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Abstract. A modal method for the analysis of surface relief gratings made with anisotropic material is

presented. The structure is decomposed into a series of cascaded discontinuities between planar wave-

guides with strati®ed anisotropic dielectric. The basic problem is formulated by an integral equation which

is solved numerically by the method of moments. The mode functions of the periodic region are assumed

as basis functions to represent the unknown ®eld on the junctions. Each junction is viewed as a waveguide

junction problem and has been characterized by the generalized scattering matrix (GSM). The di�raction

e�ciencies of the grating are determined by combining the various GSM. In this way, the analysis method

is stable and can be applied also to deep gratings.

Key words: anisotropic media, di�raction gratings, numerical methods

1. Introduction

Di�raction gratings are components of great interest for their various ap-
plications, for instance, in integrated optics, holography and spectroscopy
(Gaylord and Moharam 1985). Usually, the dielectric is considered to be
isotropic, but sometimes also anisotropic materials are used. Then it is
important to develop a formalism to analyze these kinds of structures.

Among the methods introduced for the analysis of di�raction gratings, one
can recall the integral method (Petit 1980), the coupled wave method
(Gaylord and Moharam 1985; Chateau and Hugonin 1994) and the di�er-
ential method (Montiel and Neviere 1994). Anisotropic gratings with mod-
ulated refraction index have been analyzed in (Glytsis and Gaylord 1987).
Lamellar gratings were studied in (Mori et al. 1990) by the coupled wave
method, but the convergence is slow, because the Fourier series is not
appropriate to represent a discontinuous index pro®le.

In this paper, we discuss a modal method that is particularly suited for the
analysis of dielectric relief di�raction gratings with steplike pro®le of the type
shown in Fig. 1.

The approach, already used in the case of isotropic gratings (Orta et al.
1997), is to view the structure as the cascade of junctions between periodic
arrays of slab waveguides with the same period and di�erent heights. Each
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junction is characterized by its Generalized Scattering Matrix (GSM) and the
di�raction e�ciencies of the grating are obtained by combining the various
GSM according to the rules of circuit theory. The scattering matrix for-
malism is intrinsically stable and the well-known numerical problems which
make di�cult the analysis of deep gratings are avoided. See (Li 1996) for an
extensive discussion of this issue.

2. Junction between two planar anisotropic dielectric guides

The main problem in the analysis of the grating of Fig. 1 is the character-
ization of the junction, at z � zj, between two regions consisting of periodic
arrays of dielectric slabs, with the same periodicity (lattice step D) but with
di�erent thickness. The incident ®eld is assumed to be a plane wave with
wavevector contained in the x; z plane, forming the angle #i with the z axis.
The incident plane wave enforces the phase shift over the period k0Dn0 sin#i,
where k0 is the free space wavenumber and n0 is refraction index of the
medium from which the incident ®eld comes. Thus the structure can be
modelled as an inhomogeneously ®lled waveguide with phase shift walls
(PSW) (see Fig. 2a).

This scattering problem can be formulated in terms of an integral equation,
which is obtained by applying the Equivalence Theorem. The two regions are
decoupled by introducing a perfectly conducting electric or magnetic plate,
on which suitable magnetic or electric currents guarantee that the new
problem is equivalent to the original one (Auda and Harrington 1983).

The boundary conditions require the continuity of the tangential electric
and magnetic ®elds at the junction. In the case where a magnetic conductor is

Fig. 1. Geometry of a lamellar surface relief di�raction grating.
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introduced, the continuity of the magnetic ®eld is ensured by assuming that
the electric current distributions are opposite to each other on the two sides
of the junction. Enforcing the continuity of the electric ®eld leads to an
integral equation that is termed electric ®eld integral equation (EFIE). The
unknown is the electric current distribution J�q� � �ÿẑ� � Ht�q; zj�, that is
essentially the transverse magnetic ®eld at the junction. The kernel of the
equation is the Green's function of the structure, which is easily derived in
terms of the modes of the two waveguides. Fig. 2b shows the equivalent
modal circuit (Felsen and Marcuvitz 1973, Ch. 2) of the junction. The
superscripts � and ~ are used to denote quantities relative to the left (z < zj)
and right region, respectively.

The keypoint in the application of the modal formalism is that the mode
eigenfunctions form an orthonormal basis in the Hilbert space of transverse
®elds. As well known from general mathematical theorems, this happens only
if the eigenproblem is self-adjoint, such as in the case of a lossless isotropic
waveguide. If this condition is not satis®ed, the mode eigenfunctions are not
orthogonal and it becomes impossible to compute the ®eld radiated by a
given source distribution. On the other hand, it is always possible to con-
struct an adjoint problem, whose eigenfunctions are orthogonal to those of
the original problem, while the eigenvalues are the same (Felsen and Marc-
uvitz 1973, Ch. 8; Friedman 1965).

In the circuits shown in Fig. 2b, the unknown current generators �{n and ~{m
are given by:

�{n � hJ ;�e�n i ~{m � hJ ;~e�mi �1�

Fig. 2. Basic junction problem. (a) Application of the equivalence theorem. PMC: Perfect magnetic

conductor. PSW: Phase shift wall. (b) Modal equivalent circuit.
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where the symbol h:; :i denotes a symmetrical inner product. In general, e�i is
the electric ®eld eigenfunction corresponding to the adjoint problem. In this
work, we consider only the case of transverse anisotropy (i.e. the anisotropy
is con®ned in the xy plane only). Then the waveguide with anisotropic di-
electric has a re¯ection symmetry. The propagation constants can be real,
imaginary or also complex, even for lossless dielectric (Felsen and Marcuvitz
1973, Ch. 8). The adjoint problem is obtained by substituting all the dyadic
permittivities and permeabilities with their transpose. The modes of the two
problems are identi®ed by the common propagation constant kzi. For the
modes with real or imaginary propagation constant kzi, the eigenfunction e�i
is just the complex conjugate of ei, the eigenfunction of the original problem
with the same propagation constant. The case of complex modes is more
complicated. In fact they appear in four-tuples with propagation constants in
the form kz � �b� ja. Among them, those with kz � �bÿ ja are the pro-
gressive modes. Let ec1 be the electric ®eld eigenfunction relative to the mode
with propagation constant kz � bÿ ja and let ec2 be the eigenfunction with
kz � ÿbÿ ja, then one has

e�c1 � e�c2 e�c2 � e�c1 �2�

These rules hold in the lossless case and are derived by standard analytical
techniques.

It is well-known that the choice of modal impedance is only a convention.
The de®nition that will be used here for the case of an anisotropic guide,
which generalizes the well-known choice for TE and TM modes, is based on
the condition

hen; e
�
n i � hhn; h

�
n i �3�

i.e. the electric and magnetic ®eld eigenfunctions have the same norm.
The voltage generator 2 �V i

n accounts for the incident ®eld and is computed via

�V i
n � h�Ei

t;
�h�n � ẑi �4�

The electric ®eld on the two sides of the junction is computed easily from the
modal circuit of Fig. 2:

�Et �
X

n

�Vn�en �
X

n

�2 �V i
n ÿ �{n �Zn��en �5�

~Et �
X

m

~Vm~em �
X

m

~{m ~Zm~em �6�

The boundary condition to be enforced requires that
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�Et�q� ÿ ~Et�q� � 0 8q �7�

This equation, by the substitution of (1±6), can be rewritten as the following
EFIE:Z

GE�q; q0� � J�q0�dq0 � 2�Ei
t�q� 8q �8�

where the kernel (electric Green's function) is given by the following eigen-
function expansion:

GE�q; q0� �
X

n

�Zn�en�q��e�n �q0� �
X

m

~Zm~em�q�~e�m�q0� �9�

As remarked above, the equivalence theorem can also be applied in a dif-
ferent way, by inserting an electric plane in z � zj. The unknown, in this case,
is the equivalent magnetic current distribution M�q� introduced on the two
sides of the junction (with opposite signs, so that the continuity of the electric
®eld is guaranteed). Enforcing the continuity of the tangential magnetic ®eld
yields a magnetic ®eld integral equation (HFIE), dual of (8):Z

GH �q;q0� �M�q0�dq0 � 2 �Hi
t�q� 8q �10�

where the magnetic Green's function is computed through the following
eigenfunction expansion:

GH �q; q0� �
X

n

�Yn
�hn�q��h�n �q0� �

X
m

~Ym
~hm�q�~h�m�q0� �11�

which is derived from a modal circuit dual of that of Fig. 2. Note that (8) and
(10) are just two examples; other integral equations can be obtained by
applying the equivalence theorem in di�erent forms.

Let us apply the method of moments to the solution of the EFIE (8). Let
ff

k
�x�g be a set of suitable basis functions: a small number of them must be

capable of approximating accurately the unknown according to

J�x� �
X

k

xkf
k
�x� �12�

Moreover, let fwl�x�g be a set of suitable test functions, i.e. such that a small
number of them can span the range of the linear operator. It is convenient to
introduce a matrix formalism:
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�Fnk � hf k
;�e�n i �Wnl � hwl;�eni �13�

~Fnk � hf k
;~e�n i ~Wnl � hwl;~eni �14�

Then, the linear system derivable from (8) takes the form:

�W T � �Z � �F � ~W T � ~Z � ~F
h i

� x � 2 �W T � �V i �15�

where �Z and ~Z are the diagonal matrices of the modal impedances. Let us
denote by Q the inverse of the coe�cient matrix:

Q � �W T � �Z � �F � ~W T � ~Z � ~F
h iÿ1

�16�

Then the electric current at z � zj is known through the coe�cients of the
basis functions:

x � 2Q � �W T � �V i �17�

The most convenient way to characterize the junction between the two arrays
of dielectric waveguides is to use the GSM, i.e. the one referred to both
propagating and cut-o� modes. This can be computed easily on the basis of
the circuits of Fig. 2. In fact, the scattered voltages are given by

�V s
n � �V i

n ÿ �Zn�{n ~V s
m � ~Zm~{m �18�

and noting that

�{n �
X

k

�Fnkxk ~{m �
X

k

~Fmkxk �19�

we obtain

�V s � 2�V i ÿ 2�Z � �F � Q � �W T � �V i �20�

~V s � 2~Z � ~F � Q � �W T � �V i �21�

If we now proceed in the same way as before by assuming a right-hand side
incidence ~V i, we derive the GSM of the junction:

�V
s

~V
s

24 35 � S
11

S
12

S
21

S
22

24 35 � �V
i

~V
i

24 35 �22�
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where

S
11
� 1ÿ 2 �Z � �F � Q � �W

T

S
12
� 2 �Z � �F � Q � ~W

T

S
21
� 2 ~Z � ~F � Q � �W

T

S
22
� 1ÿ 2 ~Z � ~F � Q � ~W

T

�23�

The procedure for the solution of the HFIE (10) is very similar and will not
be reported in detail. In this case, the basis functions are chosen to expand
the magnetic current distribution. The elements of the GSM of the same
junction, according to the HFIE formulation can be shown to be

S
11
� 2 �F � Q � �W

T � �Y ÿ 1

S
12
� 2 �F � Q � ~W

T � ~Y

S
21
� 2 ~F � Q � �W

T � �Y

S
22
� 2 ~F � Q � ~W

T � ~Y ÿ 1

�24�

where the matrix Q is de®ned in this case by

Q � �W
T � �Y � �F � ~W

T � ~Y � ~F
n oÿ1

�25�

and the matrices F and W are de®ned by equations similar to (13) with the
electric ®eld eigenfunctions ei substituted with the magnetic ®eld ones hi.

The determination of the modes of the various regions composed of arrays
of dielectric slabs, which is necessary for the computation of the relevant
Green's function, would require, as well known, the solution of a transcen-
dental equation. To implement a fully automated procedure is not a trivial
task, in particular, in the case of lossy dielectrics or when modes are almost
degenerated. Thus, a di�erent approach has been taken, i.e. the so called ``tau
method'' of Lanczos (Orszag and Gottlieb 1977; and Lancellotti and Orta
1997). The wave equation is converted into an algebraic eigenvalue problem
by introducing a suitable basis for the representation of the unknown. Since
the modal ®elds have discontinuous derivatives at the dielectric interfaces, it
is particularly convenient to use a piecewise Legendre polynomial basis,
which provides exponential convergence rate. By exploiting the analytical
properties of the representation, it is possible to determine the number of
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basis polynomials to be employed for the determination of a certain eigen-
value with a prescribed accuracy (Lancellotti and Orta 1997).

A key point in the actual application of the method of moments is the
selection of appropriate expansion and testing functions. For the numerical
evaluation of the junction GSM given by (22), it is clear that one has to use a
®nite number of basis and test functions, as well as a ®nite number of modes
in the two regions to represent the Green's function. As is well known, these
numbers cannot be chosen independently but are related because of the
relative convergence phenomenon (Mittra et al. 1972). The number of ex-
pansion functions, and hence the size of the matrix to be inverted, can be
small thanks to a careful choice of them.

The modes of the two regions adjacent to the junction play roles that it is
convenient to keep distinct. On the one hand, the modes are the ports with
respect to which the junction GSM is de®ned, and their number depends on
the accuracy with which the interaction with the adjacent discontinuities is to
be described. On the other hand, the modes are used to represent the Green's
function of the problem (see (9, 11)), and hence, the accuracy of the solution
of the junction problem grows with the number of modes employed to
evaluate the matrices Q de®ned in (16) and (25).

A criterion that may be employed to decide the number of modes in order to
have a good solution of the integral equation is based on the spatial bandwidth
concept. The spatial bandwidth of the Green's function modal representation
has to be larger than that of the aperture ®eld in terms of expansion functions.
In any case, the number of modes must be larger than the number of expansion
function, otherwise the linear system matrix de®ned in (16) is singular.

3. Grating analysis

According to the strategy indicated in the introduction, the grating is de-
composed into a series of junctions, each of which is characterized by its
GSM. The GSM of the complete structure is computed by the cascade
combination of the various GSM, also known as Redhe�er star product,
(Redhe�er 1961). In the case of two junctions, with �n� k� � �n� k� scat-
tering matrix S0 and �k � m� � �k � m� scattering matrix S00, when the k in-
termediate ports are connected, a structure with n� m ports is obtained
whose �n� m� � �n� m� matrix S is obtained via

S
11

S
12

S
21

S
22

24 35 � S0
11

S0
12

S0
21

S0
22

24 35 � S00
11

S00
12

S00
21

S00
22

24 35 �26�

where
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S
11
� S0

11
� S0

12
� S00

11
� 1ÿ S0

22
� S00

11

� �ÿ1
� S0

21

S
12
� S0

12
� 1ÿ S00

11
� S0

22

� �ÿ1
� S00

12

S
21
� S00

21
� 1ÿ S0

22
� S00

11

� �ÿ1� S0
21

S
22
� S00

22
� S00

21
� 1ÿ S0

22
� S00

11

� �ÿ1
� S0

22
� S00

12

�27�

where the partition of the various matrices is induced by the integers n; k;m.
In adopting this approach, it is extremely convenient to subdivide the

modes on the two sides of a junction into two classes: accessible modes (Rozzi
1973) are those (above and below cut-o�) that e�ectively contribute to the
coupling with the adjacent discontinuity located at a distance s apart because
their attenuation over s is less than a speci®ed threshold; localized modes are
the cut-o� modes that are so attenuated that they do not interact with the
neighbouring discontinuities and contribute just to reactive energy storing.
Clearly, in the combination process, only the ports corresponding to the
accessible modes are to be connected and this results often in the inversion of
very small matrices.

It is to be remarked, furthermore, that this procedure is absolutely stable
and accurate from a numerical point of view. The well-known problems
encountered in the analysis of deep gratings were due to the fact that a
formulation based on the multiplication of the junction's transmission
matrices was used. In the presence of modes with high attenuation, even if
over¯ow does not occur, linear dependence between the columns of the
transmission matrices is introduced because of the ®nite arithmetic, which
prevents from obtaining the grating e�ciencies.

4. Numerical results

The formulation described by (10) is used to analyze the grating showed in
Fig. 3, consisting of KH4AsO4 bars embedded in an isotropic substrate
(e2 � 2:25) and covered with an isotropic layer (e1 � 2:3, hs � 2 lm). The
crystal is uniaxial with ordinary refraction index no � 1:570 and extraordi-
nary refraction index ne � 1:470, with optical axis in the xy-plane and rotated
through an angle a � 30� from the x-axis. Then, in the xyz-reference, the
relative permittivity for the material is described by the matrix

ea �
2:2370 0:1316 0
0:1316 2:389 0

0 0 2:465

0@ 1A �28�
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The grating period is 0:44 lm and the duty-cycle is 50%. The incident ®eld is
a plane-wave from air with an incidence angle #i � 32:189�, TE polarization
(with respect to z axes) and wavelength k � 0:44lm.

In this work, the modal eigenfunctions of the periodic region are selected
as expansion and test functions. Therefore, the solution method is essentially
the mode-matching method (Auda and Harrington 1983). All the elements of
projection matrix can be calculated analytically, without the use of numerical
integration.

The relative error on the energy conservation is of the order of 10ÿ13. Note,
however, that even though some authors use this parameter to check the
accuracy of the solution, with this formulation, the conservation of the
complex power at the junction is automatically guaranteed, independently of
the number of basis functions and of the number of terms in the modal
expansion of the Green's function. Thus an energy conservation error at the
roundo� level is a check of the correct software implementation of the
solution technique, but nothing more.

The accuracy of the solution is checked instead by the graph of Fig. 4,
which shows the plots of the total magnetic ®eld on the two sides of the third
junction, reconstructed in terms of the relevant modes of the two regions
(periodic structure and uniform dielectric). The grating thickness is
ha � 0:5 lm, whereas 9 modes of the periodic structure are used to expand
the electric ®eld on the junction and 11 modes to represent the Green func-
tion. The number of accessible modes (with attenuation over the distance to
the adjacent discontinuity less than 30 dB) is 8. The good agreement of the
two plots shows that the integral equation (10) is actually satis®ed.

Finally, it is to be noted that the di�raction e�ciencies are the parameters
of interest to characterize the grating. It is possible to show that they are
variational quantities, so that they su�er from only second order errors when
the current distribution contains ®rst order errors.

Fig. 3. Geometry of grating with D � 0:44lm, e1 � 2:3, e2 � 2:25, hs � 2lm, # � 32:189�, k � 0:44 lm.

For the anisotropic material no � 1:570, ne � 1:470, a � 30�.
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Figure 5 shows the transmission e�ciencies for the 0 and ÿ1 order and for
TE and TM polarization when the grating depth ha is varied. It can be noted
that for increasing ha, the conversion of power from TE to TM polarization
also increases. The rapid oscillations of the e�ciency curves have a period of
the order of p=kz0 where kz0 is the propagation constant of the fundamental
mode in the grating region. This is a phenomenon similar to that taking place
in Fabry±Perot interferometers. However, in this case, the two discontinuities
that de®ne the interferometer (junction between homogenous and periodic
dielectric) interact through 7 propagating modes.

Figure 6 shows the relative error on the re¯ection e�ciencies for TE0 and
TEÿ1 order when the number of expansion functions used to represent the

Fig. 4. Magnetic ®elds on the two sides of the third junction.

Fig. 5. Transmission e�ciencies for TE0, TEÿ1, TM0 and TMÿ1 with k � 0:44lm.
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electric ®eld at the junction is varied. The e�ciencies obtained with 41 ex-
pansion functions are considered as reference. It can be noted that even with
a small number of basis functions, the e�ciencies have a good accuracy and
this con®rms the variational characteristics of e�ciencies.

5. Conclusion

In this paper, a modal method has been presented for the analysis of lamellar
surface relief dielectric gratings made by anisotropic material. The structure
is decomposed into a series of successive discontinuities. Each of them is
viewed as a waveguide junction problem and its generalized scattering matrix
has been computed by solving an integral equation. The di�raction e�-
ciencies of the gratings are determined by combining the various GSM. In
this way, the analysis method is stable and can be applied also to deep
gratings. The results presented refer to an incident plane wave with wave-
vector lying in the x; z plane. The extension to the general case of conical
mounting is straightforward and is currently under way.
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