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GOAL-ORIENTED ERROR ESTIMATION AND ADAPTIVITY FOR
FREE-BOUNDARY PROBLEMS: THE SHAPE-LINEARIZATION

APPROACH∗

K. G. VAN DER ZEE† , E. H. VAN BRUMMELEN‡ , AND R. DE BORST§

Abstract. We develop duality-based a posteriori error estimates for functional outputs of so-
lutions of free-boundary problems via shape-linearization principles. To derive an appropriate dual
(linearized adjoint) problem, we linearize the domain dependence of the very weak form and goal func-
tional of interest using techniques from shape calculus. We show for a Bernoulli-type free-boundary
problem that the dual problem corresponds to a Poisson problem with a Robin-type boundary condi-
tion involving the curvature. Moreover, we derive a generalization of the dual problem for nonsmooth
free boundaries which includes a natural extension of the curvature term. The effectivity of the dual-
based error estimate and its usefulness in goal-oriented adaptive mesh refinement is demonstrated
by numerical experiments.

Key words. goal-oriented error estimation, a posteriori error estimation, Bernoulli free-
boundary problem, shape derivative, shape differential calculus, linearized adjoint, adaptive mesh
refinement
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1. Introduction. This is the shape-linearization part of our work on goal-
oriented error estimation and adaptivity for free-boundary problems; see also [42].
We consider duality-based a posteriori error estimates for functional outputs that in-
clude the dependence on both the error in the approximate solution and the error in
the domain approximation.

In [42], we explained that free-boundary problems elude the standard goal-
oriented error estimation framework because their typical variational form is non-
canonical. In pursuit of a canonical form, we introduced the domain-map linearization
approach at a reference domain which in essence reformulates the free-boundary prob-
lem to a fixed reference domain. Accordingly, the dual (linearized adjoint) problem
is obtained by linearizing the transformed problem with respect to the domain map.
This approach is straightforward. However, the dual problem contains nonstandard
and nonlocal interior and boundary terms, which is inconvenient from an implemen-
tation point of view. Moreover, there is some arbitrariness in the dual problem due
to the heuristic extension of boundary perturbations into the domain. A similar
arbitrariness appears in shape optimization in the so-called material derivative ap-
proach [23, 36]. An elegant alternative in shape optimization is the shape derivative
whose variational formulation consists only of standard interior and boundary terms.
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Finding an analogous linearization approach for free-boundary problems has been the
main motivation for this paper.

We present in this paper an approach to goal-oriented error estimation for free-
boundary problems by shape-linearization principles. To illustrate the approach, we
reconsider the Bernoulli-type free-boundary problem of [42]. We show that the asso-
ciated very weak form and goal functional of interest can be formulated as a function
of the unknown domain which can be linearized using techniques from shape calculus.

The shape-linearization approach does not pursue a canonical formulation and
therefore requires a slight deviation from the standard goal-oriented error estimation
framework, contrary to our approach in [42]. To obtain a suitable dual problem, the
reasoning is as follows. The very weak form of the free-boundary problem and the
goal functional of interest admit an appropriate shape linearization. This linearization
yields a linear (adjoint) equation. In the standard goal-oriented error estimation
framework, this linear equation directly defines the dual problem; see [1, 19, 33, 37].
In our case, however, the linear equation provides only a specification of the dual
solution, but it does not suitably define the dual problem. Instead, we extract from the
linear equation an appropriate dual problem by means of a consistent reformulation.

The dual problem can be found by straightforward variational arguments if the
linearization takes place at a domain with a smooth free boundary. The dual problem
then corresponds to a standard Poisson problem with a Robin boundary condition
that involves the curvature. For nonsmooth free boundaries, however, the construction
of an appropriate dual problem requires that we consider specific domain perturba-
tions. This dual problem is a generalization of the smooth case that admits singular
curvatures at singular points of the boundary.

It is noteworthy that many authors have presented linearizations of free-boundary
problems in an effort to arrive at Newton-based iteration algorithms. Most of these
address the free-boundary problem in a discretized setting; see, for instance, [10,
30, 38]. Our linearization is, however, in the continuous setting where one requires
intricate shape differential calculus. It is therefore more related to Newton-based
iteration algorithms in continuous settings as presented in [3, 16], for example. In
particular, we mention the works of Kärkkäinen [26] and Kärkkäinen and Tiihonen [27,
28] who appropriately apply the techniques of shape differential calculus, though in a
formal sense.

The contents of this paper are arranged as follows: Section 2 briefly presents the
Bernoulli-type free-boundary model problem. In section 3, we review basic theory
of shape differential calculus. In section 4, we apply shape linearization at smooth
free boundaries to the very weak form of the free-boundary problem. Furthermore, we
present the dual problem suitable for goal-oriented error estimation. Section 5 consid-
ers shape linearization at nonsmooth free boundaries. In section 6, we present numer-
ical experiments and compare the shape-linearization approach with the domain-map
linearization approach of [42]. Finally, section 7 contains concluding remarks.

2. Problem statement. We briefly present the Bernoulli-type free-boundary
problem and a corresponding weak formulation, and we present several relevant goal
functionals. In addition, we introduce a very weak form of the free-boundary problem
which shall be suitable for shape linearization.

2.1. Bernoulli-type free-boundary problem. Let D ⊂ R
N denote a suffi-

ciently large hold-all domain, and let O denote the set of bounded open Lipschitz do-
mains Ω ⊂ D, with boundary ∂Ω consisting of a fixed part ΓD and a variable part Γ,
referred to as the free boundary; see Figure 1. The Bernoulli-type free-boundary
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Ω

Γ

ΓD

D Ω\

Fig. 1. Geometric setup of the free-boundary problem: domain Ω, complement of Ω in the
hold-all D (i.e., D \ Ω), fixed boundary ΓD, and free boundary Γ.

problem consists in seeking a domain Ω ∈ O and a scalar function u defined on Ω
such that

−Δu = f in Ω ,(2.1a)

∂nu = g on Γ ,(2.1b)

u = h
∣∣
Γ

= 1 on Γ ,(2.1c)

u = h
∣∣
ΓD

on ΓD ,(2.1d)

where we assume f ∈ C0,1(D) and g ∈ C1,1(D) together with a lower bound
g ≥ g0 > 0 and h ∈ C1,1(D), with Cp,q the (p, q) Hölder space. Note that, in accor-
dance with (2.1c), h|Γ = 1 is required for all admissible free boundaries. For general
remarks concerning well posedness and numerical approximation of (2.1), we refer to
our companion manuscript [42] and references therein. We assume the existence of a
(possibly nonunique) domain Ω ⊂ O and a corresponding solution u ∈ H1(Ω) which
solve (2.1).

Let H1
0,γ(Ω) denote the space of H1-functions with a zero trace on γ ⊆ ∂Ω, i.e.,

H1
0,γ(Ω) :=

{
v ∈ H1(Ω) : v = 0 on γ

}
,

and let the (affine) space incorporating h be defined as H1
h(Ω) := h|Ω + H1

0,∂Ω(Ω).

A weak formulation of (2.1) is obtained by multiplying (2.1a) by v ∈ H1
0,ΓD(Ω),

integrating over Ω, and integrating by parts the Laplacian. As v is nonzero on Γ, we
invoke (2.1b) to incorporate the Neumann boundary condition weakly. Furthermore,
the Dirichlet boundary conditions (2.1c) and (2.1d) can be imposed strongly. We then
arrive at the variational formulation:1

Find Ω ∈ O and u ∈ H1
h(Ω) :∫

Ω

∇u · ∇v =

∫
Ω

f v +

∫
Γ

g v ∀v ∈ H1
0,ΓD (Ω) .

(2.2)

2.2. Errors in goal quantities. We are particularly interested in specific goal
functionals of the solution Q(Ω, u) ∈ R. In [42], we introduced two relevant goal
functionals, viz., a weighted average of u and a weighted elevation of the free boundary,

Qave(Ω;u) :=

∫
Ω

qave u and Qelev(Ω) :=

∫
Γ0

qelev α(Ω) ,

1For notational convenience we often neglect the integration measure in integrals. Domain and
boundary integrals are to be integrated with respect to the usual volume and surface measures. For
example, we write

∫
Γθ

f instead of
∫
Γθ

f dΓθ.
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respectively, where qave ∈ H1(D) and qelev ∈ L2(Γ0). The elevation α(Ω) : Γ0 → R is
a scalar function which associates to a specific domain Ω the vertical deviation of the
free boundary with respect to a horizontal rest position, Γ0.

Given an approximate domain Ω̂ ∈ O and corresponding approximation uh ∈
H1

h(Ω̂), we aim at deriving by shape-linearization principles a dual-based estimate of
the goal error

EQ := Q(Ω, u) −Q(Ω̂, uh) .

For this, the required dual problem is extracted from the linearization of the free-
boundary problem and the goal functional with respect to (Ω, u). As usual, the
linearization of the free-boundary problem yields the linearized adjoint operator, and
the linearization of the goal functional yields the right-hand side for the dual problem.

2.3. Very weak form of the free-boundary problem. For a succesful lin-
earization of the free-boundary problem, it is of crucial importance that we can vary
Ω and u independent of each other for fixed test functions v. This is possible only if
there are no Ω-dependent constraints on the u- and v-space. Furthermore, we need
to view u and v as functions defined on the whole of D by suitably extending them
outside Ω. This gives rise to the embedding H1(Ω) ⊂ H1(D) ∀ Ω ∈ O.

In view of the free-boundary constraint in the space H1
h(Ω), the weak form in (2.2)

is not suitable for the linearization. This constraint can be removed in two ways. The
first is by means of a Lagrange multiplier that enforces the constraint u = h on Γ.
This is the approach taken by Kärkkäinen [26] and Kärkkäinen and Tiihonen [27, 28].
The downsides of this approach are the additional difficulty and dual interpretation
of the Lagrange multiplier and the inability to perform the shape linearization with-
out unnecessary smoothness assumptions. We therefore prefer a second approach,
which enforces the constraint weakly. This approach does not encounter the above-
mentioned problems.

A variational statement that weakly enforces Dirichlet boundary conditions is
provided by the so-called very weak form. The function space that accommodates
test functions for the very weak form is

H1
0,ΓD (Δ;D) :=

{
v ∈ H1

0,ΓD(D) : Δv ∈ L2(D)
}
.

The very weak form N :
(O ×H1(D)

)×H1
0,ΓD (Δ;D) → R is given by

N (
(Ω, u); v

)
:=

∫
Ω

−uΔv −
∫
Ω

f v −
∫
Γ

g v +
〈
∂nv, h

〉
∂Ω

,(2.3)

where the brackets, 〈·, ·〉∂Ω, imply a duality pairing of H−1/2(∂Ω) and H1/2(∂Ω).
It can easily be verified that the free-boundary problem solutions Ω ∈ O and u ∈
H1(Ω) ⊂ H1(D) satisfy

N (
(Ω, u); v

)
= 0 ∀v ∈ H1

0,ΓD (Δ;D) .(2.4)

We are now ready to linearize N ((Ω, u); v) (for fixed v) and Q(Ω, u) (viewing it
as the map Q : O × H1(D) → R). The main difficulty in this linearization arises
from the linearization with respect to Ω. This is dealt with by using techniques from
shape differential calculus. The linearization can be performed under appropriate
regularity requirements on the involved integrands. In the next section, we review
these requirements and other essentials of shape calculus.
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3. Shape differential calculus. In this section we give a brief summary of the
theory of differential calculus of shape functionals. Most of the results presented in
this section originate from early works in shape optimization by Simon [35], Piron-
neau [32], and Zolésio [43] and can be found in the books of Soko�lowski and Zolésio [36]
and Delfour and Zolésio [7]. Recent developments of shape derivatives under state
constraints can be found in [24, 25], and shape derivatives for domains with cracks
can be found, for instance, in [15, 17, 29].

A functional J is said to be a shape functional if it maps an admissible family O
of domains into R. Trivially then, for any homeomorphism T of D with T (Ω) = Ω,

J (Ω) = J (
T (Ω)

)
.

A simple example is the volume integral given by J (Ω) =
∫
Ω dΩ. Note that for fixed

u ∈ H1(D) and v ∈ H1
0,ΓD(Δ;D), the maps Ω �→ N (

(Ω, u); v
)

and Ω �→ Q(Ω, u) are
also shape functionals.

3.1. Definition of the shape derivative. Directional derivatives of J can
be defined by considering one-parameter families of perturbed domains. Such a
one-parameter family acts as a one-dimensional path along which limits of difference
quotients can be taken. In this work, we construct families of perturbed domains by
perturbations of the identity map Id : D → D. Alternatively, they could have been
constructed by means of the velocity method; see [7, 8] for results on the equivalence
of both methods in the context of shape derivatives.

Let us denote by Θ the space of bounded Lipschitz perturbation-vector fields that
vanish at ΓD, i.e.,

Θ :=
{
δθ ∈ C0,1(D;RN ) : δθ = 0 on ΓD

}
.

For δθ ∈ Θ, we define the perturbed transformation map as Tδθ := Id+ δθ, and for a
given Ω ∈ O, the associated one-parameter family of domains and free boundaries is
defined as

Ωt := Tt δθ(Ω) =
{
x ∈ R

N
∣∣x = Tt δθ(X) ∀X ∈ Ω

}
,

Γt := Tt δθ(Γ) =
{
x ∈ R

N
∣∣x = Tt δθ(X) ∀X ∈ Γ

}
,

respectively; see Figure 2. Note that Ω0 = Ω. For small t, both Tt δθ and T -1
t δθ are

Lipschitz continuous and Ωt ∈ O [5, 7, 11]. Accordingly, the Eulerian derivative of
the shape functional J at Ω ∈ O in the direction δθ ∈ Θ is defined as the following
limit:

J ′(Ω)(δθ) := lim
t→0

J (Ωt) − J (Ω)

t
.

Fig. 2. A perturbation of Ω by t δθ generates the domain Ωt with free boundary Γt.
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We refer to this derivative as the shape derivative of J . Note that the shape derivative
coincides with the Gâteaux derivative of the map θ �→ J (Tθ(Ω)) at θ = 0 in the
direction δθ; see [8, 11, 31] for Gâteaux derivative approaches. A useful consequence
of the definition of the shape derivative is Taylor series identities such as

J (Ω1) = J (Ω0) +

∫ 1

0

J ′(Ωt)(δθ) dt

= J (Ω0) + J ′(Ω0)(δθ) + o(‖δθ‖) .(3.1)

The shape functional J is said to be shape differentiable at Ω with respect to Θ
if the shape derivative J ′(Ω)(δθ) exists in all directions δθ ∈ Θ and, moreover, the
map δθ �→ J ′(Ω)(δθ) is linear and continuous on Θ. The functional J ′(Ω) is called
the shape gradient of J (at Ω).

3.2. Structure of the shape derivative. It is expected that J ′(Ω)(δθ) is
nonzero only if δθ is nonzero at the boundary Γ. This is made precise in the following
theorem. Its proof can be found in [5, 7, 36].

Theorem 3.1 (Hadamard-Zolésio structure theorem). If J is shape differentiable
at Ω with respect to Θ, then its shape gradient J ′(Ω) is supported (as a distribution)
on Γ. Furthermore, if Γ is sufficiently smooth (dependent on Θ2), then there exists a
scalar Γ-distribution j′(Γ) such that

J ′(Ω)(δθ) =
〈
j′(Γ), γ(δθ) · n〉

Γ
,(3.2)

where γ(·) is the trace operator on Γ.
Indeed, the first part of the theorem states that the shape derivative only depends

on δθ at Γ. Moreover, if Γ is smooth enough, then it depends only on the normal
component δθ · n. In particular, if j′(Γ) ∈ L1(Γ), then (3.2) can be written as

J ′(Ω)(δθ) =

∫
Γ

j′(Γ) δθ · n .(3.2∗)

Although Hadamard [21] derived (3.2∗) in 1907 for boundary normal-perturbations
of a C∞-domain, it is generally known as the Hadamard formula. Furthermore, in
his pioneering book [32], Pironneau’s definition of Γ-differentiability of a shape func-
tional J presumes precisely the existence of j′(Γ) ∈ L1(Γ) under the stronger notion
of the Fréchet differentiability of θ �→ J (Tθ(Ω)).

In the following sections, we derive the shape derivative of the two most common
shape functionals: a domain integral and a boundary integral.

3.3. Shape derivative of a domain integral. Consider the shape functional
J : O → R defined as the domain integral of a global function φ ∈ W 1,1(D), where
Wm,p(D) is the (m, p)-Sobolev space on D,

J (Ω) =

∫
Ω

φ dx .(3.3)

To compute the shape derivative in the direction δθ ∈ Θ, note that J (Ωt) can be
written as an integral over Ω:

J (Ωt) =

∫
Ωt

φ dx =

∫
Ω

(φ ◦ Tt δθ) |Jt| dx ,

2Assume Γ of class Ck+1 if Θ ⊂ Ck(D,RN ).
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where Jt := det DTt δθ is the Jacobian of Tt δθ, with D(·) := ∂(·)/∂(x1, . . . , xN ) the
Jacobian matrix. We have Jt ∈ L∞(D) (by Rademacher’s theorem [14, p. 91]), Jt > 0
for small t, and

∂

∂t
Jt
∣∣
t=0

= div δθ ∈ L∞(D) ;

see [7, p. 352], for example. Furthermore, the derivative of t �→ φ ◦ Tt δθ is given by

∂

∂t
(φ ◦ Tt δθ)

∣∣
t=0

= ∇φ · δθ ∈ L1(Ω) .(3.4)

With these results, we have the following [7, 36] proposition.
Proposition 3.2 (shape derivative of domain integral). For φ ∈ W 1,1(D), the

shape functional in (3.3) is shape differentiable at Ω ∈ O with respect to Θ. The shape
derivative is given by

J ′(Ω)(δθ) =

∫
Ω

div
(
φ δθ

)
=

∫
Γ

φ δθ · n .

In view of the structure theorem, Theorem 3.1, it is clear that the scalar distri-
bution j′(Γ) associated with the shape gradient J ′(Ω) is equal to γ(φ) ∈ L1(Γ).

It is clear from Proposition 3.2 that the shape derivative vanishes if φ = 0 at Γ.
This holds also for less regular φ corresponding to the product of two functions of
which one vanishes at Γ.

Proposition 3.3. Let φ = φ1 φ2, where φ1 ∈ L2(D) and φ2 ∈ H1(D) with
φ2 = 0 on Γ. Then the shape functional in (3.3) is shape differentiable at Ω ∈ O with
respect to Θ, and its shape derivative vanishes:

J ′(Ω)(δθ) = 0 .

As it appears that this result is new, we give the proof in Appendix B.

3.4. Shape derivative of a boundary integral. Consider the shape func-
tional J : O → R defined as the boundary integral of a global function ψ ∈W 2,1(D):

J (Ω) =

∫
Γ

ψ dΓ .(3.5)

To obtain the shape derivative for perturbation δθ ∈ Θ, rewrite J (Ωt) as a boundary
integral at Γ,

J (Ωt) =

∫
Γt

ψ =

∫
Γ

(ψ ◦ Tt δθ)ωt dΓ ,

where ωt := Jt
∣∣DT -T

t δθ · n
∣∣ : Γ → R is a surface density, referred to as the tangential

Jacobian [11]. We have ωt ∈ L∞(Γ) for small t and

∂

∂t
ωt

∣∣
t=0

= divΓ δθ ∈ L∞(Γ) ;

see [36, p. 80], for example. The tangential (or surface) divergence is defined as
divΓ(·) = div(·)∣∣

Γ
− D(·)n · n = div(·)∣∣

Γ
− ∂n(·) · n. To differentiate ψ ◦ Tt δθ, we
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apply (3.4) and note that at Γ a gradient splits up into a tangential (or surface)
gradient and a normal component, i.e., ∇(·) = ∇Γ(·) + ∂n(·)n. Hence, we have

∂

∂t
(ψ ◦ Tt δθ)

∣∣
t=0

= ∂nψ δθ · n+ ∇Γψ · δθ ∈ L1(Γ) .

We refer to [6–9] for further remarks concerning tangential calculus. The shape deriva-
tive of J readily follows from these results.

Proposition 3.4 (shape derivative of boundary integral). For ψ ∈ W 2,1(D),
the shape functional in (3.5) is shape differentiable at Ω with respect to Θ. The shape
derivative is given by

J ′(Ω)(δθ) =

∫
Γ

(
∂nψ δθ · n+ ∇Γψ · δθ + ψ divΓ δθ

)
.

In accordance with the structure theorem, Theorem 3.1, the shape gradient of J is
supported on Γ. However, as Ω is assumed to be Lipschitz, the boundary Γ is generally
not smooth enough for the Hadamard formula (3.2∗) to hold. Indeed, if Γ is assumed
to be C1,1, we can apply the following tangential Green’s identity (see [36, p. 86]
or [7, 9], for example):

∫
Γ

(
ψ divΓ δθ + ∇Γψ · δθ) =

∫
Γ

κψ δθ · n ,

where κ := divΓ n ∈ L∞(Γ) coincides with the additive curvature (sum of N − 1
curvatures) of Γ. Accordingly, the shape derivative can be simplified to

J ′(Ω)(δθ) =

∫
Γ

(
∂nψ + κψ

)
δθ · n dΓ .(3.6)

Hence, j′(Γ) in (3.2∗) can be identified with ∂nψ + κψ ∈ L1(Γ).
The regularity requirement ψ ∈ W 2,1(D) implying j′(Γ) ∈ L1(Γ) in (3.6) can be

weakened for our purposes by considering it as a member of the space

H1(Δ;D) :=
{
ψ ∈ H1(D) : Δψ ∈ L2(D)

}
.

We can then extend (3.6) to hold ∀ ψ ∈ H1(Δ;D), provided we interpret the integral
as a duality pairing and view the normal derivative as a member of a suitable dual

space, i.e., [H
1/2
00 (Γ)]′. We shall denote the derivative in this case by

J ′(Ω)(δθ) =
〈
∂nψ , δθ · n

〉
Γ

+

∫
Γ

κψ δθ · n .

4. Goal-oriented error estimation by shape linearization at smooth free
boundaries. We now turn our attention to goal-oriented error estimation for the
free-boundary problem (2.1). We proceed by linearizing the very weak form and the
goal functional at the approximation (Ω̂, uh) ∈ O×H1

h(Ω̂). In this section, we assume

that the approximate free boundary Γ̂ is sufficiently smooth; i.e., Γ̂ is a C1,1 boundary.
The more general case of Lipschitz continuous free boundaries is taken up in section 5.
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4.1. Linearization of the free-boundary problem. We can write the very
weak form given in (2.3) as

N (
(Ω, u); v)

)
= −B(Ω;u, v) −F(Ω; v) − G(Ω; v) + H(Ω; v) ,(4.1)

where the semilinear forms are defined as

B(Ω;u, v) :=

∫
Ω

uΔv , F(Ω; v) :=

∫
Ω

f v ,

H(Ω; v) :=

∫
Ω

(
hΔv + ∇h · ∇v) , G(Ω; v) :=

∫
Γ

g v .

Note that we replaced the duality pairing 〈∂nv, h〉∂Ω with two domain integrals; this
shall be convenient for the shape derivative.

Consider a fixed v ∈ H1
0,ΓD (Δ;D). The linearization of u �→ N ((Ω̂, u); v) at

uh ∈ H1
h(Ω̂) ⊂ H1(D) is straightforward as only B depends on u, and moreover, this

dependence is linear. Denoting this derivative by 〈∂u(·), δu〉, we have

〈
∂uN

(
(Ω̂, uh); v

)
, δu

〉
=

∫
Ω̂

−δuΔv(4.2a)

∀ δu ∈ H1
0,ΓD (D). This implies that the linearized adjoint operator corresponds to

the negative Laplacian in Ω̂.
The shape linearization of Ω �→ N ((Ω, uh); v) at Ω̂ splits up into three contribu-

tions, each following from results of section 3. As the first contribution, we consider
the combined B- and H-term:

−B(Ω;uh, v) + H(Ω; v) =

∫
Ω

−(uh − h) Δv +

∫
Ω

∇h · ∇v .

Observe that (uh−h) and ∇h are in H1(D) and vanish on Γ̂ on account of uh ∈ H1
h(Ω̂)

and h = 1 on all admissible free boundaries. Hence, by Proposition 3.3, the shape
derivatives of these terms are zero. To obtain the shape derivative of F(Ω; v), we can
invoke Proposition 3.2 since fv ∈W 1,1(D). For δθ ∈ Θ, this gives

F ′(Ω̂; v)(δθ) =

∫
Γ̂

f v δθ · n .

For the final contribution, G(Ω; v), we note that g ∈ C0,1(D) and v ∈ H1
0,ΓD(Δ;D).

Furthermore, since Γ̂ is C1,1, we can use a weak version of (3.6), yielding

G′(Ω̂; v)(δθ) =
〈
g ∂nv , δθ · n

〉
Γ̂

+

∫
Γ̂

(∂ng + κ g) v δθ · n .

We summarize these results in the following proposition.
Proposition 4.1 (shape derivative of free-boundary problem: smooth Γ̂).

Let Ω̂ ∈ O with C1,1 free boundary Γ̂. For any uh ∈ H1
h(Ω̂) ⊂ H1(D) and

v ∈ H1
0,ΓD(Δ;D), the shape functional Ω �→ N ((Ω, uh); v) is shape differentiable at Ω̂

with respect to Θ. Its shape derivative is given by

〈
∂ΩN

(
(Ω̂, uh); v

)
, δθ

〉
= −〈

g ∂nv , δθ · n
〉
Γ̂
−
∫
Γ̂

(
f + ∂ng + κ g

)
v δθ · n .(4.2b)
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From this proposition it is clear that the shape gradient can be identified with the
boundary distribution

j′(Γ̂) = −g ∂nv − (f + ∂ng + κ g) v .

Essentially, this implies that the linearized adjoint operator corresponds to a
Robin-type boundary condition on Γ̂.

4.2. Linearization of the goal functional. We consider the goal functional
consisting of a linear combination of the average and elevation functional; see sec-
tion 2.2:

Q(Ω, u) = Qave(Ω;u) + Qelev(Ω) =

∫
Ω

qave u+

∫
Γ0

qelev α(Ω).

Again, the linearization with respect to u is straightforward,

〈
∂uQ(Ω̂, uh), δu

〉
=

∫
Ω̂

qave δu(4.3a)

∀ δu ∈ H1
0,ΓD(D). The shape linearization of Ω �→ Qave(Ω;uh) follows from Proposi-

tion 3.2 as qaveuh ∈ W 1,1(D) for qave, u ∈ H1(D). Furthermore, the shape lineariza-
tion of Ω �→ Qelev(Ω;uh) was given in the appendix of [42], where we employed a
Gâteaux derivative approach for the elevation function θ �→ α(Tθ(Ω)). Combining
these results, we have for δθ ∈ Θ that

〈
∂ΩQ(Ω̂, uh), δθ

〉
=

∫
Γ̂

(
qave + qelev

)
δθ · n .(4.3b)

Note that we substituted uh = h = 1 on Γ̂. Furthermore, since qelev is only defined
on a horizontal rest position Γ0, it should be interpreted with the aid of a projection
along the xN -axis, that is,

qelev(x1, . . . , xN ) = qelev(x1, . . . , xN−1, x
Γ0

N ),

with xΓ0

N being the xN -coordinate of Γ0. The result in (4.3b) is valid for any Ω̂ ∈ O;
i.e., a C1,1 free boundary is not required.

4.3. Dual problem and goal-error estimate. We are now ready to define the
appropriate dual problem based on the linearized adjoint operator and goal functional
linearization. Let the dual solution z be defined as the solution of the following
variational problem:

Find z ∈ H1
0,ΓD(Ω̂) :∫

Ω̂

∇δu · ∇z +

∫
Γ̂

1
g (f + ∂ng + κ g) z δu

=

∫
Ω̂

qave δu−
∫
Γ̂

1
g (qave + qelev) δu ∀δu ∈ H1

0,ΓD (Ω̂) .

(4.4)

It can easily be shown that z is a weak solution of the following Poisson problem with
a Robin-type boundary condition at the approximate free boundary Γ̂:

−Δz = qave in Ω̂ ,(4.5a)

g ∂nz + (f + ∂ng + κ g) z = −(qelev + qave) on Γ̂ ,(4.5b)

z = 0 on ΓD .(4.5c)
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Note that on account of coercivity, a unique solution of (4.4) exists if (f+∂ng)/g+κ ≥
0. Under the implied requirements of the data, we obtain from (4.5a) and (4.5c)
that z ∈ H1

0,ΓD (Δ;D) and from (4.5b) that ∂nz ∈ L2(Γ̂). We remark that similar
conditions on the data are given in [12, 13] in a completely different setting of the
Bernoulli free-boundary problem, though.

The main result of this section is that this dual problem provides a solution that
is consistent with the linearization. We outline this in the following theorem, whose
proof is delayed until the end of this section.

Theorem 4.2 (dual consistency: smooth Γ̂). Given an approximation (Ω̂, uh) ∈
O ×H1

h(Ω̂), with a C1,1 free boundary Γ̂, of the solution (Ω, u) ∈ O ×H1
h(Ω) of the

free-boundary problem (2.1), the solution z ∈ H1
0,ΓD (Ω̂) ⊂ H1(D) of dual problem (4.4)

satisfies

N ′((Ω̂, uh); z)(δθ, δu) = Q′(Ω̂, uh)(δθ, δu)

∀ (δθ, δu) ∈ Θ ×H1
0,ΓD(D).

If we compare the shape-linearized dual problem (4.4) with the dual problem
obtained by domain-map linearization in [42], we notice that the dual problem in [42]
contains a nonlocal residual-type boundary term. However, at the free-boundary
problem solution (Ω, u), this residual-type term vanishes, and both dual problems are
equivalent.

From the standard goal-oriented error estimation framework, it is clear that dual
consistency plays a key role in goal-oriented error estimates; see section 3 of [42]. To
present this estimate, let eΩ ∈ Θ denote a nontrivial perturbation-vector field such
that Ω = TeΩ(Ω̂). Then ‖eΩ‖ essentially measures the domain difference between
Ω and Ω̂. Let eu denote the error in u by subtracting uh from it, thereby viewing
u and uh as members of H1(D). Since both u = h and uh = h on ΓD, we have
eu := u − uh ∈ H1

0,ΓD (D). The following proposition shows that, up to high-order

terms, the error in our goal is related to the residual at (Ω̂, uh):

v �→ R(
(Ω̂, uh); v

)
:=

∫
Ω̂

f v +

∫
Γ̂

g v −
∫
Ω̂

∇uh · ∇v .

Proposition 4.3 (goal-error estimate: smooth Γ̂). Under the conditions of
Theorem 4.2, let z ∈ H1

0,ΓD (Ω̂) be the solution of dual problem (4.4). It holds that

EQ := Q(Ω, u) −Q(Ω̂, uh) = R(
(Ω̂, uh); z

)
+R ,(4.6)

where the remainder R is o(‖eΩ‖, ‖eu‖).
Proof. The proof follows closely the proof of Theorem 3.1 in [42]. We first derive

the following Taylor series expressions. Applying (3.1) to Ω �→ Q(Ω, uh), we have

Q(Ω, uh) = Q(Ω̂, uh) +
〈
∂ΩQ(Ω̂, uh) , eΩ

〉
+ o(‖eΩ‖) .

For the linearization of Q with respect to both its arguments, this implies the Taylor
series formula

Q(Ω, u) = Q(Ω̂, uh) + Q′(Ω̂, uh)(eΩ, eu) + o(‖eΩ‖, ‖eu‖) .(4.7)

We have a similar expression for N :

N (
(Ω, u); v

)
= N (

(Ω̂, uh); v
)

+ N ′((Ω̂, uh); v)(eΩ, eu) + o(‖eΩ‖, ‖eu‖)(4.8)
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for any v ∈ H1
0,ΓD (Δ;D). Consider the goal error EQ = Q(Ω, u) − Q(Ω̂, uh). Using

the Taylor series formula (4.7) and the dual-consistency theorem, Theorem 4.2, we
obtain

EQ = Q′(Ω̂, uh)(eΩ, eu) + o(‖eΩ‖, ‖eu‖) = N ′((Ω̂, uh); z)(eΩ, eu) + o(‖eΩ‖, ‖eu‖) .

Since z ∈ H1
0,ΓD(Δ;D), we can invoke (4.8) to obtain

EQ = N (
(Ω, u); z

)−N (
(Ω̂, uh); z

)
+ o(‖eΩ‖, ‖eu‖) .

The first term on the right-hand side vanishes on account of consistency of the solution
(Ω, u) with the very weak form; see (2.4). Furthermore, expanding N ((Ω̂, uh); z) in
accordance with (2.3), it follows that

EQ =

∫
Ω̂

uh Δz +

∫
Ω̂

f z +

∫
Γ̂

g z − 〈
∂nz, h

〉
∂Ω̂

+ o(‖eΩ‖, ‖eu‖) .

Finally, by applying an integration by parts on the first term and using uh = h on ∂Ω̂,
we obtain the proof.

Proof of Theorem 4.2. The linear equation in Theorem 4.2 can be logically sepa-
rated into two equations corresponding to δu and δθ:〈

∂uN
(
(Ω̂, uh); z

)
, δu

〉
=

〈
∂uQ(Ω̂, uh), δu

〉 ∀δu ∈ H1
0,ΓD (D) ,(4.9a) 〈

∂ΩN
(
(Ω̂, uh); z

)
, δθ

〉
=

〈
∂ΩQ(Ω̂, uh), δθ

〉 ∀δθ ∈ Θ .(4.9b)

First, we show that z satisfies (4.9a). The explicit expression of (4.9a) follows
from (4.2a) and (4.3a) and is given by∫

Ω̂

−δuΔz =

∫
Ω̂

qave δu ∀δu ∈ H1
0,ΓD(D) .

Since H1
0,ΓD(Ω̂) is dense in L2(Ω̂), we essentially need to show that

−Δz = qave a.e. in Ω̂ .(4.10)

This follows from (4.4) by elementary variational arguments: Choosing a δu in (4.4)
that vanishes on ∂Ω̂, i.e., δu ∈ H1

0,∂Ω̂
(Ω̂), we have∫

Ω̂

∇δu · ∇z =

∫
Ω̂

qave δu ,

and an integration by parts on the left-hand side followed by a density argument
proves (4.10). We next show that z satisfies (4.9b). An explicit expression of (4.9b)
follows from (4.2b) and (4.3b). Hence, we need to show that

−〈
g ∂nz , δθ · n

〉
Γ̂
−
∫
Γ̂

(
f + ∂ng + κ g

)
z δθ · n =

∫
Γ̂

(
qave + qelev

)
δθ · n(4.11)

∀ δθ ∈ Θ. For this, we integrate by parts the first integral in (4.4) and use the fact
that z satisfies (4.10) to obtain〈

∂nz, δu
〉
Γ̂

+

∫
Γ̂

1

g
(f + ∂ng + κ g) z δu = −

∫
Γ̂

1

g
(qave + qelev) δu

∀ δu ∈ H1
0,ΓD (Ω̂). For any δθ ∈ Θ, we can form the function g δθ · n which resides

in C0,1(Γ̂) since g ∈ C0,1(D) and n ∈ C0,1(Γ̂,RN ) for a C1,1 free boundary Γ̂. Note
that we can extend this to a function in H1

0,ΓD (Ω̂). Hence, by setting δu = −g δθ · n,
we obtain (4.11).
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5. Extension to nonsmooth free boundaries. In numerical computations
the approximate free boundary is often piecewise smooth; i.e., Γ̂ is Lipschitz contin-
uous. In this case, the curvature term κ = divΓ n is singular at singular points of the
free boundary, and definition (4.4) of the dual problem does not apply. In this section,
we extend the dual problem to Lipschitz free boundaries by introducing a generaliza-
tion of the curvature term. Accordingly, we obtain goal-oriented error estimates for
any approximation (Ω̂, uh) ∈ O×H1

h(Ω̂) of our free-boundary problem. We note that
similar generalizations of curvature terms have been studied in [10, 18, 26, 34].

5.1. Shape linearization at nonsmooth free boundaries. The singular
contribution associated with κ appears in the shape derivative of the free-boundary
problem weak form N . Specifically, it originates from the shape linearization of G.
Therefore, a natural extension of this term can be obtained by extending this lin-
earization to Lipschitz free boundaries. To derive this extension, we shall consider
particular perturbation-vector fields δθ ∈ Θ.

Recall from the structure theorem, Theorem 3.1, that for sufficiently smooth
boundaries, the significant perturbations are nonzero in the normal direction, i.e.,
δθ ·n �= 0. For Lipschitz domains Ω̂, a similar role shall be played by perturbations in
a smoothened normal direction m = m(Γ̂). This smoothened normal m is a bounded
Lipschitz continuous vector field which is extendable onto D, i.e., m ∈ C0,1(D,RN ).
Furthermore, we normalize m according to

m · n = 1 a.e. on Γ̂ .(5.1)

An example of m in two dimensions is illustrated in Figure 3. For the existence
of m, see [20, p. 40] and [39], for example. We next define a particular perturbation
in the m-direction as δθ = δ�m. Here, δ� is a scalar Lipschitz continuous function
that vanishes on ΓD. The corresponding space for perturbations in the m-direction
shall be denoted by Θ(m) and is defined as

Θ(m) :=
{
δθ = δ�m ∀δ� ∈ C0,1(D) : δ� = 0 on ΓD

}
.

Note that these perturbations are admissible in the sense that Θ(m) ⊂ Θ.
We now turn to the shape linearization of Ω �→ G(Ω; v) for perturbations δ�m.

Since the free boundary is nonsmooth, we apply Proposition 3.4 and obtain

G′(Ω̂; v)(δ�m) =
〈
g ∂nv, δ�

〉
Γ̂

+

∫
Γ̂

(
∂ng v δ�+ divΓ(g v δ�m)

)
,(5.2)

where we invoked the normalization (5.1) two times. Comparing this result with the
shape derivative of G in section 4.1, we observe that the curvature contribution has

Fig. 3. Illustration of a Lipschitz continuous m-vector field at the free boundary Γ̂. The part
of m that is orthogonal to Γ̂ is equal to the normal n, that is, m · n = 1 a.e. on Γ̂.
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been replaced with a tangential divergence term. A suitable space for v in (5.2) is
provided by the intersection H1

0,ΓD(Δ;D) ∩ Ȟ1
0,ΓD (Ω̂), where

Ȟ1
0,ΓD(Ω̂) :=

{
v ∈ H1

0,ΓD(Ω̂)
∣∣ ∫

x̌
|v|2 dx̌ <∞ ∀ singular points x̌ ⊂ Γ̂

}
.
3

The space Ȟ1
0,ΓD(Ω̂) accounts for the boundedness of the tangential divergence term

in (5.2). As this is not immediately clear, we show this in Appendix A, section A.1.
We can now present an extension of Proposition 4.1 which holds for nonsmooth free
boundaries. This result follows easily from the preceding developments.

Proposition 5.1 (shape derivative of free-boundary problem). Let Ω̂ ∈ O. For
any uh ∈ H1

h(Ω̂) ⊂ H1(D) and v ∈ H1
0,ΓD(Δ;D)∩Ȟ1

0,ΓD (Ω̂), the shape functional Ω �→
N ((Ω, uh); v) is shape differentiable at Ω̂ with respect to Θ(m). Its shape derivative is
given by

〈
∂ΩN

(
(Ω̂, uh); v

)
, δ�m

〉
=

− 〈
g ∂nv , δ�

〉
Γ̂
−
∫
Γ̂

((
f + ∂ng

)
v δ�+ divΓ(g v δ�m)

)
.

(5.3)

As a side remark, we note that for smooth (C1,1) free boundaries, the results
reduce to those of section 4.1. In fact, in the smooth case, m = n is Lipschitz
continuous, and we have Ȟ1

0,ΓD(Ω̂) = H1
0,ΓD (Ω̂). Furthermore, (5.3) reduces to (4.2b)

since

divΓ(g v δ� n) = g v δ� divΓ n+ ∇Γ(g v δ�) · n = κ g v δ� ,

and δ� = δθ · n.

5.2. Dual problem and goal-error estimate. Based on the extension of the
linearization to Lipschitz domains Ω̂, we can introduce an analogous extension of
the dual problem in (4.4). The extended dual problem relies on the smoothened
normal field m introduced previously. Let z be the solution of the following variational
problem:

Find z ∈ Ȟ1
0,ΓD(Ω̂) :∫

Ω̂

∇δu · ∇z +

∫
Γ̂

(
1

g
(f + ∂ng) z δu+ divΓ(z δum)

)

=

∫
Ω̂

qave δu−
∫
Γ̂

1

g
(qave + qelev) δu ∀δu ∈ Ȟ1

0,ΓD (Ω̂) .

(5.4)

The existence of unique solutions to (5.4) can be established based on a coercivity
estimate under similar assumptions on the data as in section 4.3. As the derivation
of this estimate is rather involved, we have deferred it to section A.2.

Analogous to the smooth case in Theorem 4.2, the dual problem in (5.4) provides
a solution that is consistent with the linearization of N and Q. The allowed domain
perturbations in the linearization are, however, in them-direction only. We summarize
this dual consistency in the following theorem, whose proof is delayed to the end of
this section.

3In two dimensions x̌ consists of zero-dimensional singular points x̌i ∈ Γ̂ and
∫
x̌
|v|2 dx̌ =

∑
i |v(x̌i)|2. In N dimensions x̌ is the (N − 2)-dimensional subset of Γ̂, where κ is singular.
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Theorem 5.2 (dual consistency). Given an approximation (Ω̂, uh) ∈ O×H1
h(Ω̂)

of the solution (Ω, u) ∈ O × H1
h(Ω) of the free-boundary problem (2.1), the solution

z ∈ Ȟ1
0,ΓD(Ω̂) ⊂ H1(D) of dual problem (5.4) satisfies

N ′((Ω̂, uh); z)(δθ, δu) = Q′(Ω̂, uh)(δθ, δu)

∀ (δθ, δu) ∈ Θ(m) ×H1
0,ΓD (D).

We immediately obtain a goal-oriented error estimate by the same arguments as
in section 4.3. As the allowed domain perturbations are in the m-direction only, we
first need to introduce a domain difference between Ω and Ω̂ along m. For this, let
eΩ(m) ∈ Θ(m) such that Ω = TeΩ(m)(Ω̂).

Proposition 5.3 (goal-error estimate). Under the conditions of Theorem 5.2,
let z ∈ Ȟ1

0,ΓD (Ω̂) be the solution of dual problem (4.4). It holds that

EQ := Q(Ω, u) −Q(Ω̂, uh) = R(
(Ω̂, uh); z

)
+R ,(5.5)

where the remainder R is o(‖eΩ(m)‖, ‖eu‖).
Proof. The proof of this proposition follows by the same arguments as in the

proof of Proposition 4.3.
The dual problem in (5.4) is an extension of the dual problem in (4.4) in the

sense that for smooth free boundaries, (5.4) reduces to (4.4). This can be verified by
recalling that in this case m = n and Ȟ1

0,ΓD (Ω̂) = H1
0,ΓD (Ω̂). Furthermore, we have

divΓ(z δum) = z δu divΓ n+ ∇Γ(z δu) · n = κ z δu .

Proof of Theorem 5.2. As in the proof of Theorem 4.2, we consider the u- and
Ω-linearized equations separately. The satisfaction of〈

∂uN
(
(Ω̂, uh); z

)
, δu

〉
=

〈
∂uQ(Ω̂, uh), δu

〉 ∀δu ∈ H1
0,ΓD (D)

follows from the same variational arguments as in the proof of Theorem 4.2. As a
result, we obtain −Δz = qave in Ω̂, and thus, z ∈ H1

0,ΓD(Δ;D) ∩ Ȟ1
0,ΓD (Ω̂). We are

left with showing that z satisfies the Ω-linearized equation defined by (5.3) and (4.3b):

− 〈
g ∂nz , δ�

〉
Γ̂
−
∫
Γ̂

((
f + ∂ng

)
z δ�+ divΓ(g z δ�m)

)
=

∫
Γ̂

(
qave + qelev

)
δ�(5.6)

∀ δ� ∈ C0,1(D) with δ� = 0 on ΓD. To show this, we integrate by parts the first
integral in (5.4) to obtain〈

∂nz, δu
〉
Γ̂

+

∫
Γ̂

(
1

g
(f + ∂ng) z δu+ divΓ(z δum)

)
= −

∫
Γ̂

1

g
(qave + qelev) δu

∀ δu ∈ H1
0,ΓD(Ω̂). Choosing δu = −g δ� ∈ H1

0,ΓD (Ω̂), we obtain (5.6).

6. Numerical experiments. To enable a comparison between the shape-
linearization approach and the domain-map linearization of [42], we consider the same
numerical experiments as in [42]. We demonstrate that the shape-linearization ap-
proach provides an elegant alternative to the domain-map linearization approach.
First, we consider in section 6.1 the Bernoulli-type free-boundary problem in one di-
mension. The shape linearization of this one-dimensional problem is essentially equiv-
alent to the so-called total linearization method used in [3] to obtain a Newton-type
solution algorithm. In section 6.2, we consider the Bernoulli-type free-boundary prob-
lem in two dimensions. We demonstrate the effectivity of the dual-based error estimate
on uniformly refined meshes and present an example of goal-oriented adaptive mesh
refinement.
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6.1. One-dimensional application. In the one-dimensional setting, the vari-
able domain is the interval Ω = (0, ϑ) ⊂ R. The Dirichlet boundary and free bound-
ary are the points ΓD = {0} and Γ = {ϑ}, respectively. The approximate domain is
given by Ω̂ = (0, ϑh). It can be verified that the dual problem (4.4) reduces in the
one-dimensional setting to: Find z ∈ H1

0,ΓD(Ω̂) :

∫
Ω̂

δux zx dx+

(
1

g
(f + gx) z δu

)
(ϑh) =

∫
Ω̂

qave δu dx−
(

1

g
(qave + qelev) δu

)
(ϑh)

∀ δu ∈ H1
0,ΓD(Ω̂), where (·)x = d(·)/dx and qelev ∈ R.4

6.1.1. Typical error estimate. We consider the data and goal functionals
and the corresponding exact solution as indicated in Table 1. To show some typical
error estimation results, consider the following approximation and corresponding goal
values:

(
ϑh, uh(x)

)
=

(
3

2
,

2

3
x

)
, Qave

(
ϑh;uh

)
=

3

4
, Qelev

(
ϑh

)
=

3

2
.

Table 1

Specification of the data for the one-dimensional example.

f(x) g(x) qave(x) qelev ϑ u(x) Qave(ϑ; u) Qelev(ϑ)

− 1
2

x− 1 1 1 2 1
4
x2 2

3
2

Figure 4 (left) shows a graphical illustration of the exact and approximate solutions.
Furthermore, Figure 4 (right) shows the dual solutions for Qave and Qelev:

zave(x) =
1

4
x− 1

2
x2 , zelev(x) = −4

5
x .

Fig. 4. Exact solution (ϑ, u) and approximation (ϑh, uh) (left). Dual solutions zave and zelev

corresponding to goal functionals Qave and Qelev, respectively (right).

The corresponding dual-based error estimate, EstQ := R(
(Ω̂, uh); z

)
=

∫
Ω̂
f z dx +

(g z)(ϑh) − ∫
Ω̂
uhx zx dx , and the true goal error, EQ, are as follows:

EstQave =
17

64
, EstQelev =

13

20
,

EQave = − 1

12
, EQelev =

1

2
.

The difference in the error estimate and the true error is caused by linearization. Let
us note that both the dual solutions and error estimates are slightly different from
the results obtained by means of the domain-map linearization approach of [42].

4Let us note that in the one-dimensional setting, the use of shape calculus is, of course, not
necessary as one can use the Leibniz integral rule to differentiate under the integral sign.
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6.1.2. Convergence of error estimates. In the following example, the data is
again specified as in Table 1. We investigate the convergence of the dual-based error
estimate for the following Δϑ-family of approximate solutions: 5

ϑh = ϑ+ Δϑ ,(6.1a)

uh(x) =

{
u(x) x ∈ [0, ϑ] ,

u(ϑ) x ∈ (ϑ, ϑ+ Δϑ] .
(6.1b)

This family converges to the exact solution as Δϑ ↘ 0. Note that uh is simply a
constant extension of u on the approximate domain. Hence, if u is conceived of as
a member of H1

0,ΓD(Ω̂) by constant extension outside [0, ϑ], then eu = u − uh = 0.
From the perspective of the error representation (see Proposition 4.3), only the error
eΩ = Δϑ is then relevant.

Figure 5 (left) plots the actual error EQave and the dual-based estimate EstQave

versus Δϑ for the goal functional Qave. Furthermore, Figure 5 (right) plots the error
in the estimate |EQave − EstQave | versus the norm of the error:

∥∥(eϑ, eu)
∥∥2

= |ϑ− ϑh|2 + ‖ux − uhx‖
2

L2(Ω̂) = |Δϑ|2 .
Both parts of Figure 5 illustrate that the convergence of the estimate is indeed second-
order, in accordance with the theory.

Fig. 5. True goal error EQave and dual-based error estimate EstQave for the Δϑ-family of
approximations (ϑh, uh) given in (6.1a) and (6.1b) (left). Convergence of the error in the error
estimate with respect to the norm

∥
∥(eϑ, eu)

∥
∥ (right).

6.2. Two-dimensional application. We now consider the two-dimensional
case. We denote coordinates by (x, y) ∈ R

2. We compute approximations of (2.2) by
means of Galerkin’s method. Hence, the approximate domain Ω̂ ∈ O and correspond-
ing approximate solution uh ∈ V h

h (Ω̂) satisfy∫
Ω̂

∇uh · ∇v =

∫
Ω̂

f v +

∫
Γ̂

g v

∀ v ∈ V h
0,ΓD (Ω̂), where V h

h (Ω̂) ⊂ H1
h(Ω̂) and V h

0,ΓD (Ω̂) ⊂ H1
0,ΓD (Ω̂) denote standard

finite element spaces consisting of piecewise-linear functions on triangles. Accordingly,
the approximate free boundary is a piecewise-linear curve composed of the edges of

5To arrive at a convenient expression for the norm of the error, the family of approximations
in (6.1) is slightly different from that in [42].
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the adjacent elements. The nonlinear problem is solved using a fixed point iteration
similar to the explicit Neumann scheme in [16], where we allow the vertices of the free
boundary to move only vertically.

Since our approximate domains have piecewise-linear free boundaries, we have to
use the dual problem (5.4). This dual problem is discretized on the same triangu-
lar mesh as the primal problem but with piecewise-quadratic functions (that vanish
on ΓD). The tangential divergence term in (5.4) is implemented by means of iden-
tity (A.2); see Appendix A for more details.

6.2.1. Effectivity for the parabolic free-boundary test case. First, we
reconsider the parabolic free-boundary test case introduced in [42]; see Figure 6 for
the geometric layout. The data {f, g, h} of the free-boundary problem is manufactured
to yield the exact domain Ω = (0, 2) × (0, 1 + αΩ), with

αΩ(x) =
1

2
x (2 − x) ,

and the corresponding solution

u(x, y) =
y

1 + αΩ(x)
+ αΩ(x)

y

1 + αΩ(x)

(
1 − y

1 + αΩ(x)

)
.

Our interest pertains to the average goal with qave = 1, which yields Qave(Ω;u) =
67/45 = 1.4888 . . . at the solution. In Figure 6, we depict the approximate dual
solution z for the coarsest mesh and a very fine mesh. The convergence of the cor-
responding dual-based error estimates EstQave = R((Ω̂, uh); z) on uniformly refined
meshes is reported in Table 2. The effectivity index EstQave /EQave approaches 1,
demonstrating the consistency of the error estimate. The small deviation from 1 is
conjecturally caused by weak singularities in the dual solution at the kinks in the
approximate free boundary. To enable a comparison, Table 2 also presents the re-
sults obtained in [42] for the domain-map linearization approach. On coarse meshes,
shape linearization yields a more accurate estimate than domain-map linearization.
However, the results of both approaches are essentially identical.

Fig. 6. Test problem of section 6.2.1. The approximate dual solution (contour plot) associated
with a very fine mesh (left) and the coarsest mesh (right).

6.2.2. Goal-oriented adaptivity for free-surface flow over a bump. To
investigate the applicability of the error estimate to drive adaptive mesh refine-
ment, we regard the problem of free-surface flow over a bump of [42] with domain
Ω = (0, 4)×(yb, 1+αΩ); see Figure 7 (top). The function yb describes the bottom and
has triangular bump at 1 < x < 2. For the data, we take f = 0 and g = 1. Moreover,
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Table 2

Convergence of the dual-based error estimate EstQave under uniform mesh refinement for the
shape-linearization approach and the domain-map linearization approach of [42].

Shape Domain map
Elements DOFs Qave EQave EstQave Effect. EstQave Effect.

8 8 1.1573 0.33163 0.32160 0.970 0.22131 0.667
16 15 1.3145 0.17440 0.16101 0.923 0.13852 0.794
32 23 1.3694 0.11947 0.12285 1.028 0.09994 0.836
64 45 1.4284 0.06045 0.06044 1.000 0.05499 0.910

128 77 1.4555 0.03339 0.03584 1.073 0.03055 0.915
256 153 1.4715 0.01740 0.01810 1.040 0.01676 0.963
512 281 1.4803 0.00860 0.00933 1.085 0.00808 0.940

1,024 561 1.4843 0.00458 0.00482 1.054 0.00450 0.984
2,048 1,073 1.4867 0.00217 0.00235 1.083 0.00205 0.947
4,096 2,145 1.4877 0.00117 0.00123 1.057 0.00115 0.991
8,192 4,193 1.4883 0.00054 0.00059 1.081 0.00051 0.949

16,384 8,385 1.4886 0.00029 0.00031 1.057 0.00029 0.993

∞ ∞ 1.4888 0

Fig. 7. Test problem of section 6.2.2. The exact domain and solution (contour plot) (top) and
the approximate domain and dual solution corresponding to the coarsest mesh (bottom). We have
indicated the free-boundary elevation point of interest (at x0 = 2 +

√
2).

h is 0 at the bottom and increases linearly to 1 along the lateral boundaries of the
domain. Our interest is the elevation of the free boundary at x0 = 2 +

√
2. Figure 7

(bottom) displays the corresponding coarsest mesh dual solution. We construct el-
ement refinement indicators, apply a Dörfler-type marking, and refine using newest
vertex bisection as in [42].

In Figure 8, we plot the error estimate and the “true” error versus the to-
tal number of degrees of freedom, which is denoted by n. The reference value
Qelev(θ) ≈ 0.02271 has been taken from [42]. The drop in the true error for the
adaptive case for n > 1,000 is caused by the nonnegligible error in the reference
value. The adaptive refinement yields an optimal convergence rate of O(n-1), while
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1112 VAN DER ZEE, VAN BRUMMELEN, AND DE BORST

Fig. 8. Convergence of the “true” error E = EQelev and error estimate Est = EstQelev under
uniform mesh refinement, adaptive mesh refinement using shape linearization (adapt S), and adap-
tive mesh refinement using domain-map linearization [42] (adapt DM) versus the total number of
degrees of freedom n.

a suboptimal convergence rate of O(n-3/4) is obtained for uniform refinement. Fig-
ure 8 also shows that the convergence behavior of adaptive refinement with shape
linearization and with domain-map linearization is similar.

Figure 9 (left) presents several adaptively refined meshes obtained by shape lin-
earization. The different refinements at the three bump corners as well as the local
refinement near the elevation point of interest are noteworthy. For comparison, Fig-
ure 9 (right) recalls from [42] the sequence of adaptively refined meshes obtained with
domain-map linearization. The meshes in Figure 9 (left) have been selected in such
a manner that they have similar numbers of elements. Note, however, that owing to
our marking strategy, the corresponding iteration number can be distinct. It is to
be noted that the domain-map linearization approach yields significantly more refine-
ment near the free boundary. This is in line with the analysis in section 4.3, which
conveys that the difference between the two approaches consists of a residual-type
boundary term. However, although the refinements are different, both approaches
give similar and optimal convergence behavior; see Figure 8.

Fig. 9. Adaptively refined meshes, controlling the error in the free-boundary elevation at x0 =
2 +

√
2, obtained with shape linearization (left) after 10, 18, and 26 iterations (120, 848, and 5,408

elements, respectively) and with domain-map linearization [42] (right) after 10, 18, and 29 iterations
(120, 793, and 5,447 elements, respectively).
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7. Concluding remarks. On the basis of a Bernoulli-type free-boundary prob-
lem, we presented a shape-linearization approach to goal-oriented error estimation
for free-boundary problems. We showed that the associated very weak form and
goal functional of interest can be formulated as a function of the unknown domain.
The domain dependence was linearized using techniques from shape calculus. We
extracted from the linear (adjoint) equation an appropriate dual problem by means
of a consistent reformulation. This dual problem corresponds to a Poisson problem
with a Robin-type boundary condition involving the curvature. Moreover, we derived
a generalization of the dual problem for nonsmooth free boundaries which includes a
natural extension of the curvature term. To demonstrate the effectivity of the dual-
based error estimate and its usefulness in goal-oriented adaptive mesh refinement, we
presented numerical experiments in one and two dimensions.

The shape-linearization approach provides an attractive alternative to the
domain-map linearization approach in [42], as it avoids the nonstandard and non-
local interior and boundary terms of the latter. We showed that the essential differ-
ence between the two approaches is that the dual problem in [42] contains a nonlocal
residual-type boundary term. At the solution of the free-boundary problem, this
residual-type term vanishes and both dual problems are equivalent. A comparison of
the numerical results obtained by shape linearization with the results obtained in [42]
by domain-map linearization revealed no essential differences.

Various extensions of our model problem can be envisaged. For example, we
considered constant Dirichlet data at the free boundary and conforming uh in the
sense that uh = h = 1 on Γ̂. This is convenient as the shape linearization of the
associated combined term −B(Ω;uh, v) + H(Ω; v) vanishes; see section 4.1. However,
nonconstant h|Γ and uh �= h on Γ̂ can be included if the associated terms are shape
linearized accordingly. As a result, additional terms involving the Laplace–Beltrami
operator appear in the dual Γ̂-boundary condition. However, this requires additional
regularity on the dual solution.

Another extension concerns more complicated free-boundary problems. In [40,
41], for example, the presented domain-map and shape-linearization approaches are
considered in the context of a fluid-structure-interaction problem.

Instead of deriving linearized adjoints, the present shape-linearization approach
can also be used to obtain Newton-based iteration algorithms for free-boundary prob-
lems; cf. [26–28]. The use of shape calculus appears to provide a convenient rigorous
setting compared to formal asymptotic developments as in [2, 16]. The proposed ex-
tension to nonsmooth free boundaries in section 5, however, has to our knowledge
not been considered before in this context. This extension provides a natural gener-
alization of curvatures to nonsmooth free boundaries, obviating heuristic curvature
reconstruction.

Appendix A. Additional analysis of the dual problem of section 5. In
this section we provide auxiliary results concerning the dual problem in (5.4). We
consider the two-dimensional case; the extension to three (and higher) dimensions
follows similarly.

A.1. Boundedness of the tangential divergence term. Here, we verify the
boundedness of the functional v �→ K(v) :=

∫
Γ̂

divΓ(g v δρm) (see (5.2)) on Ȟ1
0,ΓD(Ω̂).

Observe that, in two dimensions, any v ∈ Ȟ1
0,ΓD(Ω̂) satisfies the constraint |v(x̌i)|2 <

∞ for singular points x̌i ∈ Γ̂, i = 0, 1, . . . . The integral in K(v) can be integrated
by parts (piecewise) resulting in contributions at these singular points. This requires
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the tangential Stokes theorem on piecewise smooth boundaries. Let us denote the
boundary segments between x̌i and x̌i+1 by Γ̂i+1; see Figure 10. Note that Γ̂ =

int∪iΓ̂i. Furthermore, let τ̌i denote the vector at x̌i composed of the two unit tangent
vectors τ |Γ̂i

and τ |Γ̂i+1
at x̌i outward with respect to their segment, i.e.,

τ̌i := τ
∣∣
Γ̂i+1

(x̌i) + τ
∣∣
Γ̂i

(x̌i) .

For points x̌i at the boundary of Γ̂, τ̌i is equal to the outward tangent vector. Then
the following tangential identity holds:∫

Γ̂

divΓ θ =
∑
i

θ(x̌i) · τ̌i +
∑
i

∫
Γ̂i

κ θ · n(A.1)

for suitable θ : Γ̂ → R
2; see [36, p. 150] or [9], for example. Applying this to the

integral in K(v), we have

K(v) =

∫
Γ̂

divΓ(g v δρm) =
∑
i

(g v δρ)(x̌i)m(x̌i) · τ̌i +
∑
i

∫
Γ̂i

κ g v δρ ,

where we used m · n = 1 on Γ̂i. This leads to the bound

K(v) ≤
∑
i

|g(x̌i) δρ(x̌i)| |v(x̌i)| |m(x̌i) · τ̌i| +
∑
i

∣∣∣ ∫
Γ̂i

κ g v δρ
∣∣∣ .

It now follows that K is bounded on Ȟ1
0,ΓD (Ω̂) because the first sum is bounded in

view of |v(x̌i)|2 <∞ and the second sum is bounded for v ∈ H1(Ω̂).

Fig. 10. Illustration of the singular points x̌i, a boundary segment Γ̂i, and a vector τ̌i (composed

of the two unit tangent vectors) for a domain Ω̂ with a piecewise smooth free boundary Γ̂.

A.2. Well posedness by coercivity. On account of the Lax–Milgram theo-
rem, well posedness of the dual problem (5.4) follows from coercivity with respect to
Ȟ1

0,ΓD (Ω̂) of the corresponding bilinear form 6

B(δu, z) :=

∫
Ω̂

∇δu · ∇z +

∫
Γ̂

(
1

g
(f + ∂ng) z δu+ divΓ(z δum)

)
.

Using the tangential identity (A.1), we can rewrite the tangential divergence term as∫
Γ̂

divΓ(z δum) =
∑
i

(
z δu

)
(x̌i)m(x̌i) · τ̌i +

∑
i

∫
Γ̂i

κ z δu .(A.2)

6The necessary continuity of the linear form is straightforward, and continuity of the bilinear
form follows using similar arguments as in section A.1 for the tangential divergence term.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERROR ESTIMATION FOR FREE-BOUNDARY PROBLEMS 1115

It follows that

B(z, z) =

∫
Ω̂

|∇z|2 +
∑
i

∫
Γ̂i

1

g
(f + ∂ng + κ g) z2 +

∑
i

z2(x̌i)m(x̌i) · τ̌i .

In view of the results in section A.1, a suitable norm on Ȟ1
0,ΓD (Ω̂) is given by

‖z‖2Ȟ1
0,ΓD (Ω̂) :=

∫
Ω̂

|∇z|2 +
∑
i

|z(x̌i)|2 .

It is now clear how to obtain sufficient conditions to ensure that B is coercive on
Ȟ1

0,ΓD (Ω̂). If the domain is convex at the singular points in the sense that m(x̌i) · τ̌i ≥
C > 0 ∀ i, and if, furthermore, (f + ∂ng)/g + κ ≥ 0 on Γ̂i ∀ i, then

B(z, z) ≥ C ‖z‖2Ȟ1
0,ΓD (Ω̂) ∀z ∈ Ȟ1

0,ΓD(Ω̂) .

Hence, under these conditions, the dual problem (5.4) has a unique solution in
Ȟ1

0,ΓD (Ω̂).
We remark that similar conditions on the data are given in [12, 13]. Related

boundary value problems with so-called oblique boundary conditions involving tan-
gential derivatives are analyzed in [20, p. 167] and [4, p. 398].

Appendix B. Proof of Proposition 3.3. The proof follows by showing that
the limit t → 0 of a suitable bound on the difference quotient (J (Ωt) − J (Ω))/t
vanishes. First, we note that the difference in J can be written as

J (Ωt) − J (Ω) =

∫
Ωt

φ1 φ2 −
∫
Ω

φ1 φ2=

∫
ΔΩt

β φ1 φ2,

where ΔΩt := (Ωt∪Ω)\(Ωt∩Ω) is the t-dependent set consisting of the nonoverlapping
parts of Ωt and Ω; see Figure 11 for an illustration in two dimensions. Furthermore,
β is a scalar function that is −1 for the Ω part and 1 for the Ωt part. Applying the
Cauchy–Schwartz inequality, we have∣∣J (Ωt) − J (Ω)

∣∣ ≤ ‖φ1‖L2(ΔΩt)
‖φ2‖L2(ΔΩt)

≤ ‖φ1‖L2(D) ‖φ2‖L2(ΔΩt)
.

An upper bound to the t-dependence of the second norm follows from the following
Poincaré inequality.

Lemma B.1. For all φ2 ∈ H1(D) with φ2 = 0 on Γ, it holds that

‖φ2‖L2(ΔΩt)
≤ C t ‖∇φ2‖L2(ΔΩt)

for some constant C independent of t.

Fig. 11. The perturbation of Ω by t δθ creates the t-dependent strip set ΔΩt.
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Fig. 12. The boundary Γ of the strip set ΔΩt is flattened under the Lipschitz continuous map S.

The proof now follows straightforwardly:

lim
t→0

∣∣J (Ωt) − J (Ω)
∣∣/t ≤ lim

t→0
C ‖φ1‖L2(D) ‖∇φ2‖L2(ΔΩt)

= 0 .

Proof of Lemma B.1. Let S : D → D denote a bounded Lipschitz continuous
transformation that maps Γ to the flat surface Γ̃ and ΔΩt to ΔΩ̃t; see Figure 12.
Define φ̃2 := φ2 ◦ S -1. Then φ̃ ∈ H1(D) with φ̃ = 0 on Γ̃ (see [20, p. 21] or [7,
p. 406]). Note that the domain ΔΩ̃t is bounded by a t-dependent cartesian box. The
following Poincaré inequality with a t-dependent Poincaré constant holds for such
slender domains:

‖φ̃2‖L2(ΔΩ̃t)
≤ C t ‖∇φ̃2‖L2(ΔΩ̃t)

;

see [22], for example. Substituting φ̃2 := φ2◦S -1 and transforming back to ΔΩt yields

(∫
ΔΩt

φ22 det DS

)1/2

≤ C t

(∫
ΔΩt

|DS -T∇φ2|2 det DS

)1/2

.

Noting that det DS and the components of DS -T are in L∞(D), we finally obtain the
Poincaré inequality (with a different constant C).

Acknowledgments. This research was supported by the Dutch Technology
Foundation STW, applied science division of NWO, and the Technology Program
of the Ministry of Economic Affairs.

REFERENCES

[1] R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation
in finite element methods, Acta Numer., 10 (2001), pp. 1–102.

[2] F. Bouchon, S. Clain, and R. Touzani, A perturbation method for the numerical solution of
the Bernoulli problem, J. Comput. Math., 26 (2008), pp. 23–36.

[3] C. Cuvelier and R. M. S. M. Schulkes, Some numerical methods for the computation of
capillary free boundaries governed by the Navier–Stokes equations, SIAM Rev., 32 (1990),
pp. 355–423.

[4] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and
Technology, Vol. 2: Functional and Variational Methods, Springer, Berlin, 1988.

[5] M. C. Delfour and J.-P. Zolésio, Structure of shape derivatives for nonsmooth domains,
J. Funct. Anal., 104 (1992), pp. 1–33.

[6] M. C. Delfour and J.-P. Zolésio, Tangential differential equations for dynamical
thin/shallow shells, J. Differential Equations, 128 (1996), pp. 125–167.

[7] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus,
and Optimization, SIAM Ser. Adv. Design and Control 4, Society for Industrial and Applied
Mathematics, Philadelphia, 2001.

[8] M. C. Delfour and J.-P. Zolésio, Tangential calculus and shape derivatives, in Shape Op-
timization and Optimal Design: Proceedings of the IFIP Conference, Lect. Notes Pure
Appl. Math. 216, J. Cagnol, M. P. Polis, and J.-P. Zolésio, eds., Marcel Dekker, New York,
2001, pp. 37–60.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERROR ESTIMATION FOR FREE-BOUNDARY PROBLEMS 1117

[9] F. R. Desaint and J.-P. Zolésio, Manifold derivative in the Laplace-Beltrami equation,
J. Funct. Anal., 151 (1997), pp. 234–269.
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with respect to a Lipschitz domain and a stability estimate for direct acoustic scattering
problem, IMA J. Appl. Math., 63 (1999), pp. 51–69.

[12] K. Eppler and H. Harbrecht, Efficient treatment of stationary free boundary problems, Appl.
Numer. Math., 56 (2006), pp. 1326–1339.

[13] K. Eppler, H. Harbrecht, and R. Schneider, On convergence in elliptic shape optimization,
SIAM J. Control Optim., 46 (2007), pp. 61–83.

[14] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Stud.
Adv. Math. 5, Chapman & Hall/CRC, Boca Raton, FL, 1992.

[15] J. Ferchichi and J.-P. Zolésio, Shape sensitivity for the Laplace-Beltrami operator with
singularities, J. Differential Equations, 196 (2004), pp. 340–384.

[16] M. Flucher and M. Rumpf, Bernoulli’s free-boundary problem, qualitative theory and nu-
merical approximation, J. Reine Angew. Math., 486 (1997), pp. 165–204.

[17] G. Fremiot and J. Soko�lowski, The structure theorem for the Eulerian derivative of shape
functionals defined in domains with cracks, Sib. Math. J., 41 (2000), pp. 974–993. (Trans-
lation of Sibirsk. Mat. Zh., 41 (2000), pp. 1183-1203.)

[18] J.-F. Gerbeau and T. Lelièvre, Generalized Navier boundary condition and geometric con-
servation law for surface tension, Comput. Methods Appl. Mech. Engrg., 198 (2009),
pp. 644–656.
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