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Abstract

We address the control synthesis of hybrid systems with discrete inputs and outputs. The control
objective is to ensure that the events of the closed-loop system belong to the language of the
control requirements. The controller is sampling-based and it is representable by a finite-state
machine. We formalize the control problem and provide a theoretically sound solution. The solu-
tion is based on solving a discrete-event control problem for a finite-state abstraction of the plant.
In addition, we identify classes of hybrid systems for which a suitable finite-state abstraction can
be computed and we sketch the algorithms for computing the finite-state abstractions. Unlike
most of the existing algorithms, the algorithm of this paper is not based on discretizing the state-
space. Instead, a discrete-time counterpart of the hybrid plant is constructed. The state-space of
this discrete-time hybrid system consists of those state of the original system which are reachable
at sampling times. In order to obtain a finite state abstraction in this way, we restrict attention
to those hybrid systems, for which the set of states reachable at sampling times is finite, and the
continuous dynamics and the continuous state change only under the influence of the control in-
puts. In addition, we present Lyapunov-like conditions for checking the former property. We also
present an example of practical relevance satisfying the above restrictions.



1 Introduction

Motivated by applications in the area of high-tech systems, in particular control of printers, [22],
we are interested in the following control problem. The plant is a hybrid system which is subject
to discrete-valued disturbances and control inputs and which generates discrete-valued outputs
and internal events. The disturbances are imposed by the environment and the control inputs can
be used to influence the system behavior. The desired controller can read the outputs and it gener-
ates control inputs. Furthermore, the controller should be realizable by a finite-state machine, and
it is activated on equidistant sampling times. The control objective is to ensure that the sequences
of internal events generated by the plant satisfy the control requirements.

Contribution We present a rigorous formulation and solution of the control problem described
above. The solution consists of the following steps

Step 1 Compute a suitable abstraction (over-approximation) of the symbolic (event) behavior
of the plant, such that the abstraction has a finite-state representation. This abstraction is
based on time discretization of the hybrid system, but it does not involve discretization of
the state-space, i.e. dividing the state-space into regions.

Step 2 Solve the related discrete-event control problem for the finite-state abstraction. The
solution is a discrete-event controller representable by a Moore-automaton. Interpret the
solution as a controller for the original plant.

We prove that the procedure above is theoretically sound. The discrete-event control problem
of Step 2 is not a supervisory control problem. It can be solved using game theory [11] or,
under additional assumptions, using classical supervisory control. For more details, see [21].
Furthermore, we identify classes of hybrid systems for which the finite-state abstraction can be
computed. In addition, we present a hybrid system based on an industrial use case which belongs
to one of the identified classes. We consider the identification of suitable classes of hybrid sys-
tems, for which the procedure above can be applied to and which are relevant for practice, as one
of the major contributions of this paper.

Construction of the finite-state abstraction The finite-state abstraction presented in this paper
is in fact a discrete-time counterpart of the hybrid system. This discrete-time system has finitely
many states, if the original hybrid system satisfies certain assumptions. If some of those assump-
tions are dropped, then we obtain a discrete-time hybrid system with possibly infinite state-space.
The discrete-time system is obtained from the original continuous-time hybrid system in a man-
ner which is similar to the time sampling of continuous systems. Hence, the construction of this
paper represents a generalization of time sampling for hybrid systems.

More precisely, the state-space of the discrete-time system consists of precisely those states of the
original hybrid system which can be reached at integer multiples of the sampling rate. Moreover,
it is assumed that the control inputs are applied only at the sampling times. Then the challenge
is to estimate the events and their effect on the system evolution between the sampling times. To
this end, we put the following restrictions on the hybrid systems we consider.

• Disturbances or internal events do not influence the continuous dynamics.

• Output events do not influence the system dynamics.

• Only finitely many events are generated on any time interval.

With the assumptions above, we are able to construct a discrete-time counterpart of the original
hybrid systems. The obtained discrete-time system is an abstraction of the original one, in the
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sense that it predicts all the possible sampled outputs and sequences of internal events which the
original system generates under the influence of sampled inputs. Note that the discrete-time sys-
tem may also predict outcomes which the original system never generates. But each sequence of
sampled outputs and internal events generated by the original system will be a possible behavior
of the discrete-time system. That is why we refer to the discrete-time system as abstraction. Here,
by a sampled output we mean the collection of output events generated by the system between
two sampling times. By a sampled input we mean an input signal which takes values only at
sampling times.

In order to obtain a finite-state system from the discrete-time system described above, we have
to assume that the set of states of the original hybrid systems which are reached at sampling
times is finite. This looks like a strong assumption which is difficult to check. We present suf-
ficient conditions for this property to hold. The conditions are formulated in terms of existence
of Lyapunov-like functions. Intuitively, the existence of Lyapunov-function implies the existence
of a physical quantity (potential energy, distance) which periodically decreases as the system
evolves. When this quantity becomes zero, the system is set to one of the finitely many possible
initial states. Distance from the end of the conveyer belt (paper path) is an example of a Lya-
punov function which occurs in models of manufacturing or logistics systems or machines such
as printers or copy machines.

In addition, we formulate classes of systems for which the assumptions above can be checked
effectively and the finite-state abstraction can be computed. One such a class is the class of hybrid
systems where the state-space is polyhedral, the reset maps are affine, the guards are defined by
hyperplanes and the continuous dynamics is defined by L’ure-type systems. For this class of
systems many of the assumption outlined above can be checked by an algorithm. In addition, we
are able to present sufficient conditions for the finiteness of the set of states reached at sampling
times. This condition is based on existence of Lyapunov-like functions and can effectively be
checked. Finally, we present an example of a hybrid system of the above form which satisfies the
assumptions and which is based on an industrial use-case.

Motivation The applications which motivate the presented theory differ from usual control en-
gineering problems in the following sense. We are interested in systematic methods for designing
high-level control algorithms and software for complex electro-mechanical systems. The goal is
to decrease the cost of development of new generations of such systems, while increasing their re-
liability. In contrast to classical control, the challenge is not so much to solve a particular control
problem, but to come up with a method for systematic solution of control problems, i.e. we aim
at automated ”mass production” of controllers solving a class of control problems. This calls for
algorithms (and software tools) for generating controllers for a well-defined and fairly general
class of plant models and requirements. The correctness of these algorithms and the ability to
automatically check whether the proposed system models fits model class is of great importance.
The success of this approach very much depends on our ability to reduce the role of engineering
insight in the design of control software. Hence, algorithms for generating controllers which are
correct by construction and which solve simple control problems (particular instances of which
can be solved by hand, without using any theory), are still desirable. We believe that the class of
models and control requirements considered in this paper is general enough to cover a wide range
of applications while it still allows automated generation of controllers.

Related work To the best of our knowledge, the contribution of the paper is new. Some of
the results described in this paper have already appeared in [20]. Control of hybrid systems
using finite-state approximation is a classical topic, [10, 5, 8, 19, 17, 15]. The main difference
with respect to [10, 5, 15] is the presence of partial observations, that the generation of events
is not synchronized with inputs, and that the hybrid plant contains reset maps. With respect
to [8, 19, 17] the main differences are that we consider hybrid systems as opposed to continuous
ones, and we address partial observations. In addition, we do not propose a general purpose finite-
state abstraction, rather the proposed abstraction is intended as a vehicle for solving the specific
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control problem. Contrary to [26, 19, 18, 17, 25], we are not using the behavioral framework at all
and we look at systems in continuous time. The results of [26, 19, 18, 17, 25] address a problem
which is quite different from the one considered in this paper. In contrast to [28, 15], here we
consider a hybrid plant model, as opposed to a continuous one and we allow unobservable events.
In addition, for the control problem of the paper, the event generation and controller activation
are not synchronized.

The approach of the paper resembles [1, 30, 7, 2]. However, the abstraction notion of this paper
and the problem formulation are quite different. Note that in [1, 30] abstraction is used for
hierarchical control. In contrast, here abstraction is used for computational purposes only, it has
no relationship with hierarchical control.

Unobserved internal events in combination with other constraints render the control problem of
this paper different from [23, 31].

In addition, the construction of the finite-state abstraction presented in this paper is different
from the existing constructions described in the literature. One class of existing constructions
[10, 15, 28, 1, 7, 2, 23] attempts to discretize the state-space by dividing it into regions. The
state-space of the thus obtained finite-state machine is the set of regions. The state-transition
map prescribes a transition from one region to another one, if there exists a trajectory of the
original system which starts in one region and upon leaving the first region immediately enters
the other one. In contrast, the approach of this paper does not divide the state-space into regions.
In fact, the finite-state abstraction of this paper lives on a subset of the original state-space of the
hybrid system. Another approach, described in [8, 5, 19, 17, 26, 19, 18, 17], appromixates the
underlying system by storing the output (or state) response of the system to input sequences of
finite length. In contrast, the abstraction presented in this paper lives on the same state-space as
the original system. Moreover, in contrast to the two approaches above, the construction of this
paper involves transition from continuous- to discrete-time. Note that the finite-state abstraction
of this paper is not directly related to the finite bisimulation of [1].

Outline of the paper In §3 we state the control problem we want to solve. The reduction of
the hybrid problem to a discrete-event one is discussed in §4. §4.2 sketches the solution of the
discrete-event control problem. In §5 the class of hybrid systems of interest is defined and the
computation of a finite-state abstraction of the hybrid plant is discussed. In §6 we illustrate the
presented results by means of an example of practical relevance. We end the paper by conclusions
in §7.

2 Preliminaries

The goal of this section is to present an overview of the necessary background on automata theory.
In Subsection 2.1 we review the elementary notion and terminology from formal language theory.
In Subsection 2.2 we recall the definition of Moore-automata and related concepts. In Subsection
2.3 we review the classical concept of monoid, automata on monoids and rational subsets of
monoids. In Subsection 2.4 we will use these notions to define the concept of sequential input-
output maps, quasi-sequential deterministic transducer and quasi-recognizability. The material of
Subsection 2.4 can be found in [21].

2.1 General notation

Most of the time, we will use the standard notation and terminology from automata theory [6, 9].
Let Σ be a finite set, referred to as the alphabet. Σ∗ denotes the set of finite strings (words) of

4



elements of Σ, i.e. an element of Σ∗ is a sequence w = a1a2 · · · ak, where a1, a2, . . . , ak ∈ Σ,
and k ≥ 0; k is the length of w and it is denoted by |w|. If k = 0, then w is the empty word,
denoted by ε. The concatenation of two words v and w is denoted by vw. An infinite (ω-) word
over Σ is an infinite sequence w = a1a2 · · · ak · · · with ai ∈ Σ, i ∈ N. The set of infinite words
is denoted by Σω .

A language over Σ is a set of finite strings (words) over Σ. For any (in)finite word w, and for
any i ∈ N (in case w is finite word, for any i ∈ N such that i ≤ |w|), w1:i denotes the finite word
formed by the first i letters of w, i.e. w1:i = a1a2 · · · ai. If i = 0, then w1:i is the empty word ε.

For any word w ∈ Σ∗ ∪ Σω , a finite word p ∈ Σ∗ is a prefix of w, if there exists an index i ∈ N,
such that w1:i = p. If K ⊆ Σ∗, then lim(K) ⊆ Σω is the set of all infinite words, infinitely many
prefixes of which belong to K, i.e.

lim(K) = {w ∈ Σω | ∃{ki ∈ N}i∈N : such that ∀i ∈ N : (ki+1 > ki), and ∀i ∈ N : w1:ki ∈ K}

If L ⊆ Σ∗ ∪ Σω , then the prefix closure of L is denoted by L̄ and is defined by L̄ = {p ∈ Σ∗ |
∃v ∈ L : p is a prefix of v}; L is called prefix closed, if L̄ = L.

The set of non-negative reals is R+.

2.2 Moore-automata

Below we will review the notion of Moore-automata. Note that Moore-automata will play the
role of controllers in our setting. Recall from [6, 9] that a Moore-automaton is a tuple A =
(Q, I, Y, δ, λ, q0) where Q is the finite state-space of A, I is the input alphabet of A, Y is the
output alphabet of A, δ : Q× I → Q is the state-transition map of A, λ : Q→ Y is the readout
map of A, and q0 ∈ Q is the initial state of A. The Moore-automaton A is a realization of a map
φ : I∗ → Y , if for all w = u1u2 · · ·uk ∈ I∗, k ≥ 0 and u1, u2, . . . , uk ∈ I , φ(w) = λ(qk)
where qi = δ(qi−1, ui) for all i = 1, 2, . . . , k. The map φ is realizable by a Moore-automaton, if
there exists a Moore-automaton which is a realization of φ.

2.3 Monoid, automata, rational sets

The goal of this section is to recall the notions of monoid, rational and recognizable subsets of
a monoid, and automata on monoids. These concepts will then be used to define the concept of
sequential input-output maps and their automaton representations. The latter concepts are used
to model the behavior of the discrete-event abstraction of the hybrid plant.

Recall from [3, 6] that a monoid M is a (not necessarily finite) semi-group with a unit element
which is denoted by 1M , or simply 1, if M is clear from the context. That is, there exists a
multiplication operation, denoted by ·. The set of all finite strings Σ∗ over the finite alphabet Σ
forms a monoid, if we take the concatenation as multiplication and the empty word ε as the unit
element. The monoid Σ∗ is also referred to as the free monoid. Another example of a monoid is
the cartesian product X∗ × Y ∗, where X and Y are finite alphabets. Here, identity element is
(ε, ε), and the multiplication operation defined by (s1, s2)(v1, v2) = (s1v1, s2v2).

Below we will recall from [3, 6] the notion of a finite-state automaton on monoids.

Definition 1 (Automaton on monoid [3, 6]). A finite-state automaton on a monoidM , abbreviated
as DFA , is a tuple T = (Q,M,E, F, q0) where

• Q is a finite set of states
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• M is the monoid of inputs

• E ⊆ Q ×M × Q is a relation called the state-transition relation. We assume that E is a
finite set.

• F ⊆ Q is the finite set of accepting states

• q0 ∈ Q is the initial state

Definition 2 (Accepting run, [3, 6]). An elementm ∈M is accepted by T if there exists elements
mi ∈ Mi and states qi ∈ Q, i = 1, 2, . . . , k for some k ≥ 0 such that (qi,mi+1, qi+1) ∈ E for
i = 0, 1, . . . , k − 1, qk ∈ F and m = m1m2 · · ·mk.

The definition of a subset of M accepted by the DFA T is completely analogous to the definition
of the language accepted by an automaton.

Definition 3 (Sets recognized by DFA , [3, 6]). The set L ⊆ M is recognized by T , and it is
denoted by L(T ), if L consists of precisely those elements m ∈M which are accepted by T .

Definition 4 (Rationality). A subset L ⊆ M is called rational, if there exists a finite-state au-
tomaton T on M such that L is recognized by T .

In other words, rational subsets of M are precisely those subsets which can be described by
(possibly non-deterministic) finite state automata. Rational subsets of monoids have been studied
since the 1960’s [3, 6, 16] and the references therein.

2.4 Sequential input-output maps

The goal of this section is to define the notion of sequential input-output maps. Sequential input-
output maps will be used to model the input-output behavior of non-deterministic discrete-event
plants, which arise as abstractions of hybrid systems.

Definition 5 (Sequential input-output maps, [21]). Let X,Y,Σ be finite sets. A multi-valued
map R : Σ∗ → 2Y

∗×X∗ is called a sequential input-output map, if the following conditions are
satisfied

1. R(ε) = {(ε, ε)}, and for all s ∈ Σ∗, R(s) is a non-empty set.

2. For all s ∈ Σ∗, if (y, x) ∈ R(s), with y ∈ Y ∗ and x ∈ X∗, the length of s and y are the
same, i.e. |s| = |y|.

3. R is prefix preserving, i.e. for each word s ∈ Σ∗, for each letter a ∈ Σ, and for each pair
of words (y, x) ∈ R(sa), there exist a letter y ∈ Y and words x ∈ X∗, ŷ ∈ Y ∗, x̂ ∈ X∗
such that y = ŷy, x = x̂x and (ŷ, x̂) ∈ R(s).

4. R is non-blocking, i.e. for each word s ∈ Σ∗, for each letter a ∈ Σ, and for each pair of
words x ∈ X∗, y ∈ Y ∗ such that (y, x) ∈ R(s) , there exists a letter y ∈ Y and a word
x ∈ X∗, such that (yy, xx) ∈ R(sa).

Intuitively, the set Σ corresponds to input symbols, the sets X and Y correspond to output sym-
bols. Moreover, the map R synchronizes between Σ and Y , i.e. the length of the Y ∗-valued
component of R coincides with the length of the argument. However, this is not true for the
X∗-valued component of R. In this paper we will mainly be interested in sequential input-output
maps which are quasi-recognizable, i.e. sequential input-output maps whose graph is a ratio-
nal subset of the monoid M = Σ∗ × Y ∗ × X∗ and which can be recognized by a finite-state
quasi-sequential transducer.
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Definition 6 (Quasi-sequential transducer, [21]). A DFA T = (Q,M,E, F, q0) defined over the
monoid M = Σ∗ × Y ∗ ×X∗ is called a quasi-sequential transducer, if

1. F = Q, i.e. all states are accepting,

2. the state-transition relation is a partial map E : Q× Σ× Y ×X∗ → Q. That is, the state-
transitions are deterministic and are labeled by letters from Σ and Y and by sequences from
X∗.

3. For each state q ∈ Q and letter a ∈ Σ there exist a letter y ∈ Y and a word x ∈ X∗ such
that E(q, u, y, x) is defined.

Definition 7 (Quasi-recognizable sequential input-output maps, [21]). The sequential input-output
map R : Σ∗ → 2Y

∗×X∗ is called quasi-recognizable, if the corresponding graph graph R of R,
defined as

graph R = {(u, y, x) ∈ Σ∗ × Y ∗ ×X∗ | (y, x) ∈ R(u)} (1)
has the following property. If graph R is viewed as subset of the monoid M = Σ∗ × Y ∗ ×X∗,
then graph R is recognized by a quasi-sequential deterministic transducer.

3 Control problem

Below we define the control problem we are interested in.

Plant The plant of interest is a hybrid system which reacts to discrete-valued control inputs and
disturbances, and generates discrete-valued outputs and internal events. We view the inputs and
outputs as discrete events. Thus, the control inputs are events generated by a potential controller,
the disturbances are events generated by the environment. The outputs and internal events are
events generated by the plant. The only difference between outputs and internal events is that
outputs are visible for control purposes (i.e. detectable by sensors), while internal events are not
visible.

The environment and the plant generate events asynchronously. More precisely, the plant gener-
ates at most one output at each time instance, and at most one internal event at each time instance.
However, it may happen that an output and an internal event are generated at the same time. Sim-
ilarly, at most one disturbance is generated at any time, and at most one control input is generated
at any time. However, it may happen that a control input and a disturbance occur simultaneously.
In addition, a control or disturbance can reach the plant at the same time as the plant generates an
output or internal event. Note that the plant is assumed to live in real time.
Notation 1 (Plant and events). We denote the plant by H . We denote the events of interest as
follows.

• Ec is the finite set of control inputs,

• Ed is the finite set of disturbances,

• Eo is the finite set of outputs,

• Ei is the finite set of internal events.

The external behavior of the plant is formalized as an input-output map, which maps time signals
of control and disturbance events to time signals of outputs and internal events. In order to for-
malize the input-output maps of the plant of interest, we need the notion of a time-event function.
The latter is just a function obtained by interpreting a time-event sequence as a function of time.
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Definition 8 (Time-event functions). Let E be a finite set and let ⊥ /∈ E. Consider a finite or
infinite timed sequence of elements of E.

s = (e1, t1)(e2, t2) · · · (ek, tk) · · · (2)

where 0 ≤ t1 < t1 < t2 < · · · , ei ∈ E, ti ∈ R+ for i ∈ N, i > 1 and i < |s| where |s|
is the length of s. Here |s| = +∞ if s is an infinite sequence. If |s| = +∞, we assume that
supi∈N ti+1 = +∞. We can identify s with the map

g : R+ 3 t 7→ E ∪ ⊥ 3
{
ei+1 ∈ E if t = ti+1 for some i ∈ N

⊥ otherwise (3)

A map as in (3) induced by a sequence (2) is called a time-event function. The set of all time-event
functions is denoted by PE .

I.e., the timed-event function g takes values in the event set E at isolated time instances, and the
value ⊥ encodes the absence of events at a certain time instance.

Notation 2. Let g ∈ PE be a time-event function as in (3). Define the sequence of elements of E
induced by g as UT(g) = e1e2 · · · ek · · · ∈ E∗ ∪ Eω . That is, two cases are possible.

1. There exist time instances 0 ≤ t1 < t2 < . . . < tk such that for all s ∈ R+, g(s) ∈ E
if and only if s ∈ {t1, t2, . . . , tk}. Then UT(g) = g(t1)g(t2) · · · g(tk) ∈ E∗ and hence
UT(g) is finite.

2. There exists an infinite sequence of time instances 0 ≤ t1 < t2 < . . . < tk < . . . such that
for all s ∈ R+, g(s) ∈ E if and only if s = ti for some i = 1, 2, . . .. Then UT(g) is an
infinite word, ith element of which equals g(ti).

By applying the definition of time-event functions forE ∈ {Ec, Ed, Eo, Ei}, we obtain spaces of
functions PEc

, PEd
, PEo

, PEi
describing the signals with values in control inputs, disturbances,

outputs and internal events respectively.

The behavior of the plant H is formalized as a causal input-output map which maps time-event
functions of control inputs and disturbances to time-event functions of outputs and internal events.

Definition 9 (Input-output map of the plant). The input-output map of the plantH is a causal map
υH : PEc

× PEd
→ PEo

× PEi
. By causality of υH we mean that for any two inputs ui ∈ PEc

,
and disturbance di ∈ PEd

, and for any two outputs oi ∈ PEo , and internal event signals ôi ∈ PEi

such that (oi, ôi) = υH(ui, di), i = 1, 2,

[∀s ∈ [0, t] : d1(s) = d1(s) and ∀s ∈ [0, t) : u1(s) = u2(s)] =⇒ o1(t) = o2(t), ô1(t) = ô2(t)

That is, causality means that the outputs and internal events depend only on the past inputs and
on the past and present disturbances. In addition, we require that if (o, ô) = υH(u, g) for some
u ∈ PEc

, g ∈ PEd
, then o(0) = ⊥ /∈ Eo and ô(0) = ⊥ /∈ Ei, i.e. no output or internal event is

generated at time instance 0.

Controller The controllers of interest are modeled as maps from outputs to control inputs.

Definition 10 (Controller). A hybrid controller is a map C : PEo
→ PEc

.

Remark 1 (External inputs). In many application one encounters external inputs, i.e. inputs
which are visible to the controller and which change the dynamics of the system, but which
are generated by the environment or user. That is, external inputs cannot be influenced by the
controller. External inputs can be incorporated in our framework as follows. We extend the set of
disturbances and outputs by copies of external input events We model each occurrence an external
input event v as the simultaneous occurrence of the disturbance event which is a copy of v and
the output event which is a copy of v.

8



control input PEc
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internal events PEi

outputs PEo
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D/A
D/A

Figure 1: Control architecture

In order to define the behavior of the feedback interconnection of the plant H and controller C,
we need to define when this interconnection is mathematically well-posed.
Definition 11 (Well-posedness). The interconnection of H and C is well-posed if for any distur-
bance signal d ∈ PEd

, there exists a unique input signal u ∈ PEc , output signal o ∈ PEo , and
internal event signal ô ∈ PEi

such that

(o, ô) = υH(u, d) and u = C(o) (4)

Notice that the interconnection of H and C need not always be well-posed.

We restrict attention to controllers which have a finite-state representation and are activated on
integer multiples of a fixed sampling rate ∆ > 0.
Notation 3. In the rest of the paper ∆ > 0 denotes the sampling rate.

We assume that the controller has no knowledge of the relative order or the timing of the events
between sampling times. More precisely, the controller is the interconnection of a Moore-
automaton with interfaces, converting time signals to discrete symbols and back. These interfaces
map functions from PEo to sequences of subsets of Eo, where the ith element of the sequence
is the set of outputs which took place on the time-interval ((i − 1)∆, i∆]. At each sampling
time the controller generates a symbol from Ec or the symbol ⊥. The latter encodes the case
when no control input is applied. The symbols generated by the controller are converted to a
time-event function PEc

whose value at i∆ is the output of the controller at the (i + 1)th step,
and ⊥ otherwise.
Definition 12 (Discrete input and output alphabet). Define the set of discrete inputs as U =
Ec ∪ {⊥}, and the set of discrete outputs as O = 2Eo .
Remark 2 (Choice of the sampled alphabet). The choice of O made in this paper is not the only
possible one. In fact, one could define a different sampling mechanism, not just simply collecting
the set of output events which took place in the sampling interval. For example, often the relative
order of events is known.
Definition 13 (Sequential controllers). A sequential controller is a map φ : O∗ → U such that φ
is the input-output map of a Moore-automaton.

The Moore-automaton part of the desired controller will be a sequential controller. The desired
hybrid controller is then defined as follows.
Definition 14 (Hybrid controller from a sequential one). For a sequential controller φ let the
hybrid controller Cφ associated with φ be such that for all o ∈ PEo

,

∀t ∈ R+ : Cφ(o)(t) =

 φ(S1S2 · · ·Sk) if t = k∆ for k ∈ N, k > 0
φ(ε) if t = 0
⊥ otherwise

where Si = o(((i− 1)∆, i∆]) ∩ Eo for all i = 1, 2, . . . , k.
Proposition 1. The interconnection of Cφ and H is well-posed.
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The proof of Proposition 1 can be found in §8.

The significance of hybrid controllers associated with a sequential one is that it is precisely the
type of controllers which can be implemented on computer, based on sampling.

In order to formulate the control problem we are interested in, we have to formally define the
relevant aspects of the closed-loop behavior of the system. Since we are interested in the symbolic
behavior of the plant, i.e. in the relative order of internal events generated by the plant, we define
formally only the closed-loop language, i.e. the set of sequences of internal events generated by
the plant when interconnected with the controller. However, in order to be able to solve the arising
control problem, it is sensible to restrict the class of disturbances, by requiring that only at most
a fixed number of disturbance events occurs within a sampling interval. This assumption renders
the problem of controlling the plant behavior much simpler. In particular, in case of sampled-data
control, the assumption allows the controller to consider only finitely many different scenarios of
occurrence of disturbances within the sampling interval.

In order to keep the notation to minimum, we will define the closed-loop language only for this
restricted class of disturbance signals.

Definition 15 (Bounded number of events on the sampling interval). Denote by ∆ > 0 the sam-
pling rate. Let µ ∈ N be a positive integer. The set of time-event functions g such that on any
interval of the form ((i− 1)∆, i∆], i = 1, 2, . . . the number of events of g is not greater than µ is
denoted by P∆

E,µ. That is, a time-event function g ∈ PE belongs to P∆
E,µ if and only if for each

i = 1, 2, . . . ,

card{e = g(s) ∈ E | s ∈ ((i− 1)∆, i∆]} < µ

Notation 4 (Maximal number of disturbances). In the sequel, µ > 0 will denote the fixed upper
bound on the number of disturbance events in a sampling interval (0,∆]. In particular, we will
be interested in disturbances from P∆

Ed,µ
.

For many practical situations, this assumption is reasonable. We define the symbolic behavior the
feedback interconnection of C and H as follows.

Definition 16 (Closed-loop). If the interconnection of H and C is well-posed, then let the closed-
loop language L(H/C) be the set of words UT(ô) ∈ E∗i ∪ Eωi for all time-event functions
ô ∈ PEi

for which there exist an input u ∈ PEc
a disturbance d ∈ P∆

Ed,µ
and an output o ∈ PEo

such that u, d, o, ô satisfy (4).

That is, L(H/C) is just the collection of sequences of internal events generated by the feedback
interconnection of the plant H and controller C.

The control problem we are interested in can be stated as follows.

Problem 1 (Sampled-data control). For a specification language K ⊆ E∗i ∪Eωi , find a sequential
controller φ such that for the associated hybrid controller Cφ, the closed-loop language satisfies
L(H/Cφ) ⊆ K.

Notice that the closed-loop and the specification languages contain only sequences of internal
events. This is done in order to simplify notation. Our results can easily be extended to include
sequences of events from Ec ∪ Ed ∪ Eo in the closed-loop and specification languages.
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4 Solution of hybrid control problem

The goal of this section is to present the solution of Problem 1. The main idea is to reduce
Problem 1 to a discrete-event control problem. To this end, notice that the desired controller is a
sequential controller, which can only see the symbolic sampled-data behavior of the plant.

4.1 General idea: convert the hybrid control problem to a discrete one

We model the symbolic sampled-data behavior of the plant as a non-deterministic system RH ,
which reacts to sequences of discrete inputs and disturbances and generates sequences of outputs
and internal events. The inputs of the system RH are sequences from U∗, the outputs are se-
quences from O∗, where the U and O are as in Notation 12. The alphabet of internal events of
RH coincides with the alphabet of internal events Ei of R. Finally, the set of disturbances of RH
is obtained by sampling the disturbance signals of R.

Definition 17 (Discrete disturbances). The set discrete disturbances is defined as D =
⋃µ
k=0E

k
d .

Here µ is as in Notation 4.

That is, the set of discrete disturbances D is the set of all words over Ed of length at most µ.
Recall that µ is the maximal number of disturbance events which is allowed to occur in a sampling
interval. An element of D is a sequence, which describes the relative order of disturbance events
between two consecutive sampling times. That is e1e2 · · · ek ∈ D says that between the previous
and the current sampling times disturbance events e1, e2, . . . , ek took place, in this order. The
empty sequence encodes the scenario when no disturbance event occurs between two sampling
time instances.

Remark 3 (Inter-arrival time is greater than the sampling time). Notice that if µ = 1, i.e. the
inter-arrival time is greater than the sampling time, then D = {ε} ∪Ed, i.e. D consists of the set
of disturbance events and the empty sequence.

Formally, the behavior of RH is modeled as a a multi-valued map from sequences in D∗ and U∗
to O∗ and E∗i , see Fig. 1. Note that due to the sampling mechanism, the relevant sequences from
U∗, D∗ and O∗ have the same length. Formally, by identifying the system RH with its external
behavior, we get that RH is a map RH : (U ×D)∗ → 2O

∗×E∗i . Notice that here we have used
the fact that a pair of sequences from U∗ ×D∗ of the same length can be identified with a single
sequence from (U ×D)∗. For the formal definition of RH , we need the following notation.

Notation 5. Let g ∈ PE be a time-event function as in (3). For all t ∈ R+, let UT(g, t) ∈ E∗, be
the sequence of events prescribed by g up to time t, i.e. UT(g, t) = e1e2 · · · el if l ∈ N is such
that either l < |s| and t ∈ [

∑l
r=1 tr,

∑l+1
r=1 tr) or |s| = l and t ∈ [

∑l
r=1 tr,+∞).

Alternatively, UT(g, t) = UT(gt), where gt(s) =
{
g(s) if s ≤ t
⊥ if s > t

, i.e. UT(g, t) is the finite

sequence of events prescribed by the time-event function gt, where the restriction of gt to [0, t]
equals g, and after time t, gt prescribes no event.

Definition 18 (Sequential input-output map of H). The sequential input-output map RH of H is
the map RH : (U ×D)∗ → 2O

∗×E∗i defined as follows. RH(ε) = {(ε, ε)} and for each sequence
of discrete input symbols u1, u2, . . . , uk ∈ U , disturbance symbols d1, d2, · · · dk ∈ D, k ≥ 0,

(o1o2 · · · ok, ô) ∈ RH((u1, d1)(u2, d2) · · · (uk, dk))

for letters o1, o2, . . . , ok ∈ O and words ô ∈ E∗i if there exist time-event functions g ∈ P∆
Ed,µ

,
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o ∈ PEo and ô ∈ PEi such that (o, ô) = υH(u, g) where

∀t ∈ R+ : u(t) =
{
ui if t = (i− 1)∆ for some i = 1, 2, . . . , k
⊥ otherwise

ô = UT(ô, k∆)
∀i = 1, 2, . . . , k : oi = o(((i− 1)∆, i∆])

∀i = 1, 2, . . . , k : di = UT(gi,∆) where ∀t ∈ R+ : gi(t) =
{
g(t+ (i− 1)∆) if t > 0
⊥ otherwise

Notice that UT(g, k∆) = d1d2 . . . dk.

Proposition 2. The map RH is a sequential input-output map in the sense of Definition 19.

Intuitively, RH is the result of composing the input-output map of H with the interfaces convert-
ing outputs from PEo , signals of internal events from PEi , disturbances from PEd

to sequences
in O∗, E∗i and D∗, and with the interfaces which convert sequences U∗ to maps PEc

.

More precisely, the behavior described by RH can be derived from the behavior of the hybrid
plant as follows. Consider the sequence s = (u1, d1)(u2, d2) · · · (dk, uk) ∈ (U × D)∗. The
response RH(s) is obtained as follows. We construct a time-event function u ∈ PEc

which
takes value ui at time instance (i − 1)∆ and ⊥ otherwise. The input signal u corresponds to a
control input generated by a sampled-data controller. We construct every possible disturbance
signal g ∈ PEd,µ, such that on the interval ((i− 1)∆, i∆] the sequence of events prescribed by g
equals di, i.e. there exists t1, t2, . . . , tl ∈ ((i − 1)∆, i∆] such that g(t1)g(t2) · · · g(tl) = di and
g(s) = ⊥ if s /∈ {t1, t2, . . . , tl}. We feed the control input u and each such disturbance signal
g into the hybrid plant H and as a result we obtain output signal o ∈ PEo

and internal event
signal ô ∈ PEo

. We then convert o into a sequence o1o2 · · · ok ∈ O∗ by defining oi as the set of
output events which are values of o on the interval ((i − 1)∆, i∆]. Similarly, we convert ô into
the sequence of events ô prescribed by the time-event function ô. We then assign (o1o2 · · · ok, ô)
as a possible response of RH . Notice, that due to the fact that several disturbance signals g can
be consistent with the sequence d1, d2 · · · dk, there are several possible responses (o1o2 · · · ok, ô)
of RH , i.e. RH describes a non-deterministic discrete plant.

It turns out the in order to solve Problem 1, we can view RH as the input-output map of a purely
discrete-event plant, and solve a discrete-event control problem for RH as a plant and K as a
requirement. The solution of the latter control problem is a sequential controller, such that the
corresponding hybrid controller solves Problem 1. In the subsequent subsections we present the
formal definition of the discrete-event control problem and the reduction of Problem 1 to the
discrete-event control problem.

4.2 Discrete control problem

The discussion above prompts us to formulate the following discrete counterpart of Problem 1.
The controllers of interest are sequential controllers. The discrete-event plants of interest admit
the following signals; control inputs from U , disturbances from D, observable outputs O, and
internal events from Ei. We use sequential input-output maps to formalize the behavior of the
plant.

Definition 19 (Discrete plant). A discrete plant is a sequential input-output mapR : (U×D)∗ →
2O
∗×E∗i .

The language of the closed-loop system is defined as follows. Recall that w1:i denotes the prefix
of a (possibly infinite) word w, formed by the first i letters, and that |w| = ∞ if w is an infinite
word.

12



Definition 20 (Closed-loop language). The closed-loop language L(R/φ)) ⊆ E∗i ∪ Eωi of the
interconnection of R with the sequential controller φ is the set of all words ô ∈ E∗i ∪ Eωi for
which there exist letters di ∈ D, oi ∈ O, ui ∈ U , i ∈ N and indices 0 = k0 ≤ k1 ≤ · · · ki ≤
satisfying supi∈N ki = |ô| such that

∀i ∈ N, i > 0 : (o1o2 · · · oi, ô1:ki
) ∈ R((u1, d1)(u2, d2) · · · (ui, di))

ui = φ(o1o2 · · · oi−1)

The discrete counterpart of Problem 1 is the following.
Problem 2 (Discrete control problem). For a sequential input-output map R, and for a language
of control requirements K ⊆ E∗i ∪ Eωi , find a sequential controller φ such that the language
inclusion L(R/φ) ⊆ K holds.

For more details on the discrete-event control problem above, see [21]. In order to solve Problem
2 we will assume that the sequential input-output map and the specification language both have a
finite-state representation. More specifically, we need to assume that R is quasi-recognizable, i.e.
it is recognized by a quasi-sequential transducer. As to the specification language K, we require
that its component made up of words of finite length is a regular language, and its component
consisting of words of infinite length can be recognized by a Büchi automaton. If R is quasi-
recognizable andK satisfies the above assumption, then in many cases Problem 2 can be reduced
to finding a winning strategy of a Rabin- or parity-game [14, 11]. We defer the details to another
paper. If the assumptions below hold, then a solution of Problem 2 can be obtained by using
Ramadge-Wonham (RW for short) supervisory theory with partial observations, see [21] for more
details.
Assumption 1 (Assumptions for applying RW [21]). • R is a quasi-recognizable sequential

input-output map,

• K = Ksafe ∪ lim(Ksafe) where Ksafe ⊆ E∗i is regular and prefix-closed.
Theorem 1 ([21]). If Assumption 1 holds, then a controller solving Problem 2 can be computed
using classical Ramadge-Wonham supervisory control synthesis with partial observations.

4.3 From Problem 1 to Problem 2

It turns out that any sequential controller solving Problem 2 for the sequential input-output map
RH also solves Problem 1.
Theorem 2 (Hybrid vs. discrete control). If φ is a sequential controller, then the closed-loop
language of the interconnection of RH with φ contains the closed-loop language of the intercon-
nection of the associated hybrid controller Cφ with H , i.e. L(H/Cφ) ⊆ L(RH/φ). Hence, if φ is
a solution of Problem 2 for RH and K ⊆ E∗i ∪ Eωi , then the associated hybrid controller Cφ is a
solution of Problem 1.

The proof of Theorem 2 can be found in §8. The only remaining problem is that RH need
not admit a finite-state representation suitable for solving Problem 2. according to §4.2. The
remedy is to solve Problem 2 not for RH but for an quasi-recognizable abstraction of RH . The
computation of a quasi-recognizable abstraction, more precisely, a finite-state quasi-sequential
transducer recognizing it is discussed in §5. In fact, if K also satisfies Assumption 1 of §4.2, then
Ramadge-Wonham theory can be applied to solve Problem 2, and hence Problem 1.

Informally, an abstraction of RH is a sequential input-output map which has the property that its
response to any sequence of discrete inputs and disturbances includes the response of RH to that
particular sequence. The formal definition is as follows.
Definition 21 (Abstraction). The sequential input-output map R is an abstraction of the map RH
if for all s ∈ (U ×D)∗, the inclusion RH(s) ⊆ R(s) holds.
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Theorem 3 (Control of abstraction). Assume that R is an abstraction or RH . Then for any se-
quential controller φ, L(RH/φ) ⊆ L(R/φ). Hence, if φ solves Problem 2 for R, then φ solves
Problem 2 for RH .

The proof of Theorem 3 is presented in §8. A finite-state abstraction of RH can be computed as
described in §5. Theorem 2 and Theorem 3 yield the following procedure for solving Problem 1.

1. Use §5 to compute a finite-state abstraction R of RH

2. Use the results of §4.2 to compute a solution to Problem 2 for R and the original control
requirements specified by K.

3. Compute the hybrid controller Cφ associated with φ.

5 Finite-state abstraction of RH

In this section we define a quasi-sequential transducer recognizing an abstraction of RH . To this
end, we will have to restrict the class of hybrid systems under consideration. In §5.1 we define
the class of hybrid systems for which a quasi-recognizable abstraction can be computed. In §5.2
we present the precise definition the above-mentioned quasi-sequential transducer, and list some
system classes for which it can be computed effectively.

5.1 Hybrid systems

The definition of hybrid systems of interest is as follows.
Definition 22. A discrete i/o hybrid system H is a tuple

(SH , δ, λi, λo, E, {fq, Ru,q,Φq,e | q ∈ Q, u ∈ Ec, e ∈ Ei ∪ Eo}, h0) (5)

• E = Ec ∪ Ed ∪ Eo ∪ Ei is a set of events

• Ed is the finite set of disturbances,

• Ec is the finite set of control inputs,

• Eo is the finite set of outputs,

• Ei is the finite set of internal events

• Q = Qc ×Qd is the discrete state-space of H , Qc, Qd are finite sets.

• δc : Q × Ec → Qc is the discrete-state transition function which determines the state-
transition rules for control inputs,

• δd : Q × (Ed ∪ Ei) → Qd is the discrete-state transition function determines the state-
transition rules for disturbances and internal events.

• X ⊆ Rn is the continuous state space, X is a closed set with non-empty interior and
boundary, i.e. int X 6= ∅, ∂X = X \ int X 6= ∅.

• SH = Q×X is the state-space of H .

• fq = fqc : Rn → Rn, q = (qc, qd) ∈ Q, is a continuous and globally Lipschitz map; note
that fq depends only on the Qc-valued component qc of q,

14



• Ru,q : X → X with q ∈ Q and u ∈ Ec is the reset map,

• Φq,e ⊆ int X , q ∈ Q is a guard generating the event e ∈ Eo ∪ Ei.

• λo : Q×Ed → Eo is a partial map, responsible for generating outputs when a disturbance
event occurs.

• λi : Q × Ed → Ei is a partial map, responsible for generating internal events when a
disturbance event occurs.

• h0 = (qc0, q
d
0 , x0) ∈ SH is the initial state of the system.

The system H is simply a hybrid system [32], evolution of which follows the classical definition,
but whose parameters are subject to the following restrictions. The set E = Ec ∪ Ed ∪ Eo ∪ Ei
can be regarded as the set of discrete events. The disturbances from Ed are imposed by the
environment. The control inputs from Ec can be used by the controller to influence the system
behavior. Only disturbances from Ed and control inputs from Ec can change the continuous state
of the system. An event e ∈ Eo ∪ Ei is generated by H either if the continuous state crosses
the guard set, or when an event from Ed arrives. The generation of an event from Eo does not
change the state of H . Generation of an event from Ei changes only the Qd-valued component
of the discrete state-space.

The discrete states ofH are elements ofQ = Qc×Qd, i.e. each discrete state is a pair q = (qc, qd)
where qi ∈ Qi, i = 1, 2. The continuous dynamics in the discrete state (qc, qd) depends only on
qc. The state-transition rule for a discrete state q = (qc, qd) ∈ Q is as follows. If an event u from
Ec arrives, and the current discrete state is q = (qc, qd) ∈ Q, then the Qc-valued component of
the new discrete state becomes δc(q, u). If a disturbance event d ∈ Ed arrives, then theQd-valued
component of the new discrete state is δd(q, d). If an event e ∈ Ei occurs, then the Qd-valued
component of the new discrete state is δd(q, e). For an event from Eo the discrete state does
not change. The continuous dynamics in the discrete state q = (qc, qd) is determined by the
differential equation ẋ = fqc(x). The reset maps for an event u ∈ Ec are specified by Ru,q . For
all the events from Ed ∪ Eo ∪ Ei the corresponding reset map is the identity. Note that while
the differential equations associated with a discrete state (qc, qd) depend only on qc, the readout
maps λi, λo, the reset maps, the discrete state-transition maps δc and δd and and the guard sets
Φq,e, e ∈ Eo ∪ Ei depend on both qc and qd.

In order to define the dynamics of H formally, we will need the following result.

Proposition 3. For any qc ∈ Qc, and for any initial state z0 ∈ int X , the initial value problem

ż = fqc(z) and z(0) = z0 (6)

has a unique differentiable solution in Rn on the whole time axis [0,+∞). In addition, either
z(t) remains inside the interior int X of X forever, or it leaves int X through the boundary of
X in finite time. That is, there exists β = β(qc, z0) ∈ [0,+∞] such that for all t ∈ [0, β),
z(t) ∈ int X . In addition, β < +∞, then z(β) ∈ ∂X , i.e. z(β) belongs to the boundary of X .
We refer to [0, β) as the maximal interval of existence of the solution of (6) inside int X .

Definition 23 (Flow of the vector field fqc ). For any time instant t ∈ [0,+∞) and for any qc ∈ Qc
define the flow f tqc : X → X of fqc as follows. For any z0 ∈ int X , consider the solution z of
the initial value problem (6) and its maximal existence interval [0, β) in X . Then f tqc(z0) ={
z(t) if t < β
z(β) if β ≤ t < +∞ . For any z0 ∈ ∂X , let f tqc(z0) = z0.

In other words, f tqc(z0) gives either the solution of (6) inside int X at time t, if it exists, or the
the point of the curve z which belongs to the boundary of X and through which z leaves int X ,
i.e. the first point of z which does not belong to the interior int X . Notice that our definition of
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the flow differs from the classically accepted one. The reason for the definition above is that we
are interested in the evolution of the system only in the interior int X of X .

Proposition 4 (Semigroup property). The flow defined above has the semi-group property; for
each s, t ∈ R+, f tqc(fsqc(x)) = f t+sqc (x) and f0

qc(x) = x for all qc ∈ Qc, x ∈ X .

The proof of Proposition 4 is presented in §8. Using the notation above, we formulate the follow-
ing additional assumptions, which will be used in the rest of the paper.

Assumption 2. For all q = (qc, qd) ∈ Q, Σ ∈ {Eo, Ei},

A1. Initial state is not on the boundary We assume that the initial continuous state x0 belongs
to int X .

A2. Disjoint guards: ∀e1 6= e2 ∈ Σ : Φq,e1 ∩ Φq,e2 = ∅, i.e. the guard sets Φq,e1 and Φq,e2
are disjoint,

A3. Minimum time between repeating events: for each e ∈ Σ, there exists 0 < T =
T(q, e) ∈ R+ such that if x ∈ Φq,e then ∀s ∈ (0,T) : fsqc(x) /∈ Φq,e, ∀x ∈ X .

A4. Bounded number of events on bounded time interval For each T > 0, there exists
T(q, T,Σ) ∈ N such that for any x ∈ X , the system H generates at most T(q, T,Σ)
events from Σ on the interval [0, T ], if started from the state (q, x). Formally, if the events
e1, e2, . . . , ek ∈ Ei, and time instances t1 < t2 < . . . < tk ∈ [0, T ] are such that f tiqc(x) ∈
Φqc,qd

i−1,ei
, where qd0 = qd, qdi ∈ Qd, i = 1, 2, . . . , k are arbitrary, then k ≤ T(q, T,Σ).

A5. Reset maps and the state-transition map δc depend only onQc. For each q = (qc, qd) ∈
Q and each u ∈ Ec, Ru,q and δc(q, u) depend only on the Qc-valued component qc of q.
I.e. if q̂ = (qc, q̂d), then Ru,q = Ru,q̂ and δc(q, u) = δc(q̂, u).

A6. Internal events generated by discrete states The map λi is a complete map, i.e. for any
q ∈ Q, d ∈ Ed, λi(q, d) is defined. Moreover, if e = λi(q, d), then for any q̂ ∈ Q,
Φq̂,e = ∅. In other words, no internal event generated by λi can be generated by crossing a
guard.

Remark 4 (Assumption A5 can be dropped). The definition of the state trajectory and input-
output map of H which is presented below can still be used, if Assumption A5 is dropped. The
computation of a finite-state abstraction which is presented in §5.2.1 can be extended to hybrid
systems for which Assumption A5 does not hold. However, this extension is notationally more
involved.

Proposition 5 (Assumption A3 implies Assumption A4). If Assumption A3 holds, then Assump-
tion A4 holds and T(qc, qd, T ) can be bounded from above as follows. If T = min{T(qc, s, e) |
e ∈ Ei ∪ Eo, s ∈ Qd} > 0, then T(qc, qd, T ) ≤ d|Qq||Ei ∪ Eo|(1 + T/T)e.

The proof of Proposition 5 can be found in §8. The intuition behind the assumptions is the
following. Assumption A2 ensures that at most one output and at most one internal event is
generated at any time instance. Assumption A3 ensures that the continuous state crosses the
guard set, i.e. if a continuous state hits the guard set, then it also leaves the guard set and does
not return for some time. Finally, Assumption A4 ensures that only a finite number of outputs or
internal events are generated on any finite time interval. In fact, it provides an upper bound on
the number of events. This is needed in order to avoid accumulation of events.

Next, we define the state evolution of H , by defining the input-to-state map. The latter maps
inputs from PEc

and disturbances from PEd
to states.
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Definition 24 (State trajectory). For any state h = (qh, xh), qh = (qch, q
d
h) ∈ Q, xh ∈ X and for

any input u ∈ PEc
and disturbance d ∈ PEd

, the corresponding state-trajectory is the map

ξH(h, u, d) : R+ 3 t 7→ (q(t), x(t)) ∈ SH
where the discrete state components q(t) = (qc(t), qd(t)) ∈ Q and the continuous state compo-
nent x(t) ∈ X satisfy the following.

Define q(0−) = qh and for t > 0 let q(t−) = lims↑t q(s), i.e. q(t−) is the left hand-side
limit of q(s) at time instance t. That is, q(t−) = q if there exists r ∈ (0, t) such that for all
s ∈ [t − r, t), q(s) = q. Denote by qc(t−) and qd(t−) the Qc- and Qd-valued components of
q(t−), i.e. q(t−) = (qc(t−), qd(t−). Let x(0−) = xh and if t > 0, then let x(t−) = lims↑t x(s),
i.e. x(t−) is the left-hand side limit at t of the map s 7→ x(s). Then,

1. The value of (q(t), x(t)) at t = 0 is as follows; qd(0) = qdh,

qc(0) =
{
δc(qh, u(0)) if u(0) ∈ Ec
qch otherwise

x(0) =
{
Ru(0),qh

(xh) if u(0) ∈ Ec
xh otherwise

2. Let t > r > 0 be such that for all s ∈ [t − r, t), u(s) = ⊥, i.e. no input event takes place
between t − r and t. If u(t) = u ∈ Ec, i.e. a control input arrives at time instance t, then
qc(t) = δ(q(t−), u) and x(t) = Ru,q(t−)(x(t−)).

3. If u(s) = ⊥ on the interval (t− r, t] for some t > r > 0, then qc(t) = qc(t− r) = qc and
x(t) = frqc(x(t− r)), where frqc is the flow for time r as in Definition 23. In other words,
we let the continuous state evolve from x(t − r) according to the differential equation
ż = fqc(t−r)(z) for time r or until the solution z hits the boundary ∂X , whichever happens
first. In the latter case, the continuous state does not change after it has hit the boundary.

4. Let t > r > 0 be such that for all s ∈ (t − r, t), d(s) = ⊥, u(s) = ⊥ and x(s) /∈⋃
e∈Ei

Φq(t−r),e, i.e. no disturbance, input or internal event takes place on the interval
(t− r, t). Then qd(s) = qd(t− r) for all s ∈ [t− r, t). If d(t) = e ∈ Ed, i.e. a disturbance
event occurs at time t, then qd(t) = δd(q(t−), e). If d(t) = ⊥, and x(t−) ∈ Φq(t−),e

for some e ∈ Ei, then qd(t) = δd(q(t−), e). Finally, if both d(t) = ⊥ and x(t−) /∈⋃
e∈Ei

Φq(t−),e, then qd(t) is unchanged, i.e. qd(t) = qd(t− r).

Proposition 6. The state trajectory ξH(h0, u, d) is well-defined.

The proof of Proposition 6 can be found in §8. Note that the proof of Proposition 6 provide an
explicit construction for the state trajectory and it could be used as an alternative constructive def-
inition. Also note that in the definition of the state trajectory the disturbances have a preference;
the system first reacts to inputs, then to disturbances, and only after this the generation of events
using guards takes place.

Notice that the state-trajectory ξH(h, u, d) is well-defined, even if disturbances and control inputs
happen simultaneously. Next, we define the input-output map of H induced by its initial state.
This input-output map will be of the same form as in Definition 9.

Definition 25 (Input-output map ofH). Define input-output map of the hybrid systemH induced
by state h ∈ SH as υH,h : PEc

× PEe
→ PEo

× PEi
so that for any input u ∈ PEc

and
disturbance d ∈ PEd

,
υH,h(u, d) = (o, ô)

where the time-event functions o ∈ PEo and ô ∈ PEi are defined as follows. For each time
instance t ∈ R+ denote the current state of H by ξH(h, u, d)(t) = (q(t), x(t)) ∈ Q × X ,
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q(t) = (qc(t), qd(t)). Recall from Definition 24 the definition of the state q(t−). For each
t ∈ R+, o(t) and ô(t) are defined then as follows.

o(t) =

 e ∈ Eo if x(t−) ∈ Φq(t−),e and d(t) = ⊥, and t > 0
λo(q(t−), d(t)) if d(t) ∈ Ed, t > 0, and λo(q(t−), d(t)) is defined

⊥ otherwise

ô(t) =

 e ∈ Ei if x(t−) ∈ Φq(t−),e and d(t) = ⊥ and t > 0
λi(q(t−), d(t)) if d(t) ∈ Ed, t > 0, and λi(q(t−), d(t)) is defined

⊥ otherwise
(7)

We denote by υH the input-output map υH,h0 of H induced by the initial state h0 of H .

Informally, the output of H is obtained from the current state (q, x) is follows. If there are no
disturbances, then an output or internal event e is generated if the continuous state x belongs to
the corresponding guard set Φq,e. If a disturbance d arrives, then an output (resp. internal event)
is generated according to the readout map λo (resp. λi). That is, the output (resp. internal event)
equals λo(q, d), (resp. λi(q, d)) whenever a disturbance d has arrived.

Remark 5 (Role of disturbances). In other words, we assume that the disturbances do not influ-
ence the differential equations describing the continuous state evolution.

Proposition 7 (Input-output maps are well-defined). The input-output map υH,h is well-defined,
i.e. for any input u ∈ PEc and d ∈ PEd

, (o, ô) = υH,h(u, g) is uniquely defined and o, ô are
time-event functions from PEo

and PEi
respectively. Moreover, υH,h(u, g) is causal.

The proof of Proposition 7 can be found in §8.

Remark 6 (Role of Assumption A3). Notice that while (7) indeed defines o and ô as functions of
time with values in Eo∪{⊥} and Ei∪{⊥} respectively, Assumption A3 is needed to ensure that
these maps are time-event functions.

5.2 Computation of a finite-state abstraction of RH

Below we will present the definition of the quasi-sequential transducer, which recognizes an
abstraction of the sequential input-output map RH associated with H . Throughout the section
we assume that H is the hybrid system of Definition 22, and that H satisfies Assumption A1–
A6.

5.2.1 Quasi-sequential transducer recognizing the sampled input-output behavior of H

We will need a number of assumptions on H . In order to state these assumptions, we need the
following definitions. We start with the definition of the state-space R(H) of the finite-state
abstraction of H .

Definition 26 (State-space of the finite-state abstraction). Let R(H) be the set Let R(H) =⋃∞
i=0Q×Hi, such that

H0 = {x0} and Hi+1 = Hi ∪ {f∆
qc(x), f∆

qc(Ru,s(x)) | x ∈ Hi,

qc ∈ Qc, s ∈ Q, u ∈ Ec},∀i ∈ N

where x0 is the continuous component of the initial state of H .

In the sequel we will use the following assumption

Assumption 3 (Finiteness ofR(H)). We assume that the setR(H) is finite.

18



The assumption above is a very strong one, and finding systems for which it is true is a non-
trivial task. We will provide sufficient conditions for the finiteness of R(H) in §5.2.2. In §6 we
will provide an example of a system for which these sufficient conditions are true.

Remark 7 (Finiteness ofR(H) can be dropped). The notion of a quasi-sequential transducer can
be extended to allow systems with infinite state-spaces. The concept of a sequential input-output
maps recognized by a quasi-sequential transducer with an infinite state-space can be defined in
the same way as for the finite-state quasi-sequential transducer. If we drop the assumption that
R(H) is finite, then the system H∆(P) to be defined below is an infinite-state quasi-sequential
transducer and all the results of this subsection hold. In particular, Proposition 8, Theorem 4 and
remain true, even if R(H) is infinite. Hence, the construction below can be seen as a general
scheme to sample a hybrid system, i.e. to convert a continuous-time hybrid system to a discrete-
time one.

The main idea behind the construction of the sampled-time abstraction is that it is enough to look
at states at sampling times, i.e. at elements of R(H). In addition, it is possible to estimate the
events generated during a sampling interval by using the state at the beginning of the sampling
time and applying the flow. More precisely, we will introduce the notion of guard abstraction
predicates, i.e. predicates which are true whenever an event is generated in the sampling interval
as a result of crossing a guard. The guard abstraction predicates can be thought of as an abstrac-
tion (approximation) of the guard set. The sampled-time abstraction will be parameterized by a
collection of such predicates. The better these predicates approximate the guard sets, the closer
the behavior is of the sampled-time abstraction to that of the original plant.

Definition 27 (Guard abstraction predicates). Consider a discrete state q = (qc, qd) ∈ Q and an
event e ∈ Ei ∪ Eo. The relation Pq,e ⊆ X is said to be a guard abstraction predicate for the
guard set Φq,e, if either Pq,e = ∅ and e = λi(q, d) for some q ∈ Q, d ∈ Ed, or

∀x ∈ R(H) : [(∃t ∈ (0,∆] : f tqc(x) ∈ Φq,e) =⇒ x ∈ Pq,e] (8)

We call a collection P = {Pq,e}q∈Q,e∈Ei∪Eo
a collection of guard abstraction predicates, if for

each qc ∈ Qc, e ∈ Ei ∪ Eo, Pq,e is a guard abstraction predicate for the guard set Φq,e. The
collection of guard predicatesP is called computable, if for every q ∈ Q, e ∈ Ei∪Eo a numerical
algorithm 1 exists to decide whether x ∈ Pq,e. The collection P is called exact approximation of
guards, if for all q = (qc, qd) ∈ Q, e ∈ Ei ∪ Eo,

∀x ∈ R(H) : [(∃t ∈ (0,∆] : f tqc(x) ∈ Φq,e) ⇐⇒ x ∈ Pq,e] (9)

i.e. instead of the implication in (8), equivalence holds.

Intuitively, a guard abstraction predicate Pq,e contains those continuous states, started from which
the guard set corresponding to the event e is crossed within time ∆. Consequently, a computable
collection of guard abstraction predicates is just a collection of computable (in a certain sense)
sets Pq,e with the above property.

We will present a general scheme for constructing a quasi-recognizable abstraction of H . The
construction uses a fixed collection of guard abstraction predicates as parameters. In general, the
behavior of this state abstraction will contain the original symbolic behavior of RH . Note that
finding computable collections of guard abstraction predicates is a non-trivial task, and represents
one of the core problems in computing the abstraction. Later in this paper, we will present
classes of hybrid systems, for which such computable guard abstraction predicates can be found.
However, first we present the general procedure for constructing a symbolic abstraction of H .

Definition 28 (Sampled-time abstraction). Let P = {Pq,e}q∈Q,e∈Ei∪Eo be a collection of guard
abstraction predicates for the system H . Define the quasi-sequential transducer H∆(P) as

H∆(P) = (R(H), (U ×D)∗ ×O∗ × E∗i , E,R(H), h0) where
1By a numerical algorithm we mean an algorithm which uses the usual elementary arithmetical operations on real

numbers. It means that when applied to rational numbers, the algorithm becomes an algorithm in the usual sense.
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• h0 = (qc0, q
d
0 , x0) is the initial state of H∆; it coincides with that of H .

• E : R(H) × (U × D) × O × E∗i → R(H) is the state-transition relation defined as
follows. For each u ∈ U , d ∈ D, o ∈ O and ô ∈ E∗i , E(h1, u, d, o, ô) is defined and
E(h1, u, d, o, ô) = h2 if and only if hi = (qi, xi) ∈ R(H), i = 1, 2, where qi = (qci , q

d
i ) ∈

Qc ×Qd and xi ∈ X , i = 1, 2, and the following holds.

1. The state components qc2 and x2 are computed as follows.

qc2 = δc(q1, u) and x2 = f∆
qc
2
(Ru,q1(x1)) (10)

Here δc(q1, u) and Ru,q1(x1) are interpreted for u = ⊥ as identity maps, i.e.

δc(q1,⊥) = qc1 and R⊥,q1(x1) = x1

2. Assume that d = e1e2 · · · ek, 0 ≤ k ≤ µ, e1, e2, . . . , ek ∈ Ed. Here µ is the fixed
bound on the number of disturbances within the intervall (0,∆] from Notation 4.
Then the sequence ô is of the form ô = z1z2 · · · zl, where k ≤ l ≤ T((qc2, q

d
1),∆)+k

and z1, z2, . . . , zl ∈ Ei and the following holds. There exists indices i1 < i2 < · · · <
ik ∈ {1, 2, . . . , l} and discrete states si ∈ Qd, i = 0, 1, . . . , l such that s0 = qd1 ,
sl = q2

d and for all i = 1, . . . , l

si =

 δd(qc2, si−1, zi) if Ru,q1(x1) ∈ Pqc
2,si−1,zi and i /∈ {i1, i2, . . . , ik}

δd(qc2, si−1, er) if i = ir for some r ∈ {1, 2, 3, . . . , k},
and zi = λi(qc2, si−1, er)

(11)

3. The output o ⊆ 2Eo is an arbitrary subset of events from Eo, such that if e ∈ o, then
the following condition holds;

Ru,q1(x1) ∈ Pqc
2,si−1,e for some i ∈ {1, 2, . . . , l} and i /∈ {i1, i2, . . . , ir}, or

λo((qc2, sir−1), er) = e for some r ∈ {1, 2, 3, . . . , k} (12)

Here i1, i2, . . . , ik and s1, s2, . . . , sl are the same as in (11) from the previous item.

Intuition The intuition behind the definition of H∆(P) is the following. The states of H∆(P)
are those states of H which can be reached from h0 at sampling times. By assumption, this set is
finite. A state transition of H∆(P) associated with a discrete input u, disturbance d ∈ D, output
o ∈ O and sequence of internal events ô ∈ E∗i is obtained as follows. First, if the current state of
H∆(P) is h1 = (qc1, q

d
1 , x1), then the new state will be h2 = (qc2, q

c
1, x2), where h2 is the state of

H reachable from h1 in time ∆, under the following conditions;

1. H receives input event u at time 0, and no input event after that,

2. H receives a disturbance signal g, such that the sequence of disturbance events correspond-
ing to g is d

3. the sequence of internal events generated by H while moving from h1 to h2 equals ô.

4. the set of outputs generated by H while moving from state h1 to h2 coincides with o

Condition 1 and the fact that the Qc- and Rn-valued state components depend only on the time
and input events yield (10).

The definition of qd2 takes into account the fact that the evolution of the Qd-valued state com-
ponent depends on the disturbances and internal events. In order to define the value fo q2

d, the
sequence of disturbances and the sequence of internal events should be specified. The former is
d, the latter is encoded in ô.
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From the definition of H and Assumption A6 it follows that an internal event is generated either
as the result the application discrete readout maps at the arrival time of a disturbances, or when
crossing a guard, and for each event precisely one of the above conditions hold. The latter means
that the knowledge of ô and d is sufficient to determine the relative order of internal events and
disturbances. This allows us to compute the sequence of Qd-valued discrete states which the
system H goes through on the interval (0,∆] while moving from h1 to h2. The computation of
these Qd-valued states along with checking Condition 3 is formalized in (11). There, the first
case describes the situation when an internal event is generated because of crossing a guard, and
the second one describes the generation of an internal event by discrete readout map. The former
is approximated by checking if x2 belongs to the guard abstraction predicate corresponding to the
guard. It is clear that if the system evolution indeed crosses the guard, then x2 will belong to the
guard abstraction predicate. The converse need not be true in general. We need guard abstraction
predicates because we cannot precisely estimate the time and state in which H crosses the guard.

Finally, Condition 4 is formalized in (12). Indeed, an output event can be generated while crossing
the guard, or by using the discrete readout maps. The former is stated in the first branch of (12),
the latter is stated in the second branch. Notice that in (12) crossing the guard is checked by
checking if x2 belongs to the corresponding guard abstraction predicate.

Notice that the rules (12–11) allow more sequences o and ô than H (more precisely, RH ) can
generate. However, we will claim that anything H can generate is also allowed by H∆(P), i.e.
H∆(P) is an abstraction of RH .

Formally, we state the following regarding the well-posedness and computability of H∆(P).

Proposition 8 (Well-posedness and computability). The tuple H∆(P) is a quasi-sequential trans-
ducer. If P is computable and the reset maps and flows are numerically computable, then the
state transition map E of H∆(P) is computable.

The proof of Proposition 8 is presented in §8. The most important property of H∆(P) is that it
provides an abstraction of RH .

Theorem 4 (Abstraction). The relation R(H∆(P)) recognized by H∆(P) is a sequential input-
output map and it is an abstraction of RH .

The proof of Theorem 4 is presented in §8. This and the fact that H∆(P) is a quasi-sequential
transducer, implies RW theory can be used to solve Problem 4.2 for R = R(H∆(P)), if K
satisfies Assumption 1, and the solution yields a solution of the original control problem for H .

5.2.2 Sufficient conditions for Assumption 3

Notice that the computation of H∆(P) relies heavily on the finiteness of R(H). This calls for
studying conditions under R(H) is finite. Below we will present sufficient conditions for a
finiteness of R(H). The conditions are based on existence of a Lyapunov-like function and are
inspired by [29].

Theorem 5 (Lyapunov-like conditions for finiteness of R(H)). . Consider the hybrid system H
from Definition 22. Consider a finite set X0 ⊆ X . If there exists a smooth map V : Rn → R
such that

1. For all x ∈ X , V (x) ≥ 0 and V −1(0) ∩ X ⊆ ∂X .

2. There exists a constant c > 0 such that for all qc ∈ Qc, gradV (x)fqc(x) < −c, ∀x ∈ X ,

3. For all x ∈ int X , u ∈ Ec and q ∈ Q, V (Ru,q(x)) ≤ V (x),
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4. For all e ∈ Ec, q ∈ Q, Ru,q(∂X ) ⊆ X0, i.e. the boundary of X is mapped to the finite set
X0 by reset maps

thenR(H) is finite.

The proof of Theorem 5 is presented in §8.
Remark 8 (Possible extensions). The sufficient conditions of Theorem 5 are probably not the
most general ones. In particular, on could consider non-smooth Lyapunov functions V , or Lya-
punov functions which depend on the discrete state component. The investigation of all these
possibilities would go beyond the scope of this paper.
Remark 9 (Feedback transformation rendering R(H) finite). The conditions of 5 indicate that it
might be possible to transform a system by a feedback transformation to a one for whichR(H) is
finite. To this end, one could follow an approach similar to stabilization using control Lyapunov
functions [27]. That is, one could try to find a control law and a function V : X → R such that
V satisfies the conditions of Theorem 5 if the control law applied. This approach would allow to
apply the construction of H∆(P) to systems which do not satisfy Assumption 3. In this paper we
will not develop the theory of feedback transformation yielding a finiteR(H).
Remark 10 (Robustness of computation of H∆(P)). Assume that the conditions of Theorem 5
hold and assume that the reset maps are continuous on int X , and that X0 = {z0}, i.e. is a
singleton set. In addition, assume that each abstraction predicate Pq,e, q ∈ Q, e ∈ Ei ∪ Eo is
an open subset of int X . We then conjecture that if we perturb the hybrid system H by a small
perturbation, and we apply Definition 28 to the perturbed hybrid system Hd, then the resulting
quasi-sequential transducer Hd

∆(P) recognizes the same sequential input-output map as H∆(P),
i.e. R(Hd

∆(P)) = R(H∆(P)).

Finally, we would like to discuss computational methods for finding maps V satisfying the condi-
tions of Theorem 5. Since V is a Lyapunov-like functions, the computational methods for finding
V are simillar to that of for Lyapunov-functions. Assume that the reset maps are affine on int X ,
and the vector fields fq are L’ure-type [13]. More precisely, assume the following.
Assumption 4. The reset maps of H are affine in int X , the vector fields of are of L’ure-type, the
state-space is polyhedral, i.e.

X = {x ∈ Rn | nTi x− bi ≤ 0, i = 1, 2, . . . ,K}
Ru,q(x) = Mu,qx+ bu,q, ∀x ∈ int X ,

fqc(x) = Aqcx+
m∑
j=1

Bqc,jφqc,j(rTqc,jx), ∀x ∈ Rn

µ1σ + γ1 ≤ φqc,j(σ) ≤ µ2σ + γ2, ∀σ ∈ R
for matricesMu,q, Aqc ∈ Rn×n, vectors bu,q, rqc,j , Bqc,j , ni ∈ Rn, and scalars bi, µ1, µ2, γ1, γ2 ∈
R, q = (qc, qd) ∈ Q, e ∈ Ei ∪ Eo, u ∈ Ec, i = 1, 2, . . . ,K, j = 1, 2, . . . ,m. The maps
φqc,j : R→ R, j = 1, 2, . . . ,m are piecewise-affine, continuous, globally Lipschitz.
Proposition 9. Assume that H satisfies Assumption 4. If for some j ∈ {1, 2, . . . ,K}, c > 0 and
for all x ∈ X , q = (qc, qd) ∈ Q,

1. nTj (Aqcx +
∑m
j=1(µijBqc,jr

T
qc,jx + γijBqc,j)) > c, for any choice of i1, i2, . . . , im ∈

{1, 2}.

2. If x ∈ int X , then nTj (Mu,qx− x+ bu,q) ≥ 0 for any u ∈ Ec

then V (x) = (bj − nTj x) satisfies the conditions 1–3 of Theorem 5.
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Remark 11. If X is a bounded closed polytope, then we can replace Condition 1 of Proposition
9 with nTj (Aqcx +

∑m
j=1(µijBqc,jr

T
qc,jx + γijBqc,j)) > 0, for all i1, i2, . . . , im ∈ {1, 2} and

∀x ∈ X . Indeed, if the above condition holds, then

c = min
i1,i2,...,im∈{1,2},x∈X

nTj (Aqcx+
m∑
j=1

(µijBqc,jr
T
qc,jx+ γijBqc,j))

exists (in fact, the minimum is taken at one of the vertices), and c > 0. Hence, Condition 1 of
Proposition 9 holds.

Notice that the conditions of Proposition 9 can be checked numerically. In particular, by check-
ing for each facet nTj x + bj = 0 whether the conditions of Proposition 9 holds, one can find a
Lyapunov-like map satisfying the conditions of Theorem 5. Notice the resemblance of Proposi-
tion 9 to the control-to-facet approach of [12].

5.2.3 Classes of hybrid systems for which computable collection of guard abstraction predi-
cates exist

As it was noted before,H∆(P) is computable, ifP is a computable collection of guard abstraction
predicates. Below we present two system classes for which a computable collection P exists,
along with the definition of P . The first such class is the class well-discretizable hybrid systems.
The main property of these systems is that the guard set is monotone in the continuous dynamics.

Definition 29 (Well-discretizable hybrid systems). A hybrid system H of the form (5) is called
well-discretizable if for each q = (qc, qd) ∈ Q = Qc × Qd and event e ∈ Eo ∪ Ei, there exist
smooth maps hq,e : Rn → R, such that

Φq,e ⊆ {x ∈ int X | hq,e(x) = 0} (13)

Φq,e 6= ∅ =⇒ (∀x ∈ Rn :
d

dx
hq,e(x)fqc(x) > 0) (14)

That is,(13) says that an (output or internal) event is generated, if the state-trajectory passes the
zero set of some smooth map, and (14) says that the image of the state-trajectory by each of this
map is monotone increasing function of time. The latter means that if the state crossed a guard,
then it will not come back to this guard any more, unless a discrete state change occurs. These
smooth maps can originate from timing constraints or from sensor position, passing of which
triggers an event. Notice that well-discretizable hybrid systems automatically satisfy Assumption
A3–A4.

For well-discretizable hybrid systems, we can define the following collection of guard abstraction
predicates.

Definition 30 (Guard abstraction predicates for well-discretizable systems). Assume that H is
a well-discretizable hybrid system. Using the notation of Definition 29, for each (qc, qd) ∈ Q,
e ∈ Ei ∪ Eo define the set Pq,e as

Pq,e = {x ∈ int X | hq,e(x) ≤ 0 and hq,e(f∆
qc(x)) ≥ 0} (15)

The collection P = {Pq,e}q∈Q,e∈Ei∪Eo
will be called a well-discretizable collection.

Lemma 1. IfH is a well-discretizable hybrid system, then for each q = (qc, qd) ∈ Q, e ∈ Ei∪Eo,
the set Pq,e defined in (15) is an abstraction predicate of the guard Φq,e, and thus the collection P
from Definition 30 is a collection of guard abstraction predicates. In addition, P is computable, if
hq,e(x) and the flow f tqc(x) can be computed for all x ∈ Rn, t ∈ R, q = (qc, qd) ∈ Q = Qc×Qd,
e ∈ Ei ∪ Eo.

The proof of Lemma 1 is presented in §8.
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Remark 12 (Exact approximation of guards). If (13) holds with equality for all q ∈ Q, e ∈
Ei ∪ Eo, i.e. Φq,e = h−1

q,e(0), then the well-discretizable collection P from Definition 30 is an
exact approximation of guards.

Below we define the class of semi-algebraic hybrid systems for which H∆ is computable as
well. For the definition of semi-algebraic sets and maps we refer the reader to [4]. Roughly
speaking, semi-algebraic sets and maps are sets and maps defined using polynomial equations
and inequalities.

Definition 31 (Semi-algebraic hybrid systems). A hybrid system H of the form (5) is semi-
algebraic if for all q = (qc, qd) ∈ Q,

1. The reset maps Ru,q are semi-algebraic for all u ∈ Ec.

2. The guards sets Φq,e are semi-algebraic for all e ∈ Eo ∪ Ei.

3. The flow X × R+ 3 (x, t) 7→ f tqc(x) is a semi-algebraic map.

4. X is a semi-algebraic set.

The above system class is a subclass of semi-algebraic hybrid automata of [24]. For semi-
algebraic hybrid systems, we can define the following collection of guard abstraction predicates.

Definition 32 (Guard abstraction predicates for semi-algebraic systems). Assume that H is a
semi-algebraic hybrid system. For each q = (qc, qd) ∈ Q, e ∈ Ei ∪ Eo, define the set Pq,e

Pq,e = {z ∈ Rn | ∃s ∈ (0,∆] : fsqc(z) ∈ Φq,e} (16)

We call the collection P = {Pq,e}q∈Q,e∈Eo∪Ei a semi-algebraic collection of guard abstraction
predicates.

Lemma 2 (Guard abstraction predicates). Assume that H is a semi-algebraic hybrid system. For
each q = (qc, qd) ∈ Q, e ∈ Ei ∪ Eo, the set Pq,e defined in (16) is semi-algebraic and Pq,e
is an abstraction predicate for the guard Φq,e. Hence, the collection P from Definition 16 is a
collection of guard predicates. Moreover, P is computable, and it is an exact approximation.

6 Illustrating example

The goal of the section is to illustrate the theory by presenting the solution of a control problem
occurring in printers. A more detailed exposition of the control problem can be found in [22].

The task of desired controller is to take care of error-handling of the toner system of the printer.
More explicitly, recall from [22] that the process of transferring the image onto the paper sheet
takes place in a section of the printer which is known as the fuse pinch. This is the point where
the tape containing the image meets the paper sheet, which is carried from the feeder tray of the
printer to the finisher. The tape which contains the image is called the TTF belt and it is part of
the toner subsystem. After being treated in the fuse, the paper gets transferred to the finisher,
which is the place it can be picked up from.

The TTF belt forms a closed loop which revolves around its center. That is, each point of the TTF
belt makes a full cycle. The image gets onto the TTF belt from a separate entity, which we call
the writing unit. This unit is situated at a certain point of the loop formed by the TTF belt. The
fuse is situated at another point of the loop. There is a third important item, the cleaner, which
is the point after the fuse where the TTF belt is cleaned. The error situation we are interested in
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arises when there is a paper jam, i.e. the paper does not arrive to the fuse pinch at the designated
time instance. In this case if nothing is done, the TTF belt touches directly the pinch of the
fuse, instead of the paper. The pinch gets polluted, which leads to bad quality when printing
subsequent pages. The task is to prevent the portion of the TTF belt containing the image from
coming into contact with the fuse pinch, if there is no paper in the fuse. The only sensor which is
available is the X-fine sensor which becomes activated when the sheet gets delayed in the paper
path, possibly due to paper jam. When activated, the sensor generates the Sheet too late signal .
We have the following control actions at our disposal to solve the control problem.

Lift the fuse pinch from the TTF belt. This action physically decouples the TTF belt from the
fuse pinch, so that no physical contact between the two entities is possible. Note that this
action requires certain amount of time.

Change the speed of the TTF belt. Note that there is a range of admissible speeds for the TTF
belt.

Informally, the task is to figure out when and by how much to slow down the TTF belt so that
there is time to lift the fuse pinch. The main underlying idea of the proposed plant model is
the following. We model the behavior of the toner system from the point of view of the TTF
belt. That is, we start looking at the system from the moment when writing unit starts writing the
image on the TTF belt. Subsequently we keep track of the point of the TTF belt which was at the
writing unit when the transfer of the image from the writing unit onto the TTF belt started.

6.1 Formal model of the plant

In this section we will present the formal model of the plant. When defining the model, we will
use the following parameters of the toner system.

Fp The relative position of the fuse with respect to the writing unit along the TTF tape. More
precisely, this is the length of the section of the TTF tape which is spanned between the
fuse and the writing unit. The length is measured in the direction of revolution of the TTF
belt.

Cp The relative position of the cleaner with respect to the writing unit along the TTF tape. In
other words, this is the length of the section of the TTF tape which is spanned between
the cleaner and the writing unit and passes through the fuse. The length is measured in the
direction of revolution of the TTF belt.

Vmax The maximal allowed speed of the TTF belt.

Vmin The minimal allowed speed of the TTF belt.

Tfo The time which is needed to open the fuse pinch.

Tpl,max The latest time instance at which a Sheet too late signal can be generated.

Tpl,min The earliest time instance at which a Sheet too late signal can be generated.

A The maximal value of acceleration with which the speed of TTF can be increased.

D The maximal value of deceleration in with which the TTF tape can be slowed down.

In the sequel we will assume that the parameters satisfy the following conditions.
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Assumption 5. Vmax > Vmin > 0, Tpl,max > Tpl,min ≥ 0, 0 < Fp < Cp, and
Tpl,max >

Fp
Vmax

.

For the concrete parameter values occurring in practice, these conditions hold.

Formally, the plant model is a hybrid system of the form

H = (SH , δ, λi, λo, E, {fq, Ru,q,Φq,e | q ∈ Q, u ∈ Ec, e ∈ Ei ∪ Eo}, h0)

The various components of H are explained below.

The set of control actions Ec = {cFU , cFD, cA, cD}
where the elements of Ec denote the following control actions

cFU – lifts the fuse pinch (i.e. physically decouples the fuse pinch and the TTF belt),

cFD – puts back the fuse pinch (i.e. physically couples it with the TTF belt),

cA – accelerate the TTF tape with a constant acceleration A,

cD – slow down the TTF tape with a constant acceleration −D.

Output events Eo = {eo,PL}
The event eo,PL is generated when the plant receives the Sheet too late signal. In a sense, it
would be more logical to model the arrival of Sheet too late as an external input, which is visible
to the controller. However, we can always model external inputs as a combination of disturbances
and outputs, as described in Remark 1.

Disturbances Ed = {ed,PL}
The event ed,PL models that Sheet too late signal was sent to the plant. The arrival of ed,PL
immediately leads to the generation of the output eo,PL and internal event ei,PL.

Set of internal events Ei = {eNPIF , ei,PL, emin,PL, emax,PL, eFUc,⊥}

eFUc The event eFUc denotes the situation when the lifting of the fuse pinch has been completed.

eNPIF The event eNPIF is generated when the toner image reaches the fuse, the fuse is not
decoupled from the TTF belt, but there is no sheet in the paper path at the fuse. In short,
eNPIF is generated exactly in a situation which we want to avoid.

⊥ is a dummy event introduced to make λi a complete map. It has no physical meaning.

ei,PL The event ei,PL is generated if Sheet too late signal is fed to the plant in the time interval
[Tpl,min,Tpl,max], i.e. ei,PL is just a copy of Sheet too late .

emin,PL The event emin,PL is generated after Tpl,min time units have passed.

emax,PL The event emax,PL is generated after Tpl,max time units have passed.

The intuition behind the choice of internal events is the following. The internal events capture a
situation which is relevant for specifying the control requirements. The role of each event will
become clear after we have formulated the control requirements.

Discrete state-space Q The discrete state-space Q = Qc ×Qd is defined as follows.
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• Qd is the set of maps φ : Vard → {True, False}, where Vard = {SPL,Sr,SFUc} The
interpretation of the elements of Vard is as follows.

SPL equals True, if a Sheet too late has arrived.

SFUc equals True if the lifting of the fuse pinch has been completed.

Sr equals True if the current time which has passed since the start-up of the plant is be-
tween [Tpl,min,Tpl,max].

• Qc is the set of all maps φ : Var→ {True, False} where Var = {SFU ,SFD,SA,SD}
is the set of predicate symbols. The physical interpretation of the variables is as follows.

SFU equals True if an order to lift the fuse pinch has been received.

SFD equals True if the fuse pinch is on the TTF belt.

SA equals True if a command to accelerate the TTF belt was received.

SD equals True if a command to decrease the speed of the TTF belt was received.

That is, the elements ofQd andQc are valuations of predicates from Vard and Varc respectively.
In the sequel, we will write φ(X) instead of φ(X) = True, and ¬φ(X), instead of φ(X) =
False for all φ ∈ Qd, X ∈ Vard, or φ ∈ Qc and X ∈ Varc.

Continuous state-space X ⊆ R4, X = {x = (P,V,Cfu,T) ∈ R4 | P ≤ Cp} where
P,V,Cfu,T ∈ R is as follows.

P The variable P denotes the current position of the point of the TTF belt which stood at the
writing unit when the writing of the image began.

V The variable V denotes the current speed of the TTF tape.

Cfu The variable Cfu is active only if the pinch is being lifted. It denotes the time which has
passed since the command to lift the pinch was issued.

T Denotes the time which has passed since the start of the TTF tape. It is an auxiliary variable
which is needed to determine whether a Sheet too late signal arrives within the designated
time interval [Tpl,min,Tpl,min].

Vector field fqc , qc ∈ Qc The vector field for the discrete state component qc is defined as
follows. For any x = (P,V,Cfu,T) ∈ R4, fqc(x) = (f1,qc(x), f2,qc(x), f3,qc(x), f4,qc(x)).

f1,qc(x) = max{Vmin,V}

f2,qc(x) =

 Aφmin(x)φmax(x) if qc(SA)
−Dφmin(x)φmax(x) if qc(SD) and qc(SFD)
0 otherwise

φmin(x) =


1 if V ∈ (Vmin + ε,+∞)
(V−Vmin)

ε if V ∈ (Vmin,Vmin + ε]
0 if V ∈ (−∞,Vmin]

φmax(x) =


1 if V ∈ (−∞,Vmax − ε)
(Vmax−V)

ε if V ∈ [Vmax − ε,Vmax)
0 if V ∈ [Vmax,+∞)

f3,qc(x) = 1 and f4,qc(x) = 1 (17)

Here ε is an arbitrarily chosen small enough number. The intuition behind the definition of φmin
and φmax and f2,qc is the following. The TTF belt is accelerated or slowed down depending
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on the input, but if the maximal (minimal) speed is reached, then the speed does not change
anymore. The is expressed by multiplying the right-hand side with φminφmax. The map φmin

is the continuous approximation of the indicator function
{

1 if V ≥ Vmin

0 if V < Vmin
and φmax is

the continuous approximation of the indicator function
{

1 if V ≤ Vmax

0 if V > Vmax
. The number ε

indicates the accuracy of the approximation; the smaller ε is, the better is the approximation. It is
easy to see that with the definition above, fi,qc(x), i = 1, 2, . . . , k are continuous, and globally
Lipschitz.

Recall that with the definitions above, the continuous dynamic of H in state qc is defined by

Ṗ = f1,qc(P,V,Cfu,T)

V̇ = f2,qc(P,V,Cfu,T)
˙Cfu = f3,qc(P,V,Cfu,T)

Ṫ = f4,qc(P,V,Cfu,T)

In other word, the derivative of the position P of the image is the variable V describing the speed
of motion of the image (the speed of motion of the TTF belt). Moreover, we look at the motion
of the image up to the point of the cleaner, i.e. if P is greater or equal than Cp, the we assume
that P does not change. This is expressed in the definition of f1,qc and X . The speed of TTF
belt either increases, decreases or stays the same depending on whether control inputs cA, cD or
neither cA nor cD were fed into the system in the past. Notice that cD leads to slowing down
the TTF belt only if the fuse pinch is still on the TTF belt, i.e when qc(SFD) true. Moreover, the
speed is not allowed to go below Vmin and above Vmax. This is expressed in the definition of
f2,qc . The component f3,qc describes the evolution of the clock variable Cfu, and f4,qc describes
the evolution of T.

Reset map Ru,q , u ∈ Ec and q ∈ Q
The value of the reset map for the continuous state x = (P,V,Cfu,T) is defined as follows.

Ru,q(P,V,Cfu,T) =

 (P,V, 0,T) if u = cFD and P < Cp
(P,V,Cfu,T) ifu 6= cFD and P < Cp
(Cp,Vmax,Tfo,Tpl,max) if P = Cp

That is, the reset map is the identity map except when the control input is the command to lift
the fuse pinch. In the latter case, the variable Cfu is set to zero. In addition, the position Cp
has been reached, all the states are mapped to (Cp,Vmax,Tfo,Tpl,max). The latter is just for
convenience, it has no physical meaning, as the evolution of the plant beyond Cp is of no interest.
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Discrete state-transition map δc : Q × Ec → Qc. For each q1 = (qc1, q
d
1) ∈ Q, qc2 ∈ Qc, and

for each u ∈ Ec, δc(q1, u) = qc2 if and only if the following holds.

qc2(SFU ) =

 qc1(SFU ) if u /∈ {cFU , cFD}
False if u = cFD
True if u = cFU

qc2(SFD) =

 qc1(SFD) if u /∈ {cFU , cFD}
True if u = cFD
False if u = cFU

qc2(SA) =

 qc1(SA) if u /∈ {cA, cD}
False if u = cD
True if u = cA

qc2(SD) =

 qc1(SD) if u /∈ {cA, cD}
False if u = cA
True if u = cD

Discrete state-transition map δd : Q × (Ed ∪ Ei) → Qd. For each q = (qc1, q
d
1) ∈ Q, for all

e ∈ Ed ∪ Ei, qd2 = δ(q1, e)

qd2(SPL) =
{

True if e = ed,PL and qd1(Sr)
qd1(SPL) otherwise

qd2(Sr) =

 True if e = emin,PL and ¬qd1(Sr)
False if e = emax,PL and qd1(Sr)
qd1(Sr) otherwise

qd2(SFUc) =
{

True if e = eFUc
qd1(SFUc) otherwise

Discrete readout map λo : Q× Ed → Eo. For all q ∈ Q, ed ∈ Ed,

λo(q, ed) =
{

eo,PL if ed = ed,PL
undefined otherwise

Discrete readout-map λi : Q× Ed → Ei. For all q = (qc, qd) ∈ Q, ed ∈ Ed,

λi(q, ed) =
{

ei,PL if ed = ed,PL and qd(Sr)
⊥ otherwise

Guard sets Φq,e For all e ∈ Eo ∪ Ei, q = (qc, qd) ∈ Q, Φq,ei,P L
= ∅, and for

e ∈ {eNPIF , eFUc, emin,PL, emax,PL}
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the guard set Φqc,e is defined as follows.

Φq,eNP IF
=

 {(P,V,Cfu,T) ∈ R4 | P = Fp, P < Cp} if qc(SFD) or (qc(SFU ) and
¬qd(SFUc)) and qd(SPL)

∅ otherwise

Φq,eF Uc
=

 {(P,V,Cfu,T) ∈ R4 | Cfu = Tfo, , P < Cp} if qc(SFU ) and ¬qc(SFD),
and ¬qcSFUc

∅ otherwise

Φq,emin,P L
=

 {(P,V,Cfu,T) ∈ R4 | T = Tpl,min, P < Cp} \ Φq,eF Uc
if ¬qd(Sr),
and ¬qd(SPL)

∅ otherwise

Φq,emax,P L
=

 {(P,V,Cfu,T) ∈ R4 | T = Tpl,max, P < Cp} \ Φq,eF Uc
if qd(Sr),
and ¬qd(SPL)

∅ otherwise

The initial state is h0 = (qc0, q
d
0 , x0) Here qc0(X) = False for all X ∈ {SFU ,SA,SD}, and

qc0(SFD) = True. For Y ∈ {SPL,SFUc,Sr}, qd(Y ) = False and x0 = (0,Vmax, 0, 0).
That is, in the initial state no command is issued and no Sheet too late has been received yet.
Moreover, in the initial state the image is in position zero, the clocks Cfu and T are zero, the
speed of the TTF belt is maximal.

It is easy to see that Assumption 1 are satisfied for H .

6.2 Formal model of the control requirements

The control requirements are formulated as a language K = Ksafe ∪ lim(Ksafe) ⊆ E∗i ∪ Eωi .
The language Ksafe allows for any sequence as long as it does not contain eNPIF , i.e. Ksafe =
(Ei \ eNPIF )∗.

6.3 Formal statement of the control problem

The control problem for the toner system can be stated in formal terms as follows. Fix a sample
rate ∆ > 0. Assume that at most one disturbance even can occur in a sampling intervall, i.e.
µ = 1. That is, we assume that in any sampling interval at most one Sheet too late signal
can arrive. The task is to find a sampled-data controller φ : O∗ → U , where O = 2Eo , and
U = Ec ∪ {⊥} such that the closed-loop language satisfies L(H/Cφ) ⊆ K.

6.4 Solution of the control problem

We can solve the the formulated control problem using the procedure outlined in §4. That is,
first we compute a finite-state approximation H∆(P) of H . Notice that the language of control
requirementsK = Ksafe∪lim(Ksafe) andH∆(P) satisfies Assumption 1. Hence, we can apply
the algorithm described in [21] to solve the following control problem. Find a discrete controller
φ : O∗ → U such that L(R/φ) ⊆ K. Here R is the input-output map recognized by the quasi-
sequential transducer H∆(P), and L(R/φ) is the closed-loop language of the interconnection of
R and φ. By Theorem 3 and Theorem 4 it then follows that the obtained controller φ solves the
original control problem.

Notice that H∆(P) is computable. In fact, we argue that the plant H defined above has the
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property thatR(H) is finite and H is well-discretizable. Define the set

X0 = {(Cp,Vmax,Tfo,Tpl,max)}

Clearly, X0 ⊆ X . In addition, notice that ∂X = {(x1, x2, x3, x4) ∈ R4 | x1 = Cp} and hence
Ru,q(∂X ) ⊆ X0 for all u ∈ Ec and q ∈ Qc. In addition, define the map V : X → R as
V (x1, x2, x3, x4) = (Cp − x1). We will show that V satisfies the conditions of Theorem 5. It
then follows that for all x ∈ X , V (x) ≥ 0 and V (x) = 0 if and only if x ∈ ∂X . For each q ∈ Qc,
by computing gradV fqc we get the following

gradV fqc(x) = −f1,qc(x) < −Vmin

Finally,

V (Ru,q(x)) =

 V (x) if u 6= cFU and x /∈ ∂X
V (x1, x2, 0, x4) = V (x) if u = cFU and x /∈ ∂X
0 if x ∈ ∂X

i.e. V (Ru,q(x)) ≤ V (x) for all x /∈ ∂X . That is, all the conditions of Theorem 5 hold.

It is left to show that H is well-discretizable.

To see thatH is well-discretizable, notice the following. For e ∈ {eFUc, eNPIF , emin,PL, emax,PL},
for each q = (qc, qd) ∈ Q, Φq,e ⊆ Pq,e = {x ∈ R4 | hq,e(x) = 0}, where hq,e is defined as
follows

hq,eF Uc
(x) =

{
(x3 −Tfo} if qc(cFU )
1 otherwise

hq,emin,P L
(x) =

{
(x4 −Tpl,min) if ¬qd(Sr) and ¬qd(SPL)
1 otherwise

hq,emax,P L
(x) =

{
(x4 −Tpl,max) if ¬qd(SPL) and qd(Sr)
1 otherwise

hq,eNP IF
(x) =

{
x1 − Fp if qd(SPL) and (qc(SFD) or (qc(SFU ) and ¬qd(SFUc))
1 otherwise

It then follows that for all q = (qc, qd) ∈ Q, e ∈ Ei, if Φq,e 6= ∅, then grad hq,e(x)fqc(x) = 1
or grad hq,e(x)fqc(x) = f1,qc(x) ≥ Vmin > 0. That is, H is indeed well-discretizable and
P = {Pq,e}q∈Q,e∈Ei defines a collection of guard abstraction predicates.

Using the collection of guard abstraction predicates P defined above we computed the finite-state
abstraction H∆(P) of H . Subsequently, we can use H∆(P) as the plant model to solve the
discrete-event control problem. The controllers synthesized for various parameter values, based
on an algorithm related to what was presented in this paper can be found in [22]. Note that in
[22] no proof of correctness of the algorithm is provided. The current paper can be seen as a
theoretical foundation of algorithms of the type [22].

7 Discussion and conclusions

We have presented a control problem for hybrid systems with discrete inputs and outputs. In addi-
tion, we have proposed a class of hybrid systems for which the control problem can be solved by
solving a discrete-event control problem for a finite-state abstraction of the original hybrid sys-
tem. Furthermore, we identified several system classes, for which such a finite-state abstraction
can be computed.
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The above system classes are not only theoretically interesting, but they can also be applied
practice. In particular, we can apply our results to the error-handling problem for printers, see
[22]. In [22] a preliminary version of the solution procedure of this paper was already used for the
simplified problem without partial observations. We expect that the results of this paper will be
relevant for control problems arising in other application domains, such as logistic and production
systems.

Future research includes extension of the results to more general classes of hybrid systems and
study of robustness and numerical issues. Furthermore, we would like to improve the computa-
tional complexity of the algorithms and reduce the size of the obtained finite-state controller.
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8 Proofs

The goal of this section is to present the proofs of the results stated in the main text of the paper.
In §8.1 we state the proofs of the statements from §4. In §8.2 we state the proofs of the statements
from §5.1. In §8.3 we state the proofs of Proposition 8, and Theorem 4. In §8.4 we present the
proof of Theorem 5. In §8.5 we state the proof of Lemma 1.

8.1 Proofs of the statements from §4

Proof of Proposition 1. Consider any disturbance signal d ∈ PEd,µ. We will construct the input
signal u ∈ PEc

, the output signal o ∈ PEo
and the signal of internal events ô ∈ PEi

such
that (4) holds. To this end, define the input signal ui ∈ PEc , output signal oi ∈ PEo and
internal event signal ôi ∈ PEi

for all i ∈ N recursively as follows. For i = 0, let u0(s) ={
φ(ε) if s = 0
⊥ otherwise and (o0, ôo) = υH(u0, d). For i > 0, define ui, oi and ôi as follows. Let

ui(s) =

 ui−1(s) if s < i∆
φ(S1S2 · · ·Si) if s = i∆

⊥ otherwise

where Sj = oi−1(((j−1)∆, j∆])∩Eo for all j = 1, 2, . . . , i. Moreover, let (oi, ôi) = υH(ui, d).
Notice that ui(s) = ui−1(s) for all s ∈ [0, i∆), and hence by causality of the input-output map
υH , oi(s) = oi−1(s) and ôi(s) = ôi−1(s) for all s ∈ [0, i∆). Define the input signal u ∈ PEc

by
u(s) = ui(s) for all s ∈ [0, (i + 1)∆), i ∈ N. Consider (o, ô) = υH(u, d). By causality of υH
we get that for all i = 1, 2, . . . , k, o(s) = oi(s) and ô(s) = ôi(s) for all s ∈ [0, i∆). Hence, we
get that o(((j − 1)∆, j∆]) ∩ Eo = oj((j − 1)∆, j∆]) ∩ Eo = Sj for j ∈ N, j > 0. From this,
due to the definition of Cφ, it follows that u = Cφ(o). Combining the conclusions above, we get
that (4) holds.

Proof of Proposition 2. We will show that RH satisfies Conditions 1–4 of Definition 5. To this
end, consider a sequence

s = (u1, d1)(u2, d2) · · · (uk, dk) ∈ (U ×D)∗ (18)
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where k ≥ 0, ui ∈ U , di ∈ D. We will construct maps u ∈ PEc and g ∈ P∆
Ed,µ

such that

u(t) =
{
ui if t = (i− 1)∆ for some i = 1, 2, . . . , k
⊥ otherwise and

UT(gi,∆) = di with gi(s) =
{
g(s+ (i− 1)∆) if s > 0
⊥ otherwise for all i = 1, 2, . . . , k (19)

Existence of u is trivial. For any d = e1e2 · · · el, l ≤ µ and e1, e2, . . . , el ∈ Ed, define the map
gd ∈ P∆

Ed,µ
as follows.

gd(s) =
{
ei if s = i ∆

µ+1 for some i = 1, 2, . . . , l
⊥ otherwise

(20)

It follows that UT(gd,∆) = d and gd(0) = gd(∆) = ⊥. The map g can then be defined as
follows

g(s) =
{
gdi

(s− (i− 1)∆) if s ∈ ((i− 1)∆, i∆] for some i = 1, 2, . . . , k
⊥ if s > k∆

It follows that gi(s) = gdi(s) for all s ∈ (0,∆] and hence UT(gi,∆) = di for all i = 1, 2, . . . , k.

Now we are ready to prove that Conditions 1–4 of Definition 5 hold.

Condition 1
From definition of RH it follows that RH(ε) = {(ε, ε)}. Next, we show that RH(s) is a non-
empty set for all s ∈ (U ×D)∗. To this end, assume that s is of the form (18) and consider maps
u ∈ PEc , g ∈ P∆

Ed,µ
satisfying (19). Consider (o, ô) = υH(u, g) and define ô = UT(ô, i∆), oi =

o(((i − 1)∆, i∆]), i = 1, 2, . . . , k. From the definition of RH it follows that (o1o2 . . . ok, ô) ∈
RH(s). That is, RH(s) is a non-empty set.

Condition 2
Again, assume that s is of the form (18). Assume that (o, ô) ∈ RH(s). From the definition of
RH(s) it then follows that there exist maps u and g satisfying (19) and such that o = o1o2 · · · ok
for some o1, o2, . . . , ok ∈ O. Hence, |o| = |s| = k.

Condition 3
Assume that s = ŝa ∈ (U × D)∗ is of the form (18) with k > 0 and let a = (uk, dk). It then
follows that ŝ = (u1, d1) . . . (uk−1, dk−1). Assume that (o, ô) ∈ RH(sa). Then there exists
maps u and g which satisfy (19) and for which it holds that (o, ô) = υH(u, g), ô = UT(ô) and
o = o1o2 . . . ok, oi = o((i−1)∆, i∆]), i = 1, 2, . . . , k. Let ū(s) = u(s) for all s ∈ [0, (k−1)∆)
and ū(s) = ⊥ otherwise. Consider (y, x) = υH(û, g). By causality of υH we get that y(s) =
o(s) and x(s) = ô(s) for all s ∈ [0, (k−1)∆]. Hence, oi = y((i−1)∆, i∆]), i = 1, 2, . . . , k−1
and x = UT(x, (k − 1)∆) = UT(ô, (k − 1)∆). Notice that UT(ô, k∆) = UT(ô, (k − 1)∆)x̂
for some x̂ ∈ E∗i . Hence, we get that ô = xx̂. Moreover, the definition of RH implies that
(o1o2 · · · ok−1, x) ∈ RH(ŝ). That is, Condition 3 of Definition 5 holds.

Condition 4
Assume that s is of the form (18) and let (o, ô) ∈ RH(s). Assume that a = (uk+1, dk+1) ∈
(U ×D). We will show that there exists yk+1 ∈ O and x̂k+1 ∈ E∗i such that (oyk+1, ôx̂k+1) ∈
RH(sa). To this end, notice that there exist maps u and g satisfying (19) such that for (o, ô) =
υH(u, g), o = o1o2 . . . ok, ô = UT(ô, k∆) and oi = o((i− 1)∆, i∆]) for i = 1, 2, . . . , k. Define
the map û ∈ PEc as follows; û(s) = u(s) if s ∈ [0, k∆), û(k∆)) = uk+1 and û(s) = ⊥
otherwise. Recall the definition of the map gd from (20) and apply it to d = dk+1. Define the
map ĝ as follows;

ĝ(s) =
{

g(s) if s ∈ [0, k∆]
gdk+1(s− k∆) if s > k∆
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Consider (y, x) = υH(û, ĝ) and let x = UT(x, (k + 1)∆) and y = y1y2 · · · yk+1, yi = y(((i −
1)∆, i∆]), i = 1, 2, . . . , k + 1. From the definition of RH it the follows that (y, x) ∈ RH(sa).
By causality of υH , y(s) = o(s) and x(s) = ô(s) for all s ∈ [0, k∆]. It then implies that oi =
y(((i − 1)∆, i∆]), i = 1, 2, . . . , k and x = UT(x, k∆) = ô. Moreover, from the definition of
UT it follows that UT(x, (k+ 1)∆) = UT(x, k∆)x̂k+1. Hence, y = oyk+1 and x = ôx̂k+1.

Proof of Theorem 2. Consider any sequence v ∈ L(H/Cφ) in the closed-loop language of the
interconnection of H with the controller Cφ. We will show that v belongs to the closed-loop lan-
guage L(RH/φ) of the interconnection of the sequential input-output map RH with the discrete
controller φ.

To this end, notice that from v ∈ L(H/Cφ) it follows that there exists a disturbance signal
d ∈ PEd,µ, input signal u ∈ PEc

and an output signal o ∈ PEo
, internal event signal ô ∈ PEo

such that v = UT(ô) and (o, ô) = υH(u, d) and u = Cφ(o). Since Cφ is a sampled-data controller,
we get that u = Cφ(o) if and only if there exist discrete input symbols ui ∈ U , discrete outputs
oi ∈ O, i = 1, 2, . . . such that ui = φ(o1o2 · · · oi−1) and oi = o(((i− 1)∆, i∆]) ∩ Eo, and

u(t) =
{
uj if t = (j − 1)∆ for some j = 1, 2, . . .
⊥ otherwise (21)

But from definition of RH , we get that the sequences o1o2 · · · oi and UT(ô, i∆) are generated
by the input-output relation RH as a response to the sequence u1u2 · · ·ui of input symbols and
d1d2 · · · di of disturbances, i.e.

(o1o2 · · · oi, ôi) ∈ RH((u1, d1) · · · (ui, di)) (22)

Here, ôi = UT(ô, i∆), i.e. ôi is the sequence of internal events prescribed by the signal ô on the
interval ((i − 1)∆, i∆] and di = UT(gi,∆), where gi is the shift of the disturbance signal d by
(i − 1)∆, i.e. gi(s) = d(s + (i − 1)∆), for all s ∈ R+. In other words, di is the sequence of
disturbances prescribed by d in the interval ((i−1)∆, i∆]. Notice that v1:ki = ôi, where ki = |ôi|
is the length of the word ôi. That is, either lim ki = +∞ and then v is simply the limit of the
increasing sequence of words ô1, ô2, . . . ,, or there existsN such that v = ôN = ôj for all j ≥ N .
From this, (22) and ui = φ(o1o2 · · · oi−1), i = 1, 2, . . . we conclude that v ∈ L(RH/φ).

Proof of Theorem 3. Consider any sequence v ∈ L(RH/φ). Then there exist sequences of dis-
turbance symbols di ∈ D, output symbols oi ∈ O, input symbols ui ∈ U , and sequences of
internal events ôi ∈ E∗i , i = 1, 2, 3, . . ., such that ui = φ(o1o2 · · · oi−1) and (o1o2 · · · oi, ôi) ∈
RH((u1, d1)(u2, d2) · · · (ui, di)), and either there exists a finite N ∈ N such that ôi = v for all
i ≥ N , i.e. RH stops producing internal events after N steps, or v1:ki

= ôi, where ki = |ôi|,
i.e. RH keeps on producing internal events and v is the concatenation of internal events. But
by definition of abstraction we get that (o1o2 · · · oi, ôi) ∈ R((u1, d1)(u2, d2) · · · (ui, di)), i.e.
(o1o2 · · · oi, ôi) is also produced by the sequential input-output relation R as a response to distur-
bances d1, d2, . . . , di and inputs u1, u2, . . . , ui. Notice that the inputs u1, u2, . . . , ui represent the
responses of the controller φ to the outputs o1, o2, . . . , oi−1. Hence, v belongs to the closed-loop
language of the feedback interconnection of R and φ, i.e. v ∈ L(R/φ).

8.2 Well-posedness of H

Proof of Proposition 3. Consider the solution z : R+ → Rn of the differential equation ż =
fqc(z) from an initial condition z(0) = z0. Since fqc is continuous and globally Lipschitz, such
a solution exists and it is unique. Consider the set

L = {t ∈ R+ | t > 0 and ∀s ∈ [0, t) : z(s) ∈ int X}
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Since z0 ∈ int X and z is continuous, z−1(int X ) is open and contains 0. Hence, there exists
t > 0 such that [0, t) ⊆ z−1(int X ), i.e. t ∈ L. Hence, L is a non-empty set. Define β(qc, z0) =
sup L.

If β(qc, z0) = +∞, then for any t ∈ R+, there exists t
′ ∈ L such that t < t

′
and hence

z(t) ∈ int X . That is, z never leaves int X .

Assume now that β(qc, z0) < +∞. Then β(qc, z0) > 0, due to the definition of L. Assume now
that t < β(qc, z0). Then there exists t

′ ∈ L such that t
′
> t and hence z(t) ∈ int X . That is, for

all t ∈ [0, β(qc, z0)), z(t) ∈ int X .

Next, we show that x(β(qc, z0)) ∈ X . Notice that there exists a monotonically increasing se-
quence tn ∈ L such that limn→+∞ tn = β(qc, z0). Continuity of z implies that z(β(qc, z0)) =
limn→+∞ z(tn). Since z(tn) ∈ int X , we get that z(β(qc, z0)) ∈ X .

We show that z(β(qc, z0)) /∈ int X . Since ∂X = X \ int X , this shows that z(β(qc, z0)) ∈ ∂X .
Assume that z(β(qc, z0)) ∈ int X . Then β(qc, z0) ∈ z−1(int X ) and hence for some ε > 0,
(β(qc, z0)− ε, β(qc, z0) + ε) ⊆ z−1(int X ), due to the fact that z−1(int X ) is open. Hence, for
all s ∈ [0, β(qc, z0) + ε) : z(s) ∈ int X . This then implies that β(qc, z0) < β(qc, z0) + ε ∈ L,
which is a contradiction.

Proof of Proposition 4. Assume first that s ≥ β(qc, x). Then fsqc(x) = f
β(qc,x)
qc (x) ∈ ∂X and

hence f tqc(fsqc(x)) = f
β(qc,x)
qc (x). But t + s ≥ s ≥ β(qc, x) and hence fs+tqc (x) = f

β(qc,x)
qc (x).

That is, the required property holds.

Assume now that s < β(qc, x). If s + t < β(qc, x), then we get that fs+tqc (x), fsqc(x) and
f tqc(fsqc(x)) are the solutions of the differential equation ż = fqc(z) at time instances s+t, s, t and
initial conditions x, x and fsqc(x) respectively. Then by the semigroup property of the solutions
of differential equations we get that fs+tqc (x) = f tqc(fsqc(x)). Assume that s + t ≥ β(qc, x).
Consider the solution of the differential equation ż = fqc(z) from the initial state z(0) = x.
It then follows that z(τ) ∈ int X for all τ ∈ [0, β(qc, x)). Hence, f t+sqc (x) = z(β(qc, x)).
On the other hand, fsqc(x) = z(s) ∈ int X . By the semi-group property of the solutions of
differential equations, the solution ˙̂z = fqc(ẑ) from the initial state ẑ(0) = z(s) has the property
that ẑ(τ) = z(s + τ). In particular, ẑ(β(qc, x) − s) ∈ ∂X and for all τ < β(qc, x) − s,
ẑ(τ) ∈ int X . Hence, by definition of f tqc we get that f tqc(z(s)) = ẑ(β(qc, x)−s) = z(β(qc, x)).
That is, f t+sqc (x) = f tqc(fsqc(x)).

Proof of Proposition 5. Assume that Assumption A3 holds. Consider the upper bound N =
d|Qq||Ei ∪ Eo|(1 + T/T)e defined in the statement of Proposition 5. Consider any sequence
q0, q1, . . . , qk and e1, . . . , ek ∈ Σ, t1 < t2 < . . . < tk ∈ [0, T ] such that f tqc(x) ∈ Φqc,qd

i ,ei

i = 1, 2, . . . , k. For each discrete state qd ∈ Qd and event e ∈ Σ, define the set

Jqd,e = {i ∈ {1, 2, . . . , k} | qdi = qd and ei = e}
Assume that Jqd,e = {i1, ik, . . . , il}, i1 < i2 < . . . < il for some l > 0. From Assumption A3
it then follows that tir − tir−1 > T for all r = 1, 2, . . . , l − 1. Then

T ≥ til − ti1 =
l−1∑
r=1

(tir − tir−1) ≥ |Jq,e|T

That is, |Jqd,e| ≤ T/T holds for all qd ∈ Qd, e ∈ Σ. Consider the set

I =
⋃

qd∈Qd,e∈Σ,|J
qd,e
|>1

Jqd,e
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The set I is exactly the set of those indices, for which a discrete state and event combination
occurs more than once. It follows then that

|I| ≤
∑

(qd,e)∈Qd×Σ

|Jq,e| ≤
T

T
|Qd||Σ|

Notice that k ≤ |I| + |Qd||Ei ∪ Eo|, since for each i, j ∈ {1, 2, . . . , k} \ I , (qdi , ei) 6= (qdj , ej)
and there are at most |Qd||Ei ∪Eo| such elements. Taking into account that |Σ| ≤ |Ei ∪Eo|, we
get that

k ≤ (T/T + 1)|Qd||Ei ∪ Eo| = N

In order to prove Proposition 6 and Proposition 7 we need a number of technical results. These re-
sults state that hybrid systems which satisfy Assumption A1 – A4 generate finitely many internal
and output events on each time interval.

Lemma 3 (Existence of a smallest time instances when an event is generated). For any state
q = (qc, qd) ∈ Q, x ∈ X , any Σ ∈ {Ei, Eo} and any T > 0, the following holds. Either
fτqc(x) /∈

⋃
e∈Σ Φq,e for all τ ∈ (0, T ] or there exists a unique time instance τ1 ∈ (0, T ] and a

unique event e1 ∈ Σ such that fτ1qc (x) ∈ Φq,e1 and τ1 is the smallest such, i.e. for all s ∈ (0, τ1),
fsqc(x) /∈

⋃
e∈Σ Φq,e.

Proof of Lemma 3. Consider the set

SWT = {τ ∈ (0, T ] | fτqc(x) ∈
⋃
e∈Σ

Φq,e}

of als those time instances τ ∈ (0, T ], for which the flow fτqc(x) crosses a guard. If SWT is
empty, then for all τ ∈ (0, T ], fτqc(x) /∈

⋃
e∈Σ Φq,e, i.e. the conclusion of the lemma holds.

We will show that if SWT is non-empty, then the infimum τ1 = inf SWT is in fact a minimum,
i.e. τ1 ∈ SWT and for all τ1 6= τ ∈ SWT, τ1 < τ . This then shows that there exists e1 ∈ Σ
such that fτ1qc (x) ∈ Φq,e1 and for all 0 < τ < τ1, τ /∈ SWT, i.e. fτqc(x) /∈

⋃
e∈Σ Φq,e. Moreover,

by Assumption A2 (disjointness of the guards), the choice of e1 is unique.

We proceed to prove that τ1 = inf SWT = min SWT. Assume the contrary. Then there
exists a monotonically strictly decreasing sequence (sn)n∈N such that sn ∈ SWT, n ∈ N and
lim sn = τ1. Consider T = mine∈Σ T(q, e), where T(q, e) is as defined in Assumption A3. It
then follows that there exists NT ∈ N such that for all n > NT, |sn − τ1| < T/2, and hence
|sk − sl| < T for all k, l > NT. It follows from the definition of SWT that for each k ∈ N there
exists ek ∈ Σ such that fsk

qc (x) ∈ Φq,ek
. Notice that the choice of ek is unique, due to disjointness

of the guards according to Assumption A2. Let k = NT + 1. Then there exists 0 < l ≤ |Σ| such
that e = ek = ek+l. Since, k, k + l > NT, we get that sk+l − sk < T < T(q, e). Notice that
by definition of the sequence (sn), fsk

qc (x) ∈ Φq,e and fsk+l

qc (x) ∈ Φq,e. But by Assumption A3,
fsk
qc (x) ∈ Φq,e implies that for all s ∈ R+, 0 < s − sk < T(q, e), fsqc(x) /∈ Φq,e, in particular,
f
sk+l

qc (x) /∈ Φq,e. Hence we arrive to a contradiction.

Lemma 4 (Finitely many events on a finite time interval). For any state q = (qc, qd) ∈ Q and x ∈
X and any time duration T > 0, the following holds. Either fτq /∈

⋃
e∈Ei

Φq,e for all τ ∈ (0, T ],
or there exists a unique collection of time instances 0 = τ0 < τ1 < τ2 < . . . < τl ≤ T , events
e1, e2, . . . , el ∈ Ei, and discrete states qd = qd0 , q

d
1 , . . . , q

d
l ∈ Qd for some l ∈ N, l > 0, such

36



that for all j = 1, 2, . . . , l,

δd((qc, qdj−1), ej) = qdj (23)

∀s ∈ (τj−1, τj) : fsqc(x) /∈
⋃
e∈Ei

Φqc,qd
j−1,e

and fτj

qc ∈ Φqc,qd
j−1,ej

(24)

∀s ∈ (τl, T ] : fsqc(x) /∈
⋃
e∈Ei

Φqc,qd
l ,e

(25)

Proof of Lemma 4. Below we present procedure for constructing a unique collection of sequences
e1, e2, . . . , el ∈ Ei, qd = qd0 , q

d
1 , . . . , q

d
l ∈ Qd, τ1 < τ2 < . . . < τl ∈ (0, T ] satisfying (23–24).

The procedure is recursive in l. We will show that after at most T(q, Ei, T ) steps the procedure
stops, yielding a unique collection of sequences e1, e2, . . . , el ∈ Ei, qd = qd0 , q

d
1 , . . . , q

d
l ∈ Qd,

τ1 < τ2 < . . . < τl ∈ (0, T ], which satisfy (23), (24) and (25).

For l = 0, let qd0 = qd. By applying Lemma 3, we get that either for all τ ∈ (0, T ], fτqc(x) /∈⋃
e∈Ei

Φq,e, or there exists a unique choice τ1 ∈ (0, T ], e1 ∈ Ei such that fτ1qc (x) ∈ Φq,e1 and
for all 0 < τ < τ1, fτqc(x) /∈

⋃
e∈Ei

Φq,e. If we set q1 = δ((qc, qd0), e1), then we get that qd0 , q
d
1 ,

τ1, e1 satisfy (23–24) for l = 1.

Assume that for some l, we have constructed sequences qd = qd0 , q
d
1 , . . . , q

d
l ∈ Qd, e1, e2, . . . , el ∈

Ei, and τ1 < τ2 < . . . < τl ∈ (0, T ] such that (23–24) hold. By applying Lemma 3 to the dis-
crete state ql = (qc, qdl ) and continuous state xl = fτl

qc(x), and time duration T − τl, we get
that either for all s ∈ (0, T − τl], fsqc(xl) /∈

⋃
e∈Ei

Φql,e, or there exists a unique time in-
stance t ∈ (0, T − τl] and event z ∈ Ei such that f tqc(xl) ∈ Φql,z and for all s ∈ (0, t),
fsqc(xl) /∈

⋃
e∈Ei

Φql,e. In the former case, by using the fact that fsqc(xl) = fτl+s
qc (x), we get

that (25) holds. In the latter case, by setting τl+1 = t + τl, el+1 = z, qdl+1 = δd((qc, qdl ), z), we
get that the time instances τ1, τ2, . . . , τl+1 ∈ (0, T ], discrete states qd0 = qd, qd1 , q

d
2 , . . . , q

d
l+1, and

events e1, e2, . . . , el+1 ∈ Ei satisfy (23–24).

Thus the procedure above either stops with a collection of sequences τ1 < τ2 < . . . < τl ∈ (0, T ],
qd = qd0 , q

d
1 , . . . , q

d
l ∈ Qq , and e1, e2, . . . , el ∈ Ei which satisfy (23–25), or it produces infinite

sequences τ1 < τ2 < . . . ∈ (0, T ], qd = qd0 , q
d
1 , . . . ∈ Qd, e1, e2, . . . ∈ Ei, such that for each

l = 1, 2, . . ., (23–24) holds. In particular, we get that fτl
qc(x) ∈ Φqc,qd

l−1,el
for all l = 1, 2, . . . ,.

But from Assumption A4 it follows that this can hold only for a finite sequence of time instances
τ1, τ2, . . . , τN of length at most T(q, Ei, T ). Hence we arrived to a contradiction. It means that
after at most T(q, Ei, T ) steps, the procedure above stops, yielding a sequence of time instances,
discrete states and internal events satisfying (23–25). This collection of sequences is unique, as
the first element of each sequence is fixed, and at each step, the procedure above yields a unique
extension of the sequences at hand.

Using the lemmas above, we are ready to present the proof of Proposition 6.

Proof Proposition 6. Define the states q̂h = (q̂ch, q̂
d
h) and x̂h as follows.

q̂dh = qdh

q̂ch =
{
δc(qh, u(0)) if u(0) ∈ Ec
qch otherwise

x̂h =
{
Ru(0),qh

(xh) if u(0) ∈ Ec
xh otherwise
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In order to prove the proposition, we need to show that the following is true.

Claim 0
There exist unique maps q : R+ → Q and x : R+ → X , such that q(0) = q̂h, x(0) = x̂h and
(q, x) satisfies conditions 2–4.

Indeed, assume that Claim 0 is true. Then set ξH(h, u, g)(t) = (q(t), x(t)) for all t ∈ R+.
Notice that then (q, x) also satisfies conditions 1–4 of Definition 24. In addition, if (q̂, x̂) is
a pair of maps which satisfy conditions 1–4 of Definition 24, then (q̂, x̂)(0) = (q̂h, x̂h) and
(q̂, x̂) satisfies conditions 2–4 of Definition 24 and hence by Claim 0, (q̂, x̂) = (q, x). That is,
Definition 24 defines ξH(h, u, g) uniquely.

Proof of Claim 0
To this end, assume that ti+1, i ∈ N, i < K are the positive switching times of u and d; i.e.
0 < t1 < t2 < . . . such that for all t ∈ R+, t > 0, u(t) ∈ Ec or d(t) ∈ Ed if and only if
t ∈ {ti+1 | i ∈ N, i < K}. Here either K = +∞ or K ∈ N. If K ∈ N, then for all i ≥ K, let
ti = tK−1 + i. Let K = {0, 1, 2 . . . ,K − 1} if K < +∞ or K = N, if K = +∞.

Consider the interval Ti = [ti, ti+1] ∩ R+, i ∈ K, where t0 = 0. Consider an arbitrary state h ∈
SH . We will construct pair of maps (qi(h), xi(h)) : Ti → SH such that (qi(h)(ti), xi(h)(ti)) =
h and the following holds.

1. Claim 1
Let h0 = (q̂h, x̂h) as in Definition 24 and for each i ∈ N let

hi+1 = (qi(hi)(ti+1), xi(hi)(ti+1))

Define the pair of maps (q, x) : R+ → SH by (q(t), x(t)) = (qi(hi)(t), xi(hi)(t)) if
t ∈ Ti for some i ∈ N. Then (q(t), x(t)) satisfies conditions 2–4 of Definition 24.

2. Claim 2
If (q̂, x̂) : R+ → SH is a pair of maps satisfying the conditions of Definition 24 and
q̂(ti) = qi(h)(ti), x̂(ti) = xi(h)(ti), then the restriction of (q̂, x̂) to the interval Ti equals
(qi(h), xi(h)).

Assume for a moment that the two statements above are true. Then by Claim 1 (q, x) satisfies
conditions 2–4 of Definition 24. Moreover, if (q̂, x̂) also satisfies conditions 2–4 of Definition
24 then Claim 2 implies that (q, x) = (q̂, x̂). Indeed, by induction on i we can show that the
restriction of (q, x) to Ti equals the restriction of (q̂, x̂) to Ti. Since

⋃
i∈N Ti = R+, this then

implies that (q, x) = (q̂, x̂).

We conclude the proof by defining the functions (qi(h), xi(h)) and by showing that Claim 1 and
Claim 2 hold.

Definition of (qi(h), xi(h)) for i ∈ N
First, we define (qi(h), xi(h)). By applying Lemma 4 to the state h = (qh, xh) , qh = (qch, q

d
h) ∈

Q, and interval (0, ti+1 − ti] it follows that either f t−tiqc
h

(xh) /∈
⋃
e∈Ei

Φqh,e for all t ∈ (ti, ti+1]
or there exists an integer l(i, h) > 0 events e1(i, h), e2(i, h), . . . , el(i,h)(i, h) ∈ Ei, and time
instances

ti = τ0(i, h) < τ1(i, h) < τ2(i, h) < . . . < τl(i,h)(i, h) ≤ τl(i,h)+1(i, h) = ti+1 (26)

and discrete states qd0(i, h) = qdh, q
d
1(i, h), . . . , qdl(i,h)(i, h) ∈ Qd such that for all j = 1, 2, . . . , l(i, h),
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the following holds.

δd((qch, q
d
j−1(i, h)), ej(i, h)) = qdj (i, h) (27)

∀s ∈ (τj−1(i, h), τj(i, h)) : fs−tiqc
h

(xh) /∈
⋃
e∈Ei

Φqc
h,q

d
j−1(i,h),e and (28)

f
τj(i,h)−ti
qc

h
(xh) ∈ Φqc

h,q
d
j−1(i,h),ej(i,h) (29)

∀s ∈ (τl(i,h)(i, h), ti+1] : fs−tiqc
h

(xh) /∈
⋃
e∈Ei

Φqc
h,q

d
l(i,h)(i,h),e (30)

We then define the maps qi(h) = (qci (h), qdi (h) : Ti → Qc, and xi(h) : Ti → X as follows.

qdi (t) =


qdj−1(i, h) if t ∈ [τj−1(i, h), τj(i, h)) for some j = 1, 2, . . . , l(i, h)
δd(qch, q

d
l(i,h)(i, h), z) if t = ti+1 and d(ti) = z ∈ Ed

qdl(i,h)(i, h) if t ∈ [τl(i,h)(i, h), ti+1) and τl(i,h)(i, h) < ti+1

qdl(i,h)(i, h) if t = τl(i,h)(i, h) = ti+1 and d(ti+1) = ⊥

(31)

qci (t) =


qch if t < ti+1

δc(qch, q
d
l(i,h)(i, h), u(ti+1)) if t = ti+1 and τl(i,h)(i, h) < ti+1

δc(qch, q
d
l(i,h)−1(i, h), u(ti+1)) if t = ti+1 and τl(i,h)(i, h) = ti+1

(32)

xi(t) =


f t−tiqc

h
(xh) if t < ti+1

Ru(ti+1),qc
h,q

d
l(i,h)(i,h)(f

ti+1−ti
qc

h
(xh)) if t = ti+1 and τl(i,h)(i, h) < ti+1

Ru(ti+1),qc
h,q

d
l(i,h)−1(i,h)(f

ti+1−ti
qc

h
(xh)) if t = ti+1 and τl(i,h)(i, h) = ti+1

(33)

Here the notation δc(sc, sd,⊥) = sc, R⊥,s(x) = x, and δd(sc, sd,⊥) = sd is used for all
s = (sc, sd) ∈ Q.

Proof of Claim 1
We will show that (q, x) satisfies Part 2 – 4 of Definition 24. To this end, consider any t ∈ R+,
t > 0 and notice that

q(t) = qi(hi)(t) and x(t) = xi(hi)(t) for all t ∈ Ti
hi+1 = (qi(hi)(ti+1), xi(hi)(ti+1)) = (q(ti+1), x(ti+1)) (34)

It then implies that if t ∈ (ti, ti+1] for some i ∈ N, then

x(t−) = f t−tiqc(ti)
(x(ti))

x(t) = f t−tiqc(ti)
(x(ti)) if t < ti+1

qd(t) = qdj−1(i, hi) if t ∈ [τj−1(i, hi), τj(i, hi)) for some j = 1, 2, . . . , l(i, hi)

q(t−) = (qc(ti), qdj−1(i, hi)) if t ∈ (τj−1(i, hi), τj(i, h)] for some j = 1, 2, . . . , l(i, hi) (35)

We investigate three different cases, corresponding to Part 2, Part 3 and Part 4 of Definition 24
respectively. To this end notice that

1. Assume that for some t > r > 0, for all s ∈ [t−r, t), u(s) = ⊥. Without loss of generality
we can assume that r is small enough so that t−r, t ∈ (ti, ti+1] for some i ∈ N. We then get
that qc(s) = qci (s) = qci (hi)(ti) = qc(ti) for all s ∈ [t− r, t). If u(t) = u ∈ Ec, then t =
ti+1 and from (32) we get that qci (hi)(ti+1) = δc(qi(hi)(ti), qdj (i, hi), u(ti+1)) for some
j ∈ {l(i, h), l(i, h) − 1}. Combining this with (35) we get that qc(t) = δc(q(t−), u(t)).
From (33) and (35) we get that x(t) = xi(hi)(ti+1) = Ru,q(t−)(x(t−)). If u(t) = ⊥, then
from definition of qi(hi) and the discussion above it follows that qci (hi)(t) = qci (hi)(ti) =
qc(t− r). That is, (q, x) satisfies Part 2 of Definition 2.

2. Assume that for some t > r > 0, for all s ∈ (t−r, t], u(s) = ⊥. Without loss of generality
we can assume that r small enough so that t − r ∈ [ti, ti+1) and t ∈ (ti, ti+1]) for some
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i ∈ N. From (35) it follows that qc(t − r) = qc(ti). The semi-group property of the
flow implies that f t−tiqc(t−r)(x(ti)) = frqc(t−r)(f

t−r−ti
qc(t−r)(x(ti)). Hence, by (35) we get that

x(t) = frqc(t−r)(x(t− r)). That is (q, x) satisfies Part 3 of Definition 2.

3. Assume that for some t > r > 0 it holds that for all s ∈ (t− r, t), u(s) = ⊥ and d(s) = ⊥
and x(s) /∈

⋃
e∈Ei

Φq(t−r),e. It then follows that t − r, t ∈ Ti for some i ∈ N. Consider
now the time instances τ1(i, hi), τ2(i, hi), . . . , τl(i,h)(i, h), τl(i,h)+1 from (26) with h = hi.
For simplicity we shall denote τj(i, hi) by τj and l(i, h) by l in the sequel. We then get
that there exists j ∈ {1, 2, . . . , l + 1} such that t − r, t ∈ (τj−1, τj ]. From (35) it follows
that qd(s) = qd(t − r) for all s ∈ [t − r, t). Assume that d(t) = ⊥. If x(t−) ∈ Φq(t−),e

for some e ∈ Ei, then from (35) and (28)–(29) it follows that t = τj , e = ej(i, hi) and
qd(t) = qdj (i, hi). Combining this with (27) and (35) we get that that qd(t) = δd(q(t−), e).
If x(t−) /∈

⋃
e∈Ei

Φq(t−),e, then by an argument simillar to the previous one we get that
t < τj and qd(t) = qdj−1(i, hi) = qd(t− r). Finally, if d(t) ∈ Ed, then from the definition
of ti, ti+1 we get that t = ti+1 = τl+1. Hence, j ∈ {l, l + 1} and qd(t) = qdi (hi)(ti+1).
From the definition of qdi (hi)(ti+1), using the fact that q(t−) = (qc(ti), qdj−1), we get that
qd(t) = δd(q(t−), d(t)). That is, (q, x) satisfies Part 4 of Definition 24.

Proof of Claim 2
Assume now that (q̂, x̂) : R+ → SH satisfies the conditions of Definition 24 and q̂(ti) =
qi(h)(ti), x̂(ti) = xi(h)(ti). The proof of Claim 2 is done in two steps.

1. Claim 2.1 (q̂, x̂)(s) = (qi(h)(s), xi(h)(s)) for all s ∈ [ti, ti+1).

2. Claim 2.2 q̂(ti+1) = qi(h)(ti+1) and x̂(ti+1) = xi(h)(ti+1).

Since Ti = [ti, ti+1], Claim 2.1 and Claim 2.2 indeed imply Claim 2.

Proof of Claim 2.1
Since on the interval (ti, ti+1) no input or disturbance event occurs, i.e. u(t) = ⊥ and d(t) = ⊥
for all t ∈ (ti, ti+1), by Part 2 and Part 3 of Definition 24 we get that

x̂(t) = f t−tiqc
i (ti)

(x(ti)) = xi(h)(t) and q̂c(t) = qci (h)(ti) for all t ∈ [ti, ti+1) (36)

Finally, we will argue that qdi (h)(t) = q̂d(t) for all t ∈ (ti, ti+1) holds. To this end, consider
the time instances τ0(i, h), τ1(i, h), . . . , τl(i,h)(i, h) from (26). For the sake of simplicity we will
denote τj(i, h) by τj for all j = 0, 1, . . . l(i, h) and we will denote l(i, h) by l. We will show by
induction on j that q̂d|[τj−1,τj) = qdi (h)|[τj−1,τj) = qdj−1(i, h) for all j = 1, 2, . . . , l + 1.

Consider j = 1. By assumption we have that q̂d(τ0) = qd0(i, hi). From (36) and (29–30), it
follows x̂(s) /∈

⋃
e∈Ei

Φq̂(ti),e for all s ∈ [ti, τ1). From Definition 24, Part 4, the latter implies
that q̂d(s) = q̂d(ti) = qd(ti) = qd0 for all s ∈ [ti, τ1). Hence, the induction hypothesis holds
for j = 1. Assume that q̂d|[τj−1,τj) = qdj−1(i, hi) for all j = 1, 2, . . . , r, r < l. From (36) and
(29–30) it follows that x̂(τr) ∈ Φq̂(τr−1),er

, and for all s ∈ (τr−1, τr), x̂(s) /∈
⋃
e∈Ei

Φq̂(τr−1),e.
Hence, by Part 4 we get that that q̂d(τr) = δd(q̂(τr−1), er). By induction hypothesis, q̂d(τr−1) =
qdr−1(i, h), and thus from (27) we get that q̂d(τr) = qdr .

Proof of Claim 2.2
Notice that Claim 2.1 implies that

q̂(t−i+1) =
{

(qci (h)(ti), qdl ) if τl < ti+1

(qci (h)(ti), qdl−1) if τl = ti+1
(37)

x̂(t−i+1) = lim
s↑ti+1

fs−tiqc
i (ti)

(xi(ti)) = f
ti+1−ti
qc

i (ti)
(x(ti)) (38)
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First, we show that q̂c(ti+1) = qci (h)(ti+1). From Part 2 of Definition 24, it follows that

q̂c(ti+1) = δc(q̂(t−i+1), u(ti+1))

From this, using (37) and the definition of qci (h)(ti+1), we get that qci (h)(ti+1) = q̂c(ti+1). Next,
we show that x̂(ti+1) = xi(h)(ti+1). By Part 2 of Definition 24,

x̂(ti+1) = Ru(ti+1),q̂(t−i+1)(x̂(t−i+1))

Combining this with (38–37), and the definition of xi(h)(ti+1), we get that xi(h)(ti+1) =
x̂(ti+1).

Finally, we show that q̂d(ti+1) = qdi (h)(ti+1). Three cases need to be distinguished. First, if
d(ti+1) ∈ Ed, then by Part 2 of Definition 24, q̂d(ti+1) = δd(q̂d(t−i+1), d(ti+1)). Combining this,
(37) and the definition of qdi (h)(ti+1) we get that in this case q̂d(ti+1) = qdi (h)(ti+1). Similarly,
if d(ti+1) = ⊥ and τl(i,h) < ti+1, then from Part 4 of Definition 24 and (38) it follows that
q̂d(ti+1) = qdi (h)(ti+1). Finally, if d(ti+1) = ⊥ and τ l(i, h) = ti+1, then x̂(ti+1) ∈ Φq̂(t−i+1),el

and hence by Part 4 of Definition 24 q̂d(ti+1) = δd(q̂(t−i+1), el). Combining this with (37) and
definition of qdi (h)(ti+1), we get that q̂d(ti+1) = qdi (h)(ti+1).

The proof of Proposition 6 yields the following corollary which is interesting in its own right.

Corollary 1. Let ti ∈ R+, i ∈ N, 0 < i < K, K ∈ N ∪ {+∞} be the increasing sequence
of switching times of u and d, i.e. 0 = t0 ≤ t1 < t2 < · · · < tk < · · · , and for u(t) ∈ Ec
or d(t) ∈ Ed if and only if t ∈ {ti | i ∈ N, 0 < i < K}. Let K = {i ∈ N | i < K}. If
K ∈ N, then for all i ≥ K, i ∈ N, let ti = tK−1 + i. Then there exists discrete state qci ∈ Qc,
integers l(i) ∈ N, time instances ti = τ(i, 0) < τ(i, 1) < . . . < τ(i, l(i)) ≤ ti+1, internal
events e(i, 1), . . . , e(i, l(i)) ∈ Ei and discrete states qd(i, j) ∈ Qd, j = 0, 1, . . . , l(i) + 1 and
continuous states xi ∈ R+, i ∈ N such that

ξH(h0, u, d)(t) = (qci , q
d(i, j − 1), f t−tiqc

i
(xi))

if t ∈ [τ(i, j − 1), τ(i, j)) for some i ∈ N, j = 1, 2, . . . l(i). Here h0 = (qc0, q
d(0, 0), x0), and

for all i ∈ N, j = 0, 1, . . . l(i)− 1,

qi+1 =
{
δc(qci , q

d(i, l(i)), u(ti+1)) if τ(i, l(i)) < ti+1

δc(qci , q
d(i, l(i)− 1), u(ti+1)) if τ(i, l(i)) = ti+1

xi+1 =

{
Ru(ti+1),qc

i ,q
d(i,l(i))(f

ti+1−ti
qc

i
(xi)) if τ(i, l(i)) < ti+1

Ru(ti+1),qc
i ,q

d(i,l(i)−1)(f
ti+1−ti
qc

i
(xi)) if τ(i, l(i)) = ti+1

qd(i, j + 1) = δd((qci , q
d(i, j − 1), e(i, j)) if j + 1 ≤ l(i)

qd(i+ 1, 0) =

 δd(qci , q
d(i, l(i)), d(ti+1)) if d(ti+1) ∈ Ed and τ(i, l(i)) < ti+1

δd(qci , q
d(i, l(i)− 1), d(ti+1)) if d(ti+1) ∈ Ed and τ(i, l(i)) = ti+1

qd(i, l(i)) otherwise

f t−tiqc
i

(xi) /∈
⋃
e∈Ei

Φqc
i ,q

d(i,j−1),e if t ∈ (τ(i, j − 1), τ(i, j))

f
τ(i,j)−ti
qc

i
(xi) ∈ Φqc,qd(i,j−1),e(i,j)

(39)

Moreover, for every t ∈ R+, t > 0 there exists an index i ∈ N and j = 1, 2, . . . , l(i) + 1 such
that t ∈ [τ(i, j − 1), τ(i, j)).
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In other words, there exists a sequence of time instances on which either an input or disturbance
event occurs ((ti)) or an internal event is generated (τ(i, j)). Moreover, this sequence of time in-
stances has no accumulation points and it has the property that no events occurs at time instances
other than those belonging to this sequence. This sequence of time instances and events induces
a sequence of instantenous state transitions. Each state transition is either triggered by an input
or disturbance event, or by an internal event.

Proof of Proposition 7. It is easy to see that (7) determines the maps o : R+ → Eo ∪ {⊥} and
ô : R+ → Ei ∪{⊥} uniquely. Causality of υH,h follows directly from the fact that the value of o
and ô at time t depends only on the state (q(t−), x(t−)) of H at time t and the values of u(t) and
d(t). Moreover, the state (q(t−), x(t−)) of H is evidently independent of the values of u and d
at time instances later than t.

In order to show that υH,h is of the required form, we need to show that ô and o are time event
functions. More precisely, we need to show that there exist monotincally increasing sequences of
time instances tinti , toi ∈ R+, i ∈ N, such that ô(t) ∈ Ei if and only if t = tinti for some i ∈ N,
and o(t) ∈ Eo if and only if t = toi for some i ∈ N.

We begin with ô, i.e. with proving the existence of a sequence tinti , i ∈ N such that ô(t) ∈ Ei
if and only if t = ti for some i ∈ N. To this end, consider the time instances τ(i, j), i ∈ N,
j = 1, 2, . . . , l(i) defined in Corollary 1. Consider the set

SW = {τ(i, j) | i ∈ N, j = 1, 2, . . . , l(i)} ∪ {ti | i ∈ N, d(ti) ∈ Ed, ti > 0}
That is, SW consists of the elements of the sequence τ(i, j), i ∈ N, j = 1, 2, . . . , l(i) and of
those time instances ti, i ∈ N, for which d(ti) ∈ Ed. Define the sequence tinti as the listing
of the elements of SW in increasing order. Corollary 1 implies that if d(t) ∈ Ed then t = ti
for some i ∈ N. In addition, Corollary 1 implies that if ξH(h0, u, d)(t) = (q(t), x(t)), t > 0,
d(t) = ⊥, then x(t−) ∈ Φq(t−),e for some e ∈ Ei if and only if t = τ(i, j) for some i ∈ N,
j = 1, 2, . . . , l(i). Indeed, if t ∈ (τ(i, j − 1), τ(i, j)) for some i ∈ N and j = 1, 2, . . . , ti, then
x(t−) = f t−tiqc

i
(x(ti)) and q(t−) = (qci , q

d(i, j − 1)) and hence x(t−) /∈
⋃
e∈Ei

Φq(t−),e, which
is a contradiction. From the definition of ô it then follows that ô(t) ∈ Ei if and only if t ∈ SW,
i.e. t = tinti for some i ∈ N.

Next, we construct a sequence toi , i ∈ N such that o(t) ∈ Eo if and only if t = toi for some i ∈ N.
To this end consider the sequences ti, i ∈ N and τ(i, j), i ∈ N, j = 0, 1, . . . , l(i) + 1 defined
in Corollary 1. We will show that for each i ∈ N, j = 1, 2, . . . , l(i) + 1, there exists an integer
lo(i, j) ∈ N, time instances and output events

τ(i, j − 1) = to(i, j, 0) < to(i, j, 1) < . . . < to(i, j, l(i, j)) ≤ to(i, j, l(i, j) + 1) = τ(i, j)
eo(i, j, 1), . . . , eo(i, j, lo(i, j)) ∈ Eo

(40)

such that for all k = 1, 2, . . . , lo(i, j) + 1,

∀t ∈ (to(i, j, k − 1), to(i, j, k)) : f t−tiqc
i

(xi) /∈
⋃
e∈Eo

Φqc
i ,q

d(i,j−1),e

f
to(i,j,k)−ti
qc

i
(xi) ∈ Φqc

i ,q
d(i,j−1),eo(i,j,k) (41)

Assume that sequences from (40) exist and they satisfy (41) for all k = 1, 2, . . . , lo(i, j) + 1.
Consider the set

SWO = {to(i, j, k) | i ∈ N, j = 1, 2, . . . , l(i), k = 1, 2, . . . , lo(i, j)}∪
{ti | i ∈ N, ti > 0, d(ti) ∈ Ed, and λo(q(t−i ), d(ti)) is defined }

It then follows that o(t) ∈ Eo if and only if t ∈ SWO. Indeed, o(t) = λo(q(t−), d(t)) and
d(t) ∈ Ed if and only if t = ti for some i ∈ N, ti > 0 and λo(q(t−), d(t)) is defined. Assume
that o(t) = e such that d(t) = ⊥, t > 0 and x(t−) ∈ Φq(t−),e. Then from Corollary 1 it follows
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that t ∈ [τ(i, j − 1), τ(i, j)) for some i ∈ N and j = 1, 2, . . . , l(i) + 1 and x(t−) = f t−tiqc
i

(xi)
and q(t−) = (qci , q

d(i, j − 1)). Then from (41) it follows that t = to(i, j, k) must hold for some
k = 1, 2, . . . , lo(i, j, k). Combining the results of the discussion above, we get that o(t) ∈ Eo
if and only if t ∈ SWO. Let now toi , i ∈ N be the listing of the elements of SWO in increasing
order. It is easy to see that toi , i ∈ N has the required properties.

In order to show the existence of a sequence of the form (40) which satisfies (41) for all k =
1, 2 . . . , lo(i, j) + 1 we will use Lemma 3. More precisely, we will construct recursively se-
quences of the form (40) satisfying (41). Let to(i, j, 0) = τ(i, j − 1). Assume that time
instances to(i, j, 1) < . . . < to(i, j, l) and and events e(i, j, 1), . . . , e(i, j, l) ∈ Eo were de-
fined for some l ∈ N such that for k = 1, 2, . . . , l (41) holds. Then apply Lemma 3 to the
state ((qci , q

d
j−1), f t

o(i,j,l)−ti
qc

i
(xi)) and interval [0, τ(i, j) − to(i, j, l)]. Then either for all t ∈

(to(i, j, l), τ(i, j)], f t−tiqc
i

(xi) /∈
⋃
e∈Eo

Φqc
i ,q

d
j−1,e

, or there exists to(i, j, l) < to(i, j, l + 1)

and there exists e(i, j, l) ∈ Eo such that f t
o(i,j,l+1)−ti
qc

i
(xi) ∈ Φqc

i ,q
d
j−1,e(i,j,l)

and f t−tiqc
i

(xi) /∈⋃
e∈Eo

Φqc
i ,q

d
j−1,e

for all t ∈ (to(i, j, l), to(i, j, l + 1)). In the former case define l = l(i, j),
to(i, j, l + 1) = τ(i, j) and we get that

to(i, j, 0), . . . , to(i, j, l(i, j) + 1), e(i, j, 1), . . . , e(i, j, l(i, j))

are of the form (40) and for all k = 1, 2, . . . , l(i, j) + 1, (41) holds. In the latter case, con-
sider the sequences to(i, j, 0), . . . , to(i, j, l + 1) and e(i, j, 1), . . . , e(i, j, l + 1). It is easy to see
that then for all k = 1, 2, . . . , l + 1, (41) holds. Repeat then the step above for the sequence
to(i, j, 0), . . . , to(i, j, l + 1) and e(i, j, 1), . . . , e(i, j, l + 1). Note that by Assumption A4, l ≤
T((qci , q

d
j−1), Eo, τ(i, j)−τ(i, j−1)) must hold, and hence after at most T((qci , q

d
j−1), Eo, τ(i, j)−

τ(i, j − 1)) iterations we get a sequence of the form (40) satisfying (41), as desired.

8.3 Sampled-time abstraction of H

In this section we present the proof of Proposition 8, and Theorem 4. The proofs rely on a
number of lemma, which are interesting in their own right. Throughout the section we will use
the notation of Definition 28.

Lemma 5. The state-transition relation E of H∆(P) is a partial map.

Proof. That is, for any h1 ∈ R(H), and for any u ∈ U , d ∈ D, o ∈ O and ô ∈ E∗i , there exists
at most one h2 ∈ R(H) such that E(h1, u, d, o, ô) = h2. From (10) it follows that qc2 and x2

are uniquely determined by h1, u and d. Moreover, qd2 is independent of the output o. It is left to
show that d and ô, h1 uniquely determine qd2 .

To this end, consider the decomposition ô = z1z2 · · · zl and assume that ô satisfies (11) with the
indices i1 < i2 < . . . < ik. We argue that there is only one choice of indices i1 < i2 < . . . < ik
for ô such that it satisfies (11). In turn, this unique choice of indices and the decomposition
of ô = z1z2 · · · zl, together with d determine the states si ∈ Qd, i = 1, 2, . . . , l uniquely.
Since qd2 = sl, this already implies that ô and d determine qd2 uniquely. In order to see that
the choice of i1, i2, . . . , ik is unique, notice that according to Assumption A6, λi is a complete
map and no event in the range of λi can be generated by a guard. Hence, for each letter zi of
ô, if zi is in the range of λi, then Pqc

2,s,zi = ∅ for all s ∈ Qd. By (11), for each letter zi,
either Ru,q1(x1) ∈ Pqc

2,si−1,zi
or zi = λi(qc2, si−1, er). Hence, if zi is in the range of λi, then

zi = λi(si−1, er) must hold. This means that {i1, i2, . . . , ik} is precisely the set of indices i such
that the letter zi of ô is in the image of λi. This set is unique for each ô. Moreover, if ô satisfies
(11), then the number of such letters is exactly k.
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Next, we present a relationship between state transitions of H∆(P) and time evolution of H .
More precisely, we show that a transition step inH∆(P) amounts to the end-state of the evolution
of H at time instance ∆.

Lemma 6. Assume that h1 ∈ R(H), u ∈ U and assume that d = e1e2 · · · ek, ei ∈ Ed, k ≤ µ.

ξH(h1, u, g)(∆) = (q(∆), x(∆)) = h2. Here u(t) =
{
u if t = 0
⊥ otherwise , and g ∈ P∆

Ed,µ
is

such that UT(g,∆) = d and g(0) = ⊥. Such a time-event function g exists, see for example the

following map g(t) =
{
ei if t = i ∆

µ+1 for some i = 1, 2, . . . , k
⊥ otherwise

.

Then u(t) ∈ PEc
and g(t) ∈ P∆

Ed,µ
and hence h2 is well-defined. Consider output signals

(α, β) = υH,h1(u, g) where α ∈ PEo and β ∈ PEi . Define o = {e ∈ Eo | ∃s ∈ (0,∆] : α(s) =
e}, and ô = UT(β,∆), i.e. o is the set of output events generated by H under the input u and
disturbance g on the interval (0,∆], if started from h1. Likewise, ô is the sequence of internal
events generated by H on the interval (0,∆], under the input u and disturbance g, if started from
h1. Then E(h1, u, d, o, ô) is well-defined, E(h1, u, d, o, ô) = h2 and h2 ∈ R(H).

Proof of Lemma 6. Assume that τi, i = 1, 2, . . . , k are the switching times of g on [0,∆] in
increasing order, i.e. τ1 < τ2 < . . . < τk ∈ [0,∆], and for all s ∈ (0,∆], g(s) ∈ Ed if
and only if s = τi for some i = 1, 2, . . . , k. Recall that g(0) = ⊥ and hence τi ∈ (0,∆],
i = 1, 2, . . . , k. Let h1 = (qc1, q

d
1 , x1) and h2 = (qc2, q

d
2 , x2). Then from the definition of H it

follows that qc2 = δc(q1, u), x2 = f∆
qc
2
(Ru,q1(x1)), i.e. qc2, x2 satisfy (10). Here R⊥,q1(x1) = x1

and δc(q1,⊥) = qc1. In addition, it is easy to see that if h1 ∈ R(H), then h2 ∈ R(H). Indeed,
if h1 ∈ R(H), then with the notation of Definition 26, x1 ∈ Hi for some i ∈ N. Since,
x2 = f∆

qc
2
(Ru,q1(x1)), it follows then that x2 ∈ Hi+1 and hence h2 ∈ Q×Hi+1 ⊆ R(H).

Notice that g takes values in Ed only at time instances of the form t = τi, and then g(t) =
ei. Notice that τk ≤ ∆, i.e. all the events of g(t) occur on the interval (0,∆]. Assume that
ô = z1z2 . . . zl and let t1 < t2 < . . . < tl ∈ [0,∆] be such that β(ti) = zi and β(s) = ⊥
for all s /∈ {t1, t2, . . . , tl}. Notice that from the definition of υH,h1 it follows that β(0) = ⊥
and α(0) = ⊥ and hence t1, t2, . . . , tl ∈ (0,∆]. It then follows from the definition of H , that
either ti = tir = τr and zi = λ(q(t−i ), er) for some r = 1, 2, . . . , k, or x(t−i ) ∈ Φq(t−i ),zi

and
ti /∈ {τr | r = 1, 2, . . . , k} Hence, there exists i1 < i2 < . . . < ik ∈ {1, 2, . . . , l} such that
{ti1 , ti2 , . . . , tik} = {τ1, τ2, . . . , τk}.

From the definition of H it then follows that for all i = 1, 2, . . . , l q(ti) = (qc2, si) and q(t−i ) =
(qc2, si−1) where s0 = qd1 , and the states si ∈ Qd satisfy the following recursion

si =
{
δd(qc2, si−1, zi) if i /∈ {ir | r = 1, 2, . . . , k}
δd(qc2, si−1, er) if i = ir for some r = 1, 2, . . . , k

where zir = λi(qc2, sir−1, er), for all r = 1, 2, . . . , k. In addition, since x(ti) = f tiqc
2
(Ru,q1(x1)),

we get that x(t−i ) ∈ Φq(t−i ),zi
implies that Ru,q1(x1) ∈ Pqc

2,si−1,zi
. Moreover, notice that q(t) =

(qc2, sl) for all t ∈ [tl,∆]. In particular, q(∆) = (qc2, sl), which implies that qd2 = sl. From
Assumption A3 it follows that the number of elements in {1, 2, . . . , l}\{i1, i2, . . . , ik} is at most
T(q1,∆), and hence k ≤ l ≤ T(q1,∆) + k. Combining all this we get that ô satisfies (11).

Finally, we know that e ∈ o if and only if either e = λo(q(τ−r ), er) for some r = 1, 2, . . . , k, or
x(t−) ∈ Φq(t−),e for some t ∈ (0,∆], t /∈ {τr | r = 1, 2, . . . , k}. It follows from the definition
of H that q(t−) = (qc2, si−1) for all t ∈ (ti−1, ti] for all i ∈ {1, 2, . . . , l}, and q(t−) = (qc2, sl)
for all t ∈ (tl,∆]. Hence, either e = λo((qc2, si−1), er) for some i = ir, r = 1, 2, . . . , k, or
Ru,q1(x1) ∈ Pqc

2,si−1,e for some i ∈ {1, 2, . . . , l} \ {1, 2, . . . , l}. Hence, e must satisfy (12).
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Combining the results above we get that E(h1, u, d, o, ô) = h2 and E(h1, u, d, o, ô) is well-
defined.

Now we are ready to present the Proof of Proposition 8.

Proof of Proposition 8. We will use the notation of Definition 28. In order to show that H∆(P)
is a quasi-sequential transducer, we have to show that the map E is partial map which satisfies
Definition 6. But the latter follows from Lemma 5. Next, we need to show that for each u and
d there exists o and ô such that E(h1, u, d, o, ô) is defined. But this follows from Lemma 6.
Finally, notice that if R(H) is known, then the only component of H∆(P) which is problematic
to compute is the state-transition map E. However, if the flow of the vector fields and reset
maps are computable, then the state-transition map E is computable, if Ru,q1(x1) ∈ Pq,e can
be checked by a numerical algorithm for all q ∈ Q, e ∈ Ei ∪ Eo. The latter holds if P is
computable.

Next, we present the proof of Theorem 4 stating that the relation recognized by H∆(P) is an
abstraction of RH . This follows essentially from Lemma 6, which informally states that H∆(P)
is simulates H .

Proof of Theorem 4. Since H∆(P) is a quasi-sequential transducer according to Proposition 8,
it follows that R = R(H∆(P)) is a sequential input-output relation. We will show that for all
sequences s ∈ (U ×D)∗

(o, ô) ∈ RH(s) =⇒ (o, ô) ∈ R(s)
To this end, assume that

s = (u1, d1)(u2, dk) · · · (uk, dk) and o = o1o2 · · · ok
for some discrete input symbols ui ∈ U , disturbance symbols di ∈ D, output symbols oi ∈ O.
It then follows from the definition of RH that there exists a disturbance signal g ∈ P∆

Ed,µ
, and a

control signal u ∈ PEc such that
(α, β) = υH,h0(u, g)

i.e. α, β are the output and internal event response of H to the input u and disturbance g, and
ô = UT(β, k∆), oi = α(((i− 1)∆, i∆]), di = UT(gi,∆), i = 1, 2, . . . , k where

u(t) =
{
ui if t = (i− 1)∆ for some i = 1, 2, . . . , k
⊥ otherwise

gi(t) =
{
g(t+ (i− 1)∆) if t > 0
⊥ if t = 0

Define now the states hi ∈ SH , i = 1, 2, . . . , k of H as follows. For each i = 1, 2, . . . , k, define
the map u(i) ∈ PEc

as follows

∀s ∈ R+ : u(i)(s) =
{
u(s+ (i− 1)∆) if s ∈ [0,∆)
⊥ if s ≥ ∆

Then define
hi = ξH(hi−1, u(i), gi)(∆) for all i = 1, 2, . . . , k

Here h0 is the initial state of H . The proof of the theorem is based on the following claims.

Claim 1
For each i = 1, 2, . . . , k, consider now

(αi, βi) = υH,hi−1(u(i), gi)
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We claim that

αi(s) = α(s+ (i− 1)∆) and βi(s) = β(s+ (i− 1)∆) for all s ∈ (0,∆]

Notice that by definition of the input-output maps of H , αi(0) = ⊥ and βi(0) = ⊥ for all
i = 1, 2, . . . , k.

Claim 2 With the notation of Claim 1
oi = αi((0,∆]) = α(((i− 1)∆, i∆]) for all i = 1, 2, . . . , k

Further, consider
ôi = UT(βi,∆) for all i = 1, 2, . . . , k

It then follows that ô1ô2 · · · ôk = ô.

Assume now that Claim 1 and Claim 2 are true. Notice that h0 ∈ R(H). Then by Lemma 6 and
by induction on i, we get that hi ∈ R(H) and hi = E(hi−1, ui, di, oi, ôi) for all i = 1, 2, . . . , k.
Hence, we get that the sequence

(u1, d1, o1, ô1) · · · (ui, di, oi, ôi) ∈ (U ×D ×O)∗ × E∗i
is accepted by H∆(P) for all i = 1, 2, . . . , k The latter is equivalent to

(o1o2 · · · ok, ô1ô2 · · · ôk) = (o, ô) ∈ R(s) = R((u1, d1) · · · (uk, dk)),

since R is the relation recognized by H∆(P).

We conclude the proof by proving Claim 1 and Claim 2.

Proof of Claim 1
Assume that hi = (qi, xi) ∈ SH and qi = (qci , q

d
i ). By induction, we can show that for all

i = 1, 2, . . . , k.

ξH(h0, u, g)(s+ (i− 1)∆) = ξH(hi−1, u(i), gi)(s) if s ∈ (0,∆) (42)

Assume that (42) is true. From the definition of υH,h0(u, g) it follows that if (α, β) = υH,h0(u, g),
then for all s ∈ (0,∆], α(s+(i−1)∆) and β(s+(i−1)∆) depend only on the left-hand side limit
ξH(h0, u, g)((s+(i−1)∆)−) = (q((s+(i−1)∆)−), x((s+(i−1)∆)−)) and on g(s+(i−1)∆).
From (42) it then follows that

ξH(h0, u, g)((s+ (i− 1)∆)−) = ξH(hi−1, u(i), gi)(s−) for all s ∈ (0,∆] (43)

If (αi, βi) = υH,hi−1(u(i), gi), then αi(s), βi(s) depend only on ξH(hi−1, u(i), gi)(s−) and
gi(s) = g(s + (i − 1)∆) for all s ∈ (0,∆]. Hence, combining this with (43) and the discussion
above we get the statement of Claim 1.

We conclude the proof of Claim 1 by proving that (42) holds for all i = 1, 2, . . . , k. Assume
that ξH(h0, u, g)(t) = (q(t), x(t)), q(t) = (qc(t), qd(t)) for all t ∈ R+. In addition, assume that
ξH(hi−1, u(i), gi)(s) = (q̂i(s), x̂i(s)) for all s ∈ [0,∆]. Hence, hi = (qi, xi) = (q̂i(∆), x̂i(∆)).

For i = 1, (42) follows from the fact that hi−1 = h0 and u(i)(s) = u(s), gi(s) = g(s) for all
s ∈ (0,∆), and hence ξH(h0, u, g)(s) = ξH(h0, u(i), gi)(s) for all s ∈ (0,∆).

Suppose that (42) holds for some i = 1, 2, . . . , k − 1. We will show that (42) holds for i+ 1. To
this end, we will argue that

ξH(h0, u, g)(i∆) = (q(i∆), x(i∆)) = ξH(hi, u(i+ 1), gi)(0) (44)

From this, due to the definition of state-trajectory ξH , it follows that (42) holds.

In order to prove (44) let us compute ξH(h0, u, g)(i∆) = (q(i∆), x(i∆)). From the defini-
tion we get that qc(i∆) = δc(q((i∆)−), ui+1) and x(i∆) = Rui+1,q((i∆)−)(x((i∆)−)). Since
u(i)(∆) = ⊥, it follows that qci = q̂ci (∆) = q̂ci (∆

−). From the induction hypothesis we
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then get that qci = q̂ci (∆
−) = qc((i∆)−). Since δc(q((i∆)−), ui+1) and Rui+1,q((i∆)−) de-

pend only on ui+1 and qc((i∆)−), it follows then that qc(i∆) = δc(qi, ui+1) and x(i∆) =
Rui+1,qi

(x((i∆)−)). Notice that since u(i)(∆) = ⊥, it follows that x̂i(∆−) = x̂i(∆) = xi.
From the induction hypothesis it follows that x̂i(∆−) = x((i∆)−) and hence xi = x(∆−). That
is, we get that

qc(i∆) = δc(qi, ui+1) and x(i∆) = Rui+1,qi
(xi) (45)

Finally, notice that either no internal event is generated on the interval (∆ − r,∆] for some
r < ∆, or an internal event is generated at ∆, when H is started from hi−1. In the former
case, for all s ∈ (∆ − r,∆], gi(s) = g(s + (i − 1)∆) = ⊥ and x̂i(s−) = x((s + (i −
1)∆)−) /∈

⋃
e∈Ei

Φq̂i(∆−r),e =
⋃
e∈Ei

Φq(i∆−r),e From the induction hypothesis it then follows
that no internal event is generated by H on the interval (i∆ − r, i∆], if H is started from h0.
Hence, qd(i∆) = qd((i∆)−) = q̂di (∆−) = qdi . Assume now that an internal event occurs at
time ∆ if H is started from hi−1. i.e. if either gi(∆) = g(i∆) = d ∈ Ed or x̂i(∆−) =
x((i∆)−) ∈ Φq̂i(∆−),e = Φq((i∆)−),e for some e ∈ Ei. Then from the induction hypothesis it
follows that the same internal event is generated byH at time i∆ is started from h0, i.e. qd(∆) =
δd(q̂i(∆−), z) = qdi where z = e or z = λi(q̂i(∆−), d) = λi(q((i∆)−), d). Combining all the
cases above we get that

qdi = qd(∆) (46)

Since u(i+ 1)(0) = ui+1, we then get that (45) and (46) implies (44).

Proof of Claim 2 That oi = αi((0,∆]) follows from the fact that oi = α(((i − 1)∆, i∆]) and
Claim 1.

Next we show that ô = ô1ô2 · · · ôk where ôi = UT(βi,∆). To this end, let t1 < t2 < . . . < tl ∈
[0, k∆] be such that β(s) ∈ Ei if and only if s = tj for some j = 1, 2, . . . , l. From the definition
of υH,h0(u, g) it follows that β(0) = ⊥, and hence t1 > 0. For each i = 1, 2, . . . , k, let Ji be the
subset of indices of j = 1, 2, . . . , l such that tj ∈ ((i− 1)∆, i∆], i.e.

Ji = {j ∈ {1, 2, . . . , l} | tj ∈ ((i− 1)∆, i∆]}

From t1 > 0 it then follows that
⋃k
i=1 Ji = {1, 2, . . . , l}. Moreover, it is easy to see that the sets

J1, J2, . . . , Jk are pairwise disjoint. In addition, since the sequence t1, t2, . . . , tl is increasing,
we get that Ji = {mi−1 + 1, . . . ,mi} for i = 1, 2, . . . , k, where m0 = 0 and mi ∈ {0, 1, . . . , l}
and m1 ≤ m2 ≤ . . . ≤ mk. We will show that for all i = 1, 2, . . . , k

ôi = β(tmi−1+1)β(tmi−1+2) · · ·β(tmi
) (47)

Since ô = β(t1) · · ·β(tl) and
⋃k
i=1 Ji = {1, 2, . . . , l}, it is clear that (47) implies that ô =

ô1ô2 · · · ôk and hence Claim 2 is proven.

In order to show (47), notice that from Claim 1 it follows that βi(s) = β(s + (i − 1)∆) for all
s ∈ (0,∆] and βi(0) = ⊥. Hence, βi(s) ∈ Ei if and only if s = tj − (i − 1)∆ for some tj ∈
((i− 1)∆, i∆]), i.e. if and only of s = tr− (i− 1)∆ for some r = mi−1 + 1,mi−1 + 2, . . . ,mi.
From this and the definition of ôi = UT(βi,∆), (47) follows.

8.4 Proof of the Lyapunov-like conditions for finiteness of R(H)

Proof of Theorem 5. To this end, let K = max{V (x) | x ∈ X0 ∪ {x0}}. Let N = dK/c∆e.
Consider the sets Hi, i ∈ N from Definition 26. Define the sets Ĥi ⊆ X , i ∈ N as follows.

Ĥ0 = X0 ∪ {x0}
Ĥi+1 = {f∆

qc(Re,s(x)), f∆
qc(x) | x ∈ Ĥi, q = (qc, qd), s ∈ Q, u, e ∈ Ec} ∪ Ĥi
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Notice that Hi ⊆ Ĥi for all i ∈ N. This can be show by induction on i. For i = 0, H0 = {x0} ⊆
Ĥ0. Assume that Hk ⊆ Ĥk+1. Then if x ∈ Hk+1, then either x ∈ Hk ⊆ Ĥk ⊆ Ĥk+1, or
x = f∆

qc(Ru,s(x̂) for some qc ∈ Q, s ∈ Q, u ∈ Ec ∪ {⊥}, x̂ ∈ Hk ⊆ Ĥk. Hence, x ∈ Ĥk+1.

Notice that Ĥi is a finite set for each i ∈ N, and h0 ∈ Ĥ0. We will show that ĤN+1 = ĤN . From
this the finiteness of R(H) follows. To see this, first we show that ĤN+1 = ĤN implies that
ĤN = ĤN+k for all k. We can prove this by induction on k. For k = 1 the statement follows
from ĤN = ĤN+1. Assume that statement is true for all k ≤ l. In particular, ĤN = ĤN+l.
Recall that ĤN+l+1 = ĤN+l ∪ {fqc(x)∆, f∆

qc(Ru,s(x)) | qc ∈ Qc, s ∈ Q, u ∈ Ec, x ∈ ĤN+l}.
Using ĤN = ĤN+l, we get that ĤN+l+1 = ĤN ∪ {fqc(x)∆, f∆

qc(Ru,s(x)) | qc ∈ Qc, s ∈
Q, u ∈ Ec, x ∈ ĤN} = ĤN+1, by definition of ĤN+1. Hence, we get that ĤN = ĤN+k for all
k ≥ 0. Since Ĥi ⊆ Ĥi+1, for all i ∈ N, we then get that

⋃∞
i=0Hi ⊆

⋃∞
i=0 Ĥi = ĤN and hence

R(H) ⊆ Q× ĤN . Since Q is finite, and ĤN is finite, we get thatR(H) is finite.

We conclude the proof by showing that ĤN+1 = ĤN . To this end, by induction on i we will
show that

∀x ∈ Ĥi \ Ĥi−1 : ∃z ∈ H0 : V (x) ≤ V (z)− ci∆ (48)
For i = 0, the statement above trivially holds. Suppose it holds up to i > 0 and consider
x ∈ Ĥi+1 \ Ĥi. Then, there exists x̂ ∈ Ĥi, e2 ∈ Ec ∪ {⊥} and q1, q2 = (qc2, q

d
2) ∈ Q such

that x = f∆
qc
2
(Re1,q1(x̂))). Here, we assume that R⊥,q1(x̂) = x̂. We argue that x̂ /∈ ∂X and

f∆
qc
2
(Re1,q1(x̂) /∈ ∂X . Indeed, assume that x̂ ∈ ∂X . Then Re1,q1(x̂) = x

′

0 = R⊥,q1(x
′

0) ∈ X0,

and hence f∆
qc
2
(R⊥,q1(x

′

0))) ∈ H1. But i > 0 implies that H1 ⊆ Hi, i.e. x ∈ Hi which is
a contradiction. Assume that f∆

qc
2
(Re1,q1(x̂)) ∈ ∂X . Then x ∈ X0 ⊆ H0 ⊆ Hi which is a

contradiction.

In order to finish the proof of (48), we need to show that for any solution of the differential
equation ż(s) = fq̂c(z(s)) with z(0) = z0 ∈ X ,

V (z(τ)) ≤ V (z)− cτ (49)

In order to see (49), notice that d
dsV (z(s)) = gradV (z(s))fq̂c(z(s)) < −c, and hence V (z(τ)) =

V (z) +
∫ τ

0
d
dsV (z(s)) ≤ V (z)−

∫ τ
0
c = V (z)− cτ .

From (49) it then follows that if for all s ∈ [0, τ ]: fsq̂c(z0) ∈ X \ ∂X , then fτq̂c(z0) = z(τ) <
V (z0) − cτ . Hence, we get that V (Rq1,e1(x̂)) ≤ V (x̂), V (f∆

qc
2
(Rq1,e1)(x̂)) ≤ V (Rq1,e1(x̂)) −

c∆ ≤ V (x̂)− c∆, and finally

V (x) = V (f∆
q2(Re1,q1)(x̂)) ≤ V (x̂)− c∆ (50)

Notice that x̂ ∈ Hi \ Hi−1; indeed, x̂ ∈ Hi−1 implies x ∈ Hi, which is a contradiction.
Hence, for some z0 ∈ H0, we get that V (x̂) ≤ V (z0) − ci∆. By combining this with (50), we
immediately get that (48) holds.

Finally, we use (50) to show that ĤN+1 = ĤN . By construction, ĤN ⊆ ĤN+1. Assume that
x ∈ ĤN+1\ĤN . Then there exists x0 ∈ H0 such that V (x) ≤ V (x0)−c(N+1)∆ < K−K = 0.
But x ∈ X and hence V (x) ≥ 0, and hence a contradiction.

Proof of Proposition 9. We have to check that conditions 1–3 of Theorem 5 hold. Consider V of
the proposition. Since for all x ∈ X , nTj x − bj ≤ 0, we get that V (x) = −(bj − nTj x) ≤ 0.
Moreover, V (x) = 0, x ∈ X , if and only if nTj x − bj = 0 and nTi − bi ≤ 0 for all i ∈
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{1, 2, . . . ,K} \ {j}. Hence, the Condition 1 of Theorem 5 holds. As to Condition 2 of Theorem
5, we need to show that for all qc ∈ Qc, grad(V )(x)fqc(x) < −c for some c > 0 and for all
x ∈ X . Notice that grad(V )(x) = −nTj and hence

grad(V )(x)fqc(x) = −nTj (Aqcx+
m∑
l=1

Bqc,lφqc,l(rTqc,lx))

Notice that for all l = 1, 2, . . . ,m nTj Bqc,lφqc,l(rTqc,lx) belongs to the interval [nTj Bqc,l(µilr
T
qc,lx+

γil), n
T
j Bqc,l(µjlr

T
qc,lx+ γjl ] for some choice of il 6= jl ∈ {1, 2}. Hence,

nTj (Aqcx+
m∑
l=1

Bqc,lφqc,l(rTqc,lx)) ∈

[nTj (Aqcx+
m∑
l=1

Bqc,l(µilr
T
qc,lx+ γil)), n

T
j (Aqcx+

m∑
l=1

Bqc,l(µjlr
T
qc,lx+ γjl))]

Condition 1 of the proposition implies that nTj (Aqcx +
∑m
l=1Bqc,l(µilr

T
qc,lx + γil)) > c and

nTj (Aqcx+
∑m
l=1Bqc,l(µjlr

T
qc,lx+ γjl)) > c. Hence, we get that then

nTj (Aqcx+
m∑
l=1

Bqc,lφqc,l(rTqc,lx)) > c

Thus grad(V )(x)fqc(x) < −c, i.e. Condition 2 of Theorem 5 holds.

Finally, if x ∈ int X , then V (Ru,q(x))− V (x) = (bj − nTj (Ru,q(x))− (bj − nTj x) = nTj (x−
Ru,q(x)) = −nTj (Ru,q(x))−x). But Ru,q(x)−x = Mu,qx−x+ bu,q , and hence by Condition
2. we get that V (Ru,q(x))− V (x) ≤ 0. That is, Condition 2 of Theorem 5 holds.

8.5 Well-discretizable hybrid systems: proof of Lemma 1

Proof of Lemma 1. It is enough to show that if there exists s ∈ (0,∆] such that fsqc(x) ∈ Φqc,qd,e,
then x ∈ Pqc,qd,e for each x ∈ X . To this end, notice that fsqc(x) ∈ Φqc,qd,e if and only
if hqc,qd,e(fsqc(x)) = 0. In addition, in this case Φqc,qd,e 6= ∅. Let z be the solution of the
differential equation ż = fqc(z) from z(0) = x. Then, it follows that d

dthqc,qd,e(z(t)) =
gradhqc,qd,e(z(t))fqc(z(t)) > 0. Hence, hqc,qd,e(z(t)) is a monotonically non-decreasing func-
tion of t. It follows that fsqc(x) = z(s) if s < β(qc, x) or fsqc(x) = z(β(qc, x)). Since
β(qc, x) ≥ 0, we get that hqc,qd,e(x) = hqc,qd,e(z(0)) ≤ hqc,qd,e(z(min{s, β(qc, x)})) = 0.
Moreover, f∆

qc(x) = z(min{∆, β(qc, x)}). Since s ∈ (0,∆], we get that min{∆, β(qc, x)} ≥
min{s, β(qc, x)}, and hence

hqc,qd,e(f
s
qc(x)) ≤ hqc,qd,e(f

∆
qc(x)) ≤ 0

Hence, we get that x ∈ Pqc,qd,e.
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