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Due to their length and slenderness, footbridges near train stations in The Netherlands form achallenge to meet 
dynamic criteria. A case study is performed to iIIustrate the effect of a tuned mass damper (TMD). The effect is studied 
by performing a dynamic analysis using a straightforward type of bridge subjected to a single and multiple pedestrians, 
modelled as moving harmonic point loads. The response has been determined for a bridge with and without a TMD. The 
stochastic properties of the load induced by pedestrians are taken into account using a Monte Carlo approach. The 
results are presented for different load cases which show the effect of a TMD for various group sizes. It is found th at the 
effect of a TMD depends on the number of pedestrians involved. 

Keywords: footbridge; tuned mass damper; vibration; response; dynamics; Monte Carlo simulation. 

1. Introduction 

Footbridges are a common feature at nearly all train stations in The Netherlands to facilitate safe access to different 
platforms. Figure 1 for example, shows a typical footbridge near one of the smaller train stations in The Netherlands. 
Vertical vibration can become a major point of concern when the bridge not only spans two or three main rail tracks but 
also an additional number of sidetracks. This means th at the main span can easily exceed 50 meters, increasing the risk 
for vibration related problems. In this specific case, a solution by adding additional supports in between tracks is an 
undesired alternative because of collision hazards. An additional cause for potential vibration problems are common 
themes in current design such as slenderness and transparency which are becoming more important not only for 
aesthetic but also for social safety reasons. 

;/ 
/ 

Fig. 1 Typical footbridge near a train station (Boxtel, Fig. 2 Waiting area's (boxes) on a footbridge (Lage Zwaluwe, 
The Netherfands). The Netherfands). 
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This characterisation of footbridges near train stations underlines the necessity for thorough assessment of their 
dynamic behaviour. This is particularly important for bridges which include waiting areas or other facilities (see figure 2). 
A more stringent vibration acceptance level applies because sitting people are more sensitive to vibrations than walking 
people. 

In order to prevent dynamic related problems, the size of structural members can be increased to shift the fundamental 
frequency of the structure out of the critical range of 1 - 5 Hz. This approach often results in heavy and 'chunky' 
structures. 8ased on observations in other fields, it is believed that tuned mass dampers (TMD's) can be a valuable 
alternative. Although the effeetiveness of TMD's has been shown in recent years, information on the initial design 
process is often very brief. This paper aims to illustrate the effect of a TMD by analysing a straightforward type of bridge. 

First, the theoretical background is presented in section 2 followed by a case study in section 3 which describes the 
force and model used for the dynamic analyses of a footbridge. The type of dynamic analysis is discussed in more detail 
in section 4 followed by the results which are presented and analysed in section 5 and 6. Finally, conclusions and 
recommendations are given in section 7. 

2. Theoretical background 

The dynamic problems outlined in the introduction are related to the first vibration mode which will be further explained in 
section 3.1. In order to simulate this dynamic behaviour a simplified dynamic model with a single-degree-of-freedom 
(SDOF) is sufficient. The effect of a TMD can be assessed by adding an additional mass changing the model into a two
degrees-of-freedom (2DOF) system (see figure 3). The dynamic behaviour of these two models is illustrated by a 
dynamic amplification factor (DAF) in figure 4. This factor is defined as the quotient of the dynamic (Ódyn) and statie 
displacement (óst) for steady state response. The graphs show the response for different excitation frequencies (fs) 
relative to the fundamental frequency of the system (f1) for a harmonie force applied at a fixed point. The graph for a 
SDOF-system shows a clear peak when the excitation frequency equals the fundamental frequency of the system, also 
known as resonance. This peak can be reduced using a TMD as is shown in figure 4. However, the effect of a TMD is 
less significant for excitation frequencies away from the fundamental frequency. This shows that a TMD can be very 
effective however, to wh at extent th is effect is utilised depends on the force characteristics. These characteristics 
become more complex when pedestrian group load is considered. This will be iIIustrated by a case study in section 3. 

Fig. 3 A bridge model/ed as single- (top) and 
/wo-degree-of-freedom system (botfom). 
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Fig. 4 Dynamic amplification factor (DAF) for a model with and without a TMD. 
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3. Case study 

The case study involves the dynamic analysis of a straightforward type of bridge mentioned in the introduction. The 
bridge is analysed using an explicit finite element program known as Beam Model [1] which is a special purpose program 
developed to analyse beam 1 spring 1 damper compositions subjected to moving loads. In contrary to the SDOF and 2-
DOF models shown in figure 3, this approach allows to apply moving forces over the full length of the structure. In this 
section the dynamic model of the bridge is described followed by the forces used to simulate pedestrian movement. The 
actual dynamic analysis will be further explained in section 4. 

3.1 Dynamic computer model of a footbridge 

The computer model used for the analyses is based on a 50 meter long (L), simply supported beam as iIIustrated in 
figure 5. The bending stiffness (EI) is chosen based on statie deflection criteria. For footbridges, the statie deflection due 
to live load is in generallimited to 1/250 of the span which equals to 200 mm for the analysed bridge. Assuming a four 
meter wide bridge, subjected to a maximum live load of 5.0 kN/m2, the required bending stiffness (EI) is found to be 
8.16*109 Nm2. A minimal amount of inherent damping is assumed expressed by a damping ratio (ç) of 0.005. This means 
that the inherent damping is 0.5% of critical damping. The self weight (m) of the structure is relatively light: 1000 kg/m. 
Based on these values the natural frequency (fn) , associated with the first vibration mode (n = 1) can be determined as 
follows [2]: 

f = (n1l') EI = (1 * 1l') 2~ 2 

n 21l'e m 21l' * 502 
8.15 * 10

9 
= 1. 79Hz 

1000 
(1 ) 

The second natural frequency (n = 2) equals 7.17 Hz which is outside the critical range of 0 - 5 Hz. Therefore, excessive 
vibrations are only expected at the centre of the bridge related to the first vibration mode. The bridge is analysed with 
Beam Model using a single beam divided into 0.5 m long segments connected by nodes. A separate model based on the 
same properties is analysed including a TMD modelled as an additional 1.0 m long beam. The TMD is attached to the 
centre of the beam by two springs and two dampers in stead of one due to limitations of the program (see figure 5). The 
specifications of both bridge and TMD are shown in figure 5. The mass of the TMD is arbitrarily chosen as 1/50 of the 
total mass of the bridge. The stiffness and damping of the TMD are based on optimum values according to [3]. Halt of 
these values is applied to both springs and dampers to simulate the same behaviour as a single spring and damper. It 
should be noted th at these optimum values are based on an undamped structure (e; = 0). However, in [4] it is shown th at 
the effect of inherent damping on the optimum values is minimal for moderately damped structures. 

Baam prooeaies 
m = 1000 kgJm ~1.0 m~ 

1')( EI~8. 1.S·1()11Nm2 ~~==E::I'C' 'CE::' IC"X"X'JF=::JjI=llilE::l'C' 'CE::' IC" J:I:":J:I:"1')(:::Jg\ , 
"7'h77'n; ç - O.SY. "7'h77'n; ~. "7'h77'n; 

" 

l=50m 

Fig. 5 Dynamic model of a bridge without and with a TMD. 

TMD oropertias 
c = 2500 Ns/m 
m = 1000 kglm 
k = 117 kN/m 

l=50 m 

A section of the model is shown in more detail in figure 6 to illustrate the application of a moving force. The force is 
applied to a single node if the force is situated directly above a node as iIIustrated with time step ti. If the force is situated 
between two nodes at a following time step (t+1), the force is divided between these two nodes proportional to the 
distance between the force and the nodes. Because the analysis is based on an explicit method, a short time step of 
1.5*1 (}5 seconds is required to guarantee accurate results. 

... > f(~) .... , 
(·~~(r)r--------T(~)---\7/ 

Time step t 

Fig. 6 Moving force at two locations at different time steps. 
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Inherent damping as weil as the fundamental frequency are verified by applying a 100 kN pulse load at the centre of the 
bridge without a TMD. The fundamental frequency (fl) and damping ratio (ç) are derived from figure 7 as follows: 

f. = number of cycles = _6_ = 1.76 Hz 
1 AT 3A1 

(2) (Close to the natural frequency of eq.(1): 1.79 Hz ) 

u 
~ = e-2;r. ~ 1.71 -2;rç 0 005 (I - = e ~ ç =. = 0.5% (3) n accordance with expected value) 

1.77 u, 

E 2.0 

É. 1.0 
5l 
~ 0.0 

~ -1 .0 0 
en 

UI = 1.77 mm U2 = 1.71 mm t = 3.41 s 

<5 -2.0 ~----==-------=---------=-'------------------>< 
time [sj 

Fig. 7 Response at the centra of the bridge without a TMD after applying a 100 kN pulse load at the same location. 

3.2 Force imposed by pedestrians 

The dynamic analyses are performed using forces defined in the time-domain. This offers the ability to incorporate 
transient characteristics of the force induced by pedestrians. This is relevant because pedestrians represent a moving 
load which excites a bridge for only a short period of time. Also, pedestrians close to the abutments of a bridge have far 
less effect on the response of the structure than pedestrians walking at the centre of the bridge. The forces applied in 
Beam Model are represented by a harmonie load F(t) moving at a constant, average speed v: 

F(t) = Ga sin(2Jl'fst + ~) [N] (4) 

n f . * L . 
v = L S, / S,I [mIs] (5) 

1 n 

where (G) represents the pedestrians weight in [N], (a) the dynamic load factor, (fs) the step frequency in [Hz], (CP) the 
phase of the force in [rad] and (ls) the step length in rml, The weighl, step frequency and step leng th are derived from 
norm al distributions found in literature (see figure 8), The phase is defined by a uniform distribution belween 0 and 2TT, 

0.1:6 3.0 

2004 ~=74.4kg ~ IJ= 1.87 Hz 

;,;:. cr = 13 kg ~20 cr = 0.186 Hz 

~0.D3 'én 
c: 

i -8 
iO O2 ~ 1.0 

~ 0.01 
15 

-8 .t .t 0.0 
0.00 

25 50 75 100 125 0.0 0.5 1.0 1.5 2.0 
weigrt (G) [kg) Slap t equency (f,) [Hz) 

Fig. 8 Force variables: weight (G) {5], step frequency (fs) {6] and step length (Ls) {6]. 

The dynamic load factor in eq, (4) is given by the following equation [7]: 

a = -0,2649f/ + 1.3206f/ -1.7597fs + 0.7613 (6) 

25 

~ = 0.71 m 
cr = 0.071 m 

0.0 0.2 0.4 0.6 0.8 ' .0 

S1ep leng1h (LJ [mI 
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4. Monte Carlo simulation 

In footbridge engineering, dynamic forces induced by pedestrians are often modelled as deterministic periodic forces. 
Based on research conducted in recent years [5, 6]. it is now widely accepted that pedestrian induced forces vary 
strongly among pedestrians. These variations are expressed by normal distributions for several force variables in figure 
8. Arealistic assessment of the dynamic behaviour of a footbridge can be obtained using a probabilistic type of analysis 
such as a Monte Carlo simulation. This simulation can be used to estimate the probability of failure (P,) which 
corresponds to the number of simulations in which an acceleration limit (alimit) is exceeded (N,), divided by the total 
number of simulations (N): 

p. -~ I-
N 

(7) 

The standard deviation of the error which is made in the estimated probability Pf decreases with larger N and larger P,. If 
N approaches infinity then P, approaches the true probability of failure. The Monte Carlo simulations have been 
performed using five different load cases as shown in figure 9. They involve a single pedestrian and groups of multiples 
of three pedestrians walking next to each other. The groups consist of 3, 6, 12 and 24 pedestrians walking from one 
side of the bridge to the other. The forces applied in Beam Model consist of harmonic point loads as iIIustrated in figure 
6. Each point load represents either a single pedestrian in load case 1 or the sum of th ree pedestrians walking next to 
each other for the other load cases. The analyses involve 500 different load samples for each load case. This number is 
large enough to give an accurate prediction of the 50% response limit, but is still to low to result in an accurate prediction 
of the 95% response limit as discussed in section 5. The same load samples are used for the model with and without 
TMD. As aresuit, any change in response can be attributed solely to the TMD. 

Laad case 1 Laad case 2 Laad case 3 Laad case 4 Laad case 5 

Fig. 9 Laad cases. 

The force characteristics of all pedestrians are chosen randomly according to the distributions in figure 8. This means 
th at the harmonic force induced byeach individual pedestrian has a different frequency and amplitude. The walking 
speed of a single pedestrian is given by equation (5). For groups, all pedestrians walk at the same speed which is 
derived form the average speed among all pedestrians. Although the walking speed for all pedestrians in a group is 
identical for all pedestrians within a load sample, the step frequencies of the individual pedestrians are not affected by 
this assumption. In other words: the group loads are unsynchronised. This assumption is correct for low density crowds. 
However, if the density of pedestrians increases their dynamic behaviour becomes more complex and synchronisation 
among pedestrians may occur, which got great attention after vibration problems mainly related to lateral excitation [8]. 
On the other hand, the walking speed and step frequency are in general lower for high density of pedestrians which 
results in lower values for the dynamic load factor (eq. (6)) and therefore a lower dynamic force. 

5. Results 

The peak acceleration observed for each simulation is calculated after applying a band-pass filter (0 - 5 Hz) in order to 
remove any high-frequency numerical noise. Two examples are shown in figure 10 for a single pedestrian and a group of 
24 pedestrians. Both graphs show the response at the centre of the bridge without as weil as with a TMD. The first graph 
represents the response caused by a single pedestrian walking at 1.80 steps per second and a walking speed of 1.27 
mIs. The peak acceleration is obtained after approximately 20 seconds when the pedestrian reaches the centre of the 
bridge (20 s * 1.27 mIs:::: 25 m). For multiple pedestrians, the response is less straightforward as shown in figure 10 
(bottom). The graph shows a group of 24 pedestrians walking with different step frequencies and an average walking 
speed of 1.12 mIs. In this case the peak acceleration is obtained after 20 seconds, weil before the whole group reaches 
the centre of the bridge (25 m I 1.12 mIs = 22.4 s). 
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Response due to a single pedestrlan -wi1houtTMD 

-wi1hTMD 
peak (without TMD)----------.. 0.40 

!;" i 0.20 

~ 0.00 +-""-"r"'AI"'AMAAMAAAAW\MMMffi,lliffiljlRmlllml/l\\MlA\b!\lROOlII\lH\~IJl\IIII!AII/Il!llWJ1j,1\w,qilJ!\llllM\WMI!IIIWl~~~~1.\7 

i ·0.20 
Ol 

·0.40 

1.2 

F 0.8 

i 0.4 

time [sj 

Response due 10 24 pedestrians 
peak (w~hout TMD) -----., 

peak (with TMD) ---"..,11--11.. 

-wilhoutTMD 

-WIhTMD 

~ 0.0 ~~~VV~~~~~HR~~~~~~~~WW~~~YW~~~~AARH~~~~~ 
~ ·0.4 

1 -0.8 

·1.2 
time [sj 

Fig. 10 Examples of response observed at the centre ofthe bridge produced by a single pedestrian (top, fs = 1.80 Hz, v = 1.27 mis) 
and 24 pedestrians (bottom, v = 1.12 mis). 

The peak accelerations at the centre of the bridge for allioad samples are presented in figure 11 by separate histograms 
for each load case. These graphs are used to assess the dynamic performance of the footbridge and the effectiveness 
of the TMD. Dynamic serviceability criteria are normally based on accelerations. The BS5400 for instance, prescribes an 
peak acceleration limit for footbridges of os-H1 where (f!) represents the fundamental frequency of the bridge (here, 
0.5--./1.79 = 0.67 m/s2) . Design criteria based on the peak accelerations are safe but often result in highly conservative 
structures. Therefore, a 95% response limit is added to ignore the relatively few high peaks. This 95% response limit can 
then be compared to the serviceability criterion. 

WilhTMD load case 1: A single ~~eshian 40., (0.10 mis') 

95%~ c:$% 
30 

a WthTMD 

i3 • WthoutTMD 
0.. WilhotJl TMD E 20 
Ol (0.50 mis') 
'" 
~ 10 

95%~ t;>5% 

0 

'" N .., V '" <D ..... co CJ) Cl "11"""" N .., V '" ~ r-: ~ '" '" d d d d d d d d 
d Peafaccelér'aHon [~/SA2]": ..: N 

30 
load case 2: 3 pedestrians 

. With TMD 
i3 20 
0.. • Without TMD 
E 
Ol 

'" 10 
~ 

0 

'" N .., V '" CD ..... <JO '" '" N .., V <D ..... GO '" '" d d d d d d d d d d - ..: ..: ..: ..: ..: N 

Peak accele!lltion [mls A2] 

Fig. 11 Response per load case (note that the scale on the vertical axis is adjusted for each load case). 
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WoChTMD Load case 3: 6 pedestrians 

.Wlth TMD 
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Load case 5: 24 pedestrians 
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Two parameters (p and q) , iIIustrated in figure 12, are used to analyse the results. The value p divides the sample 
distribution into two equal parts which both comprise 50% of the samples. For large numbers of pedestrians, the 
response samples approach a normal distribution and thus p approaches the mean value of the response samples. For 
small numbers of pedestrians, p is close to, but not necessarily the same as the top of the response distribution. The 
value q divides the sample distribution into two parts of 95% and 5% of the total number of samples: the 95% response 
limit. The values pand q are presented in table 1 for both bridges with and without a TMD. In addition, the relation 
between the response without and with a TMD is given to iIIustrate the effect of the TMD. This effect for pand q is 
defined as p_wifhout / p_wifh TMD and q_wifhout / q_wifh TMD respectively. The factors ~ and V in table 1 are explained 
in section 6. 

Cl) 
Q) 

ëi. 
E as 
Cl) 

;!!. q (95%) 

Peak acceleralion 

p (50%) "'11 

q (95%) 

Peak acceleration 

Fig. 12 Characterisation of response distribution for small number of pedestrians (Ieft) and large number of pedestrians (right). 



gootbrid~(? 2008 THIRD INTERNATIONAL CONFERENCE 

Table 1 Summary of response data obtained from Monte Carlo simulations (all values represent accelerations in m/s2). 

Load No. of Values related to p (50%) Values related to q (95%) P (= p I--Jn) V (= qHn) 
case pedo (n) p_without p_with p_effect TMD ILwlthout ILwlth lLeffect TMD Without Wlth Without With 

TMD TMD TMD TMD TMD TMD TMD TMD 

1 1 0.075 0.062 1.210 0.499 0.096 5.198 0.075 0.062 0.499 0.096 
2 3 0.256 0.170 1.506 0.711 0.221 3.217 0.147 0.098 0.410 0.128 
3 6 0.518 0.262 1.977 0.925 0.343 2.697 0.211 0.107 0.378 0.140 
4 12 0.782 0.372 2.102 1.329 0.520 2.556 0.226 0.107 0.384 0.150 
5 24 1.100 0.522 2.107 1.777 0.739 2.405 0.225 0.107 0.363 0.151 

6. Interpretation of results 

The results in table 1 are interpreted using the graphs shown in figure 13. The graphs show thaI, in all cases, the 
response is significantly higher for groups than for a single pedestrian. The response can be approximated by p = f3--Jn 
and q = r/n where n represents the number of pedestrians involved and f3 and y represent additional factors related to p 
and q respectively. For large numbers of pedestrians, f3 approaches 0.23 for the bridge without a TMD and 0.11 for the 
bridge with a TMD. These values for y are 0.36 and 0.15 respectively. It is expected that f3 and yare bridge dependent. 
The factor --Jn is in accordance with [91 where the same factor is derived based on random vibration theory. It should be 
noted that due to the limited number of load samples, the standard deviation of the error in the value of q is quite large. 
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Fig. 13 Relation between the number of pedestrians and response. 

Table 1 shows that the response with TMD is significantly less compared to the response without TMD. This effect can 
be iIIustrated by the ratio between the response without and with a TMD for pand q. This ratio is presented in figure 14 
for each load case. The graph shows that for large groups the ratio for p approaches a constant of 2.1 . The ratio for q 
converges more slowly, and may converge to a value lower than 2.4. 

o 0 
:::;: :::;: 
I- I-

~ ~ 
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6 -+-~effect TMD 

,~:;;::~ ... ::::::. ====, ,=t:~ =, =, ,=, =, =~=P~=~'=:M0==t, ~ 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
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Fig. 14 Effect of a TMD for increasing number of pedestrians for pand q. 
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The graphs in figure 14 show deviations from these constant values 2.1 and 2.4 for sm all numbers of pedestrians. The 
same phenomenon can be seen in figure 13 where the approximation curve is slightly off for small numbers of 
pedestrians. This can be explained by the fact that the response distribution changes from an asymmetrie shape for a 
single pedestrian to a symmetrie shape for multiple pedestrians. This phenomenon can be observed in figure 11 for the 
response without a TMD and is schematicallY reproduced in figure 15. 

Response for a single 
pedestrian 

Peak acceleration 

Response for multiple 
pedestrians 

Fig. 15 Change in response distribution from a asymmetrie shape for a single pedestrian to a symmetrie shape for multiple 
pedestrians. 

The shape of the response distribution is dominated by the probability that the step frequency of a pedestrian coincides 
with the fundamental frequency of the bridge. This phenomenon is iIIustrated in figures 16 and 17. These figures show 
the response related to all step frequencies applied in load case 1 (figure 16) and load case 2 (figure 17). For a single 
pedestrian walking over a bridge without TMD (figure 16, left), high accelerations are only observed if the pedestrian 
walks close to the fundamental frequency of the bridge. Therefore, the majority of pedestrians cause minimal vibration 
which is expressed by a large, asymmetrie peak in the response pattern shown in figure 16 (Ieft). However, when 
multiple pedestrians are concerned, the probability that one of the pedestrians walks close the fundamental frequency 
increases. The pedestrians involved in the same load sample also experiences this response. In other words: A 
pedestrian walking with a step frequency away from the fundamental frequency also experience large vibrations if one of 
his fellow pedestrians walks close to the fundamental frequency of the bridge which explains the large scatter in data in 
figure 17 and the normal distribution in figure 17 (Ieft). 
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Fig. 16 Step frequeneies applied in load ease 1 (Single pedestrian) without TMD (Ieft) and with TMD (right). 

1.6 fl (1.76 Hz) 

~ + 

:i 1.2 o ... " " 
" 

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 
Step frequency [Hz] 

o pedesbian 1 !.'" 1.6 

+pedesbian2 î 1.2 
<: 
0 

~ 0.8 
c; 

~ 0.4 

'" 
a ~ .. + a. 0.0 

2.2 2.3 2.4 

i>.~ ... 

1.3 1.4 

fl (1.76 Hz) 
a pedestrian 1 

+ pedesbian 2 

" pedesbian 3 

, . . .. . .. . : '. . . ~ ' . '; 

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 
Step te~y [Hz] 

Fig. 17 Step frequeneies applied in load ease 2 (three pedestrians) without TMD (Ieft) and with TMD (right). 

The 95% response limit including a TMD for a group of 24 pedestrians is approximately 0.74 (tabie 1) which is slightly 
higher than the criterion stated in BS5400. A solution can be found in installing a heavier TMD. 



Qootbridl{ll? 2008 THIRD INTERNATIONAL CONFERENCE 

7. Conclusions & Recommendations 

The effect of a TMD is studied based on a straightforward type of bridge subjected to a single pedestrian and several 
groups of pedestrians. It is shown that the effect of a TMD depends on the number of pedestrians. For large groups of 
pedestrians, the reduction in the 50% response limit of peak acceleration approaches a factor of 2.1. For the accurate 
determination of the 95% response limit of peak acceleration, more load samples are needed. 

A clear increase in response is found when the number of pedestrians increases. This group effect is described by the 
square root of the number of pedestrians multiplied by an additional factor. This implies that even higher accelerations 
are expected for groups exceeding 24 pedestrians. However, the dynamic load is becoming more complex for high 
density crowds. First of all, the average walking speed of pedestrians in a dense crowd reduces which results in a lower 
dynamic force. On the other hand, some degree of synchronisation is expected which results in an increase in response. 
These phenomena require further research. 
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