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Positivity properties of phase-plane distribution functions

A.J. E. M. Janssen

Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

(Received 1 November 1983; accepted for publication 16 February 1984)

The aim of this paper is to compare the members of Cohen’s class of phase-plane distributions
with respect to positivity properties. It is known that certain averages (which are in a sense
compatible with Heisenberg’s uncertainty principle) of the Wigner distribution over the phase-
plane yield non-negative values for all states. It is shown in this paper that the Wigner distribution
is unique in this respect among the members of Cohen’s class that have correct marginals or that
satisfy Moyal’s formula for all states. The subset of members of Cohen’s class (not necessarily
satisfying one of these two conditions) with positivity properties comparable with those for the

Wigner distribution is shown to be rather small.

PACS numbers: 03.65. — w, 02.30. + g

I. INTRODUCTION

In this Introduction we present in a rather informal way
some known facts about Cohen’s class of phase-plane distri-
bution functions, and we indicate what we are aiming at in
this paper. Cohen’s class is parametrized by means of a func-
tion @ of two variables': for any such @ we have the family of
phase-plane distribution functions

C®(gp) = j f f expl — 2mi(6g + 7p — 6u)] D (6,7)

Xflu+47) flu—4r)d6drdu [(gp)eR’],
(1.1)

where fis an arbitrary state (all integrations are over the real
line, unless indicated otherwise). Of course, in order for this
definition to make sense certain assumptions on @ as well as
on f should be made. In Sec. II a convenient mathematical
setting for dealing with rather general @ ’sin (1.1} is present-
ed. Any family C{®'( farbitrary state) can be used to give a
formulation of quantum mechanics in the phase plane of
position g and momentum p. Infact, it can be shown that any
bilinear map f—C,, mapping states fonto functions C, of the
phase-plane variables ( g,p), satisfying

CAg+ap+b)=Cras(gp [(gpER’] (1.2)

for all states fand all (a,b }€R? can be brought into the form
(1.1). Here T, and R, are the shift operators, defined, respec-
tively, by

(T.f)q) =Sf(q+a)

(RSN g)=e">"f(q) (geR),
for all fand all (a,b JeR>. 1t is easily verified that any
C, = C!® asin (1.1) satisfies (1.2) for all fand all (2,5 )eR”.
The choice & (8,7) = 1 in (1.1) yields the Wigner distri-
bution® of f, viz.

(1.3)

: 1 1
Wilq.p) =fe‘2’"’"f(q +7t) f(q —-z—t)dt
[(g:.p)R?]. (1.4)
In a way one can consider the Wigner distribution as the
basic distribution of Cohen’s class from which all others can
be derived®: one has
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cie q,p)=H¢(q—a,p—b)wf(a,b)dadb

[( g:p)eR?], (1.5)
where @ is the double Fourier transform of &, given by
¢lgp) = J J e~ 2%+ P\ (0,r)d@ dr
[( g.p)eR?). (1.6)

This ¢ must be treated as a generalized function, e.g.,
@{ ¢,p) = 81 )6 { p)for the Wigner distribution case, whereas
@ is usually smooth.

The class of all possible phase-plane distributions can
be restricted considerably by imposing certain “natural’ re-
quirements. We consider in this paper four additional condi-
tions.

(a) C'®'yields the “correct” marginal distributions for
all states f [see (1.7)].

{b) C®’ has finite support properties [see {1.11) and
(1.12)].

(c) €' is such that Moyal’s formula holds for all states

fand g [see (1.15)].

(d) C®'is a non-negative distribution for all states /.
Each of the requirements (a), (b}, {c}, and {d) has conse-
quences for @ (and @); it is well known that not all four
conditions are compatible. However, the Wigner distribu-
tion satisfies (a), (b), and (c), while also certain positivity
properties hold.

The condition (a) means that for all states f we should
have

J C ¥ qpMdp=|f(q)|* (g€R),
(1.7)
f C®gpMdg=|(FfNPI* (peR).

Here % denotes the Fourier transform, given for all by

(F ) p) = f e=2™2f(g)dg (peR). (L8)

It can be shown'>* that (1.7) holds for all states fif and only
if
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@ (0,7) = P (6,0)=1

or, equivalently,

[etapa=510) (gem),

[(6,7)eR?], (1.9)

(1.10)
[etapaa=s1p (pei
For condition (b) it is required” that for all states fand
all (Q,P)eR?
fla=0 (lg|>Q=>CPqp)=0 (lg|>Q), (1.11)
and

(FAp)=0 (lp|>P)=CP qp)=0 (lp|>P()i .

It can be shown? that validity of (1.11) for all fis equivalent to

f e~ %P (0,1d6 =0 (|q|> |7]/2) (1.13)

for all 7R; similarly, validity of (1.12) for all f'is equivalent
to

fe‘z”"’¢(6,f)dr=0 (lp| > 6 172), (1.14)
for all 6eR. That is, D (-,7), P (6,-) are functions of the Paley—
Wiener kind® with type <|7|/2, <|8|/2, respectively, for
(6,7)eR? when the finite support properties are satisfied.

For property (c) to hold, we must have that Moyal’s
formula®®

jf C®(q.p) CPYq,p)dg dp = |(fg)]?

is valid for all states fand g. It has been shown® that validity
of (1.15) for all f and g is equivalent to

@67 =1 [(6,7)eR’],

(1.15)

(1.16)
or

(@*@)g.p)=58(q8(p) [(gp)R?], (1.17)

where &( g,p) = @(— q, — p), and * denotes convolution
over R2. A further result® is that validity of (1.15) for all fand
g, together with validity of (1.7}, (1.11), and (1.12) for all £,
implies that @ takes the special form

D (0,7) = D, (0,7) = exp(2miabr) [(6,7)eR?]
for some a€R with |a|<]. In that case ¢ is given by

@ (4:p) = @.(q.p) = a™" exp( — 2migp/a) or 5 g)5( p)
[(g.p)eR?] (L.19)
according asa7#0or a = 0, and C|®’ takes the special form®

C qp) = C(gp)
femfoniine)

xXf (q - t(% + a))dt [( g,p)eR?]. (1.20)

It is interesting to note that for any state f and any
(a,b )eR? the global spread

” [(g—af+(p—bP1|C™ gp) P dgdp (1.21)

(1.18)
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of C 'f"’ around (a,b ) is minimal for a = 0, the Wigner distri-
bution case. Choosing for (a,b ) the center of gravity® of C'f"',
which is independent of a and equals®

@s)=( [ atar da. [plFipIP o).

we see that the Wigner distribution behaves, in some sense,
best with respect to spread among the members of Cohen’s
class that satisfy conditions (a), (b), and (c). This is some indi-
cation that the Wigner distribution is to be preferred over the
other members of Cohen’s class. One may find this argument
not entirely convincing yet, for one has to restrict oneself to
distributions satisfying the strong condition that Moyal’s
formula is satisfied and this excludes, for example, the family
of distributions ( farbitrary state)

Re[e™ f(q)(Ff)p)] [(ap)eR?],

which was considered by Margenau and Hil
We finally discuss condition (d). This condition says
that for all fit should hold that"!

C®(gp)>0 [(gplR?]. (1.24)

It has been shown'? that validity of (1.7) and (1.24) for all
states fis not possible. This does not contradict the result of
Ref. 13 where to every state a non-negative function of ( ¢,p)
with correct marginal distributions is assigned in a nonbilin-
ear way.

With respect to positivity properties only the Wigner
distribution has been studied in some detail'*'¢ as far as we
know. It is exactly the purpose of this paper to compare the
general phase-plane distribution functions on this point with
the Wigner distribution. The best known positivity property
of the Wigner distribution'’~*! reads: for all states f; all y > 0,
8> 0 with ¥6<1, and all (a,b }eR* we have

f f expl — 2/ g — a2 — 278( p — b PIW, g,p)dq dp>0.
(1.25)

This paper concentrates on finding out for what & and what
7, 0 inequality (1.25) still holds for all £, (a,b ) when W is
replaced by the more general phase-plane distribution C {*'.
In connection with (1.25) we note that the following has been
proved for the Wigner distribution. Hudson'” has shown
that W, takes negative values unless fis a Gaussian. The
argument used by Hudson was augmented?' to show that, if
¥8 > 1, any f for which (1.25) is non-negative for all (a,b JeR?
must be a (possibly degenerate) Gaussian (in Ref. 21 certain
generalized functions are allowed; we turn to these in Sec.
II). It is not clear how a result of similar strength can be
shown to hold generally for the distributions of Cohen. We
have, e.g., with @ (6,7) = cos 7w0r [which yields (1.23)] that
C?'(q,p)>0for f( g) = cos 2mq. Nevertheless the following
results will be proved in this paper. Assume that & is such
that (1.7) is satisfied for all f. Under a mild smoothness and
growth condition”® on @ we have the following.

(1) If ¥6 > 1, then there is no @ such that (1.25) (with
C{®! instead of W,) holds for all f and all (a,b JcR%.

(2)If ¥8 = 1, then the only @ for which (1.25) (with C /!
instead of W;) holds for all fand all (a,b eR? equals
@ (6,7) = 1 (Wigner distribution case).

(1.22)

(1.23)

1.10
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We shall prove that a similar result holds when validity of
(1.7)is replaced by validity of (1.15) for all fand g. Weshall in
addition show that validity of (1.25) (with C *’ instead of W)
imposes severe restrictions on @ if 8 < 1 and (1.7) is satisfied
for all f; or if ¥6> 1.

The further plan of this paper is as follows. In Sec. II we
give a mathematical setting that allows us to consider func-
tions ¢ with mild restrictions on growth. We furthermore
recall in Sec. II the main results of Ref. 16, and we extend
these results somewhat. In Ref. 16 conditions for a function
K ( g,p) are given that ensure that

f f K (q.p)W/{ q.p)dg dp

is non-negative for all £ It is clear that these results will be
useful, since (1.5) and (1.25) show that non-negativity of
(1.25) [with C|® instead of W, and (a,b ) = (0,0)] for all fis
equivalent to non-negativity of (1.26) for all f, where K is the
convolution of ¢ g,p) and exp( — 27yq* — 278p?). In Sec.
ITI we consider the case that no other condition than non-
negativity of (1.25) [with C {*'instead of W, and (a,b ) = (0,0)]
for all fis imposed; in Sec. IV we require in addition correct
marginals or validity of Moyal’s formula.

Il. MATHEMATICAL SETTING AND RESULTS ON
POSITIVITY FOR THE WIGNER DISTRIBUTION

As we have to discuss rather general functions @ it is
convenient to restrict the states f/ to a certain space of test
functions. We consider the space .S of smooth functions; this
function space has been proposed in Ref. 8 as a setting suited
for doing Wigner distribution analysis. It is the same space as
the one used in Refs. 16, 21, and 23. To describe it briefly we
denote, for n = Q,1,..., by ¢, the nth Hermite function,

(—1)72"/%" (d /dg)"e >
n\(4m)?

the normalization has been chosen in such a way that

eﬂq1727114* wf 2*1/4 N (Zw—‘/;)"_ ¢n( q) ( qe]R,weC).
!

n=0 \/;_
(2.2)

The space S consists of all functions f whose Hermite coeffi-
cients ( f;,) satisfy an estimate

(f¥,) =0~ ") (n=0,1,..), (2.3)
for some & > 0. It can be shown that the space S'is identical to
the set of (restrictions to the real axis of) entire functions g for
which there are M > 0, 4 >0, B> 0 such that

lg(x + )| <M exp( — 7Ax* + TBY?) [(xy)eR?]. (2.4)
A sequence (f, ), in § is said to converge to zero when, for

some @ >0, sup, _ o, €| (fx,¥,)|-—0 when k— 0.
The space S * consists of all continuous linear function-
als on S. It can be shown that for FeS*

(F,)=0(") (n=0,1,.), (2.5)

for all @ > 0. The smoothing operators N, with Re a > O play
an important role; they map S * into S and are defined by

(N F)q) = i (Fapp)e "+t (q) (FeS *,qeQ).
"= (2.6)

(1.26)

Y.(q)=

(geR);  (2.1)
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As an integral operator of L ¥R), N, has the kernel K, given
by

K 1 )1/2 ( "
a 2 = . €X - .
(4:7) ( sinh a P sinh a

X[(4" + pleosh @ — 24p )

= 3 ety (gl (p)

n=0
[( g.p)eR?]. (2.7)
The identity in {2.7) is just one way to write Mehler’s formula

2 1/2 1 2
(1 wz) exP(_”(q2+p2)1+Zz+4ﬂ qu2>

1 —w

=3 w,(qi.(p) [(gp)eC?lw]<1]. (2.8)

n=0
The spaces S ? and S ?* of smooth and generalized func-
tions of two variables can be defined in a similar fashion. An
important formula, relating smoothing operators and
Wigner distributions,?* reads

(Non VN gp) =V ap) [(gp)eR’ Rea>0] (2.9)

for feL *(R). Here N, is the smoothing operator for func-
tions of two variables [whose kernel X, , ( g,p;x.y) equals
K.(¢x)K,(p.y)], and
_ 1 9 P 2
far = w( L2 ) Usrkr] (10
for feL *(R). We note? that V. (and hence W) can be defined
for FeS * and that V€S **.

Another useful formula®® is

Wy qp)=W;{gcos6 +psinbpcos 6 —gsin )

[( ¢.p)eR?], (2.11)

which holds for all real 6 and all f&S.

In spite of the rather heavy machinery we have devel-
oped here, we shall usually manipulate with generalized
functions in a rather carefree manner; we shall give details
only in cases where the verification are not straightforward.

We now turn to positivity properties of the Wigner dis-
tribution. We have, for n =0,1,...,%

W, (gp)=2— 1) exp[ —27(q* + p?)]

XL,[4m(¢* + )] [(gp)ER?]. (2.12)
Here L, is the nth Laguerre polynomial,
Liw="3 (”) = esom=0,1,.), (213
j=o N 7
for which a generating formula®® is given by
(1 —w) 'exp[ —xw(l —w)™']
= S wL,x) (jw|<1x>0) (2.14)

n=20

Formula (2.12) can be used to show the identity®’
[ [ whapx 2at g+ pdg dp

= i (— 1)”I(ﬁ¢n)|2Lw e 'K(r)L,(2r)dr,  (2.15)

n=20

A. J. E. M. Janssen 2242
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where f€S and K: [0,  }—>C is measurable and satisfies

f K (x)|?e~“dx<w (€>0) (2.16)
0
Now positivity properties of the Wigner distribution result

on taking non-negative functions K with the property that
(— l)"f e 'K(rL,(2ndr>0 (n=0,1,..). (2.17)
0

In Ref. 16 a large number of examples of such K ’s have
been given. We mention in particular the choices

K{=re=* (0<p<l, n=01,.), (2.18)
K()=r (a>—} (2.19)

The following positivity property is new as far as we
know.

Theorem 2.1: Let X: [0, o0 }—[0, ) be nondecreasing,
and assume that X (x) = O [exp(ex)] for some € < 1. Then
(2.17) holds.

Proof: It follows from Bonnet’s theorem™ that for all
A >0 there is an x,(4 )€[0,4 ] such that

(=1 f e~'L, (2K (Hdr

=(—1)"K (4 —) e 'L, (2r\dr. (2.20)
xid )
It is easy to check from formula (2.14) that
(=17 f e °L,(25)ds=S,(n+S,_,(r (r>0),
' (2.21)
where
S, (r)= Z (— e "Li(2r) (n> — 1,r>0).  (2.22)

k=0
Since in Ref. 28, Problem 100, p. 392, shows that S, (#)>0 for
n> — 1, r>0, it follows that

(—1yKd—) [ e "L, (21dr>0

FolA }

(4>0,n=0,1,...). (2.23)

The proof is easily completed by noting that, for n = 0,1,...,

K —) Lm e 'L,(21dr—0 (d— ). (2.24)

Notes: (1) Assume that X is infinitely many times differ-
entiable, and that X (#) and all its derivatives are O (¢') for
some € < 1. Then (2.17) holds if and only if

[ @l wmens

This follows on using e ~"L (r) = 1/. nld /dr)"{e ~"7") and
performing n partial integrations in (2.17).

(2) Since both X (r) = r*{a> — i) and
K (r) = e ~#(0<p<]1) satisfy (2.17), one may ask whether
K (r} = r"e ~*" satisfies (2.17). Well, it does not unless & is an
integer. It can be shown from the formula (2.14) that, for
n=0,1,..,

(2.25)
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(— 1)"J e "L, (21" " dr
(4]

=(1—p) * 'a+ l)Cwn[(l + w)

(2]
I—p

Here C . denotes “coefficient of w” in.” Now Darboux’s
method*' can be used to find the asymptotic behavior of the
coefficients of the function (1 + w)*[(1 + p)/(1 — p)

—w] ~*~ L Weget [a = (14 p)/(1 —p)]

(2.26)

(— 1)"f e 'L,(2r)r"e " dr
0

_aa—1){a—n+1)
- n!

e P TR ]
(n=0,1,..), (2.27)

and this oscillates for large n when « is noninteger. This
example shows that the condition (2.17) is rather intricate.
(3) We give an application of formula (2.15) which has
nothing to do with the main subject of this paper. In the
context of the Weyl quantization map we can express the
left-hand side of (2.15) as (T f,f), where T is the linear
operator whose Weyl symbol*” equals K [277( g2 + p?)]. De-
note by H the Hermite operator — (1/477)(d /dg?) + 47,
whose Weyl symbol equals ¢° 4+ p*. One can now ask how
well / ( g* + p?) is an approximation to the Weyl symbol of
S(H). As an example we consider f(r) = r'/2, and to that end
we choose K (r) = (r/2)'/? in (2.17). Now T is an operator
whose matrix relative to the basis (¢, ), _, .. of Hermite
functions is a diagonal matrix, with diagonal elements

_(_1)" < —r I 1/2
(Tt == f e=L (27" dr

T
=2732C L [(1 = w)' /(1 4+ w)"?]. (2.28)
By using Darboux’s method, one can show that
(Tx¥utln) =7 *n + 1)'2[1 + O(1/n)]
(n=0,1,..). (2.29)

At the same time (VH ¢,,3,) = 77 /*(n + 1)/ for
n=0,1,.... Hence T, — JH is a diagonal operator (relative
to the ¢, ’s) with diagonal elements that are O (n~'/2). This

shows that T — JH is of Schatten’s p class with p > 2. Of
course, all sorts of generalizations are possible here.

lll. PHASE-PLANE DISTRIBUTION FUNCTIONS WITH
NON-NEGATIVE GAUSSIAN AVERAGES

Let y > 0. In this section we want to find out for which
@ asin (1.1) or @ as in (1.6) we have

f f C?N gplexpl — 2my(¢* + p*)1dgdp>0  (3.1)

for all f&S. We require here that $€S ?* or geS 2*, for then
formula (1.5) shows that C*' is the convolution of @S+

A.J. E. M. Janssen 2243
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and WeS 2, and this is a smooth function that can be inte-
grated against any Gaussian as in (3.1). For the details con-
cerning convolution theory in the spaces S, $2,.5 *, S **, one
may consult Ref. 33. We consider here only radially sym-
metric Gaussian weight functions since the more general
Gaussians exp[ — 27(yq> + 8p*)] can be dealt with by con-
sidering @ (@ ~'8,a7)instead of @ (0,7} [@ = (5 /¥)"/?]. Wecan
write (3.1) as

f f G (a,b)W;la,b)da db, (3.2)

with G the convolution of ¢ and exp[ — 271 ¢* + p?)], i.e.,

Glab)= | [plg—ap—b)

Xexpl — 277§ +p))dgdp [(a,b)eR?].

(3.3)

The following results show that a G for which (3.2) is
non-negative for all f&S cannot decay too rapidly.

Lemma 3.1: Assume that G:R>>R is bounded and
measurable and satisfies G (a,b ) = o{exp[ — 2m(a® + b B}
(@ + b?— o). Then (3.2) is negative for some JES, unless

2T
f G(RcosO,Rsinf)df =0 (R>0). (3.4)
(V]

Proof: Part of the argument given here can also be found
in Ref. 16. Suppose that (3.2) is non-negative for all /&S, and

let
/ cos9 / s1n0 d6
{r>0).

We have for any feS by (2.11)

f f K [27( ¢* + p*) | W, q,p)dq dp

K(r)——

=_2‘; :”( f J- G (4.0)\Wx,, (a.0)g dp)d0>o. (3.6)

Therefore, by (2.15), we have, for all n,

a,;=(— l)"f e 'K (r\L,(2r)dr>0. (3.7
0
It follows from the formula3*
0 2
p=2-= 3 (—p—Lletl oy
=0 nlNa—n+1)
a> - 1r>0) {3.8)

that

r re~K(ndr=2-« § _Llatl

» (3.9)
nconla—n+1)

The left-hand side of (3.9) can be shown to be

o[27°I'({a + 1)] as @—> . Indeed, this follows from the
assumptions on G implying that K (r) = o{e " "} as — 0. The
sum on the right-hand side of (3.9) has, for integer @, non-
negative terms only. Hence, for any m = 0,1,..., we have

2244 J. Math. Phys., Vol. 25, No. 7, July 1984

© 2 2
poe§ _THatl) oo Tlawy)
nmontlNa—n+1) mila —m+ 1)

=2"T(a+ l)la—m+ l)-(a+ l)a,,/m!
(@a=mm+ 1,.). (3.10)

This is certainly not o[2 ~“I" (@ + 1)] as a— w0, unless all
a,, are 0. Since the functions e =L, (2r),n = 0,1,... are com-
plete in L ([0, 0)), we see that K = 0, and the proof is fin-
ished.

Note: With a similar proof one can show that if G is
radially symmetric and satisfies
Gla,b)=0(a® + b2 exp[ — 2ma® + b2])eR?, (3.11)
for some p>0, and (3.2) is non-negative for all /=S, then G is
of the form

Glab)= 3 (—1)a, exp[ — 2m(a* + b?)]

n<p
XL, [4ma® + b))

with @, >0 (n<p).
Theorem 3.1: Assume that G:R*—R is continuous and

[a,b)eR?], (3.12)

that

G(a,b) = Olexp[ — 27m8(a* + b3)]) [(a.b)eR?],

(3.13)

for some & > 1. If (3.2) is non-negative for all S, then G = 0.
Proof: Let (ay,b,)eR?, and let

Gola,b): = G(a —aph ~by) [(a,b)eR?]. (3.14)

We see from (1.2) that (3.2) holds for all f (with G, instead of
G). Furthermore

Gola,b) = O (exp[ — 2mel@® + b3)]) [(a,b)eR?],

(3.15)

for any € between 1 and 5. Now Lemma 3.1 shows that

27
f Gy(R cos B,Rsin 6)d6 =0 (R>0). (3.16)
(4]
It then follows from continuity of G that
G(0,0) = G (ag,b,) = 0. This completes the proof.
Note: 1t is clear that the conditions on G can be weak-
ened somewhat.
Theorem 3.2: Let > 1 and let § > ¥(y — 1)~'. Assume
that g:R>—R satisfies

@(g,p)=O(exp[ — 278(¢* + pI)]) [(g,p)eR?].

(3.17)

Then thereis an f&S for which (3.1)is negative, unless ¢ = 0.
In particular, there is no compactly supported @ #0 such
that (3.1) is non-negative for all f£S.

Proof: Let Gbe asin (3. 3) Then G is smooth and satisfies

(a +b 2))] [(a,b )eR?].
(3.18)
As 8y/(6 + ¥)> 1, the theorem follows from Theorem 3.1,
Note: We can allow @ to be an element of § 2* if we have
a substitute for condition (3.17). The theorem also holds, for

instance, when N, , @ (instead of @) satisfies (3.17) for some
a > 0. This is a consequence of (2.9). The theorem also holds

Glab)=0 [exp( 2r —— 6

A. J. E. M. Janssen 2244

Downloaded 05 Mar 2010 to 131.155.100.2. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



when one requires that @ be an entire function of two varia-
bles with

D(6,7)=0 [exp(%e (102 + |¢|2))] [(6,7)eC?]
(3.19)

for some € < {y — 1}/, for then the G of (3.3} also satisfies
(3.13) with a § > 1. All these matters can be proved rigorous-
ly within the framework of the theory in Ref. 33.

Example: Let ¥ > 0 and consider the choice
D(6,7) = exp(2miaf7) with aeR, a #0. Now ¢, is given by

Pol g:p) = a” ' exp( —2mia~'gp) [(g,p)eR’], (3.20)
and the G = G, of (3.3) can be shown to equal

Gola,b) = (1 + 4p%a?) =172

2rra’ + b?)  8miay’ab )
Xexpp — -
"( 1 +472 1 +4p7a

[(a,b )eR?]. (3.21)

Let g be the Gaussian 2'/% exp[ — {1 + i)g°] whose Wigner
distribution equals

W(q.p) =2exp(—27[g’ + (g +pP1) [(g.p)eR?].
(3.22)
The convolution of W, and G, is a function of the form

(We*Gol ¢.p)

=exp[ ~ 7P\(qp) + miPy(qp)] [(qp)eR?], (3.23)
with P, a positive definite quadratic and P, a real noncon-
stant quadratic. Letting ¢( ¢,p) = Re[g@( ¢,p)]
=a~ ' cos2ma™ ' gp, so that G (a,b) = Re[G,(a,b )] and
D (6,7) = cos 2mafr, we get an example of a D such that (3.2)
takes negative values for certain f°s. This is so since the real
part of (3.23) does so. Note that this example works for any
¥ > 0 while Theorem 3.1 and (3.21) predict trouble only for
/(1 + 47°a?) > 1.

We consider the case y = 1, which has our prime inter-
est, in some more detail. The next theorem shows that a ¢
yielding non-negative averages in (3.1) must be of positive
type in a certain weak sense.

Theorem 3.3: Assume that ¢:R%—R satisfies

#(gp)=O(exp[me(¢* + p)1) [(gp)R?], (3.24)

for all € > 0. A necessary condition that (3.1) with = 1 is
non-negative for all f&§ is that

© r 172
f r"e"%[(——-) ]dr>0 (n=0,1,..,qeR?). (3.25)
0 T

Here @, (R ) is the average of ¢ over the circle of radius R
with center g, i.c.,
27
@, R)= -2—1—f @ [a + R(cos 6,5in 8)]d0 (R>0).
7 Jo
(3.26)

Proof: Assume that (3.1) is non-negative for all f&S. By
(1.2) it is sufficient to consider the case @ = 0. Insert formula
(1.5) into (3.1) and interchange integrals. We get, for all /&S,

fffp(a,b)(ffem[ ~2m(¢* +p*)]

XWAq—ap—bdg dp)da db. (3.27)
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The expression between the large parentheses equals
1(£,Gy — a, — b))|?, where for all (a,b )eR?

G{—a,—b)(qg)

=24 exp[ — m( q + a)* — 2mibg — miab |

(g€R). (3.28)
This follows from the fact that, for all (a,b )eR?,
Wei_a_ »)(@:P)

=2exp[ — 27(q +a)’ — 27(p + b)*]

lig.p)eR?], (3.29)
and Moyal’s formula. The choice f = ¢, gives®
[(#,Gi(—a, — b))

= [(@®> + b2 /nllexp] — m(a* + b2)] [(a.b)eR?].

(3.30)

Hence

ffq)(d,b Jexp[ — m{a® + b?)](@* + b%'da db

= 1 fr"e"
4772 Jo

X[-I:”(p( \/%(cos 6,sin 9))d0]dr>0, (3.31)

for all » = 0,1,..., and the theorem follows.

Note: Qbserve that e ~ "\/2n/n! has its maximum for
r = n and that this maximum tends to 1 as n— o0 . Also, if
€> 0, the set of » with r"e ~"\[27n/n!>€is an interval around
r = n with length of the order 2n log e .

IV. PHASE-PLANE DISTRIBUTIONS, CORRECT
MARGINALS AND MOYAL'’S FORMULA

Let y > 0. In this section we aim at characterizing all
functions @ (or @) asin (1.1) [(or 1.6)]) such that (3.1) holds for
all feS and such that the corresponding phase-plane distribu-
tion functions have correct marginals or satisfy Moyal’s for-
mula [see (1.7) and (1.15)]. In the case 7> 1 we shall show
that, under certain mild conditions on @, the situation is
very simple: for ¥ > 1 no such @ exists, for ¥ = 1 we must
have @ (6,7) = 1 (correct marginals) or @ (6,7) = exp
[ — 27i(6a + rb)]for some (a,b JeR* (Moyal). And in the case
where ¢ < 1 and (1.7) is satisfied for all /S, we are still able to
derive certain properties of @.

We start with a lemma.
Lemma 4.1: Let HeL '(R*)nL *(R?), and assume that

[ [Htaowigndgar>o (fes) @1
There exists ¢, >0 with =, ¢, < o and orthonormal
/€L }(R) such that

H(gp)=73 c,W;(q.p) [(gp}R?], (4.2)

with convergence in the L *(R?) sense.
Proof: Let T'be the linear operator defined for KeL %(R?)
by
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(TK ) q,P)=fe~2"'P'K(q+%t,q——;—t)dt

[(g.p)eR?]. (4.3)

This Tmaps L *(R?) unitarily onto L *(R?)as can be seen from
Moyal’s formula.*® And, letting (/® f) ¢,,9,)

=f(q,) f(q2), wehave T(f®f) = W,, forall feS. Hence, if
T * is the adjoint of 7,

(T*Hf®f)>0 (feS), (4.4)

where ( , ) denotes the inner product in L *(R?). Formula
(4.4)extendstoall feL *(R)since T *HeL *(R*)and Sisdensein
L }(R). We conclude that T*H has a representation®’

(T*H) 192 = Y c.ful q1) fo( 42)

with £, eL %(R) orthonormal, ¢, >0, 2,.¢,” < « and conver-
gence in the L %(R?)-sense. Taking T at both sides of (4.5) we
arrive at

[{qug)eR?],  (4.5)

H(gp)=Y c.W,(qp) [(qplR?], (4.6)

with convergence in the L *(R?) sense.

We still have to prove that 2, ¢, < . To that end we
consider H,( q,p) = (1/\2)H ( /\2,p/\2). We have [see
(2.10)]

Higp)=Y c.V;(ap) [(gpleR’]. (4.7)

Let a >0, and apply to both sides of (4.7) the smoothing
operator N, (see Sec. I). We get by (2.9)

(N H)gp) =Y ¢, Vy () [(gplR’],  (4.8)

with convergencein the S * sense.*® If we integrate thisidenti-
ty over all ( g,p)eR?, we obtain by (1.7)

f f (Voo Hy) gpdgdp =23 e, INA I (49)

where || || denotes the L *(R) norm. Now ||V, f, || increases
to ||f, || = 1 for all n [see (2.6)], and*® N, H,—H, in the

L Y(R?) sense if @ 10 since HeL '(R?), and whence H,eL '(R?).
We conclude that

En‘,c,. =JJH(q,p)dqdp< 0,

and this completes the proof.

Note: Since ||f, || = 1, we have | W, (¢,p)|<2 for
( g,p)eR2. Hence, the convergence of the series in (4.2) is uni-
form. Since W, is continuous for every n, we furthermore
see that the H of Lemma 4.1 is continuous.

We are now ready to prove the following theorem.
Theorem 4.1: Assume that the G of (3.3)isin L '(R*)nL *(R?),
and that (3.1) holds for all f&S. Then, (a}if ¥ > 1, C ' cannot
have correct marginals for all £&S; and (b) if y = 1, and C{*’
has correct marginals for all f&S, then @ = 1, and C{*'is the
Wigner distribution of f for all f&S.

Proof: Assume that C|®’ has correct marginals for all
f€S. This means that

(4.10)
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[ etapip=sia) (geR)
(4.11)

f¢(q,p)dq=a(p) (peR).

Hence, if we integrate the G of (3.3) over all b and a, we get,
respectively,

J Gla,b)db= (—21—7)1/2 exp( — 2mya®) (acR), (4.12)

and
f Gla,b)da = (zLy)‘” exp(— 2myb?) (beR). (4.13)

Our G satisfies the conditions of Lemma 4.1 and there-
fore we have the representation (4.2) for H = G. With an
argument similar to the one used for proving convergence of
= ¢, in Lemma 4.1 we can show that

S ealfla)? = f Gla,b)db (a.e.acR),
and

S e (FLab))? = f G (a,b)da (a.e. beR).

(4.14)

(4.15)

Sinceall ¢, >0, we conclude that, for all n by (4.12) and (4.13),
c'?|f (a)|<(1/2y)"* exp( — mya®) (a.e.a€R), (4.16)
and

e (F L )b)|<(1/29)"* exp( — myb?)  (a.e. beR).
(4.17)

As we shall show in Lemma 4.2, the conditions (4.16)
and (4.17) are incompatible when 7 > 1 (unless ¢, = 0). This
completes the proof for the case ¥ > 1. When ¥ = 1, it follows
from Lemma 4.2 that every c./*f, is a multiple of the Gaus-
sian exp( — wa?). Therefore, ¢, 70 for only one n, and it easi-
ly follows that

Glab)=exp[ —27@®> +b?)] [la,b)eR?]. (4.18)
Hence, as G is the convolution of g and exp[ — 2m(a® + b?)],
we get @( ¢,p) = & ()8 ( p). This completes the proof.

Notes: (1) Since the G of (3.3) is the double inverse Four-
ier transform of (1/2y)® (6,7)expl — (7/2y)(6* + 7)) it is
clear that one should impose certain conditions on smooth-
ness and growth on @ to get GeL '(R*nL *(R?). For instance,
conditions of type (1.13) and (1.14) guarantee*” that
GeL (R*)nL 4(R?).

(2) As the proof shows, the theorem can be proved
equally well with the Gaussian exp[ — 27y( ¢* + p)] in (3.1)
replaced by certain smooth functions X ( ¢,p) with
s K (g.p)dp = O [exp( — 27y¢’)] and
§ K (g,p)dg = O [exp( — 2myp’)]-

In the next theorem we replace the condition of having
correct marginals by the condition that Moyal’s formula
holds. We restrict the class of allowed ¢’s a little further
since we need some results from Ref. 33 about convolution
theory in §'2 and S 2*. Of course, if one chooses a different
mathematical setting (e.g., a setting based on Schwartz’ the-
ory of tempered distributions), one can still prove a theorem
as the one below.
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Theorem 4.2: Assume that *'® (6,7)exp[ — 7e(0°
+ 7%)JeS * for all € > 0, and that (3.1) holds for all f&S. Then,
(a) if ¥ > 1, Moyal’s formula (1.15) cannot hold for all f&S,
g€S; and (b) if ¥ = 1 and Moyal’s formula holds for all /&S,
g€S, then there is an (a,b )eR? with C\®( ¢,p)
= W/ q —a,p — b)for all fcS [( g,p)eR?].
Proof: Assume that Moyal’s formula holds for all fand
g. Then

@67 =1 [(67)eR?]. (4.19)
In terms of @ this condition can be written as
fj¢’(4+a,p+b)mdadb

= (p*p) a.p0)=58(9)8(p) [(gp)cR?]. (4.20)

Here @(a,b) = @(— a, — b) for all (a,b )eR?, and * denotes
the convolution product for (generalized) functions of two
variables.

By the definition of G and the representation (4.2) we
have, with K ( g,p) = exp[ — 27/ ¢* + p*)],

pK=G=Sc,W,. (4.21)

It will be demonstrated in Appendix A thatc, = O(e ~ ") for
some 3> 0, that £, €S and that the right-hand series con- N
vergesin the S 2 sense to @*KeS 2. Taking convolution with @
at both sides and interchanging the convolution and summa-
tion signs at the right-hand side (this is allowed*?), we get

K=5*¢‘K=2cn$‘an’

by (4.20) and (4.21). N
We now observe that the Fourier transform of ¢ equals

L/} (Bir). Hence, Moyz}l’s formula is valid with & as well as
with @. Since C{®) = @ * W, we have

f f C P qp)dq dp = f f (@ *W,) ¢.,p)dg dp

(4.22)

— 00 f f W, q.p)dg dp = d :{1213)

where d = @ (0,0) is a number of modulus 1. Hence, if we
integrate identity (4.22) over the phase plane, we get by (4.23)

31?=”K(q,p)dqdp=d20nﬂfn“2=d2cn'
" @24

We conclude from ¢, >0 (all #n) and |d | = 1 thatd = 1.

On the other hand, (4.22) provides an expansion of X in
a series of orthogonal functions, and we have by Parseval’s
formula

1
—_— K s 2 = 2_
p Hl (gp)’dgdp =73 ¢

Now, if weletd, =2yc,,thend,>0,2,d, =1,3,d%: =.
This is not possible when > 1, whence the case ¥ > 1 has
been dealt with.

(4.25)
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We shall give two proofs for the case ¥ = 1, one directly
hereafter, and one in Appendix B. When ¥ = 1, we see that
exactly one d,, equals 1; the others are 0. Hence,

p*K =1W, (4.26)
for some f€S with ||f|| = 1. Take the double inverse Fourier
transform of (4.26). We get the identity
( Fr g ny )(9’7-)

=@ (G,rlexp[ — (m/2(0> + )] [(6,7€R?]. (4.27)

The expression at the left-hand side of (4.27) can be

written as

Forgerwpen = [ ef(a++7) (a7

=Amb{—7,—8) [(6,r)eR?]; (4.28)

here Amb, is the ambiguity function of fwhich is well known
in radar analysis.*>** From a result of Ref. 44 the following
inequality can be derived for ambiguity functions. If
p=12,.., then for any g,

f f |Ambg(7',9)|2pd7'd0<’% llgll*”;

if p = 2,3,..., the only functions g that never vanish, that are
twice differentiable, and that achieve equality in (4.29) are of
the form

(4.29)

8( q) = exp( — mag® + 27Bq — 7€) (qeR), (4.30)

with arbitrary complex «, 3, €, and Re a > 0.

It is easily verified from the fact that |® (8,7)| = 1 and
|| £1l = 1 that fachieves equality in (4.29) for p = 2,3,....
However, our fis allowed to have zeros. What the argument
of the proof in Ref. 44 shows, though, is that if a smooth g
achieves equality in (4.29) and g( ¢,)#0, then g has the spe-
cial form (4.30) in a neighborhood of ¢,. And as our f'is an
entire function, the conclusion that /' has the special form
(4.30) remains equally valid.

If we calculate Amb, for the g of (4.30), we find

Amb, (6,7)
={1/2 Re a}'/? exp( — 27[Re ¥ — (Re )*/Re a})
Xexp[ — l7? Rea — Ir{w — 7 Im a)’/Re

— (2mi/Re a)lw Re B + 7 Im Ba)]. (4.31)

It is now easy to check from (4.27) that |@ (6,7)| = 1 implies
that a = 1, BeC arbitrary, y<C such that Amb(0,0) = 1.
Then @ becomes

D (0,7)=exp| —2milrImB + B8RefB)] [(6,7eR?],
(4.32)
and
®(gp)=056(g+ReB)S(p+1ImpB) [(gp)R?].
(4.33)

This completes the proof.

We shall now prove the claim made in connection with
{4.16) and (4.17). It is likely that the results of the lemma
below for y> 1 are known, but we could not find appropriate
references. In addition, we get useful information for the
case that O <y < 1.
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Lemma 4.2: Let ¥ > 0, and assume that fcL *(R) satisfies

f(g)=0[exp( —myg’)] (ae. geR),
(Ff) p) = O [exp( — myp?)]
Then, (a)if y > 1, we have f = 0, (b) if ¥ = 1, we have
f{q) = c exp( — mq?) for some ceC, (c) if 0 < ¥ < 1, we have,
withr=(1+9)'2 (1 —9)~'2

i \(f#, )7 =ON) (N=0,1,.).

Proof: We obtain from Mehler’s formula (2.8), with
— iw instead of w,

(a.e. peR). (4.34)

(4.35)

2 172 _ ) 2 1— w2 B 44r1qu
(1+w2) exP( eI 1+w2)
= 3 (— g (aW(p) (gpeR Il <1]. (436

Noting that ¥ ¢, = { — i)",,, multiplying (4.36) by
f(9) (¥ f) p) and integrating the result over the phase
plane, we obtain for |w| < 1

0

> WAl

(2" o

1—w® dmigpw
xexp| — 7{q* +p* - )d dp.
p( (g p)1+w2 ey L
(4.37)

We let w> 0, we insert the estimates (4.34) in the inte-
gral at the right-hand side of (4.37), and we take the modulus.
The integral that turns up can be evaluated explicitly, and we
obtain

o ( 1 + w2)1/ 2

] Z\K
3 WISk~

O<w<1),
(4.38)

for some constant K >0. The integral in (4.37) thus converges
absolutely as long as ¥ + 1 + (y — Ljw?>0.

Since the left-hand side of (4.37) is a power series with
non-negative coefficients, we see by Pringsheim’s theorem®
that the radius of convergence of the power series is at least
equal to 7 when 0 < ¥ < 1, and o when y3>1. In the first case
we have in addition that

limsup (r —w) 3 wl(£ih,)? < . (4.39)
wer — n=0

It is not hard to see then that
N
S AP =0(N) (N=0,1,..) (4.40)
n=20

In the case ¥ > | we see that the right-hand side of (4.38)
tends to zero when w—» oo . This implies that ( £,¢,) = O for
all n, whence f = 0. Finally, if ¥ = 1, we see that the right-
hand side of (4.38) is O (|w|), w— «, whence ( f;4,, ) #0is only
possible for n = 0,1. Since ¥,( g) = 2'/* exp{ — m¢?),

¥.( g) = 2772 q ,(q) we see from (4.34) that ( £,1;) = O. This
completes the proof.
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In the remainder of this paper we let 0 < ¥ < 1. We shall
find conditions on the Wigner distributions of the £, ’s as in
{4.2) and on G' that must be satisfied in order that (3.1)is non-
negative for any f while C {*) has the correct marginals for
any f. There exist @ s~ 1 with these two properties, viz.

@ (0,7) = exp(w86r) [(6,7)eR?] with

8=+ y~ (1 — ))"/2 (In fact, this example is not quite
proper since ® cannot be tested against all elements of S %) It
can be shown that the G of (3.3) equals in this case

G(qp)= W/ qp)
=-1—exp( _2mAq +p) —%Jr—?(q+p)2>

Y 1+J1 =9
[( g.p)eR?], (4.41)
where
flg)=(1729)""* exp( — w[y + i(1 - ¥)'"*1¢°) (qeR).
(4.42)

Since the collection of all @ ’s with (3.1) non-negative and

(1.7) valid for all fis closed under taking convex combina-

tions, it does not seem easy to describe this collection.
The f'in (4.42) satisfies

| £l g)] = (1/29)""* exp( — 7y ¢%) (qeR),

F SN p)| = (1/29)"* exp( — 7y p’) ( peR),

(4.43)

while its Wigner distribution satisfies

Wi qp)=0 [exp( - %T—Z(q—m)] [( g.p)R?],

+y1 =92
(4.44)
and its Hermite coefficients are given by (w = ¥ + i1 — )
J2n! (w — 1)"
W) =0 , 4.45
(£¥) (292" \w + 1 (443

according as k is odd or k = 2n is even. Hence
w—1

it =0(|“ — ) ~0 ((i%;)*)

See also Theorem 4.3 below.

To find a condition on the W, ’s and on G, we recall
from the proof of Theorem 4.1 that
(K (g.p) = exp[ — 271 ¢* + p)])

G=¢*K=ZC"an,

(4.46)
with £, orthonormal, ¢, >0, 2, ¢, < « and, for { g,p)eR?,

1 1/2 )
S el g = (77—) expl — 277 ¢, (4.47)

oy 2 1 12 2
A EAT] =($) exp(— 2myp?).  (4.48)

We shall show that for any n = 0,1,... and for any

e<y/(1 +J1 =99,
W, (ap) = O(expl — 27e(q* + p*)])
[(g.p)eR?]. (4.49)
To that end we prove the following theorem.
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Theorem 4.3: Let £ €L %(R) and consider the following
statements: (a) for all § < ¥ we have

flg)=0(~™7) (geR),

(F fIp)=0(e~"" (peR); (4.50)
(b) for all § <y we have

(fith,) =0 [(i—jr%)m] (n=0,1,.); (4.51)
and (c) for all € < /(1 + V1 — /%) we have
W/ qp)=0(exp| —27e(¢" +p7)]) [(gp)eR’]. (4.52)

Then (a)=y(b), (bk=>(c).

Proof: The implication (a)=p(b) follows from Lemma 4.2
(c); in fact the result proved there is slightly more precise. We
shall now show that (bj=>(c). To that end we assume that (b)
holds and we let 0 <8 < y. We can write f = N_g, where
a=1log(1 + &)1 — &) ' and where the Hermite coeffi-
cients of g equal

(g = (122 ) (m=01.) (453

-6
Hence geS. Now, by {2.9) and (2.10),
WA q.p) = Wy 4(q:p)
=V2No Vo aV202)  [(gp)eR?].  (4.54)

The kernel X, , of the smoothing operator ¥, , can be
written as

K. (gpxy) = exp| — 7{ ¢*> + p*tanh o]

sinh a
X exp( — 7[( g — x/cosh a)?
+ (p — y/cosh a)*]coth a)
[( g.px.p)eR* X R?].
Since ¥,€S * we easily obtain that

(4.55)

W, q.p) = O (exp[ — 2m( ¢* + p*tanh a])[( ¢,p)eR?].
(4.56)
And as
2c
tanha=S —1_ 8 (4.57)
+1 141 =8

the proof of (b)=(c) is complete.
We next show the converse (c)=(b), and therefore we
assume that (c) holds. It follows that for O < e

<7/(1 + 1 + %), the integral
f f expl27e( ¢* + p*)] W/ q,p)dq dp
converges absolutely. Now let, for 4>0,
K(r)=e" (r>0),
K, (r) =max(K (r),4) (r>0).
Then we have by (2.15) (see Ref. 46), for 40,

(4.58)

(4.59)

f f K, [2m( ¢* + p*)1 W/ q,p)dg dp

= 5 (0 [ e K L, e, (4.60)
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Since K, is nondecreasing we can apply Theorem 2.1,
and we find that

e ()= (— 1) f: e~ 'K, (rL, (2dr>0

(A>01 =0,1,...). (4.61)

Also, by the generating function of the Laguerre polynomi-
als,

lim ¢ {4)= (1 f " e 'K (1L, (27\dr

=(1—¢€'~'/(1+€" (n=0,1,.). (4.62)

Since the left-hand side of (4.60) tends to the finite number in
(4.58) as 4— o0, we easily conclude that

(1—¢g " .
"20 u+ P

The proof is completed by noting that (1 — €)'/?
X(14+€ 2=(1-86)Y*(1+6)""*whene=56/
(141 =269

Note: Assume that fsatisfies (c). Then it follows from
(1.7) that (a) is satisfied with ¥ replaced by y/(1 + V1 — 7).
The implication (a)=>{b) cannot be strengthened [see {4.43)-
(4.45)).

We conclude this paper with the following theorem.

Theorem 4.4: Let G be as in (4.46). Then we have

G(qp)=Olexpl —27e(q* +p?)]) [(g.p)eR?](4.64)

for all € < /(1 + 1 = 9A).

Proof: The proof follows rather closely the proof of the
statements (a)=>(b), (b)=y(c) in Theorem 4.3. Therefore we
shall omit details.

Let G(¢,0): = (1/72)G (¢/\2,p/\2), and define

W a.p)

= [emrr(a+ 1) ofg—1t)ar [(qperL b6

%W (‘f %) [( g.p)eR?]

for &S, geS. Then we have (G, W,,) = (G, V) for all f&S,
ges.

We shall estimate the Hermite coefficients of G. We
have

Gt ® %) =3 (G.Vy, Wi

i

n

(4.63)

Viglaw) = (4.66)

(4.67)
with

Yirt = (V0¥ @ %)). (4.68)
This follows from completeness and orthonormality of
(¥ 4.,y in L *(R?) (see also the proof of Lemma 4.1). Accord-

ing to Ref. 8, 27.26.1, 7, equals a,” ' a,” 'a, a, times the
—2)/iJ2]% here

J
coefficient of w2 in [(w + 2z)/y2]* [(w
a, = (n)~V22=Y447)""2, It is important to observe that
Vowr =0, when k +171#i+j.
It is easy to see that, for all i/,
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GV y,0)I* = (G W, 4 )P<(G.W, G W,), (4.69)
whence, as 2, ; |7« 1> =l ® 1/’1”2 =1,
Coeev)’< S (GW,)IGCW,) (4.70)

i+j=k+1
by the Cauchy-Schwarz inequality.
To estimate (G, W, ), we consider 2°_ ,w*(G,W,, )
=: F(w)for |w| < 1. We have, as in the proof of Lemma 4.1,
for jw| <1,

= (2)" [ [ e

2 oy 1w dmigpw
XCXP( m(q° +p7) T 11w )dqdp,
{4.71)
with
H(gp)=Y c.fulq) (F £)p) [(gp)eR?]. (4.72)

n

It follows easily from the Cauchy—Schwarz inequality and
(4.43) and (4.44) that

1 172
Hiapl<(5;) ewl=mia + 7] lapeR’]
(4.73)
As in the proof of Lemma 4.1(c) we conclude that

i P(GW,)=0(N) (N=0,1,.)

k=0
where r = (1 +%)"/? (1 — )~ /2. Hence (G, W,
=0([(1 —8)/(1 4 8)1%7? for all § < 7, and we obtain by
{4.70), for all 6 < 7,

(4.74)

~ 1 — S\k+14
G, @)= O {(—) ] (k] = 0,1,...).(4.75)
1+6
This shows that for any @ <} log [(1 + ¥)/(1 — 7)] there
is an FeS? such that G = N, F. As in the proof of the state-
ment (b)=>(c) in Theorem 4.3 we conclude that, for any

a<ilog[(1 +7)/(1 — 7)),

G(g,p)=O(expl — m(¢* + pYtanh a]) [(g,p)eR?],

(4.76)

and the proof is easily completed now.
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APPENDIX A: SMOOTH POSITIVE DEFINITE
FUNCTIONS OF TWO VARIABLES

In the proof of Theorem 4.2 the following theorem was
required.

Theorem A.1: Let KeS 2 be positive definite, i.e.,
(K, f®f)>0for all feL }(R). There are non-negative numbers
¢, and orthonormal £, €S such that

K(gp)=3 c.fula) f.(p) [ gpER],

n

(Al)
with convergence in the § 2 sense. Moreover, when the ¢, ’s
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are ordered decreasingly we have ¢, = O (e ~ ") for some
€>0.

The proof of this theorem relies on the following
lemma.

Lemma A.1: Let K,eS*(n = 0,1,...). Then K, —0 in the
S 2 sense if and only if (K, ,F ® F }—0 for every FeS *.

Proof: 1t is known*’ that K, —0 in the S ? sense if and
onlyif (K, ,H }—0for all HeS **. Hence we only have to show
that (K,,,F ® F }—0 for every FeS * implies that (K, ,H }—0
for every HeS **.

By polarization we can assume that (K, ,F® G )—0 for
every FeS'*, GeS*. Let FeS *. The space S * is a Fréchet
space*®; as a countable system of norms on .S * we can take,
form=1,2,...,

© 172
161, =( 3 Gware *m) " (Ges=. (a2

Therefore we can find, by boundedness of
K,,FeG)(n=0,1,..)forevery GeS *,anm = 1,2,... and an
M > 0 such that

(K, . F®G)<M (n=0,1,.) (A3)
for all GeS * with ||G ||,, <1. Hence, $* =u> |, B,, where
B, = {FeS*|||G||,<1=|(K,.FeG)|<l(n= 0,1,..)}, (A4)

for / = 1,2,... . Again using that .S * is a Fréchet space we
conclude that thereis an /, = 1,2,... and an open setin § * in
which B, is dense. From this we infer the existence of M > 0,
ko= 1,2,... with

K, FeG)<M (n=0,1,.), (A5)

for all FeS *, GeS* with |F |, <1, ||G ||, <1. If we take
F = explk /ko)¥,, G = exp(l /I ), we get

UK, ¥ ®¥,)|<Mexp( —k/ky—1/l)) (nkl=0,1,.).
(A6)

It is now easy to show [as (K,,,¥, ® ¢,)—0 for all £,/] that
(K, ,H) =2, (K, ¥ ®9,) (¥ ©9,,H )0 forevery HeS **.

Corollary: With an entirely similar proof one can show
that if K, €S2 and lim (K, ,F ® F) exists for ail F&S * then
there is exactly one KeS? with K, —K in the S sense.

We now prove Theorem A.1. We have the representa-
tion*®

K=3c.f, ®f,

where ¢, >0, 2, ¢? < , f,€L *R) orthonormal and where
the convergence is in the L %(R?) sense. In addition, for every
n,

(A7)

c.folu)= fK(u,v)f,,(v)dv (ueR), (A8)
and from this one readily concludes that f, €S, e.g., by ex-
panding K in a Hermite series 2, ; d\; ¢ ® ¢, with
d,, = O (exp[ — €(k + [)]) for some € > 0. We assume here
and in the remainder that ¢, > 0.

Now let FeS *. We shall check that = ,,¢, |( f,.F)> < .
To that end we take a sequence F, in S with F;, —F inthe S*
sense if k— . We have, for all &,

(K.F ®F,) =3 ¢, |(f..Fe)l% (A9)
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by (A6). The terms in the right-hand side series are non-
negative for all k and tend to ¢, |(f, ,F)|* when k— 0. The
left-hand side tends to (K,F ®F’), when k— « . By Fatou’s
lemma we conclude that 2, ¢, |(f,,F)|* < . That is, we
have shown that lim,_,_ (E¥_,c, f, ®f,, F& F) exists for
all FeS*. The corollary after Lemma A.1 implies that
3N_, ¢, f. ®f, converges in the S 2 sense. Because of (A7)
the limit is K, whence K = = ¢, f, @f, with convergence in
the S 2 sense.

We finally show that ¢, = O(e ~ ") for some € > 0. It is
assumed here that ¢, >c, , | >0 (all ). We have

Kt e ) =3 ¢, [(fh)|* = Ofe ™)

for some € > 0. Hence there is an M > 0 such that, for all n,

Cs ; (St} €™ <M.

It follows from orthonormality of the f,’s and Parseval’s
theorem that for any m = 1,2,... there is an
n =n(m)=0,1,..., m + 1 such that

S ftPe—

k=m+1 m + 2
Therefore, c, (m)<M (m + 2)e — ™+ Ve,

We have assumed that ¢, > O for all n, and therefore
n(m)— o« as m—«. Now let n = 1,2,..., and take an m with
nim)<n<n(m + 1). Then m>n — 2, and, by monotonicity of
thec,’s,

Co <Cppy KM (m + 2)e =" T Ve Mne — "~ e,

(A10)

(A11)

(A12)

(A13)

when # is sufficiently large. This completes the proof of
Theorem A.1.

APPENDIX B: SECOND PROOF OF THEOREM 4.2 (b)

We start~from the formula g*K = 1W, in (4.26), where
@ satisfies p*@ = 5 ® 8, K ( ¢,p) = exp[ — 27( ¢* + p?)], and
&S, || 1| = 1. This formula can also be written as
@*W, = W,, where g (q) = 2"/* exp( — 7 ¢*).

We shall use the following result®
entire functions, then (z = x + iy)

: when ¢, and 1, are

2 f f @ol2lol)?  exp( — 2]z |)dx dy

C

< f J @ol2)|? exp( — 2| dy

xf f [ol2)|? exp( — ]z|)dx db, (B1)

C
and, if the right-hand side is finite, there is equality in (B1) if
and only if py(z)if,(z) can be expressed as C exp(27iiz) for
some u€C and some CeC. We apply this result with
@0 = ¥ = B fwhere B f'is the Bargmann transform®' of £,
given by

(Bf)z) = €™ f2g)(z)

=204 [ et =iy gidg (eeC). (B2
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The Bargmann transform provides an isometry
between the spaces L %(R,dq) and L *[C,exp( — 7|z|*)dx dy)).
Hence, the right-hand side of (B1) equals 1, as || f|| = 1. We
shall show that the left-hand side of (B1) equals 1 as well, so
that [(B f)(z)])* has the special form as indicated above.

According to Ref. 23, Eq. (2.8}, we have (z = x + iy)

(B f)(z)exp( — yrrlz|*) = (£,Gylx, — ) (B3)
where, for {a,b )eR?,
Giab)(q)
=2"4exp[ — 7(q — a)* + 2mibg — miab ] (g<R).
(B4)

Hence, the left-hand side of (B1) can be brought into the form

2 [ [ 106 xonf* dx . (B5)
By Moyal’s formula we have
[(£Gxp)?
=2 fJ Wa,b)exp[ — 2m(x — a)?
—2n(y — b)’ldadb = (WW,)x,p). (B6)
Hence, the left-hand side of (B1) can be written as
AW W, W W,). (B7)

Now W, =@ +W,, and (p*H ,,p+H,)

= (p*@*H ,H,) = (H,,H,) for any H,eS?, H,eS*. Hence,
the left-hand side of (B1) equals 2(W *W,, W *W,). Using
that

(WoxW,)ab) =exp[( —mla* +b7%)] [(a,b)eR?],
(B8)
we see that the left-hand side of (B1) equals 1.

This shows that there is equality in (B1), whence (B f})(z)
is of the form C exp(27uz) for some CeC and some ueC.
Writing # = a + ib, we see from Ref. 23, Eq. (2.8), that fis a
multiple of G,(a,b ). And since || /|| = G,(a,b) = 1, we get

W, (q.p)=2exp[ — 2m{g —a)f’ — 2m(p — b )*]
[(a,b )eR?].

Finally the formula @*W, = W, shows that
@lg.p) =6(g+ a)d(p + b). This completes the proof.
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