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Finding a Minimum Stretch of a Function∗

Kevin Buchin† Maike Buchin∗ Marc van Kreveld∗ Jun Luo‡

Abstract

Given a piecewise monotone function f : R→ R and a
real value Tmin, we develop an algorithm that finds an
interval of length at least Tmin for which the average
value of f is minimized. The run-time of the algo-
rithm is linear in the number of monotone pieces of f
if certain operations are available in constant time for
f . We use this algorithm to solve a basic problem aris-
ing in the analysis of trajectories: Finding the most
similar subtrajectories of two given trajectories, pro-
vided that the duration is at least Tmin. Since the
precise solution requires complex operations, we also
give a simple (1+ε)-approximation algorithm in which
these operations are not needed.

1 Introduction

Where does a function f have its extremes? If we
look at f at a larger scale, a more useful answer to
this question than the singular extrema of f may be
high and low “plateaus” of f . Therefore, we con-
sider the problem of finding an interval of the domain
of f for which the average of f is minimum. The
interval should have at least a given length, other-
wise its length would always be zero. We develop
an algorithm for this problem for functions which are
piecewise monotone. The run-time of the algorithm
is linear in the number of monotone pieces of f . The
straightforward algorithm of iterating over all possible
start and end pieces, using some precomputed values,
and optimizing, would have quadratic run-time.

Our study of this problem is motivated by geomet-
ric problems occurring in geographic data analysis, in
particular, the problem of finding similar subtrajecto-
ries of moving objects [6]. Given two trajectories, we
wish to determine a time interval of at least a certain
length such that the trajectories are close during that
time interval. By “close” we mean that the average
distance during the time interval is as small as possi-
ble. This application, however, is an instance of the
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more general problem we are solving in this paper.
Another geographic application we are interested in
is the following. Assume a moving object measuring
some quantity while it moves, for instance, the height.
We want to find high (or low) plateaus of this quan-
tity. There are more ways to measure the similarity
of trajectories, see for example the references given
in [6].

The discrete version of the minimum stretch prob-
lem occurs in biological sequences alignment and has
been studied there. Several similar linear-time algo-
rithms have been given [2, 4, 5], which provide the ba-
sis of the ideas used in our algorithm. Our algorithm
is considerably more complex, however, due to allow-
ing any start and end point of the interval, and al-
lowing any type of piecewise monotone function. For
the discrete sequence version there is also a geometric
algorithm using very different ideas [1].

2 Algorithm

In this section, we develop an algorithm that mini-
mizes the average height over intervals of a piecewise
monotone function f , where the interval has a non-
fixed duration T ≥ Tmin. The run-time of the algo-
rithm is linear in the number of pieces of f .

Fixed length. Before we give the algorithm, we con-
sider a simple version of the problem where the length
of the interval is fixed to be T̂ . For this problem, a
trivial linear-time algorithm exists by scanning the
function and maintaining its average. The solution
with T̂ = Tmin is a 2-approximation for the problem
with non-fixed length, assuming f is nonnegative. To
see this, note that always an optimal length T with
Tmin ≤ T < 2Tmin exists (for larger T , split in the
middle and choose a half with smaller or equal aver-
age). If the interval Iopt, with smallest average, has
a duration T ′ with Tmin ≤ T ′ ≤ 2Tmin, then the dis-
similarity for any subinterval of length Tmin is larger
by at most a factor T ′/Tmin ≤ 2.

Furthermore, the factor two can be obtained in the
limit, as demonstrated in Figure 1: the total duration
is 2Tmin− ε and the distance between the trajectories
is 0 except for a duration of ε in the middle (for illus-
tration purposes, they are shown with a small vertical
offset). In this example, fixed and non-fixed duration
differ by a factor of (2Tmin − ε)/Tmin which is 2 − ε
for Tmin = 1.
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Figure 1: Worst-case ratio example.

If we run the fixed duration algorithm with dura-
tions Tmin, (1 + ε) · Tmin, (1 + 2ε) · Tmin, . . ., 2 · Tmin,
and take the overall optimum, then we have a (1+ε)-
approximation algorithm for the general problem (as-
suming f is nonnegative) that runs in O(n/ε) time.

Concept. We first illustrate the idea of the algo-
rithm. We solve the problem by a sweep over the
domain of f . At any time tend we include at least
a window of the minimum length Tmin to the left of
tend. Additionally it may lower the average to include
a part even further to the left. To decide efficiently
how much of this part to include, we decompose and
store this part in a data structure.

Let tend be the end of some time interval, and we
are interested in a minimum average value of f over
an interval of length at least Tmin that ends at tend.
Let tpre = tend − Tmin be the last moment where the
interval can start. We may want to start the interval
earlier, to lower the average value of f over the chosen
interval (see Figure 2). We need a careful analysis of
the situation before tpre to decide what the optimal
starting time is for an interval that ends at tend. We
will store this situation in a data structure that will
be updated when tend and tpre move simultaneously
further in time. There will be events when tend or
tpre pass a break point of the function f , but there
will also be events if the situation before tpre changes
in a structural way.

For any interval I = [t, t′] we define f̄(t′, t′′) as

f̄(I) := f̄(t′, t′′) =

∫ t′′

t′ f(t)dt
t′′ − t′ .

If t′ = t′′, we let f̄(t′, t′′) = f̄(t′, t′) := f(t′). We also
define f̄(t′) := f̄(t′, tend), which is valid if tend is fixed.

For description purposes, we fix tend and therefore
tpre for the moment. Then interval [tpre, tend] gives an
average of

f̄(tpre) = f̄(tpre, tend) =

∫ tend

tpre
f(t)dt

tend − tpre
.

It is clear that if the function value of f is smaller than
f̄(tpre) just before tpre, then extending the interval to
a starting time before tpre will give a lower average
f̄(.). Even if the function value of f just before tpre

is greater than f̄(tpre), then extending the interval to

tpre tend

f̄(tpre, tend)

topt

f

f̄(topt, tend)
Tmin

Figure 2: Averages of f over [tpre, tend] and [topt, tend].

a starting time (sufficiently far) before tpre may still
give a lower average. In Figure 2 we observe that the
optimal starting time topt ≤ tpre, given tend as the
end of the interval, is such that f̄(topt) = f(topt), or
topt = tpre.

If tend is fixed, then the value of f̄(tpre) only deter-
mines where topt is. The time topt is monotonically
decreasing in the value of f̄(tpre) (if the average of f
over [tpre, tend] were larger, we may have to go further
back with topt, but never forward).

Assumptions. To compute the minimum stretch in
linear time we need to assume that the following op-
erations can be performed in constant time:

1. Evaluate the integral of f over a monotone piece.

2. Solve equations of the form F (a, s) = as + b,
where F (a, s) =

∫ s

a
f(t)dt.

3. Find a stretch of minimum average value, if the
monotone pieces for the left and the right end-
point of the stretch are given and the integral of
f for the intervals in between has been evaluated.

For simplicity, we will assume that f is continuous.
We can extend the ideas to handle non-continuous
functions, but the definitions and description of the
method become more tedious.

Data structure. Let f be a piecewise monotone
function with break points t1, . . . , tn, that is, f is
monotone in between each pair ti and ti+1 for 1 ≤
i < n. At all times our data structure consists of
the interval I0 = [tpre, tend] and a set of intervals
I1, . . . , Im, where Ii = [si, si−1], for i = 1, . . . ,m,
m ≥ 0, and sm < sm−1 < . . . < s1 < s0 = tpre.
To define s1, . . . , sm and m, we first define a function
l(s) which, intuitively, tells how far to the left we can
always extend an interval if we extend at least a frac-
tion to the left of s, and still lower the average f̄ . We
define l on the domain of f by

l(s) := min(s′ ≤ s | ∀ 0 ≤ t′ ≤ s : f̄(s′, s) ≤ f̄(t, s) )

Note that if for no s′ < s we have f̄(s′, s) < f(s), then
l(s) = s. This can only happen if f is a decreasing
function at s (to its left).
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We can now define the si, 1 ≤ i ≤ m, by

si :=


l(si−1) if l(si−1) < si−1

max({tj < si−1 | 1 ≤ j ≤ n }
∪ {s′ < si−1 | l(s′) < s′ } ) else.

Thus, if l(si−1) = si−1, then we set si either to the
next breakpoint tj of f left of si−1, or to the largest
s′ < si−1 such that l(s′) < s′. If si = l(si−1), then f
must be decreasing just left of si.

There are two types of intervals in I1, . . . , Im: those
where si = l(si−1) and those where si < l(si−1). We
will call the first type of intervals complete and the
other type decreasing. These intervals have the fol-
lowing properties:

1. If Ii is complete and i > 1, then for all s′ ∈
[si, si−1] we have f(si−1) = f(si) = f̄(Ii).

2. If Ii is complete, then for all s′ ∈ (si, si−1) we
have f̄(si) < f̄(s′), and also Ii+1 is decreasing if
i ≥ 1.

3. f̄(Ii) < f̄(Ij) if and only if i < j.

Note that the first property does not hold for I1 be-
cause it is not preceded by a decreasing interval. The
last property states that the average gets higher to the
left. Any complete interval contains a break point of
f , and consecutive decreasing intervals are separated
by a break point of f . Together with the second prop-
erty, this implies m = O(n).

The integer m, representing the last interval to the
left that we need to consider, depends on the average
height of f over intervals in the data structure. We
will not need to consider intervals at the left end of
our data structure if their (partial) inclusion would
increase the average height. It follows that the last
interval Im that we need is a decreasing interval. Also,
we do not need intervals further to the left if their
inclusion would result in an average height which is
larger than a previously found average height. Hence,
we will have:

f(sm) ≥ min
t′+Tmin≤t≤tend

f̄(t′, t) ≥ f(sm−1) .

Our data structure maintains the sequence of break
points tend, s0, s1, . . . , sm, the pieces of f that con-
tains each, and the sequence F (I0), . . . , F (Im), where
F (Ii) =

∫ si

si−1
f(t)dt. The sequences can simply be

stored in a list or an array. During the algorithm, we
only change information at the ends of the sequences.
We also maintain F (Im−1 ∪ · · · ∪ I1).

Algorithm. We can find the interval with minimum
average height as follows. We scan with the interval
[tpre, tend] from start to end along the domain of the
function f , and maintain the information we just de-
scribed. Most of this information can only change at

certain discrete event points that we handle during
the scan. The positions of tend, s0, and possibly s1
change continuously, but we will use the maintained
information and their notation as it was valid at the
last event. We use t′end, s′0, s′1, I ′0, etc., to denote the
corresponding values that are valid at the next event,
and t̃end, t̃pre = s̃0, s̃1, Ĩ0, etc., to denote values in
between events tend and t′end.

In between two consecutive event points tend ≤
t̃ ≤ t′end, we need to minimize f̄(t, t̃) over the choices
of t and t̃ with t ≤ t̃ − Tmin, where we know on
which pieces of f the interval endpoints t and t̃
lie. To minimize f̄(t, t̃), we find the expressions for
F (t, s̃m−1) = F (t, sm−1) and F (Ĩm−1 ∪ · · · ∪ Ĩ0) =
F (Im−1∪· · ·∪ I3∪ Ĩ2∪ Ĩ1∪ Ĩ0) in the unknowns t and
t̃, and minimize. Since t ∈ Im, and Im is a decreasing
interval, we have one piece of f over Im. Hence, the
expression for F (t, sm−1) is easy to obtain in constant
time. Furthermore, we maintained F (Im−1 ∪ · · · ∪ I1)
and the F (Ii) at the previous event point tend, and t̃
does not pass any vertex of f before the next event,
so we can derive the expression F (Ĩm−1 ∪ · · · ∪ Ĩ0)
in constant time as well. If m = 0, we simply take
the expression f̄(t̃ − Tmin, t̃). By the third assump-
tion, we can minimize such expressions in constant
time. Summarizing, we can find the optimal interval
between two consecutive events in constant time.

It remains to describe how we update the data
structure in constant time. Instead of precomputing
all event points, we will compute them dynamically.

Event points. Recall that tend denotes the time of
the previous event and t′end denotes the time of the
next event. We have four types of events.

1. Ĩ0 moves to the next break point of f , that is,
either s′0 = ti or t′end = ti for 1 ≤ i ≤ n. If
s′0 = ti and I1 is decreasing, then we create a new
interval I ′1 that may be decreasing or complete.

2. I1 is complete, and f̄(Ĩ1) increases until Ĩ2 dis-
appears. If I3 is decreasing, then I ′1 = [s2, s′0];
otherwise, I ′1 = [s3, s′0] (two adjacent complete
intervals merge immediately).

3. I1 is complete, f̄(Ĩ1) increases and f(s̃0) de-
creases until f̄(Ĩ1) = f(s̃0). We create a new
decreasing interval I ′1.

4. The leftmost interval becomes irrelevant because
its average height is too large, that is, f̄(sm−1) ≥
mint≤t′end−Tmin f̄(t, t′end). Then we discard Im. If
Im−1 is complete, we discard it as well.

Note that instead of stopping at events of type 4, we
can also check if they happened at the next event of
type 1, 2, or 3.
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Computing the event points. The event points of
type 1 are the break points of f , and they are known
beforehand. We cannot precompute the event points
of types 2, 3, and 4, but we can compute the next
such event point if it is before the next type 1 event.
The event points of types 2, 3, and 4 are detected as
follows. Let tend be the most recent event point, and
let s0, s1, . . . be the interval endpoints with respect to
tend. Let t′end be the next event point of type 1. An
event point t of type 2 occurs for tend < t < t′end if
f(s2) = f̄(s2, t− Tmin). To detect this, we observe

f̄(s2, t−Tmin) =
F (s2, s1) + F (s1, s0) + F (s0, t− Tmin)

t− Tmin − s2
and make an expression in t. This takes constant
time using the values F (I2), F (I1), and F (I0). Then
we find t by setting it equal to f(s2) (using the sec-
ond assumption). Events of type 3 are detected in a
similar manner.

An event point t of type 4 occurs for tend < t < t′end

if f̄(sm−1, t) = f(sm−1). To detect this we solve

f̄(sm−1, t) =
F (sm−1, tend) + F (tend, t)

t− sm−1
= f(sm−1)

which we can compute in constant time as before.

Updating the data structure. At all types of event
points we update the interval endpoints tend, s0, and
s1 in constant time. At an event of type 2 we discard
s1 and possibly s2. At an event of type 4 we discard
Im and sm, and if Im−1 is complete, we discard it and
sm−1 as well. In all cases we update F (I0), F (I1),
F (I2), and F (Im−1∪· · ·∪I1), and the pieces of f that
contain tend, s0, s1, and sm. Each of these updates
can be done in constant time.

Correctness and run-time. The optimal solution is
the minimal value f̄(t, t̃) for t ≤ t̃ − Tmin. Assume
(t, t̃) is such an optimal pair where t̃ is minimal such
that it is the second part of an optimal pair and t is
maximal such that it is the first part of an optimal
pair with t̃. Let tend < t̃ < t′end be the event points
left and right of t̃. We need to prove that t ∈ Im.

Suppose t < sm. Then t lies in an interval previ-
ously discarded. Let t′′ be the right endpoint of this
interval before it was discarded. Since the interval
was discarded there are t̂′, t̂ with t̂′ ≤ t̂ − Tmin and
t̂ ≤ t̃ such that f̄(t, t′′) ≥ f̄(t̂′, t̂). Because of optimal-
ity of (t, t̃), f̄(t, t′′) ≥ f̄(t, t̃). Therefore, discarding
the interval from t to t′′ will not increase the average.
This contradicts the maximality of t.

Next, suppose si−1 ≥ t > si for some i ≤ m−1. But
then including the interval from si to t to (t, t̃) would
decrease the average because Im was not discarded,
contradicting the optimality of (t, t̃).

It is not hard to see that the number of events is
linear, and the running time is O(n).

3 On trajectory similarity

A (time-dependent) trajectory is a continuous func-
tion from [0, 1] to the plane. We use the algorithm
above to solve: Given two piecewise linear trajecto-
ries τ1, τ2 and Tmin > 0, find a time interval [t1, t2]
of length ≥ Tmin that minimizes the average distance∫ t2

t1
d(τ1(t), τ2(t))dt, where d is the Euclidean distance.

On an interval on which both τ1 and τ2 are linear,
d(τ1(t), τ2(t)) =

√
At2 +Bt+ c, which corresponds to

a hyperbolic arc. It has no local maxima and possi-
bly one local minimum interior to the interval. We
split the intervals at such minima, so the distance be-
tween the trajectories is a piecewise monotone func-
tion and we can apply the algorithm above. It re-
mains to see whether the operations needed for the
algorithm above are available for d(τ1(t), τ2(t)). For
a continuous function f(t) (such as d(τ1(t), τ2(t))), a
minimizing stretch [t1, t2] with t2 − t1 ≥ Tmin falls in
one of the following cases: t2 − t1 = Tmin or t1 = 0
or t2 = 1 or f(t1) = f(t2) = f̄(t1, t2). This gives an
equation in, say, t1 such that any left endpoint of a
minimizing interval is a solution to the equation. This
improves a quadratic time solution in [6].

The precise solution for d(τ1(t), τ2(t)) requires fairly
complicated operations. A (1 + ε)-approximation can
be obtained by replacing the Euclidean distance by
a polyhedral distance function. We use a regular k-
gon with k = O(

√
1/ε) vertices [3] to define it. In

an interval in which both τ1(t) and τ2(t) are linear,
this results in a piecewise linear distance function with
O(

√
1/ε) pieces. The total run-time is then O(n/

√
ε).

We note that with polyhedral distance functions we
can find approximate solutions for trajectory similar-
ity with time shifts [6].
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