
 

A polling model with smart customers

Citation for published version (APA):
Boon, M. A. A., Wijk, van, A. C. C., Adan, I. J. B. F., & Boxma, O. J. (2009). A polling model with smart
customers. (Report Eurandom; Vol. 2009038). Eurandom.

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/c0e77068-fd0a-43cf-872b-9f0a5a28ab07


A Polling Model with Smart Customers∗

M.A.A. Boon†

marko@win.tue.nl
A.C.C. van Wijk‡

a.c.c.v.wijk@tue.nl
I.J.B.F. Adan†

iadan@win.tue.nl

O.J. Boxma†

boxma@win.tue.nl

November 27, 2009

Abstract

In this paper we consider a single-server, cyclic polling system with switch-over times. A
distinguishing feature of the model is that the rates of the Poisson arrival processes at the various
queues depend on the server location. For this model we study the joint queue length distribution
at polling epochs and departure epochs. We also study the marginal queue length distribution at
arrival epochs, as well as at arbitrary epochs (which is not the same in general, since we cannot use
the PASTA property). A generalised version of the distributional form of Little’s law is applied to
the joint queue length distribution at departure epochs in order to find the waiting time distribution
for each customer type. We also provide an alternative, more efficient way to determine the mean
queue lengths and mean waiting times, using Mean Value Analysis. Furthermore, we show that
under certain conditions a Pseudo-Conservation Law for the total amount of work in the system
holds. Finally, typical features of the model under consideration are demonstrated in several
numerical examples.

Keywords: Polling, smart customers, varying arrival rates, queue lengths, waiting times, pseudo-
conservation law

1 Introduction

The classical polling system is a queueing system consisting of multiple queues, visited by a sin-
gle server. Typically, queues are served in cyclic order, and switching from one queue to the next
queue requires a switch-over time, but these assumptions are not essential to the analysis. The deci-
sion at what moment the server should start switching to the next queue is important to the analysis,
though. Polling systems satisfying a so-called branching property generally allow for an exact analy-
sis, whereas polling systems that do not satisfy this property rarely can be analysed in an exact way.
See Resing [19], or Fuhrmann [13], for more details on this branching property.
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There is a huge literature on polling systems, mainly because of their practical relevance. Applica-
tions are found, among others, in production environments, transportation, and data communication.
The surveys of Takagi [22], Levy and Sidi [18], and Vishnevskii and Semenova [24] provide a good
overview of applications of polling systems. These surveys, and [25], Chapters 2.2 and 3, are also
excellent references to find more information about various analysis techniques, such as the Buffer Oc-
cupancy method, the Descendant Set approach, and Mean Value Analysis (MVA) for polling systems.
The vast majority of papers on polling models assumes that the arrival rate stays constant throughout
a cycle, although it may vary per queue. The polling model considered in the present paper, allows the
arrival rate in each queue to vary depending on the server location. This model was first considered
by Boxma [5], who refers to this model as a polling model with smart customers, because one way to
look at this system is to regard it as a queueing system where customers choose which queue to join,
based on the current server position.

A relevant application can be found in [15], where a polling model is used to model a dynamic order
picking system (DPS). In a DPS, a worker picks orders arriving in real time during the picking opera-
tions and the picking information can dynamically change in a picking cycle. One of the challenging
questions that online retailers now face, is how to organise the logistic fulfillment processes during
and after order receipt. In traditional stores, purchased products can be taken home immediately.
However, in the case of online retailers, the customer must wait for the shipment to arrive. In order
to reduce throughput times, an efficient enhancement to an ordinary DPS is to have products stored
at multiple locations. The system can be modelled as a polling system with queues corresponding to
each of the locations, and customers corresponding to orders. The location of the worker determines
in which of the queues an order is being placed. In this system arrival rates of the orders depend on
the location of the server (i.e. the worker), which makes it a typical smart customers example. A
graphical illustration is given in Figure 1. We focus on one specific order type, which is placed in two
locations, say Qi and Q j . While the picker is on its way to Qi , say at location 1, all of these orders
are routed to Qi and the arrival rate at Q j is zero. If the picker is between Qi and Q j , say at location
2, the situation is reversed and Q j receives all of these orders.

1

2

Q1

Q2

QN

Q i

Q j

Depot

Picker

1

Figure 1: A dynamic order picking system. Orders are placed in queues Q1, . . . , QN .

Besides practical relevance, the smart customers model also provides a powerful framework to analyse
more complicated polling models. For example, a polling model where the service discipline switches
each cycle between gated and exhaustive, can be analysed constructing an alternative polling model
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with twice the number of queues and arrival rates being zero during specific visit periods [8]. The idea
of temporarily setting an arrival rate to zero is also used in [2] for the analysis of a polling model with
multiple priority levels. Time varying arrival rates also play a role in the analysis of a polling model
with reneging at polling instants [1].

Concerning state dependent arrival rates, more literature is available for systems consisting of only
one queue, often assuming phase-type distributions for vacations and/or service times. A system
consisting of a single queue with server breakdowns and arrival rates depending on the server status
is studied in [21]. A difference with the system studied in the present paper, besides the number of
queues, is that the machine can break down at arbitrary moments during the service of customers.
Shanthikumar [20] discusses a stochastic decomposition for the queue length in an M/G/1 queue
with server vacations under less restrictive assumptions than Fuhrmann and Cooper [14]. One of the
relaxations is that the arrival rate of customers may be different during visit periods and vacations.
Another system, with so-called working vacations and server breakdowns is studied in [16]. During
these working vacations, both the service and arrival rates are different. Mean waiting times are
found using a matrix analytical approach. For polling systems, a model with arrival rates that vary
depending on the location of the server has not been studied in detail yet. Boxma [5] studies the joint
queue length distribution at the beginning of a cycle, but no waiting times or marginal queue lengths
are discussed. In a recent paper [10], a polling system with Lévy-driven, possibly correlated input is
considered. Just as in the present paper, the arrival process may depend on the location of the server.
In [10] typical performance measures for Lévy processes are determined, such as the steady-state
distribution of the joint amount of fluid at an arbitrary epoch, and at polling and switching instants.
The present paper studies a similar setting, but assumes Poisson arrivals of individual customers. This
enables us to find the probability generating functions (PGFs) of the joint queue length distributions
at polling instants and departure epochs, and the marginal queue length distributions at arrival epochs
and arbitrary epochs (which are not the same, because PASTA cannot be used). The introduction
of customer subtypes, categorised by their moment of arrival, makes it possible to generalise the
distributional form of Little’s law (see, e.g., [17]), and apply it to the joint queue length distribution at
departure epochs to find the Laplace-Stieltjes Transform (LST) of the waiting time distribution.

The present paper is structured as follows: Section 2 gives a detailed model description and introduces
the notation used in this paper. In Section 3 the PGFs of the joint queue length distributions of all
customer types at polling instants are derived. The marginal queue length distribution is also studied
in this section, but we show in Section 4 that the derivation of the waiting time LST for each customer
type requires a more complicated analysis, based on customer subtypes. In Sections 3 and 4 we need
information on the lengths of the cycle time and all visit times, which are studied in Section 5. In
Section 6 we adapt the MVA framework for polling systems, introduced in [26], to our model. This
results in a very efficient method to compute the mean waiting time of each customer type. For
polling systems with constant arrival rates, a Pseudo-Conservation Law (PCL) is studied by Boxma
and Groenendijk [6]. In Section 7 we show that, under certain conditions, a PCL is satisfied by our
model. Finally, we give numerical examples that illustrate some typical features and advantages of
the model under consideration.

2 Model description and notation

The polling model in the present paper contains N queues, Q1, . . . , QN , visited in cyclic order by
one server. Switching from Qi to Qi+1 (i = 1, . . . , N , where QN+1 is understood to be Q1, etc.)
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requires a switch-over time Si , with LST σi (·). We assume that at least one switch-over time is strictly
greater than zero, otherwise the mean cycle length in steady-state becomes zero and the analysis
changes slightly. See, e.g., [4] for a relation between polling systems with and without switch-over
times. Switch-over times are assumed to be independent. The cycle time Ci is the time that elapses
between two successive visit beginnings to Qi , and C∗i is the time that elapses between two successive
visit completions to Qi . The mean cycle time does not depend on the starting point of the cycle, so
E[Ci ] = E[C∗i ] = E[C]. The visit time Vi of Qi is the time between the visit beginning and visit
completion of Qi . The intervisit time Ii of Qi is the time between a visit completion to Qi and the
next visit beginning at Qi . We have Ci = Vi + Ii , and Ii = Si + Vi+1 + · · · + Si+N−1, i = 1, . . . , N .
Customers arriving at Qi , i.e. type i customers, have a service requirement Bi , with LST βi (·). We
also assume independence of service times, and first-come-first-served (FCFS) service order.

The service discipline of each queue determines the moment at which the server switches to the next
queue. In the present paper we study the two most popular service disciplines in polling models, ex-
haustive service (the server switches to the next queue directly after the last customer in the current
queue has been served) and gated service (only visitors present at the server’s arrival at the queue are
served). The reason why these two service disciplines have become the most popular in polling liter-
ature, lies in the fact that they are from a practical point of view the most relevant service disciplines
that allow an exact analysis. In this respect the following property, defined by Resing [19] and also
Fuhrmann [13], is very important.

Property 2.1 If the server arrives at Qi to find ki customers there, then during the course of the
server’s visit, each of these ki customers will effectively be replaced in an i.i.d. manner by a random
population having probability generating function hi (z1, . . . , zN ), which can be any N -dimensional
probability generating function.

In most cases, a polling model can only be analysed exactly, if the service discipline at each queue
satisfies Property 2.1, or some slightly weaker variant of this property, because in this case the joint
queue length process at visit beginnings to a fixed queue constitutes a Multi-Type Branching Process
(MTBP), which is a nicely structured and well-understood process. Gated and exhaustive service both
satisfy this property, whereas a service discipline like k-limited service (serve at most k customers
during each visit) does not.

The feature that distinguishes the model under consideration from commonly studied polling mod-
els, is the arrival process. This arrival process is a standard Poisson process, but the rate depends
on the location of the server. The arrival rate at Qi is denoted by λ(P)i , where P denotes the posi-
tion of the server, which is either serving a queue, or switching from one queue to the next: P ∈
{V1, S1, . . . , VN , SN }. One of the consequences is that the PASTA property does not hold for an ar-
bitrary arrival, but as we show in Section 3, a conditional version of PASTA does hold. Another
difficulty that arises, is that the distributional form of Little’s law cannot be applied to the PGF of the
marginal queue length distribution to obtain the LST of the waiting time distribution anymore. We
explain this in Section 4, where we also derive a generalisation of the distributional form of Little’s
law.
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3 Queue length distributions

3.1 Joint queue length distribution at visit beginnings/completions

The two main performance measures of interest, are the steady-state queue length distribution and
the waiting time distribution of each customer type. In this section we focus on queue lengths rather
than waiting times, because the latter requires a more complex approach that is discussed in the next
section. We restrict ourselves to branching-type service disciplines, i.e., service disciplines satis-
fying Property 2.1. Boxma [5] follows the approach by Resing [19], defining offspring and immi-
gration PGFs to determine the joint queue length distribution at the beginning of a cycle. We take
a slightly different approach that gives the same result, but has the advantage that it gives expres-
sions for the joint queue length PGF at all visit beginnings and completions as well. Denote by
Vbi (z1, . . . , zN ) the PGF of the steady-state joint queue length distribution at visit beginnings to Qi .
Similarly, Vci (z1, . . . , zN ) is the equivalent at visit completions.

The relation between these PGFs is apparent:

Vci (z) = Vbi (z1, . . . , zi−1, hi (z), zi+1, . . . , zN ), (3.1)

Vbi+1(z) = Vci (z) σi

( N∑
j=1

λ
(Si )
j (1− z j )

)
, (3.2)

where z is a shorthand notation for the vector (z1, . . . , zN ), and hi (z) is the PGF mentioned in Prop-
erty 2.1. For gated service, hi (z) = βi

(∑N
j=1 λ

(Vi )
j (1− z j )

)
. For exhaustive service, hi (z) =

πi

(∑
j 6=i λ

(Vi )
j (1− z j )

)
, where πi (·) is the LST of a busy period distribution in an M/G/1 system

with only type i customers, so it is the root in (0, 1] of the equation πi (ω) = βi

(
ω + λ

(Vi )
i (1− πi (ω))

)
,

ω ≥ 0 (cf. [11], p. 250). Now that we can relate Vbi+1(·) to Vbi (·), we can repeat this and finally obtain
a recursion for Vbi (·). This recursive expression is sufficient to compute all moments of the joint queue
length distribution at a visit beginning to Qi by differentiation, but iteration of the expression leads to
the steady-state queue length distribution at polling epochs, written as an infinite product. We refer to
[19] for more details regarding this approach. Stability conditions are studied in more detail in [10],
where it is shown that a necessary and sufficient condition for ergodicity is that the Perron-Frobenius
eigenvalue of the matrix R − IN should be less than 0, where IN is the N × N identity matrix, and
R is an N × N matrix containing elements ρi j := λ

(V j )

i E[Bi ]. This holds under the assumption that
E[Vi ] > 0 for all i = 1, . . . , N .

3.2 Marginal queue length distribution

Common techniques in polling systems (see, e.g. [3, 12]) to determine the PGF of the steady-state
marginal queue length distribution of each customer type, are based on deriving the queue length
distribution at departure epochs. A level-crossing argument implies that the marginal queue length
distribution at arrival epochs must be the same as the one at departure epochs, and, finally, because
of PASTA this distribution is the same as the marginal queue length distribution at an arbitrary point
in time. In our model, the marginal queue length distributions at arrival and departure epochs are
also the same, but the distribution at arbitrary moments is different because of the varying arrival
rates during a cycle. We can circumvent this problem by conditioning on the location P of the server
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(P ∈ {V1, S1, . . . , VN , SN }) and use conditional PASTA to find the PGF of the marginal queue length
distribution at an arbitrary point in time. Let L i denote the steady-state queue length of type i cus-
tomers at an arbitrary moment, and let L (V j )

i and L (S j )

i denote the queue length of type i customers at
an arbitrary time point during V j and S j respectively (i, j = 1, . . . , N ). The following relation holds:

E[zL i ] =

N∑
j=1

(
E[V j ]

E[C]
E
[

zL
(V j )
i

]
+

E[S j ]

E[C]
E
[

zL
(S j )
i

])
, i = 1, . . . , N . (3.3)

Note that, at this moment, E[V j ] and E[C] are still unknown. In Sections 5 and 6 we illustrate two
different ways to compute them. Since S j , for j = 1, . . . , N , and V j , for j 6= i , are non-serving
intervals for customers of type i , we use a standard result (see, e.g., [3]) to find the PGFs of L (V j )

i and
L (S j )

i respectively:

E
[

zL
(V j )
i

]
=

E[zL
(Vb j

)

i ] − E[zL
(Vc j )

i ]

(1− z)
(
E[L

(Vc j )

i ] − E[L
(Vb j )

i ]

) , i = 1, . . . , N ; j 6= i, (3.4)

E
[

zL
(S j )
i

]
=

E[zL
(Vc j )

i ] − E[zL
(Vb j+1

)

i ]

(1− z)
(
E[L

(Vb j+1 )

i ] − E[L
(Vc j )

i ]

) , i, j = 1, . . . , N , (3.5)

where L
(Vb j )

i and L
(Vc j )

i are the number of type i customers at respectively a visit beginning and
completion at Q j . Their PGFs can be expressed in terms of Vb1(z) using the relations (3.2) and (3.1),
and replacing argument z by the vector (1, . . . , 1, z, 1, . . . , 1) where z is the element at position i .
Using branching theory from [19], Boxma [5] gives an explicit expression for Vb1(z). The mean

values, E[L
(Vb j )

i ] and E[L
(Vc j )

i ], can be obtained by differentiation of the corresponding PGFs and
substituting z = 1.

It remains to compute E
[
zL

(Vi )
i

]
, i = 1, . . . , N , i.e. the PGF of the number of type i customers at

an arbitrary point within Vi . As far as the marginal queue length of type i customers is concerned,
the system can be viewed as a vacation queue with the intervisit time Ii corresponding to the server
vacation. We can use the Fuhrmann-Cooper decomposition [14], but we have to be careful here. In a
polling system where type i customers arrive with constant arrival rate λ(Vi )

i , the Fuhrmann-Cooper
decomposition states that

E[zL i ] =
(1− λ(Vi )

i E[Bi ])(1− z)βi
(
λ
(Vi )
i (1− z)

)
βi
(
λ
(Vi )
i (1− z)

)
− z

×

E
[

zL
(Vci )
i

]
− E

[
zL

(Vbi
)

i

]
(1− z)

(
E[L (Vbi )

i ] − E[L (Vci )

i ]

) . (3.6)

The two parts in this decomposition can be recognised as the PGFs of the number of type i customers
respectively at an arbitrary moment in an M/G/1 queue, and at an arbitrary point during the intervisit
time Ii . Of course, the following relation also holds:

E[zL i ] =
E[Vi ]

E[C]
E[zL

(Vi )
i ] +

E[Ii ]

E[C]
E[zL

(Ii )
i ]. (3.7)

Combining (3.6) with (3.7), results in:

E[zL
(Vi )
i ] =

1− λ(Vi )
i E[Bi ]

λ
(Vi )
i E[Bi ]

z
(
1− βi (λ

(Vi )
i (1− z))

)
βi (λ

(Vi )
i (1− z))− z

×

E
[

zL
(Vci )
i

]
− E

[
zL

(Vbi
)

i

]
(1− z)

(
E[L (Vbi )

i ] − E[L (Vci )

i ]

) , (3.8)
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for i = 1, . . . , N . The second part of this decomposition is, again, the PGF of the number of customers
at an arbitrary point during the intervisit time Ii . The first part can be recognised as the PGF of the
queue length of an M/G/1 queue with type i customers at an arbitrary point during a busy period.

Now we return to the model with varying arrival rates. The key observation is that the behaviour of
the number of type i customers during a visit period of Qi , is exactly the same in this system as in a
polling system with constant arrival rates λ(Vi )

i for type i customers. Equation (3.8) no longer depends

on anything that happens during the intervisit time, because this is all captured in L
(Vbi )

i , the number
of type i customers at the beginning of a visit to Qi . This implies that, for a polling model with smart
customers, the queue length PGF of Qi at a random point during Vi is also given by (3.8). The only
difference lies in the interpretation of (3.8). Obviously, the first part in (3.8) is still the PGF of the
queue length distribution of an M/G/1 queue at an arbitrary point during a busy period. However, the
last term can no longer be interpreted as the PGF of the distribution of the number of type i customers
at an arbitrary point during the intervisit time Ii .

Substitution of (3.4), (3.5), and (3.8) in (3.3) gives the desired expression for the PGF of the marginal
queue length in Qi .

Remark 3.1 The marginal queue length PGF (3.3) has been obtained by conditioning on the position
of the server at an arbitrary epoch in a cycle, which explains the probabilities E[V j ]

E[C] (server is serving

Q j ) and E[S j ]

E[C] (server is switching to Q j+1). It is easy now to obtain the marginal queue length
PGF at an arrival epoch, simply by conditioning on the position of the server at an arbitrary arrival
epoch. The probability that the server is at position P ∈ {V1, S1, . . . , VN , SN } at the arrival of a type i

customer, is λ
(P)
i E[P]
λiE[C]

, with λi =
1

E[C]
∑N

j=1

(
λ
(V j )

i E[V j ] + λ
(S j )

i E[S j ]

)
. This results in the following

expression for the PGF of the distribution of the number of type i customers at the arrival of a type i
customer:

E[zL i |arrival type i] =
N∑

j=1

(
λ
(V j )

i E[V j ]

λiE[C]
E
[

zL
(V j )
i

]
+
λ
(S j )

i E[S j ]

λiE[C]
E
[

zL
(S j )
i

])
, (3.9)

for i = 1, . . . , N . A standard up-and-down crossing argument can be used to argue that (3.9) is also
the PGF of the distribution of the number of type i customers at the departure of a type i customer.
As stated before, it is different from the PGF of the distribution of the number of type i customers at
an arbitrary epoch, unless λ(V j )

i = λ
(S j )

i = λi for all i, j = 1, . . . , N (as is the case in polling models
without smart customers).

Remark 3.2 Equations (3.4) and (3.5) rely heavily on the PASTA property and are only valid if type i
arrivals take place during the non-serving interval. If no type i arrivals take place (i.e. λ(P)i = 0 for
the non-serving interval P), both the numerator and the denominator become 0. This situation has to
be analysed differently. Now assume that λ(P)i = 0 for a specific customer type i = 1, . . . , N , during
a non-serving interval P ∈ {V1, S1, . . . , VN , SN }\Vi . We now distinguish between visit periods and
switch-over periods. Let us first assume that P is a switch-over time, say S j , j = 1, . . . , N . The
length of a switch-over time is independent from the number of customers in the system, so the
distribution of the number of type i customers at an arbitrary point in time during S j is the same as at
the beginning of S j (or completion of V j ):

E
[

zL
(S j )
i

]
= E

[
zL

(Vc j )

i

]
, i, j = 1, . . . , N .
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The case where P is a visit time, say P = V j for some j 6= i , requires more attention, because the
length of V j depends on the number of type j customers present at the visit beginning. Since this
number is positively correlated with the number of customers in the other queues, we have to correct
for the fact that it is more likely that a random point during an arbitrary V j , falls within a long visit
period (with more customers present at its beginning) than in a short visit period. The first step, is
to determine the probability that the number of type i customers at an arbitrary point during V j is k.
Since we consider the case where λ(V j )

i = 0, this implies that we need the probability that the number
of customers at the beginning of V j is k. Standard renewal arguments yield

P[L (V j )

i = k] =
P[L

(Vb j )

i = k]E[V j |L
(Vb j )

i = k]∑
∞

l=0 P[L
(Vb j )

i = l]E[V j |L
(Vb j )

i = l]

=

E[V j 1[L i
(Vb j ) = k]]

E[V j ]
,

(3.10)

where 1[A] is the indicator function for event A. The first line in (3.10) is based on the fact that the
probability is proportional to the length of visit periods V j that start with k type i customers, and to
the number of such visit periods V j . The denominator is simply a normalisation factor.

Now we can write down the expression for the number of type i customers at an arbitrary point
during V j if λ(V j )

i = 0:

E
[

zL
(V j )
i

]
=

∞∑
k=0

zk P[L (V j )

i = k]

=
1

E[V j ]

∞∑
k=0

zk E[V j 1[L i
(Vb j ) = k]]

=
1

E[V j ]
E[V j

∞∑
k=0

zk 1[L i
(Vb j ) = k]]

=
1

E[V j ]
E[V j zL

(Vb j
)

i ]

= −
1

E[V j ]

∂

∂ω
E
[

zL
(Vb j

)

i e−ωV j

]∣∣∣∣
ω=0

, (3.11)

for i = 1, . . . , N and j 6= i .

Now we only need to determine E[zL
(Vb j

)

i e−ωV j ]. We use the joint queue length distribution of all
customers present at the beginning of V j , which is given implicitly by (3.2). Define 2 j as the time
that the server spends at Q j due to the presence of one customer there, with LST θ j (·). For gated
service θ j (·) = β j (·), and for exhaustive service θ j (·) = π j (·). The length of V j , given that l j type j
customers are present at the visit beginning, is the sum of l j independent random variables with the
same distribution as 2 j , denoted by 2 j,1, . . . ,2 j,l j . The joint distribution of the number of type i
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customers present at the beginning of V j and the length of V j is given by:

E
[

zL
(Vb j

)

i e−ωV j

]
=

∞∑
li=0

∞∑
l j=0

E
[
zli e−ω(2 j,1+···+2 j,l j )

]
P
[

L
(Vb j )

i = li , L
(Vb j )

j = l j

]

=

∞∑
li=0

∞∑
l j=0

zliE
[
e−ω2 j,1

]
× · · · × E

[
e−ω2 j,l j

]
P
[

L
(Vb j )

i = li , L
(Vb j )

j = l j

]

=

∞∑
li=0

∞∑
l j=0

zli θ j (ω)
l jP
[

L
(Vb j )

i = li , L
(Vb j )

j = l j

]
= Vb j (1, . . . , 1, z, 1, . . . , 1, θ j (ω), 1, . . . , 1), (3.12)

where z corresponds to customers in Qi , and θ j (ω) corresponds to customers in Q j . Substitution of
(3.12) in (3.11) gives the desired result.

4 Waiting time distribution

In the previous section we gave an expression for the PGF of the distribution of the steady-state
queue length of a type i customer at an arbitrary epoch, L i . If the arrival rates do not depend on the
server position, i.e. λ(V j )

i = λ
(S j )

i = λi for all i, j = 1, . . . , N , we can use the distributional form
of Little’s law (see, e.g., [17]) to obtain the LST of the distribution of the waiting time of a type i
customer, Wi , i = 1, . . . , N . Because of the varying arrival rates, there is no λi for which the relation
E[zL i ] = E

[
e−λi (1−z)(Wi+Bi )

]
holds (even if we choose λi = λi ). In the present section, we introduce

subtypes of each customer type. Each subtype is identified by the position of the server at its arrival
in the system. We show that one can use a generalised version of the distributional form of Little’s
law that leads to the LST of the waiting time distribution of a type i customer, when applied to the
PGF of the joint queue length distribution of all subtypes of a type i customer. Determining this PGF
requires a separate treatment of exhaustive and gated service, so results in this section do not apply to
any arbitrary branching-type service discipline.

4.1 Joint queue length distribution at visit beginnings/completions for all subtypes

In the present section we distinguish between subtypes of type i customers, arriving during different
visit/switch-over periods. We define a type i (P) customer to be a customer arriving at Qi during
P ∈ {V1, S1, . . . , VN , SN }. Therefore, only in this section, we define z in the following way:

z = (z(V1)
1 , . . . , z(SN )

1 , . . . , z(V1)
N , . . . , z(SN )

N ).

Let V (P)
bi
(z) be the PGF of the joint queue length distribution of all these customer types at the mo-

ment that the server starts serving type i customers that have arrived when the server was located at
position P . V (P)

ci
(z) is defined equivalently for the moment that the server completes service of type

i (P) customers.

For exhaustive service, the visit period Vi can be divided into the following subperiods: Vi = V (Si )
i +

V (Vi+1)
i + · · · + V (Si+N−1)

i + V (Vi )
i . First the type i (Si ) customers that were present at the visit beginning

are served, followed by the type i (Vi+1) customers, and so on. Note that during these services only
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type j (Vi ) customers arrive in Q j , j = 1, . . . , N . Visit period Vi ends with V (Vi )
i , i.e. the exhaustive

service of all type i (Vi ) customers that have arrived during Vi so far. As an example, we show the rela-
tions for the PGFs of the joint queue length distributions at beginnings and endings of the subperiods
of V1:

V (V2)
b1

(z) = V (S1)
c1

(z) = V (S1)
b1

z(V1)
1 , β1

( N∑
j=1

λ
(V1)
j (1− z(V1)

j )
)
, z(V2)

1 , . . . , z(SN )
N

 ,
V (S2)

b1
(z) = V (V2)

c1
(z) = V (V2)

b1

z(V1)
1 , 1, β1

( N∑
j=1

λ
(V1)
j (1− z(V1)

j )
)
, z(S2)

1 , . . . , z(SN )
N

 ,
...

V (V1)
b1

(z) = V (SN )
c1

(z) = V (SN )
b1

z(V1)
1 , 1, . . . , 1, β1

( N∑
j=1

λ
(V1)
j (1− z(V1)

j )
)
, z(V1)

2 , . . . , z(SN )
N

 ,
V (V1)

c1
(z) = V (V1)

b1

π1
(∑

j 6=1

λ
(V1)
j (1− z(V1)

j )
)
, 1, . . . , 1, z(V1)

2 , . . . , z(SN )
N

 .
During a switch-over time S j only type i (S j ) customers arrive, i, j = 1, . . . , N . We can relate the PGF
of the joint queue length distribution at the beginning of a visit to Q2 (starting with the service of type
2(S2) customers) to V (V1)

c1
(z):

V (S2)
b2

(z) = V (V1)
c1

(z) σ1

( N∑
j=1

λ
(S1)
j (1− z(S1)

j )
)
.

The above expressions can be used to express V (S2)
b2

(·) in terms of V (S1)
b1

(·), and this can be repeated to
obtain a recursion for V (S1)

b1
(·).

Remark 4.1 For gated service we take similar steps, but they are slightly different because arriving
customers will always be served in the next cycle. This means that a visit to Qi starts with the service
of all type i (Vi ) customers present at that polling instant: Vi = V (Vi )

i +V (Si )
i +V (Vi+1)

i +· · ·+V (Si+N−1)
i .

The relations for the PGF of the joint queue length distribution at beginnings and endings of the
subperiods of V1 are:

V (S1)
b1

(z) = V (V1)
c1

(z) = V (V1)
b1

β1
( N∑

j=1

λ
(V1)
j (1− z(V1)

j )
)
, z(S1)

1 , . . . , z(SN )
N

 ,
V (V2)

b1
(z) = V (S1)

c1
(z) = V (S1)

b1

z(V1)
1 , β1

( N∑
j=1

λ
(V1)
j (1− z(V1)

j )
)
, z(V2)

1 , . . . , z(SN )
N

 ,
...

V (SN )
c1

(z) = V (SN )
b1

z(V1)
1 , 1, . . . , 1, β1

( N∑
j=1

λ
(V1)
j (1− z(V1)

j )
)
, z(V1)

2 , . . . , z(SN )
N

 .
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The remainder of this section is valid for any branching-type service discipline treating customers
in order of arrival in each queue, such as, e.g., exhaustive, gated, globally gated and multi-stage
gated [23]. Having determined the joint queue length distribution at beginnings and completions of
all subperiods within each visit period, we are ready to determine the joint queue length distribu-
tion at departure epochs of all customer subtypes. We follow the approach in [3, 4], which itself
is based on Eisenberg’s approach [12], developing a relation between joint queue lengths at service
beginnings/completions and visit beginnings/completions. In [3], for conventional polling systems,
the joint distribution of queue length vector and server position at service completions leads to the
marginal queue length distribution. Developing an equivalent for our model, requires distinguish-
ing between customer subtypes. Firstly, the queue length vector z contains all customer subtypes.
Secondly, the type of service completion is not just defined by the location i of the server, but also
by the subtype P of the customer that has been served. Therefore, let M (P)

i (z) denote the PGF of
the joint distribution of the subtypes of customers being served (combination of i = 1, . . . , N and
P ∈ {V1, S1, . . . , VN , SN }) and queue length vector of all customer subtypes at service completions.
Equation (3.4) in [3], applied to our model, gives:

M (P)
i (z) =

1
λE[C]

βi

(∑N
j=1 λ

(Vi )
j (1− z(Vi )

j )
)

z(P)i − βi

(∑N
j=1 λ

(Vi )
j (1− z(Vi )

j )
) [V (P)

bi
(z)− V (P)

ci
(z)
]
, (4.1)

for i = 1, . . . , N ; P ∈ {V1, S1, . . . , VN , SN }, and λ =
∑N

i=1 λi . Thus, M (P)
i (z) is the generating

function of the probabilities that, at an arbitrary departure epoch, the departing customer is a type
i (P) customer and the number of customers left behind by this departing customer is l(V1)

1 , . . . , l(SN )
N .

We now focus on the queue length vector of subtypes of type i customers only, given that the
departure takes place at Qi . The probability that an arbitrary service completion (regardless of
the subtype of the customer) takes place at Qi , is λi/λ. It is convenient to introduce the notation
zi = (1, . . . , 1, z(V1)

i , . . . , z(SN )
i , 1, . . . , 1). The PGF of the joint queue length distribution of all sub-

types of type i customers at an arbitrary departure from Qi is:

E

[(
z(V1)

i

)D
(V1)
i
· · ·

(
z(SN )

i

)D
(SN )
i

]
=
λ

λi

N∑
j=1

(
M (V j )

i (zi)+ M (S j )

i (zi)
)

(4.2)

where D(P)
i is the number of type i (P) customers left behind at a departure from Qi (which should not

be confused with L (P)i , the number of type i customers at an arbitrary moment while the server is at
position P).

Remark 4.2 Substitution of z(P)i = z for all P ∈ {V1, S1, . . . , VN , SN } in (4.2) gives the marginal
queue length distribution of type i customers at departure epochs, which is equal to (3.9), the marginal
queue length distribution at arrival epochs of a type i customer.

Now we present a generalisation of the distributional form of Little’s law that can be applied to the
joint queue length distribution of all subtypes of a type i customer at departure epochs from Qi , to
obtain the waiting time LST of a type i customer.

Theorem 4.3 The LST of the distribution of the waiting time Wi of a type i customer, i = 1, . . . , N ,
is given by:

E
[
e−ωWi

]
=

1
βi (ω)

E

(1−
ω

λ
(V1)
i

)D
(V1)
i

· · ·

(
1−

ω

λ
(SN )
i

)D
(SN )
i

 . (4.3)
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Proof We focus on the departure of a type i customer that arrived during PA ∈ {V1, S1, . . . , VN , SN }.
We make use of the fact that the sojourn time (i.e., waiting time plus service time) of this tagged
type i (PA) customer can be determined by studying the subtypes of all type i customers that he leaves
behind on his departure. We need to distinguish between two cases, which can be treated simulta-
neously, but require different notations. Firstly, the case where a customer arrives in the system and
departs during another period. In the second case, the customer departs during the same period in
which he arrived. Obviously, in our model the second case can only occur if a customer arrives at a
queue with exhaustive service while it is being visited by the server.

Case 1: departure in a different period. In this case we have that PA 6= Vi , or PA = Vi but the
cycle in which the arrival took place is not the same as the cycle in which the departure takes place
(this situation cannot occur with exhaustive service). All type i customers that are left behind, have
arrived during the residual period PA, all periods between PA and Vi (if any), and during the elapsed
part of Vi . Denote by PI the set of visit periods and switch-over periods that lie between PA and
Vi . Furthermore, let PA,res be the residual period PA. Finally denote by Vi,past the age of Vi at the
departure instant of the tagged type i customer.

Case 2: departure during the period of arrival. If the customer arrived during the same visit
period in which his departure takes place, take PA,res = 0, PI = ∅, and Vi,past is the time that elapsed
since the arrival of the tagged type i (Vi ) customer.

In both cases, the joint queue length distribution of all customer i subtypes at this departure instant
is given by (4.2). Since we assume FCFS service, at such a departure instant no type i customers are
present anymore that have arrived before the arrival epoch of the tagged type i customer. This results
in:

E

[(
z(V1)

i

)D
(V1)
i
· · ·

(
z(SN )

i

)D
(SN )
i

]
= E

[
e−λ

(PA)
i (1−z

(PA)
i )PA,res−

∑
p∈PI

λ
(p)
i (1−z(p)i )p−λ

(Vi )
i (1−z

(Vi )
i )Vi,past

]
. (4.4)

Equation (4.3) follows from the relation Wi + Bi = PA,res +
∑

p∈PI
p + Vi,past and substitution of

z(P)i = 1− ω

λ
(P)
i

for all P ∈ {V1, S1, . . . , VN , SN } in (4.4). �

Remark 4.4 Theorem 4.3 only holds if λ(P)i > 0 for all i = 1, . . . , N , and P ∈ {V1, S1, . . . , VN , SN }.
If λ(P)i = 0 for a certain i and P , we can still find an expression for E

[
e−ωWi

]
, but we might have to

resort to some “tricks”. In Section 8, Example 2, we show how the introduction of an extra (virtual)
customer type can help to resolve this problem.

5 Cycle time, intervisit time and visit times

In the previous sections we repeatedly needed the mean cycle time E[C] and the mean visit times
E[Vi ], i = 1, . . . , N . In this section we study the LSTs of the cycle time distribution and visit time
distributions, which can be used to obtain the mean and higher moments. The LSTs of the distributions
of the visit times Vi , i = 1, . . . , N , can easily be determined for any branching-type service discipline
using the function θi (·), introduced in Remark 3.2, and the joint queue length distribution at the visit
beginning of Qi (not taking subtypes into account):

E[e−ωVi ] = Vbi (1, . . . , 1, θi (ω), 1, . . . , 1). (5.1)
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The cycle time Ci is defined as the time that elapses between two consecutive visit beginnings to
Qi . Although the mean cycle time does not depend on the starting point of the cycle, i.e. E[Ci ] =

E[C], higher moments usually do. We consider branching-type service disciplines only, i.e., service
disciplines for which Property 2.1 holds. The cycle time LST for polling models with branching-type
service disciplines and arrival rates independent of the server position, has been established in [9].
We adapt their approach to the model with arrival rates depending on the server location. Using θi (·),
i = 1, . . . , N , we define the following functions in a recursive way:

ψ (VN )(ω) = ω,

ψ (Vi )(ω) = ω +

N∑
k=i+1

λ
(Vi )
k

(
1− θk(ψ

(Vk )(ω))
)
, i = N − 1, . . . , 1.

Similarly, define:

ψ (SN )(ω) = ω,

ψ (Si )(ω) = ω +

N∑
k=i+1

λ
(Si )
k

(
1− θk(ψ

(Vk )(ω))
)
, i = N − 1, . . . , 1.

Theorem 5.1 The LST of the distribution of the cycle time C1 is:

E
[
e−ωC1

]
= Vb1

(
θ1(ψ

(V1)(ω)), . . . , θN (ψ
(VN )(ω))

) N∏
i=1

σi
(
ψ (Si )(ω)

)
. (5.2)

Proof Similar to the proof of Theorem 3.1 in [9], by giving an expression for the cycle time LST
conditioned on the numbers of customers in all queues at the beginning of a cycle, and then by subse-
quently unconditioning one queue at a time. �

The LST of the distribution of the intervisit time I1 can be found in a similar way:

E
[
e−ωI1

]
= Vc1

(
1, θ2(ψ

(V2)(ω)), . . . , θN (ψ
(VN )(ω))

) N∏
i=1

σi
(
ψ (Si )(ω)

)
. (5.3)

Equations (5.2) and (5.3) hold for general branching-type service disciplines. For gated and exhaustive
service we can give expressions that are more compact and easier to interpret, using the joint queue
length distribution of all customer subtypes at visit beginnings, as given in Subsection 4.1.

Theorem 5.2 If Qi receives exhaustive service, the LST of the distribution of the cycle time C∗i ,
starting at a visit completion to Qi , and the LST of the distribution of the intervisit time Ii , are given
by:

E
[
e−ωC∗i

]
= V (Si )

bi

(
1, . . . , 1, πi (ω)−

ω

λ
(V1)
i

, . . . , πi (ω)−
ω

λ
(SN )
i

, 1, . . . , 1
)
, (5.4)

E
[
e−ωIi

]
= V (Si )

bi

(
1, . . . , 1, 1−

ω

λ
(V1)
i

, . . . , 1−
ω

λ
(SN )
i

, 1, . . . , 1
)
, (5.5)

provided that λ(P)i 6= 0 for all P ∈ {V1, S1, . . . , VN , SN }.
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If Qi receives gated service, the LST of the distribution of the cycle time Ci , and the LST of the
distribution of the intervisit time Ii , are given by:

E
[
e−ωCi

]
= V (Vi )

bi

(
1, . . . , 1, 1−

ω

λ
(V1)
i

, . . . , 1−
ω

λ
(SN )
i

, 1, . . . , 1
)
,

E
[
e−ωIi

]
= V (Vi )

bi

(
1, . . . , 1, 1, 1−

ω

λ
(S1)
i

, . . . , 1−
ω

λ
(SN )
i

, 1, . . . , 1
)
,

again provided that λ(P)i 6= 0 for all P ∈ {V1, S1, . . . , VN , SN }.

Proof We prove the exhaustive case only, the proof for gated service proceeds along the same lines.
Using Ii = Si + Vi+1 + Si+1 + · · · + Si+N−1, and the fact that no type i (Vi ) customers are present at
the beginning of the intervisit period (and hence also at the beginning of a cycle C∗i ), we obtain:

V (Si )
bi

(
1, . . . , 1, z(V1)

i , . . . , z(SN )
i , 1, . . . , 1

)
= E

[
e−λ

(Si )
i (1−z

(Si )
i )Si−···−λ

(Si+N−1)
i (1−z

(Si+N−1)
i )Si+N−1

]
. (5.6)

Substitution of z(P)i = 1− ω

λ
(P)
i

for all P ∈ {V1, S1, . . . , VN , SN } proves (5.5). Equation (5.4) follows

by using the relation C∗i = Ii + Vi , and noting that Vi is the sum of the busy periods initiated by all
type i customers that have arrived during Ii . In terms of LSTs:

E
[
e−ωC∗i

]
= E

[
e−

(
ω+λ

(Si )
i (1−πi (ω))

)
Si−···−

(
ω+λ

(Si+N−1)
i (1−πi (ω))

)
Si+N−1

]

= E

e
−λ

(Si )
i

(
1−
(
πi (ω)−

ω

λ
(Si )
i

))
Si−···−λ

(Si+N−1)
i

(
1−
(
πi (ω)−

ω

λ
(Si+N−1)
i

))
Si+N−1

 ,
which, by (5.6), reduces to (5.4). �

The mean cycle time E[C] and mean visit times E[Vi ] can be obtained by differentiating the corre-
sponding LSTs. In the next section a more efficient method is described to compute them.

6 Mean Value Analysis

In this section we extend the Mean Value Analysis (MVA) framework for polling models, originally
developed by Winands et al. [26], to suit the concept of smart customers. For this purpose, we first
outline the main ideas of MVA for polling systems. Subsequently, we determine the mean visit times
and the mean cycle time in a numerically more efficient way than in the previous section, and, finally,
we present the MVA equations for a polling system with smart customers.

6.1 Main idea MVA

For “ordinary” polling models, where the arrival rates at a queue do not depend on the position of the
server, in [26] an approach is described for deriving the steady-state mean waiting times at each of the
queues, E[Wi ] for i = 1, . . . , N , by setting up a system of linear equations, where each equation has
a probabilistic and intuitive explanation. We sketch the main ideas of MVA for exhaustive service; the
cases of gated or mixed service disciplines require only minor changes.
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The mean waiting time E[Wi ] of a type i customer can be expressed in the following way: upon
arrival of a (tagged) type i customer, he has to wait for the (remaining) time it takes to serve all type i
customers already present in the system, plus possibly the time before the server arrives at Qi . By
PASTA, the arriving customer finds in expectation E[L i ] waiting type i customers in queue, each
having an expected service time E[Bi ]. The expected time until the server returns to Qi , is denoted by
E[Ti ] (which depends on the service discipline of all queues). A fraction ρi := λi E[Bi ] of the time,
the server is serving Qi , and hence, with probability ρi , an arriving customer has to wait for a mean
residual service time, denoted by E[RBi ]; otherwise he has to wait until the server returns. This gives,
for i = 1, . . . , N :

E[Wi ] = E[L i ]E[Bi ] + ρi E[RBi ] + (1− ρi )E[Ti ].

Little’s law gives E[L i ] = λi E[Wi ], for i = 1, . . . , N , and so it remains to derive E[Ti ]. For this, first
a system of equations is composed for the conditional mean queue lengths, which can be expressed
in mean residual durations of (sums of) visit and switch-over times. The solution of this system of
equations can be used to determine E[Ti ], and hence E[L i ] and E[Wi ] follow.

6.2 Mean visit times and mean cycle time

For the case of smart customers, the visit times to a queue depend on all arrival rates λ(V j )

i and λ(S j )

i .
In order to extend MVA to this case, we first derive the mean visit times to each of the queues, E[Vi ],
for i = 1, . . . , N . We set up a system of N linear equations where the mean visit time of a queue is
expressed in terms of the other mean visit times. We again focus on the exhaustive service discipline.

At the moment the server finishes serving Qi , there are no type i customers present in the system any
more. From this point on, the number of type i customers builds up at rates λ(Si ), λ(Vi+1), . . . , λ(Si+N−1)

(depending on the position of the server), until the server starts working on Qi again. Each of these
customers initiates a busy period, with mean E[BPi ] := E[Bi ]/(1− λ

(Vi )
i E[Bi ]). This gives:

E[Vi ] = E[BPi ]

λ(Si )
i E(Si )+

i+N−1∑
j=i+1

(
λ
(V j )

i E[V j ] + λ
(S j )

i E[S j ]

) ,
for i = 1, . . . , N . The E[Vi ] follow from solving this set of equations. This method is computationally
faster than determining (and differentiating) the LSTs of the visit time distributions (5.1). Once the
mean visit times have been obtained, the mean cycle time follows from E[C] =

∑N
i=1(E[Vi ]+E[Si ]).

6.3 MVA equations

We extend the MVA approach to polling systems with smart customers. First, we briefly introduce
some extra notation, then we give expressions for the mean waiting times, and the mean conditional
and unconditional queue lengths.After eliminating variables, we end up with a system of linear equa-
tions. The system can (numerically) be solved in order to find the unknowns, in particular, the mean
unconditional queue lengths and the mean waiting times. Although all equations are discussed in the
present section, for the sake of brevity of this section, some of them are presented in Appendix A.

The fraction of time the system is in a given period P ∈ {V1, S1, . . . , VN , SN } is denoted by q(P) :=
E[P]
E[C] . The mean residual duration of a period P , at an arbitrarily chosen point in this period, is denoted

by E[RP ] =
E[P2

]

2E[P] . The mean conditional number of type j customers in the queue during a random
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point in P is denoted by E[L (P)j ], and the mean (unconditional) number of type j customers in queue
is denoted by E[L j ]. Note that there is a small difference compared to the notation of Section 3, as in
this section L j and L (P)j do not include a potential customer in service.

We define an interval, e.g. (Vi : S j ), as the consecutive periods from the first mentioned period on,
until and including the last mentioned period, here consisting of the periods Vi , Si , Vi+1, Si+1, . . . ,

V j , S j . The mean residual duration of an interval, e.g. (Vi : S j ), is denoted by E[RVi :S j ]. Analogously,
we define E[RVi :V j ], E[RSi :V j ] and E[RSi :S j ].

For the mean conditional durations of a period, we have the following: E[←−Vi
(V j )] denotes the mean

duration of the previous period Vi , seen from an arbitrary point in V j (i.e., Vi seen backward in
time from the viewpoint of V j ), and E[−→Vi

(V j )] denotes the mean duration of the next period Vi (i.e.,
Vi seen forward in time from the viewpoint of V j ). For i = j they both coincide, and represent
the mean age, resp. the mean residual duration of Vi . Since the distribution of the age of a period
is the same as the distribution of the residual period, we have E[←−Vi

(Vi )] = E[−→Vi
(Vi )] = E[RVi ].

Generally, however, E[←−Vi
(V j )] 6= E[−→Vi

(V j )] for i 6= j , because of the dependencies between the
durations of periods. Analogously, we define E[←−Vi

(S j )], E[−→Vi
(S j )], E[←−Si

(V j )] and E[−→Si
(V j )]. Note that,

e.g., E[−→Si
(V j )] = E[Si ], but E[←−Si

(V j )] 6= E[Si ]. As switch-over times are independent, the following
quantities directly simplify:

E[←−Si
(S j )] = E[−→Si

(S j )] =

{
E[Si ] for i 6= j,
E[RSi ] for i = j .

Having introduced the required notation, we now present the main theorem of this section, which
gives a set of equations that can be solved to find the mean waiting times of customers in the system.

Theorem 6.1 The mean waiting times, E[Wi ], for i = 1, . . . , N , and the mean queue lengths, E[L i ],
satisfy the following equations:

E[Wi ] =
q(Vi )λ

(Vi )
i

λi

(
E[L (Vi )

i ]E[Bi ] + E[RBi ]

)
+

i+N−1∑
j=i+1

q(V j )λ
(V j )

i

λi

E[L (V j )

i ]E[Bi ] +

i+N−1∑
k= j

(
E[Sk] + E[−→Vk

(V j )]

)
+

i+N−1∑
j=i

q(S j )λ
(S j )

i

λi

E[L (S j )

i ]E[Bi ] + E[RS j ] +

i+N−1∑
k= j+1

(
E[Sk] + E[−→Vk

(S j )]

) , (6.1)

E[L i ] = λiE[Wi ], (6.2)

E[L i ] =

i+N∑
j=i+1

(
q(V j )E[L (V j )

i ] + q(S j )E[L (S j )

i ]

)
, (6.3)

where the conditional mean queue lengths E[L (V j )

i ] and E[L (S j )

i ], for j = i + 1, . . . , i + N − 1, are
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given by

E[L (V j )

i ] =

j∑
k=i+1

λ
(Vk )
i E[←−Vk

(V j )] +

j−1∑
k=i

λ
(Sk )
i E[←−Sk

(V j )], (6.4)

E[L (S j )

i ] =

j∑
k=i+1

λ
(Vk )
i E[←−Vk

(S j )] +

j∑
k=i

λ
(Sk )
i E[←−Sk

(S j )], (6.5)

and where all E[←−P1
(P2)] and E[−→P1

(P2)], for P1, P2 ∈ {V1, S1, . . . , VN , SN }, satisfy the set of equations
(6.6) – (6.8) below, and (A.2)–(A.7) in Appendix A.

Proof In order to derive the mean waiting time E[Wi ], we condition on the period in which a type i
customer arrives. A fraction q(V j )λ

(V j )

i /λi , and q(S j )λ
(S j )

i /λi respectively, of the type i customers
arrives during period V j , and during period S j respectively. If a tagged type i customer arrives during
period Vi (i.e., while his queue is being served), he has to wait for a residual service time, plus the
service times of all type i customers present in the system upon his arrival, which is (by conditional
PASTA), E[L (Vi )

i ]. As a fraction q(Vi )λ
(Vi )
i /λi of the customers arrives during Vi , this explains the first

line of (6.1). If the customer arrives in any other period, he has to wait until the server returns to Qi

again. For this, we condition on the period in which he arrives. If the arrival period is a visit to Q j ,
say V j for j 6= i , he has to wait for the residual duration of V j and the interval (S j : Si−1), and for
the service of the type i customers present in the system upon his arrival. This gives the second line
of (6.1). The third line, the case where the customer arrives during the switch-over time from Q j to
Q j+1 (period S j ), can be interpreted along the same lines as the case V j .

Equation (6.3) is obtained by unconditioning the conditional queue lengths E[L (P)i ]. The mean number
of type i customers in the queue at an arbitrary point during V j , given by (6.4), is the mean number
of customers built up from the last visit to Qi (when Qi became empty) until and including a residual
duration of V j (as the mean residual duration of V j is equal to the mean age of that period), taking
into account the varying arrival rates. The mean number of type i customers queueing in the system
during period S j , given by (6.5), can be found similarly. Equations (6.4) and (6.5) show one of the
difficulties in adapting the “ordinary” MVA approach to that of smart customers. If the arrival rates
remain constant during a cycle, these expressions would reduce to λi multiplied by the mean time
passed since the server has left Qi . However, for the smart customers case, we have to keep track of
the duration of all the intermediate periods, from the viewpoint of period V j respectively S j .

As indicated in Theorem 6.1, at this point, the number of equations is insufficient to find all the
unknowns, E[←−P1

(P2)] and E[−→P1
(P2)], for P1, P2 ∈ {V1, S1, . . . , VN , SN }. In the remainder of the proof,

we develop additional relations for these quantities to complete the set of equations. We start by
considering E[−→Vi

(V j )], which is the mean duration of the next period Vi , when observed from an
arbitrary point in V j . For i = j this is just the residual duration of Vi , consisting of a busy period
induced by a customer with a residual service time left, and the busy periods of all type i customers
in the queue. The cases i 6= j need some more attention. The duration of Vi now consists of the busy
period induced by the type i customers in the queue, which are in expectation E[L (V j )

i ] customers.
During the periods V j , S j , . . . , Si−1, however, new type i customers are arriving, each contributing
a busy period to the duration of Vi . Hence, summing over these periods and taking into account the
varying arrival rates, we get the mean total of newly arriving customers in this interval. This yields,
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for i = 1, . . . , N and j = i + 1, . . . , i + N − 1:

E[−→Vi
(Vi )] = E[BPi ]E[L (Vi )

i ] + E[RBi ]/
(

1− λ(Vi )
i E[Bi ]

)
, (6.6)

E[−→Vi
(V j )] = E[BPi ]

E[L (V j )

i ] +

i+N−1∑
k= j

(
λ
(Vk )
i E[−→Vk

(V j )] + λ
(Sk )
i E[Sk]

) . (6.7)

Analogously E[−→Vi
(S j )] denotes the mean duration of the next period Vi , when observed from an ar-

bitrary point in S j . The explanation of its expression is along the same lines as that of E[−→Vi
(V j )],

although it should be noted that i = j is not a special case. See (A.1) in Appendix A.

The last step in the proof of Theorem 6.1, needs the following lemma to find the final relations between
E[←−P1

(P2)] and E[−→P1
(P2)]:

Lemma 6.2 For i = 1, . . . , N , and j = i + 1, . . . , i + N :

j−1∑
k=i

E[Sk]

E[(Si :V j )]

(
E[←−Si

(Sk )] +

k∑
l=i+1

(
E[←−Sl

(Sk )] + E[←−Vl
(Sk )]

)

−E[RSk ] − E[−→V j
(Sk )] −

j−1∑
l=k+1

(
E[Sl] + E[−→Vl

(Sk )]

))

=

j∑
k=i+1

E[Vk]

E[(Si :V j )]

(
E[
−→
V j

(Vk )] +

j−1∑
l=k

(
E[Sl] + E[−→Vl

(Vk )]

)

−E[←−Si
(Vk )] − E[←−Vk

(Vk )] −

k−1∑
l=i+1

(
E[←−Sl

(Vk )] + E[←−Vl
(Vk )]

))
. (6.8)

Proof Equation (6.8) can be proven by studying all mean residual interval lengths E[RSi :V j ], E[RSi :S j ],
E[RVi :V j ] and E[RVi :S j ]. Consider E[RSi :V j ], the mean residual duration of the interval Si , Vi+1, . . . , V j .
We condition on the period in which the interval is observed. As the mean duration of the interval is
given by E[(Si :V j )], it follows that E[Sk]/E[(Si : V j )] is the probability that the interval is observed
in period Sk . The remaining duration of the interval consists of the remaining duration of Sk plus the
mean durations of the (coming) periods Vk+1, Sk+1, . . . , V j , when observed from period Sk . When
observing E[(Si :V j )] from Vk , a similar way of reasoning is used. This gives, for i = 1, . . . , N , and
j = i + 1, . . . , i + N :

E[RSi :V j ] =

j−1∑
k=i

E[Sk]

E[(Si :V j )]

(
E[RSk ] + E[−→V j

(Sk )] +

j−1∑
l=k+1

(
E[Sl] + E[−→Vl

(Sk )]

))

+

j∑
k=i+1

E[Vk]

E[(Si :V j )]

(
E[−→V j

(Vk )] +

j−1∑
l=k

(
E[Sl] + E[−→Vl

(Vk )]

))
. (6.9)

We now use that the distribution of the residual length of an interval is the same as the distribution of
the age of this interval. Again, focus on E[RSi :V j ], conditioning on the period in which the interval
is observed, but now looking forward in time. Consider all the periods in (Si : V j ) that have already
passed when observing during Sk . The interval has lasted for the sum of these periods, plus the
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age of Sk . The same can be done for an arbitrary point in Vk . This gives, for i = 1, . . . , N , j =
i + 1, . . . , i + N :

E[RSi :V j ] =

j−1∑
k=i

E[Sk]

E[(Si :V j )]

(
E[
←−
Si
(Sk )] +

k∑
l=i+1

(
E[
←−
Sl
(Sk )] + E[←−Vl

(Sk )]

))

+

j∑
k=i+1

E[Vk]

E[(Si :V j )]

(
E[←−Si

(Vk )] + E[←−Vk
(Vk )] +

k−1∑
l=i+1

(
E[←−Sl

(Vk )] + E[←−Vl
(Vk )]

))
. (6.10)

The proof of Lemma 6.2 is completed by equating (6.9) and (6.10) and rearranging the terms. �

Similar to the proof of Lemma 6.2, we can develop two different expressions for each of the terms
E[RSi :S j ],E[RVi :V j ] and E[RVi :S j ]. For the sake of brevity of this section, they are presented in Ap-
pendix A, Equations (A.2)–(A.7). Equating each pair of these expressions, completes the set of (lin-
ear) equations for the mean waiting times and mean queue lengths. This concludes the proof of
Theorem 6.1. �

7 Pseudo-Conservation Law

In this section we derive a so-called Pseudo-Conservation Law (PCL), which gives an expression for
the weighted sum of the mean waiting times at each of the queues. For “ordinary” cyclic polling
systems, Boxma and Groenendijk [6] derive a PCL under various service disciplines. This PCL, in
commonly used notation ρi = λiE[Bi ], ρ =

∑N
i=1 ρi , S =

∑N
i=1 Si , states that:

N∑
i=1

ρiE[Wi ] = ρ

∑N
i=1 ρiE[RBi ]

1− ρ
+ ρE[RS] +

E[S]
2(1− ρ)

(
ρ2
−

N∑
i=1

ρ2
i

)
+

N∑
i=1

E[Z i i ], (7.1)

with Z i i denoting the amount of work left behind by the server at Qi at the completion of a visit. For
exhaustive service at Qi , we have E[Z i i ] = 0, and for gated service E[Z i i ] =

ρ2
i E[S]
1−ρ .

We base our approach on [6], and adapt their ideas to derive a PCL for a polling model with smart
customers. The approach focusses on the mean amount of work in the system at an arbitrary point in
time. A required restriction for our approach in this section, is that the Poisson process according to
which work arrives in the system, has a fixed arrival rate during all visit periods. We also require that
the amounts of work brought by an individual arrival are identically distributed for all visit periods.
We mention two typical cases where this requirement is satisfied. Firstly, the case when the arrival
rate at a given queue stays constant during different visit times, and secondly when the total arrival
rate remains constant during visit times and the service times are identically distributed:

Case 1: λ
(V1)
i = λ

(V2)
i = . . . = λ

(VN )
i =: λ

(V )
i , i = 1, . . . , N , (7.2)

Case 2:
N∑

i=1

λ
(V j )

i =: 3(V ), and B1
d
= . . .

d
= BN , j = 1, . . . , N . (7.3)

During visit periods, let 3(V ) be the total arrival rate of all customer types, and let B(V ) denote the
generic service time of an arbitrary customer entering the system. In particular, this means for Case 1
that 3(V )

=
∑N

i=1 λ
(V )
i and B(V ) d

= Bi with probability λ(V )i /3(V ) for i = 1, . . . , N . We introduce
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ρ(V ) to denote the mean amount of work entering the system per time unit during a visit period, so
ρ(V ) = 3(V )E[B(V )

].

Denote by Y the amount of work in the polling system at an arbitrary point in time, and by Y (V )

and Y (S) the amount of work at an arbitrary point during respectively a visit period, and a switch-over
period. Then

Y d
=

{
Y (V ) w.p. ρ,
Y (S) w.p. 1− ρ,

(7.4)

where ρ :=
∑N

i=1 ρi =
∑N

i=1 λiE[Bi ] is the mean offered amount of work per time unit. Hence,

E[Y ] = ρ E[Y (V )
] + (1− ρ)E[Y (S)

]. (7.5)

Another way to obtain the mean total amount of work in the system, is by taking the sum of the mean
workloads. The mean workload in Qi is the mean amount of work of all customers in the queue, plus,
with probability ρi = λiE[Bi ], the mean remaining amount of work of a customer in service at Qi :

E[Y ] =
N∑

i=1

(
E[L i ]E[Bi ] + ρiE[RBi ]

)
. (7.6)

In the next subsections we show that equating (7.5) and (7.6), and applying Little’s law, E[L i ] =

λiE[Wi ], gives a PCL for the mean waiting times in the system. But first we have to find E[Y (V )
] and

E[Y (S)
]. We start with the latter.

7.1 Work during switch-over periods

The term E[Y (S)
] denotes the mean amount of work in the system when observed at a random point

in a switch-over interval. Denoting by E[Y (Si )] the mean amount of work in the system at an arbitrary
moment during Si , we can condition on the switch-over interval in which the system is observed:

E[Y (S)
] =

N∑
i=1

E[Si ]

E[S]
E[Y (Si )]. (7.7)

We can split E[Y (Si )] into two parts: the mean amount of work present at the start of Si , plus
the mean amount of work built up since the start of the switch-over time. In expectation, a du-
ration E[RSi ] has passed since the beginning of the switch-over time, in which work arrived at
rate λ(Si )

j E[B j ] at Q j . Hence, this gives a contribution to E[Y (Si )] of
∑N

j=1 λ
(Si )
j E[B j ]E[RSi ]. For

the work present at the start of the switch-over period, we start looking at the moment that the
server left Q j , leaving a mean amount of work E[Z j j ] behind in this queue. For exhaustive ser-
vice, E[Z j j ] = 0, for gated service E[Z j j ] = λ

(V j )

j E[B j ]E[V j ]. Since then, the interval (S j : Vi+N )

has passed, for j = i + 1, . . . , i + N − 1. In this interval the amount of type j work increased at
rates λ(S j )

j E[B j ], λ
(V j+1)

j E[B j ], . . . , λ
(Si−1)
j E[B j ], λ

(Vi )
j E[B j ] during the various periods. This leads to

the following expression for E[Y (Si )]:

E[Y (Si )] =

N∑
j=1

(
λ
(Si )
j E[B j ]E[RSi ] + E[Z j j ]

)
+

i+N−1∑
j=i+1

i+N−1∑
k= j

(
λ
(Sk )
j E[B j ]E[Sk] + λ

(Vk+1)
j E[B j ]E[Vk+1]

)
.

(7.8)
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7.2 Work during visit periods

The key observation in the proof of [6] is the work decomposition property in a polling system. This
property states that the amount of work at an arbitrary epoch in a visit period is distributed as the sum
of two independent random variables: the amount of work in the “corresponding” M/G/1 queue at
an arbitrary epoch during a busy period, denoted by Y (V)

M/G/1, and the amount of work in the polling
system at an arbitrary epoch during a switch-over time, Y (S). In a polling model with smart customers,
this decomposition does not typically hold, but a minor adaptation is required. We follow the proof
in [6] as closely as possible, meaning that we use the concepts of ancestral line and offspring of a
customer, as introduced in [14]. We also copy the idea of comparing the polling system to an M/G/1
queue with vacations and Last-Come-First-Served (LCFS) service. The traffic process offered to this
M/G/1 queue is identical to the traffic process of the polling system. The server of the M/G/1
queue takes vacations exactly during the switching periods of the polling system. These vacations
might interrupt the service of a customer in the M/G/1 queue. This service is not resumed until all
customers that have arrived during the vacation and their offspring have been served (in LCFS order).

We now focus on the amount of work in this M/G/1 system at an arbitrary moment during a visit
(busy) period. Let K be the customer being served at this observation moment, and let K A be his
ancestor. By definition, K A has arrived during a vacation period (or: switch-over period in the corre-
sponding polling system). Denote by YK A the amount of work present in the system at the moment
that K A enters the system. An important difference with the situation studied in [6] is that we cannot
use the PASTA property, so in general YK A 6= Y (S). We now condition on the customer type of K A.
The mean duration of the service of a type i ancestor and his entire ancestral line is E[Bi ]/(1− ρ(V )).
This can be regarded as the mean busy period commencing with the service of an exceptional first
customer (namely a type i customer). Each type i customer arriving during S j , with arrival rate λ(S j )

i ,
i, j = 1, . . . , N , starts such a busy period, so the probability that K A is a type i customer is:

pi =

∑N
j=1 λ

(S j )

i E[S j ]E[Bi ]/(1− ρ(V ))∑N
k=1

∑N
j=1 λ

(S j )

k E[S j ]E[Bk]/(1− ρ(V ))
=

∑N
j=1 λ

(S j )

i E[S j ]E[Bi ]∑N
k=1

∑N
j=1 λ

(S j )

k E[S j ]E[Bk]
. (7.9)

Given that K A is a type i customer, we again pick up the proof of the work decomposition in [6].
Denote by BK A the service requirement of K A. Then, because of the LCFS service discipline of
the M/G/1 queue, the amount of work when K A goes into service is exactly YK A + BK A , and the
amount of work when the last descendant of K A has been served equals YK A again (for the first time,
since the arrival of K A). Ignoring the amount of work present at K A’s arrival, the residual amount
of work evolves just as during a busy period in an M/G/1 queue with an exceptional first customer
(having generic service requirement Bi ). The only exception is caused by the vacations (or switch-
over times in the polling model), during which the work remains constant or may increase because
of new arrivals. However, just as in [6], if we ignore these vacations and the (LCFS) service of
the ancestral lines of the customers that arrive during these vacations, what remains is the workload
process during a busy period initiated by a type i customer. Denote by Y (V )

M/G/1|i the amount of work
at an arbitrary moment during this busy period, and denote by Y (S)

Ai
the amount of work present in the

polling system at an arbitrary arrival epoch of a type i customer during a switch-over time. Note that
YK A is distributed like Y (S)

Ai
. Then we have the following decomposition:

Y (V ) d
= Y (V )

M/G/1|i + Y (S)
Ai

w.p. pi , i = 1, . . . , N , (7.10)
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with pi as given in (7.9), and Y (V )
M/G/1|i and Y (S)

Ai
being independent. This leads to

E[Y (V )
] =

N∑
i=1

pi

(
E[Y (V )

M/G/1|i ] + E[Y (S)
Ai
]

)
, (7.11)

with

E[Y (V )
M/G/1|i ] = E[RBi ] +

ρ(V )

1− ρ(V )
E[RB(V )], (7.12)

E[Y (S)
Ai
] =

N∑
j=1

λ
(S j )

i E[S j ]∑N
k=1 λ

(Sk )
i E[Sk]

E[Y (S j )]. (7.13)

For (7.12) we use standard theory on an M/G/1 queue with an exceptional first customer (cf. [27]),
and (7.13) is established by conditioning on the switch-over period in which a type i customer arrives.

7.3 PCL for smart customers

We are now ready to state the PCL.

Theorem 7.1 Provided that (7.2) or (7.3) is valid, the following Pseudo-Conservation Law holds:

N∑
i=1

ρi E[Wi ] = (1− ρ)
N∑

i=1

E[Si ]

E[S]
E[Y (Si )] −

N∑
i=1

ρiE[RBi ]

+ ρ

N∑
i=1

pi

 N∑
j=1

λ
(S j )

i E[S j ]∑N
k=1 λ

(Sk )
i E[Sk]

E[Y (S j )] + E[RBi ] +
ρ(V )

1− ρ(V )
E[RB(V )]

 , (7.14)

where E[Y (Si )] are as in (7.8), and the pi as in (7.9).

Proof We have two equations, (7.5) and (7.6), for mean total amount of work in the system. Com-
bining these two equations, and plugging in (7.7) and (7.11), we find

N∑
i=1

(
E[L i ]E[Bi ] + ρiE[RBi ]

)
= (1− ρ)

N∑
j=1

E[S j ]

E[S]
E[Y (S j )] + ρ

N∑
i=1

pi

(
E[Y (V )

M/G/1|i ] + E[Y (S)
Ai
]

)
.

By application of Little’s law, E[L i ] = λiE[Wi ], using that ρi = λiE[Bi ], plugging in (7.12) and
(7.13), after some rewriting we obtain (7.14), which is a PCL for a polling model with smart cus-
tomers. �

Remark 7.2 When λ(S1)
i = λ

(S2)
i = . . . = λ

(SN )
i = λ

(V1)
i = · · · = λ

(VN )
i = λi , for all i = 1, . . . , N ,

Equation (7.14) reduces to (7.1). E.g., because of PASTA, E[Y (S)
Ai
] = E[Y (S)

], and pi = λi/3 for
all i .

Case 2, where assumptions (7.3) hold, has a nice practical interpretation if we add the additional
requirement that

∑N
i=1 λ

(S j )

i =
∑N

i=1 λ
(V j )

i =: 3 for all j = 1, . . . , N . Now, the model can be
interpreted as a polling system with customers arriving in one Poisson stream with constant arrival
rate 3, and generic service requirement B, but joining a certain queue with a fixed probability that
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may depend on the location of the server at the arrival epoch. In Section 8, we discuss an example on
how these probabilities may be chosen to minimise the mean waiting time of an arbitrary customer.
The PCL (7.14) can be simplified considerably in this situation.

Corollary 7.3 If (7.3) is valid, the PCL (7.14) reduces to:

N∑
i=1

ρi E[Wi ] =

N∑
i=1

E[Si ]

E[S]
E[Y (Si )] +

ρ2

1− ρ
E[RB]. (7.15)

Proof This is a direct consequence of assumptions (7.3). E.g., in the computation of (7.12) there is
no need to condition on a special first customer, and hence the term E[YM/G/1|i ] does not depend on i
anymore:

E[YM/G/1|i ] =
E[RB]

1− ρ
,

where ρ = 3E[B]. Additionally, the term
∑N

i=1 piE[Y (S)
Ai
] also simplifies considerably:

N∑
i=1

piE[Y (S)
Ai
] =

N∑
i=1

E[Si ]

E[S]
E[Y (Si )].

Combining this, multiple terms cancel out and (7.15) follows. It is easily seen that (7.15) is in line
with (7.1), when the arrival rates do not change during various visit and switch-over times. �

8 Numerical examples

8.1 Example 1: smart customers

In the first numerical example, we study a polling system where arriving customers choose which
queue they join, based on the current position of the server. In [5, 7] a fully symmetric case is studied
with gated service, and it is proven that the mean sojourn time of customers is minimised if customers
join the queue that is being served directly after the queue that is currently being served. Although
the exhaustive case is not studied, it is intuitively clear that in this situation smart customers join the
queue that is currently being served. Or, in case an arrival takes place during a switch-over time, join
the next queue that is visited. In this example, we study this situation in more detail by adding an
extra parameter that can be varied. The polling model is fully symmetric, except for the service time
of customers in Q1, which is varied. The practical interpretation is the following: as in the previously
described examples, customers arrive with a fixed arrival intensity, say 3, and choose which queue
they join. This does not affect their service time, except when they choose Q1. In this case the
service time has a different distribution. To illustrate the dynamics of this system, we choose the
following setting. The system consists of three queues with exhaustive service. The switch-over times
are all exponentially distributed with mean 1. The service times are also exponentially distributed
with E[B2] = E[B3] = 1, and E[B1] is varied between 0 and 2. Arriving customers choose one
queue which they want to join. This queue is the same for all customers, so there no randomness
involved in the selection, which is only based on the location of the server at their arrival epochs. We
intend to find the optimal queue for customers to join. In terms of the model parameters: we seek
to find values for λ(V j )

i and λ(S j )

i , i, j = 1, 2, 3, that minimise the mean sojourn time of an arbitrary
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customer, under the restriction that for each value of j , exactly one λ(V j )

i and exactly one λ(S j )

i is
equal to 3, and all the other values are 0. A valid combination of these arrival intensities is called
a strategy, and we introduce the short notation for a strategy by the indices of the queues that are
joined in respectively (V1, S1, V2, S2, V3, S3). E.g., for the fully symmetric case, with E[B1] = 1, it is
intuitively clear that the optimal strategy is to join Qi , if the arrival takes place during Vi , and to join
Qi+1 if the arrival takes place during Si . This strategy is denoted by (1, 2, 2, 3, 3, 1), and corresponds
to λ(V1)

1 = λ
(V2)
2 = λ

(V3)
3 = 3, and λ(S1)

2 = λ
(S2)
3 = λ

(S3)
1 = 3. The other arrival intensities are 0.

As stated before, we vary E[B1] between 0 and 2, and focus on the overall mean sojourn time. It is
clear that making E[B1] smaller, makes it more attractive to join Q1 (even if another queue is served),
whereas making E[B1] larger, makes it less attractive to join Q1. In order to obtain numerical results,
we choose the (arbitrary) value 3 = 3

5 . It turns out that as much as seven different strategies can
be optimal, depending on the value of E[B1]. We refer to these strategies as I through VII, listed in
Table 1, along with their region of optimality. For each of these strategies, the mean sojourn time of
an arbitrary customer is plotted versus E[B1] in Figure 2.

Strategy Queue to join during Region of optimality
V1 S1 V2 S2 V3 S3

I 1 1 X 1 X 1 0.00 ≤ E[B1] ≤ 0.41
II 1 2 1 1 X 1 0.41 ≤ E[B1] ≤ 0.66
III 1 2 2 1 X 1 0.66 ≤ E[B1] ≤ 0.73
IV 1 2 2 3 1 1 0.73 ≤ E[B1] ≤ 0.84
V 1 2 2 3 3 1 0.84 ≤ E[B1] ≤ 1.10
VI 2 2 2 3 3 1 1.10 ≤ E[B1] ≤ 1.16
VII X 2 2 3 3 2 1.16 ≤ E[B1]

Table 1: The seven smartest strategies in Example 1 that minimise the mean waiting time of an
arbitrary customer who can choose the queue in which he wants to be served. An ‘X’ means that the
length of the corresponding visit time equals 0 because customers never join this queue.

I II III
IV

V

VI

VII

0.0 0.5 1.0 1.5
E@B1D

2.5

3.0

3.5

4.0

4.5

5.0
Mean sojourn time

Figure 2: The mean sojourn time of an arbitrary customer for the seven smartest strategies in Example
1, against the mean service time in Q1.
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As expected, Q1 is most popular if E[B1] is very small. In particular, for very small values of E[B1],
customers always join this queue (Strategy I). As E[B1] becomes larger, Q2 and later also Q3 are
chosen in more and more situations (Strategies II–V). Strategy V, which is optimal if the system is
(nearly) symmetric, is the one where customers join the queue that is being served, or is going to
be served next if the arrival takes place during a switch-over time. Strategy VI, which is optimal in
only a very small range of values of E[B1], states that customers only join Q1 during the switch-over
time S3. Strategy VII, in which customers never join Q1, is optimal for large values of E[B1]. The
ergodicity constraint, considering all parameters are fixed except for E[B1], for the different strategies
is also interesting to mention. For strategies I-V, the necessary and sufficient condition for stability is
E[B1] <

5
3 . Strategies VI and VII always result in a stable system, regardless of E[B1].

It is also interesting to discuss what stupid customers would do in this system. Stupid customers
choose the worst possible strategy, in order to maximise the mean sojourn time of an arbitrary cus-
tomer. We do not go into details and do not mention exactly which strategy is worst for each value of
E[B1], but we pick out some interesting cases. Obviously, when E[B1] = 0, the worst possible thing
to do is never to join Q1. The worst strategy in this case is (X, 3, 3, 2, 2, 3), where X means that any
queue can be chosen (because the length of the corresponding visit time equals 0, since customers
never join this queue). This strategy leads to an overall mean sojourn time of 7.48. As E[B1] grows
larger, Q1 gradually will be chosen more frequently. In the symmetric case, E[B1] = 1, customers
arriving during Vi choose Qi−1, and customers arriving during Si choose Qi , resulting in a mean
sojourn time of 8.5. For large E[B1], the worst possible strategy might be a bit surprising. It is not
simply to always join Q1, but it is (1, 1, 1, 2, 1, 3). During visit periods, customers always join Q1,
but during Si customers join Qi . For E[B1] ↑

5
3 , this strategy results in the highest mean sojourn time

of an arbitrary customer. For the situation E[B1] ≥
5
3 , there are many strategies for which the system

becomes unstable and sojourn times become infinite. The worst possible strategy for E[B1] ≥
5
3 that

still results in a stable system, is (3, 1, X, 1, 1, 1).

8.2 Example 2: no arrivals during a specific period

In this example we illustrate how to deal with polling models with arrival rates being zero during cer-
tain periods. For MVA, this is no problem. The equations presented in Section 6 still give the correct
solution if some of the arrival rates during periods are zero. The problem arises when determining
the LST of the waiting time distribution (4.3) and can only be circumvented by a work-around, which
is explained using a simple example. The polling model in this example contains two queues, Q1

and Q2, which are served exhaustively. All switch-over times and all service times are exponentially
distributed with parameter 1. All arrival rates are 1

2 , except for the arrival rate of type 1 customers
arriving during the service of type 2 customers: λ(V2)

1 = 0. This brings along some complications.
First of all, (5.4) cannot be used to determine the cycle time LST. This is no real problem, because
(5.2) can be used instead. Because of λ(V2)

1 being zero, we should use (3.11) instead of (3.4) for type
1(V2) customers to determine the PGF of the steady-state queue length of Q1. Again, no real problem
but just something to be careful about. Determining the waiting time LST for type 1 customers does
raise some issues, though. The (generalisation of the) distributional form of Little’s law, given by
(4.3), uses the joint distribution of customers left behind by a departing type i customer to determine
his time spent in the system. As can be seen in the proof of Theorem 4.3, this technique requires that
type i customers may arrive during each period within a cycle. In our model this is not the case, be-
cause no type 1 customers arrive during V2. This implies that the number of customers left behind by
a departing type 1 customer, does not give any information about the waiting time of type 1 customers
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(more specifically, of those that arrived during S1), because a departing type 1 customer does not leave
behind any customers (of any type) that have arrived during V2.

A work-around for this problem, is to introduce an extra queue, Q X , with type X customers that have
no service requirement (BX = 0), and λ(V2)

X > 0. Customers in this queue are served exhaustively
somewhere between the end of V1 and the beginning of V2, because type X (V2) customers have to be
present at departure epochs of type 1 customers. In our approach, we choose to treat Q X as a regular
queue between Q1 and Q2 with no switch-over time from Q X to Q2 because this gives us a “normal”,
three-queue polling system. Determining the waiting time LST of type 1 customers, requires a careful
application of the distributional form of Little’s law to the various customer subtypes in Equation
(4.2). For convenience, we introduce the following two vectors, where the elements correspond to
customer subtypes (1(V1), . . . , 1(S2), X (V1), . . . , X (S2), 2(V1), . . . , 2(S2)):

ω1 = (1−
ω

λ
(V1)
1

, 1−
ω

λ
(S1)
1

, 1, 1−
ω

λ
(S2)
1

, 1, 1, 1, 1, 1, 1, 1, 1),

ω∗

1 = (1−
ω

λ
(V1)
1

, 1−
ω

λ
(S1)
1

, 1, 1−
ω

λ
(S2)
1

, 1, 1, 1−
ω

λ
(V2)
X

, 1, 1, 1, 1, 1),

the difference being in the element corresponding to the type X customers that arrive during V2. Note
that we do not introduce customer subtypes that arrive during VX or SX , because the lengths of these
periods are 0. The LST of the waiting time distribution of type 1 customers is given by:

E
[
e−ωW1

]
=

1
β1(ω)

λ

λ1

(
M (V1)

1 (ω1)+ M (S1)
1 (ω∗

1)+ M (V2)
1 (ω1)+ M (S2)

1 (ω1)
)
.

The interpretation is that we use the type X (V2) customers left behind by a departing 1(S1) customer to
determine the length of V2, which is part of the total waiting time of a type 1(S1) customer. The other
type 1 customers arrive after the visit to Q2 and can be handled in the regular way. The numerical
results of this example are shown in Table 2.

Q1 Q2

Mean queue length at arrival epochs 1.750 3.375
Mean queue length at departure epochs 1.750 3.375
Mean queue length at arbitrary epochs 1.188 3.375
Mean waiting time 3.750 5.750
Standard deviation waiting time 5.093 6.280

Table 2: Numerical results for the polling model discussed in Example 2.

We can modify (5.4) and (5.5) accordingly to obtain the LSTs of the cycle time distribution C∗1 ,
starting at a visit completion to Q1, and the intervisit time distribution I1:

E
[
e−ωC∗1

]
= V (S1)

b1

(
π1(ω)−

ω

λ
(V1)
1

, π1(ω)−
ω

λ
(S1)
1

, 1, π1(ω)−
ω

λ
(S2)
1

, 1, 1, 1−
ω

λ
(V2)
X

, 1, 1, 1, 1, 1
)
,

E
[
e−ωI1

]
= V (S1)

b1

(
ω∗

1
)
.
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Appendix

A MVA equations

In this appendix we present all MVA equations that have been omitted in Section 6.

The mean duration of the next period Vi , when in S j is denoted by E[−→Vi
(S j )]. A difference with

E[−→Vi
(V j )], is that E[−→Vi

(Si )] is not different from E[−→Vi
(S j )] for j 6= i . Similar to (6.7), we have for

i = 1, . . . , N , j = i, . . . , i + N − 1:

E[−→Vi
(S j )] = E[BPi ]

E[L (S j )

i ] + λ
(S j )

i E[RS j ] +

i+N−1∑
k= j+1

(
λ
(Vk )
i E[−→Vk

(S j )] + λ
(Sk )
i E[Sk]

) . (A.1)

Equation (6.9) for E[RSi :V j ], the mean residual duration of the interval Si , Vi+1, . . . , V j , is obtained by
conditioning on the period in which the interval is observed, looking forward in time. Similarly, we
find expressions for E[RSi :S j ],E[RVi :V j ], and E[RVi :S j ]. For i = 1, . . . , N , j = i + 1, . . . , i + N − 1:

E[RSi :S j ] =

j∑
k=i

E[Sk]

E[(Si : S j )]

(
E[RSk ] +

j∑
l=k+1

(
E[Sl] + E[−→Vl

(Sk )]

))

+

j∑
k=i+1

E[Vk]

E[(Si : S j )]

( j∑
l=k

(
E[Sl] + E[−→Vl

(Vk )]

))
. (A.2)

For i = 1, . . . , N , j = i + 1, . . . , i + N − 1:

E[RVi :V j ] =

j−1∑
k=i

E[Sk]

E[(Vi :V j )]

(
E[RSk ] + E[−→V j

(Sk )] +

j−1∑
l=k+1

(
E[Sl] + E[−→Vl

(Sk )]

))

+

j∑
k=i

E[Vk]

E[(Vi :V j )]

(
E[−→V j

(Vk )] +

j−1∑
l=k

(
E[Sl] + E[−→Vl

(Vk )]

))
. (A.3)

For i = 1, . . . , N , j = i + 1, . . . , i + N − 1:

E[RVi :S j ] =

j∑
k=i

E[Sk]

E[(Vi : S j )]

(
E[RSk ] +

j∑
l=k+1

(
E[Sl] + E[−→Vl

(Sk )]

))

+

j∑
k=i

E[Vk]

E[(Vi : S j )]

( j∑
l=k

(
E[Sl] + E[−→Vl

(Vk )]

))
. (A.4)
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In Section 6, a second set of equations is discussed for E[RSi :V j ],E[RSi :S j ],E[RVi :V j ], and E[RVi :S j ].
This set is obtained by conditioning on the period in which the interval is observed, but now looking
backward in time. We use that the residual length of an interval has the same distribution as the
elapsed time of this interval. The equation for E[RSi :V j ] is given by (6.10). The other equations are
given below. For i = 1, . . . , N , j = i + 1, . . . , i + N − 1:

E[RSi :S j ] =

j∑
k=i

E[Sk]

E[(Si : S j )]

(
E[←−Si

(Sk )] +

k∑
l=i+1

(
E[←−Sl

(Sk )] + E[←−Vl
(Sk )]

))

+

j∑
k=i+1

E[Vk]

E[(Si : S j )]

(
E[←−Si

(Vk )] + E[←−Vk
(Vk )] +

k−1∑
l=i+1

(
E[←−Sl

(Vk )] + E[←−Vl
(Vk )]

))
. (A.5)

For i = 1, . . . , N , j = i + 1, . . . , i + N − 1:

E[RVi :V j ] =

j−1∑
k=i

E[Sk]

E[(Vi :V j )]

(
k∑

l=i

(
E[←−Sl

(Sk )] + E[←−Vl
(Sk )]

))

+

j∑
k=i

E[Vk]

E[(Vi :V j )]

(
E[←−Vk

(Vk )] +

k−1∑
l=i

(
E[←−Sl

(Vk )] + E[←−Vl
(Vk )]

))
. (A.6)

For i = 1, . . . , N , j = i, . . . , i + N − 1:

E[RVi :S j ] =

j∑
k=i

E[Sk]

E[(Vi : S j )]

(
k∑

l=i

(
E[←−Sl

(Sk )] + E[←−Vl
(Sk )]

))

+

j∑
k=i

E[Vk]

E[(Vi : S j )]

(
E[
←−
Vk

(Vk )] +

k−1∑
l=i

(
E[←−Sl

(Vk )] + E[←−Vl
(Vk )]

))
. (A.7)
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