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Summary

The pulse-tube refrigerator (PTR) is a rather new device for cooling down to extremely
low temperatures, i.e. below 4 K. The PTR works by the cyclic compression and ex-
pansion of helium that flows through a regenerator made of porous material, a cold
heat exchanger, a tube, a hot heat exchanger and an orifice, in series. In a Stirling-type
PTR compression and expansion are generated by a piston. The compression increases
the temperature of the helium in the tube and makes it flow towards the orifice; the
expansion decreases the temperature and makes the helium flow backwards to the re-
generator. The net effect of warmer helium flowing in one direction and colder helium
in the opposite direction is that of cooling power at the cold heat exchanger. Three PTRs
are inter-connected aiming to obtain the desired 4 K lowest temperature.
The conservation laws of mass, momentum and energy, and an equation of state, are
simplified using asymptotic analysis based on low Mach-numbers. The regenerator is
modelled one-dimensionally with Darcy’s law for flow resistance. The tube is modelled
either one-dimensionally without resistance or two-dimensionally with axisymmetric
laminar viscous flow. The heat transfer in the porous medium of the regenerator and
in the solid tube wall is taken into account. The gas can be either ideal or real. All the
material properties, including viscosity and conductivity, are taken temperature and
pressure dependent. Three single-stage PTRs are connected with the regenerators in
series and the tubes in parallel and six flow possibilities at the junctions are considered.
Three by-passes (double-inlets) are used to enhance and tune the performance.
The governing equations are numerically solved with a finite-difference method of nom-
inally second-order accuracy in space and time. Pressure correction, flux limiter, 1D-2D
connections and domain decomposition are the keywords here. Special attention is paid
to suitable initial conditions, high resolution in the boundary layers and to the correct
calculation of the three-way junctions in multi-stage PTRs.
The model describes the fluid dynamics and thermodynamics of the pulse tubes and
regenerators. The heat exchangers are assumed to be ideal in the whole analysis. The
equation of state for real gas and other real properties of gas and regenerator material,
which are temperature and/or pressure dependent, are applied in the three-stage PTR
which works with extreme low temperatures, where the ideal gas law does not hold.
The numerical methods require special attention. Typically for flow problems we deal
with various length scales. Straight forward discretisation will result in unnecessary
fine grids and therefore unacceptable computational time. We developed robust and
efficient algorithms to deal with boundary layer problems. The employed domain de-



2 Summary

composition technique allows for using coarse grids in areas where the solution does
not change significantly. It also decouples a larger system into smaller ones, leading to
smaller complexities.
The objective of computing accurately and efficiently the steady oscillatory flow and
heat transfer in a PTR has been achieved. In particular the tiny viscous and thermal
boundary layers of a PTR operating at high frequency (20 Hz) could be resolved. The
simulated three-stage PTR was able to cool down close to 5 K. The developed software
is intended for use in design and optimisation of multi-stage PTRs.



Samenvatting

De pulsbuiskoeler is een relatief nieuwe uitvinding om af te koelen naar extreem lage
temperaturen, dat is onder 4 Kelvin. De pulsbuiskoeler werkt aan de hand van de peri-
odieke samendrukking en uitzetting van helium dat achtereenvolgens stroomt door een
regenerator gemaakt van poreus materiaal, een koude warmtewisselaar, een buis, een
hete warmtewisselaar en een uitstroomopening naar een reservoir. In een pulsbuiskoe-
ler van het Stirling type zorgt een zuiger voor het samendrukken en weer uitzetten van
het helium. Het samendrukken verhoogt de temperatuur van het helium in de buis en
geeft een stroming in de richting van de uitstroomopening. Bij het uitzetten stroomt het
helium terug naar de regenerator. Het netto effect van warmer helium stromend in de
ene richting en kouder helium stromend in de andere richting is dat van koelend ver-
mogen in de koude warmtewisselaar. Drie pulsbuiskoelers zijn aan elkaar gekoppeld
om zo een gewenste laagste temperatuur van 4 Kelvin te bereiken.
De behoudswetten van massa, impuls en energie, en een toestandsvergelijking, zijn
vereenvoudigd in een asymptotische analyse gebaseerd op kleine getallen van Mach.
De regenerator is eendimensionaal gemodelleerd met Darcy’s wet voor stromingsweer-
stand. De buis is zowel eendimensionaal gemodelleerd zonder weerstand als tweedi-
mensionaal met axiaalsymmetrische laminaire viskeuze stroming. Het warmtetrans-
port in het poreuze medium van de regenerator en in de stalen buiswand zijn daarbij
in rekening gebracht. Het gas zelf is ideaal of reel. Alle materiaaleigenschappen, waar-
onder viscositeit en warmtegeleiding, zijn temperatuur- en drukafhankelijk genomen.
Drie pulsbuiskoelers zijn samengevoegd met de regeneratoren in serie en de pulsbuizen
parallel, waarbij zes stromingsmogelijkheden bij de drie-weg verbindingsstukken zijn
beschouwd. Drie bypasses (dubbele inlaten) zijn gebruikt om de efficiency te verhogen
en te optimaliseren.
De geldende vergelijkingen worden numeriek opgelost met een eindige-differentie me-
thode van nominaal tweede-orde nauwkeurigheid in plaats en tijd. Drukcorrectie, ”flux
limiter”, 1D-2D verbindingen en domeindecompositie zijn hierbij de trefwoorden. Bij-
zondere aandacht wordt besteed aan geschikte beginvoorwaarden, hoge resolutie in
de grenslagen en de correcte berekening van de drie-weg verbindingsstukken in meer-
traps pulsbuiskoelers.
Het model beschrijft de vloeistof- en thermodynamica van pulsbuizen en regeneratoren.
De warmtewisselaars zijn ideaal verondersteld in de hele analyse. De toestandsverge-
lijking van een reel gas en andere rele eigenschappen van gas- en regeneratormateriaal,
zijnde temperatuur- en/of drukafhankelijk, worden gebruikt in de drie-traps pulsbuis-
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koeler. Deze werkt immers met extreem lage temperaturen, waar de ideale gaswet niet
meer geldt.
De numerieke methoden vragen bijzondere aandacht. Kenmerkend voor stromingspro-
blemen hebben we te maken met verschillende lengteschalen. Rechttoe rechtaan discre-
tisatie zal resulteren in onnodig fijne roosters en daardoor onacceptabele rekentijden.
We hebben robuuste en efficinte algoritmes ontwikkeld die de grenslaagproblematiek
verdisconteren. De gebruikte domeindecompositie techniek staat het gebruik van grove
roosters toe in gebieden waar de oplossing niet beduidend verandert. Het splitst tevens
een groter systeem op in kleinere, wat leidt tot lagere rekencomplexiteit.
Het doel om stationair oscillerende stromingen en warmtetransport in een pulsbuiskoe-
ler nauwkeurig en efficint te berekenen is bereikt. In het bijzonder kunnen de smalle
viskeuze en thermische grenslagen worden berekend van pulsbuiskoelers draaiend met
hoge frequentie (20 Hertz). De gesimuleerde drie-traps pulsbuiskoeler was in staat om
af te koelen tot nabij de 5 Kelvin. De ontwikkelde software is bedoeld voor gebruik bij
het ontwerpen en optimaliseren van meer-traps pulsbuiskoelers.



Chapter 1

Introduction

1.1 The pulse-tube refrigerator: general background and
applications

Cryogenics comes from the Greek word “kryos”, which means cold, and “genein”,
which means to produce. Cryogenics can be described as the branch of physics and
engineering that involves the study of producing temperatures in the range from prac-
tically zero to, say, 125 K and of material behaviour at these temperatures. A cryocooler
is a refrigeration machine that reaches temperatures below, say, 125 K with a small re-
frigeration capacity.
Reliability of small cryocoolers is a topic that has been studied for many years. One way
to increase reliability is the elimination of moving parts in mechanical refrigerators. A
typical machine used for cryocooling is a Stirling refrigerator [46]. Stirling refrigera-
tors have two moving parts only: the compressor piston and the displacer. In 1963
a refrigeration technique that eliminates the displacer from the Stirling machine was
discovered [30]. This new technique was called pulse tube refrigeration (PTR). The first
design was based on a tube with one end closed, see Figure 1.1. The closed end is con-
nected to a heat exchanger to release heat to the environment. Heat exchange between
gas, tube wall and the two heat exchangers makes a temperature difference develop in
the tube such that the open end cools down and the closed end heats up. Due to its
simplicity and the enhanced reliability, the pulse-tube refrigerator has become one of
the most important innovations in the field of cryogenics. The main advantage of this
new device, as compared to the conventional Stirling or Gifford-McMahon (GM) systems,
is the ability to reach low temperatures without moving parts in the low temperature
zone. These moving parts in conventional coolers need oil lubrication and maintenance.
This first type of cooler nowadays is called the basic pulse-tube refrigerator (B-PTR). In
1984 the machine was improved by adding an orifice and a reservoir to the hot end of
the tube, open end, so that the efficiency increased significantly [52]. See Fig. 2.1. This
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Figure 1.1: Basic pulse-tube refrigerator with the compressor, the regenerator, the tube,
the cold heat exchanger (CHX), the hot heat exchanger (HHX), the after cooler (AC).

system is referred to as “orifice pulse-tube refrigerator“. This important modification
initiated and stimulated further research in the field of cryogenic engineering. In [62]
an improvement to the pulse tube refrigerator by adding a second inlet, connecting the
compressor of the system to the hot end of the pulse-tube directly via a bypass, is re-
ported. It was shown how to make the refrigeration power per unit mass flow higher.
The essential elements of the Stirling-type pulse-tube refrigerator, especially the tube
and the regenerator, will be explained in detail in Chapter 2. In Figure 1.2 a typical
single-stage pulse tube refrigerator made by the ’Stirling Cryogenics and Refrigeration
B.V.’ is shown.
Pulse-tube cryocoolers are used in industrial applications such as semiconductor fabri-
cation and in military applications such as the cooling of infrared sensors. Pulse-tubes
are also being developed for the cooling of astronomical detectors where liquid cryogens
are typically used, such as the Atacama Cosmology Telescope. Pulse tubes will be par-
ticularly useful in space-based telescopes where it is impossible to replenish the cooling
agents as they are depleted. The largest commercial application of cryocoolers has been
in cryopumps for the semiconductor fabrication industry. These cryopumps require a
few Watts of refrigeration at a temperature of about 15 K to cool a charcoal adsorbent
bed and a few tens of Watts at about 80 K to cryopump mostly water vapour [58]. Large
pulse-tube refrigerators are also being developed for the liquefaction of natural gas, for
clean-burning fuel in fleet vehicles and for liquefaction of the methane-rich gas emitted
from landfills of large cities [58]. In medicine the pulse-tube refrigeration technology
is used to cool superconducting magnets in diagnostic imaging systems (MRI), thereby
replacing the conventional liquid-helium bath. This improves the quality of images due
to the reduction of vibration and it makes MRI systems smaller and cheaper.

1.2 Modelling approaches for Stirling-type PTR

A variety of models exists for studying the pulse-tube refrigerator [48]. Below we re-
view a few of them.
Harmonic analysis is a simple but efficient way of analysing the fluid flow and thermo-
dynamic behaviour in the pulse tube. All variables are expanded in harmonic terms.



1.2 Modelling approaches for Stirling-type PTR 7

Figure 1.2: A pulse-tube refrigerator made by ‘Stirling Cryogenics and Refrigeration
B.V.‘, with the regenerator, the pulse tube, the cold heat exchanger (CHX), the hot heat
exchanger (HHX) [79].

The obtained first-order differential equations are solved with standard numerical tech-
niques such as Runge-Kutta integration. The method is used for quick optimisation of
the pulse tube in terms of the geometry parameters, distribution of the various materi-
als, orifice settings, etc. This method is restricted to small amplitude harmonic pressure
variations [9], [12], [36].
Thermodynamic models [59], [8], [9–12,15–19], [43], [54], [65] provide a way to analyse the
performance of the PTR using the basic laws of thermodynamics. They are used to pre-
dict the behaviour of the regenerator, the pulse tube and their adjacent heat exchangers
to determine the enthalpy flow through the whole system. General relationships for the
entropy production in the components of the pulse tubes, which have a wide range of
validity, are derived. The thermodynamic models are time-averaged per cycle. These
models explain precisely how pulse-tube refrigerators cool down.
Fluid dynamics models [81], [64] are used to predict the behaviour of the gas flowing in
the pulse tube refrigerator by analytical solutions after some simplification of the gov-
erning equations. Two-dimensional models for the pulse tube are used to accommodate
the tube wall effects caused by friction and heat transfer, cf. [3, 4, 57].
In practice one has to use numerical tools to compute the various quantities appearing
in these models, cf. [41], [47], [37], [80], [79]. The conservation laws are too complex
and cannot be solved analytically. The finite volume method was developed in [75]
for a PTR with ideal gas, ideal heat exchangers and negligible axial heat conduction.
It was shown that the gas flow resistance cannot be neglected since it causes phase
and amplitude differences in pressure at different parts of the regenerator. In later pa-
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pers [76], [42] it was shown that the opening of the bypass valve in a double-inlet pulse
tube refrigerator (DPTR) caused a higher cooling power with lower compressor work
than conventional orifice pulse tube refrigerators (OPTs). The performance of 4 K pulse
tube coolers, which involves non-ideal gas properties of 4He and special properties of
the regenerative material was studied in [72]. Numerical studies on multi-sage PTRs
with respect to their performance are reported in [74] and [73], addressing the effect of
DC flow on the temperature profile along the regenerator and on the temperature at the
cold end. In [37] and [80], 3D simulations of OPTRs and DPTRs were performed, with
interests in the effects of gravity, streaming and turbulence.
Because of the complexity of the conservation laws for compressible fluid flow in PTRs,
much research has been done using commercial software. The USA Institute of Stan-
dards and Technology (NIST) numerical model for PTR simulation known as REGEN,
which in fact is not commercial, was applied to simulate a Gifford-McMahon type PTR
in [20]. A two-stage PTR was modeled based on one-dimensional theory. Through a
series of simulations using REGEN, the lowest temperature was minimised for a two-
stage refrigerator. The effect of three different matrix materials was discussed. In [5] a
two-dimensional computational fluid dynamic (CFD) simulation of a GM-type double-
inlet pulse tube refrigerator (DIPTR), operating under a variety of thermal boundary
conditions, was presented. The transient CFD model successfully predicted pulse tube
refrigerator functioning. Sage is an object orientated commercial software package par-
ticularly suited for Stirling-type machine design [29].
This project is a continuation and extension of past work on the numerical simulation
of pulse tube refrigerators in the Department of Mathematics and Computer Science
(TU/e) [28], [48], [49], [50]. Therefore, some parts had to be repeated to ensure the conti-
nuity. The research has been carried out in close cooperation with the Low Temperatures
group (LT) at the Department of Applied Physics (TU/e). The LT group started working
on the topic about fifteen years ago [9–12, 15–19], resulting in several PhD theses on the
theoretical and experimental aspects of pulse-tube refrigerators [35], [65], [67], [78].

1.3 Our objectives

For an efficient PTR the fine-tuning of all its components is imperative and a simulation
tool is most helpful in the design phase. The modelling of such systems concerns the
development of an accurate mathematical model to simulate a three-stage PTR operat-
ing at high frequencies. The model describes the fluid dynamics and thermodynamics
of the tubes, regenerators, and the coupling of the three individual stages. There is a
number of aspects that makes this problem challenging. For instance steep temperature
gradients, viscous and thermal boundary layers, the possible onset of turbulence, and
the high operating frequencies. A common feature is the presence of various scales.
Indeed, small scales only matter in a limited part of the modelling domain. Yet they
tend to govern numerical results everywhere if no special attention is paid to them. As
a consequence the required mesh width in a numerical method may be unduly small,
and therefore the simulation very time-consuming, if possible at all. This is why existing
software for this problem is not directly useful, as has been shown in a previous project,
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cf. [48]. Based on this the major task will be to develop new methods dealing with ef-
ficiently computing solutions for this type of multiscale problems. We can summarise
the main objectives of this project as follows

1. development of a mathematical model for simulating a single-stage pulse-tube
refrigerator for the pulse-tube (1D and 2D) and for the regenerator (1D),

2. development of a mathematical model for simulating a three-stage pulse tube re-
frigerator for the important temperature range around 4 K at high frequencies
imposing real gas and temperature/pressure dependent material properties,

3. coupling the 1D model of the regenerator with the 1D and 2D models of the pulse
tube,

4. coupling of the three individual stages in a three-stage PTR,

5. imposing the proper physical boundary, interface and initial conditions (IC),

6. imposing IC in such a way as to prevent any unwanted peaks (overshooting) for
the gas temperature in the tube, as it appeared in previous work [48], by employ-
ing a suitable technique,

7. development and testing of appropriate numerical methods,

8. to apply a 2D domain decomposition method (DD) for high-activity regions to
improve computational efficiency,

9. implementation of the developed model in a simulation tool for calculating (among
others) the coefficient of performance of the cooling system,

10. to predict the fluid dynamic behaviour of the gas flowing in the PTR, especially
the temperature profile in the pulse tube,

11. to calculate the lowest attainable temperature in a three-stage pulse tube refriger-
ator.

1.4 Outline of the thesis

Chapter 2 describes the physical modelling of a pulse tube refrigerator. The basic prin-
ciple of the thermodynamic behaviour of the gas inside the pulse tube in terms of the
temperature variation versus the pressure variation is explained. The main aspects of
the multi-stage PTR are briefly described. The temperature and pressure dependent
material properties of the gas together with the temperature dependent properties of
the regenerator solid are given.
Chapter 3 presents the mathematical modelling of the fluid flow and heat transfer in-
side the pulse-tube refrigerator. We assume the fluid to be a continuum and Newtonian,
and the flow to be laminar, compressible and unsteady. External forces like gravity are
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neglected. The heat exchangers are assumed to operate ideally, which means that the
gas flowing out of the heat exchanger takes the heat exchanger’s temperature and there
is no resistance and heat capacity effect within the heat exchangers. The basic equations
are the three laws of conservation and the equation of state. The four unknowns are
the density, the velocity, the thermodynamic pressure, and the absolute temperature.
Other thermodynamic parameters are: the two transport properties (dynamic viscosity
and thermal conductivity) and the specific heat capacity introduced in Chapter 2. We
derive the low-Mach number equations governing the fluid flow inside the PTR. One-
dimensional formulations for the pulse-tube and the regenerator as well as interface
conditions are given. An axisymmetrical two-dimensional formulation is considered
for the pulse-tube only so that wall effects due to heat transfer and friction can be in-
vestigated. A one-dimensional formulation with non-ideal gas is derived, so that more
realistic behaviour of the gas at extremely low temperatures is modelled. Proper junc-
tion conditions for multi-stage pulse-tube refrigerators based on the local conservation
of mass, momentum and energy are formulated.
Chapter 4 describes the numerical methods that solve governing equations derived in
Chapter 3. The first step in obtaining a numerical solution is to discretise the geometric
domain, i.e. a numerical grid must be defined. Since the domain of computation in 1D
and 2D is of simple shape, a finite difference (FD) method is an appropriate method
to discretise the equations. In addition, a domain-decomposition method is applied in
the two-dimensional computations for the pulse-tube so that an accurate solution is ob-
tained in an efficient way. The regenerator is still modelled as a 1D domain where the
wall effects including friction and heat transfer with the solid are taken into account
using the Darcy’s law. The ideal gas assumption is not valid for extremely low temper-
atures. Therefore in the case of multi-stage PTR, where the last regenerator is in such
a temperature range, we consider real gas. The numerical methods are validated by a
number of studied laminar flow problems.
Chapter 5 gives the numerical results for a typical single-stage PTR. First, we present
the one-dimensional results for the velocity and the temperature of the gas in the pulse-
tube as well as the gas velocity, gas temperature, regenerator material temperature and
pressure in the regenerator. Meanwhile we explain the importance of choosing the
initial condition for the temperature in the pulse-tube. Second, we present the two-
dimensional results of a typical single-stage PTR (that is 2D pulse-tube and 1D regener-
ator), where all aspects of friction at and heat transfer with the wall are included. Third,
we improve our 2D computations by using the domain decomposition method to in-
crease the efficiency in terms of CPU time complexity and memory storage. Finally, we
present the physical efficiency of the PTR in terms of mass and enthalpy flow and we
check the coefficient of performance of the system.
Chapter 6 applies the method described before, for the case of non-ideal gas and tem-
perature and/or pressure dependent material properties of the gas and solid, to a low-
frequency three-stage PTR with the reported experimental data in order to validate our
code. Next, we apply the method to a high-frequency PTR, referred to as the final aim
of this project, to investigate the fluid dynamic behaviour of such system in terms of ve-
locity, gas temperature and pressure variation in the pulse tubes and the regenerators.
Finally, we show the effect of the non-ideality of the gas on the temperature and other
system variables.



Chapter 2

Physical modelling

In this chapter we describe the physical modeling of the pulse-tube refrigerator. The
thermodynamic behaviour of the gas inside the pulse tube in terms of the temperature
versus the pressure variation of a gas parcel initially inside the regenerator, but moving
into and and out of the pulse tube, is explained. The general operation and design of
multi-stage PTRs is briefly described. The temperature and pressure dependent mate-
rial properties of helium and the regenerator solid are given.

2.1 Pulse-tube refrigerator

There are two types of PTRs, Stirling and Gifford-McMahon (GM). In the Stirling ma-
chine the pressure oscillation is produced by a compressor which is directly connected

Figure 2.1: Schematic Stirling pulse-tube refrigerator with orifice and buffer.
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Figure 2.2: Schematic diagram of a Gifford-McMahon cooler. Vl and Vh are buffer vol-
umes of the compressor. The two valves alternatively connect the cooler to the high- and
the low-pressure side of the compressor. The two valves are often replaced by rotating
one valve.

to the aftercooler, see Figure 2.1, and in GM machine a compressor generates contin-
uously high and low pressures and uses a rotary valve to generate the pressure os-
cillation, see Figure 2.2. The operational principle of the pulse-tube refrigerator due
to the cyclic compression and expansion of a fixed quantity of gas, usually helium, is
explained. In the following all essential parts of the system shown in Figure 2.1 are ex-
plained [48], [65] and [67].
The aftercooler (AC), only exists in a Stirling machine. The heat generated by the com-
pressor during the gas compression is removed by AC. The regenerator consists of porous
material with a high heat capacity. Its function is to store the heat released by the gas
during compression (the gas is moving towards the pulse tube) and to return the heat
to the gas during expansion (the gas is moving towards the compressor). The cold heat
exchanger (CHX) is used to absorb the heat from the object (application) to be cooled
and the hot heat exchanger (HHX) transports this heat to the surroundings. The HHX is
maintained at the ambient temperature often with the aid of an additional cooler. The
orifice-type PTR has a buffer and an orifice. The orifice is a resistance that is tuned for
obtaining the most suitable phase difference between the pressure and the gas velocity.
The volume of the buffer is large compared to that of the pulse tube; it is typically 10
times larger. The pressure in the buffer is nearly constant and practically equal to the
average pressure in the system.

2.1.1 Gas circulation

The thermodynamic and the fluid dynamic behaviour of the heat exchangers is rather
complicated. It is necessary to make simplifying assumptions. In an ideal heat ex-
changer [44] the heat contact between the gas and the matrix is perfect, the flow resis-
tance of the matrix is zero and the thermal conductivity is infinitely large.
Let us now consider two gas parcels at two sides of the tube [48], [65] [67], i.e. one at
the HHX and one at the CHX. Schematic drawings of the temperature-position curves
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Figure 2.3: Left side: A gas parcel enters the tube at temperature TC and leaves it at
a lower temperature producing cooling. Right side: A gas element enters the tube at
temperature TH and leaves it at a higher temperature producing heating.

of two gas parcels, for a sinusoidal pressure wave, are given in Fig. 2.3. At the HHX
the gas parcel flows with a temperature TH from the buffer into the tube as long as the
pressure in the tube, Pt, is smaller than the pressure inside the buffer, Pb, i.e. Pt < Pb.
At a certain time Pt = Pb and the gas parcel stops moving, and subsequently with pres-
sure increment in the tube, i.e. Pt > Pb, the gas moves back towards the hot end of
the tube. The final pressure is larger than the initial pressure and consequently the final
temperature will be higher than the initial temperature TH. Pressure and flow velocity
are directly related via the orifice resistance.
The analysis of the situation at the CHX is more complicated due to the fact that the
velocity at the cold end is determined by the velocity of the gas at the hot end and the
compression of the gas column in the tube. However the principle is basically the same.
At the cold end the gas parcel enters the tube at a high pressure and at a temperature
TC and leaves it at a low pressure and hence with a temperature below TC which pro-
duces cooling. One full cycle results in net enthalpy flow from the cold end to the hot
end. This cooling mechanism at the cold end can also be explained by means of Figure
2.4. We consider the following idealised pressure-time and temperature-position of a
gas parcel near the CHX. Figure 2.4.a shows the pressure variation in the tube with the
following four steps

Step 1. The compression step. While the orifice is closed the pressure in the pulse tube
rises from the low pressure pL to the high pressure pH by moving the piston to the right.
Step 2. The orifice is open and the piston still moves to the right. The gas flows from the
tube to the buffer. The pressure in the tube remains at the value of pH and the pressure
in the buffer increases slightly.
Step 3. The expansion step. At this stage the orifice is closed and the piston moves to
the left. The pressure in the pulse tube decreases from pH to pL.
Step 4. The piston still moves to the left while the orifice is open. Now the pressure in
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(a) pressure cycle (b) temperature cycle

Figure 2.4: Pressure and temperature of a gas parcel as a function of time and position
( [65], Fig. 2.7).

the buffer is higher than the pressure in the pulse tube. So the gas flows from the buffer
into the tube, but the pressure in the tube remains constant at pL.
We now follow a gas parcel, which is inside the regenerator at the start of the cycle
(point a) at pressure pL and temperature TC, see Figure 2.4.b.

Step 1. From a to b when the pressure rises the gas element moves to the right. Due
to the good thermal contact with the regenerator material the temperature of the ele-
ment follows the temperature of the regenerator. At point b the gas element leaves the
regenerator and enters the pulse tube via the heat exchanger CHX with temperature
TC. From b to c the gas element is thermally isolated from its surroundings (adiabatic
process) and by increasing the pressure its temperature rises.

Step 2. From c to d the gas element still moves to the right. The pressure is constant and
so is the temperature.

Step 3. At point d the gas parcel stops moving to the right. The pressure drops, and the
gas parcel moves to the left. As it is thermally isolated the temperature drops together
with the pressure. Since some amount of gas is already in this stage stuck in the buffer,
the gas parcel gets a lower temperature than the initial one, TC.

Step 4. From e to f the gas parcel moves to the left at constant pressure. The temperature
is constant as long as the gas element is inside the tube. At point f the gas element
leaves the pulse tube and enters the heat exchanger CHX with the temperature T < TC.
The gas then extracts heat (produces cooling) from the CHX to reach the regenerator
temperature TC. From f to a the gas parcel is inside the CHX and moves with a lower
temperature T and then TC back to its initial position in the regenerator.
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2.1.2 Double-inlet PTR

In the double-inlet PTR the hot end of the pulse tube is connected to the entrance (hot
end) of the regenerator by an orifice adjusted to an optimal value [62]. See Fig. 2.5.
The double inlet is a bypass for the regenerator and the pulse tube and as such reduces
the cooling power. In addition it is a dissipative device which further deteriorates the
performance. However, both these disadvantages are overcome by the fact that the
optimised double inlet reduces the flow and thus the dissipation in the regenerator. As
a result the over-all system performance can be improved significantly. The first orifice
and the double-inlet orifice are two adjustable valves for each stage of the PTR. For a
three-stage system the number of valves then need to be adjusted and optimised is six.
The adjustment of all these valves in the development phase in the laboratory takes a
lot of patience and skill of the PTR-operator.

Figure 2.5: Schematic picture of a single-stage PTR with double-inlet orifice.

2.1.3 Three-stage pulse-tube refrigerator

To reach temperatures below 15 K it is not practical to use a single-stage PTR. A multi-
stage PTR is unavoidable as has been shown in experimental cryogenics literature [17],
[68]. Basically one PTR can be used to precool another. Figure 2.6 shows a photo of a
three-stage PTR taken in the laboratory of the Applied Physics Department of TU Eind-
hoven. Figure 2.7 is a schematic picture of a three-stage PTR. There are three pulse-tubes
in parallel with corresponding orifices, buffers and heat exchangers, three regenerators
in series, one compressor and three double-inlets. According to this set-up, the first
tube is the shortest and the thickest and the third one is the thinnest and the longest.
The first regenerator is made of stainless steel, the second one of lead and the third one
of Erbium-Nickel (ErNi). The three regenerators have different porosity and permeabil-
ity. The lengths of the regenerators are approximately the same. The parameters used
for optimising the system mainly are the geometry and the material properties, e.g. the
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Figure 2.6: Three-stage Stirling pulse-tube refrigerator [67].

volume of the buffers and the conductance of the orifices. The final aim of a design
is to maximise the cooling power and to minimise the input power for a given lowest
temperature. The pressure variation produced by the compressor plays an important
role and is in the range of 8-25 bar. The disadvantage of multi-staging is that precooling
reduces the flow to the next stage, hence the cooling power is less [67].

2.1.4 Flow and heat straighteners

In practice the pulse-tube at HHX is connected via the orifice to the buffer through
tubes. See Figure 2.8. At the cold end the pulse tube and the regenerator are connected
by a tube too [67]. At such junctions, there are narrow-wide connections which may
cause turbulent eddies at the entrances of the wide tubes. See Fig. 2.9.a. Therefore,
flow straighteners are used to prevent such undesired eddies which might decrease the
efficiency of the system. They are intended to make the flow in both the pulse tube
and the regenerator (porous medium) uniformly parallel and the heat transfer perfect.
These straighteners also make the temperature uniform if the flow is dominated by
convection. See Fig. 2.9.b.
As we can see in Fig. 2.7 there are flow straighteners at the entrance of each regenerator
for the three-stage PTR. Fig. 2.10 shows a zoom at junction I of Fig. 2.7. The connecting
tube is linked into a gap in between the regenerators I and II. After this gap at both sides
there are straighteners that uniformly distribute the flow and heat into the regenerators
to prevent any probable eddy at the entrances.
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Figure 2.7: Schematic three-stage Stirling pulse-tube refrigerator.

Figure 2.8: Single-stage PTR with connecting tubes.
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(a) without straightener

(b) with straightener

Figure 2.9: The gas flows from the small tube into the pulse-tube a) without straightener,
b) with the straightener.

(a) zoom of junction I of Fig. 2.7 (b) construction of the 2nd stage regenerator [67]

Figure 2.10: Zoom of junction I of Fig. 2.7 showing the gap and two straighteners at
both sides.
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Figure 2.11: The functions fL and fH of T . In this example we have chosen a = 10 and
T0 = 1.

2.2 Temperature and pressure dependent material proper-
ties

The properties of gases vary with temperature and pressure. Pulse-tube refrigerators
are able to cool down to about 2 K in one tube in the case of multi-stage PTR where
the hot end is at room temperature. Therefore, we need to consider the temperature
and/or pressure dependent gas/material properties. Such properties are the specific
heat capacity cp, thermal conductivity κ and viscosity µ of the gas together with specific
heat capacityCS and thermal conductivity κ of the solid. Below we give practical values
and approximations for the thermal and hydrodynamic properties of 4He [14], [13]. We
will frequently use the functions

fL(a, T0) =
1

1+ ea(T−T0)
, (2.2.1)

fH(a, T0) =
1

1+ ea(T0−T)
, (2.2.2)

where T is a variable and a and T0 are constants. The first function is close to to 1 when
T � T0 and close to zero when T � T0. For the second function it is the other way
around. The parameter 1/a represents the width of the transition and the value of T0 is
the transition temperature. An example is given in Figure 2.11 where a = 10 and T0 = 1.
These functions are convenient when using symbolic expressions for matching curves
in low-temperature and high-temperature ranges. By choosing proper values for the
parameters a and T0 the region of overlap can be fitted to data available in [55] and [66].
Pulse-tube refrigerators usually operate with 4He in the pressure region between 8 and
25 bar. The critical pressure is 2.29 bar at 5 K (see Figure 2.12), so PTRs operate in a
region where no liquid-vapour phase transition takes place. Below the λ-line the ther-
mal conductivity becomes practically infinitely large (super fluidity). At temperatures
just above the λ-line the thermal expansion coefficient becomes zero. These are the two
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Figure 2.12: Phase diagram of 4He. PTRs, using 4He, operate above 2.1 K in the pressure
range between 5 and 25 bar [55], [66]

.

major reasons why it is impossible to cool down below the λ-line using 4He. PTRs op-
erating close to 2 K may hit the λ-line during part of the cooling cycle. The specific
heat capacity (cp) is not constant for a real gas. Using the functions (2.2.1), (2.2.2) and
tabulated values measured in the laboratory [55] we can find the following fit for cp

cp := a1 + (−a3 + a4T)fL(1, T1 − 1) +
a2

T2
fH(1, T1), (2.2.3)

Here we have approximately (p in MPa)

a1 = 20.76, (2.2.4)
a2 = 650p+ 125, (2.2.5)
a3 = 2p+ 16, (2.2.6)

a4 = −0.3p+ 2.8, (2.2.7)
T1 = 6p. (2.2.8)

The second term in (2.2.3) gives the high-temperature dependence and the third term
the low-temperature dependence. For an ideal gas cp = 20.77 [J/molK], which is about
the value of a1. Since we will use the average pressures of about 15 bar, we use (2.2.9)
curve-fitting of the measured temperature-dependent specific heat capacity at that spe-
cific pressure. Using (2.2.3) one obtains

cp := 20.76+ (−19+ 2.35T)fL(1, 8) +
1100

T2
fH(1, 9). (2.2.9)

Figure 2.13 shows the plot of the specific heat capacity of 4He at low temperature at 15
bar.
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Figure 2.13: Specific heat capacity of helium at low temperature at 12 bar, 15 bar and 18
bar [55], [66].

An expression for the thermal conductivity of 4He at 15 bar in the temperature range
0-300 K is

κHe := 0.0038T0.65 + 0.0172e−0.025(T−6)2 . (2.2.10)

Above 40 K may use
κHe := 0.0038T0.65.

If an accuracy of 15% above 20 K is sufficient then the simple relation

κHe := 0.008
√
T.

can be used. Figure 2.14 shows various approximations of temperature-dependence
of 4He conductivity. The dot curve represents the experimental data measured in the
laboratory.
An expression for the dynamic viscosity of 4He is

µHe :=

(
29

T1.27
+ 0.52T0.64

)
× 10−6, (2.2.11)

within an accuracy of 0.4 [microPa] [55], [66]. In the temperature range above 20 K the
formula

µ := µ0
√
T with µ0 := 1.05× 10−6.

can be used, which is about10% accurate. See Figure 2.15. The viscosity does not de-
pend on the pressure.
In the set-up for the three-stage PTR in the low-temperature group (LT) of the Applied
Physics Department of TU Eindhoven, the materials in the various stages of the regen-
erators are stainless steel, lead and ErNi. The thermal conductivity of stainless steel can
be approximated by [55], [66]

kSS := −0.357255+ 0.132163T − 0.000392T2 + 4.067913× 10−7T3. (2.2.12)
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Figure 2.14: Thermal conductivity of 4He as a function of temperature at 15 bar; Dots
are measured values [55], [66].

Figure 2.15: Dynamic viscosity of 4Hewith various approximations; Dots are measured
values [55], [66].
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The specific heat capacity of stainless steel using the functions (2.2.1), (2.2.2) is

cSS := 60

(
T

45

)1.5
fL(1, 40) + (−745+ 215lnT)fH(1, 39.5). (2.2.13)

The thermal conductivity of stainless steel can be approximated by

κPb = −34.3+ 24.8T − 2.59T2 + 0.12T3 − 0.0031T4 + 0.00004T5 − 1.94e−7T6. (2.2.14)

The specific heat capacity of lead has a temperature-dependent behaviour given by

cPb :=
0.003T4

1+ 0.001T3
fL(1, 20) +

(
135−

1650

T

)
fH(1, 20). (2.2.15)

The thermal conductivity of Erbium-Nickel (ErNi) is given by

kErNi := 1.4T0.43. (2.2.16)

The specific heat capacity of ErNi is

cErNi = 1.6T +
175.5

2.5+ (T − 9.7)2
. (2.2.17)

2.3 Conclusion

In this chapter we have described the physical modeling of the pulse-tube refrigerator.
The thermodynamic behaviour of the gas inside the pulse tube in terms of the temper-
ature versus the pressure variation of a gas parcel initially inside the regenerator, but
moving into and and out of the pulse tube, has been explained.
New in this chapter is the explanation of the general operation and design of multi-stage
PTRs. The physical benefit of the double-inlet in PTRs was described. In addition, the
temperature and pressure dependent material properties of helium and the regenera-
tor solid are formulated for the average driving pressure in the system used in Chapter
6, 15 bar. Of course, these properties have been taken from helium property libraries
available via commercial software. However, these are black boxes, whereas the formu-
las prescribed in Section 2.2 give insight, derivatives can be taken and they lead to faster
codes.





Chapter 3

Mathematical modelling

In this chapter we derive the mathematical model for the fluid flow and heat transfer
inside the pulse-tube refrigerator. We assume the fluid to be a continuum and Newto-
nian, and the flow to be laminar, compressible and unsteady. External forces like grav-
ity are neglected. The heat exchangers are assumed to operate ideally, which means
that the gas flowing out of the heat exchanger takes the heat exchanger’s temperature,
there is no resistance and the heat capacity of the matrix is much larger than of the
gas within the heat exchangers. The basic equations are the three laws of conservation
and the equation of state. The four unknowns are the density ρ, the velocity vector u,
the thermodynamic pressure p, and the absolute temperature T. Other thermodynamic
parameters are: the transport properties µ (dynamic viscosity) and k (thermal conduc-
tivity) and the specific heat capacity cp. These parameters are usually temperature and
pressure-dependent as already explained in Chapter 2. In the following we derive the
equations governing the fluid flow inside the PTR. One-dimensional formulations for
the pulse-tube and the regenerator with connecting interface conditions are given. An
axisymmetrical two-dimensional formulation is considered for the pulse-tube so that
wall effects due to heat transfer and friction can be investigated. A one-dimensional
formulation for the pulse tube and the regeneartor with non-ideal gas is derived so that
more realistic behaviour of the gas at extremely low temperatures is modelled. Proper
junction conditions are formulated for multi-stage pulse-tube refrigerators based on the
local conservation of mass, momentum and energy.

3.1 Basic equations

The basic equations are the three laws of conservation and an equation of state [77].
In the Eulerian system description of fluid flow, the three conservation laws utilise the
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material derivative defined by
D

Dt
=
∂

∂t
+ (u · ∇), (3.1.1)

where ρ is the density, u is the velocity vector and∇ is the gradient operator.

Conservation of mass: Since the flow is compressible the density is not constant. There-
fore, the conservation of mass reads

Dρ

Dt
+ ρ∇ · u = 0, (3.1.2)

where (∇·) is the divergence operator.

Conservation of momentum:
This relation is commonly known as Newton’s second law and expresses a proportion-
ality between applied force and the resulting acceleration of a particle of mass m as
(F = ma). For fluid flow it reads

ρ
Du
Dt

= ρg −∇p +∇ · τij, (3.1.3)

where g is the gravitational acceleration, p is the pressure and τ is the viscous stress
tensor. This tensor for a Newtonian(linear) fluid is defined by

τij = µ

(
∂ui

∂xj
+
∂uj

∂xi

)
+ δijλ∇ · u, (3.1.4)

where δ is the Kronecker delta function (δij = 1 if i = j and δij = 0 if i 6= j), µ is
the dynamic viscosity and λ, the so-called bulk viscosity coefficient, can be found from the
Stokes hypothesis

λ+
2

3
µ = 0. (3.1.5)

Conservation of energy:
The first law of thermodynamics states that the sum of the work applied to and the heat
added to a system will result in an increase of the energy of the system. The conservation
of energy reads

ρ
Dh
Dt

=
Dp
Dt

−∇ · q +Φ, (3.1.6)

where h is the fluid enthalpy, q is the heat flow per unit area given by Fourier’s law

q = −k∇T, (3.1.7)

with T is the temperature, andΦ is the so-called dissipation function defined by

Φ = τij
∂ui

∂xj
. (3.1.8)

The enthalpy for a non-ideal gas is defined by

Dh = cpDT +
1

M
HpDp, (3.1.9)
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whereD denotes total derivative, cp is the specific heat capacity of the gas, andM is the
molar mass

Hp = Vm − T(
∂Vm

∂T
)p (3.1.10)

with Vm the molar volume of the gas. The second term of Hp is the temperature-
derivative of the molar volume at constant pressure. For an ideal gas the fluid enthalpy
h is given by

h = cpT, (3.1.11)

Equation of state:
The equation of state for a non-ideal gas may be based on various model choices. The
Van der Waals equation is well known and reads

(p+
a

V2m
)(Vm − b) = RT, (3.1.12)

where R is the gas constant, and a and b are the Van der Waals coefficients specified in
Appendix B.5. The equation of state for a perfect gas is

p = ρRmT, (3.1.13)

where Rm is the specific gas constant.

3.2 One-dimensional model of a single-stage PTR with
ideal gas

The regenerator and the pulse-tube are modelled through partial differential equations.
The other parts of the system including the buffer, the orifice, the ideal heat exchangers
and the compressor are included in the model as boundary conditions. See Figure 3.1.
Finally, the pulse tube and the regenerator are coupled through interface conditions [64],
[48].

3.2.1 Pulse-Tube

A one-dimensional model for a tube of length Lt is formulated. In the one-dimensional
case the viscous stress tensor has one component, namely

τzz = 2µ
∂u

∂z
−
2

3
µ(∇ · u) =

4

3
µ
∂u

∂z
. (3.2.1)

The one-dimensional heat flux is given by

qz = −kg
∂Tg

∂z
, (3.2.2)
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Figure 3.1: Single-stage pulse-tube refrigerator.

where Tg is the gas temperature. To include wall effects in the one-dimensional formu-
lation, we take into account the skin friction force in the momentum equation and the wall
heat transfer in the energy equation. Since there is not an easy way to describe the friction
force and heat transfer correlation for 1D oscillating flows, we take the correlations de-
rived from steady laminar flow. Such assumptions are very poor for an unsteady flow
problem. However, the 2D model in Section 3.3 automatically includes correct unsteady
representations. The friction force at the wall for steady laminar flow is

ffriction = −Cfu, (3.2.3)

where Cf is the friction factor defined by [69]

Cf =
32µ

D2
, (3.2.4)

withD is the tube diameter. The heat exchanging surface per unit of volume is denoted
by F, which for a circular tube is 4/D. Then the heat transfer (heat flow) term is defined
by

Eheat transfer = αF(Tw − Tg), (3.2.5)

where α is the heat transfer coefficient, and Tw is the wall temperature. The heat transfer
coefficient is given by [38]

α :=
NuDkg

D
with NuD = 3.66, if Tw = constant. (3.2.6)

The equations for mass, momentum and energy conservation and the equation of state
for an ideal gas now take the following form

∂ρg

∂t
+
∂

∂z
(ρgu) = 0 , (3.2.7)

ρg(
∂u

∂t
+ u

∂u

∂z
) = −

∂p

∂z
+
4

3

∂

∂z
(µ
∂u

∂z
) − Cfu , (3.2.8)

ρgcp(
∂Tg

∂t
+ u

∂Tg

∂z
) =

∂p

∂t
+ u

∂p

∂z
+
∂

∂z
(kg

∂Tg

∂z
) +

4

3
µ(
∂u

∂z
)2 −

4α

D
(Tw − Tg) , (3.2.9)

p = ρgRmTg, (3.2.10)
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where 0 ≤ z ≤ Lt, CHX is at z = 0 and HHX at z = Lt. See Figure 3.1. The subscript ‘g‘
represents the gas. Since our basic flow equations are difficult to analyse, we concentrate
on casting them into an accessible form. This is accomplished by non-dimensionalising
the equations and the boundary conditions, which not only yields a minimum number
of flow parameters but also places them in the right context. To make the equations non-
dimensional, there are many ways to choose the scaling values. The scaling parameters
(indicated by a bar) have typical values for the PTR under consideration. Since we are
not interested in acoustic analysis we scale the time by choosing 1/ω (the time for one
pressure oscillation divided by 2π, which is the dominant physical time-scale), where
ω is the angular frequency of the piston oscillation. Let ū be the amplitude of the axial
velocity variation. The length is then scaled by ū/ω (which is a measure for the distance
traveled by the fluid in one pressure cycle). The dimensionless variables and parameters
(indicated by a hat) are now

ρg = ρ̄gρ̂g, Tg = TaT̂g, , p = pavp̂, u = ūû, t = t̂/ω, z = (ū/ω)ẑ,

µ = µ̄µ̂, kg = k̄gk̂g, cg = c̄gĉg. (3.2.11)

where Ta is the ambient temperature, pav is the average pressure in the system, and
ρ̄g, µ̄, k̄g and c̄g are the density, viscosity, conductivity and specific heat capacity for
helium at temperature Ta. It is useful to mention that in [48] the dimensionless variable
for the pressure is defined by p = pav + p̄p̂ ,where pav is the average pressure and
p̄ is the pressure amplitude. The reason mentioned for that is to avoid cancellation
caused by subtracting two nearly equal pressures in the numerical approximation of the
pressure gradient. However, in here such problem has been overcome with a better CFL
condition in the numerical computations. Consequently, Mach number Ma is defined
in a more meaningful manner as in [64].
Omitting the hats for notational convenience, the equations (3.2.7)- (3.2.10) become in
non-dimensional form

∂ρg

∂t
+
∂

∂z
(ρgu) = 0, (3.2.12)

ρg

(
∂u

∂t
+ u

∂u

∂z

)
= −

1

Ma2
∂p

∂z
+

4

3Re
∂

∂z

(
µ
∂u

∂z

)
− Cffµu, (3.2.13)

ρgcp

(
∂Tg

∂t
+ u

∂Tg

∂z

)
=
B(γ− 1)

γ
(
∂p

∂t
+ u

∂p

∂z
) +

1

Peg
∂

∂z

(
kg
∂Tg

∂z

)
(3.2.14)

+
4

3

B(γ− 1)

γ

Ma2

Re
µ(
∂u

∂z
)2 −Akg(Tw − Tg),

pB = ρgTg. (3.2.15)

The dimensionless numbers are (using c̄p − c̄v = Rm, where c̄v is the specific heat
capacity at constant volume at room temperature)

Re =
ρ̄gū

2

µ̄ω
, (Oscillatory Reynolds number),
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Figure 3.2: Division of reciprocating flow regimes based on observations of turbulence.
[22]

Peg =
ρ̄gū

2c̄p

k̄gω
, (Peclet number),

Ma =
ū√

pav/ρ̄g
, (Mach number),

γ =
c̄p

c̄v
, (Specific heat ratio),

γ− 1

γ
=
Rm

c̄p
, (Adiabatic expansion factor),

B =
pav

ρ̄gRmTa
, Cff =

32µ̄

ρ̄gωD2
, A =

4NuD k̄g

ρ̄gc̄pωD2
.

The data for the single-stage and three-stage pulse tube refrigerators and the relevant
dimensionless numbers studied herein are given in the Appendixes B1 and B2.
The roles of these dimensionless numbers in the analysis of fluid flow are of great im-
portance [48]. The Reynolds number usually is a reliable criterion to distinguish be-
tween laminar flow and the onset of turbulence. Reciprocating flows, or unsteady
flows with zero mean, have been the subject of several recent experimental investi-
gations [1], [7], [22], [34], [56]. The experimental results can be summarised to define
the stability plane for oscillatory pipe flow, declared in [22], in two-parameter space
Ū
√
2/(ων) vs Womersely parameter (D/

√
2ν/ω), which is based on the Stokes layer

thickness δ =
√
2ν/ω, where Ū is the the peak velocity, D is the pipe diameter, ω is
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the angular frequency and ν is the kinematic viscosity [60]. The outcome of these in-
vestigations divides the space into regions of i) fully laminar flow; ii) perturbed laminar
flow; iii) intermittently turbulent flow; and iv) fully turbulent flow. Figure 3.2 shows the
approximate division of this two-parameter space. The PTRs analysed herein operate
at frequencies around 20 Hz. With the other dimensionless numbers listed in the Ap-
pendixes B and C for the single-stage and three-stage PTR respectively, it is concluded
that the flow regimes inside the pulse-tubes and the regenerators are either in the lam-
inar region or in the perturbed laminar region, but not in the turbulent regions. The
perturbed laminar flow can be described as appearance of small perturbations in the
velocity profile. This perturbation of the velocity amplitude occurs either close to the
tube’s wall or near the tube’s central axis. We assume ideal flow straighteners inside
the tube, after CHX and HHX, and inside the regenerator, adjacent to CHX and AC,
guaranteeing uniform inflow and outflow. Therefore the governing equations are for
laminar flow.

Applying asymptotic analysis, all variables are expanded in terms with the square of
the Mach number as parameter, which is assumed to be very small [45]. The expansion
takes the form

p(z, t) = p0(z, t) + Ma2p1(z, t) + o(Ma4), (3.2.16)

u(z, t) = u0(z, t) + Ma2u1(z, t) + o(Ma4), (3.2.17)

ρg(z, t) = ρ0g(z, t) + Ma2ρ1g(z, t) + o(Ma4), (3.2.18)

Tg(z, t) = Tg0(z, t) + Ma2Tg1(z, t) + o(Ma4). (3.2.19)

If we substitute these expansions into (3.2.12)-(3.2.15) we obtain the following leading-
order system

∂ρg0
∂t

+
∂

∂z
(ρg0u0) = 0, (3.2.20)

∂p0

∂z
= 0, (3.2.21)

ρg0cp

(
∂Tg0
∂t

+ u0
∂Tg0
∂z

)
=
B(γ− 1)

γ

∂p0

∂t
+

1

Peg
∂

∂z

(
kg
∂Tg0
∂z

)
, (3.2.22)

p0B = ρg0Tg0 . (3.2.23)

The first-order system, not used herein, but given for completeness, reads

∂ρg1
∂t

+
∂

∂z
(ρg0u1) +

∂

∂z
(ρg1u0) = 0, (3.2.24)

ρg0(
∂u0

∂t
+ u0

∂u0

∂z
) = −

∂p1

∂z
+

4

3Re
∂

∂z
(µ
∂u0

∂z
), (3.2.25)

ρg0cp

(
∂Tg1
∂t

+ u0
∂Tg1
∂z

+ u1
∂Tg0
∂z

)
+ ρg1

(
∂Tg0
∂t

+ u0
∂Tg0
∂z

)
=

B(γ− 1)

γ

(
∂p1

∂t
+ u0

∂p1

∂t

)
+

1

Peg
∂

∂z

(
kg
∂Tg1
∂z

)
+
4

3

B(γ− 1)

γ
µ(
∂u0

∂z
)2, (3.2.26)

p1B = ρg0Tg1 + ρg1Tg0 . (3.2.27)
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The dimensionless numbersCff andA for the PTRs are in the range of 2.1×10−4 to 2.6×
10−3 and 1.5× 10−4 to 1.8× 10−3, respectively. These values are approximations of the
coefficients for friction force and heat transfer with the wall representing 2D corrections
to 1D formulations. However, in the two-dimensional model the wall effects caused by
friction and heat transfer are automatically included. Therefore, we ignore the small
corrections in the 1D equations.
Equation (3.2.21) shows that the pressure is uniform in space. The pressure inside the
tube, p0, is only a function of time which is denoted by P(t) from now on. The leading-
order and the first-order terms in the pressure expansion are called the thermodynamic
pressure and the hydrodynamic pressure respectively. The thermodynamic pressure is the
global pressure driving the gas inside the pulse-tube. The acoustic pressure - which
would be Ma p1(z, t) - does not play a role. The hydrodynamic pressure is a result of
flow acceleration and viscosity.
Combining the equations (3.2.20) and (3.2.22) and omitting the subscripts ’0’, we obtain

∂(ρgTg)

∂t
+
∂(ρguTg)

∂z
=
B(γ− 1)

γcp

dP

dt
+

1

cpPeg
∂

∂z

(
kg
∂Tg

∂z

)
. (3.2.28)

Using the equation of state (3.2.23) we eliminate ρg to find

BdP
dt

+ B∂(Pu)

∂z
=
B(γ− 1)

γcp

dP

dt
+

1

cpPeg
∂

∂z

(
kg
∂Tg

∂z

)
. (3.2.29)

If we assume that the heat capacity is constant, i.e. ĉg = 1, then rearranging the above
equation gives the velocity gradient

∂u

∂z
= −

1

γP

dP

dt
+

1

PBPeg
∂

∂z

(
kg
∂Tg

∂z

)
. (3.2.30)

The energy equation (3.2.22) can be rewritten by eliminating the density via (3.2.23) and
using ĉg = 1 as

∂Tg

∂t
+ u

∂Tg

∂z
=

(γ− 1)Tg

γP

dP

dt
+

Tg

BPegP
∂

∂z

(
kg
∂Tg

∂z

)
. (3.2.31)

If we substitute the pressure time-derivative in equation (3.2.31) using equation (3.2.30)
we get the following simplified equations

∂u

∂z
=

b1
P

∂

∂z
(kg

∂Tg

∂z
) −

1

γP

dP

dt
, (3.2.32)

∂Tg

∂t
= b2

Tg

P

∂

∂z
(kg

∂Tg

∂z
) − u

∂Tg

∂z
+ (1− γ)Tg

∂u

∂z
, (3.2.33)

where

b1 =
1

BPeg
, b2 =

γ

BPeg
. (3.2.34)

The temperature equation (3.2.33) is a convection-diffusion equation with an additional
nonlinear term. Note that the coefficients b1,2 � 1, so that equation (3.2.33) is domi-
nated by convection. Equation (3.2.32) shows that the velocity gradient is practically
proportional to the pressure time-derivative. Finally, the density is computed from
equation (3.2.23) and P(t) is a given function of time.



3.2 One-dimensional model of a single-stage PTR with ideal gas 33

3.2.2 Regenerator

The equations for mass, momentum, energy transfer, together with the equation of state
for an ideal gas, in the regenerator located at 0 ≤ z ≤ Lr, where AC is at z = 0 and CHX
at z = Lr (see Figure 3.1), are

∂(ρgφ)

∂t
+
∂

∂z
(ρgφu) = 0 , (3.2.35)

φρg(
∂u

∂t
+ u

∂u

∂z
) = −φ

∂p

∂z
+
4

3

∂

∂z
(φµ

∂u

∂z
) −

µ

κ
u, (3.2.36)

ρgcpφ(
∂Tg

∂t
+ u

∂Tg

∂z
) = β(Tr − Tg) + φ(

∂p

∂t
+ u

∂p

∂z
) +

∂

∂z
(φkg

∂Tg

∂z
) +

4

3
φµ(

∂u

∂z
)2 ,

(3.2.37)

(1− φ)ρrcr
∂Tr

∂t
= β(Tg − Tr) +

∂

∂z

(
(1− φ)kr

∂Tr

∂z

)
, (3.2.38)

p = ρgRmTg, (3.2.39)

where Tr is the regenerator material temperature, Tg is the gas temperature, β is the
heat transfer coefficient, cr is the regenerator material heat capacity and φ is the poros-
ity, which is the ratio of the void volume to the total volume of the porous medium.
The equations (3.2.37) and (3.2.38) are the energy equations. Darcy’s law has been
included in the momentum equation (3.2.36) where κ is the permeability. In a homoge-
neous porous material the porosity, φ, permeability κ and material density ρr are con-
stant. Non-dimensionalising the variables as we did for the gas inside the tube (3.2.11)
and defining the following new scaling parameters

Tr = TaT̂r, kr = k̄rk̂r, cr = c̄rĉr, (3.2.40)

the system of equations (3.2.35) - (3.2.39) becomes (omitting the hats)

∂ρg

∂t
+
∂

∂z
(ρgu) = 0, (3.2.41)

∂p

∂z
=
4Ma2

3Re
∂

∂z
(µ
∂u

∂z
) − Ma2ρg(

∂u

∂t
+ u

∂u

∂z
) −Dµu, (3.2.42)

cpρg(
∂Tg

∂t
+ u

∂Tg

∂z
) = β∗g(Tr − Tg) +

B(γ− 1)

γ
(
∂p

∂t
+ u

∂p

∂z
) +

1

Peg
∂

∂z
(kg

∂Tg

∂z
)

+
4

3

B(γ− 1)

γ

Ma2

Re
µ(
∂u

∂z
)2, (3.2.43)

cr
∂Tr

∂t
= β∗r(Tg − Tr) +

1

Per
∂

∂z
(kr
∂Tr

∂z
), (3.2.44)

pB = ρgTg, (3.2.45)

where

D =
µ̄ū2

φpavωk
, β∗g =

β

ρ̄gc̄gφω
, β∗r =

β

(1− φ)ρrc̄rω
,
ρrc̄rū

2

k̄rω
.

The values of the dimensionless numbers are listed in Table B.2 of Appendix B for the
PTR studied herein. The values of Ma2/Re and Ma2 are about 10−9 and 10−6, respec-
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tively, so that we can neglect the first two terms of (3.2.42) and the last term of (3.2.43)
on the right-hand sides. This leaves

∂ρg

∂t
+
∂

∂z
(ρgu) = 0, (3.2.46)

∂p

∂z
= −Dµu. (3.2.47)

cpρg(
∂Tg

∂t
+ u

∂Tg

∂z
) = β∗g(Tr − Tg) +

B(γ− 1)

γ
(
∂p

∂t
+ u

∂p

∂z
) +

1

Peg
∂

∂z
(kg

∂Tg

∂z
), (3.2.48)

cr
∂Tr

∂t
= β∗r(Tg − Tr) +

1

Per
∂

∂z
(kr
∂Tr

∂z
), (3.2.49)

pB = ρgTg. (3.2.50)

Combining the equations (3.2.46) and (3.2.48) and using (ĉg = 1) we obtain

∂(ρgTg)

∂t
+
∂(ρguTg)

∂z
= E(Tr−Tg)+

B(γ− 1)

γ
(
∂p

∂t
+u

∂p

∂z
)+

1

Peg
∂

∂z

(
kg
∂Tg

∂z

)
. (3.2.51)

Using equation (3.2.50) to eliminate ρg yields

B∂p
∂t

+ B∂(pu)

∂z
= β∗g(Tr − Tg) +

B(γ− 1)

γ
(
∂p

∂t
+ u

∂p

∂z
) +

1

Peg
∂

∂z

(
kg
∂Tg

∂z

)
. (3.2.52)

After rearranging the equation above we get the following velocity gradient equation

∂u

∂z
=

b1
p

∂

∂z
(kg

∂Tg

∂z
) +

β∗g

Bp
(Tr − Tg) −

1

γp
(
∂p

∂t
+ u

∂p

∂z
). (3.2.53)

Combining the equations (3.2.48) and (3.2.53) to eliminate the pressure time-derivative
we obtain the following equation for the gas temperature

∂Tg

∂t
= b2

Tg

p

∂

∂z
(kg

∂Tg

∂z
) +

γβ∗g

B
Tg

p
(Tr − Tg) + (1− γ)Tg

∂u

∂z
− u

∂Tg

∂z
. (3.2.54)

We eliminate the time-derivative of the pressure in the evolution equation for the tem-
perature and it only appears in the velocity gradient equation. The model governing
the regenerator is the set of equations (3.2.47), (3.2.49), (3.2.53) and (3.2.54) for the four
variables including u, p, Tg and Tr. The density follows from (3.2.50).

3.2.3 Boundary and initial conditions for tube and regenerator

To complete the system of equations (3.2.32), (3.2.33) for the tube, we need boundary
and initial conditions.
From [16] we find that the volume flow in the orifice connecting tube and buffer in a
linear approximation is given by (see Figure 3.1)

V̇H(t) = Cor (pt(t) − pb(t)) , (3.2.55)
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This volume flow in the case of a double-inlet PTR is (see Figure 2.5)

V̇H(t) = Cor1 (pt(t) − pb(t)) − Cord1 (pc(t) − pt(t)) , (3.2.56)

where Pt(t) is the tube pressure which is identical to the pressure at the interface with
the regenerator (tube pressure is uniform in space), pb(t) is the buffer pressure, pc(t)
is the compressor pressure, Cor or Cor1 is the flow conductance of the main orifice and
Cord1 is the double-inlet flow conductance. The flow velocity in the case of single-orifice
PTR is then given by (see [16])

u(Lt, t) = uH(t) =
Cor

At
(pt(t) − pb(t)) , (3.2.57)

and for the double-inlet PTR is

u(Lt, t) = uH(t) =
1

At
[Cor1 (pt(t) − pb(t)) − Cord1 (pc(t) − pt(t))] , (3.2.58)

where uH is the velocity at the hot end of the tube andAt is the tube cross-sectional area.
Let p̄b be the average pressure in the buffer, then the boundary condition for the velocity in
non-dimensional form for a single-orifice PTR reads (with hats omitted)

uH(t) =
Cor

At

pav

u

(
pt(t) −

p̄b

pav
pb(t)

)
, (3.2.59)

or
uH(t) = C(pt(t) − E0pb(t)), (3.2.60)

and for the double-inlet PTR is

uH(t) =
Cor1

At

pav

u

(
pt(t) −

p̄b

pav
pb(t) − c1(pc(t) − pt(t)

)
, (3.2.61)

or
uH(t) = C [pt(t) − E0pb(t) − c1 (pc(t) − pt(t))] , (3.2.62)

where
C =

Cor1

At

pav

ū
, E0 =

p̄b

pav
, c1 =

Cor1

Cord1
. (3.2.63)

The pressure in the buffer, pb(t), is a time-dependent function that makes the cycle-
averaged mass flow through the hot end becomes automatically zero. The volume flow
through the orifice causes adiabatic compression and expansion in the buffer according
to the thermodynamic Poisson law which reads

V̇H(t) =
cv

cp

Vb

pb(t)

dpb(t)

dt
, (3.2.64)

where Vb is the buffer volume. Combining the equations (3.2.55) and (3.2.64) we obtain
an ODE for the buffer pressure

dpb(t)

dt
=
cpCor

cvVb
pb(t)(pt(t) − pb(t)). (3.2.65)
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If we make this equation non-dimensional it reads (omitting the hats)

dpb(t)

dt
= Kpb(t)(pt(t) − Epb(t)), (3.2.66)

where
K =

cpCorpav

cvVbω
. (3.2.67)

This dimensionless ODE can be solved numerically there by taking the initial condition
as p̂b(0) = 1.

The upwind boundary conditions for the temperature equation (3.2.33) ignore the local con-
duction and the corresponding boundary layer and read in dimensionless form

Tg(0, t) = TC if u(0, t) ≥ 0,
∂Tg

∂z
(0, t) =

(
(1− γ)Tg(0, t)

∂u

∂z
(0, t) −

∂Tg

∂t
(0, t)

)
/u(0, t) if u(0, t) < 0.

(3.2.68)
Tg(L, t) = TH if u(L, t) ≤ 0,

∂Tg

∂z
(L, t) =

(
(1− γ)Tg(0, t)

∂u

∂z
(0, t) −

∂Tg

∂t
(L, t)

)
/u(L, t) if u(L, t) > 0.

(3.2.69)
The hot-end boundary condition (3.2.69) shows that when the gas flows towards the
HHX, a Neumann boundary condition derived from the energy equation (3.2.33), with-
out the conduction term is applied. Otherwise, when the gas flows from the buffer
through the orifice and HHX into the tube, it takes the same temperature as the HHX
(ideal heat exchanger).

Any temperature distribution connecting the CHX and HHX can be the initial condition
for the gas temperature inside the tube. However, it will be shown in Chapter 5 that
the initial condition should be chosen in a smart way such that a net flow (DC flow)
is not created in the simulation. The initial condition for the velocity inside the tube
is determined by P(0) and the initial temperature through (3.2.32) thereby ignoring the
conductivity term. For a linear temperature distribution it is

u(x, 0) = −

(
1

γP(0)

∂P

∂t
(0)

)
z. (3.2.70)

To complete the system of equations (3.2.47), (3.2.49), (3.2.53) and (3.2.54) for the regen-
erator, we need boundary and initial conditions. See Figure 3.1. In particular we pre-
scribe the pressure, pc(t), at the compressor side as the boundary condition for (3.2.47).
All variations in pressure and temperature are neglected at the interface/junction. This
means the uniform pressure in the tube is

P(t) = p(Lr, t). (3.2.71)
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The boundary condition for the velocity at the interface with the tube uC(t) for (3.2.53)
in the case of a single-stage PTR is derived from the mass conservation relation

ṁr = ṁt (3.2.72)

where ṁ is the mass flow rate. The velocity in the regenerator at CHX (which is in fact
a small distance from it, after straightener, inside the regenerator), using ṁ = ρuA and
pressure continuity pt = pr and (3.2.50), is

ur(t, Lr) =
ut(t, 0)At

Arφ
Tg(t, Lr)

Tt(t, 0)
. (3.2.73)

where A is the cross-section. The tube velocity ut(t, 0) at the interface in 1D is the
velocity immediately after the thermal boundary layer existing at the CHX when the
flow is towards it. For the regenerator material temperature (3.2.49) we can simply
define two Dirichlet boundary conditions as{

Tr(0, t) = TH,

Tr(Lr, t) = TC.
(3.2.74)

For the gas temperature equation (3.2.54) we introduce two boundary conditions similar
to the tube’s as follows
Tg(0, t) = TH if u(0, t) ≥ 0,

∂Tg

∂z
(0, t) = [−

∂Tg

∂t
(0, t) +

γβ∗g

B
Tg(0, t)

pc(t)
(TH − Tg(0, t))+

(1− γ)Tg(0, t)
∂u

∂z
(0, t)]/u(0, t) if u(0, t) < 0.

(3.2.75)
Tg(Lr, t) = TC if u(Lr, t) ≤ 0,
∂Tg

∂z
(Lr, t) = [−

∂Tg

∂t
(Lr, t) +

γβ∗g

B
Tg(Lr, t)
p(Lr, t)

(TC − Tg(Lr, t))+

(1− γ)Tg(Lr, t)
∂u

∂z
(Lr, t)]/u(Lr, t) if u(Lr, t) > 0.

(3.2.76)

Finally, since the heat capacity of the regenerator material is high, the temperature of
the gas and the solid material will not change too much during the oscillation of the
gas. Therefore we simply define the same linear functions as the initial conditions for
the gas and regenerator material temperature connecting the cold and the hot ends of
the regenerator, where the cold end temperature should be approximately close to esti-
mated equilibrium temperature at CHX.

3.3 Two-dimensional model of the tube

An axisymmetrical two-dimensional formulation is given so that more accurate numer-
ical studies of the PTR, including the wall effects due to friction and heat transfer, can
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Figure 3.3: Axisymmetrical domain for the pulse-tube including wall.

be performed.

3.3.1 Tube

We consider an axisymmetrical domain including the gas and the wall surrounding the
cylinder as sketched in Fig. 3.3. The conservation laws and the equation of state for an
ideal gas in cylindrical coordinates are

∂ρ

∂t
+
∂

∂z
(ρu) +

1

r

∂

∂r
(rρv) = 0, (3.3.1)

ρ

(
∂u

∂t
+ u

∂u

∂z
+ v

∂u

∂r

)
= −

∂p

∂z
−

[
1

r

∂

∂r
(rτrz) +

∂τzz

∂z

]
, (3.3.2)

ρ

(
∂v

∂t
+ u

∂v

∂z
+ v

∂v

∂r

)
= −

∂p

∂r
−

[
1

r

∂

∂r
(rτrr) +

∂τrz

∂z

]
, (3.3.3)

ρcg

(
∂T

∂t
+ u

∂T

∂z
+ v

∂T

∂r

)
=
∂p

∂t
+u

∂p

∂z
+v
∂p

∂r
+
1

r

∂

∂r

(
rkg

∂T

∂r

)
+
∂

∂z

(
kg
∂T

∂z

)
+Φ, (3.3.4)

p = ρRmT, (3.3.5)

where the axial coordinate is z, the radial coordinate is r, and u, v are the horizontal
and radial velocities, respectively, τ is the stress tensor and Φ is the viscous dissipation
function. The components of the viscous stress tensor (τ) are

τzz = −2µ
∂u

∂z
+
2

3
µ(∇ · u) = −µ

[
4

3

∂u

∂z
−
2

3

v

r
−
2

3

∂v

∂r

]
, (3.3.6)

τrr = −2µ
∂v

∂r
+
2

3
µ(∇ · u) = −µ

[
4

3

∂v

∂r
−
2

3

v

r
−
2

3

∂u

∂z

]
, (3.3.7)
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τrz = −µ

(
∂u

∂r
+
∂v

∂z

)
, (3.3.8)

where u is the velocity vector (u, v). The viscous dissipation function Φ in the energy
equation (3.3.4) is derived from (3.1.8) as

Φ = τij
∂ui

∂xj
= τzz

∂u

∂z
+ τrr

∂v

∂r
+ τrz

(
∂u

∂r
+
∂v

∂z

)
, (3.3.9)

which is a positive quantity. The system of equations is made non-dimensional using

ρ = ρ̄ρ̂, T = TaT̂ , p = pavp̂, t = t̂/ω, kg = k̄gk̂g, µ = µ̄µ̂, cg = c̄gĉg

u = ūû, v = ūv̂, z = (ū/ω)ẑ, r = (ū/ω)r̂. (3.3.10)

After non-dimensionalisation and substituting the stress tensors (3.3.6)-(3.3.9), the gov-
erning equations (3.3.1) - (3.3.5) become (omitting the hats)

∂ρ

∂t
+
∂

∂z
(ρu) +

1

r

∂

∂r
(rρv) = 0, (3.3.11)
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(3.3.12)

ρ
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∂r

+
1

Re

»
4

3

∂
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)
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µ

r

„
∂v
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µ
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«
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µ
∂u
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(3.3.13)

ρ

(
∂T

∂t
+ u

∂T

∂z
+ v

∂T

∂r

)
=
B(γ− 1)

γ

(
∂p

∂t
+ u

∂p

∂z
+ v

∂p

∂r

)
+

1

Peg
1

r

∂

∂r

(
rkg

∂T

∂r

)
+

1

Peg
∂

∂z

(
kg
∂T

∂z

)
+
γ− 1

γ
BMa2

Re
Φ, (3.3.14)

pB = ρT. (3.3.15)

We employ an asymptotic analysis like in the one-dimensional case in Section 3.2.1 as-
suming the expansion

f(z, r, t) = f0(z, r, t) + Ma2f1(z, r, t) + o(Ma4),

for all variables including pressure p, axial velocity u, radial velocity v, gas tempera-
ture T and density ρ. This low Mach-number approximation transforms the system of
equations (3.3.11)-(3.3.15) into the following leading-order system

∂ρ0

∂t
+
∂

∂z
(ρ0u0) +

1

r

∂

∂r
(rρ0v0) = 0, (3.3.16)
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∂p0

∂z
= 0, (3.3.17)

∂p0

∂r
= 0, (3.3.18)

ρ0

(
∂T0

∂t
+ u0

∂T0

∂z
+ v0

∂T0

∂r

)
=
B(γ− 1)

γ

dp0

dt
+

1

Peg

[
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r

∂

∂r

(
rkg

∂T0

∂r

)
+
∂

∂z

(
kg
∂T0

∂z

)]
,

(3.3.19)
p0B = ρ0T0. (3.3.20)

The momentum equations (3.3.17), (3.3.18) reveal a spatially uniform leading-order pres-
sure. This is the thermodynamic pressure denoted by P(t). The system (3.3.16)-(3.3.20)
is not sufficient for describing a two-dimensional velocity field. For example, if the flow
is isothermal, T0, p0 and ρ0 are constant, and the remaining equation (3.3.16) is not suffi-
cient to determine the flow velocities u0 and v0. To overcome this problem the following
first-order momentum equations are taken instead,

ρ0

„
∂u0

∂t
+ u0

∂u0

∂z
+ v0

∂u0

∂r
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∂r

„
rµ(

∂v0

∂z
)

«
−
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«–
,

(3.3.21)

ρ0
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„
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«
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„
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«–
,

(3.3.22)

where p1 is the first-order pressure. From here on we call the leading-order pressure
“thermodynamic”, i.e. P0 = P(t), and the first-order pressure “hydrodynamic”, i.e.
p1 = p(z, r, t). A velocity divergence constraint is derived by first combining the con-
tinuity equation (3.3.16) and the energy equation (3.3.19). Omitting the subscripts, the
combination reads as follows

∂ (ρT)

∂t
+
∂ (ρTu)

∂z
+
∂ (ρTv)

∂r
+ρT

v

r
=
B(γ− 1)
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dP
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+
1
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[
1

r

∂

∂r

(
rkg

∂T

∂r

)
+
∂

∂z

(
kg
∂T

∂z

)]
.

(3.3.23)
Substituting the equation of state (3.3.20) gives

BdP
dt

+ PB
(
∂u

∂z
+
∂v

∂r
+
v

r

)
=
B(γ− 1)

γ

dP

dt
(3.3.24)

+
1

Peg

[
1

r

∂

∂r

(
rkg

∂T

∂r

)
+
∂

∂z

(
kg
∂T

∂z

)]
,

which simplifies to

∂u

∂z
+
∂v

∂r
+
v

r
= −

1

γP(t)

dP

dt
+

1

Peg
1
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[
1

r

∂

∂r

(
rkg

∂T

∂r

)
+
∂

∂z

(
kg
∂T

∂z

)]
. (3.3.25)
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An evolution equation for the temperature is derived by substituting the density from
equation (3.3.20) into the energy equation (3.3.19)

∂T

∂t
+ u

∂T

∂z
+ v

∂T

∂r
=

T

BPPeg

[
1

r

∂

∂r

(
rkg

∂T

∂r

)
+
∂

∂z

(
kg
∂T

∂z

)]
+
γ− 1

γ

T

P

dP

dt
. (3.3.26)

Finally we are left with four equations (3.3.21), (3.3.22), (3.3.25), (3.3.26) and four un-
knowns u, v, T, p.

3.3.2 Tube wall

The wall effect consisting of the skin friction force and the fluid-solid heat exchange is
taken into account automatically in the two-dimensional analysis. The friction force is
represented by the viscous stress tensor component τrz in the momentum equations.
Assuming continuity of temperature and heat flux at the interface between the gas and
the wall is close to the physical reality. The heat flux at the outer boundary of the tube is
assumed to be zero, because there is a vacuum chamber surrounding the whole system
and radiation is disregarded herein. Energy conservation for the wall is governed by
(assuming constant wall thermal conductivity)

ρwcw
∂Tw

∂t
= kw

(
∂2Tw

∂r2
+
1

r

∂Tw

∂r
+
∂2Tw

∂z2

)
, (3.3.27)

where Tw, ρw, cw and kw are temperature, density, heat capacity and thermal conduc-
tivity of the solid wall material. We non-dimensionalise equation (3.3.27) with the same
quantities as defined for the gas (3.2.11), which gives (omitting hats)

∂Tw

∂t
= Fo

(
∂2Tw

∂r2
+
1

r

∂Tw

∂r
+
∂2Tw

∂z2

)
, (3.3.28)

with

Fo =
k̄wω

ρ̄wc̄wū2
. (3.3.29)

Here Fo is the dimensionless thermal diffusivity coefficient called Fourier number.

3.3.3 Boundary and initial conditions

The physical boundary conditions for the hydrodynamic pressure (p), horizontal veloc-
ity (u), radial velocity (v), gas temperature (T ) and wall temperature (Tw) are shown in
Table 3.1. The boundary conditions for the temperature equation (3.3.26) at the hot and
cold ends are similar to those in the one-dimensional case (3.2.68)-(3.2.69)

T(L, r, t) = TH if u(L, r, t) ≤ 0

∂T

∂z
(L, r, t) = f1(r, t) if u(L, r, t) > 0

, (3.3.30)
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Position u(z, r, t) v(z, r, t) p(z, r, t) T(z, r, t) Tw(z, r, t)

hot end u = uH v = 0

T = TH, u ≤ 0
∂T

∂z
= f1(r, t), u > 0

Tw = TH

(z = Lt)

cold end v = 0 p = 0

T = Tc, u ≥ 0
∂T

∂z
= f2(r, t), u < 0

Tw = Tc
(z = 0)

center line
∂u

∂r
= 0 v = 0

∂T

∂r
= 0

(r = 0)

interface u = 0 v = 0
∂T

∂r
= 0 T = Tw

∂T

∂r
= βw

∂Tw

∂r
(r = r0)

outer wall
∂Tw

∂r
= 0

(r = r1)

Table 3.1: Boundary conditions for the two-dimensional tube.

f1(r, t) =

(
γ− 1

γP(t)

dP

dt
(t)T(L, r, t) −

∂T

∂t
(L, r, t)

)
/u(L, r, t), (3.3.31)


T(0, r, t) = TC if u(0, r, t) ≥ 0

∂T

∂z
(0, r, t) = f2(r, t) if u(0, r, t) < 0

, (3.3.32)

f2(r, t) =

(
γ− 1

γP(t)

dP

dt
(t)T(0, r, t) −

∂T

∂t
(0, r, t)

)
/u(0, r, t). (3.3.33)

In 2D the cross-sectional averaging velocity after the boundary layer by the CHX in the
tube is

ut(t, 0) = ūt(t, 0) =
1

At

∫r0
0

utdAt. (3.3.34)

which is used for coupling of the 1D regenerator and 2D tube interface condition. The
heat flux continuity gives a coupling between the gas and wall temperatures at the in-
terface through

∂T

∂r
= βw

∂Tw

∂r
where βw =

kw

kg
. (3.3.35)

1D results for the axial velocity and the temperature can be defined as good initial con-
ditions in 2D. No-flow steady state can be a good initial guess for the radial velocity.
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3.4 One-dimensional model with non-ideal gas

The enthalpy of a real gas is not only a function of temperature, but also of pressure.
Here we show the final equations governing the system including the tube and the
regenerator, where the equation of state for the gas is different from the ideal case.

3.4.1 Tube

To derive the equations governing the tube with non-ideal gas we make the following
steps. The one-dimensional equations for mass, momentum, energy transfer and the
equation of state in the tube part (0 < x < Lt) are

∂ρg

∂t
+
∂

∂x
(ρgu) = 0, (3.4.1)

∂p

∂x
= 0, (3.4.2)

ρg
Dh

Dt
=
Dp

Dt
+
∂

∂x
(kg

∂Tg

∂x
), (3.4.3)

(p+
a

V2m
)(Vm − b) = RTg, (3.4.4)

where x is the axial coordinate and small terms have been neglected. (see Section 3.2.1).
Here h is the enthalpy of the gas defined by (3.1.9) and Vm is the molar volume. The
equation of state (3.4.4) is the Van der Waals equation. The pressure is uniform in space.
It is the thermodynamic pressure P which is only a function of time. A symbolic expres-
sion for the second term in the real gas enthalpy Hp defined by (3.1.10), follows from
the equation of state (3.4.4) which is rewritten as

RTg = PVm +
a

Vm
−
ab

V2m
− bP.

Taking the molar-volume derivative at constant pressure gives

R

(
∂Tg

∂Vm

)
p

= P −
a

V2m
+ 2

ab

V3m
,

so that

Hp = Vm − Tg

(
∂Vm

∂Tg

)
= Vm −

RTg

R
(
∂Tg
∂Vm

)
p

,

= Vm −
PVm + a

Vm
− ab
V2m

− bP

P − a
V2m

+ 2 ab
V3m

,

=
bPV3m − 2aV2m + 3abVm

PV3m − aVm + 2ab
. (3.4.5)
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In the high-temperature limit, i.e. Tg → ∞ at constant pressure, we see that Vm → ∞
and Hp → b. Substituting

Vm = M/ρg, (3.4.6)

in (3.4.5) we obtain

Hp =
bPM3 − 2aM2ρg + 3abMρ2g

PM2 − aMρ2g + 2abρ3g
. (3.4.7)

This is then used in (3.1.9) to calculate the enthalpy. It is necessary to mention that Hp
derived from Van der Waals formula is a quite good approximation of the experimental
results for temperatures higher than 10 K, but not for temperatures less than 10 K.
We simplify the energy equation for the gas inside the tube (3.4.3) using the enthalpy
relation (3.1.9) as follows

ρgcp
DTg

Dt
= (1−

ρgHp

M
)
DP

Dt
+
∂

∂x
(kg

∂Tg

∂x
). (3.4.8)

The equation of state (3.4.4) in terms of density using (3.4.6) reads

(P +
a

M2
ρ2g)(

M

ρg
− b) = RTg.

After rearrangement, the pressure satisfies

P =
RmρgTg

1− bmρg
− amρ

2
g, (3.4.9)

where Rm = R/M is the specific gas constant, am = a/M2 and bm = b/M.

By using already defined dimensionless variables, the equations (3.4.1), (3.4.8) and (3.4.9)
now turn into dimensionless form as follows

ρ̄
∂ρ̂g

∂t̂
+ ρ̄

∂

∂x̂
(ρ̂gû) = 0, (3.4.10)

ρ̄gc̄pTaωρ̂gĉp
DT̂g

Dt̂
= pavω(1−

ρ̂gĤp

M
)
DP̂

Dt̂
+ k̄gTa

ω2

ū2
∂

∂x̂
(k̂g

∂T̂g

∂x̂
), (3.4.11)

pavP̂ = Rmρ̄gTa
ρ̂gT̂

1− bmρ̄gρ̂g
− amρ̄

2
gρ̂
2
g. (3.4.12)

Dropping the hats we obtain

Dρg

Dt
= −ρg

∂u

∂x
, (3.4.13)

ρgcp
DTg

Dt
=
B(γ− 1)

γ
(1− ρgHp)

DP

Dt
+

1

Peg

∂

∂x
(kg

∂Tg

∂x
), (3.4.14)

P =
ρgTg

B(1−Nρg)
−Mρ2g, (3.4.15)

where
M = amρ̄

2/pav, N = bmρ̄. (3.4.16)
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Where (3.4.13), (3.4.14) are PDEs, the relation (3.4.15) is algebraic. In order to derive a
differential equation for the velocity we proceed as follows.
If we take the material derivative of both sides of the equation of state (3.4.15) we get

DP

Dt
=

1

B(1−Nρg)2
[(1−Nρg)(Tg

Dρg

Dt
+ ρg

DTg

Dt
) +NρgTg

Dρg

Dt
] − 2Mρg

Dρg

Dt
,

and after reordering

DP

Dt
= [

Tg

B(1−Nρg)2
− 2Mρg]

Dρg

Dt
+

ρg

B(1−Nρg)

DTg

Dt
. (3.4.17)

If we substitute the material derivative of the density and the gas temperature by equa-
tions (3.4.13) and (3.4.14) respectively into (3.4.17) and reorder it, we obtain velocity
gradient

∂u

∂z
=

1

(
Tg

B(1−Nρg)2
− 2Mρg)Bcpρg(1−Nρg)

(
1

Peg
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ρg(
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B(1−Nρg)2
− 2Mρg)

(
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(γ− 1)(1− ρgHp)

γcp(1−Nρg)

)
DP

Dt
.

(3.4.18)

This is an equation for the velocity gradient in the tube. If we substitute the pressure
material derivative from (3.4.17) into the energy equation (3.4.14) we get the follow-
ing evolution equation for the gas temperature which is excluded the pressure material
derivative.

DTg

Dt
=
1

ρg

[
γ(1−Nρg)

γcp(1−Nρg) − (γ− 1)(1− ρgHp)

](
1

Peg
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∂Tg

∂x
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)
−
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(γ− 1)(1− ρgHp)[Tg − 2MBρg(1−Nρg)2]

(1−Nρg)[γcp(1−Nρg) − (γ− 1)(1− ρgHp)]

)
∂u

∂x
.

(3.4.19)

Therefore the final equations governing the tube velocity, temperature and density are
(3.4.15), (3.4.18) and (3.4.19).

3.4.2 Regenerator

The regenerator material by definition has a high heat capacity, so the temperature vari-
ation in a cross section of the regenerator is small. The non-ideal properties both for
the gas and the regenerator material as well as the real enthalpy and a real gas are now
considered. The dimensional equations for mass, momentum, energy transfer and the
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equation of state in the regenerator (0 < x < Lr) are

∂ρg

∂t
+
∂

∂x
(ρgu) = 0, (3.4.20)

∂p

∂x
= −

µ

φk
u, (3.4.21)

ρrcr
∂Tr

∂t
=

β

(1− φ)
(Tg − Tr) +

∂

∂x
(kr
∂Tr

∂x
), (3.4.22)

ρgφ
Dh

Dt
= β(Tr − Tg) + φ

Dp

Dt
+ φ

∂

∂x
(kg

∂Tg

∂x
), (3.4.23)

(p+
a

V2m
)(Vm − b) = RTg, (3.4.24)

where the porosity φ is constant. The enthalpy h is defined by (3.1.9) and Hp by (3.4.7).
The energy equation for real gas inside the regenerator (3.4.23) reads

ρgφcp
DTg

Dt
= β(Tr − Tg) + φ(1−

ρgHp

M
)
Dp

Dt
+ φ

∂

∂x
(kg

∂Tg

∂x
). (3.4.25)

The equations (3.4.9), (3.4.20), (3.4.21), (3.4.22) and (3.4.25) are now turned into dimen-
sionless form as follows

∂ρ̂g

∂t̂
+
∂

∂x̂
(ρ̂gû) = 0, (3.4.26)

pavω

ū

∂p̂

∂x̂
= −

µ̄

φk̄
ūµ̂û, (3.4.27)

ρr(1− φ)c̄rĉrTaω
∂T̂r

∂t̂
= βTa(T̂g − T̂r) + (1− φ)k̄rTa

ω2

ū2
∂

∂x̂
(k̂r
∂T̂r

∂x̂
), (3.4.28)

(ρ̄gφc̄pTaω)ρ̂gĉp
DT̂g

Dt̂
= βTa(T̂r − T̂g) + φpavω(1− ρ̂gĤp)

Dp̂

Dt̂
(3.4.29)

+φk̄gTa
ω2

ū2
∂

∂x̂
(k̂g

∂T̂g

∂x̂
),

pavp̂ = Rmρ̄gTa
ρ̂gT̂

1− bmρ̄gρ̂g
− amρ̄g

2ρ̂2g, (3.4.30)

where the permeability is assumed to be constant. By dropping the hats we get

Dρg

Dt
= −ρg

∂u

∂x
, (3.4.31)

∂p

∂x
= −Dµu, (3.4.32)

cr
∂Tr

∂t
= EF(Tg − Tr) +

1

Per

∂

∂x
(kr
∂Tr

∂x
), (3.4.33)

ρgcp
DTg

Dt
= E(Tr − Tg) +

B(γ− 1)

γ
(1− ρgHp)

Dp

Dt
+

1

Peg

∂

∂x
(kg

∂Tg

∂x
), (3.4.34)

p =
ρgTg

B(1−Nρg)
−Mρ2g, (3.4.35)
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whereM,N are defined by (3.4.16). Substituting the density and gas temperature mate-
rial derivative from the equations (3.4.31) and (3.4.34) into the pressure material deriva-
tive (3.4.17), we obtain the following velocity gradient equation

∂u

∂x
=

1

(
Tg

B(1−Nρg)2
− 2Mρg)Bcpρg(1−Nρg)

(
E(Tr − Tg) +

1

Peg

∂

∂x
(kg

∂Tg

∂x
)

)

−
1

ρg(
Tg

B(1−Nρg)2
− 2Mρg)

(
1−

(γ− 1)(1− ρgHp)

γcp(1−Nρg)

)
Dp

Dt
.

(3.4.36)

Replacing the density material derivative from (3.4.31) into the pressure material deriva-
tive (3.4.17) and substituting it into the energy equation (3.4.34) gives the following evo-
lution equation for the gas temperature in the regenerator

DTg

Dt
=
1

ρg

[
γ(1−Nρg)

γcp(1−Nρg) − (γ− 1)(1− ρgHp/M)

](
E(Tr − Tg) +

1

Peg

∂

∂x
(kg

∂Tg

∂x
)

)
−

(
(γ− 1)(1− ρgHp)[Tg − 2MBρg(1−Nρg)2]

(1−Nρg)[γcp(1−Nρg) − (γ− 1)(1− ρgHp/M)]

)
∂u

∂x
.

(3.4.37)

Then the final equations governing the regenerator variables are the density relation
(3.4.35), the pressure gradient equation (3.4.32), the regenerator material temperature
equation (3.4.33), the velocity gradient equation (3.4.36) and the gas temperature equa-
tion (3.4.37).

3.4.3 Boundary and initial conditions

To complete the system of equations (3.4.15), (3.4.18) and (3.4.19) for the tube, we need
boundary and initial conditions. The boundary condition for the gas velocity in the
tube in the case of real gas is the same as ideal gas, because it is applied at the hot end.
The assumption of ideal gas at room temperature is not far from reality. The boundary
condition for the velocity at the buffer side as the resistance law over the orifice (3.2.60)
is described already in Section 3.2.3.
The boundary condition for the real gas temperature in the tube is similar to the one
in the ideal case (3.2.68)-(3.2.69). This means that the boundary condition for equation
(3.4.19) depends on flow direction according to



Tg(0, t) = TC if u(0, t) ≥ 0,
∂Tg

∂x
(0, t) = −

∂Tg

∂t
(0, t)/u(0, t)

−

„
(γ− 1)(1− ρg(0, t)Hp(0, t))[Tg(0, t) − 2MBρg(0, t)(1−Nρg(0, t))2]

(1−Nρg(0, t))[γcp(0, t)(1−Nρg(0, t)) − (γ− 1)(1− ρg(0, t)Hp(0, t))]

«
∂u

∂x
(0, t)/u(0, t)

if u(0, t) < 0,
(3.4.38)
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Tg(L, t) = TH if u(L, t) ≤ 0,
∂Tg

∂x
(L, t) = −

∂Tg

∂t
(L, t)/u(L, t)

−

„
(γ− 1)(1− ρg(L, t)Hp(L, t))[Tg(L, t) − 2MBρg(L, t)(1−Nρg(L, t))2]

(1−Nρg(L, t))[γcp(L, t)(1−Nρg(L, t)) − (γ− 1)(1− ρg(L, t)Hp(L, t))]

«
∂u

∂x
(L, t)/u(L, t)

if u(L, t) > 0,
(3.4.39)

where the conductivity terms have been ignored. The initial conditions for the velocity
and the gas temperature in the tube are taken the same as in the case of ideal gas. See
Section 3.2.3.
To complete the system of equations (3.4.32), (3.4.33), (3.4.35), (3.4.36), (3.4.37) for the
regenerator, we need boundary and initial conditions.
The prescribed pressure, pc(t), at the compressor side is the boundary condition for
(3.4.32), which is the same as in the ideal case. The thermodynamic pressure in the tube
is then defined by (3.2.71).
The boundary condition for the gas velocity equation (3.4.36) is prescribed at the in-
terface with the tube, at CHX, defined as uC(t) in the case of a single-stage PTR. This
boundary condition is derived from the mass conservation relation (3.2.72). The veloc-
ity in the regenerator, using ṁ = ρuAφ and pt = pr at CHX (away from the boundary
layer close to CHX) is

ur(Lr, t) =

(
ρgtAt

ρgrArφ

)
ut(0, t), (3.4.40)

where At and Ar are the cross-sectional areas of the tube and the regenerator, respec-
tively.
For the regenerator material temperature equation (3.4.33) in the case of a single-stage
PTR we prescribe two Dirichlet boundary conditions as in (3.2.74).
For the gas temperature equation (3.4.37) in the regenerator we introduce two boundary
conditions neglecting the conductivity kg at the boundaries, similar to the ones in the
ideal case, as follows

Tg(0, t) = TH if u(0, t) ≥ 0,
∂Tg

∂x
(0, t) = −

∂Tg

∂t
(0, t)/u(0, t)

+
1

ρg(0, t)

»
γ(1 −Nρg(0, t))

γcp(0, t)(1 −Nρg(0, t)) − (γ − 1)(1 − ρg(0, t)Hp(0, t))

–
(E [Tr(0, t) − Tg(0, t)]) /u(0, t)

−

„
(γ − 1)(1 − ρg(0, t)Hp(0, t))[Tg(0, t) − 2MBρg(0, t)[1 −Nρg(0, t)]2]

(1 −Nρg(0, t))[γcp(0, t)(1 −Nρg(0, t)) − (γ − 1)(1 − ρg(0, t)Hp(0, t))]

«
∂u

∂x
(0, t)/u(0, t),

if u(0, t) < 0,

(3.4.41)

Tg(Lr, t) = TC if u(Lr, t) ≤ 0,
∂Tg

∂x
(Lr, t) = −

∂Tg

∂t
(Lr, t)/u(Lr, t)

+
1

ρg(Lr, t)

»
γ(1 −Nρg(Lr, t))

γcp(Lr, t)(1 −Nρg(Lr, t)) − (γ − 1)(1 − ρg(Lr, t)Hp(Lr, t))

–
(E [Tr(Lr, t) − Tg(Lr, t)]) /u(Lr, t)

−

„
(γ − 1)(1 − ρg(Lr, t)Hp(Lr, t))[Tg(Lr, t) − 2MBρg(Lr, t)[1 −Nρg(Lr, t)]2]

(1 −Nρg(Lr, t))[γcp(Lr, t)(1 −Nρg(Lr, t)) − (γ − 1)(1 − ρg(Lr, t)Hp(Lr, t))]

«
∂u

∂x
(Lr, t)/u(Lr, t),

if u(Lr, t) > 0.
(3.4.42)
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Figure 3.4: Schematic picture of regenerator I, regenerator II and tube I at the junction I
showing the control volume and the chosen positive flow direction.

We finally define two similar linear functions similar to the case of ideal gas as the ini-
tial conditions for the gas and regenerator material temperatures connecting the cold
and the hot ends of the regenerator where the cold end temperature should be approx-
imately close to the equilibrium temperature in the case of pre-assigned temperature at
CHX.

3.5 Multi-stage PTR

As an example of multi-staging we model a three-stage PTR. See Figure 2.7. The re-
generator material temperatures are considered to be decoupled. This is based on the
existence of the gaps in between the stages. This means we compute them at each regen-
erator locally. The local energy, momentum and mass conservation provide the coupling
conditions for the gas velocities, pressures, densities and temperatures at the junctions.

3.5.1 Multi-stage PTR with ideal gas

At the junction connecting the first regenerator, the second regenerator and the first tube
we have the following relations in the case of ideal gas and ideal junction. See Figure
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3.4. The pressures are the same. This means

pr1 = pr2 = pt1 = P. (3.5.1)

where P is the uniform thermodynamic pressure in the tube. This means that momen-
tum losses at the junction are ignored. Mass conservation requires

ṁr1 = ṁr2 + ṁt1 , (3.5.2)

which gives for an ideal gas (using ṁ = ρuA)

uAφ
Tg

|r1 =
uAφ
Tg

|r2 +
uA
Tg

|t1 . (3.5.3)

Energy conservation in terms of enthalpy is given by (heat conductivity is neglected)

h?
r1

= h?
r2

+ h?
t1
, (3.5.4)

where the enthalpy flow h? is defined by

h? = ṁh. (3.5.5)

We now use the ideal gas law (3.1.13) to replace the density in the mass flow, then apply
ideal enthalpy relation (3.1.11), assuming constant heat capacity and pressure continuity
(3.5.1), and substitute all into (3.5.4) to obtain

uφA|r1 = uφA|r2 + uA|t1 . (3.5.6)

This is a simple relation for the velocities at the junction.

3.5.2 Multi-stage PTR with non-ideal gas

In the case of non-ideal gas the junction conditions coupling pressures, velocities, gas
and regenerator material temperatures may use similar formula as for the ideal gas but
they result differently. The pressure continuity is the same as for ideal gas (3.5.1). Mass
conservation in the case of a non-ideal gas is given by (3.5.2)

ρuAφ|r1 = ρuAφ|r2 + ρuA|t1 . (3.5.7)

The energy conservation in the case of a non-ideal gas is the same as for ideal gas (3.5.4).
Using the real enthalpy relation (3.1.9) gives[
ρguφA(cpTg +

1

M
HpP)

]
r1

=

[
ρguφA(cpTg +

1

M
HpP)

]
r2

+

[
ρguA(cpTg +

1

M
HpP)

]
t1

.

(3.5.8)
where the pressures, P, are the same according to (3.5.1).
We have defined three conditions valid for ideal and non-ideal gas, so far. In the parts
connected to the junction, i.e. regenerator I, regenerator II and tube I (see Figure 3.4),
we have the locally governing partial differential equations including two PDEs for the
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1 2 3 4 5 6

Figure 3.5: The fluid flow possibilities at the junctions I or II connecting two regenerators
and one tube.

gas and the material temperatures, and two ODEs for the velocity and pressure for two
regenerators, one PDE for the gas temperature and one ODE for the velocity in the tube.
The boundary conditions available are one for the velocity in the tube (3.2.60), pressure
continuity (3.5.1), mass conservation (3.5.3) or (3.5.7), and energy conservation (3.5.6) or
(3.5.8) in the case of ideal or non-ideal gas. The number of boundary conditions, local
conservation of mass, momentum and energy, are not sufficient to supply all PDEs and
ODEs at the junction. It is explained as follows. The pressure continuity is the pres-
sure boundary condition for each domain. Equation (3.2.60) is the velocity boundary
condition for the tubes. The relation (3.5.3) or (3.5.7) is the boundary condition for the
regenerator velocities in the case of ideal or non-ideal gas. However, the relation (3.5.6)
or (3.5.8) is not sufficient for the gas temperature boundary conditions of the two regen-
erators and the tube connected to the junction. We thus consider the flow possibilities
at the junction to distinguish the proper boundary condition for the gas temperatures at
the right flow direction for each domain.

3.5.3 Flow possibilities at the junction

In Figure 3.5 six flow possibilities are depicted. The vertical arrows show the flow at
two consecutive regenerators and the horizontal arrow displays the flow to and from
the tube at the junction I. See Figure 3.4. These different flows are explained below.

State I: The inflows are from the upper regenerator and the tube. We apply Neumann
boundary conditions for both of them at the junction. Mass outflow (3.5.3) or (3.5.8) is
used as the boundary condition for the lower regenerator.
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State II: In this case there is inflow from the upper regenerator and outflow to the lower
regenerator and the tube. We apply a Neumann boundary condition for the upper re-
generator. We take the gas temperature of the tube equal to the gas temperature of the
upper regenerator. Mass outflow (3.5.3) or (3.5.8) is applied to the junction as the bound-
ary condition for the lower regenerator.

State III: In this case there is inflow from the lower regenerator and outflow to the upper
regenerator and the tube. We apply Neumann boundary condition for the lower regen-
erator. The gas temperature of the tube is take to be equal to the gas temperature of the
lower regenerator. Mass conservation (3.5.3) or (3.5.8) is applied to the junction as the
boundary condition for the upper regenerator.

State IV: There are inflows from the lower regenerator and the tube. We apply Neumann
boundary conditions for both of them. Mass conservation (3.5.3) or (3.5.8) is applied to
the junction and this is the boundary condition for the upper regenerator.

State V: Here we have flow distribution from the pulse-tube into the regenerators. In
this state, which lasts a very short time during the pressure cycle, a Neumann bound-
ary condition is applied to the pulse-tube. The temperature of the gas entering the
regenerators is equal to the temperature of the gas leaving the tube.

State VI: In this flow situation, which lasts for a very short time too, the flow from both
regenerators enters the tube. Two Neumann boundary conditions for the gas temper-
atures are applied to the regenerators. The total mass flow leaving the regenerators is
the mass inflow at the tube using (3.5.3) or (3.5.8) as the boundary condition for the tube.

All states representing different boundary conditions for the gas temperatures at the
regenerators and the tube at junction I are displayed in Table 3.2. These conditions have
the same form at junction II, but for the junction III there is only one regenerator and
one tube where the relations will be changed accordingly.

3.6 Conclusion

We derived the mathematical model for the fluid flow and heat transfer inside the pulse-
tube refrigerator. The fluid is assumed to be a continuum and Newtonian, compressible
and unsteady. The flow is shown to be laminar for the systems considered in Chap-
ters 5 and 6. The heat exchangers are assumed to operate ideally, which means that
the gas flowing out of the heat exchanger takes the heat exchanger’s temperature, there
is no resistance and the heat capacity within the heat exchangers is much larger than
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State Regenerator I Regenerator II Tube I

State I Neumann (3.5.3) or (3.5.8) Neumann

State II Neumann (3.5.3) or (3.5.8) Tgr1

State III (3.5.3) or (3.5.8) Neumann Tgr2

State IV (3.5.3) or (3.5.8) Neumann Neumann

State V Tgt1 Tgt1 Neumann

State VI Neumann Neumann (3.5.3) or (3.5.8)

Table 3.2: Boundary conditions for the gas temperatures of regenerator I, regenerator II,
and tube I at the junction I regarding to different flow possibilities.

of the gas. The basic equations are the three laws of conservation and the equation of
state. The four unknowns are the density ρ, the velocity vector u, the thermodynamic
pressure p, and the absolute temperature T. Other thermodynamic parameters are: the
transport properties µ (dynamic viscosity) and k (thermal conductivity) and the specific
heat capacity cp. These parameters are usually temperature and pressure-dependent as
already explained in Chapter 2. The equations governing the fluid flow inside the PTR
are derived. One-dimensional formulations for the pulse-tube and the regenerator with
connecting interface conditions are given. The regenerator formulation and the inter-
face/junction conditions derived in this chapter are new compared to previous work at
TUe. An axisymmetrical two-dimensional formulation is considered for the pulse-tube
so that wall effects due to heat transfer and friction can be investigated.
One new item in one-dimensionally modelling of multi-stage PTRs is the use of non-
ideal gas and non-constant material properties so that a more realistic behaviour of gas
and solid, particularly at extremely low temperatures, is obtained. The equation of state
is that of Van der Waals. However, it could equally well have been an improved Van
der Waals equation of state.
One new addition is that proper junction conditions are formulated for multi-stage
pulse-tube refrigerators based on the local conservation of mass, momentum and en-
ergy. We consider all the flow possibilities at the junction to define the proper upwind
boundary condition for the gas temperatures. This is specially important when the tube
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flow enters the junction and is splitted into two flows with opposite directions (or vice
versa). Such situation occurs in a very short period of time occurs, but it may lead to
numerical instability if not special care is taken.



Chapter 4

Numerical methods

Having constructed the mathematical model, we need to solve the governing equations
by proper numerical methods. The first step in obtaining a numerical solution is to dis-
cretise the geometric domain, i.e. a numerical grid must be defined. Since the domain
of computation in 1D and 2D is simply shaped, a finite difference (FD) method is an ap-
propriate method to discretise the equations. Besides, a domain-decomposition method
is applied in the two-dimensional computations for the pulse-tube so that an accurate
solution is obtained in an efficient way. The regenerator is still modelled as a 1D body
where the effects of friction and heat transfer with the solid are automatically taken into
account using the Darcy’s law. The ideal gas assumption is not valid for extremely low
temperatures. Therefore, in the case of multi-stage PTR, where the last stage is in such a
temperature range, we consider real gas as well. The numerical methods are illustrated
and tested in a number of incompressible laminar flow problems.
The implementation has been done in MATLAB for the one-dimensional model and in
C++ for the two-dimensional model. The two-dimensional simulation has been done in
the PETSc (Portable, Extensible Toolkit for Scientific Computation) environment, which
is a suite of data structures and routines for the scalable (parallel) solution of partial
differential equations.

4.1 Pulse-tube computation

The 1D and 2D energy equations for the pulse-tube describe the convection and the
diffusion. We apply an explicit numerical method for the convection term and an im-
plicit method for the diffusion term. A pressure-correction algorithm is used in the
two-dimensional computation. The rest of the equations in 1D and 2D are discretised
implicitly using a θ-method [39].
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4.1.1 One-dimensional tube discretisation

The equations (3.2.32)-(3.2.33) describe the flow and heat transfer in the tube. We in-
troduce computational grids {zj = j4zj, j = 0, ...,Nz, h = L̂t/Nz} and {tn = n4tn, n =
0, ...,Nf} where4zj is the adaptive space step and L̂t is the dimensionless length, Ltω/ū.
Denote by unj the gas velocity and by Tngj the gas temperature at the grid point (zj, t

n).
To solve the temperature equation (3.2.33) we chose the following approach [48]:

(i) Convection (one-sided difference). Sharp resolution of discontinuities and jumps
without excessive smearing and without wiggles require explicit time discretisa-
tion and a second-order high-resolution scheme based on flux limiters.

(ii) Diffusion (central difference) Explicit schemes lead to stability restrictions of the
type 4t = O(4x) for the convection term and 4t = O(4x2) for the diffusion
term. This last condition is too severe. One of the possibilities to avoid this restric-
tion is to discretise the diffusion term implicitly and for that purpose we use the
θ-method with θ = 0.5+4t to have second-order accuracy.

(iii) Velocity gradient. An explicit central difference is employed.

The unknown velocity in (3.2.33) is taken from the old time-step (n) so that the temper-
ature equation is decoupled from the velocity equation (3.2.32). The old value of the
velocity is updated in an iteration step. If unj > 0, we use the following scheme for the
temperature equation (3.2.33)

Tn+1
g,j −4tnθ

(
b2(
Tng,j

Pn
)
Tn+1

g,j+1 − 2Tn+1
g,j + Tn+1

g,j−1

h2
+ (1− γ)Tn+1

g,j

unj+1 − unj−1

2h

)
=

Tng,j + (1− θ)4tn
(

b2(
Tng,j

Pn
)
Tng,j+1 − 2Tng,j + Tng,j−1

h2
+ (1− γ)Tng,j

unj+1 − unj−1

2h

)
−cnj

(
1+

1

2
(1− cnj )

(
Φn
j+ 12

Rn
j+ 12

−Φn
j− 12

))
(Tng,j − Tng,j−1),

j = 2, ...,Nz − 2, n = 0, ...,Nf − 1.

(4.1.1)

where h is the spatial grid size. If unj < 0, then

Tn+1
g,j −4tnθ

(
b2(
Tng,j

Pn
)
Tn+1

g,j+1 − 2Tn+1
g,j + Tn+1

g,j−1

h2
+ (1− γ)Tn+1

g,j

unj+1 − unj−1

2h

)
=

Tng,j + (1− θ)4tn
(

b2(
Tng,j

Pn
)
Tng,j+1 − 2Tng,j + Tng,j−1

h2
+ (1− γ)Tng,j

unj+1 − unj−1

2h

)
−cnj

(
1−

1

2
(1+ cnj )

(
Φn
j+ 12

−
Φn
j− 12

Rn
j− 12

))
(Tng,j+1 − Tng,j)

j = 2, ...,Nz − 2, n = 0, ...,Nf − 1,

(4.1.2)
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where cnj is the Courant number, cnj = 4tnunj /4z, and4tn is the adaptive time step. If
the CFL (Courant-Friedrichs-Lewy) stability condition |cnj | ≤ 1 or, equivalently,

4tn ≤ 4z/max
j

|unj | (4.1.3)

is satisfied, both schemes are second-order accurate in space away from discontinuities
and jumps, and second-order accurate in time, see [51]. The axial space step is de-
noted as h and the radial space step is denoted as k. The convection term discretisation,
u∂Tg/∂x is discretised with an upwind scheme of first-order accuracy. The ratio Rn

j+ 12
is defined by

Rn
j+ 12

=


Tnj − Tnj−1

Tnj+1 − Tnj‘
if unj > 0,

Tnj+2 − Tnj+1

Tnj+1 − Tnj
if unj < 0.

(4.1.4)

Φn
j+ 12

:= Φ(Rn
j+ 12

) is the flux limiter. We choose the Van Leer flux limiter [71]

Φ(R) =
R+ |R|

1+ |R|
. (4.1.5)

For R ≤ 0, the limiter function Φ(R) = 0. This means that only in the vicinity of
peaks (jumps), where Rn

j+ 12
< 0, the high resolution schemes (4.1.1) and (4.1.2) reduce

to upwind schemes, which are of first-order accuracy. The boundary conditions (3.2.68)
and (3.2.69) are discretised by



Tg,0 = TC if un0 ≥ 0,

Tn+1
g,0 −4tnθ

(
(1− γ)Tn+1

g,0 (
−3un0 + 4un1 − un2

2h
)

)
=

Tng,0 + (1− θ)4tn
(

(1− γ)Tng,0(
−3un0 + 4un1 − un2

2h
)

)
− cn0 (Tng,1 − Tng,0), if un0 < 0,

(4.1.6)

Tg,Nz = TH if unNz ≤ 0,

Tn+1
gNz

−4tnθ
(

(1− γ)Tn+1
g,Nz(

3unNz − 4unNz−1 + unNz−2

2h
)

)
= Tng,Nz

+(1− θ)4tn
(

(1− γ)Tng,Nz(
3unNz − 4unNz−1 + unNz−2

2h
)

)
− cnNz(T

n
g,Nz − Tng,Nz−1),

if unNz > 0.

(4.1.7)
The velocity equation (3.2.32) is discretised using a one-sided second-order formulation
for the velocity gradient, a second-order central difference for the temperature conduc-
tion term and a one-sided second-order formulation for the pressure time-derivative
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as

un+1
Nz

= un+1
H , j = Nz,

un+1
Nz−1 − 4un+1

Nz−2 + 3un+1
Nz−3 =

2b1
hPn

(Tn+1
gNz

− 2Tn+1
gNz−1

+ Tn+1
gNz−2

) −
h

γPn
(
3Pn+1 − 4Pn + Pn−1

2∆tn
),

j = Nz − 1,

−3un+1
j + 4un+1

j+1 − un+1
j+2 =

2b1
hPn

(Tn+1
gj+1

− 2Tn+1
gj

+ Tn+1
gj−1

) −
h

γPn
(
3Pn+1 − 4Pn + Pn−1

∆tn
),

j = 0, ...,Nz − 2,

(4.1.8)

for every time level n = 0, 1, 2, 3, ...with uH given by (3.2.60).
Therefore the algorithm to solve the governing equations for the tube (3.2.32), (3.2.33) is
as follows:

Algorithm 4.1
Step 0.
Imposing the initial condition
Step 1.
Solve the temperature equations (3.2.33) using (4.1.1) or (4.1.2), taking upwind values at
j = 1,Nz − 1 for the convection term in combination with the boundary discretisations
(4.1.6) and (4.1.7).
Step 2.
Solve the velocity equation (3.2.32) using (4.1.8) to discretise it.
Step 3.
Update and solve the temperature equation using the new velocity at time tn+1 only
once. �

4.1.2 Two-dimensional tube discretisation

We discretise the domain Ω = (0 ≤ z ≤ Lt)× (0 ≤ r ≤ R1), where Lt is the tube length
and R1 is the external radius of the tube (Figure 3.3), into (Nz×(NR+Nw)) points where
Nz is the number of discretised points in z-direction, NR is the number of discretised
points in radial direction in the fluid andNw is the number of radial discretised points in
the solid wall. The space step in the axial direction is h = Lt/Nz, in the radial direction
it is k = R0/NR in the fluid, and kw = (R1 − R0)/Nw in the wall. A typical grid point is
(zi, rj) where i = 0, 1, ..., Nz and j = 0, 1, ..., NR, NR + 1, ...,NR +Nw. Gas temperature,
solid temperature, axial velocity, radial velocity, density and hydrodynamic pressure at
discretised point (zi, rj) are denoted by Tij, Tw,ij, uij, vij, ρij and pij, respectively.
The non-linear convection-diffusion equation for the temperature, (3.3.26), is discretised
in space by central differences and an appropriate flux limiter and the θ-method (θ =
0.5 + ∆tn) in time, giving second-order accuracy [51]. For positive velocities unij > 0,
vnij > 0 reads
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Tn+1
ij −

∆tn

Peg
θ

P(tn+1)B
Tnj(

1

rj

Tn+1
ij+1 − Tn+1

ij−1

2k
+
Tn+1
ij+1 − 2Tn+1

ij + Tn+1
ij−1

k2
+
Tn+1
i−1j − 2Tn+1

ij + Tn+1
i+1j

h2

)

−∆tnθ
γ− 1

γP(tn+1)

dP

dt
(tn+1)Tn+1

ij = Tnij+

∆tn

Peg
(1− θ)

P(tn)B
Tnij

(
1

rj

Tnij+1 − Tnij−1

2k
+
Tnij+1 − 2Tnij + Tnij−1

k2
+
Tni−1j − 2Tnij + Tni+1j

h2

)
+∆tn(1− θ)

γ− 1

γP(tn)

dP

dt
(tn)Tnij − cnij

(
1+

1

2
(1− cnij)

(
Φn
i+ 12 j

Rn
i+ 12 j

−Φn
i− 12 j

))
(Tnij − Tni−1j)

−dnij

(
1+

1

2
(1− dnij)

(
Φn
ij+ 12

θn
ij+ 12

−Φn
ij− 12

))
(Tnij − Tnij−1),

i = 2, ...,Nz − 2, j = 2, ...,Nr − 2, (4.1.9)

and for negative velocities unij < 0, v
n
ij < 0we have

Tn+1
ij −

∆tn

Peg
θ

P(tn+1)B
Tnj(

1

rj

Tn+1
ij+1 − Tn+1

ij−1

2k
+
Tn+1
ij+1 − 2Tn+1

ij + Tn+1
ij−1

k2
+
Tn+1
i−1j − 2Tn+1

ij + Tn+1
i+1j

h2

)

−∆tnθ
γ− 1

γP(tn+1)

dP

dt
(tn+1)Tn+1

ij = Tnij+

∆tn

Peg
(1− θ)

P(tn)B
Tnij

(
1

rj

Tnij+1 − Tnij−1

2k
+
Tnij+1 − 2Tnij + Tnij−1

k2
+
Tni−1j − 2Tnij + Tni+1j

h2

)
+∆tn(1− θ)

γ− 1

γP(tn)

dP

dt
(tn)Tnij − cnij

(
1−

1

2
(1+ cnij)

(
Φn
i+ 12 j

Rn
i+ 12 j

−Φn
i− 12 j

))
(Tni+1j − Tnij)

−dnij

(
1−

1

2
(1+ dnij)

(
Φn
ij+ 12

θn
ij+ 12

−Φn
ij− 12

))
(Tnij+1 − Tnij),

i = 2, ...,Nz − 2, j = 2, ...,Nr − 2. (4.1.10)

Here cnij and dnij are the Courant numbers cnij := ∆tnunij/h and dnij := ∆tnvnij/k.
Φn
j+ 12

:= Φ(Rn
j+ 12

) is the flux limiter. We choose the Van Leer flux limiter

Φ(R) =
R+ |R|

1+ |R|
. (4.1.11)
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For different signs of the velocities similar formulas can be derived. The ratioRij, which
can be thought of as a measure of the smoothness of the temperature, is defined as

Rn
i+ 12 j

:=



Tnij − Tni−1j

Tni+1j − Tnij
if unij > 0

Tni+2j − Tni+1j

Tni+1j − Tnij
if unij < 0

, (4.1.12)

Rn
ij+ 12

:=



Tnij − Tnij−1

Tnij+1 − Tnij
if vnij > 0

Tnij+2 − Tnij+1

Tnij+1 − Tnij
if vnij < 0

. (4.1.13)

The solid wall equation (3.3.28) is discretised by using a uniform grid and second-order
schemes in space and θ-method in time as follows

Tn+1
w,ij − Tnw,ij

∆tn
=

θFo

(
1

rj

Tn+1
w,ij+1 − Tn+1

w,ij−1

2kw
+
Tn+1
w,ij+1 − 2Tn+1

w,ij + Tn+1
w,ij−1

k2w
+
Tn+1
w,i−1j − 2Tn+1

w,ij + Tn+1
w,i+1j

h2

)

+(1− θ)Fo
(
1

rj

Tnw,ij+1 − Tnw,ij−1

2kw
+
Tnw,ij+1 − 2Tnw,ij + Tnw,ij−1

k2w
+
Tni−1j − 2Tnw,ij + Tnw,i+1j

h2

)
,

i = 1, ...,Nz − 1, j = Nr + 1, ...,Nw − 1. (4.1.14)

At the interface (j = Nr) we use the following approximation of (3.3.35)

Tn+1
ij − Tn+1

ij−1

k
= βw

Tn+1
w,ij+1 − Tn+1

w,ij

kw
, i = 1, ...,Nz − 1. (4.1.15)

We choose a time step satisfying the CFL condition |cnij| ≤ 1, |dnij| ≤ 1, i.e.

∆tn ≤ min
j

{h/max
ij

|unij|, kj/max
ij

|vnij|}. (4.1.16)

The density in an ideal gas is then obtained from (3.2.15) as

ρn+1
ij =

PB
Tn+1
ij

. (4.1.17)
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4.1.3 Pressure correction algorithm for the 2D velocity field

Having calculated the temperature Tn+1 from (4.1.9) or (4.1.10), Tn+1
w from (4.1.14) and

the density ρn+1 from (4.1.17), we compute the velocities un+1, vn+1 and the hydrody-
namic pressure pn+1 via the momentum equations (3.3.21), (3.3.22) and the velocity con-
straint (3.3.25). We apply a previously tested pressure-correction algorithm [48] which
was shown to have good performance and the present study confirms the achievement
of this previous work. All pressure-correction algorithms consist of three steps. First,
we guess the velocities from old data as a predictor step. Second, we modify these old
values in a corrector step, because they do not meet the velocity constraint equation
(3.3.25). Substitution of the modified velocities into the velocity constraint equation
leads us to a Poisson equation for the pressure correction. Third, by solving this Pois-
son equation and thus computing the corrected pressure we modify the velocity field
again. The predictor horizontal and vertical velocities, the first-order pressure and the
pressure corrector at the grid point (zi, rj) at the time level tn are denoted by u∗ij, v

∗
ij,

pnij and qij, respectively. In the following we describe the algorithm that is applied in
our computations.

(i) prediction step:

We discretise the equations (3.3.21) and (3.3.22) to calculate the predictor velocities u∗ij,
v∗ij with the pressure as the old time level tn as follows

u∗ij − unij

∆tn
= M(u∗ij) −

1

ρn+1
ij

pni+1j − pnij

h
, (4.1.18)

v∗ij − vnij

∆tn
= N(v∗ij) −

1

ρn+1
ij

pnij+1 − pnij

k
, (4.1.19)

i = 1, 2, ..., Nz − 1, j = 1, 2, ..., NR − 1,

where

M(u∗ij) = −unij+

u∗ij − u∗i−1j

h
−unij−

u∗i+1j − u∗ij

h
− vnij+

u∗ij − u∗ij−1

k
− vnij−

u∗ij+1 − u∗ij

k
+

+
1

Re
1

ρn+1
ij

[
u∗ij+1 − 2u∗ij + u∗ij−1

k2
+
1

rj

u∗ij+1 − u∗ij−1

2k
+
4

3

u∗i+1j − 2u∗ij + u∗i−1j

h2

]
+

+
1

Re
1

ρn+1
ij

[
1

3

1

rj

vni+1j − vni−1j

2h
+
1

3

vni+1j+1 − vni−1j+1 − vni+1j−1 + vni−1j−1

4hk

]
, (4.1.20)
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N(v∗ij) = −unij+

v∗ij − v∗i−1j

h
− unij−

v∗i+1j − v∗ij

h
− vnij+

v∗ij − v∗ij−1

k
− vnij−

v∗ij+1 − v∗ij

k
+

+
1

Re
1

ρn+1
ij

[
4

3

v∗ij+1 − 2v∗ij + v∗ij−1

k2
+
2

3

1

rj

v∗ij+1 − v∗ij−1

2k
+
v∗i+1j − 2v∗ij + v∗i−1j

h2

]
+

+
1

Re
1

ρn+1
ij

[
−
2

3

1

rj

uni+1j − uni−1j

2h
+
1

3

uni+1j+1 − uni−1j+1 − uni+1j−1 + uni−1j−1

4hk

]
,

(4.1.21)

unij+ = max(uni , 0), (4.1.22)

unij− = min(uni , 0), (4.1.23)

vnij+ = max(vni , 0), (4.1.24)

vnij− = min(vni , 0). (4.1.25)

(ii) correction step:

Here we express the velocity field correctors uij, vij with the pressure pij at the new
time level tn+1 by the same discretisation formulas as in the prediction step as follows

un+1
ij − unij

∆tn
= M(un+1

ij ) −
1

ρn+1
ij

pn+1
i+1j − pn+1

ij

h
, (4.1.26)

vn+1
ij − vnij

∆tn
= N(vn+1

ij ) −
1

ρn+1
ij

pn+1
ij+1 − pn+1

ij

k
. (4.1.27)

i = 1, 2, ..., Nz − 1, j = 1, 2, ..., NR − 1.

If we decompose the operatorsM(u∗ij) and N(v∗ij) into the following

M(u∗ij) = M ′(u∗ij) +Aniju
∗
ij, (4.1.28)

N(v∗ij) = N ′(v∗ij) + Bnijv
∗
ij, (4.1.29)

M(un+1
ij ) = M ′(u∗ij) +Aniju

n+1
ij , (4.1.30)

N(vn+1
ij ) = N ′(v∗ij) + Bnijv

n+1
ij , (4.1.31)

where Anij, B
n
ij are the diagonal components, and M ′(u∗ij), N

′(v∗ij) are the off-diagonal
components of M(u∗ij) and N(v∗ij), respectively. Relations (4.1.30) and (4.1.31) use the
off-diagonalsM(u∗ij) andN(v∗ij) instead ofM(un+1

ij ) andN(vn+1
ij ). Subtracting the pre-

dictor and the corrector velocity fields, i.e. (4.1.18) and (4.1.19) from (4.1.26) and (4.1.27),
respectively, eliminatesM(u∗ij) and N(v∗ij), and gives

un+1
ij = u∗ij −

∆tn

h

1

ρn+1
ij

1

Cnij
[qn+1
i+1j − qn+1

ij ], (4.1.32)
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vn+1
ij = v∗ij −

∆tn

k

1

ρn+1
ij

1

Dnij
[qn+1
ij+1 − qn+1

ij ], (4.1.33)

where the pressure corrector qij is

qn+1
ij := pn+1

ij − pnij. (4.1.34)

and

Cnij := 1− ∆tnAnij withAnij = −
1

h

∣∣unij∣∣− 1

k

∣∣vnij∣∣− 1

Re

1

ρn+1
ij

(
2

k2
+
4

3

2

h2

)
,

Dnij := 1− ∆tnBnij with Bnij = −
1

h

∣∣unij∣∣− 1

k

∣∣vnij∣∣− 1

Re

1

ρn+1
ij

(
4

3

2

k2
+
2

h2

)
.

(iii) pressure correction equation (using the Poisson equation):

We discretise the velocity constraint equation (3.3.25) as follows

un+1
ij − un+1

i−1j

h
+
vn+1
ij − vn+1

ij−1

k
+
vn+1
ij

rj
= Fn+1

ij , (4.1.35)

where

Fn+1
ij = −

1

γP(tn+1)

dP

dt
(tn+1)+

1

BPe
1

P(tn+1)

[
1

rj

Tn+1
ij+1 − Tn+1

ij−1

2k
+
Tn+1
ij+1 − 2Tn+1

ij + Tn+1
ij−1

k2
+
Tn+1
i+1j − 2Tn+1

ij + Tn+1
i−1j

h2

]
.

Substitution of (4.1.32) and (4.1.33) into (4.1.35) gives the following Poisson equation

−
∆tn

h2
1

Cnij

1

ρn+1
ij

[
qn+1
i+1j − qn+1

ij

]
+
∆tn

h2
1

Cni−1j

1

ρn+1
i−1j

[
qn+1
ij − qn+1

i−1j

]
−

∆tn

k2
1

Dnij

1

ρn+1
ij

[
qn+1
ij+1 − qn+1

ij

]
+
∆tn

k2
1

Dnij−1

1

ρn+1
ij−1

[
qn+1
ij − qn+1

ij−1

]
−

∆tn

k

1

Dnij

1

ρn+1
ij

1

rj

[
qn+1
ij+1 − qn+1

ij

]
= Fn+1

ij −
u∗ij − u∗i−1j

h
−
v∗i − v∗ij−1

k
−
v∗ij

rj
. (4.1.36)

Equation (4.1.36) is solved for qn+1
ij , then un+1

ij and vn+1
ij are calculated by (4.1.32) and

(4.1.33). The hydrodynamic pressure pn+1
ij follows from (4.1.34).

The equations (4.1.18) - (4.1.36) are valid in the interior points of the computational
domain. Boundary points are considered separately below.

(iv) Cold end boundary (z = 0), i = 0, j = 0, ...,Nr − 1:

According to Table 3.1 the radial velocity, v, and the pressure, p, and thus the pressure
correction, q, are zero at this boundary, therefore we can use the discretised constraint
equation (4.1.35) for the axial velocity and correct it by (4.1.32) as follows

u∗1j − u∗0j

h
= Fn+1

1j (4.1.37)
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and
un+1
0j = u∗0j −

∆tn

h

1

ρn+1
0j

1

Cn0j
[q1j − q0j], v

n+1
0j = 0, q0j = 0. (4.1.38)

(v) Hot end boundary (z = Lt), i = Nz, j = 0, ...,Nr − 1:

At this boundary the radial velocity is zero and the axial velocity is given by

un+1
Nzj

= u∗Nzj = uH (given), vn+1
Nzj

= v∗Nzj = 0. (4.1.39)

So the pressure correction qNzj can be imposed by the discretised constraint equation
(4.1.35) and using it in the Poisson equation (4.1.36) for this boundary as follows

un+1
H − un+1

Nz−1j

h
= Fn+1

Nzj
, un+1

Nz−1j
= u∗Nz−1j

−
∆tn

h

1

ρn+1
Nz−1j

1

CnNz−1j

[qNzj − qNz−1j],

(4.1.40)
∆tn

h2
1

ρn+1
Nz−1j

1

CnNz−1j

[qNzj − qNz−1j] = Fn+1
Nzj

+
u∗Nz−1j − un+1

H

h
. (4.1.41)

(vi) Wall boundary (r = R0): i = 0, ...,Nz, j = Nr:

un+1
iNr

= 0, vn+1
iNr

= 0, qn+1
iNr

= 0. (4.1.42)

(vii) Symmetry boundary (r = 0): i = 1, ...,Nz − 1, j = 0

Because of the singularity of the 1/r term in the governing equations, we proceed as
follows. A Dirichlet boundary condition for the radial velocity (v = 0), and Neumann
boundary conditions for the axial velocity and the temperature (∂u/∂r = 0, ∂T/∂r = 0)
hold because of the radial symmetry. We use L’Hopital’s rule, at r = 0 to eliminate
singularities present in the equations and replace them by computable quantities as
follows:

1

r

∂u

∂r
→ ∂2u

∂r2
,
v

r
→ ∂v

∂r
,
1

r

∂T

∂r
→ ∂2T

∂r2
. (4.1.43)

This turns (3.3.21) and (3.3.25) into

ρ

(
∂u

∂t
+ u

∂u

∂z

)
= −

∂p

∂z
+
1

Re

[
2
∂2u

∂r2
+
4

3

∂2u

∂z2
+
1

3

∂

∂r
(
∂v

∂z
) +

1

3

∂

∂z

(
∂v

∂r

)]
, (4.1.44)

∂u

∂z
+ 2

∂v

∂r
= −

1

γP(t)

dP

dt
(t) +

1

BP(t)

(
2
∂2T

∂r2
+
∂2T

∂z2

)
, (4.1.45)

respectively. The following steps give the corresponding pressure correction formula-
tion at the boundary r = 0

u∗i0 − uni0
∆tn

= M(u∗i0) −
1

ρn+1
i0

pni+1,0 − pni,0
h

, (4.1.46)
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M(u∗i,0) = −uni,0+

u∗i,0 − u∗i−1,0
h

− uni,0−

u∗i+1,0 − u∗i,0
h

+
1

Re
1

ρn+1
i0

(
4
u∗i,1 − u∗i,0

k2
+
4

3

u∗i+1,0 − 2u∗i,0 + u∗i−1,0
h2

+
2

3

vni+1,1 − vni−1,1
hk

)
. (4.1.47)

Using
un+1
i,0 − un+1

i−1,0

h
+
2vn+1
i,1

k
= Fn+1

i,0 (4.1.48)

to approximate (4.1.45) leads to

−
∆t

h2
1

ρn+1
i,0 C

n
i,0

(qn+1
i+1,0 − qn+1

i,0 ) +
∆t

h2
1

ρn+1
i−1,0C

n
i−1,0

(qn+1
i,0 − qn+1

i−1,0)

+2
∆t

k2
1

ρn+1
i,1 D

n
i,1

(qn+1
i,2 − qn+1

i,1 ) = Fn+1
i,0 −

u∗i,0 − u∗i−1,0
h

−
2v∗i,1
k
, (4.1.49)

with

Fn+1
i,0 = −

1

γP(t)

dP

dt
(t) +

1

BP(t)

[
4
Tn+1
i,1 − Tn+1

i,0

k2
+
Tn+1
i−1,0 − 2Tn+1

i,0 + Tn+1
i+1,0

h2

]
.

Using the interior and boundary conditions discretised formulations, we summarise the
three steps to find the three unknowns un+1, vn+1 and pn+1

Algorithm 4.2
Step 0:
Imposing the initial conditions. Step 1:
Solve (4.1.18) and (4.1.19) to find u∗ and v∗ with corresponding boundary conditions.
Step 2:
Substitute u∗ and v∗ into (4.1.36) to find the pressure corrector q.
Step 3:
Compute un+1, vn+1 and pn+1 through (4.1.32), (4.1.33) and (4.1.34), respectively, with
corresponding boundary conditions. �

4.1.4 One-dimensional tube discretisation with real gas

For real gas the equation of state is not linear in density and we need to solve it to find
the density at each time step. We rearrange the dimensionless form of the equation of
state (3.4.15) to obtain a third-degree equation for ρg

MBNρ3g −MBρ2g + (PBN + Tg)ρg − PB = 0. (4.1.50)

We apply Newton’s method, which will be explained later on, to find the density at
each discretised point. Having computed the density we solve the equation for the
gas temperature Tg in the tube (3.4.19) using the computed values for the density at
time step n + 1 and old data for the velocity, gas conductivity kg, heat capacity cg, and
second term of enthalpy Hp, as follows (for unj > 0)
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j = 2, ...,Nx − 2, n = 0, ...,Nf − 1. (4.1.51)

for j = 1,Nx− 1we apply the upwind flux limiters for the convection term. The bound-
ary conditions, i.e. j = 0,Nx are discretised the same way as for the ideal case with
corresponding non-ideal terms.
The velocity equation (3.4.18) is discretised using a one-sided second-order formulation
for the velocity gradient, the second-order central difference scheme for the diffusion
term and a one-sided second-order formulation for the pressure time-derivative. The
dimensionless boundary condition for the tube velocity uH at the hot end is given by
(3.2.60). This results in
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j = 0, ...,Nz − 2,

(4.1.52)

The discretised equations use old data, e.g. for the velocity and density. An iteration
method is applied to update the old values during computation. We are left with the
three equations (4.1.50), (4.1.51) and (4.1.52) for the three variables ρg, u and Tg. To solve
these equations we apply the following algorithm.
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Algorithm 4.3 (Prediction-correction algorithm)
Step 1: (Prediction)
Solve the density equation (4.1.50) using Newton’s method with old values for the den-
sity as the initial guess and old data for the gas temperature and pressure in the equa-
tion. Thus the predicted values for the density satisfy

MBN ρ̃3g −MBρ̃2g + (PnBN + Tng )ρ̃g − PnB = 0.

Step 2.
Solve (3.4.19) via (4.1.51) and (3.4.18) via (4.1.52) to find Tg and u with density replaced
by ρ̃g calculated in Step 1
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Step 3: (Correction)
Solve the density equation with predicted data T̃g and P̃ in the equation and ρ̃g as initial
guess from

MBN (ρn+1
g )3 −MB(ρn+1

g )2 + (P̃BN + T̃g)ρ
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Step 4.
Solve (4.1.51) and (4.1.52) to obtain the corrected solution. This gives
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4.2 Regenerator computation

The governing equations for the regenerator filled with ideal gas are (3.2.47), (3.2.53),
(3.2.49) and (3.2.54). The first two equations are quasi-stationary relations, i.e. time-
independent, for the pressure and the velocity. The last two are time-evolution equa-
tions for the temperature of the solid and the gas. We apply the same discretisation
method as we did for the tube in Section 4.1. The governing equations for the regen-
erator with non-ideal gas are (3.4.32), (3.4.33), (3.4.35), (3.4.36) and (3.4.37). The first
four equations are discretised in the same way as in the ideal gas case, but because of
the non-linearity of the non-dimensional Van der Waals equation (3.4.35), we employ a
predictor-corrector method to solve the system of equations iteratively.

4.2.1 One-dimensional regenerator discretisation with ideal gas

We introduce computational grids {zj = j4h, j = 0, ...,Nz, h = L̂r/Nz} and {tn = n4tn,
n = 0, ...,Nt} where L̂r is the dimensionless length of the regenerator. Denote by unj
the gas velocity, by pnj the pressure, by Tng,j the gas temperature and by Tnr,j the material
temperature at the grid point (zj, t

n). We assume that the conductivity and heat capacity
for the regenerator material are constant, i.e. (k̂r = 1) and (ĉr = 1) in this section; in
Section 4.2.2 they depend on temperature. We use the θ-method for the discretisation of
the time derivative in (3.2.49) governing Tr. The result for the interior points is
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for j = 1, ...,Nz − 1, n = 0, ...,Nt − 1.

(4.2.1)

The discretisation of (3.2.54) for Tg is explained now. If unj > 0, we use the following
scheme for the temperature equation
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(4.2.2)
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If unj < 0, then
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(4.2.3)

where cnj is the Courant number, cnj := 4tnunj /4z, and 4tn is the adaptive time step.
For j = 1,Nz − 1 the convection term (the last term in (3.2.54)) discretisation is taken to
be upwind, which is of first-order accuracy (Φn = 0). The ratio rn

j+ 12
and the Van Leer

flux limiter are defined by the relations (4.1.4) and (4.1.5), respectively. The boundary
conditions (3.2.75) and (3.2.76) are discretised by (with Tn+1

r,0 = TAC and Tn+1
r,Nz = TC)
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(4.2.5)
The velocity equation (3.2.53) is discretised using a one-sided second-order formulation
for the velocity gradient, a second-order central difference for the temperature term and
a one-sided second-order formulation for the pressure time-derivative with boundary
condition at j = Nz defined by (3.2.73), as (conductivity is assumed to be constant k̂g =
1)
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for every time level n = 0, 1, 2, 3, ...Nt − 1. The pressure equation (3.2.47) is discretised
by a one-sided second-order formulation as (viscosity is assumed to be constant µ̂ = 1)
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(4.2.7)

where pn+1
c is the pressure at the compressor side, which is assumed to be given.

4.2.2 One-dimensional regenerator discretisation with real gas

We rearrange the dimensionless form of the equation of state (3.4.35) into a third-degree
polynomial in ρg

MBNρ3g −MBρ2g + (pBN + Tg)ρg − pB = 0. (4.2.8)

We apply Newton’s method to find the density at each discretised point in the regener-
ator with old values of p, the pressure in the regenerator, which is not uniform in space,
and Tg. The algorithm of the iteration method will be explained later on in this section.
We then solve the equation (3.4.37) for the gas temperature Tg in the regenerator simul-
taneously with equation (3.4.33) for the solid temperature Tr with just computed values
for the density and using old data for the velocity, material properties (kg, kr, cg, cr) and
second term of enthalpy Hp. For the interior points the result for (3.4.37) is
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Equation (3.4.33) is discretised in the same way as for the ideal gas (4.2.1). The pres-
sure equation (3.4.32) is discretised the same as equation (4.2.7). The velocity equation
(3.4.36) is discretised using a one-sided second-order formulation for the velocity gradi-
ent, the second-order central difference scheme for the diffusion term and a one-sided
second-order formulation for the pressure time-derivative. This yields

u
n+1
r,Nz =

 
At

Arφ

ρn+1
g,t0

ρn+1
g,rNz

!
u
n+1
t,0 , j = Nz,

u
n+1
Nz−1 − 4un+1

Nz−2 + 3un+1
Nz−3 =

2hkng,Nz−1

(
Tn
g,Nz−1

B(1−Nρn
g,Nz−1

)2
− 2Mρng,Nz−1)Bcng,Nz−1ρ

n
g,Nz−1(1−Nρng,Nz−1) 

E(Tn+1
r,Nz − Tn+1

g,Nz) +
1

Peg

Tn+1
g,Nz

− 2Tn+1
g,Nz−1 + Tn+1

g,Nz−2

h2

!

−
2h

ρng,Nz−1(
Tn
g,Nz−1

B(1−Nρn
g,Nz−1

)2
− 2Mρng,Nz−1)

 
1−

(γ− 1)(1− ρng,Nz−1H
n
p,Nz−1)

γcng,Nz−1(1−Nρng,Nz−1)

!

[
3pn+1
Nz−1 − 4pnNz−1 + pn−1

Nz−1

2∆t
].

j = Nz − 1,

−3un+1
j + 4un+1

j+1 − un+1
j+2 =

2hkng,j

(
Tn
g,j

B(1−Nρn
g,j

)2
− 2Mρng,j)Bcng,jρng,j(1−Nρng,j)

 
E(Tn+1

r,j − Tn+1
g,j ) +

1

Peg

Tn+1
g,j+1 − 2Tn+1

g,j + Tn+1
g,j−1

h2

!

−
2h

ρng,j(
Tn
g,j

B(1−Nρn
g,j

)2
− 2Mρng,j)

 
1−

(γ− 1)(1− ρng,jH
n
p,j)

γcng,j(1−Nρng,j)

!
3pn+1
j − 4pnj + pn−1

j

2∆t
.

j = 0, ...,Nz − 2.

(4.2.10)

The five equations (4.2.1), (4.2.7), (4.2.8), (4.2.9) and (4.2.10) for the five variables ρg, u, Tr, Tg, p
are solved by the prediction-correction algorithm given below.

Algorithm 4.4 (Prediction-correction algorithm)
Step 1: (Prediction)
Solve the density equation (4.2.8) using Newton’s method and initial guess by old den-
sity in the entire domain, with old data for the gas temperature and pressure as

MBN ρ̃g3 −MBρ̃g2 + (pnBN + Tng )ρ̃g − pnB = 0.

Step 2.
Solve (4.2.1), (4.2.7), (4.2.9) and (4.2.10) with corresponding boundary conditions simul-
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taneously to obtain p̃, T̃r, ũ and T̃g with density computed in step 1
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.

Step 3: (Correction)
Solve the density equation with predicted data T̃g and p̃ for the gas temperature and the
pressure from

MBN (ρn+1
g )3 −MB(ρn+1

g )2 + (p̃BN + T̃g)ρ̃g
n+1 − p̃B = 0.

Step 4.
Solve (4.2.1), (4.2.7), (4.2.9) and (4.2.10) again to obtain the corrected solution

∂pn+1

∂x
= −Dun+1

,

c̃r
∂Tn+1
r

∂t
= EF(Tn+1

g − Tn+1
r ) +

k̃r

Per

∂2Tn+1
r

∂x2
,

∂un+1

∂x
=

1

(
T̃g

B(1−Nρn+1
g )2

− 2Mρn+1
g )Bc̃gρn+1

g (1−Nρn+1
g )

[E(Tn+1
r − Tn+1

g ) +
1

Peg

∂2Tn+1
g

∂x2
]

−
1

ρn+1
g (

T̃g

B(1−Nρn+1
g )2

− 2Mρn+1
g )

[1−
(γ− 1)(1− ρn+1

g H̃p)

γc̃g(1−Nρn+1
g )

]
Dpn+1

Dt
,

DTn+1
g

Dt
=

1

ρn+1
g

(
γ(1−Nρn+1

g )

Bc̃g(1−Nρn+1
g ) − (γ− 1)(1− ρn+1

g H̃p)
)[E(Tn+1

r − Tn+1
g ) +

1

Peg

∂2Tn+1
g

∂x2
]

−[
(γ− 1)(1− ρn+1

g H̃p)[T
n
g − 2MBρn+1

g ](1−Nρn+1)2

(1−Nρn+1
g )[γc̃g(1−Nρn+1

g ) − (γ− 1)(1− ρn+1
g Hnp)]

]
∂un+1

∂x
.

�

4.3 Tube-regenerator coupling

To couple the two main parts of the system, the pulse-tube and the regenerator, we
need to apply the interface conditions (3.2.73) for ideal gas or (3.4.40) for non-ideal gas
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together with (3.2.71) in the case of the single-stage PTR. In the case of multi-stage PTR
the interface conditions are (3.5.3), (3.5.6) for ideal gas, and (3.5.7), (3.5.8) for non-ideal
gas, together with (3.5.1) for the pressure continuity at the junction. The iterative meth-
ods used to solve the governing equations for the pulse-tube and the regenerator, also
include updating the interface and junction conditions. In this section we show various
strategies for coupling the 1D regenerator and the 1D pulse-tube, the 1D regenerator
and the 2D pulse-tube, and finally the coupling in multi-stage PTR where two regener-
ators and one pulse-tube are connected.

4.3.1 Coupling the 1D pulse-tube with the 1D regenerator

For ideal gas and non-ideal gas we can solve the problem numerically in a similar
way. It turns out that after time discretisation we can decouple the temperature equa-
tions from the flow equations. Let the temperature vectors at time tn be denoted by
(θTgr ,θ

T
r ,θ

T
gt)

T , where θgr is the vector of gas temperatures in the regenerator, θr is the
vector of regenerator material temperature and θgt is the vector of gas temperature in
the tube at the discretised points. Denote, the corresponding source terms in the equa-
tions by (ζT1 , ζ

T
2 , ζ

T
3 )
T , then the temperature at time tn+1 typically satisfies an equation

like  A B C
D E
F G

n  θgr
θr
θgt

n+1

=

 ζ1
ζ2
ζ3

n . (4.3.1)

The blocks A, E and G are three-diagonal matrices, B and D are one-diagonal matrices
representing the coupling in the regenerator of the gas and the solid material, and C and
F represent the coupling between the gas temperature in the tube and in the regenerator
at the interface. The first grid point of the tube is coupled with the last grid point of the
regenerator. Of course, if we assume a pre-assigned fixed temperature for the CHX at
the interface, the blocks C and F become vectors of zeros.
The global system of temperature equations for a three-stage PTR without by-pass takes
the form

A1 B1 C1 H
D1 E1
F1 G1
J K A2 B2 C2 L

D2 E2
F2 G2
M N A3 B3 C3

D3 E3
F3 G3



n 

θg,r1
θr1
θg,t1
θg,r2
θr2
θg,t2
θg,r3
θr3
θg,t3



n+1

=



ζ11
ζ12
ζ13
ζ21
ζ22
ζ23
ζ31
ζ32
ζ33



n

(4.3.2)

The first index refers to the stage. The global coupling blocks H, J, K, L, M, N for the
temperature in the three-stage PTR represent the discretised form of (3.5.3) in the case
of ideal gas and (3.5.8) in the case of non-ideal gas. In the case of ideal gas H is 0 since
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in discretised form (3.5.3) reads

Tn+1
(g,r1,Nz1) =

(
Tn(g,r2,0)T

n
(t1,0)

un(r2,0)(Aφ)r2T
n
(t1,0) + un(t1,0)At1T

n
(g,r2,0)

)
un(r1,Nz1)(Aφ)r1. (4.3.3)

It is a block of zeros. For real gas (3.5.8) maintains Tg,r2 at the new time level,[
ρn+1

(g,Nz1)u
n
Nz1

φA

(
cn(g,Nz1)T

n+1
(g,Nz1) +

1

M
Hn(p,Nz1)P

n

)]
r1

=

[
ρn+1

(g,0)u
n
0φA

(
cn(g,0)T

n+1
(g,0) +

1

M
Hn(p,0)P

n

)]
r2

+

[
ρn+1

(g,0)u
n
0A

(
cn(g,0)T

n+1
(g,0) +

1

M
Hn(p,0)P

n

)]
t1

.

(4.3.4)

The other global blocks consist of zeros with the only non-zero component arising from
discretising (3.5.3) or (3.5.8). If we assume pre-assigned fixed temperatures for the CHXs
at the junctions, the blocks H, J, K, L, M and N become vectors of zeros. This means
that the temperature equations are completely decoupled.
The discretised equations for the gas velocities and pressures are combined in

 P Q R
S V

W X

n  ur
p
ut

n+1

=

 η1
η2
η3

n . (4.3.5)

Here ur is the velocity vector of unknowns for the regenerator, pr is the pressure vector
of unknowns for the regenerator and ut is the velocity vector of unknowns for the pulse-
tube. The blocks P, V and X are three-diagonal matrices for discretisation of ur, p and ut
in the interior points. The blocks Q and S represent the coupling between the velocity
and the pressure in the regenerator, the block R represents the coupling between the
velocities in the last point of the regenerator and the first point of the tube consisting
of zeros with the only non-zero component coming from the discretised formulation of
(3.2.73) for ideal gas

un+1
r,Nz

=

(
At

φAr

Tn+1
Nz,r

Tn+1
0,t

)
un+1
0,t . (4.3.6)

In the case of non-ideal gas the discretised form of (3.4.40) is

un+1
r,Nz

=

(
ρn+1

(g,t,0)At

ρn+1
(g,r,Nz)Arφ

)
un+1
0,t . (4.3.7)

The block W represents the pressure continuity at the interface between the regenerator
and the tube (3.2.71).
The global system of discretised formulations for the velocities and pressures of the
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three-stage PTR takes the form

P1 Q1 R1 M1

S1 V1 O O
M2 W1 X1 M3

M4 O M5 P2 Q2 R2 M6

N1 O S2 V2 O O
M7 W2 X2 M8

M9 O M10 P3 Q3 R3
N2 O S3 V3 O

W3 X3



n 

ur1
p1
ut1
ur2
p2
ut2
ur3
p3
ut3



n+1

=



η11
η12
η13
η21
η22
η23
η31
η32
η33



n

,

(4.3.8)
where the blocks N1 and N2 represent pressure continuity, and the blocks M1-M10 rep-
resent the coupling of the velocities in the tubes and the regenerators at the junctions.
Such couplings come from the discretised form of (3.5.6) for ideal gas, which at the
junction I is the following

un+1
r1,Nz1

(φA)r1 = un+1
r2,0 (φA)r2 + un+1

t1,0At1, (4.3.9)

or the the discretised form of (3.5.7) for real gas

ρn+1
(g,r1,Nz1)u

n+1
(r1,NZ1)(Aφ)r1 = ρn+1

(g,r2,0)u
n+1
(r2,0)(Aφ)r2 + ρn+1

(g,t1,0)u
n+1
(t1,0)At1. (4.3.10)

Now we have two systems of algebraic equations (4.3.1) and (4.3.5) for a single-stage
PTR with the size of (3Nz × 3Nz), and two systems of algebraic equations (4.3.2) and
(4.3.8) for a three-stage PTR with the size of ([2(Nz1 +Nz2 +Nz3) +Nt1 +Nt2 +Nt3]×
[2(Nz1 +Nz2 +Nz3) +Nt1 +Nt2 +Nt3]), where Nz1, Nz2, Nz3 are the number of grid
points in the regenerators 1,2,3 and Nt1, Nt2, Nt3 are the number of grid points in the
tubes 1,2,3.

The system of governing PDEs has turned into systems of algebraic equations by dis-
cretisation in space and time. We have two linear systems of algebraic equations,A1X1 =
b1 for the temperature and A2X2 = b2 for the velocity and pressure, where their sizes
depend on the number of stages and the computational grids used. The algorithm of
the numerical solution for each time step tn+1 = tn + ∆t is summarized as follows.

Algorithm 4.5
Step 1: (Initialisation)
Choose an initial vector for (θgr(t0),θr(t0),θgt(t0))

T in (4.3.1) and (ur(t0),p(t0),ut(t0))T

in (4.3.5).
Step 2:
We solve the first system A1X1 = b1 with old data for the velocity and pressure to pre-
dict the temperatures at tn+1.
Step 3:
We solve the second system A2X2 = b2 using the just computed temperatures to find
new values for the velocities and pressure at tn+1.
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Step 4:
We repeat step 1 using the new values of the velocities and pressure and update the tem-
peratures until a predefined tolerance is reached for the estimated error. �

In the case of non-ideal gas, there is an internal iteration loop described in Sections 4.1.3
and 4.2.2, which updates all variables via a predictor-corrector algorithm. Therefore the
above mentioned iteration algorithm can be combined with this predictor-corrector al-
gorithm to update not only the internal point values but also the interface values.

4.3.2 Coupling the 2D pulse-tube with the 1D regenerator (ideal gas)

At the interface of the regenerator and the pulse-tube there are three conditions to be
satisfied: pressure continuity, conservation of mass and conservation of energy as de-
scribed in Chapter 3. In PTR simulation we assume ideal heat exchangers, in the sense
that we assign a constant temperature in the heat-exchanger at the cold end. This means
that when the flow exits from the heat exchanger we replace the energy conservation
condition by Tg = constant (given). In the coupling of 2D pulse-tube to 1D regenerator
we apply the discretised mass conservation (4.3.6) such that the gas velocity at the tube
side is computed by cross-sectionally averaging of the axial velocity (3.3.34) as

un+1
t,0 =

1

r20

Nr−1∑
j=0

(un+1
0,j + un+1

0,j+1)rj∆r. (4.3.11)

The thermodynamic pressure in the pulse-tube is only a function of time. To find this
pressure at each time level together with imposing (4.3.6) for the gas velocity in the re-
generator, we apply an iterative method with the following steps:

Algorithm 4.6
Step 1:
Solve the temperature equations (4.1.9) or (4.1.10) for the 2D tube, and (4.2.1), (4.2.2) or
(4.2.3) for the 1D regenerator.
Step 2: (Initial guess)
Solve simultaneously the one-dimensional momentum equations in the pulse-tube and
the regenerator (4.3.5) to find p0, P(t) and u. The values at the interface are taken as
initial guess for the iteration loop below.
Step 3: (Iteration loop)

i. Solve the velocity and pressure equations (4.2.6) and (4.2.7) in the regenerator to
find the predicted value for the pressure at the cold end, P(Lr, t).

ii. Use the pressure calculated in i at the interface as the thermodynamic pressure in
the pulse-tube.
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iii. Apply the pressure-correction algorithm (4.1.18), (4.1.19), (4.1.36), (4.1.32), (4.1.33)
and (4.1.34) to find u∗, v∗, q, un+1, vn+1 and pn+1 in the 2D pulse-tube.

iv. Compute the cross-sectionally averaged axial velocity at the cold end of the pulse
tube (4.3.11). Use equation (4.3.6) as the boundary condition for the velocity unew(r,Nz) at
the cold end of the regenerator.

v. Compute the velocity change at the cold end of the regenerator

udiff = unew(r,Nz) − uold(r,Nz). (4.3.12)

vi. If |udiff| is less than a predefined tolerance then go to the next time-step, otherwise
go back to step ”i” with unew(r,Nz) as the new boundary condition for the regenerator
velocity in (4.2.6).
Loop end. �

4.4 2-D code implementation and validation

The discretised formulae described in this section are implemented in C++ and coded
together with PETSc (Portable, Extensible Toolkit for Scientific Computation) [63], which
is a suite of data structures and routines for the scalable solution of scientific applica-
tions modeled by partial differential equations. In order to assess the code performance
a number of standard fluid dynamics problems have been simulated. The chosen exam-
ples are Hagen-Poiseuille flow which demonstrates the pressure-correction Algorithm
4.2, then fluid in a pipe subjected to an oscillating pressure gradient which represents
the oscillatory behaviour of the gas in the pulse tube, and finally the Graetz problem
dealing with heat transfer being a test for the temperature distribution computation by
(4.1.9) or (4.1.10).

4.4.1 Hagen-Poiseuille flow in a circular tube

Consider a steady laminar viscous and incompressible flow through a tube with con-
stant circular cross-section. The tube is significantly longer than its diameter. The fully
developed flow is called Hagen-Poiseuille flow because it was first investigated by Hagen
(1839) and Poiseuille (1840). If the length of the tube is long enough, the radial compo-
nent of the flow (3.3.3) is negligible away from the tube’s entrance. Consequently the
axial velocity gradient, ∂u/∂z, will be zero according to the continuity equation for in-
compressible flow. This analysis gives us an important result which relates the pressure
gradient to the axial shear stress (3.3.2) (neglecting τzz)

∂p

∂z
= µ

1

r

∂

∂r

(
r
∂u

∂r

)
. (4.4.1)
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Figure 4.1: The axial velocity field at t = 1 s for Hagen flow problem.

We can solve this equation analytically by integrating (4.4.1) with proper boundary con-
ditions: u = 0 at the wall (r = r0) and zero velocity gradient at the centre line (r = 0),
i.e. the symmetry requires ∂u/∂r = 0. The analytical solution reads

u(r) =
1

4µ

∂p

∂z
(r2 − r20). (4.4.2)

The maximum velocity, u(0) = umax, occurs at the centre line and the average cross-
sectional velocity is uav = umax/2. The pressure gradient is proportional to the viscos-
ity and the maximum velocity

∂p

∂z
= −

4µ

r20
umax. (4.4.3)

The pressure gradient is a constant quantity in steady flow. Substitution of (4.4.3) into
(4.4.2) gives

u(r) = umax(1− r2/r20). (4.4.4)

This analytical solution is now used to validate our numerical method (the pressure-
correction algorithm) for the 2D pulse-tube. We consider the momentum equations in
the axial and radial directions and the continuity equation for an incompressible flow
(3.3.1), (3.3.2), (3.3.3)

ρ

(
∂u

∂t
+ u

∂u

∂z
+ v

∂u

∂r

)
= −

∂p

∂z
+ µ

(
1

r

∂u

∂r
+
∂2u

∂r2

)
, (4.4.5a)

ρ

(
∂v

∂t
+ u

∂v

∂z
+ v

∂v

∂r

)
= −

∂p

∂r
+ µ

(
1

r

∂v

∂r
+
∂2v

∂r2
−
v

r2

)
, (4.4.5b)

∂u

∂z
+
∂v

∂r
+
v

r
= 0. (4.4.5c)

The problem is solved numerically with Algorithm 4.2. Then we choose the following
parameters: length of tube L = 10[m], diameter D = 2r0 = 0.1[m], viscosity µ = 2.5 ×
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10−3[kg.m−1.s−1], density ρ = 103[kg.m−3] and the inflow velocity uav = 5[cm.s−1].
The Reynolds number is Re = Dρuav/µ = 2000 < 2500 so that the flow is laminar. The
following initial and boundary conditions are taken

inflow: u(0, r, t) = uav, u(0, r0, t) = 0, v(0, r, t) = 0, (4.4.6a)
outflow: v(L, r, t) = 0, p(L, r, t) = 0, (4.4.6b)
tube wall: u(z, r0, t) = 0, v(z, r0, t) = 0, (4.4.6c)

symmetry line: v(z, 0, t) = 0,
∂u(z, 0, t)

∂r
= 0,

∂p(z, 0, t)

∂r
= 0, (4.4.6d)

initial conditions: u(z, r, 0) = uav, v(z, r, 0) = 0, p(z, r, 0) = 0. (4.4.6e)

If we use the non-dimensionalisation procedure (3.2.11), we get the following non-
dimensional equations for (4.4.5) (omitting the hats)

∂u

∂t
+ u

∂u

∂z
+ v

∂u

∂r
= −

∂p

∂z
+
1

Re

(
1

r

∂u

∂r
+
∂2u

∂r2

)
, (4.4.7a)

∂v

∂t
+ u

∂v

∂z
+ v

∂v

∂r
= −

∂p

∂r
+
1

Re

(
1

r

∂v

∂r
+
∂2v

∂r2
−
v

r2

)
, (4.4.7b)

∂u

∂z
+
∂v

∂r
+
v

r
= 0, (4.4.7c)

where Re is the oscillatory Reynolds number. Solving the problem by Algorithm (4.2)
gives the velocity vector field shown in Figure 4.1. The initial uniform profile will evolve
to a parabolic profile. At the entrance the non-zero values of the radial velocity are not
visible. The radial velocity becomes zero along the pipe when the flow profile gets fully
developed. The parabolic shape of the axial velocity is most visible at the developed
part of the flow at z = L. In Figure 4.2 the axial velocity distribution at t = 1000 s is
displayed. It takes about 20 times the tube diameter before the flow is fully developed.
In Table 4.1 the numerical results obtained for different grids are shown. The L∞ error
is a measure for the difference between the numerical solution at the end of the tube
(developed part of the flow, z = L) and the analytical solution (4.4.4) defined by ||ε||∞ =
||uexact − unum||∞ = maxj(uexact − unum) = uexact(r = r0) − unum(r = r0). Apparently
we have first-order convergence as expected, see Algorithm 4.2 in Section 4.1.3.

4.4.2 Pipe flow subject to an oscillating pressure gradient

Consider an unsteady laminar incompressible flow in a circular pipe that experiences
an oscillatory pressure gradient. The flow is assumed to be independent of the axial



80 Numerical methods

Figure 4.2: The axial velocity profile for the Hagen-Poiseuille flow at t = 1000 s.

Nz ×Nr Nt ∆ẑ ∆r̂ ∆t̂ error

50× 25 9600 2.0 2× 10−2 2× 10−2 4.17× 10−3

100× 50 19600 1.0 1× 10−2 1× 10−2 2.33× 10−3

200× 100 39600 0.5 5× 10−3 5× 10−3 1.41× 10−3

400× 200 79600 0.25 2.5× 10−3 2.5× 10−3 0.78× 10−3

800× 400 159600 0.125 1.25× 10−3 1.25× 10−3 0.40× 10−3

Table 4.1: The error at z = L and t = 1000 [sec] found with different grids for the Hagen-
Poiseuille flow problem.
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coordinate, so that the radial velocity is zero. The equation of motion then takes the
form

∂u

∂t
= −

1

ρ

∂p

∂z
+ ν[

∂2u

∂r2
+
1

r

∂u

∂r
], (4.4.8)

where ν is the kinematic viscosity. The axial pressure gradient is defined as a sinusoidal
function of time by

∂p

∂z
= −ρK cos(ωt),

whereK[m.s−2] is a constant andω is the angular frequency. We now non-dimensionalise
(4.4.8) with the following variables

u = ūû, r = r0r̂, t =
1

ω
t̂, p = ρ̄ū2p̂.

The equation (4.4.8) will then take the following dimensionless form (omitting hats)

∂u

∂t
=

K

ūω
cos(t) +

1

Reω
[
∂2u

∂r2
+
1

r

∂u

∂r
], (4.4.9)

with the boundary conditions

u(z, r0) = 0,
∂u

∂r
(z, 0) = 0. (4.4.10)

Here Reω is the so-called kinematic Reynolds number defined as Reω := r20ω/ν. The
analytical solution found by cf. [31], [32] and [61] and discussed by [77] is (Reω > 4)

u(r, t) = Re

{
K

iω
eiωt[1−

J0(r
√

−iω/ν)

J0(R0
√

−iω/ν)
]

}
, (4.4.11)

whereRe denotes the real part of the solution and J0 is a Bessel function of the first kind
and zero order. To have a kinematic Reynolds number in the range of laminar flow,
we take a sample problem with parameter values (water is the fluid) L = 1.0[m], r0 =
2.5[mm], ū = 1[m/s], ν = 10−6[m2.s−1], K = 10[m.s−2],ω = 40π[s−1]; the kinematic
Reynolds number is then Reω = 785 with ū

√
2/(ων) = 126 and 2r0/

√
2ν/ω = 39.7.

We see from Figure 3.2 that our reciprocating flow is in the perturbed laminar region.
The numerical simulation is using the second-order central difference formula for the
first and the second spatial derivatives of the axial velocity in (4.4.9) implicitly. In Figure
4.3 we see the steady oscillatory results of our simulation during one full pressure cycle.
For better visualisation reason the dimensions have been scaled up. Note: the steady
state is independent of the initial situation. There is a high activity region close to the
wall that has a phase lag of almost π/2 with the pressure cycle. This effect is character-
istic for oscillating flow at high frequencies, and it is called Richardson’s annular effect.
Figure 4.4 shows the radial variation of the axial velocity at z = L/2 [m] at t = 4.0125

[s] obtained numerically and analytically (4.4.11). Figure 4.4.a and 4.4.b show the veloc-
ity profiles in the case of very low-frequency and low-frequency oscillation, fr = 0.01

[Hz] and fr = 1 [Hz], respectively. Figure 4.4.c displays the velocity profile for high-
frequency with fr = 20 [Hz]. The numerical and analytical solutions are in perfect agree-
ment. The numerical errors obtained with different grids are shown in Table 4.2 where
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(a) t̂ = π/2

(b) t̂ = π

(c) t̂ = 3π/2

(d) t̂ = 2π

Figure 4.3: Velocity fields at different time steps for oscillating flow problem (fr = 20
[Hz]).
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(a) fr = 0.01 Hz, t = 100 s (b) fr = 1 Hz, t = 10 s

(c) fr = 20 Hz, t = 4.0125 s

Figure 4.4: The radial variation of the axial velocity at z = L/2; numerical solution (solid
line) and analytical solution (dashed line).

the L∞-norm of the errors computed as the difference between the numerical results and
the analytical solution of the axial velocity profile (4.4.11) as ||ε||∞ = ||uexact − unum||∞.
Second-order convergence is achieved as it confirms the second-order discretisation
method applied to the velocity equation (4.4.9).

4.4.3 Temperature distribution in fully developed pipe flow

Finally we test our code with respect to temperature distribution in the Graetz problem.
Consider the following convection-conduction equation for the temperature

ρcpu(r)
∂T

∂z
= kg

∂

∂r
(r
∂T

∂r
), (4.4.12)

where u(r) is the steady velocity profile given by the Hagen-Poiseuille

u(r) = 2uav(1− (
r

r0
)2). (4.4.13)
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Nz ×Nr Nt ∆ẑ ∆r̂ ∆t̂ error

61× 31 9580 20 0.05 0.05 2.63× 10−3

121× 61 19664 10 0.025 0.025 5.92× 10−4

241× 121 39833 5 0.0125 0.0125 1.42× 10−4

Table 4.2: The error in the axial velocity of the oscillatory flow problem at z = L/2 and
t = 4.0125 [s].

Here uav is the mean velocity in a fully developed laminar tube flow where r0 is the
radius of the tube. The solution can be expressed as a series, cf. [40]

T(z, r) = 1− 1.477e−3.658(1/Pe)zR0(r) + 0.81e−22.178(1/Pe)zR1(r)

−0.385e−53.05(1/Pe)zR2(r) + ...
(4.4.14)

For the functions R0(r), R1(r), R2(r) we use the form given in [21], Table 22-1. We note
that on the central axis R0(0) = R1(0) = R2(0) = ... = 1.
We solve the equation (4.4.12) by taking it in unsteady and dimensionless form (omitting
hats),

∂T

∂t
= −u(r)

∂T

∂z
+
1

Pe

(
1

r

∂T

∂r
+
∂2T

∂r2

)
, where Pe =

ρcpuavr0

kg
. (4.4.15)

The following dimensionless initial and boundary conditions are imposed

T(0, r) = T0 = 0, (4.4.16)
T(z, r0) = Tw = 1,

∂T

∂r
(z, 0) = 0.

We take the following dimensionless parameters in our test problem: length of tube L =
30, radius of tube r0 = 1, mean velocity uav = 1, the Peclet number Pe = 60. We use the
same numerical method as we do for the pulse-tube in Chapter 5 and 6, i.e. θ-method
in time with θ = 0.5 + ∆t, central difference for the first and second radial derivatives
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Figure 4.5: Steady-state numerical solution of the temperature in the Graetz problem.

Figure 4.6: The dimensionless temperatures at the central axis in the Graetz problem at
different times compared with the steady-state analytical solution (dots)).
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Nz ×Nr Nt ∆ẑ ∆r̂ ∆t̂ error

25× 10 1080 1.2 0.1 0.05 2.2× 10−2

50× 20 2280 0.6 0.05 0.025 5.3× 10−3

100× 40 4680 0.3 0.025 0.0125 1.05× 10−3

Table 4.3: The numerical errors on the central axis in the Graetz problem.

of the temperature and a second-order high-resolution method for the convection term.
The unsteady problem is solved until the steady state. Figure 4.5 shows the steady
temperature distribution. The unsteady temperatures distribution at the central axis are
shown in Figure 4.6 at different non-dimensional times t = 10, t = 15, t = 20, t = 60. As
observed, the numerical steady state is in good agreement with the analytical solution
except at the central axis and small distance away from it. Of course, the numerical
results are correct in respect with T(0, 0) = 0, but the analytical solution (4.4.14) needs
more terms of the series to reach the assigned BC at the inflow. The numerical errors,
obtained with different grids and calculated away from the inflow (z ≥ 3), are shown
in Table 4.3. The errors are computed as the difference between the numerical results
on the central axis and the analytical solution (4.4.14) at dimensionless time t̂ = 60

as ||ε||∞ = ||Texact − Tnum||∞. Second-order convergence is approximately achieved as
expected

4.5 Domain decomposition

There has been a great deal of interest in adaptive local mesh refinement procedures for
solving steady and time-dependent unsteady partial differential equations. Such tech-
niques are used to calculate solutions for prescribed levels of accuracy. If the solution
is behaving smoothly in the majority of the domain, but move fast in some other area
a uniform grid is far from optimal. Therefore we need fine grids in regions where the
solution changes rapidly, i.e. in the high-activity regions, and coarse in regions where
it varies slowly, i.e. in low-activity regions. One choice is to use separate uniform grids
(with different grid sizes) on different parts of the domain. The mesh size in each grid
is chosen in such a way that a globally required accuracy is achieved. This approach
can be even more computationally efficient when combined with domain decomposition.
Here the storage of data and computations can be done with smaller systems than in the
case of an entirely uniform grid. We only need to deal with a structuredA-matrix which
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has big advantages compared with tensor grids. This domain decomposition (DD) ap-
proach can also be used with adaptive local mesh refinement. There are two main cat-
egories for adaptive methods, moving-grid(or dynamic-regridding) methods and static-
regridding methods. When the high-activity region is changing its spatial position dur-
ing computations, the dynamic-regridding domain decomposition is needed. Adaptive
local mesh refinement methods have been used for different problems on stationary and
non-stationary partial differential equations, i.e. elliptic equations [26], [33], parabolic
equations [27], [70] and hyperbolic equations [2], [6].
We now discuss a domain decomposition method that can be applied to either non-
uniform stationary or moving meshes to solve vector systems of partial differential
equations of the form

ut + f(x, y, t, u, ux, uy) =
[
D1(x, y, t, u)ux

]
x

+
[
D2(x, y, t, u)uy

]
y
,

for t > 0, (x, y) ∈ Ω (4.5.1)

with initial conditions

u(x, y, 0) = u0(x, y) for (x, y) ∈ Ω ∪ ∂Ω (4.5.2)

with suitable well-posed boundary conditions on ∂Ω. We apply our computations in
two space dimensions on rectangular regions Ω, as is the case for the pulse-tube in
two-dimensional cylindrical coordinates. The boundary layer close to the wall in the
pulse-tube is rather crucial. In addition the regions at the hot and cold ends have high
activity too. Therefore we have three high-activity regions that are dealt with by static-
regridding.

4.5.1 A test problem

We demonstrate the static-regridding domain-decomposition method by applying it to
the problem of “flow subject to an oscillating pressure gradient” presented in Section 4.4.2.
This problem has some similarity with the pulse-tube problem as it has a boundary
layer close to tube wall. The governing equation (4.4.9) for the velocity profile reads

∂u

∂t
=

K

ūω
cos(t) +

1

Reω
[
∂2u

∂r2
+
1

r

∂u

∂r
],

with the boundary conditions (4.4.10). We take the same parameter values as before, i.e.
L = 1.0[m], r0 = 2.5[mm], ν = 10−6[m2.s−1], K = 10[m.s−2],ω = 40π[s−1]; the kine-
matic Reynolds number is then Reω = 785. As it can be seen from the velocity profiles
in Figures 4.4.a,b the variations in the boundary layer are high in the high-frequency
problem than in the low-frequency one. In high-frequency oscillatory problems, we
have a high-activity region with a certain width near the wall, and for the rest of the
domain the solution behaves smoothly. To optimise the number of fine grid points, we
need to find the location and the size of the high activity regions. We refine the grid in
the high activity regions and we keep the rest of the domain as coarse as possible to still
satisfy for the desired global error. This error is calculated by the difference between
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the analytical solution (4.4.11) and the numerical domain decomposition solution as
||ε||∞ = ||uexact−unum||∞. In this example we take uniform grid with (Nz×Nr = 241×61)
to consider the discrete approximation of the radial gradient of the axial velocity in the
domain at various radial positions of the domain as (see Figure 4.7)

∂u

∂r
. (4.5.3)

Here (Fig.4.4) the thickness of the high-activity layer is about one quarter of the pipe
radius. In the rest of the domain ∂u/∂r is close to zero.

Figure 4.7: View lines in the radial direction for detecting width of the boundary layers
at three axial positions A,B and C.

4.5.2 DD method

We use a global uniform coarse grid with (Nz × Nr) points and with step size ∆z =
L/(Nz − 1) and ∆r = r0/(Nr − 1)

Ω∆r[0,L]×[0,r0] = {(zi, rj), i = 1, ...,Nz, j = 1, ...,Nr} . (4.5.4)

Suppose we refine the r-grid on a typical interval [a, b]. In Figure 4.8, b = r0 indicates
the wall boundary. The points a and b are always grid points of the coarse grid. The
fine grid has (Nz ×Nb) points and step size δr = (b− a)/(Nb − 1).

Ωδr[0,L]×[a,b] = {(zi, rj), i = 1, ...,Nz, j = 1, ...,Nb} . (4.5.5)

Define the refinement factor as

f :=
Nb − 1

Nr −N0
.

In Figure 4.8 the refinement factor f = 2. We proceed with the following steps to ad-
vance the solution from tn to tn+1 with time step ∆t.
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Figure 4.8: Fine and coarse grids for an axisymmetrical domain with refinement factor
f = 2.

Algorithm 5.1
Step 1: (Coarse grid solution)
Discretising (4.4.9) using second-order differences implicitly gives

Un+1
i,j = Uni,j + ∆tθ

{
K

ūω
cos(tn+1) +

1

Reω
[
Un+1
i,j+1 − 2Un+1

i,j +Un+1
i,j−1

∆r2
+

1

ri,j

Un+1
i,j+1 −Un+1

i,j−1

2∆r
]

}

+∆t(1− θ)

{
K

ūω
cos(tn) +

1

Reω
[
Uni,j+1 − 2Uni,j +Uni,j−1

∆r2
+

1

ri,j

Uni,j+1 −Uni,j−1

2∆r
]

}
i = 1, 2, ..., Nz, j = 2, 3, ..., Nr − 1

∂Un+1

∂r
(z, 0) = 0, Un+1

i,Nr
= 0.

(4.5.6)

where Un+1
i,j denotes the solution of the coarse grid and θ = 0.5 + ∆t. The solutions

Un+1 for r = a and r = b are used to define the initial boundary value problem as
Dirichlet boundary conditions on the fine grid.
Step 2: (Interpolation)
The time step for the fine grid is δt = ∆t/f . To proceed the fine grid solution we need to
update the fine grid boundary condition provided by the coarse grid at each time level
tn+δt. These Dirichlet boundary conditions at the points {(zi, a), (zi, b); i = 1, ...,Nz}

are found by interpolation of the oldUn and newUn+1 coarse grid values. For instance,
if δt = 1

2∆twe proceed the computations two times on the fine grid with δt andUn+ 12 =
(Un+1 +Un)/2.
Step 3: (Fine grid solution)
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We advance the solution on the fine grid f times for discretised (4.4.9)

u
n+ 12
i,j = uni,j + δtθ0

 K

ūω
cos(tn+ 12 ) +

1

Reω
[
u
n+ 12
i,j+1 − 2u

n+ 12
i,j + u

n+ 12
i,j−1

δr2
+

1

ri,j

u
n+ 12
i,j+1 − u

n+ 12
i,j−1

2δr
]


+∆t(1− θ0)

{
K

ūω
cos(tn) +

1

Reω
[
uni,j+1 − 2uni,j + uni,j−1

δr2
+

1

ri,j

uni,j+1 − uni,j−1

2δr
]

}
i = 1, 2, ..., Nz, j = 2, 3, ..., Nb − 1

u
n+ 12
i,1 = U

n+ 12
i,N0

, u
n+ 12
i,Nb

= U
n+ 12
i,Nr

,

(4.5.7)

un+1
i,j = u

n+ 12
i,j + δtθ0

{
K

ūω
cos(tn+1) +

1

Reω
[
un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

δr2
+

1

ri,j

un+1
i,j+1 − un+1

i,j−1

2δr
]

}

+∆t(1− θ0)

 K

ūω
cos(tn+ 12 ) +

1

Reω
[
u
n+ 12
i,j+1 − 2u

n+ 12
i,j + u

n+ 12
i,j−1

δr2
+

1

ri,j

u
n+ 12
i,j+1 − u

n+ 12
i,j−1

2δr
]


i = 1, 2, ..., Nz, j = 2, 3, ..., Nb − 1

un+1
i,1 = Un+1

i,N0
, un+1

i,Nb
= Un+1

i,Nr
,

(4.5.8)

where θ0 = 0.5+ δt.
Step 4: (Composite solution)
We have computed two series of values for points of the global coarse grid that lie within
the local fine grid. We then make a composite solution combining the fine grid solution
at these points and the coarse grid solution elsewhere as

un+1
i,j (comp) =


un+1

(i,f (j-1)+1) i = 1, ...,Nz; j = 1, ..., (Nb − 1)/f +1

Un+1
i,j otherwise

(4.5.9)

�

4.5.3 Computational efficiency

We assume that the coarse grid prediction provides accurate enough boundary values
for the fine grid. In the local defect correction method we have to iterate on these results.
However, in evolution problems like those herein the iterations can be omitted, see [53].
The efficiency of the DD method is indicated by the complexity, i.e. the number of flops
(floating points operations). Typically we need ∼ O(n2) flops for solving a sparse n× n
matrix A. In our approach we have two grids: a coarse grid with radial dimension r0
(dimensionless value of tube radius) and a fine grid with dimension (b−a) (dimension-
less value). See Figure 4.8. Thus we need to solve a matrix of dimension (Nz ×Nr) for
the coarse grid and thus with complexity O(Nz×Nr)2, as well as a matrix of dimension
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(Nz × Nb) for the fine grid with complexity O(Nz × Nb)2. The number of fine grid
points is given by

Nb = Nr × (
b− a

r0
)f .

whereNb should be rounded. To assess the computational gain by our domain decom-
position technique we now define the gain factor (gf ) as the ratio between number of
operations for the uniform grid and for the DD grid for one time step ∆t as

gf =
complexity for uniform grid

complexity for DD
. (4.5.10)

Thus we have

• uniform grid:

– core grid: (Nz × fNr)
– flops: f(Nz × fNr)2

• DD grid:

– coarse grid: (Nz ×Nr)
– fine grid: (Nz ×Nr(b−a

r0
)f)

– flops: (Nz ×Nr)2 + f(Nz ×Nr(b−a
r0

)f)2

Then the gain factor (4.5.10) becomes

gf =
f3

1+ f3(b−a
r0

)2
≈ f3 if

b− a

r0
� 1

f3
. (4.5.11)

Say if (b − a)/r0 = 1/10, we see a gain factor of about f3. The gain factor approaches 1
if the layer width is large.
Remark: We may choose tensor grid, where the dense part is in high-activity layer, when-
ever the variation in the layer is too sharp, but here we do not do this.
Table 4.4 shows the domain decomposition errors in the velocity ||ε||∞ = ||uexact − uDD||∞
at t = 4.0124 (s) of the flow, due to an oscillating pressure gradient, for two different
grids with various number of refinements. Here (b − a)/r0 = 0.25. The error has been
computed at one view line in the middle of the tube (line B in Figure 4.7).
In Figure 4.9 we can see the velocity profile at t = 4.0125 [s] obtained by the Domain
Decomposition method. The solution has smooth behaviour in the core of the domain
and has sharp variation at the boundary layer where the grid has been refined.

4.6 Conclusion

We solved the governing equations by proper numerical methods. Since the domain of
computation in 1D and 2D is of simple shape, a finite difference (FD) method is an ap-
propriate way to discretise the equations. In addition, a domain-decomposition method
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(Nz ×Nr) = (61× 11) (Nz ×Nr) = (61× 21)

f gf Nr(
b−a
r0

)f ||ε||∞ Nr(
b−a
r0

)f ||ε||∞

2 5.33 6 2× 10−3 10 1.15× 10−3

4 12.80 11 1.2× 10−3 21 5.1× 10−4

8 15.15 21 1× 10−3 41 2.35× 10−4

Table 4.4: Domain Decomposition errors in the velocity ||ε||∞ = ||uexact − uDD||∞ at t =
4.0124 (s) of oscillating flow for two different coarse grids.

is applied in the two-dimensional computations for the pulse-tube so that an accurate
solution is obtained in an efficient way. The regenerator is still modelled as a 1D body
where friction and heat transfer with the solid are automatically taken into account by
Darcy’s law.
New in this chapter is the domain decomposition method to improve the efficiency of
the 2D computation at least for the single-stage PTR. The storage of data and compu-
tations are done with smaller systems than in the case of an entirely uniform grid. We
only need to deal with a structured A-matrix which has big advantages compared with
tensor grids [48]. In addition, we are allowed to take much larger time steps because of
a less restrictive CFL condition in comparison with that of the tensor grid. To assess the
computational gain by our domain decomposition technique we defined the gain factor
(gf ) as the ratio between the number of operations for the fine uniform grid and for the
DD grid for one time step.
Another new element is to couple the main parts of the system, the pulse-tube, the re-
generator(s) and the bypasses. In both cases of ideal and non-ideal gas we applied the
proper interface (junction) conditions. Depending on the final model chosen for the
single- and multi-stage PTR we may choose different coupling algorithms. The final
model chosen for the multi-stage PTR in this thesis introduces fully decoupled gas tem-
perature equations between the pulse tubes and the regenerators. Of course whithin
each regenerator the gas and solid temperatures are still fully coupled.



Figure 4.9: Uniform velocity profiles at t = 2.0125 [s] of the pipe flow due to an oscillat-
ing pressure gradient using Domain Decomposition method, Nz = 61,Nr = 21,Nb =
21, f = 4.





Chapter 5

Numerical results for the
single-stage PTR

In Chapter 3 we derived the mathematical models describing the single-stage PTR in
1D and 2D. The governing equations were discretised in Chapter 4 and numerical al-
gorithms were given to solve the equations and boundary conditions. In this chapter
we show numerical results obtained for a typical single-stage PTR. First we present the
one-dimensional results for the velocity and the temperature of the gas in the pulse-tube
together with the gas velocity, gas temperature, material temperature and pressure in
the regenerator. Meanwhile we explain the importance of choosing the initial condition
for the temperature in the pulse tube. Second we present the two-dimensional results of
a typical single-stage PTR (that is 2D pulse-tube and 1D regenerator), where all effects of
friction at and heat transfer with the wall are included. Third we improve our 2D com-
putations by using a domain decomposition method to increase the efficiency in terms
of CPU complexity and memory storage. Finally we present the physical efficiency of
the PTR in terms of mass and enthalpy flow and we check the coefficient of performance
of the system. The lowest temperature that can be reached at the point where there is no
cooling power anymore. The computation takes much time to reach the full oscillatory
steady state when starting from room temperature, which is the initial temperature in
reality. Therefore, an efficient initial temperature distribution is proposed.

5.1 One-dimensional simulation of a single-stage PTR

The mathematical model consists of the equations for the pulse tube (3.2.32), (3.2.33)
with the boundary conditions (3.2.60), (3.2.68), (3.2.69) and initial conditions for the ve-
locity (3.2.70) and the temperature, which will be explained in more detail later on, to-
gether with the equations for the regenerator (3.2.47), (3.2.49), (3.2.53) and (3.2.54) with
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Figure 5.1: Stirling Pulse-Tube Refrigerator with orifice and reservoir.

the boundary equations (3.2.73), (3.2.74), (3.2.75), (3.2.76). The pressure at the compres-
sor side is defined by pc(t) = pav − psin(ωt), with given values pav, p and ω. The
results for a typical single-stage pulse-tube refrigerator are obtained with the numerical
methods described in Algorithm 4.1, Section 4.2.1 and Algorithm 4.5. The fluid flowing
in the PTR is helium. The length of tube and regenerator is 200 mm each, the inner
diameter is 50 mm. The physical parameters and corresponding non-dimensional num-
bers used in our single-stage PTR simulation are given in Appendix B. The frequency of
the system is 20 Hz which makes it a high-frequency orifice pulse-tube refrigerator. See
Fig. 5.1

5.1.1 Results of one-dimensional simulation with linear initial tem-
perature

The tube and the regenerator domains are each discretised into 100 equi-spaced inter-
vals of length ∆z, i.e. the number of grid points N = 101 each. The dimensionless
time-step is ∆t = 0.1∆z. The heat exchangers are assumed to be already in steady state;
they have constant temperature. We take the CHX’s temperature TC = 60 K and the
HHX’s TH = 300 K. It turns out that after a number of cycles an oscillatory steady state
is reached. That is the maximum norm of the difference of the gas temperature distri-
bution (||Tg||∞) at all discretisation points in the tube of two consecutive cycles is less
than a pre-defined tolerance (Tol). In other words, the solution shows full periodic be-
haviour.
Figure 5.2.a displays the computed regenerator pressure at two different positions, one
at the compressor side, AC, and one at the interface with the pulse tube, CHX. There is
a phase difference between the pressure at these two positions caused by the resistance
to the flow by the regenerator (porous medium) and the porosity. Here φ = 0.7. For
the same reason the amplitude of the pressure at the end of the porous medium (CHX)
is less than that at the compressor side. The pressure in the frictionless tube is uniform
and only a function of time so that it is equal to the pressure computed at the interface.
In Figure 5.2.b the gas velocity at the two end positions of the tube, one at CHX and
one at HHX, is shown. The resistance law at the orifice (3.2.60) gives the velocity at
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(a) Pressure

(b) Velocity

Figure 5.2: Pressure in the regenerator at AC and CHX and velocity in the tube at CHX
and HHX.

HHX. The orifice conductance (Cor) which is optimised based on the thermodynamic
analysis of PTRs described in [15]. There is a phase difference of about π/4 between the
velocities at the cold and hot ends. In Figure 5.3 the gas velocity distribution in the tube
at various times is shown. It has a nearly linear behaviour during the gas oscillation
and it is nearly constant at the instant that the pressure gradient is zero. To explain this,
consider the velocity equation (3.2.32). The second derivative of the temperature has
a small coefficient, b1 � 1, i.e. the Peclet number Pe is very small, which makes the
velocity gradient practically proportional to the pressure time-derivative, which is con-
stant in space. In the transition, from compression to decompression and vice versa, the
pressure time-derivative becomes zero and the velocity in the tube becomes spatially
uniform.
Figure 5.4 shows temperature using a linear distribution as initial condition. There is a
part of the temperature which stays practically linear during the oscillation. This part
of the profile - called the gas piston - never leaves the tube as it moves up and down, and
left and right and remains unchanged. It undergoes adiabatic compression and expan-
sion during the oscillation. However, the gas adjacent to the cold and hot ends leaves
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Figure 5.3: Velocity profile in the tube at different times.

the tube during each cycle. The gas adjacent to the hot end moves into the buffer and
comes back into the tube, and at the cold end it flows into the regenerator and comes
back. Figure 5.5 shows the temperature at the cold end and at the hot end obtained with
the linear initial condition for the gas temperature. They exhibit either overshooting
peaks at the cold end or undershooting peaks at the hot end. In Figure 5.5 we have
indicated the “peaks” by a circle. These peaks remain in the temperature profile even
for a rather long time. Although in reality the system has to cool down from room
temperature, we have taken the initial shape of the gas temperature close to the steady
oscillatory state [23], [24].

5.1.2 Choice of initial condition based on oscillatory steady state

We can choose any function as the initial condition for the temperature in the tube. An
obvious choice is a straight line from the cold end temperature (TC at CHX) to the hot
end (TH at HHX). However, as shown in Figure 5.5, this gives unsteady peaks in the
temperature profile in the first cycles of the oscillation; they slowly decay in later cycles,
but never vanish entirely [50], [48]. To obviate the peaks we take as initial condition a
third-degree polynomial as:

Tg(z) = a1z
3 + a2z

2 + a3z+ a4, (5.1.1)

that interpolates four points in the temperature-distance diagram shown in Figure 5.6.
The four points are: one point at the CHX with TC, one point at the HHX with TH, a
point with its distance to CHX equal to the maximum penetration of the flow at the cold
end (zC) with TC, and likewise the fourth point with its distance from the HHX equal to
the maximum penetration of the flow at the hot end (zH) with TH. Figure 5.6 shows an
example where TC = 60 K and TH = 300 K. The maximum penetration depths can be
found either by trial and error from preliminary numerical simulations or they can be
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(a) t̂ = 10π, (pav)) (b) t̂ = 10.5π, (pav − p̄)

(c) t̂ = 11π, (pav) (d) t̂ = 11.5π, (pav + p̄)

Figure 5.4: The temperature profile (continuous line) at four different times of a full
steady oscillatory cycle with linear initial gas temperature (dashed line).

(a) cold end (b) hot end

Figure 5.5: Temperature history at the cold and hot end obtained with a linear initial
temperature.
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estimated from physical formula (based on harmonic analysis), [15, 16]. The analytical
formula for the dimensional maximum penetration depths read

zH =

(
2p̄

αγpav

)
Lt =

2p̄Cor

Atω
,

zC = Lt −

(
2

√
1+ α2

α2
p̄

γpav

)
Lt = Lt −

√
1+ α2zH,

(5.1.2)

where

α :=
AtLtω

γCorpav
.

Here the dimensional maximum penetration depths, using (5.1.2), are at zC = 5.64 cm

Figure 5.6: Initial temperature profile defined by a third-degree polynomial interpolat-
ing the four points: TC at z = 0, TH at z = Lt, TC at zC :=‘maximum penetration at the cold
end‘ and TH at zH :=‘maximum penetration at the hot end‘.

and zH = 16.02 cm.
The interpolation makes the profile adjacent to the gas piston, zH ≤ z ≤ Lt, have a
temperature higher than TH (while flowing towards the hot end, heat is released to the
environment at HHX) and for the range of 0 ≤ z ≤ zC a temperature lower than TC
is used (while flowing towards the cold end, cooling takes place at CHX). This initial
condition prevents the temperature profile to have unwanted peaks in the beginning of
the oscillations. Figure 5.4 shows that in each first half of a cycle some amount of gas
leaves the system with a lower temperature than TC and in the next half of the cycle
returns back to the system with TC, according to the reciprocating nature of the flow.
The same behaviour occurs at the hot end.
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5.1.3 Results of one-dimensional simulation with a dedicated initial
temperature

In Figure 5.7 temperature profiles calculated with initial condition (5.1.1), (5.1.2) are
shown at two different times corresponding to the maximum penetration (displace-
ment) of the gas into the tube at the cold and hot end. Figure 5.8 shows that no un-
desired peak is created anymore at the cold or hot end, i.e. the temperature does not get
higher than TC at the cold end and not lower than TH at the hot end.

(a) Max. penetration at the cold end at t̂ = 10π (b) Max. penetration at the hot end at t̂ = 11π

Figure 5.7: Temperature profiles in the pulse tube at two different times when maximum
penetration of the gas into the domain occurs.

(a) cold end (b) hot end

Figure 5.8: Temperature at the cold and hot end during the first 6 cycles, obtained with
a cubic initial temperature.

Figures 5.8.a and 5.8.b display the temperature at the cold and the hot end of the tube
calculated for the first six cycles. No peaks occur.
To verify our numerical results we compare the temperature in the middle of the tube
with an analytical solution (for kg = 0; see Appendix A). Figure 5.9 shows that the
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Figure 5.9: Temperature in the middle of the tube obtained by numerical and analytical
methods. There are no visible differences.

results are practically the same.

5.2 Two-dimensional simulation of a single-stage PTR

To improve our 1D simulation of the pulse-tube refrigerator, especially in view of wall
effects due to friction and heat transfer, we implement a two-dimensional model for the
tube. The two-dimensional tube model consists of the equations (3.3.26) for the gas
temperature Tg and (3.3.28) for the wall temperature Tw, the equations (3.3.21), (3.3.22)
and (3.3.25) for the axial velocity u, the radial velocity v and the hydrodynamic pressure
p. The boundary conditions are presented in Table 3.1 and the initial conditions similar
to 1D IC plus initial radial velocity as v(z, r, 0) = 0. The pressure of the compressor
is defined by pc(t) = pav − psin(ωt), where pav, p and ω are assumed to be given.
The same physical parameters as in the one-dimensional model are used (Appendix B).
In our simulation we discretise the axisymmetrical tube domain with Nz = 101,Nr =
101 and Nw = 5 grid points in the axial direction, radial direction and in the wall,
respectively.
The numerical results are obtained with the pressure-correction Algorithm 4.2 and the
high-resolution method for the energy equation explained in Section 4.1.2. We solve the
energy equations for the gas and the wall (3.3.26) and (3.3.28) simultaneously with the
boundary and interface conditions given in Table 3.1.
Figures 5.10, 5.11 show the gas and the wall temperature profiles in the tube during a
full cycle of the compressor oscillation together with the corresponding flow fields. The
wall effect due to heat transfer with the wall is clearly visible. There exists a significant
difference in temperature for the gas near the wall and the smooth part in the core of the
domain. The penetration effect (5.1.2) at the cold end and at the hot end is evident. The
temperature profile has most variation near the cold entrance in the “cold layer”, near
the hot entrance in the “hot layer” and near the wall in the “wall layer“. The boundary
layer at the wall is thin. The majority of the temperature profile between the cold layer,
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(b) t̂ = 4.5π (pc = pav − p̄)

(d) t̂ = 5π (pc = pav)

Figure 5.10: Temperature profiles and velocity fields during the third cycle of the com-
pressor oscillation.
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(b) t̂ = 5.5π (pc = pav + p̄)

(d) t̂ = 6π (pc = pav)

Figure 5.11: Temperature profiles and velocity fields during the third cycle of the com-
pressor oscillation.
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(a) Axial velocity

(b) Radial velocity

Figure 5.12: Axial and radial velocities at the end of the third cycle (t̂ = 6π, p = pav).
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hot layer and the wall layer, i.e. the core of the domain the so-called gas piston, stays
smooth.
Figure 5.12 shows the results of the pressure-correction algorithm (Algorithm 4.2) for
the axial and radial velocities. The wall effect is clearly visible in the axial velocity
distribution. The no-slip condition for the velocities and the heat flux at the interface
with the wall create viscous and thermal boundary layers. The entrance effect is well
visible in the radial velocity distributions in Figure 5.12. As observed the radial velocity
varies from zero (the BC at the hot end) with a very big gradient to v = 0.08 [m/s].

5.3 Domain Decomposition method

As explained in the previous section, the cold layer, the hot layer and the boundary
layer on the wall are the high-activity regions in the table. See Figure 5.13. Therefore,
we use the same domain decomposition method as introduced in Section 4.5.

Figure 5.13: The domain decomposition areas in the tube.

5.3.1 Refinement conditions

To optimise the computational efficiency by taking fine sub-grids rather than one fine
uniform grid, we need to find the thicknesses of the high-activity zones. In the core
of the domain the flow and temperature oscillates and behaves quite smoothly. We re-
fine the grid in the high-activity regions and we keep the core of the domain gridded
as coarse as possible thereby still meeting the desired global tolerance. We take a uni-
form grid to obtain a desirable tolerance for all variables in all high-activity regions as
depicted in Figure 5.14. To determine the layer thicknesses we use discrete approxima-
tions of the gradients of T, u, v and p both in radial and axial directions namely

∂T

∂z
,

∂T

∂r
,

∂u

∂z
,

∂u

∂r
,

∂v

∂z
,

∂v

∂r
,

∂p

∂z
,

∂p

∂r
. (5.3.1)
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The final result is the maximum layer’s thickness at the cold end, hot end and the
boundary layer at the wall. The analysis is done for all the variables T, u, v, p at t̂ =
π/2, t̂ = π, t̂ = 3π/2, t̂ = 2π in the first cycle. For instance, the discrete temperature
gradient at t̂ = π/2 is shown in Figure 5.15. The radial variation of the temperature
is high in the boundary layer at the wall. This variation slowly vanishes after almost
one tenth of the tube’s radius. The axial variation of the temperature is high at the one
fifth of the tube’s length at the hot layer and one tenth of the tube’s length at the cold
layer. Similar results are obtained for the other variables. Table 5.1 summarises the
high-activity regions.

Layer Width

Wall layer Lw = r0/10

Cold layer Lc = Lt/10

Hot layer Lh = Lt/5

Table 5.1: High-activity layer widths.

5.3.2 Numerical results

We now have four systems to solve, according to sub-domains sketched in Figure 5.16:

• one is for the coarse grid of dimension (Nz ×Nr),

• one is for the boundary layer at the wall of width Lw, with radial refinement factor
f1 with dimension (Nz × f1Nr),

• one is for the cold layer of width Lc, with axial refinement factor f2 with dimension
(f2Nz ×Nr) and

• one is the hot layer of width Lh, with axial refinement factor f3 with dimension
(f3Nz ×Nr).

Let the dimensionless boundary layer thicknesses be Lw, Lc and Lh (Table 5.1). Since
the radius of the tube is much smaller than its length, we get axial space steps in the
domains (Lc × r0) and (Lh × r0) that are larger than the radial space step

δz(LcorLh) > ∆r.

Thus we may still obtain the time step, ∆t, for these two systems. Let us summarise the
number of grid points and the resulting complexity
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Figure 5.14: View lines at different positions in the tube to monitor the width of the
high-activity regions.

Figure 5.15: Radial and axial variation of the gas temperature at t̂ = π/2 using (5.3.1).
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• fine uniform grid:

– uniform grid: (max(f2, f3)Nz × f1Nr),

– flops: max(f1, f2, f3).(max(f2, f3)Nz × f1Nr)
2

• DD grid:

– coarse grid: (Nz ×Nr),
– Lb grid: (Nz ×Nr(Lbr0 )f1),

– Lc grid: ((LcLt )f2Nz ×Nr),

– Lh grid: ((LhLt )f3Nz ×Nr),
– flops:

(Nz ×Nr)2 + f1(Nz ×Nr(
Lb
r0

)f1)
2 + ((LcLt )f2Nz ×Nr)

2 + ((LhLt )f3Nz ×Nr)
2.

Let us denote f := max(f1, f2, f3), then the gain factor, cf. (4.5.10) is

gf ≈ f 5

1+ f1 3(
Lb
r0

)2 + f2 2(
Lc
Lt

)2 + f3 2(
Lh
Lt

)2
≈ f 3 : f 4. (5.3.2)

Notice that δtLc , δtLh are equal to ∆t. In Table 5.1 we have Lb/r0 = 1/10, Lc/Lt = 1/10

and Lh/Lt = 1/5, for refinement factor f = 10, the gain factor is achieved as 6250 which
is in the order of f4.
The domain decomposition error is computed at one view line in the middle of the
tube (line 2 in Figure 5.14) radially and one axial view line (line B in Figure 5.14) by
||ε||∞ = ||xRef − varDD||∞, where var denotes one of the variables, Tg, u, v and p. Also,
varRef is the solution obtained on a fine uniform grid with Nz = 201, Nr = 201 and
Nw = 11. Table 5.2 shows the estimated error for all the variables calculated with do-
main compositions in radial and axial directions at the end of the third pressure cycle.
In Figures 5.17 and 5.18 the velocity distribution and the temperature profile at the
end of the third pressure cycle obtained by the domain decomposition method are dis-
played. The solution has quite smooth behaviour in the core of the domain and sharp
variation in the boundary layer where it has been refined. The high-activity regions
have refined grids so that the behaviour in these regions is represented more accurately.

5.4 Mass and enthalpy flow, cooling power and efficiency

The mass flow is defined by

ṁ :=

∫
A
ρgudA, (5.4.1)

where A is the cross-sectional area of the tube, u is the axial velocity and ρg is the gas
density. The integration gives the average value in the cross section where for a cylinder
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Figure 5.16: Domain decomposition grids in the tube.

Figure 5.17: Temperature distribution obtained by DD.
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(Nz ×Nr)|uniform = (201× 201)

f 2 5 10

coarse (101× 101) (41× 41) (21× 21)

Lb (101× 21) (41× 21) (21× 21)

Lc (21× 101) (21× 41) (21× 21)

Lh (41× 101) (41× 41) (41× 21)

||εT (axial)||∞ 0.131× 10−2 0.58× 10−2 2.22× 10−2

||εT (radial)||∞ 0.45× 10−2 1.98× 10−2 4.03× 10−2

||εu(axial)||∞ 0.674× 10−2 2.82× 10−2 1.94× 10−2

||εu(radial)||∞ 1.25× 10−2 4.59× 10−2 8.49× 10−2

||εv(axial)||∞ 1.01× 10−6 1.59× 10−5 6.42× 10−5

||εv(radial)||∞ 1.24× 10−6 2.8× 10−5 2.2× 10−4

Table 5.2: Absolute errors ||ε||∞ = ||xRef − xDD||∞ computed by domain decomposition
for all variables Tg, u, v in the tube at the end of the third pressure cycle for three differ-
ent grids.
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dA = 2πrdr. The mass flow is almost harmonic in time. The net or cycle-averaged mass
flow is

ṁ :=
2π

tc

∫t+tc
t

∫r0
0

(ρgur)drdt, (5.4.2)

where tc is the cycle period. The calculated net mass flow at the cold end, the middle
and the hot end are of the order of 10−6 [kg/s]. This is small compared to the mass flow
amplitudes at the cold and hot ends which are of the order of 10−2 [kg/s] after 100 full
cycles.
The cycle-averaged enthalpy flow for ideal gas is computed by

Ḣ :=
1

tc

∫t+tc
t

∫
A

(ρguh)dAdt =
2π

tc

∫t+tc
t

∫r0
0

(ρgucpTgr)drdt. (5.4.3)

In the harmonic approach [65] the cycle-averaged enthalpy flow is estimated by the
following relation (valid only for sinusoidal driving pressure of small amplitude)

Ḣ =
1

2
Corp̄

2, (5.4.4)

where Cor is the orifice conductance and p̄ is the pressure variation. The time-averaged
enthalpy flow in the tube is 225 [W]. The estimated enthalpy flow from (5.4.4) given for
comparison is 188 [W]. This shows the numerical enthalpy flow is of the same order as
the estimated one.
The input power is the energy that we supply to the system. A control section at the
hot end of the regenerator is taken such that it contains the AC and a short part of the
regenerator as shown in Figure 5.19. The input power is

Input Power =
1

tc

∫t+tc
t

∫
Ar

(pcuc)dArdt =
2π

tc

∫t+tc
t

pc

∫r0
0

(ucr)drdt, (5.4.5)

where pc is the driving pressure, uc is the velocity at the compressor side and Ar is the
regenerator cross-sectional area. The coefficient of performance is the ratio of of the cooling
power, which for ideal gas is the cycle-averaged enthalpy flow at the cold end, divided
by the input power,

COP :=
ḢCHX

Power
. (5.4.6)

This coefficient gives the efficiency of the machine which is always smaller than the
Carnot efficiency

COPCarnot :=
TC

TH − TC
. (5.4.7)

After 150 pressure cycles, the following numerical results are obtained:

• the cooling power: 225 [W]

• the input power: 1873 [W]
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• COP: 0.12.

The efficiency of the simulated machine is about 50% of the Carnot efficiency which is
(60/240) = 0.25. This, of course, is too much over-estimated for a real system, but our
computation is based on ideal heat exchangers and constant material properties of gas
and solid.

5.5 Conclusion

In this chapter we have presented numerical results obtained for a typical single-stage
PTR. We have shown the one-dimensional results for the velocity and the temperature
of the gas in the pulse-tube together with the gas velocity, gas temperature, material
temperature and pressure in the regenerator. The regenerator simulation as well as the
implicit coupling method between the pulse tube and the regenerator are new com-
pared to previous work at TUE.
We have explained the importance of choosing the initial condition for the temperature
in the pulse tube. In this method we have applied the new idea of using the maximum
penetration depths at both sides of the pulse tube, of the HHX and of the CHX, to pre-
vent the temperature profile to have unwanted peaks in the oscillations.
We have presented two-dimensional results for a typical single-stage PTR (that is 2D
pulse-tube and 1D regenerator), where all the effects of friction and heat transfer with
the wall are included. New in this part is that an implicit coupling algorithm has been
applied to connect the 2D pulse tube and the 1D regenerator properly. In this way, pres-
sure continuity, mass and enthalpy conservation are maintained at the interface. The
initial condition for the 2D gas temperature was imposed in the same style as that in
the 1D model, so to prevent unwanted peaks of the 2D gas temperature profile of the
oscillations.
One new addition is that the 2D simulation was improved by using a domain decom-
position method to increase the efficiency of computation in terms of CPU complexity
and memory storage. The corresponding efficiency parameter introduced in Chapter 4,
namely the gain factor, is of the order of 104.



Figure 5.18: Axial velocity distribution obtained by DD.

Figure 5.19: Control volumes for computing the enthalpy flows at CHX and HHX and
the input power at AC.



Chapter 6

Numerical results for the
three-stage PTR

In this chapter we simulate two different three-stage double-inlet PTRs, one existing
laboratory system operating at low frequency to illustrate our code and the other one
operating at high frequency as stated in the final goal of this project. The numerical
results obtained for a real gas are in terms of velocity, density, and gas and solid temper-
atures. The pressure and temperature dependent material properties of gas and solids
are taken into account because these are significant in the very low temperature range
reached in the third regenerator and tube. Our numerical simulations show that the
settings of the three main orifices and the three double-inlets are crucial in finding the
lowest possible temperature.

6.1 Three-stage PTR configurations

A schematic picture of a three-stage PTR is shown in Figure 6.1. First, we simulate the
three-stage PTR set-up in the laboratory of the Applied Physics Department of TU Eind-
hoven operating at low frequency (1.2 Hz) and reaching a lowest reported temperature
of 2.19 K [67] at CHX3. The average pressure pav = 16.40 [bar] and the pressure ampli-
tude p̄ = 3.77 [bar]. The dimensions and the solid material properties of this three-stage
PTR, referred to as PTR3-I, are presented in Table 6.1. The physical parameters and
corresponding non-dimensional numbers used in the PTR3-I simulation are given in
Appendix C.
Figure 6.2 is a schematic picture of the original set-up of PTR3-I [67]. The machine is
a GM-type cooler with 9 tuning orifices. These are: three main orifices, three double-
inlets and three minor orifices. The other valves are either fully open or fully closed. In
the simulation we replace the GM compressor by a Stirling piston operating at the same
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Figure 6.1: Schematic picture of the three-stage pulse-tube refrigerator.

PTR3-I Stage I Stage II Stage III

Pulse tube Inner diameter [mm] 20.0 12.1 7.65
Length [mm] 141 204 430

Regenerator

Inner diameter [mm] 34 20 14
Length [mm] 141 130 155

Material Stainless steel Lead ErNi
Porosity 0.682 0.60 0.60

Table 6.1: Dimensions and solid material properties of the low-frequency PTR3-I.
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frequency of 1.2 Hz. The three main orifices and the three double-inlets, whose roles are
more prominent than the remaining three, are taken into account in the simulation. See
Fig. 6.1. The simulation is that of a low-frequency PTR, for which experimental data is
available, and it serves as a validation for the developed model.

Figure 6.2: Schematic picture of PTR3-I. 1 - compressor; 2 - rotary valve; 3 - regenerator;
4-6 pulse tubes; 7-9 hot heat exchangers; 10-12 cold heat exchangers; 13-15 buffers;
16-18 first orifices; 19- 21 double-inlet valves; 22-24 minor orifices; 25 1st heat shield;
26 2nd heat shield; 27 cryostat; 28 bypass valve [67].

Second, a high-frequency PTR (20 Hz), referred to as PTR3-II, is modeled using the same
materials as PTR3-I but with different geometry. The geometry of PTR3-II is given in Ta-
ble 6.2. These data have been provided by the low-temperature group of the Applied
Physics Department of TU Eindhoven. The physical parameters and corresponding
non-dimensional numbers used for the PTR3-II simulation are given in Appendix C.

6.2 Mass and enthalpy flow, cooling power and efficiency

In this section the essential quantities that determine the efficiency of PTRs are given.
All of them are found by post-processing the data computed in the simulations.
The mass flow is

ṁ = ρguA (6.2.1)
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PTR3-II Stage I Stage II Stage III

Pulse tube Inner diameter [mm] 24.6 7.0 5.0
Length [mm] 67.5 246 285

Regenerator

Inner diameter [mm] 72 32 19
Length [mm] 65 78.5 70

Material Stainless steel Lead ErNi
Porosity 0.682 0.60 0.60

Table 6.2: Dimensions and solid material properties of the high-frequency PTR3-II.

and the cycle-averaged mass flow is computed by

ṁ =
1

tc

∫t+tc
t

(ρguA)dt ′, (6.2.2)

where tc is the cycle period. The cycle-averaged or net mass flow is theoretically zero
when the system has reached its steady oscillating state. The cycle-averaged enthalpy
flow in the tube is computed for ideal gas by

Ḣt =
1

tc

∫t+tc
t

(ρguAth)dt ′ =
Atcp
tc

∫t+tc
t

(ρguTg)dt
′. (6.2.3)

The enthalpy flow calculation in terms of real gas and temperature dependent heat ca-
pacity cp and temperature-pressure dependent Hp is given by

Ḣt =
1

tc

∫t+tc
t

(ρguAt∂h)dt ′ =
At
tc

∫t+tc
t

ρgu(cp∂Tg +
1

M
Hp∂p)dt

′, (6.2.4)

where cp is given by (2.2.3) and Hp is given by (3.4.7). Since the heat capacity and Hp
depend on the temperature and/or pressure, we need to compute the average enthalpy
for small changes of temperature ∂Tg and pressure ∂p which are calculated locally in
the post-processing, i.e. they are the properties at the discretised point at CHX.
The basic cooling power, which is equal to the cycle-averaged enthalpy flow in the pulse
tube, can be estimated for ideal gas by [15, 16]

Ḣt =
1

2
Cor3p̄

2
t3
, (6.2.5)

where p̄t3 is the pressure amplitude in the third tube and Cor3 is the conductance of the
third orifice.
The cycle-averaged enthalpy flow for real gas in the regenerator is computed by

Ḣr :=
1

tc

∫t+tc
t

(ρguφAr∂h)dt ′ =
φAr
tc

∫t+tc
t

ρgu(cp∂Tg +
1

M
Hp∂p)dt

′. (6.2.6)
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The cooling power QL, which is the cycle-averaged (net) enthalpy flow at the cold end
of stage III minus the net enthalpy flow in the third regenerator, is then computed by

QL = Ḣt − Ḣr. (6.2.7)

If the heat flow due to conduction in the regenerator is taken into account, energy con-
servation gives

Ḣr +Qc +QL = Ḣt, (6.2.8)

where Qc is the heat flow at CHX in the regenerator towards inside the regenerator.
Since the conductivity of the solid depends on the temperature,Qc is calculated numer-
ically for small changes of conduction at the cold part of the solid. The more realistic
relation (6.2.8) shows that the cooling power is diminished by the heat and enthalpy
flow in the regenerator if the gas is real. For ideal gas and an ideal regenerator solid

Qideal
L = Ḣt. (6.2.9)

6.3 Numerical results

The simulation of a three-stage PTR with ideal gas and constant material properties is
described in [25]. Here we use a real-gas equation of state, which is the Van der Waals
equation (3.1.12), and real material properties for gas and regenerator solid (Section 2.3)
in the whole system. The heat exchangers are still considered to be ideal. This assump-
tion may lead to over-estimation of cooling power in all stages. We solve the governing
equations for the three tubes consisting of (3.4.15), (3.4.18), (3.4.19) with the boundary
conditions (3.2.60), (3.4.38), (3.4.39) and initial conditions for the velocity (3.2.70) and the
temperature (in the way that was explained in Section 5.1.2), together with the equations
for the three regenerators including (3.4.32), (3.4.33), (3.4.35), (3.4.36), (3.4.37) with the
boundary equations (3.4.41), (3.4.42) and (3.5.7). The pressure at the compressor side is
defined by pc(t) = pav + psin(ωt), with given values pav, p and ω, as the boundary
condition for regenerator I in (3.4.32). The boundary condition for equation (3.4.32) is
pressure continuity (3.5.1) at the junctions. The results for the three-stage PTRs are ob-
tained with the numerical methods summarised in Algorithm 4.3, Algorithm 4.4 and
Algorithm 4.5. The working fluid in the PTR is helium.

6.3.1 Low frequency PTR3-I

To validate our code to a certain extent we simulate the three-stage PTR set-up in the
laboratory of the Applied Physics Department of TU Eindhoven that operates at a low-
frequency of 1.2 Hz [67]. See Section 6.1. The tubes are discretised in NT1 = 114,NT2 =
126,NT3 = 266 points and the regenerators in NR1 = 88,NR2 = 81,NR3 = 95 points
so that ∆z is identical in all regenerators and tubes. The time-step is ∆t = 0.25∆z.
We assign constant temperatures at the junctions one, two, and three, together with



120 Numerical results for the three-stage PTR

Test-case α1 α2 α3 αd1 αd2 αd3 TC1 TC2 TC3 QL1 QL2 QL3
[-] [-] [-] [-] [-] [-] [K] [K] [K] [W] [W] [W]

Trial-1 1.5 2.5 3.5 1.0 1.0 1.0 60 30 10 -1.77 2.77 0.2
Trial-2 1.5 2.5 3.5 1.0 1.0 1.0 58 30 10 -3.30 2.64 0.19
Trial-3 2.0 2.2 2.9 1.0 1.0 1.0 55 23 6.5 -0.3 3.29 -0.27
Trial-4 1.9 2.3 2.8 1.0 1.0 1.0 56 23.5 7 -0.66 3.34 -0.24
Trial-5 1.9 2.3 2.65 1.0 1.0 1.0 56.5 23 7.5 -0.41 3.42 -0.14
Trial-6 1.9 2.2 2.75 1.0 1.0 1.0 57 23.5 9 -0.08 2.81 0.22
Trial-7 1.9 2.2 2.75 1.0 1.0 1.0 57 23.5 8 2.87 3.74 -0.19
Trial-8 2.0 2.5 3.0 0.05 0.07 0.095 89.0 28.0 8.0 -1.210 -0.270 -0.180
Trial-9 2.0 2.5 3.0 0.01 0.07 0.095 96.0 35.0 8.7 -6.730 0.320 0.150
Trial-10 2.0 2.5 3.0 0.02 0.06 0.095 96.0 33.0 8.5 -2.280 0.160 0.120
Trial-11 2.0 2.5 3.0 0.02 0.06 0.095 101.0 31.0 8.0 -2.40 -0.055 0.0006
Trial-12 2.0 2.5 3.0 0.023 0.062 0.09 103.0 31.0 8.0 -1.77 -0.090 -0.080
Trial-13 2.0 2.5 3.0 0.023 0.061 0.092 105.0 31.0 8.0 -1.80 -0.210 -0.120
Trial-14 2.0 2.5 3.0 0.015 0.06 0.095 107.0 31.0 8.0 -4.10 -0.020 -0.010
Trial-15 2.0 2.5 3.0 0.025 0.062 0.099 91.0 25.0 8.2 -1.120 0.040 -0.004
Trial-16 2.0 2.5 3.0 0.02 0.06 0.095 101 31 7 -3.54 2.68 -1.05

Table 6.3: Cooling powers calculated at three CHXs with three fixed CHX temperatures
based on six orifice settings for PTR3-I; αi: main orifice settings, αdi : double-inlet set-
tings, TCi : cold temperatures at CHXs, QLi : cooling power at the junctions.

the settings for the orifices and double-inlets. Other physical properties such as average
pressure, the driving pressure amplitude and material properties of gas and regenerator
solids are fixed. The three initial temperature distributions in the tubes are based on
the approach presented in Section 5.1.2. Three linear profiles, connecting the junction
temperatures, are defined as initial conditions of the gas and solid temperatures in the
regenerators. The lowest possible temperature in the system is found at CHX3. This
temperature occurs when the cooling power at CHX3 is zero. The six orifice settings,
α, have crucial roles in the efficiency of the system. They are used to calculate the flow
orifice conductance Cor according to [16]

Cor =
AtωLt
αγpav

, (6.3.1)

where At is the cross section of the tube, ω is the angular frequency, Lt is the length of
the tube, γ is the heat capacity ratio and pav is the average pressure in the system. The
double-inlet is used to reduce the flow resistance in the system to affect the final cooling
power.
The cooling power at the third CHX and the corresponding lowest temperature deter-
mine the efficiency of the PTR. We are left with a problem with six degrees of freedom,
namely the six orifice settings. To find the optimal values of these parameters we need
to employ a sophisticated algorithm of optimisation. Alternatively, we can use a trial-
and-error method to minimise the lowest temperature. This means that first the tem-
peratures at the CHXs are assigned fixed values. These temperatures are initially much
higher than the ones achieved (after much tuning) in the physical experiment. The cool-
ing powers are then positive. We lower the temperatures in small steps using the same
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Figure 6.3: Cold end temperatures in the three-stage low-frequency PTR3-I (Trial-11).
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orifice settings. The calculated cooling powers decrease too. Whenever we calculate
negative cooling powers, we change the orifice settings to increase the cooling powers
to values close to zero. This procedure is indeed cumbersome and normally it is not
straightforward, because increasing or decreasing one parameter causes completely ir-
regular result in the final cooling power which is not necessarily lower than that of the
last case. The final calculated cooling power at each CHX is highly sensitive to mod-
ification of each of the six orifice settings. In addition, as the numerical experiments
showed, the varied parameters have different contributions to the final cooling power
for different PTR systems, i.e. they may be different and follow even multiple tracks for
the low-frequency and high-frequency PTRs. Therefore, in this section, we only demon-
strate the cooling power achieved by the low-frequency PTR3-I for a fixed number of
orifice settings. See Table 6.3.
The main orifice settings α1, α2, α3 are fixed such that almost zero net mass flow re-
mains. The global behaviour of the system is very sensitive to changes in the double-
inlet settings. Fig. 6.3 shows the temperature plots at three CHXs for a typical choice
of the orifice settings (Trial-11) for which the second and the third CHX’s almost zero
cooling (heating) powers are −0.020 [W] and 6.0× 10−4 [W]. The temperature histories
show an initial unsteady transition period. To get an idea of the experimental tempera-
tures at the CHXs: they were reported as TC1 = 79.5 [K], TC2 = 26.1 [K] and TC3 = 2.19

[K] [67].
It is worth mentioning that in practice the cooling down process takes much longer
time than in the simulation, because initially the whole system is at the ambient tem-
perature. There are some other features, such as enthalpy loss due to non-adiabatic in-
sulating chamber, non-ideal heat exchangers and wall effects, which make the process
even longer to reach a low temperature at steady oscillatory state.

6.3.2 High frequency PTR3-II

We simulate the PTR3-II high-frequency system. The tubes are discretised in NT1 =
53,NT2 = 193,NT3 = 224 points and the regenerators in NR1 = 51,NR2 = 62,NR3 = 55

points so that ∆z is identical in all regenerators and tubes. The time-step is ∆t = 0.1∆z.
Since we have a system with faster oscillating gas and shorter cycles, the CFL condi-
tion is taken stricter than in the low-frequency PTR. We define initial temperatures for
the tubes and the regenerators in the same way as in the low-frequency system. We
follow a trial-and-error method (as in Section 6.3.1) to find the optimal values of the ori-
fice settings. Here, we calculate the three cooling powers in the high-frequency PTR3-II
by changing the orifice settings. See Table 6.4. The trial simulations aim to find the
lowest temperature at cooling powers approaching zero at all CHXs. The lowest tem-
perature reached in this way is TC3 = 5.0 [K] (Trial-35). Our simulations are based on
assumptions and simplifications. Therefore, the final settings for such a high-frequency
system in practice could be different. Nevertheless, the values suggested here may be
reasonably good choices for the practical cases to start with. The simulations also in-
dicate what is theoretically possible. Figure 6.4 shows the temperature versus cooling
power plot for real gas. The orifice settings for these simulations are α1 = 2.0, α2 = 2.5,
α3 = 3.0, αd1 = 0.16, αd2 = 0.15, αd3 = 0.41. A zero cooling power is computable and
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occurs at about T = 8.35 [K]. Temperature and/or pressure dependent material proper-
ties together with real gas is crucial in such a range of temperature. Using real gas, it is
not possible to reach temperatures lower than 7.0 [K] with these orifice settings, i.e. the
simulation collapses after a couple of full cycles when specifying temperatures at CHX3
lower than 7.0 [K]. We need to find the optimal values of orifice settings for which the
simulation stays stable, with no net mass flow and possibly with zero cooling power at
CHX3. The optimal values of the orifice settings causing the lowest possible tempera-
tures at CHX3 are listed in Table 6.4, which is the result of more than one thousand runs
with different orifice settings and CHX temperatures.

Figure 6.4: Temperature versus cooling power for real gas with temperature and/or
pressure dependent material properties based on the orifice settings α1 = 2.0, α2 = 2.5,
α3 = 3.0, αd1 = 0.16, αd2 = 0.15, αd3 = 0.41 (Trial-5).

In the remaining of this section the results of the PTR3-II simulation obtained in Trial-27
are discussed. Fig. 6.5 shows the pressure variations in the three buffers. The pressure
variations are in phase and reach an oscillatory steady state ensuring zero net mass flow
towards the buffers. This occurs after approximately 1.5 seconds.
Fig. 6.6 and Fig. 6.7 show the velocities and pressures at different positions for all
three stages during gas oscillation. The small pressure drop is caused by the combined
resistance of the regenerators and the double-inlets. Using double-inlets reduces the
dissipation in the regenerator which causes the pressure drop to be lower than in the
case without double-inlets. The velocity decrease is caused by the compressibility and
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Test-case α1 α2 α3 αd1 αd2 αd3 TC1 TC2 TC3 QL1 QL2 QL3
[-] [-] [-] [-] [-] [-] [K] [K] [K] [W] [W] [W]

Trial-1 2.0 2.5 3.0 0.16 0.15 0.41 100 25 10 2.61 1.57 0.16
Trial-2 2.0 2.5 3.0 0.16 0.15 0.41 100 25 7 3.1 2.3 -0.23
Trial-3 2.0 2.5 3.0 0.16 0.15 0.41 100 25 8.5 2.84 1.93 0.037
Trial-4 2.0 2.5 3.0 0.16 0.15 0.41 100 25 8.4 2.85 1.96 0.017
Trial-5 2.0 2.5 3.0 0.16 0.15 0.41 100 25 8.3 2.87 1.99 -0.0036

Trial-6 2.0 2.5 3.0 0.2 0.2 0.2 75 25 6.0 4.0 -3.0 -6.0
Trial-7 2.0 2.5 3.0 0.15 0.16 0.35 60 15 6.0 1.71 1.27 -0.2
Trial-8 2.0 2.5 3.0 0.14 0.15 0.38 60 15 6.0 -1.1 0.47 -0.16
Trial-9 2.0 2.5 3.0 0.11 0.13 0.42 65 18 5.0 -4.50 0.02 -0.17
Trial-10 2.0 2.5 3.0 0.13 0.125 0.44 65 18 5.0 -7.30 -1.47 -0.21
Trial-11 2.0 2.5 3.0 0.15 0.15 0.45 75 20 5.0 2.03 1.84 -1.15
Trial-12 2.0 2.5 3.0 0.15 0.15 0.48 73 18 5.0 0.24 1.25 -0.15
Trial-13 2.0 2.5 3.0 0.14 0.15 0.48 73 18 5.0 0.36 1.59 -0.15
Trial-14 2.0 2.5 3.0 0.16 0.15 0.48 73 18 5.0 0.083 1.10 -0.148
Trial-15 2.0 2.5 3.0 0.16 0.16 0.48 73 18 5.0 2.60 2.0 -0.13
Trial-16 2.0 2.5 3.0 0.16 0.14 0.48 73 18 5.0 -3.20 -0.09 -0.18
Trial-17 2.0 2.5 3.0 0.16 0.1415 0.48 75 18 5.0 -2.11 0.91 -0.13
Trial-18 2.0 2.5 3.0 0.15 0.145 0.48 80 16 4.5 -4.38 0.10 -0.12
Trial-19 1.5 2.5 3.0 0.15 0.145 0.48 80 16 4.5 -5.20 -0.53 -0.13
Trial-20 2.5 2.5 3.0 0.15 0.145 0.48 80 16 4.5 -4.50 0.107 -0.13
Trial-21 3.0 3.5 4.0 0.15 0.145 0.48 80 16 4.5 -8.90 -2.0 -0.18
Trial-22 2.5 2.9 3.5 0.15 0.145 0.48 80 16 4.5 -6.30 -1.01 -0.15
Trial-23 2.3 2.8 3.2 0.15 0.145 0.48 82 17 4.5 -4.70 -0.09 -0.13
Trial-24 1.9 2.75 2.9 0.15 0.145 0.48 82 17 4.5 -5.60 0.025 -0.13
Trial-25 2.0 2.5 3.0 0.16 0.16 0.35 74 15 4.5 1.68 1.58 -0.106
Trial-26 2.0 2.5 3.0 0.16 0.16 0.51 78 18 4.5 1.82 2.75 -0.10
Trial-27 2.0 2.5 3.0 0.16 0.16 0.46 78 16 4.5 0.92 2.29 -0.08
Trial-28 2.0 2.5 3.0 0.16 0.16 0.41 78 16 4.5 1.34 2.21 -0.08
Trial-29 2.0 2.5 3.0 0.16 0.16 0.38 71 13 4.5 -1.11 1.03 -0.077
Trial-30 2.0 2.5 3.0 0.16 0.16 0.4 75 15 4.5 0.68 1.67 -0.07
Trial-31 2.0 2.5 3.0 0.16 0.15 0.48 80 17 5.0 -1.1 0.93 -0.14
Trial-32 2.0 2.5 3.5 0.16 0.15 0.48 80 17 5.0 -0.57 -0.31 -0.13
Trial-33 2.0 2.5 4.0 0.16 0.15 0.48 80 17 5.0 -0.18 -0.15 -0.12
Trial-34 2.0 2.5 4.5 0.16 0.15 0.48 80 17 5.0 -1.8 -0.7 -0.13
Trial-35 2.0 1.5 4.5 0.16 0.15 0.48 75 17 5.0 7.04 0.51 -0.086
Trial-36 1.2 1.0 4.5 0.16 0.15 0.48 70 17 5.0 12.92 0.6 -0.047
Trial-37 1.2 1.0 4.5 0.12 0.15 0.48 70 17 5.0 8.83 -1.95 -0.017
Trial-38 1.2 1.0 4.5 0.50 0.15 0.48 70 17 5.0 10.1 -1.23 -0.017
Trial-39 1.2 1.0 4.5 0.80 0.15 0.48 70 17 5.0 9.34 -1.67 -0.015
Trial-40 1.2 1.0 5.0 0.80 0.15 0.48 70 17 5.0 9.60 -1.89 0.0003

Table 6.4: Cooling powers calculated at three junctions with three given CHX tempera-
tures based on six orifice settings for PTR3-II; αi: main orifice settings, αdi : double-inlet
settings, TCi : cold end temperatures at CHXs, QLi : cooling power at the junctions.
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Figure 6.5: Buffer pressure variations for the first 1.75 [sec].

the decrease of temperature and pressure per tube. Due to the specified orifice set-
tings, the velocity amplitudes in tube II are almost twice larger than those in tube I
and tube III. See Fig. 6.6. The velocity amplitudes are based on the volume flows as-
signed at the hot ends of tubes. The main boundary condition for the velocity is the
one at the tube’s hot end and the volume flow at each tube’s hot end is computed by
(3.2.56). This relation represents the proportionality of the volume flow to the pres-
sure differences between the tube and the buffer (first term) together with the pressure
difference between the compressor and the tube (second term), which are multiplied
by the conductance of the main orifices and the double-inlets, respectively. All these
variables are depending on each other so that we cannot choose one orifice setting in
such a way that the pressure amplitude does not change. Therefore, we can expect
different situations for the velocity amplitudes by changing the orifice settings. Here
the conductance of the three main orifices are Cor1 = 1.0079 × 10−8[m3/Pa.s], Cor2 =
2.9742 × 10−9[m3/Pa.s], Cor3 = 6.8606 × 10−10[m3/Pa.s], and the conductance of the
three double-inlets are Cdi1 = 1.0079× 10−8[m3/Pa.s], Cdi2 = 2.9742× 10−9[m3/Pa.s],
Cdi3 = 6.8606× 10−10[m3/Pa.s].
The velocity amplitudes at the cold end of the regenerators I and II indicated as R-Cold
I and R-Cold II, respectively, in Fig. 6.6 are decreasing with the distance from the com-
pressor due to the resistance of the porous media. This is more crucial in the third stage
where the velocity amplitude is very low. Consequently, according to Darcy’s law, this
causes the pressure gradient in the third regenerator to be very low. As Fig. 6.7 shows,
the pressure amplitudes at both sides of the regenerator III are almost the same, i.e. the
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Figure 6.6: Velocity variations in the three-stage PTR.

pressure gradient is almost negligible. This is caused by the short length of the third
regenerator and small velocity amplitude. Of course, by changing the orifice settings
we may attain different values.
Fig. 6.8 gives the temperatures at the cold ends of the tubes. There are transition times
in which the influence of the initial conditions damps out. The temperature profiles
attain oscillatory steady state after about 60 cycles, but this can be hugely different in
practical cases where the cooling down is from room temperature.
The net mass flows in the tubes per cycle are about 1.15× 10−8[kg/s], 3.8× 10−9[kg/s]
and 4.8× 10−8[kg/s], which is to be compared with mass flow amplitudes of the order
of 10−4 [kg/s] at the middle of the tubes. It means that net mass transport has almost
vanished. Of course, based on the numerical errors due to the applied discretisation
method we may get net mass flow in the simulation after a very long time. The calcu-
lated averaged enthalpy flow (6.2.3) after 7.5 [sec] is 3.20 [W], 1.35 [W] and 0.57 [W] for
the first, the second and the third tube, respectively. The corresponding roughly esti-
mated values (6.2.5) are 2.80 [W], 0.71 [W] and 0.39 [W]. The calculated enthalpy and
mass flows in the three tubes are shown in Fig. 6.10 and 6.11 respectively. Remark: the
average enthalpy is not zero, i.e. Ḣ 6= 0 and the average mass flow is almost zero, i.e.
ṁ 6= 0, though both show similar behaviour.
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Figure 6.7: Pressure variations in the three-stage PTR3-II during three full cycles.

6.4 Conclusion

We simulated two different three-stage double-inlet PTRs, one existing laboratory sys-
tem operating at low frequency to qualitative verify our code and the other one oper-
ating at high frequency as stated in the final goal of this project. The numerical results
obtained for a real gas are in terms of velocity, density and gas and solid temperatures.
The pressure and temperature dependent material properties of gas and solids are taken
into account because these are significant in the very low temperature range reached in
the third regenerator and tube. The method employed here to attain physically steady
results is based on three pre-assigned temperatures at the CHXs. This means we are
left with an optimisation problem of nine degrees of freedom, namely six orific settings
and three cold temperatures. The calculated cooling power at each CHX is highly sen-
sitive to modification of each of the six orifice settings. As the numerical experiments
showed, the varied parameters have different contributions to the final cooling power
for different PTR systems, i.e. they may be different and follow even multiple tracks
for the low-frequency and high-frequency PTRs. Therefore, in our investigation, we
only demonstrated the cooling power achieved by the low-frequency PTR3-I for a fixed
number of orifice settings and we focused on finding the optimal orifice values for the
high-frequency PTR to reach the lowest possible temperature. Our numerical simula-
tions showed that the settings of the three main orifices and the three double-inlets are
crucial in finding the lowest possible temperature. We were able to cool down to 5 K.
Finally, the developed software provides a tool for estimating the essential parameters
of cooling systems, such as temperature, velocity, mass flow, enthalpy flow, which leads
to a deeper understanding of heat transfer, fluid-wall interaction, boundary layers, etc.
It is a suitable platform to optimise a three-stage PTR in terms of geometry, pressure
amplitude (input power), and material properties, so to reach the lowest possible tem-
perature or to gain the highest coefficient of performance.
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Figure 6.8: Cold end temperatures in the three-stage PTR.
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Figure 6.9: Zoom on the CHXs’ temperatures for the last 10 cycles of Fig. 6.8.



Figure 6.10: Mass flow in the middle of the three tubes.

Figure 6.11: Enthalpy flows in middles of three pulse tubes.



Chapter 7

Conclusions and
recommendations

The development of an accurate mathematical model and an efficient numerical method
to simulate a three-stage PTR operating at high frequencies was the final goal of the
project. To accomplish this mission we first improved and extended an existing single-
stage model both in 1D and 2D. The improvements included correcting small mistakes
and enhancing the accuracy and efficiency of the computation. The extension was the
modeling of the regenerator.
The general design and operation of multi-stage PTRs was explained and the physical
benefit of a double-inlet described. The necessary temperature and pressure dependent
material properties of helium and of the regenerator solid were formulated. We de-
rived a mathematical model describing the fluid flow and heat transfer in PTRs. The
flow was shown to be laminar for the systems considered in the Chapters 5 and 6. The
heat exchangers were assumed to operate ideally. One-dimensional formulations for
the pulse-tube and the regenerator with connecting interface conditions were given. A
two-dimensional formulation was derived for the pulse-tube (including solid wall) al-
lowing the investigation of wall effects due to heat transfer and skin friction.
One new item in the modelling of multi-stage PTRs was the use of non-ideal (Van der
Waals) gas so that a more realistic behaviour at extremely low temperatures was ob-
tained. Proper junction conditions were formulated based on the local conservation of
mass, momentum and energy.
The domain of computation in 2D was of simple cylindrical shape and therefore a finite-
difference (FD) method has been used to discretise the equations. The new component
here is the domain decomposition (DD) technique that hugely improved the efficiency
of the 2D computation of the tube. The storage of data and computations were done
with smaller systems than in the case of an entirely uniform grid. We only needed
to deal with a structured A-matrix which has big advantages compared with tensor
grids [48]. In addition, much larger time steps were allowed because of a less restrictive
CFL condition in comparison with that of the tensor grid.
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One single-stage and two different three-stage double-inlet PTRs have been simulated
and analysed. The cooling power at each CHX in the three-stage machines appeared to
be highly sensitive to each of the six varied orifice settings. Nevertheless, the simulated
high-frequency machine was able to cool down to 5 K.
A working tool for simulating single- and multi-stage PTRs has been developed. The
software can be improved in several ways, for example through a more realistic mod-
elling of the heat exchangers. The 2D simulation of multi-stage PTRs has not been car-
ried out in this project, but would be a logical next step, knowing that the applied DD
method guarantees computational efficiency. The biggest challenge however is the de-
velopment of a smart optimisation algorithm.



Appendix A

Analytical solution

In this appendix an analytical solution is obtained for the 1D pulse tube assuming in-
viscid flow without heat conduction. Fluid viscosity, thermal conductivity and heat
exchange with the wall are ignored in the momentum equation (3.2.8) and energy equa-
tion (3.2.9).

A.1 Governing equations

The pressure is uniform in space and the energy equation simplifies to

∂p

∂z
= 0, (A.1.1)

ρcp

(
∂T

∂t
+ u

∂T

∂z

)
=
dp

dt
, (A.1.2)

We have then two equations for two unknowns velocity u and temperature T . The
pressure p is given as a function of time and the density ρ is computed by

ρ = p/(RmT). (A.1.3)

The following exact solutions are obtained when using the method of characteristics

Pressure: p(t) = pav + p̄sin(ωt), (A.1.4)

Velocity: u(z, t) =
−1

γ

d

dt
ln(p(t))z+ u(z0, t), (A.1.5)
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Displacement: z(z0, t0, t) =

∫t
t0

u0(τ)

(
p(τ)

p(t)

) 1
γ

dτ+ z0

(
p(t0)

p(t)

) 1
γ

, (A.1.6)

Temperature: T(z0, t0, t) = T(z0, t0)

(
p(t0)

p(t)

)1− 1
γ

, (A.1.7)

Density: ρ(z0, t0, t) =
p(t)

RmT(z0, t0, t)
. (A.1.8)

where z0, t0, u0 are the initial position, time and velocity of the gas at a certain point on
the boundary of the z-t domain.
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Physical data

B.1 Single-stage Pulse-Tube Refrigerator

The material properties of gas and regenerator material, of the simulated single-stage
PTR in this study are listed in Table B1 with the corresponding dimensionless values in
Table B.2.

B.2 Three-stage Pulse-Tube Refrigerator.

The geometrical and material properties of the three-stage PTR simulated in this study
are listed in Tables B.3-B.7. The values correspond to a machine built in the Department
of Applied Physics.
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Symbol Definition Value

fr frequency 20 Hz
ω angular frequency 125.66 s−1

ρ̄ gas density 4.7 kg m−3

ū gas velocity 1.0m s−1

µ̄ viscosity 2.0× 10−5 Pa s
k̄g gas thermal conductivity 1.58× 10−1 W m−1 K−1

c̄g gas specific heat capacity 5.2× 103 J kg−1K−1

p̄ pressure oscillation amplitude 5× 105 Pa
pav average pressure 3× 106 Pa
Ta ambient temperature 300 K
Rm specific gas constant 2.1× 103 J kg−1K−1

At cross-sectional area of tube 1.96× 10−3 m2

Cor flow conductance of the orifice 10−8 m3 Pa−1s−1

Lt length of tube 0.2m
Lr length of regenerator 0.2m
TH hot end temperature 300 K
TC cold end temperature 60 K
Vb buffer volume 10−3 m3

φ porosity 0.7

κ permeability 3.2× 10−10 m2

β heat transfer coefficient 9× 107 W m−3K−1

ρr regenerator material density 7.8× 103 kg m−3

cr regenerator specific heat capacity 400 J kg−1 K−1

k̄r regenerator thermal conductivity 1.5W m−1 K−1

Table B.1: Physical data for the simulated single-stage pulse-tube refrigerator (material
properties at 300 K).
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Symbol Definition Typical Value
(fr = 20 [Hz])

Re ρ̄ū2/µ̄ω 1.87× 103
Ma ū/(pav/ρ̄)

1/2 1.3× 10−3

Pr cpµ̄/k̄g 0.66

Peg RePr 1.231× 103
Per ρrcru

2/krω 4.965× 103
A p̄/pav 0.1667

B pav/ρ̄RmTa 1.0132

C Corpav/Atū 15

D kµu2/φpavωk 2.2× 10−4

E0 p̄b/pav 1.008

γ cg/cv 5/3

β∗g β/ρcgφω 46.51

β∗r β/ρrcr(1− φ)ω 0.8502

Table B.2: Dimensionless parameters for the simulated single-stage pulse-tube refriger-
ator.
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Table B.3: Geometrical properties.

Symbol Definition Value

dt1 diameter of the 1st tube 24.6 mm
dt2 diameter of the 2nd tube 7 mm
dt3 diameter of the 3rd tube 5 mm
dr1 diameter of the 1st regenerator 72 mm
dr2 diameter of the 2nd regenerator 32 mm
dr3 diameter of the 3rd regenerator 19 mm
Lt1 length of the 1st tube 67.5 mm
Lt2 length of the 2nd tube 246 mm
Lt3 length of the 3rd tube 285 mm
Lr1 length of the 1st regenerator 65 mm
Lr2 length of the 2nd regenerator 78.5 mm
Lr3 length of the 3rd regenerator 70 mm
Vb1 1st buffer volume 10−3 m3

Vb2 2nd buffer volume 10−3 m3

Vb3 3rd buffer volume 10−3 m3
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Table B.4: Regenerator material properties.

Symbol Definition Value

Material kind 1st regenerator stainless steel
Material kind 2nd regenerator lead
Material kind 3rd regenerator ErNi

cr reg. specific heat capacity 400 J kg−1 K−1

κ reg. permeability 3.0× 10−11 m2

k̄g gas thermal conductivity 1.58× 10−1 W m−1 K−1

k̄r1 1st reg. thermal conductivity 10W m−1 K−1

k̄r2 2nd reg. thermal conductivity 5W m−1 K−1

k̄r3 3rd reg. thermal conductivity 5W m−1 K−1

ρr1 1st reg. density 7800 kg m−3

ρr2 2nd reg. density 11350 kg m−3

ρr3 3rd reg. density 9400 kg m−3

φ1 1st reg. porosity 0.682

φ2 2nd reg. porosity 0.6

φ3 3rd reg. porosity 0.6

β reg. heat transfer coefficient 108 W m−3 K−1

Table B.5: 4He properties.

Symbol Definition Value

cp gas specific heat capacity 5.2× 103 J kg−1K−1

p̄ pressure oscillation amplitude 5104 Pa
pav average pressure 1.5× 106 Pa
R gas constant 8.4 J mol−1K−1

Rm specific gas constant 2.1× 103 J kg−1K−1

Ta ambient temperature 300 K
TH hot temperature 300 K
ū gas velocity 1.0m s−1

ρ̄ gas density 4.7 kg m−3

µ̄ gas dynamic viscosity 10−5 Pa s
a Van der Waals coefficient 3.47× 10−3 m6Pa mol−2

b Van der Waals coefficient 2.37× 10−5 m3 mol−1
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Table B.6: Compressor and orifice settings.

Symbol Definition Value

fr frequency 20 s−1

ω angular frequency 125.66 s−1

α orifice setting parameter [15] 1
Cor1 Lt1ω/γαū 1.21−9 m3 Pa−1s−1

Cor2 Lt2ω/γαū 3.57−10 m3 Pa−1s−1

Cor3 Lt3ω/γαū 2.11−10 m3 Pa−1s−1

Table B.7: Dimensionless numbers and values.

Symbol Definition Value
(fr = 20 [Hz])

Ma ū/(pav/ρ̄)
1/2 1.5× 10−3

Re ρ̄ū2/µ̄ω 1.87× 103
A p̄/pav 0.05

B pav/ρ̄RmTa 0.675

C1 Cor1pav/At1ū 5.089

C2 Cor2pav/At2ū 18.553

C3 Cor3pav/At3ū 21.49

D µu2/φpavωk 2.2× 10−3

E β/ρcgφω 47.74

E0 p̄b/pav 1.0008

EF β/[ρrcr(1− φ)ω] 1.604

Per1 ρr1cru
2/kr1ω 1.24× 103

Per2 ρr2cru
2/kr2ω 1.806× 103

Per3 ρr3cru
2/kr3ω 0.748× 103

Peg ρgcgu
2/kgω 1.231× 103

γ cg/cv 5/3

Subscripts
b buffer
C cold end
H hot end
g gas
r regenerator
t tube
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Adiabatic expansion factor, 30
aftercooler, 12

boundary condition for the velocity, 35
boundary conditions for the temperature,

36
buffer, 12
bulk viscosity coefficient, 26

Carnot efficiency, 112
CFL stability condition, 60
Coarse grid solution, 89
coefficient of performance, 112
cold heat exchanger, 12
cold layer, 102
complexity, 90
Composite solution, 90
Conservation of energy, 26
Conservation of mass, 26
Conservation of momentum, 26
constraint, 40
convection-diffusion, 32
cooling power, 112
COP, 113
Courant number, 57
cryocooler, 5
Cryogenics, 5
cryogens, 6
cycle-averaged mass flow, 112

Darcy’s law, 33
DD grid, 109
dissipation function, 26
domain decomposition, 86
double-inlet, 15
dynamic viscosity, 26

enthalpy, 26

Equation of state, 27
Eulerian system, 25

Fine grid solution, 89
first-order system, 31
flow straighteners, 16
fluid dynamics models, 7
Fourier number, 41
Fourier’s law, 26
friction factor, 28
fully laminar flow, 31
fully turbulent flow, 31

gain factor, 91
gas piston, 97
Gifford-McMahon, 5
Graetz problem, 83

Hagen-Poiseuille flow, 77
Harmonic analysis, 6
heat transfer, 28
hot heat exchanger, 12
hot layer, 102
hydrodynamic pressure, 32

ideal gas, 27
initial temperature, 36
input power, 112
intermittently turbulent flow, 31
Interpolation, 89

kinematic Reynolds number, 81

L’Hopital’s rule, 64
leading-order system, 31

Mach number, 30
mass flow, 109
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material derivative, 26
moving-grid, 87

non-ideal gas, 26, 27

orifice, 12
Oscillatory Reynolds number, 29

Peclet number, 30
permeability, 33
perturbed laminar flow, 31
Poisson equation, 63
porosity, 33
Prediction-correction algorithm, 67
pulse tube refrigeration, 5

refinement factor, 88
regenerator, 12
Richardson’s annular effect, 81

skin friction force, 28
Specific-heat ratio, 30
stability condition, 57
static-regridding, 87
Stirling, 5
Stokes hypothesis, 26

thermal diffusivity, 41
Thermodynamic models, 7
thermodynamic pressure, 32

uniform grid, 109

Van der Waals, 27
Van der Waals coefficients, 27

wall layer, 102
Womersely parameter, 30
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