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Abstract   This paper describes a locally one-dimensional finite-difference 
time domain method for the two-dimensional time-dependent simulation of 
semiconductor devices. This approach leads to significant reduction of the 
semiconductor simulation time. We can reach over 80% reduction in the 
simulation time by using this technique while maintaining the same degree 
of accuracy achieved using the conventional approach. As the first step in 
the performance investigation, we use the electrons flow equations in the 
absence of holes and recombination in this paper.  

Keywords   LOD-FDTD; Semiconductor Devices; Drift-Diffusion Model; 
Physical Simulation 

1  Introduction  

Recently, a new implicit method, called the locally-one- dimensional finite-
difference time-method (LOD-FDTD), to solve Maxwell’s curl equations 
has been introduced [1]-[3]. This method is an attractive alternative to the 
standard FDTD due to its unconditional stability with moderate 
computational overhead and also presents a better computational efficiency 
than the traditional ADI-FDTD. The unconditional stability means that the 
LOD-FDTD is free of the Courant–Friedrich–Levy (CFL) stability restraint, 
allowing any choice of ∆t for a stable solution. Similar to ADI-FDTD, the 



LOD-FDTD can be particularly useful for problems involving devices with 
fine geometric features that are much smaller than the wavelengths of 
interest [4].  

Many different approaches to the simulation of semiconductor devices have 
been developed in the past. All of these techniques are fundamentally 
dependent upon the solution of the Poisson equation along with the basic 
carrier transport equations. In this paper, the semiconductor analysis is based 
on the time-domain drift-diffusion method (DDM) [5]. The set of DDM 
equations contains the Poisson equation and the carrier transport equations, 
obtained by splitting the Boltzmann transport equation (BTE) into its first 
two moments. The DDM model assumes that the carrier temperature is equal 
to the semiconductor lattice temperature. Therefore, the carrier velocity is 
dependent on the electric field only. In comparison to other, more rigorous 
techniques for numerical modeling of semiconductor devices, the DDM is a 
relatively simple technique with better convergence of the algorithm and 
shorter computational times. Therefore, it is more suitable for use by a 
design engineer. 

This paper presents a semi-implicit numerical method to solve the DDM 
equation based on LOD-FDTD scheme. This allows using a larger time-step 
size that leads significantly to CPU time reduction while maintaining the 
same degree of accuracy achieved using the conventional approach. 

2  Transistor Physical Model 

The semiconductor models used are based on the moments of Boltzmann's 
transport equations obtained by integration over the momentum space. Three 
equations need to be solved together with Poisson's equation in order to get 
the quasi-static characteristics of the transistor. This system of coupled 
highly nonlinear partial differential equations contains current continuity, 
energy conservation and momentum conservation equations [5]. The 
solution of this system of partial differential equations represents the 
complete hydrodynamic model. Simplified models are obtained neglecting 
some terms in momentum equation. One of these simplified models is drift-
diffusion model (DDM). In this paper we simulate MESFET as 
microwave/mm transistor that is a unipolar device. For this device, the 
equations to be solved in the drift-diffusion model are 
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where n = (0 + vs E
3 / Es

4)/(1 + E 4 / Es
4) and Dn=nKBT/q . In the above 

equations,  is the potential, Nd
+ is the doping profile, n is the electron 

concentration, and n and Dn are the mobility and the diffusion coefficient, 
respectively. 

To have a numerically stable estimation of the electron concentration 
between nodes, we use the following equation [6]-[7] in the x and y 
directions  

 ( ) 1 ( , ) ( ) ( , ) ( ) ;   [ , ]n c g c n a g c n b c a b                                  (5) 

where g(c,) = {1-exp(CV)}/{1-exp(V)}, V = (b-a)q/KT, and C = (c-a)/(b-
a). Equation (1) can be discretized using the carrier concentration ni,j at t = k 
∆t as the following 
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By applying the LOD principle [8], the computation of (2) for the FDTD 
solution marching from the kth time-step to the (k + 1)th time-step is broken up 
into two computational sub-advancements: the advancement from the kth 

time-step to the (k + 1/2)th time-step and the advancement from the (k + 1/2)th 

time-step to the (k + 1)th time-step. More specifically, the two substeps are as 
follows. 

Step 1) For the first half-step, i.e., at the (k + 1/2)th time step, the first 

partial derivative on the right-hand side (RHS) of (1), Jx/x, is replaced with 
the average of  explicit and implicit difference approximation of its known 
and unknown pivotal values at the kth and (k + 1/2)th time step, while the 

second partial derivatives on the RHS, Jy/y, is removed. Using the first-
order upwind scheme for spatial derivatives, 
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yields the following equation, 

1 1 1 1/2
1,2

2
1 1/2

,2 2

1 1/2
1 1,2

1 1
12

( )

2 4

( )
1

4 2

( )

2 4

( )

2 4

i j i j xi x x k
i j

ij ij xi xi x ij k
i j

i j xi x x k
i j i j

i j yj x x
i j

tD t E E
n

x x

tD t E t
n

x x x

t E Et
D n

x x

t E Et
D

x x

 

    

 

 

   


 

 
 

 


   
    

     
       
  

    
  

 
 

1,

2
1

,2 2

1
1 1,2

( )
1

4 2

( )
.

2 4

k
i j

ij xj xj x ij k
ij i j

x j x x k
i j i j

n

t E tt
D n

x x x

t E Et
D n

x x

    








 


 


    

       
  

    

              (8) 

where  

               / 2

( / 2)
xi

xi
xi

V

x sinh V
 

 
 and , 1,

/
i j i j

xiV
KT q

  
 . 

Step 2) For the second half time-step, i.e., at (k + 1)th time step, the 

second term on the RHS, Jy/y, is replaced with the average of  explicit and 
implicit difference approximation of its known and unknown pivotal values 
at the (k + 1/2)th and (k + 1)th time step, while the second partial derivatives on 

the RHS, Jx/x, is discarded. Using the first-order upwind scheme for spatial 
derivatives, the following equation cab be derived, 
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Therefore the system of linear equations can be obtained which are 
symmetric and tridiagonal, and thus cheap to solve by methods like Choleski 
decomposition [9]. Fig. 1 shows flowchart of the sequence of LOD-FDTD 
scheme for DDF model. 

 

 

Figure 1:  Flowchart of the sequence of LOD-FDTD scheme for DDF model. 

3  Simulation Results 

The transistor considered in this simulation is a 0.6 m gate MESFET. Fig. 2 
presents the conventional 2-D structure used for simulation. Here, a uniform 
mesh that covers the 2-D cross section of the MESFET is used (65×32).  

The time-step size in the explicit methods for the semiconductor equations is 
a function of the average carrier velocity vd and the spatial step to comply 
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with the following CFL condition for stability and minimizing numerical 
dispersion [10], 
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For the given cell size, the time-step sizes is about 1510 s for conventional 
FDTD method. As the LOD-FDTD is unconditionally stable, a greater time-
step size can be used for it. Here, ∆t will be increased by a factor of 100. 

The device is biased and the dc parameter distributions (potential and carrier 
density) are obtained by solving the drift- diffusion model. The device is 
biased to Vds= 2 V and Vgs= -0.5 V. The state of the MESFET under dc steady 
state is represented by the distribution of potential and carrier density. It is to 
be noted that Dirichlet boundary conditions are used at the electrodes while 
Neumann boundary conditions are used at the other walls. 

 

Figs. 3 and 4 show the potential and carrier density distributions obtained 
using the LOD-FDTD scheme. A comparison between results of different 
algorithms is provided in Figs. 5 and 6. It is significant to indicate that the 
LOD-FDTD method gives precisely the same results obtained when the 
FDTD method is used whereas in the case of using LOD-FDTD scheme, the 
CPU time is reduced by 83% with a maximum numerical dispersion error of 
0.001%. For this 2D problem, the ADI and LOD approaches have a very 
close performance. 

 

 

Figure 2:  Cross section of the simulated MESFET. 

 

 



 

 

 

Figure 3: Potential distribution 
 

 

 

 

 

Figure 4:  Carrier density distribution 

 

 

 



 

 

 
Figure 5:  Potential distribution across the  x  direction for   y = 0.09 m. 

 
 

 
Figure 6:  Charge Density across the  x  direction for   y = 0.09 m. 
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