at least one incident edge (i.e. an incoming and/or an outgoing edge),

2. functions have precisely one incoming edge and precisely one outgoing edge,

3. connectors have either one incoming edge and multiple outgoing edges, or
multiple incoming edges and one outgoing edge, and

4. on every path, functions and events alternate (in between two functions,
there has to be an event, and vice versa).

An example of an EPC can be found in Figure 2, describing a review process
of a journal, containing the activities of an editor.

2 The translation algorithm

The goal of our translation from labelled P/T nets to EPCs is to obtain an EPC
that is easier to comprehend than the original labelled P/T net. Obviously, we
could translate every labelled transition into a function, every silent transition
into a pair of AND-connectors, and every place into a pair of XOR connectors.



However, the resulting EPC would typically not be comprehensive, as it will
contain a lot of connectors. Instead, to obtain a comprehensible EPC, we need
to restrict the number of connectors that are created during the translation.
Thus, we need to restrict the number of connectors that are introduced. From
the definitions of EPCs and labelled P/T nets, it is however clear that we need
to translate labelled transitions into functions, since they both represent the
activities in a process.

As we stated before, the unlabelled transitions in a P/T net are only there for
routing purposes. To enable one labelled transition after firing another labelled
transitions, some unlabelled transitions might have to fire. Therefore, for each
labelled transitions, we can relate unlabelled transitions (and their connecting
places) to it, since they describe which labelled transition could have fired before,
and can fire next, thus enabling us to translate this behaviour to connectors of
an EPC.

More precisely, based on the unlabelled transitions that can be related to a
labelled transition, a connector of a certain type will be created before and/or
after the corresponding function. Since we can put connectors before and after
the corresponding function, we have to define two relations between unlabelled
transitions on the one hand and labelled transitions on the other hand. The set
of unlabelled transitions that are related to some labelled transition to decide the
type of the join connector that will be created before the corresponding function,
is called the join sphere of that labelled transition. Likewise, the split sphere of
a labelled transition includes those silent transitions that are used to decide the
type of the split connector that will be created after the corresponding function.

Later on, we see that we also want to determine both spheres of some silent
transitions. Therefore, we define these spheres on silent transitions as well. Note
however, that silent transitions are never translated into a function. Instead,
such a silent transition would be translated into a join-split connector pair.

2.1 Join/split spheres

For every transition that we want to translate, we first determine its join sphere
and its split sphere. Using these spheres, we later on determine the join and split
type of the connectors that will be created before and after the corresponding
function. Conceptually, the join sphere of a transition ¢ contains all nodes for
which all outgoing paths converge on transition ¢. Similarly, the split sphere
of a transition t contains all nodes for which all incoming paths converge on
transition ¢. Except for transition ¢ itself (which may be labelled), the spheres
of a transition ¢ are only allowed to contain silent transitions.

Definition 3 (Join/split sphere). Let N = (P, T,F;, F,,L,l) be a labelled
P/T net and let t € T be a transition of N. The join sphere of transition t,
denoted >t, is the maximal set S C PUT that satisfies the following conditions:

—tes,
— Vpesnp i | ®p| >0 (no source places),



Fig. 3. The join spheres/types for the running example.
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Fig. 4. The split spheres/types for the running example.

= Vuesnmp\ey : l(u) = 7 (t is the only non-silent transition), and
= Vnies\{t}  Ynaenyo 1 N2 € S (all successors are part of the same sphere).

The split sphere of transition t, denoted t <, is the maximal set S C PUT that
satisfies the following conditions:

—tes,

— Vpesnp : [pe| >0 (no sink places),

= Vue(snm\(t} : l(u) = 7 (t is the only non-silent transition), and

— Vnies\{t} : Ynocon, i M2 € S (all predecessors are part of the same sphere).

Figures 3 and 4 show the join and split spheres for all labelled transitions in
the running example.

2.2 Join/split types

For each of the join and split spheres of each transition, we can define the
join/split behaviour of each transition. Later, we use that in our translation
of EPCs. Based on the join sphere of transition ¢, we can determine its join

type:

NONE If every node in the sphere (except for the transition ¢ itself, which is
allowed to have multiple outgoing arcs) has exactly one incoming arc and
one outgoing arc (that is, if the sphere forms a simple sequence), then the
join type is NONE. (A connector of type NONE will be reduced later on in
the translation.)



AND If every place has exactly one incoming arc and one outgoing arc and if
every transition has exactly one outgoing arc but possibly multiple incoming
arcs (that is, if the sphere forms a tree where only transitions branch), then
the join type is AND.

XOR If every transition has exactly one incoming arc and one outgoing arc and
if every place has exactly one outgoing arc but possibly multiple incoming
arcs (that is, of the sphere forms a tree where only places branch), then the
join type is XOR.

OR Otherwise (that is, if the sphere is not a tree or if both transitions and
places branch), the join type is OR.

In a similar way, the split type can be determined from the split sphere.
Formally, the join/split types are defined as followes:

Definition 4 (Join/split type). The join type of transition t, denoted j(t) is:

NONE iff |Ot| = 1/\Vp€(|>t)ﬁP|.p| = ‘p.| = 1/\vu€((|>t)ﬁT)\{t}|'u‘ == \uo| = 1,

AND iff |.t‘ > 1/\vp€(>t)ﬁP|.p| = |p.| = lAvue((Dt)mT)\{t}|.u| > 1/\|uo| = 1,

XOR iff [ot| = 1AV ewrynp|op| = 1A |pe| = IAVue(wrynr)\ (1} |ou] = [ue| =1,
and

OR otherwise.

The split type of transition t, denoted s(t) is:

NONE iff [te| = 1AV,canplpe| = |op| = 1AVue(taynm)\ (13 |ue] = [ou| =1,

AND iff |te| > 1/\vpe(t<1)ﬁP|p‘| = |ep| = 1/\Vu6((t<1)ﬂT)\{t}|u'| > 1A|eul =1,

XOR iff [te| = 1AV pctqynp|pe| > 1A]ep| = 1AV ye(waynr)\ (1} |u®] = [ou] =1,
and

OR otherwise.

Figures 3 and 4 also show the join and split types for all labelled transitions in
the running example.

2.3 Edges

At this point, we know how to translate labelled transitions and we know how
we can deal with unlabelled transitions using spheres. What remains is the flow
relation, i.e. when are two elements of our EPC to be connected by an edge?
Again, this can be decided using the spheres. If a split sphere of transition ¢
overlaps the join sphere of transition u, then there will be a path from ¢ to u. If
we can find a node in the split sphere of transition ¢ such that one of its output
nodes belongs to the join type of transition u, then there will also be a path from
t to u. If there is a path from transition ¢ to transition u, then there will have to
be an EPC edge from the corresponding split connector ¢ to the corresponding
join connector u. In a similar way, paths to and from non-functions can be
determined.



2.4 Algorithm

Finally, we present our algorithm for translating a labelled P/T net into an EPC.
The algorithm is presented in pseudo code in Figure 5 and has been implemented
in the “Labelled WF-net to EPC” conversion plug-in of the ProM framework
(See [4] and www.processmining.org for details about this open source tool).
One part of the algorithm we did not explain in detail yet is the creation
of initial and final events. As shown in the algorithm, the source place needs to
be translated into a combination of a start event, a start function, and a split
connector. However, in some situations, this is not necessary. For this reason,

Let J=0 and S =0
For every labelled transition ¢

Add vt to J and t< to S

Create a join connector j; with type j(t)

Create an event e; and a function f;

Create a split connector s; with type s(t)

Create edges from j; to e, from e; to f;, and from f; to s¢
As long as T'\ (J U S) is non-empty

e

9. Take a t € T\ (JUS) such that |>¢t Ut <| is maximal
10. Add >t to J and t< to S
11. Create a join connector j; with type j(t)
12. Create a split connector s; with type s(t)
13. Create an edge from j; to s
14. Aslong as P\ (J U S) is non-empty
15. Add p to J (or S)
16. Takeape P\ (JUS)
17. Create a join connector j, with type XOR
18. Create a split connector s, with type XOR
19. Create an edge from j, to sp
20. For every t,u € T such that t< N>u # 0
21. Create an edge from s; to jy
22. For every t,u € T such that n1 € t<4 and n2 € du exist such that n, € eng

o
bt

Create an edge from s; to j,
. For every t € T and p € P such that t< Nep #

[N}
~

25. Create an edge from s; to jp

26. For every t € T and p € P such that >t Npe # ()

27. Create an edge from s, to j;

28. For every p € P such that ep =0

29. If [pe|>1or Vicpel(t) =7

30. Create a start event e, and a start function f,
31. Create an edges from e, to fp and from f, to sp
32. For every p € P such that pe =)

33. Create an end event e,

34. Create an edge from s, to e,

35. Reduce connectors that don’t have multiple inputs or multiple outputs.

Fig. 5. The essence of the translation algorithm.



the source place is not translated into an event-function-connector combination
if there is only one output transition, and if that output transition is labelled.
Note that the event corresponding to that output transition will then act as
start event.

2.5 Example

If we apply our algorithm on the example given in Figure 1, the algorithm will
do the following:

— First, following lines 1 through 7, for each labelled transition, its join and
split spheres are discovered and for each of these spheres a connector of
the right type is created. Furthermore, for the transition an input event is
created and a function is created. Recall that figures 3 and 4 show the join
and split spheres of each labelled transition.

O~{al

Fig. 6. The uncovered nodes.

— So far, we dealt with all labelled transitions and most of the unlabelled
ones. However, some unlabelled transitions were not covered by any sphere.
Figure 6 shows the nodes (places and transitions) that are not covered by a
sphere so far. Lines 8 through 13 deal with the transitions in this set.

g ®)

Fig. 7. The two spheres covering the uncovered transitions.

Every iteration, one of them is selected, in such a way that the size of its
join and split sphere combined is maximal. Then, this transition is translated



into a AND-join, AND-split combination and the same procedure is follows
as for a labelled transition. The result of this step is shown in Figure 7.

— Now, there can still be some places that were not translated yet, as shown in
Figure 8. In lines 14 through 19, these places are dealt with using a similar
procedure as for the uncovered transitions. The difference is that:

e an source place is either translated into an event, a function, and an split
connector, or it is translated into no EPC objects,

e an sink place is translated into an event, and

e any other place is translated into an XOR-join, XOR-split combination.

B} -t s Do Blng
O~[CH

Fig. 8. The uncovered places.

— Finally, the edges are created as described before and the EPC is cleaned
up by removing connectors with single input and output edges. The result
of which is shown in Figure 9.

3 Conclusion

This paper introduces a translation from labelled P/T nets to EPCs. The goal
of this translation is to improve the communication with the process owner. If
we use a labelled P/T net to model a process, then the resulting model will
be formal and executable, but it might contain few labelled transitions (which
correspond to activities in the process) and many unlabelled transitions (which
correspond to routing constructs). As a result, the process owner might have
severe problems understanding this model of his process. By translating this
labelled P/T net into an EPC in such a way that many unlabelled transitions
are translated into one EPC connector, we will obtain an EPC that is more
compact than the original labelled P/T net. As a result, the process owner will
have less difficulties in understanding the model of his process.

Although the translation favors the AND and XOR connectors, it can result
in EPCs that contains OR connectors. Although OR connectors in EPCs are
problematic when it comes down to their formal semantics [1], humans seem to
be able to grasp the meaning of an OR connector without that much difficulty.
We expect that the process owner will be able to understand the EPC model
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Fig. 9. The original P/T net and the resulting EPC.



of his process much quicker than a labelled P/T net model, even if that EPC
contains several OR connectors.

A similar translation algorithm can be given for YAWL models [2] instead of
EPCs. A labelled transition can be translated into a YAWL task and its input
and output behavior can be determined using its sphere types. As long as they
are not covered, unlabelled transitions can be translated into dummy YAWL
tasks in a similar way. Places that are still uncovered can then be translated into
YAWL conditions, where the input place is translated into an input condition
and the output place into an output condition. This translation has also been
implemented in a conversion plug-in of the ProM framework.
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