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preface

All started with ‘Swarms and Networks’, an article on the concept of emergence by Kevin Kelly 
published in 2000 in Oase 53. In this article, Kelly illustrates how the seemingly organized 
behavior of social animals (such as ant colonies, beehives, bird flocks, sheep herds, etc.) is, 
contrary to what one would intuitively assume, not necessarily the result of a hierarchical social 
structure with higher ranks dictating lower ranks, but is, in reality, merely a side-effect of the 
interaction of a multitude of autonomous individuals, behaving according to self-imposed rules. 
The point Kelly wants to make in his article is that these interactions can be so synchronous 
that the group (or colony, hive, flock, herd, or swarm) seems to exhibit own behavior, with 
features that the constituting group-members do not possess. Kelly gives the example of flocks 
of birds, turning to avoid predators, where the turning motion travels through the flock as a 
wave, passing from bird to bird in the space of about one-seventeenth of a second, which is far 
less than the individual bird’s reaction time.
 At the moment of reading this article I was doing my architectural internship. Because the 
concept of emergence did not really help me in drawing technical plans, Kevin Kelly was banned 
to a place somewhere at the back of my mind. Till I decided to attend a Master of Science in 
Urban Design at the Bartlett School of Architecture in London. One of the assignments –called 
Urban Fictions- was to design an Ideal City, a city radically different from our everyday urban 
spaces, taking on a morphology more akin to that of a forest, a beehive, a space-station, a school 
of fish, a silicon microchip, a fractal coastline, or a software program. I recalled Kevin Kelly, 
and never forgot him since.
 With the help of lecturers like Bill Hillier (Space Syntax) and Michael Batty (Casa), 
an extensive library, bookshops like Waterstone’s, and the World Wide Web, I made the step 
from social animals to cities, and started to experiment with computer simulation models such 
as Boids, Game of Life, Starlogo, Biomorphs, etc. The idea of SwarmCity was born. At the 
end of my M.Sc. year however, even though I obtained the M.Sc. degree, I could not help but 
being slightly disappointed: I did discover an extensive and active field of people researching 
and publishing on the concept of cities as self-organizing systems, but I hardly came across 
researchers actually implementing this concept in real world settings. To my knowledge, 
most projects remained theoretical explorations, and those implementations that did exist, 
were explicitly developed to only illustrate the theoretical concepts, and were, for this reason, 
deliberately kept abstract.
 My disappointment made me decide to continue my SwarmCity research, this time not 
directed at exploring the state of the art, but at actually developing a computer simulation 
model implementing Kevin Kelly in real world settings. Faith (in the person of Prof. Bruno De 
Meulder) made me aware that I was not the only one with this ambition, that there even was an 
open position at the research group of Prof. Harry Timmermans with exactly the same brief. The 
result is this book: a summary of my four-year journey in the vast world of computer modeling. 
A journey that would not have been possible without the help of three wise and patient guides, 
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Prof. Harry Timmermans, Dr. Theo Arentze and Ir. Aloys Borgers, who gave me, a person with 
no background in modeling, let alone modeling the (location choice) behavior of Dutch people, 
the opportunity to continue my personal quest.
 I would especially like to thank Prof. Harry Timmermans, my promoter, for always being 
there, be it in person or virtually, for giving me endless opportunities, and for letting me spend 
valuable research-time on tutoring students; Dr. Theo Arentze, my co-promoter, for being a most 
passionate guide on the subject of behavior-modeling, not only taking time to take me along the 
conventional paths, but also willing (and even being eager to) leave the beaten track. A guide, 
who not only showed me where to go, but also learned me how to report –scientifically- on my 
explorations; Ir. Aloys Borgers, my daily advisor, for introducing me to the peculiarities of the 
Dutch housing market, and for learning me how to survey and analyze this housing-market.
 Apart from these three guides, I would like to thank Mandy van de Sande – van Kasteren 
and Anja van den Elsen – Janssen for their weekly pie-stories and honest concern; and my dear 
colleagues for their critique and suggestions: a special thank you to Marloes Verhoeven, for her 
warm hospitality, Sophie Rousseau, for her French energy and cross-cultural friendship, and 
Michiel Dehaene for being my co-driver and source of inspiration.
 I would also like to thank my eternal guide and mentor, Prof. Bruno De Meulder, whose 
mission it seems to be always reside ‘off the map’, a mission, onto which I am proud to be -now 
and then- invited.
 I am very grateful to my parents, thanks to whom this journey started in the first place. 
They not only supported my year in London, but also convinced me to actually apply for the 
PhD position.
 And then there is Karin, my loved one, with whom I will get married as this book is being 
published. I thank her for making me feel proud of my research, but most of all for making me 
realize that there is a world beyond my computer.
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1

§ 1 Introduction

§ 1.1 About planners and models

Urban plans are often defined with a provisional end-image in mind. The gradual implementations 
of these plans, however, almost never seem to correspond with these end-images. Future actors, 
be it households, retail-companies, service providers or firms, follow their own logic, based 
on hidden agendas or on conceptions of the environment that are different from those used by 
decision-makers involved in planning or urban design. This makes it hard for decision-makers 
to reason and provide arguments for design decisions, especially if the assumptions underlying 
these decisions are not related to the basic goals and objectives of the actors. Only to the extent 
that scholars can identify regularities in the behavior of these actors, one can, ceteris paribus, 
assume that the chance might increase that plans will better fit the preferences of these actors. 
Empirical research, in this respect, shows that, for instance, households mostly move house 
within their current housing-market (Clark and Huang, 2003); that older firms relocate less 
than younger firms (Brouwer, 2004; De Bok and Sanders, 2004); and so on. These regularities 
make it possible in principle to develop urban models that capture the spatial behavior of an 
expected plan-population, as such providing decision-makers with a tool to better understand 
urban dynamics, assess the most likely impact of design proposals, and hence make better 
informed decisions, compared to personal, untested, idiosyncratic experiences or beliefs.
 Urban models originated somewhere in the end of the fifties in North America in reaction 
to increased car-traffic congestion (Batty, 1976). By calculating the number of trips between a set 
of destinations, these – mainly transportation oriented- models aimed at predicting congestion-
prone points in road-networks. Later, urban models started to also address land-use allocation 
processes, modeling the spatial distribution of urban functions around a city-center on the basis 
of economical factors (Alonso, 1970). In the sixties, both types of models integrated into land-
use-transportation models, with the, so-called, gravity model as its most popular exponent, 
predicting the flow of people, information and goods between different regions on the basis 
of Newton’s Law of Gravitational Forces (Torrens, 2000). With the development of the first 
urban models came also the first critique on these models. In his seminal article ‘Requiem for 
large-scale models’, published in 1973, Douglas Lee set as his task to “evaluate, in some detail, 
the fundamental flaws in attempts to construct and use large-scale models” and his conclusion 
was merciless; the then existing large-scale urban models (LSUM) commit, what he calls, no 
less than ‘seven sins’: they are too comprehensive (1) yet too gross to be useful for decision 
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2 IN SEARCH OF A COMPLEX SYSTEM MODEL

makers (2); they require huge amounts of data (3) but contain little theoretical structure (4); 
and they are complicated (5), mechanical (6) and expensive (7). In a 1994 issue of the Journal 
of the American Planning Association, Wegener claims that, at that moment, most of these sins 
already seem “rather ephemeral and in part rendered irrelevant by twenty years of progress in 
theory, data availability and computer technology” (pp.17). In the same issue, Lee is invited to 
evaluate his ‘Requiem’ under the title ‘Retrospective on large-scale urban models’. He agrees 
with Wegener, admitting the need to revise his seven sins, but claims at the same time that 
the role of LSUMs remains unresolved. “That LSUMs are alive and well may be fine for the 
modelers, but is it of consequence to anyone else?” (pp.36). A survey of the current situation on 
the Dutch planning-scene confirms the relevance of this question: judging from the number of 
publications, researches, models (e.g. Regionmaker, Ruimtescanner, Kaisersrot) and conferences, 
the interest in urban models has never been this substantial; judging from the scarce application 
of these models in planning practices on the other hand, the prejudices against these models 
did not disappear. In the 1994 article, Lee does away with his seven sins and instead spells out 
two judgment-criteria on the basis of which any model should be assessed: (1) a model should 
advance theory, and (2) a model should advance practice. Screening existing models against 
these two criteria, Lee comes to the conclusion that “modeling is mostly a cottage industry, not 
much different from what it was ten or twenty years ago” (pp.36).
 Analyzing model-literature published since 1994, we can roughly distinguish two 
approaches in how modelers try to meet the two criteria spelled out by Lee: the first approach 
sees models as instruments of communication, whereas the second sees models as instruments 
of experimentation. Models dedicated to communication could be said to mainly address the 
criterion of advancing practice. Modelers pursuing this approach typically stress the importance 
of involving decision-makers into the modeling process: not technology but the user plays a 
central role (Couclelis, 2005). A second concern is that a model should be developed around a 
concrete planning-problem (Brömmelstroet, 2006). To this effect, they reason, the effort should 
be in developing simple models, which, in most cases, comes down to designing realistic and 
interactive interfaces. Models dedicated to experimentation, on the other hand, could be said to 
mainly address Lee’s criterion of advancing theory. Modelers pursuing this approach typically 
depart from the idea that the more complicated the process or form one tries to model, the less 
simple the model should be (Clarke, 2003). Limiting oneself to only designing realistic and 
interactive interfaces will, in this case, simply not do.
 It is our conviction that in order to meet the two criteria of Lee, and, in order to bridge 
the gap between the modeler and the practitioner, the second approach needs to be pursued. 
In this report we will formulate arguments supporting this conviction and we will present the 
development and evaluation of such a model; a model dubbed swarmCity.

§ 1.2 swarm + city

swarmCity is a merging of ‘swarm’ and ‘city’. Swarm, or swarming, refers to the phenomenon 
that a population of agents, interacting without the intervention of a regulating super-object, 
nevertheless seems to behave as one organism, exhibiting features not present in the single 
agents. Examples of swarming can be found in ant colonies, beehives, bird flocks, sheep herds, 
etc. “High-speed film (of flocks of birds turning to avoid predators) reveals that the turning 
motion travels through the flock as a wave, passing from bird to bird in the space of about one-
seventeenth of a second. That is far less than the individual bird’s reaction time. (…) One speck 
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of a honeybee brain operates with a memory of six days; the beehive as a whole operates with a 
memory of three months, twice as long as the average bee lives” (Kelly, 1994, pp.10).
 This research takes as point of origin that a city can be interpreted as such a self-organizing 
object emerging out of the interactions of a population of individuals. Cities differ from the 
above nature-swarms in that there is some sort of regulating authority: to be granted citizenship 
(civitas), guarantees a person political rights but also makes this person subject to a number of 
responsibilities. A city is therefore never purely the product of autonomous interactions, but is 
also regulated by treaties, constitutions, acts and the like.
 The merging of swarm and city embodies this duality: a city being both an organism 
‘out of control’, emerging out of millions of individual actions and a carefully directed system, 
supported by laws and regulations.

§ 1.3 Complex system models

As well as referring to a city as an organism, one could refer to a city as a complex system. In 
their article ‘Modeling and prediction in a complex world’, Batty and Torrens (2005) describe 
a complex system (or organism for that matter) as a system able to take on a large number of 
states, with each state being the result of a large number of elements or objects, temporarily 
being in one out of many conditions. This large number defies complete description, so that 
the future state of the system is, at all times, impossible to predict. Batty and Torrens therefore 
argue that “the hallmark of such kind of complexity is novelty and surprise which cannot be 
anticipated through any prior characterization” (pp.747).
 Batty and Torrens continue identifying two ‘key elements’, which models of complex 
systems should address. The first key element is the system’s extensiveness, which they claim 
is impossible to simplify by reduction or aggregation without losing the richness of the system’s 
structure. The second key element is the system’s dynamics, which renders prediction or clear 
representation impossible.
 Scholars in a variety of disciplines (Weaver, 1948) have repeatedly pointed out that in 
order to address these two key elements, not the system as such, but the constituting elements 
or objects should be the main focus. In simulating the (micro) behavior and (micro) interactions 
of these elements and objects, the complex behavior at the (macro) system scale will emerge 
spontaneously. The boids-model of Craig Reynolds is one of the first models pursuing this 
approach: Reynolds was asked (by the makers of the first Batman movie) to come up with a 
model simulating the movements of a flock of bats. The large number of required bats and the 
quasi-infinite number of flying positions categorizes the flock as a complex system. Instead of 
scripting the exact flying course of each single bat (i.e. defining the exact position of each bat 
at each moment in time), Reynolds just defined three generic steering rules: (1) steer to avoid 
crowding local flockmates, (2) steer toward the average heading of local flockmates, and (3) 
steer to move toward the average position of local flockmates (Reynolds, 1987). As long as each 
bat obeys these three rules, wonderfully complex flocking behavior emerges.
 It is the aim of swarmCity to develop a complex system model adopting this micro/macro 
approach. A final remark: the main focus of the Batty and Torrens’ article lies on how to validate 
such complex system models. We will address this issue in Chapter 7.

Introduction
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§ 1.4 Context: MASQUE

swarmCity is one component of a larger planning support system MASQUE (Multi-Agent 
System for supporting the Quest of Urban Excellence). As can be judged from the acronym, 
MASQUE is developed to provide support to decision-makers within the field of planning. It 
does this; on the one hand, by generating land use plans, and on the other hand, by evaluating 
urban plans (Timmermans, 1999). As will become clear, MASQUE relies for both components 
on the above micro/macro approach.
 A land-use plan is a plan “that lays down legally-binding regulations for permissible 
land-use in designated zones, either generally or more detailed, and covers specific parts of 
the municipal territory that can range in size from a city district to a building block” (Saarloos, 
2006, pp.2). In order for MASQUE to generate a land-use plan, the experts, typically involved 
in making these plans, are modeled, each one with own objectives and knowledge (Ma, 2007). 
Once modeled, these artificial experts cooperatively generate sets of alternative plans (Saarloos, 
2006). So, instead of scripting an exact planning-process, MASQUE only models the behavior 
of all involved actors, to then let the actual plans emerge. Once land-use plans are generated, 
the decision-maker making use of the model then further specifies these plans into urban plans. 
He/she can rely on swarmCity (i.e. the second component of MASQUE) to evaluate these 
specifications. An urban plan is a plan defined up to the level of the single plot deciding upon 
elements such as: building-typologies, number of floors, functions, ground surface material, 
price-class, etc. This plan can be fed, as a GIS file, into swarmCity. swarmCity is developed 
to simulate the spatial behavior of the population inhabiting this plan; providing insight into 
questions such as: where do households locate? How do firms react to new zoning regulations? 
When do service-providers consider opening up a new outlet-store? Again: not the exact 
behavior of the population as a whole is scripted, but rather the generic spatial behavior of 
single actors.
 The output of swarmCity is a series of development scenarios, tables and graphs depicting 
the behavior of modeled actors at subsequent moments in time. On the basis of this output, the 
decision-maker can assess the most likely impact of his/her interventions, as he/she is able to 
instantly observe the likely reactions of the plan-population to these interventions. This allows 
the decision-maker to experiment with different planning and behavioral scenarios and might 
help him/her to evaluate his/her decisions and/or convince others of these decisions. Planning 
scenarios could, for example, be used to evaluate physical planning interventions, alternative 
legislations, plausible plan-layouts, etc., whereas behavioral scenarios could, for example, help 
testing the robustness of a plan, the sensitivity of the population to certain elements of a plan, 
the appropriateness of concepts for specific target groups (Nio, 2002), etc.
 As suggested by the acronym, MASQUE relies on Multi-Agent technology. A multi-agent 
system “consists of a set of agents which together achieve a set of tasks or goals in a largely 
undetermined environment” (Timmermans, 1999). According to Epstein (1999), Agent Based 
Models are “especially powerful in representing spatially distributed systems of heterogeneous 
autonomous actors with bounded information and computing capacity who interact locally” 
(pp.42). In swarmCity, agents represent actors, making spatial decisions. Each agent has 
attributes representing the characteristic features of this actor, such as: a budget, an address, a 
social or professional network, etc. Besides attributes, agents also have methods, representing 
the behavior of the modeled actor, such as, in case of a household, renovating a house, moving 
house, letting out rooms, etc. These anthropomorphic features make that agents are extremely 
suited to model individual behavior.
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 Both MASQUE-components adopt opposite approaches to modeling: in the plan-
generating component, all design-intelligence is incorporated in the model in the form of 
experts. In order to intervene, the decision-maker using the model has to redefine these experts. 
In the evaluation component, on the other hand, all design-intelligence stays with the decision-
maker, as swarmCity makes no proposals for interventions, but rather simulates the reaction of 
a plan-population to proposals formulated by the decision-makers.
 In line with our conception of a city as being both a self-organizing organism (i.e. a 
complex system) and a constructed system, swarmCity approaches planning as a process 
of incremental decision-making (Lindblom, 1959): rather than enforcing long-term plans, a 
decision-maker proposes a series of short-term decisions, observes the reaction of the plan-
population to these decision, on the basis of which he/she can then redirect his/her decisions. 
By simulating the (spatial) behavior of a plan population, swarmCity supports this incremental 
planning approach. Wegener (2001, pp.224) stresses the need for such models observing that “In 
both industrialized and developing countries the role of local governments in urban development 
has changed from that of the primary actor to that of a player among others if not of that of an 
observer. In this situation cities have to resort to less authoritarian ways of influencing urban 
development by negotiation, persuasion and incentives rather than by command and control 
instruments of statutory planning”. Incremental decision-making calls for a decision support 
tool sensitive to long- and short-term (spatial) transformation processes, operating on the scale 
of the individual parcel and its actor. Batty (2005) comes to a similar conclusion stating that “the 
concerns of contemporary planning and policy analysis, now strongly orientated to questions of 
regeneration, segregation, polarization, economic development, and environmental quality, (…) 
call for models which simulate finer scale actions, (…) often to the point at which individuals 
and certainly groups need to be explicitly and formally represented” (pp.1374).

§ 1.5 Research-scope

As argued in Chapter 1.3, developing a complex system model of a particular urban context 
implies modeling the (spatial) behavior of the actors inhabiting this system; actors ranging from 
service-providers, to firms, retail companies, households, etc. In principle, agents can represent 
any of these actors. In swarmCity, we choose to focus on households only. Service-providers, 
such as schools and hospitals are not included, because -in a European context- these are mostly 
planned by the government, so that their behavior is predictable (and as such not complex). 
Firms and retail companies are not included, because their behavior is typically driven by global 
market processes, implying a large number of (very diverse) system-components. The behavior 
of households, on the other hand, is typically more driven by local factors, so that, even though 
they behave according to a highly personal lifestyle, the number of system-components is 
limited. For this reason, SwarmCity chooses to focus on households only, addressing issues 
such as: Where do they typically locate? (How) do they influence each other’s choice? What 
factors do they take into consideration when moving house? How do they deal with competition 
on the housing-market? Despite the limitation to household behavior, the model-structure is 
extendable to incorporate the spatial behavior of other actors.
 The research-scope is thus to develop a complex system model, simulating the location 
choice behavior of households. As argued, Multi Agents Technology is put forward as an 
evident formalism to implement this complex system. Epstein and Axtell (1996) refer to agent-
based models simulating social processes as artificial societies. “We view artificial societies as 
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laboratories, where we attempt to “grow” certain social structures in the computer –or in silico- 
the aim being to discover fundamental local or micro mechanisms that are sufficient to generate 
the macroscopic social structures and collective behaviors of interest” (pp.4). Recalling Lee’s 
criteria of having to contribute to both planning theory and practice, we argue that such an 
artificial society should address a minimum number of behavioral concepts, characteristic of a 
true complex system. The contribution to theory lies in the development and implementation of 
a consistent and transparent framework integrating these behavioral concepts. Existing urban 
models either aim for simplicity or propose ambitiously complex frameworks that, so far, 
never made it to be implemented. The contribution to (planning) practice lies in addressing a 
maximum number of spatial transformation processes and situations which a decision-maker, 
involved in planning and urban design, is typically confronted with: e.g. traffic congestion on 
a particular road, housing-shortage in a given neighborhood, the redevelopment of a derelict 
former industrial area, etc. We are convinced that only by guaranteeing sufficient detail the 
model will be able to simulate this variety in processes and situations.
 According to Batty (paraphrasing Harris, 1976, pp.2) an urban model is “an experimental 
design based on a theory”, implying that the development of a model is in itself a research 
for a relevant understanding of urban structure and, in our case, of location-choice behavior. 
Since developing a model is thus an experiment in itself, it should be used accordingly: not 
as an objective expert, generating indisputable solutions, but as just another decision-support 
tool, engendering and structuring discussion and debate (Batty and Torrens, 2005). Again, this 
requires detail. Not only on the spatial level, zooming in onto the parcel-scale, but also on the 
behavioral level, providing insight into how actors experience, perceive and conceive their 
environment.
 Concluding, the scope of this research is to develop a complex system model, swarmCity, 
simulating the relocation-behavior of households in a given spatial setting. Decision-makers 
using swarmCity should be able to both intervene in the modeled setting, and to modify the 
spatial behavior of the modeled households. This would allow these decision-makers to, not 
only experiment with alternative planning proposals for that particular setting, but also to 
explore alternative conceptions of the processes taking place in this setting. Such a model would 
truly meet the two criteria put forward by Lee: i.e. advancing planning practice and advancing 
planning theory.

§ 1.6 Outline of the thesis

Computer-models generally follow a distinctive format. Clarke (2003), in this respect, 
distinguishes four –generally recurring- model-components: “(1) input, both of data and 
parameters, often forming initial conditions; (2) algorithms, usually formulas, heuristics, or 
programs that operate on the data, apply rules, enforce limits and conditions, etc.; (3) assumptions, 
representing constraints placed on the data and algorithms or simplifications of the conditions 
under which the algorithms operate; and (4) outputs, both of data (the results or forecasts) and 
of model performance such as goodness of fit” (pp.2).
 We will adopt these four components as the main structure of this report, be it in a 
somewhat different order: Part I addresses the model-assumptions (component 3 of Clarke) – we 
collect empirical findings related to household location-choice behavior, and concepts related 
to modeling behavior in general. In confronting findings and concepts a number of challenges 
will be defined, clarifying the scope of this research. Part II deals with the model-algorithms 
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(component 2 of Clarke) – we will develop a conceptual framework around the collected 
concepts and implement this framework. Finally, the model input and output (components 1 
and 4 of Clarke) recur in the descriptions of the test case and model-experiments in part III. In 
the test case, we will apply the model to the context of student housing. As students are only 
a sub-group of society, with distinct location-choice behavior, the applicability of the student 
scenario is obviously limited. The purpose is therefore only to assess the face validity of the 
conceptual framework.
 Clarke also mentions a fifth model-component, that of the modelers, including “their 
knowledge, specific purpose, level of use, sophistication, and ethics” (pp.2). This component 
refers to the act of modeling itself and is for this reason not addressed in this research.

Introduction
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part I: cOLLectInG cOncepts & cHaLLenGes

§ 2 About household location-choice behavior

§ 2.1 Introduction

Since 1998, the region Eindhoven/Helmond in the Netherlands has been extended with two new 
VINEX settlements, Brandevoort and Meerhoven. VINEX stands for ‘Vierde Nota Ruimtelijke 
Ordening Extra’ and is so much as a supplement to the Fourth National Policy Document on 
Spatial Planning in the Netherlands. Both Brandevoort and Meerhoven are similar in size (6000 
versus 6900 houses), are equally accessible, and have a similar mixture in housing-typologies. 
Where they do differ is in the type of urbanity each settlement wants to generate. Meerhoven is 
conceived as a typical VINEX settlement with contemporary architecture promoting an urban 
way of living. Quite in contrast, Brandevoort is conceived as a traditionalistic town, a medieval 
fortification, complete with towers, a moat, and a central market square (Lörzing, Klemm, 
van Leeuwen and Soekimin, 2006). Where most planners approved the Meerhoven approach, 
they referred to Brandevoort as an amusement park driven by nostalgia, a suburban enclave 
that is doomed to fail (Tilman and Rodermond, 1998). History proved otherwise: in 2001, the 
Netherlands Architecture Fund compared 13 VINEX settlements pointing out Brandevoort to 
be the most popular one.

The will to understand situations like these keeps on inspiring researchers to analyze urban 
phenomena. A distinction can be made between two research approaches: empirical research 
directly addressing the phenomena at hand, versus theoretical research experimenting with 
hypothetical scenarios. Dieleman (2001) provides a comprehensive overview of the current 
state of empirical research in residential mobility, distinguishing four lines of research based 
on the geographical scale they address: the micro level (i.e. the scale of the household), the 
metropolitan level (i.e. the scale of the housing market), the national level (with issues such 
as national economic and demographic circumstances) and the international level (with issues 
such as national housing policies, wealth, and tenure structures). Fruitful avenues for future 
research, Dieleman argues, seem to concentrate around two themes: the role of the different 
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household members in location-choice decisions and the choice-behavior of households, 
unable to purchase their preferred house. The real research frontier however, he continues, 
seems to be the analysis of how the residential relocation behavior of households (i.e. the micro 
level) interacts with local (i.e. the metropolitan level) and national markets. This interaction of 
individuals and housing-market (representing the city) lies at the center of this research: how 
do individual decisions generate stable phenomena? Why is it that one urban development turns 
out successful while another one fails? With these questions in mind, we propose to reduce the 
four categories introduced by Dieleman to two: the micro level (representing the household) 
versus the housing-market level. The micro-level or household category deals with empirical 
findings related to the location choice behavior of single households and household members. 
The housing-market category deals with empirical findings related to the macro-behavior 
emerging out of (inter)actions of single households, or as Oskamp and Hooimeijer (1999) phrase 
it: “macro biographies of cohorts emerging out of the micro biographies of individuals”. These 
two categories will structure our overview of the empirical research on residential mobility.

Theoretical research is generally wider in scope in that it not only addresses phenomena related 
to residential mobility but, for example, also incorporates other actors such as firms or retail, 
or in that it also models the impact of land-use allocation on transportation and vice versa. 
For an overview on urban models in general see, among others, Clark and Van Lierop (1986), 
Torrens (2000), Berger, Parker and Manson (2001), Waddell (2001), Timmermans (2003) and 
Parker, Manson, Janssen, Hoffmann and Deadman (2003). To structure our historic overview of 
operational models, we will adopt the categorization proposed in the review of Timmermans.
 In our introduction-chapter, we distinguished two approaches as to how (urban) models 
try to advance planning theory and practice: the first category stresses communication and 
holds a plea for simple models, whereas the second category stresses experimentation, holding 
a plea for complex models. In the same chapter, we also expressed our preference for the second 
approach. In order to illustrate both approaches and argument our preference, we will discuss 
a number of urban models in more detail, paying special attention to the residential mobility 
component of each model.

§ 2.2 Review of empirical findings

§ 2.2.1 Household behavior

“Moving is a complex behavior entailing a series of choices rather than a single decision or 
behavior. Those choices, which may not all be present in every case, include the decisions to 
consider moving, to undertake an active search, and whether and where to move” (McCarthy, 
1982, pp.31). This series of three decisions is taken on in a number of empirical researches as 
awakening, searching, and choosing (Clark and Flowerdew, 1982; Fransson and Mäkilä, 1994; 
Goetgeluk, 1997; Oskamp, 1997; Dieleman, 2001; Blijie, 2004), and is adopted here as a means 
to structure our review of empirical findings. It is important to mention that this process of 
awakening, searching, and choosing is not necessarily a linear process, but rather a recursive 
one, where searching is not always followed by an actual choice in the form of the purchase of 
a house.

Review of empirical findings
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AWAKENING

The three-stage process is based on the assumptions that households always have an ideal house 
and housing environment in mind, a situation perfectly answering the needs of the household, 
and that moving is motivated by the household’s desire to reach this ideal situation (McCarthy, 
1982). Mostly, this ideal house (or ‘desired housing circumstances’ as referred to by McCarthy) 
is simply the house the household is currently living in, or is at least very similar to this house. 
Over time though, the needs and desires of this household might change, as well as its house 
and housing environment. Because of these changes, the ideal and the current situation no 
longer match. The factors causing this discrepancy are referred to as triggers, ‘triggering’ the 
household to re-consider its current housing-situation. As long as this discrepancy remains 
acceptable, considerations will remain considerations. Beyond a certain threshold however, 
this discrepancy might reach such proportions that the household decides to take action. At 
this moment the household is woken up. In the context of housing, actions to improve one’s 
situation could be moving house, renovating the current house, changing job, renting out a 
room, and so on. Note that moving is thus not an end in itself, but rather a means to restore a 
situation that grew wrong, to reach some ‘hypothetical state of equilibrium’ (McCarthy, 1982). 
The choice of action depends on how close this action will bring the household to its desired 
housing circumstances. Each action requires effort, constraining the choice. Awakening can for 
this reason be interpreted as a double decision: firstly deciding whether to become dissatisfied 
or not, and secondly deciding which action to pursue. The first decision is based on triggers, the 
second on constraints. Both are evidently related to preferences.
 A first category of triggers is related to the household itself: changes occurring in the 
life-course of the household, such as marriage, birth of children, divorce, death of a partner, 
entering or finishing stages in one’s education, income changes, etc. make up the main reason 
why people move house (Oskamp and Hooimeijer, 1999; Dieleman, 2001; Clark and Huang, 
2003). With each change in life-course, the needs regarding housing and housing environment 
might change; a change in family composition, for instance, might cause room-stress. “Room-
stress is a significant predictor of moving. Households with underconsumption of housing are 
more likely to move and those with excess of housing are also more likely to move – probably 
to reduce housing consumption” (Clark and Huang, 2003, pp.335). According to van der Vlist, 
et al. (2001), changes in the life-course of households can typically be characterized by the age 
of the head, the household-size and the dwelling-size. Other variables, such as income, assets, 
occupation, and education, also play a critical role; be it that this role is different from owner-
occupiers to renters, with the former being less inclined to move then the latter (Dieleman, 
2001). The same counts for young versus older households, with the older being more closely 
bound to the current place of residence (Dieleman, 2001).
 Another set of triggers, related to the household, are changes occurring in the employment 
situation of the household-members. Research has shown that accepting a job a long distance 
away from the current place of residence almost always necessitates a residential move. 
Furthermore, there is evidence that in case of shorter residential moves -i.e. within the current 
housing-market- location-choice decisions are generally made without reference to the location 
of the job (Dieleman, 2001). Independent of job location, dual-earners seem to be less inclined 
to move in reaction to a change in their employment situation compared to single-income 
households.
 “The geographical literature on residential relocation distinguishes between two types of 
moves: (1) short distance moves, or residential mobility (sometimes also denoted as intraurban 
migration or partial displacement moves); and (2) long-distance moves, or migration (or total 
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displacement moves)” (Dieleman and Mulder, 2002, pp.35). Empirical research learns that 
most households move within their current housing-market because of many factors such as 
imperfect information, social networks, etc. (Rand, Zelner, Page, Riolo, Brown and Fernandez, 
2004); in other words, most moves belong to the residential mobility type of moves. Empirical 
research learns furthermore that if migration occurs, this mostly goes hand in hand with a 
change in job (Dieleman, 2001; Clark and Huang, 2003).
 A second category of triggers is related to the characteristics of the house and the housing 
environment. A house might, for example, not always match the ideal housing situation of 
the owner. Issues such as the need to modernize technical installations, lack of natural light, 
abominable insulation, or a leaking roof, might require such substantial financial investments 
that the household will consider moving, rather than renovating. The housing environment 
refers both to the neighborhood the house is situated in, as to the social environment of the 
household, and the relative location of the house, consisting of elements such as the schools 
the children go to, the daily shopping facilities, or the road network, etc. Changes in the direct 
neighborhood, such as the lack of parking space, a feeling of unsafety, lingering dirt, etc. might 
add to a slumbering discontentment. A discontentment, which is often indirectly reinforced 
by politicians or the media (such as television series) suggesting that ideal neighborhoods do 
exist, be it always somewhere else. The same is true for changes in the social environment or 
relative location: new housing-developments more geared towards the needs of the household, 
more profitable taxation regimes, stricter housing policies, valuable social networks, etc. might 
seduce a household to consider moving, whether or not it is dissatisfied in any way with its 
current situation (van der Vlist, et al., 2001).
 The distinction between triggers related to the household and triggers related to the 
house and housing-market is only one possible way of categorizing triggers. An often-used 
categorization is the distinction between push-motives and pull-factors: push-motives push 
a household out of its current situation into the housing-market (e.g. a high room-stress), 
whereas pull-factors attract a household to an alternative situation (e.g. a cheaper rent). Another 
distinction is between voluntary and involuntary moves, with involuntary moves being caused 
by social discrimination, housing demolition, etc. Yet another distinction is between triggers as 
sudden events and triggers as gradual processes (or accumulation). A sudden event could be a 
household accidentally stumbling across its dream-house without even having the intention to 
move whereas a gradual process might be savings adding up to the point where the household 
can afford to invest. A final distinction worth mentioning is the distinction between actual and 
anticipated triggers: a household might wake up reacting to something that changed at that 
moment in time, or it might anticipate an event expected to happen in the future, such as the 
expansion of the household with an extra child. Some of these distinctions interrelate; pull-
factors, for instance, are often more gradual. Miller (2006) for instance observed, in this respect, 
that the attraction of lower mortgage rates or high rates of return in housing-investment could 
persuade a household to become mobile.
 Whereas triggers make people consider acting, constraints make people postpone or even 
abandon these considerations. The most obvious constraints are evidently resources; a household 
can only engage in an activity on the condition that it has the requisite (financial) resources. In 
Western countries, so-called living expenses typically take up 15 to 30 percent (and in some 
cases more in the form of rent or mortgage obligations) of the households’ income (Dieleman 
and Mulder, 2002). The actual percentage varies with the life-stage of the household-members, 
in that households at different stages in their life distribute their income differently, or as Mok 
(2005) phrases it: “households at different life stages see the same dollar income differently” 
(pp.2142). Clark and Flowerdew (1982) identify discrimination as a constraint: in a competitive 
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housing-market, real-estate firms do manipulate information, favoring certain households over 
others. Besides financial costs and discrimination, there are also emotional costs constraining the 
decision to act. A household might, for instance, exhibit a certain resistance to relocation because 
it became mentally attached to its house or housing environment. Moving will, in this case, only 
be the last option to consider (Lu, 1998). Attitudes and norms, typically coinciding with cultural 
and socio-economic backgrounds, are another factor constraining housing decisions (Lu, 1998; 
van der Vlist, et al., 2001). “For instance, households in highly urbanized areas may attach more 
value to amenities like a theatre than to having a garden or a garage” (van der Vlist, et al., 2001, 
pp.16). A last constraint is the knowledge of the household regarding the housing-market. A 
household might, for example, belief that its ideal house does not exist on the housing-market, 
and if it would exist after all, it would obviously be too expensive (being the ideal house). This 
belief might be so strong that the household will not even consider verifying it.
 The categorization of changes, resources and attitudes as either being triggers or constraints, 
is evidently relative as most triggers, mentioned above, can also constrain decisions and vice 
versa. Resources, for instance, here considered as a constraint, may upon accumulation also 
trigger a household to purchase a second (or third) house as a long-term investment (Waddell, 
2001; Alhashimi and Dwyer, 2004). Or, a person may respond to an increase in income, 
typically coinciding with entering another life-stage, triggering him/her to adjust his/her housing 
consumption (Mok, 2005). Some scholars even claim that: “movements of owners are generally 
more related to capital accumulation than to any specific housing needs” (van der Vlist, et al., 
2001, pp.3). An example of a trigger constraining choices is the housing environment: the 
existing social network will typically make households favor the current housing-market over 
markets where such a network is absent.
 Oskamp and Hooimeijer (1999) speak in this context of triggering versus conditioning 
careers (instead of triggers versus constraints). Their starting-point is the concept of life-
course, argued to develop in the form of a number of parallel and interacting careers, such 
as: an educational career, a labor career, a household career, a housing career, and a fertility 
career. A triggering career then “specifies the behavior that arises from the wish to progress 
in a particular career, whereas a conditioning career provides the resources to make progress, 
or impose restrictions that hamper or even exclude such progress” (Oskamp and Hooimeijer, 
1999, pp.231). To the authors, this distinction is crucial in order to understand behavior, in that it 
illustrates the intentionality behind this behavior. An example may clarify this point: according 
to Oskamp and Hooimejer, the act of moving is most often seen as a means to improve the 
housing situation, on the condition that the labor career can provide the necessary monetary 
resources. In this case the housing career provides the trigger. There are however situations, 
where it is not the housing career, but, for instance, the household career (e.g. marrying or 
divorcing), or the labor career (e.g. changing to a job a long distance away) that trigger a 
residential move. In these cases, the housing career conditions demographic or labor market 
behavior. The inability to find a suitable house may, in such a case, lead to a postponement of 
the decision to start living together, or to change job.

Once a household is woken up and once it decided to come into action, it will start searching for 
information on these actions. Given that this action is the consideration to move, the household 
will have to start searching for an alternative house to purchase.
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SEARCHING

Searching costs time and money. In the context of residential mobility, search costs are, 
in most cases, negligible compared to the final transaction-price of the house, making that 
mainly time, or better lack of time, constrains search decisions. Searching involves a number 
of decisions: what to search for, where to search, how to search, how long to search, which 
selection criteria to take into consideration (Huff, 1982). Factors generally considered to be of 
influence on these decisions are: dwelling-size, typology, price, tenure and location with respect 
to workplaces and services (Dieleman, 2001), but also accessibility, physical characteristics of 
the neighborhood, nearby services and facilities, and social environment (Oskamp, 1997), in 
short, all factors potentially causing a discrepancy between the current and the desired housing 
circumstances. Households, however, do not explicitly consider all these factors; “rarely 
can objects be discriminated on the basis of more than seven dimensions” (Oskamp, 1997, 
pp.47), and for this reason simplify the task disregarding less important housing attributes. 
Accessibility considerations, for example, are found to only play a minor role in the decision 
process (Molin and Timmermans, 2003). Another way in which households simplify the choice 
task is by making hierarchical choices: first choosing a neighborhood to live in, to only then 
choose a residence within this neighborhood. Conditioned on the neighborhood and residence 
the household may then choose vehicle ownership and a daily activity pattern (Clark and 
Flowerdew, 1982; Waddell, 2001). A recurring observation is that households tend to search in 
areas they are familiar with (Huff, 1982).
 The number of decisions to make, individual time constraints and (lack of) search experience 
lead households to adopt highly personal search strategies, ranging from exhaustive searching 
(or querying) to superficial searching (or exploring). Querying implies that the searcher has a 
clear objective, while exploring is used in case this objective is less clear. Empirical evidence 
suggests that location search is characterized by non-randomness and systematic biases (Zhang, 
2006). On average, households rationally select and reselect information channels depending 
on their initial and subsequent experience with these channels (Maclennan and Wood, 1982). 
Search strategies can evolve over time: the more urgent the search, the less explorative the search 
will be. Independent of the objective, household can either search through interaction with their 
environment (e.g. driving around), or through interaction with media (e.g. newspapers, Internet, 
social networks, real-estate firms, etc.).
 Households considering searching may have varying levels of a-priori housing-market 
information as well as varying budgets. We would expect less informed buyers to have less 
first-hand knowledge of market conditions consequently paying significantly higher prices for 
comparable houses when compared to better informed buyers. An examination by Turnbull 
and Sirmans (1993) of the search behavior of first-time versus repeat buyers and out-of-town 
versus in-town buyers however reveals no systematic price differentials across these categories 
of homebuyers. A similar research by Palm and Danis (2002) on the impact of the Internet on 
search behavior confirms these findings. In the pre-internet era, real-estate firms could limit 
and even manipulate the kinds of information to which prospective buyers could gain access, 
strongly biasing their search space (Clark and Flowerdew, 1982). The accessibility of the 
Internet has the potential to eliminate existing information barriers so that those that use the 
Internet would potentially be able to purchase dwellings at better prices. According to Palm and 
Danis, however, the Internet does have little impact on the actual price formation, revealing 
no systematic price differentials across types of buyers in the market. Turnbull and Sirmans 
confirm this for the more general case of asymmetric a-priori information and claim that this 
demonstrates the efficiency of the housing-market: “successfully ameliorating many of the 

Review of empirical findings



14 IN SEARCH OF A COMPLEX SYSTEM MODEL

potential price effects of asymmetric information and costly search” (Turnbull and Sirmans, 
1993, pp.556). The Internet does have one effect on search behavior in that those using the 
Internet tend to visit a larger number of houses personally (Palm and Danis, 2002) or simply 
tend to search longer (D’Urso, 2002) than those who do not use the world wide web as an 
information channel.
 Households, considering relocating, search in order to find candidate houses to move to. 
“Difficulties experienced during the search, particularly discrimination, may force households 
to revise their original expectations, modify their moving goals, or even to terminate their 
search and postpone moving” (McCarthy, 1982, pp.33). In case the search is successful though 
and the household did collect a number of promising candidate houses, it will have to choose 
one to move to.

CHOOSING

Choosing implies evaluating and selecting. A household chooses on the basis of a number 
of evaluation criteria. The type, number and relative importance of these criteria might vary 
among the members of a household, so that choosing requires negotiating, on the one hand 
between household-members overcoming possible variations in preferences, and on the other 
hand between the household wanting to buy and the household wanting to sell the house over 
a price at which to buy / sell the house. This second type of negotiating is what differentiates 
buying a house from buying any other consumption-good: “House prices are largely set by 
negotiation between buyers and sellers through a system that centers on agents, list price and 
offers. It is a bargaining process of giving and taking, rather than the arm’s length, take it or 
leave it, buy it or don’t buy it process that attends the buying and selling of most products” 
(Alhashimi and Dwyer, 2004, pp.35). 
 Households, and decision-makers in general, are assumed to choose among alternatives 
on the basis of expected consequences of these alternatives. In most cases, though, these 
consequences are not known with certainty. Rather decision-makers have some (subjective) 
beliefs regarding the likelihood of various possible outcomes (March, 1994). Choosing thus 
involves risk: the decision-maker does not know the outcome of his/her decision with certainty, 
the only thing he/she can rely on are his/her beliefs. A decision-maker can portray more or less 
risky behavior, referred to as risk-seeking versus risk-averse behavior. A choice either leads to 
an improvement or to a worsening of the current situation. A risk-aversive individual assigns a 
bigger weight to the possibility that it will worsen than that it will improve; a risk-seeking does 
the opposite.
 In the situation where all household members agree upon the choice of a dwelling and 
the household agrees with the seller upon a price at which to purchase the house, the household 
moves.

In most cases, this process of waking up, searching and choosing (and thus finding and moving 
to a new house) is not a linear process. Factors such as time-stress, a limited (ideal) housing 
supply, insufficient resources and so on, might make that the household is forced to keep 
on searching, move into alternative, less-preferred dwellings (Goetgeluk, 1997; Dieleman, 
2001) or even abandon the consideration of moving all together. Oskamp (1997) refers to the 
difference between the accepted and the ideal dwelling as ‘substitution of housing preferences’. 
He subsequently defines four types of substitution: 1) spatial substitution (accepting a dwelling 
in another area), 2) sectoral substitution (accepting a dwelling in another sector of the housing 
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market), 3) postponement (postpone the intended move) and 4) putting-off (abandon the 
search for a new dwelling all-together). There is some evidence that substitution is only used 
as a last resort; households will rather increase the price they are willing to pay then to make 
compromises on their preferences (Dieleman, 2001). Goetgeluk employs an interview-technique 
based on decision nests to map this substitution-process (Goetgeluk, 1997). Experiments with 
this technique indicate that the willingness to substitute depends on the motivations causing 
the move, the current housing-situation of the household and the composition of the (local) 
housing-market, in such a way that households with a lower urgency to move have a higher 
number of attributes they are not willing to substitute.

§ 2.2.2 Housing-market behavior

Households make decisions in a housing-market, so that the decision of one household has 
repercussions on the decision-behavior of other households: an increase in turnover rate in 
the housing stock might, for instance, increase housing prices, limiting the opportunities of 
other households to move. In other words, there is a reciprocal relation between the decision of 
the single household and its residential environment (Dieleman, 2001). In economic literature, 
this reciprocal relation is referred to as ‘location externalities’: defined as the effects that the 
location decision of one agent generates on other agents’ decisions because it alters the agents’ 
environment, generating interactions and interdependencies between location choices. Within 
the context of residential mobility, location externalities can range from negative (harmful) 
neighborhood externalities, like crowding and racial effects, to positive (beneficial) externalities, 
such as concentration of homogeneous groups by socioeconomic, ethnic, cultural, and other 
characteristics (Martinez and Manterola, 2001).
 Externalities can be interpreted as consequences of macro level regularities or patterns, 
generated by micro level decisions. We will here make a distinction between, on the one hand, 
patterns related to the housing-market being a population of buyers and sellers, and on the other 
hand, patterns related to the housing-market being a market of goods for sale.

POPULATION BEHAVIOR

A first pattern, often referred to in empirical research, is the housing career or, so-called, housing 
ladder: households do not seem to move randomly but instead move according to a ‘hierarchy 
of tenures’, dictated by the stages of their life-course: newly formed households move into the 
private rental sector before they access the owner housing-market, to then, in due course, move 
up to larger and more expensive owner-occupation (Goetgeluk, 1997; van der Vlist, et al., 2001; 
Clark and Huang, 2003). In reality though, because of ample economic resources and lack of 
supply, households often remain stuck somewhere along this ‘ladder of success’ or even move 
back down the ladder, as is for instance often the situation in case of divorce.
 A second pattern is known as ‘geographical sorting’; “The uneven spatial distribution 
of the housing stock, defined in terms of quality, tenure, and price, leads to a geographical 
sorting of households by type, income, and race over the urban mosaic” (Dieleman and Mulder, 
2002, pp.48). Or, as Waddell puts it “Birds of a feather flock together” (2001, pp.8), implying 
that neighbors are often similar in socioeconomic characteristics, lifestyles and consumption 
behavior. This flocking is not always voluntary; in case the market is very tight, households 
might live in sub-optimal housing-situations, such as an unfamiliar housing environment, an 
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overtly expensive rent, etc. “In practice, therefore, patterns of residential mobility may be quite 
diffuse and hard to relate to household characteristics only. Differences in local allocation rules, 
in housing market size and urbanization degree are also very likely to lead to variation in the 
residential mobility rates of households” (van der Vlist, et al., 2001, pp. 4).

HOUSING-MARKET BEHAVIOR

In marketing literature, a distinction is made between markets trading homogeneous goods and 
markets trading heterogeneous goods (Harding, Rosenthal and Sirmans, 2003). An example 
of homogeneous goods are vegetables: the product is well defined, and the market is large, 
making that the goods can be traded at a single, fixed market price known to both buyers and 
sellers. Houses are examples of heterogeneous goods: the durability, the relatively high costs 
and the fixed location make that each house or housing-plot could be considered quasi-unique, 
since it differs (slightly) from its neighbors (Waddell, 2001). Consequently there is not one 
all-embracing housing-market, as is the case with homogeneous goods, but rather a series of 
local submarkets (Clark and Van Lierop, 1986; Alhashimi and Dwyer, 2004), each with highly 
differentiated prices and housing-regulations. Given the variation among these submarkets, 
households are typically only familiar with a limited number of these markets. They do have 
some general knowledge of the overall housing-market (which neighborhoods are expensive, 
where one can still find some bargains), and some more detailed knowledge on the neighborhood 
they frequent more often (The house around the corner that is for sale, having a big garden and 
nevertheless being not that expensive).
 Because of the existence of these submarkets and because households only purchase 
houses infrequently, with a small proportion of households active at any time, “small changes in 
aggregate behavior of a few households can, locally at least, have a significant effect on prices” 
(Alhashimi and Dwyer, 2004, pp.4): as traded goods become more heterogeneous, markets 
become increasingly thin, and the true market value of the good becomes less well known. 
Under these conditions, prices are influenced both by the characteristics of the products or 
services in question, and by the bargaining skills and power of the buyers and sellers (Harding, 
et al., 2003). This is in contrast with conventional (competitive) market theory with many buyers 
and sellers, but where each buyer and seller is too small to affect the market place.
 The construction of new housing is a complex and time-consuming process. As a result, 
the housing-market can only slowly react to changes in demand (van der Vlist, et al., 2001). 
This slowness is even further increased by government regulations, subsidies and taxation, 
credit rationing, patterns of ownership, and so on. As a result, in a market with no vacancy and 
a high demand, a tiny increase in supply will dramatically increase the prices; as the number of 
vacancies increases, the likelihood of successful search increases. “In effect, initial increases 
in vacancy help to ‘unlock’ a ‘frozen’ market, and this generates faster sales and higher prices” 
(Wheaton, 1990, pp.1289). This is again in contrast with a market trading in homogenous goods, 
where an increase in supply implies a decrease in prices.
 The heterogeneity of the ‘product’, location fixity, the high costs of housing construction, 
the presence of local sub-markets, the impact of small groups of buyers and the slowness of the 
housing-supply, all make that the housing-market is imperfect and can never be in equilibrium. 
“This makes the task of discovering the value of housing much more difficult than in those 
markets where there are standard units or products such as stocks, shares, gold, cars and so on” 
(Alhashimi and Dwyer, 2004, pp.7).
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§ 2.3 Review of operational models

In his summary of integrated land-use transportation models, Timmermans (2003) 
distinguishes three generations of models: spatial interaction models, discrete choice models, 
and microsimulation models. We will adopt this categorization to structure our overview, and 
illustrate each generation with operational urban models ranging from integrated models, to 
models only addressing household location-choice. On the basis of this overview we will then 
support our conviction, put forward Chapter 1.3, that in order for a model to advance both 
planning practice and theory (being the two judgment criteria of Lee) this model should be a 
complex system model. Note finally that, as with any categorization, this classification is not 
absolute in that some models could be said to belong to more than one category.

§ 2.3.1 Historic overview

SPATIAL INTERACTION MODELS

Spatial interaction models (Wilson, 1971) interpret a region as a collection of zones exchanging 
goods and people, in order to then predict the size and the direction of the spatial flows of these 
goods and people on the basis of features of these zones. For example, the spatial pattern of 
journey-to-work flows might be predicted using structural variables such as the distribution of 
workers, the distribution of employment, and the costs of traveling to work (Torrens, 2000).
 In his summary, Timmermans (2003) reviews a number of spatial interaction model, such 
as, the Lowry-Garin model, PLUM, ITLUP, IRPUD, etc. We will here discuss the DRAM-
model.
 DRAM (an acronym of Disaggregated Residential Allocation Model), developed by 
Putman, was one of the most widely applied spatial interaction models in the US in the early 
1990’s. DRAM is one component in the Integrated Transportation and Land-Use Package 
(ITLUP). The central hypothesis behind DRAM is that the place of work determines the place 
of residence, and vice versa. A second assumption is that “the household’s propensity to travel 
is negative, that is, the greater the length (in distance, time, or costs) of a possible trip, the 
less likely the tripmaker is to make it” (Putman, 1983, pp.7). Both assumptions are not typical 
for DRAM alone, but return in most spatial-interaction-based models. Putman extended these 
assumptions with a third criterion, namely that households, when choosing a location to settle, 
not only consider employment and travel-length, but also the attractiveness of potential residence 
locations. In DRAM, this attractiveness is defined dependent on the size and the capacity of the 
location being considered. The model is disaggregated by type of household with income as a 
distinguishing factor. DRAM is mainly employed to perform policy simulations, predicting the 
impact of variations in regional growth-rate, region-wide transportation costs, and in specific 
links of the transportation system.
 Spatial interaction models are aggregate models predicting land and transport claims on 
the level of groups of households. Individual behavior is not modeled. Spatial interaction models 
can reproduce urban phenomena, but give no insight in the decision process generating these 
phenomena. Regarding the empirical findings listed in Chapter 2.2, what spatial-interaction-
based models do address is that residential location choice is not a stand-alone decision, but is 
typically considered jointly with work-related decisions. What these models don’t address is that 
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housing-markets are generally in a disequilibrium state. Spatial interaction models, in contrast, 
assume an equilibrium situation where supply and demand is continuously in balance.

DISCRETE CHOICE MODELS

Discrete choice models predict the choice of a decision-maker confronted with two or more 
discrete choice-alternatives, such as a household having to choose between a number of 
candidate houses to move to. In contrast with spatial interaction models, discrete choice models 
are disaggregated: the basic unit is the individual decision-maker and the discrete good, not the 
region or zone. Predicting choice is commonly undertaken using Logit Models (McFadden, 
1978). The point of origin is that individual consumers have individual tastes; that consumer-
goods, such as residences, are unique be it that differences are not always observable by the 
consumer; and that the number of choice-alternatives might be impractically large (McFadden, 
1978). Given these assumptions, a logit model (multinomial, nested or mixed) then predicts the 
likelihood that the individual consumer will choose a (randomly selected) choice-alternative 
based on the characteristics of the consumer and on the observed (and/or perceived) attributes 
of the choice-alternative.
 In his summary, Timmermans (2003) reviews a number of discrete choice models, 
such as, MEPLAN, TRANUS, MUSSA, METROSIM, UPLAN, etc. Recent examples, being 
developed in the Netherlands, are the Ruimtescanner (Koomen, 2002), PUMA (Ettema, de 
Jong, Timmermans and Bakema, 2005), and a model developed by Blijie and de Vries (2006). 
We will here discuss the UrbanSim model.
 UrbanSim, developed by Waddell, is a discrete choice model-system, “implemented as 
a set of interacting model components that represent the major actors and choices in the urban 
system, including household choices of residential location, business choices of employment 
location, and developer choices of locations and types of real estate developments, all subject to 
the influence of governmental transportation and land use policy scenarios” (Waddell, Borning, 
Noth, Freier, Becke and Ulfarsson, 2003, pp.1). In being a discrete choice model, UrbanSim 
models location choice on the level of the individual household and the discrete housing parcel 
(represented by cells of 150 by 150m2). UrbanSim is a dynamic model in that it models location 
choice in steps of one year. At the beginning of each year, the household-population ages: 
young households are added to the population and too-old ones are removed. Newcomers have 
to be allocated and the removed ones leave available land behind. Once the demographics are 
updated, the remaining households have to decide whether to move house. This is done by 
randomly sampling from a mobility-rate distribution, defined per type of household, and based 
on the US Census Current Population Survey. Both the new households and those that are 
selected to move have to be allocated, leaving available land behind (i.e. in case of relocation). 
Households are allocated sequentially: a household in need of a house is selected randomly 
and confronted with a number of alternatives for sale. This number is proportional to the 
total number of available houses on the housing-market and is randomly selected. The actual 
choice of a house from alternatives is predicted on the basis of a multinomial logit model. 
Incorporated attributes are a/o price of the house, age of the house, job accessibility, travel time 
to the CBD, and neighborhood land-use mix and density. Preferences regarding these attributes 
can vary among households and are assigned exogenously (Waddell, 2006). UrbanSim is fully 
operational and freely accessible as open-source software. The model has been applied in a 
number of cities across the US, such as Salt Lake City (Utah), Seattle (Washington), Eugene/
Springfield (Oregon), Honolulu (Hawaii), and Houston (Texas), and has been downloaded and 
applied in sites as diverse as Manila, Paris, Taipei, and Torino (Waddell and Borning, 2004). 
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Lately, UrbanSim has also been applied internationally, in cities such as Amsterdam and Tel 
Aviv (Ashbel, Biemans, Felsenstein and Kuijpers, 2005).
 Discrete choice models of residential location choice typically only explicitly model the 
final choice-making process; the simulation of all other decisions, such as the decision of whether 
or not to move, and the selection of choice-alternatives, is statistical in nature. Consequently 
households do not wake up or search, and as such do not behave strategically (though it would 
be technically possible to incorporate this). “The models do incorporate implicit behavior, the 
behavior of choice, but in every case, the models are concerned with the outcomes of choice, 
of the actual allocations rather than the trade-off aspects of leaving one location and choosing 
another” (Clark and Van Lierop, 1986, pp.105).
 UrbanSim is able to address a number of the empirical findings listed in Chapter 
2.2, for instance, that the assessment of a choice-alternative generally involves a variety of 
attributes, ranging over different geographical scales, and often varies among decision-makers. 
Furthermore, decision-makers in UrbanSim are assumed to be only aware of a fragment of what 
is available on the housing-market, as such potentially missing opportunities. Consequently, in 
contrast with spatial-interaction-based models, supply and demand do not balance, resulting in 
a disequilibrium situation, which we pointed out is mostly the case in reality.

MICROSIMULATION MODELS

“Microsimulation models aim at reproducing human behavior at the individual level, i.e. how 
individuals choose between options following their perceptions, preferences and habits subject 
to constraints, such as uncertainty, lack of information and limits in disposable time and money” 
(Moeckel, Schurmann and Wegener, 2002, pp.5). Based on this definition, UrbanSim could be 
categorized as a microsimulation model, indeed simulating the location-choice process on the 
level of individual households. Most authors, in fact, do refer to UrbanSim as a microsimulation 
model (e.g. Moeckel, Schurmann and Wegener, 2002), including the developers of UrbanSim 
themselves. Let us, in the context of this research, extend the above microsimulation definition 
with the requirement that individual behavior should be modeled as being intentional, and not 
just the result of random sampling from a distribution. Still, one could argue that discrete choice 
models, assuming behavior to be utility maximizing, approach behavior as being intentional. 
But, what we refer to here is that the overall choice behavior of the individuals should be 
intentional (i.e. also the selection of choice alternatives for instance). Waddell (2001) (being the 
developer of UrbanSim) makes, in this respect, a distinction between discrete choice models 
(Waddell in fact speaks of microeconomic random utility maximizing techniques) and rule-
based or heuristic simulation techniques. So, the models we will review here are in fact rule-
based microsimulation models. Within this category, a range of modeling techniques can be 
discerned. We will here illustrate three: Monte Carlo simulations, Cellular Automata and Multi-
Agent systems. In his summary, Timmermans (2003) reviews Ilute, Ramblas, Illumas and the 
Irvine simulation models.
 The starting-point of a Monte Carlo microsimulation is a database of micro units, with 
each unit representing one individual. Each individual is then sequentially exposed to the risk 
of experiencing an event. Whether or not an event occurs is determined by applying the Monte 
Carlo algorithm to calibrated probability density functions. A random number is drawn from a 
uniform distribution in the interval [0,1] and compared to the probability that a particular event 
occurs. If the random number is lower than the corresponding probability, the event occurs 
(Oskamp, 1997).
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 LocSim (an acronym of Location Simulation), developed by Oskamp (1994, 1997), is an 
example of a Monte Carlo microsimulation, with the aim “to simulate demographic development 
in interaction with housing market dynamics and to simulate the impact of policies in the reign 
of the housing market” (1997, pp.15). The LocSim micro units refer to households, and the 
LocSim events refer, for instance, to changes in the life-courses of these households, such 
as marriage, divorce, birth, death, nest leaving, etc. Changes are not limited to households 
only, but also incorporate changes related to the housing-market, such as housing demolition, 
renovation, or development. Each household experiencing a change in its life-course wakes up 
(i.e. considers moving). Once woken up, it will first define an intensity at which it will search 
for houses for sale. This intensity depends on the event that triggers the household to wake 
up. Houses for sale are offered to the household: the larger this offer, the higher the search-
intensity of the household. Once the intensity is defined, the household will determine an 
acceptance interval, ranging from houses only slightly improving the current housing-situation, 
to ideal houses. This interval depends on the socio-economic features of the household. On 
the basis of this acceptance interval, the household will define an acceptance-rate, specifying 
the probability at which to accept an offered dwelling. This rate is estimated separately for 
each housing-attribute, and is based on data from the Dutch Housing Need Survey. In case an 
offer is accepted, the household moves; in case the offer is rejected, the household will adjust 
its acceptance rate so that the acceptance probability increases. The actual decision to accept 
or reject an offered dwelling, finally, is modeled using a probabilistic heuristic search model, 
relying on the Decision Plan Net approach.
 LocSim is developed to provide policy makers with a tool to assess housing policies. 
The assumption underlying LocSim is that households move to facilitate and to adjust to the 
occurrence of demographic events. As housing policies are generally directed at more than 
one household, and at more than one situation, these policies often generate unforeseen (side) 
effects. The detailed information on the demographic and moving behavior of households, as 
provided by LocSim, might help policy-makers to anticipate these effects.
 LocSim explicitly models the location choice behavior of individuals over a period of 
time, and incorporates a considerate number of the empirical findings summarized in Chapter 
2.2. The three-stage process, for instance, is taken as point of departure: 1) households wake up 
when their life-course changes, 2) search is random (the household only defines the intensity 
of the search), and 3) choice is deterministic (the acceptance rate and interval are determined 
by the search-intensity, which in turn is determined by the change in life-course). In letting the 
households increase their acceptance-probability with each rejected offer, the idea of preference 
substitution is incorporated: initially, search is limited to the ideal house only, gradually growing 
less demanding over time. The concept of the housing-ladder is captured in the definition of 
the acceptance interval, in that households with similar characteristics not only have similar 
preferences but also make similar preference substitutions. Apart from the housing-ladder, 
LocSim also incorporates a number of externalities such as market competition and housing 
allocation rules, so that the housing-market is never in a state of equilibrium.

The City-series, developed by Portugali (2000), is an example of Cellular Automata (CA). “CA 
are objects associated with areal units or cells. CA follow simple stimulus-response rules to 
change or not to change their state based on the state of adjacent or near-by cells. By adding 
random noise to the rules surprisingly complex patterns that closely resemble real cities can be 
generated” (Wegener, 2001, pp.231). Each City-model is constructed as a two-layered CA; the 
first layer represents the built environment with each cell representing a housing-parcel with 
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a certain value, and the second layer represents the population with each cell representing a 
household with a certain income and socio-cultural status. The future value of a house depends 
on the current value of both layers, i.e. on the current value of the house, the values of the 
surrounding houses, the average market values, but also on the current status of the owner 
and the neighboring owners. The same goes for the future status of the household. The main 
assumption behind the City-models is that households try to increase, or at least maintain, their 
status. For this reason, each household continuously evaluates all houses for sale in the city so 
that, as the value (both economically and socially) of the current neighborhood decreases, it 
can move, hereby –indirectly- reinforcing the devaluation of the current neighborhood. If better 
houses do not exist, the household simply leaves the city, making room for new immigrants.
 With his City-models, Portugali intended to illustrate the concept of emergence, i.e. the 
emergence of socio-economic clusters and highly segregated neighborhoods. In contrast to 
LocSim, the three stage process is not explicitly referred to, but can be reconstructed: 1) a 
household wakes up with a probability that increases as the value of its house decreases; 2) a 
household searches systematically scanning the whole housing-market, and 3) the probability 
of choosing a particular house increases with the value of that house. In relation to residential 
mobility, the City-model illustrates the emergence of (segregated) sub-markets, as such 
incorporating one type of externalities; how the choices of single households can influence the 
choices of other households.

Ilute (an acronym of Integrated Land Use, Transportation, Environment), developed by Miller 
and Salvini (2004, 2005), is an example of an Agent Based Model. In the context of simulating 
location choice, agents are typically referred to as decision-makers making up an artificial society. 
“Each agent has internal states and behavioral rules. Some states are fixed for the agents’ life, 
while others change through the interaction with other agents or with the external environment” 
(Epstein and Axtell, 1996, pp.4). Ilute proposes an activity based approach “integrating relatively 
short-run activity/travel behavior of households with their longer-run residential location and 
auto ownership choices” (Miller, 2005, pp.175). Each activity is approached as a project, defined 
as a collection of actions. (Spatial) decision-making then becomes a question of managing these 
projects, constrained by resources, (limited) knowledge, time, and the availability of necessary 
goods. Actions are generally not isolated events, and as such require collaborating with other 
agents. Agents act or plan projects when they are in a situation of stress: “Stress arises when 
one’s current state deviates from some alternative desired/expected/optimal state. The larger 
this deviation, it is hypothesized, the more likely one is to act in some way that attempts to 
reduce the stress; i.e., to attempt to move one’s state closer to the alternative ‘target’ state” 
(Miller, 2005, pp.187). Ilute is developed to explore what-if scenarios concerning alternative 
policy options including, for instance, land zoning regulations, property tax regimes, major 
infrastructure investments, pricing policies.
 Ilute makes highly complicated and comprehensive assumptions regarding the (spatial) 
behavior of households, potentially addressing most empirical findings of Chapter 2.2. To 
date however, the model remains, to our knowledge, mainly conceptual so that one can only 
speculate as to how such concepts as searching, negotiating, learning and interacting might be 
implemented in an operational framework.
 The anthropomorphic character of multi agent systems make this technique very suited 
for modeling individual location choice behavior. Recently a large number of agent based 
models addressing urban phenomena are being developed: sprawlSim (Torrens, 2001), Obeus 
(Benenson and Harbas, 2004), Abloom (Otter, 2000), an urban dynamics model by Arentze and 
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Timmermans (2003), Diappi’s gentrification model (Diappi and Bolchi, 2006), MABEL (Lei, 
Pijanowski, Alexandridis and Olson, 2005), SYPRIA (Manson, 2005), etc. Multi agent models 
typically make behavioral assumptions that are difficult to calibrate and validate. To date, most 
agent-based models (as well as cellular automata models) therefore claim to only illustrate 
theoretical principles (Timmermans, 2003) and are mainly applied in pedagogic settings (Batty, 
2005). The focus is on experimenting, rather than developing realistic models. Ilute is an 
exception to this, in that the ambition is to clearly develop an operational simulation system for 
planning support (Miller and Salvini, 2005).

§ 2.3.2 Why a complex system model?

In Chapter 1.3, we adopted the definition of a complex system as a as a system able to take 
on a large number of states, with each state being the result of a large number of elements or 
objects, temporarily being in one out of many conditions. On the basis of this definition, any 
model representing reality as being composed of elements, could, in principle, be referred to 
as a complex system model. In order to differentiate between models though, we propose to 
introduce a ranking based on the number of considered elements, and the number of considered 
element-conditions. Spatial interaction models would then be situated somewhere among the 
least ‘elaborate’ complex system models, and microsimulation models somewhere among the 
most elaborate ones, generally speaking that is. But where to position a model like UrbanSim, 
which is very extensive in scale (i.e. considering a large number of system elements), but is 
rather simple in regard to behavioral assumptions (i.e. considering a small number of element-
conditions)? Is UrbanSim ranked lower than, for instance, LocSim, which is much more 
modest in scale, but which incorporates behavioral concepts such as preference-substitution 
and adaptive search behavior. In other words, in our search for a complex system model, which 
of the reviewed modeling techniques should we adopt?
 Recall, in this respect, our purpose of developing a complex system model: to provide 
decision-makers involved in planning, with an experimentation tool with which he/she can 
explore alternative planning interventions and conceptions. We are convinced that the more 
sensitive such a tool is to capturing real-world phenomena, the better it will meet our purpose. 
So, translated to our ranking: not only the number of elements, and element-conditions plays a 
role, but also the number of generated (macro) regularities or phenomena. As can be concluded 
from our overview, agent-based models best suffice this requirement. According to Parker, et 
al. (2003), “multi agent models are likely to be a useful tool for theoretical exploration and 
development of hypotheses when complex phenomena have an important influence on model 
outcomes. MAS models may be particularly appropriate when important interdependencies 
between agents and their environment are present, when heterogeneity of agents and/or their 
environment critically impact model outcomes, when upward and downward linkages among 
hierarchical structures of organization exist, and when adaptive behaviors at the individual or 
system level are relevant for the system under study” (pp.324). On the basis of this, we would 
even dare to argue that, from the techniques we reviewed, agent-based models are the only 
modeling technique that can generate truly complex system models. We will defend this thesis 
evaluating all reviewed models (i.e. DRAM by Putman, UrbanSim by Waddell, et al., LocSim 
by Oskamp, the City-models by Portugali, and Ilute by Miller, et al.) on the basis of the model 
components as identified by Clarke (2003): input, algorithms, assumptions, and output. For 
reasons of clarity we will, in the remainder of this Chapter, refer to agent-based models (with 
Ilute as our example) as complex system models, and to all other models as simple models. Well 
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aware of the fact that the evaluation is incomplete, and perhaps even close to being a caricature, 
we dare to claim that it supports our plea for developing complex system models.

INPUT

Models, by definition, simplify reality, for instance, by only considering a limited number of 
variables, by aggregating information, by building in constraints (e.g. related to behavior), etc. 
A model can be called a simple model when these limitations, aggregations and constraints 
are so severe, that the modeled world no longer represents the actual world. In DRAM, for 
instance, the attractiveness of a zone is defined dependent on only two variables: the size and the 
development-capacity of the zone. Furthermore is land aggregated in zones, and are households 
aggregated according to income. UrbanSim redraws study-areas as grids of cells of 150 by 
150 meters. The City-models reduce households to only three characteristics: a cultural group 
affiliation, an economic status and a potential to improve his status. And so on.
 According to Couclelis (2005), such models “fail to abide by the principle of requisite 
variety (…): the complexity of the control system cannot be lower than of the system being 
controlled” (pp.1358). Complex system models evidently also simplify, but they differ from the 
above models in that their ambition clearly is to incorporate a maximum number of behavioral 
concepts, in order to respect as many real-world relations and processes as possible. It is 
therefore more correct to speak -in case of complex system models- of abstractions rather than 
of simplifications.
 According to Oskamp and Hooimeijer variable-richness may also be required for policy 
evaluation. “It might make the model less reliable as a forecasting tool, but will increase the 
value of the model as a basis for sensitivity analysis” (1999, pp.243).

ALGORITHMS

Algorithms set down how households make location-choice decisions. In the DRAM-model, 
location-choice is defined dependent on the distance to the nearest work location, and on the 
attraction value of candidate zones. In UrbanSim, locations are allocated to the household on 
the basis of the utility these households will derive from these locations. In LocSim, location-
choice and preference substitution is defined dependent on the characteristics of the households. 
In the City-models the future land-use of a cell is defined dependent on the current land-use of 
the neighboring cells and on the characteristics of the inhabitants of these cells.
 In all these models, location-choice behavior is one-dimensional in the sense that it is 
only defined dependent on (a limited number of) household and environment characteristics. 
Moreover, this dependency is considered stable over time. As a consequence, the outcome of 
these models in fact becomes predictable. The introduction of an error-term, in case of discrete 
choice models, might introduce some stochastic behavior, but considering that this error-term 
is generally drawn from a known (and mostly regular) distribution, the overall model outcome 
(i.e. the behavior at the level of the modeled population) nevertheless remains predictable. 
Important to note here is that models like, for instance, the City-models of Portugali are explicitly 
developed to reproduce a limited set of urban phenomena (i.e. segregation), and for that reason 
generate a predictable outcome by intention. Whether or not these outcomes correspond to real 
phenomena, they are typically too abstract to assess actual planning interventions.
 As argued, complex system models aim at developing algorithms that capture a maximum 
number of behavioral concepts, for instance in the context of residential mobility: anticipative 
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behavior, joint-decision-making, two-way negotiating, information-search, strategic choice, 
trading off, learning, etc. Though simulated behavior on the level of an individual agent, in 
principle, is predictable (i.e. rule-based), behavior on the level of the whole modeled population is 
so complex, that, once the model is operational, the overall outcome de facto is unpredictable.
 One could argue, that because one can predict the outcome of simple models, these models 
are in fact representation tools, rather than instruments of experimentation. One could even go 
a step further and argue that, since one can predict the behavior of the modeled population, the 
danger exists that these models are employed to convey someone of a particular proposal, rather 
than to actually assess the proposal.

ASSUMPTIONS

Defining assumptions and constraints regarding a modeled world presupposes a conception 
of the actual world, whether explicitly referred to or not. Juval Portugali (2000), for instance, 
sketches in his book ‘Self-organization and the city’, a condensed history of –what he refers 
to as- prototype urbanisms, metaphors that capture how cities were conceived during the last 
century. He starts with Ecocities, over Sir Isaac Newton’s cities, via a/o Monstrocities, the 
Megalopolis, to end with his own Hypermodern Self-Organizing City.
 DRAM could be argued to be an Ecocity, according to Portugali “a view of the city in 
terms of location theory with its economic principles” (pp.17). Regarding the other reviewed 
models, their conceptions relate more to spatial behavior than to the spatial system: individuals 
in UrbanSim, for instance, are conceived as being unboundedly rational, and as price-takers. 
A behavioral conception, that -as has been repeatedly pointed out (e.g. March, 1994)- is a far 
cry from actual behavior. One could argue, therefore, that simple models in fact rather model a 
conception of reality (i.e. the world according to the modeler), than reality itself. Considering 
again that complex system models aim at incorporating a maximum number of behavioral 
concepts, their conception will, at least intentionally, lie much closer to reality.

OUTPUT

DRAM and LocSim generate graphs and tables. UrbanSim and the City-models also generate 
grid-based maps. A grid-based map is a homogeneous map in that each cell is as important as 
any other cell. This lack of hierarchy lends these maps an aura of objectivity. Considering all 
previous arguments, it is fair to say that all models, by definition, generate subjective outcome. 
In order for a model to function as an experimentation tool, it could only benefit from rendering 
this subjectivity explicit. Complex system models pursue this by rendering the output interactive 
and hybrid. The starting-point is information, detailed up to the level of the individual parcel. 
This information is then dynamically updated, displaying for instance: movement patterns, 
activity-intensities, etc. Generated information is interactive in the sense that one can change 
settings during the simulation: settings related to modeled behavior (e.g. sensitivity testing), but 
also settings related to the output itself (e.g. locally adjusting the level of detail). The results are 
hybrid in that parts can be detailed while others remain abstract, in that some behavior is more 
realistic than other, etc. Both the interactivity and the hybrid character lend the output an aura of 
subjectivity, preventing the model from being employed as a validation instrument, but rather 
as an instrument to stimulate experimenting.
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 Planners advocating simple models stress the role of these models as communication tools. 
But, in pretending that models are objective prediction instruments (in fact only advocating the 
viewpoint of the planner), they reduce this communication to a one-way process, informing 
rather than interacting with the decision-maker. Complex system models on the other hand, 
allow for a variety of interpretations, potentially stimulating debate.

Concluding, in principle all the models we reviewed could be referred to as complex system 
models, in that they all conceive of reality as a collection of interacting elements. But, in order 
for a model to be a true complex system model, we argued that this model should be able to 
generate real-world phenomena that are not pre-defined into the model. This requires simulating 
behavior on the level of individual agents incorporating behavioral concepts such as: anticipative 
behavior, learning, strategic choice, trading off, negotiating, etc. It goes without saying that 
complex system models also have to face Occam’s Razor in that “a better model is one which 
can explain the same phenomena with a lesser number of intellectual constructs” (Batty and 
Torrens, 2005, pp.749). This requires, among others, that the assumptions underlying the model 
should be made explicit and integrated in a transparent framework.
 As a final remark, as well as there is a limit to the degree of simplicity, there is evidently 
a limit to the degree of complexity beyond which the cost of adding extra detail is no longer 
earned back in additional model functionality.
 

Review of operational models



26 IN SEARCH OF A COMPLEX SYSTEM MODEL

§ 2.4 Conclusions and discussion

Our review of empirical research on household location-choice supports our thesis that location-
choice is partly governed by regularities (e.g. changes in the life-course of a household trigger 
this household to reconsider its current housing-situation), but at the same time also confirms 
our assumption that the actual choice is heavily idiosyncratic.
 Our review of operational urban models addressing household location-choice indicates 
that there is a simplicity threshold below which a model is no longer relevant as a planning 
decision support tool. We argue that in order to pass this threshold, and as such develop a 
complex system model, the aim should be to incorporate a maximum number of behavioral 
concepts related to individual spatial behavior.
 Behavior is both the result of deliberate actions and of chance. Relying on the empirical 
findings, households act deliberately in that they continuously reconsider their current housing 
situation, select the choice-alternative they consider best, anticipate changes in their life-
course, imitate their peers, etc. At the same time, they are subject to chance because they might 
accidentally encounter an ideal house without even having considered moving, because the 
evaluation of choice-alternatives is never totally rational, because changes in their life-course 
might be unexpected, etc. The challenge is to incorporate these deterministic and stochastic 
relations into one consistent framework; an urban model that is at the same time complex and 
transparent. An attempt of such a model is introduced and implemented in Chapters 3 and 4.

Note finally, that the scope is not to conduct empirical research on the phenomena related to 
household location-choice, but rather to simulate the behavior generating these phenomena by 
developing a –theoretical- urban model, swarmCity. We rely on the existing body of empirical 
findings to validate this model.
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part II: fraMeWOrK anD IMpLeMentatIOn

§ 3 Conceptual framework – towards a complex system

§ 3.1 Introduction

This Chapter introduces and frames the (behavioral) concepts we consider relevant in modeling 
the location-choice behavior of households buying and selling houses. Being a framework, it 
evidently relies on abstractions and, as such embodies the assumptions-component as introduced 
by Clarke (2003). In Chapter 4, this framework will be implemented, and in Chapters 5 and 6, 
it will be applied to a test case.
 The subtitle ‘towards a complex system’ not only refers to the general scope of developing a 
complex system model, but also to how we will develop and implement the model; incrementally 
increasing the complexity of both the household-behavior and the housing-market-features, 
starting with the simple scenario of unboundedly rational individuals residing in a stationary 
housing-market, and ending with pro-active boundedly rational individuals residing in a 
non-stationary interactive housing-market. In total, five of these so-called ‘scenarios’ will be 
developed. This incremental approach is adopted in all Chapters, returning in figures, graphs, 
equations and tables. Initially all start simple; to grow more complex as more concepts are 
introduced.
 With this approach, we not only strive for transparency and readability, introducing new 
concepts step by step, but also for a first validation, in that we begin with a simple scenario 
with a maximum number of constraints, but a minimum number of potential interferences, and 
gradually add more complexity (and thus uncertainty). With each step, not only the input of the 
model but also the phenomena emerging out of the model, come closer to reality. Interesting in 
this regard are the suggestions of Batty and Torrens (2005) regarding how to validate complex 
system models. Classical calibration, they argue, is not possible either in principle and/or for 
lack of data. They reason nevertheless that for a model to have any value, it should at least 
partly be able to “replicate reality unambiguously”, leading them to formulate the ‘tentative 
suggestion’ of mixing calibration with exploration. They continue, stating that “any model 
should be paralleled with extensive debate, with the construction of alternative models and 
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with alternative conceptions of data and observations” (pp.761). Our incremental approach can 
be interpreted as an attempt to address, at least some, of these suggestions. We will return to the 
issue of validation in Chapter 7.
 Our conceptual framework departs from two basic assumptions: (1) location-choice 
decisions are made jointly by all household-members (2) on the basis of utility-evaluations. The 
reasoning behind the first assumption is that the decision to change residence is such a far-reaching 
decision that all members of the household have to coordinate their individual preferences, 
needs and idiosyncrasies to arrive at a joint choice. Modeling (multi-person) decision-making 
requires a standard against which the decision-maker can weigh choice-options. This standard 
is utility, sometimes expressed in terms of money. A person using an object or performing an 
activity derives an amount of utility from that object or activity. The more suited this object 
or activity is to the demands of the user, the higher that amount. Utility thus depends on the 
preferences and needs of the user and should be defined at the individual level. In extreme 
cases, individuals’ preferences for certain objects or activities may be perfectly identical, but 
this is an exception rather than a rule. Men and women, for example, play different roles in 
the decision-making process (Levy and Lee, 2004), and use different criteria when choosing a 
house (Oskamp and Hooimeijer, 1999). To reconcile any diverging utilities, households tend 
to apply various mechanisms at the various stages of the decision-making process (Molin, 
1999). In the case of purchasing a house, for example, each household-member could specify 
a set of minimum requirements. The search for houses would then focus on those houses that 
meet all these individual requirements (Gupta, 1989). Alternatively, as suggested by Zhang, 
Timmermans and Borgers (2005), a household utility function could be specified as the sum of 
individual members’ utilities, weighted according to the relative influence and relative interest 
of each member. Household decision-making may also involve some kind of turn taking: one 
member may decide on one purchase, another member on another purchase.
 Each of the following sub-chapters introduces one of the five scenarios: Chapter 3.2 deals 
with unboundedly rational individuals in a stationary housing-market; Chapter 3.3 deals with 
unboundedly rational individuals in a non-stationary housing-market; Chapter 3.4 deals with 
boundedly rational individuals in a non-stationary housing-market; Chapter 3.5 deals with pro-
active boundedly rational individuals in a non-stationary housing-market; and Chapter 3.6, 
finally, deals with pro-active boundedly rational individuals in a non-stationary interactive 
housing-market.

§ 3.2 Unboundedly rational individuals / stationary housing-market

Consider as the first, and most simple, scenario, the situation where households behave 
unboundedly rational and the housing-market is stationary. According to Herbert Simon (1955, 
pp.99), an unboundedly rational individual “is assumed to have knowledge of the relevant 
aspects of his environment which, if not absolutely complete, is at least impressively clear and 
voluminous. He is assumed also to have a well-organized and stable system of preferences, and 
a skill in computation that enables him to calculate for the alternative courses of action that 
are available to him, which of these will permit him to reach the highest attainable point on his 
preference scale”.
 With a stationary housing-market we mean a housing-market that does not change; for 
each house that gets sold, an identical one is generated and set for sale again, for the same 
price.
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 Housing-market developments are the result of interactions between households and real-
estate firms, often representing other households, wishing to sell their house. As mentioned, 
households may consist of multiple household-members, each represented by one agent. A 
real-estate firm is represented by a single agent, personifying the firm. All these agents are 
represented in Figure 3.1.

Figure 3.1: The different swarmCity agents that take part in the model: an individual (i.e. a household-
member), a household and a real-estate firm

Except for job-related moves, households typically move house within a limited geographical 
area. This area is referred to as a housing-market (Dieleman, 2001). In our model, a housing-
market consists of neighborhoods, and parcels (see Figure 3.2). A parcel can contain a building, 
in itself composed of one or more housing-units (further simply referred to as houses). The 
housing-market contains both publicly and privately owned housing, each with their specific 
market clearance process. In this research, we will focus on the private segment only.

Figure 3.2: Composition of the housing-market: the housing-market as a whole, a neighborhood, a 
parcel and a house

Each individual, or agent, has a set of characteristics, such as age, gender, education level, 
profession, etc. Similarly, every household has a set of characteristics, such as household size, 
household composition, available budget, number of cars, etc. These individual and household 
characteristics, together with goals, determine the agents’ needs and preferences for housing. 
Fransson and Mäkilä (1994) argue that preferences in fact represent desires, “overlooking 
restrictions and possibilities on the part of both household and housing-market. As such, these 
preferences need not be immediately realizable” (pp.266). Agents entertain a certain lifestyle, 
reflected in the way they allocate their available budget to maintenance, discretionary activities 
(e.g. vacations), durable goods (e.g. cars) and housing. Note that, in the context of this research, 
the concept of lifestyle should not be confused with the current trend within a/o retailing to 
categorize people into archetypes based on their behavior as consumers; such as landed gentry, 
elite suburbs, urban midscale, etc. (Claritas (1994) in Lang, Hughes and Danielsen, 1997). 
Lifestyle should rather be interpreted literally as a style of living regardless of any preconceived 
categorization.

Unboundedly rational individuals / stationary housing-market
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 Given a set of alternative lifestyles, agents are assumed to choose the lifestyle that 
will provide them the maximum utility given their budget, market imperfections and other 
constraints. Making decisions, agents thus trade-off the utility derived from their house, the 
utility derived from conducting activities, and the utility derived from other major expenditures 
and purchases (boat, electronics, vacations, etc). This trading off typically varies, as the agent 
grows older: at one stage prioritizing housing, at another going on vacation. Note finally, that in 
deploying the concept of lifestyle, utility is no longer solely expressed in terms of money.
 The utility an agent derives from living in a particular house, located in a particular 
neighborhood, is a function of the attributes of this house and this neighborhood, but also of 
the attributes of the social environment and of the relative location (work, friends, shops, nodes 
in transport network, etc.). We assume for the purpose of this research, that agents assess all 
these attributes at once, meaning that they do not make hierarchical choices, for instance, first 
deciding upon a neighborhood, to then only decide upon a house within this neighborhood 
(Waddell, 2001). Some of these factors contributing to utility are (relatively) constant, while 
others change either gradually (aging processes), or instantly (e.g. a new neighbor). Similarly, 
some of the agent’s characteristics change, either gradually, or instantly (e.g. an illness). 
Consequently, we assume that agents have a constantly changing latent demand for alternative 
housing, which becomes more apparent when the discrepancy between needs and preferences 
and current housing situation becomes more dramatic. 
 Since agents, in this scenario, are unboundedly rational and the housing-market does not 
change, agents are, at all time, fully aware of all houses for sale on the housing-market and, as 
such, do not search. Given these assumptions, the three-stage decision-process –awakening, 
search and choice- described by a/o Dieleman (2001) is reduced to awakening and choice: 
certain events will trigger a process where first an agent becomes more fully aware of his/
her sub-optimal housing situation, which may result in moving to a different house, possibly 
located in a different neighborhood, even in a different housing-market.
 In principle, triggering events may pertain to every factor, contributing to the lifestyle-
utility of the agent, including changes in individual and household characteristics. In addition, 
exposure to word-of-mouth, promotion and advertising, and the behavior of other agents in the 
social network or the neighborhood may trigger moving-behavior or lead agents to copy the 
behaviors of their social peers or neighbors. A household might, for example, find out that a large 
garden demands too much attention after all; so that it adjusts its preferences, or a television 
series taking place in a particular region might make such an impression on a household that 
it decides to move to this region, even though there are no other significant triggers. When the 
mental process of re-evaluating the current situation is triggered, agents can, in the current 
scenario, choose between a series of actions such as moving to another house, renovating his 
current house, letting out rooms, investing in a second house, doing nothing, etc. (see Figure 
3.3) Regarding moving, Dieleman (2001) makes a distinction between emigrating to another 
housing-market and moving within the current market. The latter, he refers to as residential 
mobility.
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Figure 3.3: Actions a household can undertake: (a) moving, (b) renovating, (c) renting out rooms, (d) 
investing and (e) doing nothing

Emigrating can be modeled as job-related moves outside the housing-market area, or 
alternatively, as an extreme response in case the household repeatedly experiences failure in 
finding the house of interest in the local housing-market. Renovating can be implemented as 
a series of pre-defined scenarios, such as extending the house with an extra room, upgrading 
the exterior, building a garage, etc., reflecting the type of events that triggered the process. The 
same counts for letting out rooms. Investing can be implemented identically to moving, be it 
that the household does not sell its current house. All the above actions are strongly influenced 
by spatial effects, copying behavior or the joint decision of multiple agents (neighbors) to share 
costs. An agent will evaluate each of these actions, trading off increased lifestyle-utility against 
involved costs and efforts. In this research we only consider residential mobility: an agent can 
thus either move (within the current housing-market) or stay. Attempts to incorporate some of 
the other actions and develop a more comprehensive model are made by, among others, Clark 
and Withers (1999); Nijkamp, Van Ommeren and Rietveld (1999); Waddell (2001); Holm, 
Holme, Mäkilä, Mattsson-Kauppi and Mörtvik (2002); Tiglao (2005); etc.
 Note that in a stationary housing-market, households do not interact with this market: 
whenever a household purchases a house, the old house simply disappears from the market, 
and as such has no impact on the housing-supply, and thus on the location choice of other 
households.

§ 3.3 Unboundedly rational individuals / non-stationary housing-market

Consider now the scenario where agents are still ‘economic men’ (Simon, 1955) but where 
the housing-market is no longer stationary. In contrast with the previous scenario, houses that 
are sold are no longer replaced by identical copies, but disappear (temporary) from the market 
only to reappear the moment the new owner decides to sell them again. The result is a market 
growing and shrinking in an unregulated fashion depending on the rate at which individual 
households sell and purchase houses. This process can be accelerated or slowed down by 
providing new housing stock, demolishing existing patrimony, or imposing housing-regulations. 
The assumption however is that this ‘correction’ does not take place in such a dramatic fashion 
as is the case in a stationary housing-market.

(a) (d)

(e)(b)

(c)

Unboundedly rational individuals / non-stationary housing-market
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 In a non-stationary market, households thus sell their house when purchasing a new one 
(except in the case of an investment). The assumption in this research is that the purchase of a 
new house does not depend on the success of selling the current house.
 Given that in a non-stationary housing-market the housing-supply always changes, and 
that all agents are aware of this, the mental process of re-evaluating the current situation is 
triggered each time-step and not, as in the previous scenario, only in case of an event influencing 
the lifestyle of the agent.
 Another implication of releasing control on the housing-market is that an agent is no 
longer certain as to whether he/she will be able to purchase a house improving his/her current 
sub-optimal housing-condition, given that each time-step new opportunities might, or might as 
well not, come about. So even though the agent is unboundedly rational, implying that he/she 
has full information on the current situation of the market, he/she remains uncertain regarding 
future situations.

§ 3.4 Boundedly rational individuals / non-stationary housing-market

In search of a behavioral theory of decision-making Simon (1955) proposes to “substitute 
for economic man a choosing organism of limited knowledge and ability” (pp.114). Such an 
individual is uncertain, on the one hand, because he/she does not know all future consequences 
of present activities and, on the other hand, because he/she only has access to limited amounts 
of information. On top of this, the individual is cognitively constrained in that he/she can –and 
is often only willing- to assess limited amounts of information at a time. Such an individual is 
boundedly rational because he/she intends to behave rational, but is constrained by these limited 
cognitive capabilities and this incomplete information (March, 1994). Because decisions are 
made under uncertainty, utility (U) is expressed as expected utility (EU).
 Apart from substituting economic man, Simon also proposes to substitute maximizing 
choice behavior for satisficing choice behavior. An individual behaving as a maximizer will 
first evaluate all available choice-alternatives to then withhold that alternative that maximizes 
his/her utility. An individual behaving as a satisficer, on the other hand, will first define a utility-
threshold to then sequentially evaluate choice-alternatives, withholding the first alternative with 
a utility exceeding this threshold. We assume that households, considering to move house, 
behave partly maximizing and partly satisficing: a household will typically define a set of knock-
out criteria that a candidate house has to meet, but will generally not purchase the first house 
satsificing these criteria nor will it visit and asses all houses meeting these criteria. Defining 
knockout criteria can be considered as a heuristic that the agent uses to reduce his/her choice-
set, turning the search process from a random selection into a deliberate and well-considered 
action (Clark and Flowerdew, 1982). Wood and Maclennan (1982) point at two housing-market 
features supporting the use of such a heuristic. “Firstly, housing represents a major consumption 
and investment for most households. Secondly, financial barriers (such as search and transaction 
costs) make recontracting and movement expensive” (pp.56). Once the reduced choice-set is 
generated, the household will again behave as a maximizer. In economic literature, the first 
–maximizing- process is generally referred to as Fixed Sample Size searching and the second 
–satisficing- process as Sequential Search (Baryla, et al., 2000; Waddell, 2001). Fixed Sample 
Size searching is fast but costly, whereas Sequential Search is slow but flexible. A more realistic 
way of searching lies somewhere in between these two approaches, allowing individuals to 
sequentially evaluate a number of choice alternatives (instead of all or just one) before having 
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to make a decision (Morgan and Manning, 1985). The above knock-out-heuristic captures such 
a hybrid approach.
 In our model, bounded rationality is implemented by publishing houses-for-sale in 
information-sources and allowing households to only consult one source per time-period, rather 
than the market as a whole. Conceptually, information-sources represent newspapers, social 
networks, real-estate firms, websites, etc. Each information-source has a set of characteristics 
such as number of published houses, composition, quality of information, credibility of 
information, etc. and is related to a geographical area, a particular culture, etc. In our model, an 
information-source is managed by, or is ultimately directed at a real-estate firm.
 Boundedly rational agents do not only have access to just a fragment of the housing-
market in the form of information-sources, they also do not know the content of this source 
before consulting it. On top of this, once consulted, sources only provide partial information. 
Published ads typically tell nothing about, for instance, the insulation value of the house, 
the amount of natural light, the state of technical installations, etc. When making location-
choice-decisions agents thus have to rely on partial and sometimes even imperfect information. 
Depending on the degree of bounded rationality, agents will tend to reduce this uncertainty by 
actively searching for information. Searching is implemented as a two-stage process where the 
individual first selects and consults an information-source, collecting a series of potentially 
interesting choice alternatives to then visit some of these alternatives for inspection gaining 
full information. The assumption is that a household will only decide to purchase a house once 
it has complete information on this house. In addition to active information search, agents are 
passively exposed to information.
 Until the household visits the house for inspection, it will thus have to rely on beliefs, 
first regarding the content of the available information-sources (i.e. the existence of choice 
alternatives) and secondly regarding the values of the unknown attributes of houses advertised 
in these sources. In the presented model, we assume that, in order to cope with information 
and cognitive constraints, agents have a mental classification of the relevant attributes of the 
housing-market and attach to each discrete category some subjective probability (March, 1994). 
Beliefs are defined, for example, with respect to the probability of finding a particular kind of 
housing-typology in a specific information-source. Belief-classifications differ from agent to 
agent: depending on the knowledge or the preference structure of the agent, he/she will, for 
example, adopt a more detailed classification for those attributes he/she considers relevant and 
is aware of.
 The distribution of these subjective probabilities or beliefs captures the degree of 
uncertainty that is involved. Maximum uncertainty occurs in the situation that the probabilities 
are uniformly distributed, whereas certainty occurs in the situation that the probability of a single 
specific category is equal to either one or zero. Each time an agent collects new information, 
he/she will update his/her beliefs, tuning them to the current state of the housing-market, as 
observed by this agent.

Boundedly rational individuals / non-stationary housing-market
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Figure 3.4: Basic decision process

The conceptualized process is summarized in Figure 3.4. It distinguishes between evaluating 
which action to pursue based on beliefs (step 1), executing the action collecting information 
(step 2) and evaluating the information, updating the beliefs (step 3). Depending on the type of 
action, the agent will also update his/her demands, needs and resources.

In this scenario, moving is thus implemented as a two-stage process where the household-
agent first searches in information-sources collecting potentially interesting houses for sale, 
to then, in a second stage, visit these houses for inspection, gaining full information. Contrary 
to the previous two scenarios, this process of searching and visiting rarely is a linear process, 
in that the individual first evaluates all houses for sale, gaining full information, to then visit 
the best one. It can be better described as a co-evolutionary, partly recursive process in which 
agents explore only fragments of the housing-market and collect information to various degrees 
of detail, thereby simultaneously updating their beliefs about market potential, housing-type 
availability, market prices etc., in this way reducing uncertainty, each time-step deciding 
whether to continue searching, to visit for inspection or to do nothing. The degree to which this 
uncertainty is reduced depends on the pace at which the housing-supply changes. If this pace is 
too high, then the agent does not get the time to cognitively process these changes. If the supply 
is large enough though, one might assume that the overall composition, being the level at which 
the beliefs are generally defined, remains the same. The dynamic discrepancies between needs 
and preferences and actual situation, involving some sense of urgency, idiosyncratic differences 
with respect to mental effort, and decision styles with respect to risky decisions, will influence 
the duration of the process.

§ 3.5 Pro-active boundedly rational individuals / non-stationary housing-market

Existing models of residential choice behavior typically assume that housing utilities are a 
function of a set of attributes that can be observed when the choice is made. Implicitly, these 
attributes are assumed to be time-invariant. Indeed, residential and housing choices can be 
based on the utility that agents derive instantaneously from their house. However, over time 
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both the household, the house and the environment will change. In this scenario, we assume 
that agents will, at least to some extent, try to anticipate events influencing their future lifestyle. 
An anticipating agent no longer behaves reactively, only addressing current triggers, but also 
proactively, addressing possible future triggers. It means that utility is defined across some 
time horizon, and can be captured by the concept of lifetime-utility (Fama, 1970; Hubbard, 
1994). Lifetime could be interpreted literally as the remaining lifetime of the agent, or as some 
arbitrarily defined period, relevant to that particular agent. In the latter case, the contributions of 
attributes beyond that time horizon are equal to zero and hence are not taken into account.

Figure 3.5: Graph illustrating the occurrence of a sudden event (the dashed line) and a continuous 
process (the full line)

For continuous processes, lifetime-utility can be measured by allowing for some monotonically 
decreasing discount factor, reflecting the notion that agents will take future time-periods 
progressively less into account. For sudden events however, such as the expected birth of 
a child, retirement or children arriving at the age that they desire their own bedroom, this 
temporal effect will not be monotonically decreasing over time, but will rather occur instantly. 
Both processes are represented in Figure 3.5.
 The assumption is that agents remain uncertain and even uninterested in the future state 
of most environmental variables, but, at the same time, are perfectly aware of those factors 
they consider relevant to their lifestyle, such as, variation in earning capabilities (Andolfatto 
and Gervais, 2006), changes in household composition, etc. In general, we assume that agents 
have expectations regarding these relevant variables, and that expectations are not expressed as 
probabilities (as is the case with beliefs), but as exact values. On the basis of these expectations, 
agents can then anticipate changes in their preference structure.
 Pro-active behavior is especially relevant when considering investment as yet another 
trigger to purchase or sell a house: a household might choose for a house from which it initially 
expects to derive a low lifestyle-utility with the foresight of deriving a proportionally higher 
utility in the future, for example, because a park will be developed in the neighborhood or 
because property-value in general is increasing.
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U

LU2

LU1

Pro-active boundedly rational individuals / non-stationary housing-market
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§ 3.6 Pro-active boundedly rational individuals / non-stationary interactive   
  housing-market

In all previous scenarios the price at which to purchase a house is defined exogenously and not 
open to bargaining. Households are modeled as price-takers. As a last scenario, we assume that 
households interested in buying a house interact with households selling this house to negotiate 
over a final transaction-price.
 We assume the negotiation process to be organized as follows: an estate firm publishes 
a house to be for sale at an initial demand-price (Step 1 in Figure 3.6). From the moment an 
interested household signs up the actual negotiation starts. The process of negotiation is one in 
which the household (Step 2 in Figure 3.6) and the estate firm (Step 3 in Figure 3.6) alternately 
make a counter-bid until both parties reach an agreement or until one withdraws from the 
negotiation. If the negotiation turns out successful, the house is sold. If not, the estate firm starts 
negotiating with another interested household and the unsuccessful household reconsiders 
whether to contact another estate firm or whether to give up the intention to buy all together.

Figure 3.6: Basic negotiation process

During each negotiation round, each agent can thus perform three types of actions: he/she can 
accept a bid, reject a bid or propose a counter-bid. We assume that agents select the action from 
which they expect to derive the maximum lifetime-utility. This utility depends, among other 
things, on the expected final price at which the house will be sold and thus on the perceived 
behavior of the opponent. Since this behavior is not known a priori, decisions will have to be 
based on beliefs: for example: regarding the probability that the price of a house falls within 
some pre-defined price-category. With each new bid, the agent receives new information on his 
opponent, on the basis of which he/she can update his/her beliefs regarding prices this opponent 
is willing to accept or pay. An agent can at all times decide to stop the negotiation process, for 
example, because he/she may have observed better opportunities elsewhere in the market. The 
agent thus not only takes the behavior of the opponent into consideration but also the perceived 
state of the market. A phenomenon of interest here is speculation: an agent considering selling 
a house postpones the moment of publishing this house with the intention of raising the final 
transaction price. He/she does this on the basis of his/her beliefs.
 The described negotiation process is generally known as a two-person bargaining process. 
There evidently exist alternative negotiation processes, such as auctions: in a Dutch auction, for 
example, the auctioneer starts the bidding-process over a good at a price much higher than the 
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expected market-value, to then progressively reduce the price until one of the buyers accepts 
it. In an English auction, on the other hand, the auctioneer starts with a price below that of the 
supposed market value, to then gradually raise this price.

§ 3.7 Summary

In our attempt to develop a transparent complex system model we opted for an approach where 
we develop and present our conceptual framework step by step; beginning with a simple scenario 
of unboundedly rational individuals in a stationary housing-market, gradually introducing new 
concepts, to finally end with a scenario where individuals behave boundedly rational, anticipate 
changes in their environment, interact with a non-stationary housing-market, and discuss with 
their household/family-members over their current and future housing situations.
 Each household-member is modeled as a single agent, only pursuing one goal; that is to 
improve or at least maintain his/her current lifestyle. To achieve this, the agent has to, at each 
moment in time, decide whether to move house, renovate his/her current house, let out rooms, 
invest, or do nothing. Each agent is assumed to be a utility-maximizer, selecting the action of 
which he/she expects to derive the maximum (lifetime) utility.
 Over the different scenarios, the decision process evolves from a linear process where 
a change in lifestyle either does or does not lead to a move, to a co-evolutionary, partly 
recursive process in which agents explore the housing-market, collecting information, thereby 
simultaneously updating their beliefs about the housing-market. On the basis of these beliefs, 
agents decide, at each moment in time, whether to consult an information-source, to inspect 
houses for sale, to negotiate over a price at which to buy a house, or to simply do nothing.

Pro-active boundedly rational individuals / non-stationary interactive
 housing-market
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§ 4 Implemented framework – respecting transparency

§ 4.1 Introduction

Summarizing the conceptual framework, agents are utility-maximizers that make location-
choice decisions on the basis of their knowledge regarding their environment and update this 
knowledge each time they collect new information on this environment.
 In order to assess the utility an agent derives from using an object or pursuing an activity, 
we rely on Random Utility Theory. This theory posits that utility is observable by the analyst, be 
it with some degree of uncertainty, due to unobserved attributes of both the agent and the object 
or activity, and to measurement errors (Bierlaire, 1998). Consider a household ),...,2,1(, Hhh =  

consisting of individuals ),...,2,1(, hhh Iii = . The utility that such an individual associates with 

an alternative a  with attributes ka , is given by:
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 is the deterministic part of the utility, and )(a
hi

 is the stochastic part, capturing the 
uncertainty for the analyst. Depending on the decision-problem, )(a

hi  is assumed to follow a 
particular distribution: the larger the standard deviation of this distribution, the less predictable 
the behavior of the agent; the smaller the standard deviation, the more predictable the behavior. 

Regarding the deterministic part, the utility of each alternative is a function of the attributes ka  
of this alternative and the preferences k  of the agent regarding these attributes.
 The housing-market is a market dealing in heterogeneous goods, to such an extent that 
each house can be considered a unique product. This uniqueness makes it impossible to assess 
all the attributes of a house. This is modeled by defining a second error term (i.e. apart from the 

one related to the decision-behavior of the agent, )(a
hi

): an error term related to the unobserved 

attributes of the house under evaluation, a . This error term is related to a particular house and 
thus the same for all agents:
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Recall that housing-related decisions are inherently group-decisions, made jointly by all 
household-members. This joint decision can be implemented with a multi-linear group utility 
function (Zhang, Timmermans and Borgers, 2005):
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)(aU h  represents the utility derived by the household as a whole and 
hi  represents the relative 

contribution of each member to the decision, implying that all members do not necessarily have 

the same impact on the final decision. 
21 hh ii  represents an interaction-parameter reflecting the 

concern of all household-members to achieve equality of utilities: the larger the interaction 
parameters, the higher the group’s collective desire to choose a house such that the utilities of 
all members are approximately equal.
 An alternative approach would be to define interaction-protocols: one individual might, 
for example, evaluate all choice-alternatives and propose his favorite alternative. If the other 
household-members agree with this proposal, the decision is made. If not, another member 
comes with a counter-proposal. Influencing factors are urgency, group-pressure, etc. This 
approach is not explored in this research.

To guarantee transparency in the implementation of the proposed household behavior we will, 
firstly adopt the five scenarios introduced in Chapter 3, and secondly structure each of these 
scenarios around three decision-formalisms; namely: Decision Tables, Activity Diagrams and 
Decision Trees.

Figure 4.1: General structure of a Decision Table (figure from Verhelst, 1980)

A Decision Table is “a table that represents the exhaustive set of mutually exclusive conditional 
statements within a pre-specified problem area. It displays the possible actions that a decision-
maker can follow according to the outcome of a number of relevant conditions” (Verhelst, 1980, 
pp.9). The general structure of a Decision Table is depicted in Figure 4.1. As can be read from 
this figure, a Decision Table is composed of a condition set, a condition space, an action set and 
an action space. The condition set holds the premises (or conditions) that an action has to meet 
to answer the problem specified in the problem area. The condition space holds all the values 
these conditions can take. The action set collects all potential actions the decision-maker can 
pursue under the listed conditions. The action space collects the potential action-states of each 
action. Any vertical linking of an element out of the condition space with an element of the 
action space generates an if-then decision-rule: if condition X has value Y then pursue action Z. 
The strict structure of the table guarantees completeness and consistency (Verhelst, 1980).

C condition set

action setA
condition space

action space
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 In swarmCity, Decision Tables are employed to represent the cognitive image of each 
agent regarding his/her environment. The condition-set then lists all the attributes that an agent 
considers relevant to assess his/her environment. The condition-space lists all the relevant values 
of these attributes, resulting in an exhaustive collection of so-called ‘environment-types’. In 
the action-set the agent will then classify all these environment-types, for instance, according 
to whether he/she would like to live there yes or no. The details in relation to actual location-
choice will be explained later.

Figure 4.2: Example of an Activity Diagram (figure from Gooch, 2000)

Activity Diagrams are one class of diagrams developed within the Unified Modeling Language 
(UML) -a standard language for specifying, visualizing, constructing, and documenting 
engineering artifacts in object-oriented software (Bauer, Müller and Odell, 2001). The main 
reason to particularly use Activity Diagrams is to model the workflow behind such artifacts. An 
Activity Diagram (such as the one in Figure 4.2) is composed of forks, branches, and activities: 
a fork is used in situations where multiple activities occur at the same time, for example, when 
performing an activity, an agent –at the same time- collects information on his surroundings. 
A branch is used in situations where the choice of activities depends on a set of conditions, for 
example, an agent having to decide whether to move to a new house or stay in the current house. 
A branch is always followed by a merge indicating the end of the conditional behavior started 
by that branch. Similarly, a fork must be followed by a join before transitioning into the final 
activity state (Gooch, 2000). In our model, Activity Diagrams are employed to schematize the 
sequence of actions that agents undertake to improve their current lifestyle.
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Figure 4.3: General structure of a Decision Tree; left with a decision node (represented as a square), 
right as a nature node (represented as a circle)

A Decision Tree is a method to formalize problems in decision-analysis (Neapolitan, 1990). 
In general, a Decision Tree consists of nodes, leafs, and arcs; nodes represent decisions, leafs 
represent choice-alternatives, and arcs connect decisions with choice-alternatives. There are 
two types of nodes: decision-nodes and nature-nodes, representing two types of decisions. In a 
decision-node, the decision-maker is in control, implying that he/she can select his/her favorite 
choice-alternative, whereas in a nature-node, the decision-maker is not in control over which 
alternative is selected, for instance, whether it will rain or not. It is referred to as a nature-
node because we can conceive Nature making a selection according to a chance mechanism 
(Neapolitan, 1990).
 To illustrate the principle behind a Decision Tree, let us first consider the simple problem 
of having to choose between two choice-alternatives (represented in Figure 4.3). This tree has 
only one node and two leafs. In case the decision-maker is in control (i.e. in case of a decision-
node), the decision-maker is assumed to be a utility-maximizer, so that he/she will select the 
alternative of which he/she expects to derive the maximum utility. The final utility then becomes: 

)]_([max aactionUU
a

= . In case nature is in control (i.e. in case of a nature-node), the decision-
maker will assign probabilities to each alternative, representing his/her beliefs regarding the 
selection-chances. The final utility is then sum of the utilities of all alternatives, weighted the 

probability (belief) that each alternative will occur: ∑=
a
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Figure 4.4: Example of a Decision Tree with two levels
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In reality it is often the case that one decision depends on a second decision, in turn depending 
on a third decision, and so on. This interdependency is incorporated constructing a tree with 
multiple levels. Each path of arcs, going from the root-node to one of the terminal nodes (i.e. the 
leafs), represents a scenario of successive decisions, either made by nature or by the decision-
maker. What the decision-maker does is evaluating all these scenarios (or paths in the tree), 
assigning a utility to all nodes in the tree, to then execute the scenario promising the highest 
utility. For the tree in Figure 4.4 this is:

)]2_(),1_(max[ actionUactionUU =

)2_()2_Pr()1_()1_Pr()1_( eventUeventeventUeventactionU +=

Rao and Georgeff (1995) interpret a Decision Tree as a collection of ‘possible worlds’, each 
with a different probability of occurrence. Evaluating a tree then comes down to defining these 
worlds and assessing the probabilities.
 In swarmCity, Decision Trees are employed to model the actual decision-making process 
of agents, evaluating which action to pursue.

Note finally, that in implementing the conceptual framework, we effectuate the second 
model-component as proposed by Clarke (2003); namely defining algorithms. As the number 
of considered behavioral concepts increases, the three decision-formalisms, as well as the 
algorithms will grow more complex – both visually and structurally.

§ 4. 2 Unboundedly rational individuals / stationary housing-market

Recall that an individual derives a utility 
hi

U  from his/her current lifestyle:
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 is the utility that individual hi  derives from living in a house o  (including the current 

house). )(a oU
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 is the utility that individual hi  derives from daily activities, given that he/she lives 

in a house o  (including the current house). )(c oU
hi

 is the utility that individual hi  derives from 
the budget that is spend on non-housing purchases and expenditures and non-daily activities, 
given that he/she lives in a house o  (including the current house).
 In this research, we only consider the specification of the first utility component        

)(l oU
hi

. Any model that generates a utility value for comprehensive activity-travel schedules 
(e.g. Aurora developed by Joh, Arentze and Timmermans, 2003) can capture the utility derived 
from conducting daily activities. The utility of other expenditures can be modeled along the 

lines suggested by Goulounov, Dellaert and Timmermans (2002). For reasons of clarity, )(l oU
hi

 
will be further denoted as )(oU  and referred to as residential-utility.
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 Each individual has a mental representation of his/her environment, a representation 
that can be more or less in line with the actual situation. Within cognitive geography, these 
mental representations are typically referred to as cognitive maps or collages (Tversky, 1993). 
We choose to model this cognitive representation by means of a Decision Table, as explained.

Figure 4.5: Mental representation of the housing-market by an unboundedly rational individual

Recall that an individual uses a Decision Table to categorize his/her environment. In the context 
of location-choice, the individual will rely on his/her Decision Table to decide whether a house 
for sale is acceptable to move to or not (see Figure 4.5). The condition-set of the Decision 
Table consists of all housing-attributes an individual considers in making this decision; such as 
housing-typology, size, neighborhood population, number of rooms, distance to the nearest city 
center, price, etc. The condition-space holds all values of these attributes, for example, for the 
housing-typology-attribute these values could be freestanding house, row house or apartment. 
Each unique combination of attribute-values is referred to as a housing-class, denoted as 

Vv ,...,1= , one per column. Not all combinations make sense though, for example, a flat with 
a garden. In constructing the Decision Table, these inconsistencies are excluded. The result is a 
list of all housing-classes v  theoretically available on the housing-market.
 The assumption is that individuals have an opinion regarding all housing-classes. In the 
action-set, the individual makes this opinion explicit, evaluating which of these classes he/she 
considers acceptable of moving to. This evaluation comes down to calculating the utility of all 
housing-classes v , withholding those that exceed a minimum utility level. As the individual 
is assumed to always try and improve his/her current situation, this level could be set to the 
utility derived from the current house. On the basis of this evaluation, the Decision Table can 
be rearranged by merging columns, searching for those attributes and values that are most 
influential. An individual may, for example, consider any house as long as it is located on the 
countryside. All other housing-features are irrelevant in this case and therefore not specified 
further. In the table these are indicated with the so-called “don’t care” entry (denoted “-”). Each 
column of the merged Decision Table represents a housing-type that the individual considers 
acceptable to move to. Such a type can range from a very precise description, specifying values 
for all housing attributes (as such matching one particular housing-class v ), to a more undefined 
category, only specifying particular attributes (such as any house located on the countryside).
 One can interpret this process of evaluating, re-arranging and updating a Decision 
Table as the mental process of an individual schematizing and learning about his/her spatial 
environment; which factors are relevant, which parts could be ignored, etc. This process 
reflects the generally accepted concept that searching is a goal-directed activity, undertaken by 
individuals who have some idea of what they want. Clark and Flowerdew (1982) remark, in this 
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respect, that searching should not be regarded as choosing between randomly collected choice-
alternatives, but rather as assessing carefully selected information.
 In the scenario we are implementing here, the market is stationary, so that the process of 
personalizing the Decision Table is limited to the moment when the agent is initialized.

Figure 4.6: Activity Diagram of an unboundedly rational individual in a stationary housing-market

The goal of the individual is to improve, or at least maintain, his/her current lifestyle. Recall 
that in the scenario where the individual is unboundedly rational and the market-offer does not 
change, he/she can only do this by moving to another house. This leads to the simple Activity 
Diagram illustrated in Figure 4.6. Considering other actions, such as renovating, letting out 
rooms, investing, etc. simply implies adding more branches to the Activity Diagram. The actual 
decision of which action to pursue is represented in a Decision Tree, depicted in Figure 4.7. 
Since the individual is unboundedly rational, the tree only consists of decision-nodes.

Search Stay

Figure 4.7: Decision Tree illustrating the decision of an unboundedly rational individual

In the search-branch of the Decision-Tree (action 1), the individual evaluates the utility he/she 
expects to derive from all houses o  available on the housing-market. In the stay-branch (action 
2), he/she will evaluate the utility of staying in the current residence. The individual will finally 
select the action maximizing his/her residential-utility. The probability that the individual will 
move is:
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M  refers to moving, mU  to the utility derived from moving, 0U  refers to the utility derived 
from staying in the current house, )(oU  represents the utility expected to derive from living 
in a house o  (i.e. the residential-utility), ),( cvU  represents the utility expected to derive 
from a house belonging to a housing-class v  and having a price c , and m∆  represents the 
resistance of the individual against moving. The idea behind the resistance-parameter m∆  is 
that the utility of living in an alternative house should significantly outperform the utility of the 
current house before the individual will even consider moving. In other words, this parameter 
represents the threshold beyond which an individual is triggered. m∆  is defined independent of 
the characteristic of the individual.
 Assume that the household evaluated both actions and that it expects to derive the 
maximum utility from moving to a house o . It will then purchase this house and move. Because 
the market is stationary, the current house simply disappears from the housing-market.

§ 4.3 Unboundedly rational individuals / non-stationary housing-market

In this scenario, individuals remain unboundedly rational. The increase in complexity is 
limited to the housing-market turning non-stationary. As such, nothing changes to the mental 
representation (i.e. the Decision Table) and the decision-process (i.e. the Decision Tree) of the 
individuals.
 In a stationary market, the housing-supply is constant so that a household only evaluates 
the situation on the housing-market when one of the family-members experiences a change in 
his/her life-course. In a non-stationary housing-market, on the other hand, the supply fluctuates, 
so that the opportunity to improve ones lifestyle is constantly present. Consequently, the 
household has to, at each moment in time, evaluate the situation on the housing-market. This 
is graphically represented by adding an extra branch to the Activity Diagram (see Figure 4.8) 
closing the action sequence. Practically, this implies a considerate increase in calculation time.

Figure 4.8: Activity Diagram of an unboundedly rational individual in a non-stationary housing-market

Search Stay

Unboundedly rational individuals / non-stationary housing-market
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§ 4.4 Boundedly rational individuals / non-stationary housing-market

In this scenario, individuals loose their overview of the housing-market and have no longer 
access to all available information. Consequently, individuals are assumed to make their 
decisions on the basis of beliefs regarding the housing-market, and collect information to 
reduce the uncertainty involved in this decision-making. We will first illustrate how beliefs are 
implemented, to then introduce the decision-process itself.

4.4.1 Beliefs

Recall from Chapter 3.4, that an individual searches for information in information-sources, 
and that this individual has beliefs both regarding the content of these information-sources, 
as regarding missing attribute-values of houses published in these sources. Even though 
information-sources do not provide information on all housing-attributes, they typically do 
provide full information on a limited number of attributes, such as: the housing-typology and 
the number of rooms of houses for sale. We assume that in our model, individuals classify 
houses for sale on the basis of these ‘certain attributes’ into, so-called, housing-categories, 
denoted as Kk ,...,1= . Each housing-class v  then belongs to only one housing-category k .
 Individuals have beliefs regarding the probability that any house they come across belongs 
to a housing-category k , denoted as )Pr(k , and referred to as housing-category-beliefs, and to a 
housing-class v , denoted as )Pr(v , and referred to as housing-class beliefs.

∏ ∈=
x

vxv )Pr()Pr(                   1)Pr( =∑
v

v  (4.9)

∏ ∈=
'

)'Pr()Pr(
x

kxk                  1)Pr( =∑
k

k  (4.10)

)Pr( vx∈  represents the beliefs of the individual regarding the values of all housing-attributes 
x  defining a housing-class v , and )'Pr( kx∈  represents the beliefs regarding the values of all 
so-called certain attributes 'x  defining a housing-category k . Both )Pr( vx∈  and )'Pr( kx∈  are 
referred to as attribute-beliefs.
 Individuals search for houses for sale in information-sources. The problem is that, at the 
moment the individual has to decide which source to consult, he/she does not know the full 
content of this source, so that he/she will have to rely on his/her beliefs. We assume in this 
respect that in reality, individuals are not totally unaware of the content of a source, i.e. they 
know some general features, but lack the details. In swarmCity, we assume that individuals have 
beliefs, firstly, regarding the total number of housing-adds published in an information source 
s , denoted as )](Pr[ sl , and referred to as source-length beliefs; and, secondly, regarding the 
rate at which new adds are added to this source, denoted as )](Pr[ s , and referred to as source-
renewing-rate-beliefs. We furthermore assume that the individuals not only have housing-
category-beliefs )Pr(k  on the level of the whole housing-market, but also on the level of each 
source, denoted as )](Pr[ sk , and representing the probability that a house found in a source s  
belongs to a category k .
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 Given these assumptions, suppose first that we are interested in the probability of 
not finding any house belonging to a housing-category k  at time t  in source s , denoted as 

)(Pr skt ∉ . The individual is typically only interested in the newly published housing-adds: 

sn ⊆ . )(Pr nkt ∉  then equals the probability that all the houses sn ⊆ , that the individual 
expects to be newly published in this source, at time t  belong to another housing-category:

)()]]([Pr1[)(Pr sntt t

sknk −=∉  (4.11)

])[()()( sttt ttsslsn −=  (4.12)

∑ ==
l

tt llslsl ])([Pr)(  (4.13)

∑ == ])([Pr)( ss tt  (4.14)

)]([Pr skt  represents the expected housing-category distribution of source s  at time t ; )(snt  
represents the number of housing-adds the individual beliefs to be published in source s  since 
he/she last consulted this source. This number is defined dependent on the expected length 

)(sl t  of the source at time t ; the expected renewing-rate )(st  of the source at time t ; and the 
number of time-periods since st , being the last time that the individual consulted this source.

 )(sl t  represents the expected number of housing-adds published in the source (including 
already consulted ones) at time t . As with all other beliefs, the individual considers a set of 
categories l  and defines probabilities regarding the likelihood that the actual number )(sl  
falls within each of these categories ])(Pr[ lsl = . Individuals are generally not aware of all 
information-sources available on the housing-market. In case of an unknown source, the 

expected length )(sl t  is simply set to zero. Only through word of mouth or through an explicit 
campaign will the individual become aware of the existence of the source and thus of the actual 
length of the source.

 The expected renewing-rate )(st  is defined similar to the expected number of housing-

adds )(sl t , and varies between 0 and 1. If 0)( =st , the individual beliefs that the source did 

not change content and will, for this reason, not consult this source. In contrast, if 1)( =st , 

the individual beliefs the content of the source is fully renewed. One might interpret )(st  as a 
measure for the expected quality of the source, with a higher renewing-rate evidently implying 
a higher quality. Note that without a renewing-rate, individuals would simply select the source 
they belief has the highest number of houses for sale (regardless whether they are new or not). 
Consequently, they would always select the same source, as they do not get any information on 
other sources. The introduction of such a renewing-rate could therefore be seen as a heuristic 
that individuals employ to improve their search-process.

Boundedly rational individuals / non-stationary housing-market
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On the basis of Equations 4.9 to 4.11, the probability of finding a house belonging to a housing-
class v  among one of the newly published ads n  in source s  at time t  then is:

)(Pr
)(Pr)(Pr)(Pr

k
vnknv t

t
tt ∈=∈  (4.15)

)()]]([Pr1[1)(Pr1)(Pr snttt t

sknknk −−=∉−=∈  (4.16)

Finally, besides housing-category-beliefs )Pr(k  and )](Pr[ sk ; housing-class-beliefs )Pr(v ; 
source-length-beliefs )](Pr[ sl ; and source-renewing-rate-beliefs )](Pr[ s ; the individual also 
has beliefs regarding the probability of successfully buying a house at a price c  belonging to a 
housing-category k , denoted )](Pr[ kc , and referred to as price-beliefs.

Beliefs are based on previous experiences and other sources of information, with varying 
degrees of credibility. For example, each time an individual consults a newspaper or visits a 
house for inspection he/she has access to new information. On the basis of this new information, 
the individual can update his/her beliefs. Consider, for instance, the case where an individual 
visits a house, and observes that a particular attribute has a value i . In this case we assume the 
updating of the beliefs regarding this attribute to go as follows (Arentze, 2005):
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t
iPr  and t

jPr  express the probabilities that the attribute, in case of an unobserved house, has 
value i  or j  at time t . Parameter ]1,0[=  expresses the relative weight an individual assigns 

to accumulated past-experiences tW . If 1= , full weight is given to previous experiences that 
is the number of times the individual has made the same observation until t +1. In contrast, 
if 0= , past experiences have no impact at all. One might interpret this as the individual 
forgetting what he/she has gone through, or considering these experiences to be fully irrelevant. 
Parameter  expresses how certain the individual is about the newly gained information.  will 
vary between 0 (perfect incredibility) and 1 (perfect credibility). At the start of the simulation 
beliefs have to be initialized. This will be dealt with in the case study Chapters 5 and 6.
 In order to get an insight into the extent to which an individual learns, one can measure, 
at a given time-interval, the entropy and the accuracy of the individual’s beliefs. The entropy of 
a distribution is a measure for the uniformity in this distribution. In the case of beliefs, entropy 
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is a measure for how uncertain the individual is regarding the expected value of an attribute. A 

common way to express the entropy EN  of a probability distribution iPr  is:

∑−=
i

iiEN )](Prlog[Pr 2  (4.20)

EN  reaches its maximum value in case of a horizontal distribution, that is if the individual has 
no indication whatsoever to assume that one state is more probable than any other state. In case 
the individual is completely certain 0=EN .
 Accuracy is a measure for the accurateness of the mental representation of the individual 
regarding his/her environment. A straightforward way to calculate the accuracy AC  of the 
beliefs regarding the value of a particular attribute x  is to summate the absolute difference 
between the actual and the assumed value of this attribute:

|])[Pr(| 0 ∑−=
i

ii xxxAC  (4.21)

0x  represents the actual value and ix  represent all possible values of attribute x . The lower 
AC  is, i.e. the smaller the difference between the actual and the assumed value, the more 
accurate the mental representation of the individual.

Research within cognitive geography shows that individuals, who are unfamiliar with a spatial 
environment, will attempt to mentally structure this environment as a collection of points; with 
each point referring to a salient landmark. This initial knowledge is referred to as landmark 
knowledge. As the individual gets more familiar with his/her environment, he/she starts to 
distinguish sequences of landmarks. This is referred to as route knowledge. At a certain moment, 
the individual will have collected so much information that he/she will start to draw relations 
between landmarks, independent from any route. This final stage is referred to as survey or 
configurational knowledge and allows the individual to locate landmarks and routes within a 
general frame of reference (Golledge, 1999; Raubal and Egenhofer, 1998).
 So far, we assumed that there is no correlation between beliefs, i.e. that beliefs regarding 
the value of one housing-attribute do not have impact on the beliefs regarding another attribute. 
One could interpret this as an individual only having landmark knowledge. In our case of 
residential mobility, an individual moves within his/her current housing-market, and, one might 
assume, is for this reason fairly familiar with his/her spatial environment, implying that he/she 
does draw (mental) relations between housing-attributes. An individual might, for example, 
belief that there is a relation between the location of a house and the price of that house, to 
the extent that he/she will even update his/her price-beliefs only on the basis of new location-
information. This relation could be made explicit formally by defining certain beliefs to be 
conditional on others, or could remain implicit, implying that correlations just emerge, but 
might as well disappear again.

Boundedly rational individuals / non-stationary housing-market
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Recall that an individual relies on his/her Decision Table to categorize which housing-classes 
v , he/she considers acceptable to move to, and which ones not. When an individual comes 
across a house for sale, he/she will then consult his/her Decision Table, find the housing-class 
matching the house for-sale, and check whether it is worth considering moving to. In the scenario 
where the individual has full information regarding this house for-sale, this screening-process is 
simple, in that the individual is certain about the values of all housing-attributes. In the scenario 
where the individual lacks information though (i.e. the scenario we are implementing now), this 
screening-process will have to be based on beliefs. We propose to store beliefs as extra rows 
in the action-set (see Figure 4.9), so that the individual, at all times, will have to define beliefs 
regarding the values of unknown attributes and regarding the cost price of these categories.
 In the scenario of unboundedly rational individuals, these individuals construct their 
mental image of their environment by, a/o merging columns in their Decision Table. In case 
of boundedly rational individuals, this process is limited to the so-called certain attributes, i.e. 
the attributes the individuals always have information on. The resulting Decision Tables will 
therefore, on average, be much larger (both in rows and columns); growing from the one of 
Figure 4.5 into to one of Figure 4.9.
 Recall finally, that each time the individual gets new information on his/her environment 
he/she updates his/her beliefs. The Decision Table thus represents the current knowledge of the 
individual regarding his/her environment. If there indeed are correlations between beliefs, these 
will be readable in the Decision Table.

Figure 4.9: Mental representation of the housing-market by a boundedly rational individual

Note that all members within a household have separate Decision Tables. As household-
members typically share information, they should be able to access each other’s Decision Table 
and update their beliefs on the basis of each other’s knowledge. This could be modeled similar 
to group decision-making.
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4.4.2 Decision-making & choice

In addition to having to decide, at each moment in time, whether to move or stay (as in the 
scenario of an unboundedly rational individual) the household now also has to decide whether 
to consult an information-source or to visit a house for inspection. Once the household selected 
and executed one of these actions, all members have to update their beliefs. This results in an 
extended Activity Diagram as depicted in Figure 4.10.

Figure 4.10: Activity Diagram of a boundedly rational individual in a non-stationary housing-market

As in the previous scenarios, each household-member will, upon deciding which action to 
pursue, select the action maximizing the utility expected (EU) to derive from living in a house 
acquired through either searching, visiting, moving or staying. The probability that an individual 
will decide to search is:

)],,,max(Pr[)Pr( 0mbzz UEUEUEUEUZ ==  (4.22)

Z  refers to searching, zEU , bEU  and mEU  refer to the expected utility related to, respectively, 
searching, visiting and moving, and 0U  refers to the utility derived from staying in the current 
house. The Decision-Tree of Figure 4.7 then grows into the one of Figure 4.11.
 The Decision Tree grew an extra branch and the search-branch doubled in size, now 
also containing Nature-nodes (depicted as circles). Recall that a household has to visit a house 
for sale before it can purchase it, and that it can only visit houses for sale it found during 
searching. Consider as an example a household that just experienced a change in its life course 
(e.g. divorced) and for this reason expects to derive more utility from other houses for sale, 
than from the one it is currently living in. It will select the information-source it expects to be 
the best source available and will evaluate all houses for sale published in this source, storing 
potentially interesting houses in a list of houses to visit. This list implements the satisficing 
behavior as introduced in Chapter 3.4: individuals employ some knockout-criteria below which 
a choice-alternative is not considered. All alternatives that do exceed this threshold are stored in 
a list. In the following decision round, the household will again evaluate all actions, considering 

Update

Search Visit Move Stay

Boundedly rational individuals / non-stationary housing-market
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Figure 4.11: Decision Tree illustrating the decision of a boundedly rational individual to search, visit, 
or stay

whether it would be more beneficial to consult another information-source or to visit one of the 
stored houses for sale. In the same fashion, the household will add houses it visits and finds 
acceptable to a list of houses to move to. The household thus starts without any experience (i.e. 
empty lists of houses to visit or to move to) gaining knowledge with each decision-round.
 A Decision Tree is generally used to formalize decision problems of which the choice-
alternatives do not change. Consider for example the stationary housing-market of the first 
scenario. An individual, having to decide which action to pursue, will evaluate all available 
options to then choose the one maximizing his utility. Upon executing the selected action, he/she 
will gain full knowledge on this particular alternative. The nature node (implying uncertainty) 
related to this action turns into a decision node (implying full certainty). Each time the individual 
executes a new action he/she will get familiar with a new part of his/her environment and will 
unravel another branch of his/her Decision Tree, until he/she possesses full information and 
as such turns unboundedly rational. In the situation of a non-stationary housing-market, the 
environment changes continuously, so that an individual can never be completely certain about 
all choice-alternatives. In a non-stationary context, a nature-node will thus always remain a 
nature-node.
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4.4.3 Searching

In the search-branch of the Decision Tree of Figure 4.11 (action 1, represented as a single tree 
in Figure 4.12), the individual evaluates the expected utility of all available sources s  to then 
select the best one:

Θ−∆−= zz )]([max sEUEU
s

 (4.23)

00zz TT −=Θ  (4.24)
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action 1: search

consult source s1

s2

s3

Figure 4.12: First node in the search-branch of the Decision Tree

)(sEU  represents the utility expected of searching in source s ; z∆  represents the resistance 
of individuals against searching; and Θ  represents mental effort. Both z∆  and Θ  are defined 
independent of the actual source. The idea behind the mental-effort parameter Θ  is that a 
boundedly rational individual, in contrast with an unboundedly rational individual, is bound by 
cognitive constraints, only capable of spending limited effort on searching for and evaluation 
of choice-alternatives (Simon, 1955). We assume mental effort to increase with the number of 
time-steps the individual is already searching, zT  and decrease with the number of time-steps 
since he/she last searched 0T . z  and 0 are weight parameters capturing the extent to which 
the spend effort increases or decreases. Note that z  and 0 may differ suggesting that it might 
take a longer time for individuals to consider to start searching again than to consider to stop 
searching.

EU(v )1

EU(v )2

EU(v )3action 1: search

Pr(v is the best housing-class in s )1 1

Pr(v )2

Pr(v )3

consult source s1

s2

s3

Boundedly rational individuals / non-stationary housing-market

Figure 4.13: First and second node in the search-branch of the Decision Tree

The utility )(sEU  expected of searching in source s  depends on the beliefs of the individual 
of finding houses belonging to particular housing-classes in this source (the second node 

in the search-branch; represented as a single tree in Figure 4.13). Let iv  ( Vi ,...,1= ) be 
an ordered list of all housing-classes theoretically available such that, for the individual 

)(...)()( 21 VvEUvEUvEU >>>  and let )Pr( 1 sv ∈  denote the individual’s belief that housing-
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class 1v  appears in information source s  as defined in Equation 4.15. The individual will weigh 
the expected utility of this class with the belief that it is present in the source )()Pr( 11 vEUsv ∈
The same for the second favorite class, this time weighing the utility with the belief that the 
favorite will not be present and the second favorite will be present )()Pr()Pr( 212 vEUsvsv ∉∈
Because the individual is uncertain regarding the presence of any housing-class, he/she will 
repeat this evaluation for all classes V , each time weighing the expected utility with the belief 
that a particular class will be present and all better ones not. The sum of these weighted utilities 
then represents the expected utility of the source.

∑=
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The utility an individual expects to derive from a house not only depends on the attributes of 
this house, but also on the final transaction-price he/she expects to pay to purchase the house; 
the higher this price the less resources the individual has left for other activities, lowering his/
her overall residential-utility. )(vEU  therefore depends on the beliefs the individual holds with 
respect to the final transaction-price c , he/she expects to pay for this class (the third node in the 
search-branch, represented as a single tree in Figure 4.14).

b)],())([Pr()( ∆−== ∑
c

cvEUcvcvEU  (4.27)

Figure 4.14: First, second and third node in the search-branch of the Decision Tree

))(Pr( cvc =  represents the belief that a house belonging to a housing-class v  can be purchased 
for a price c  and b∆  represent the resistance of individuals to visit a house for inspection. This 
resistance is considered independent of the actual house.
 This brings us to the last node of the search-branch where the individual has to decide 
whether to move to a house belonging to housing-class v  with a transaction-price c  or to stay 
living in his/her current house. He/she will decide to move if the expected utility of the house 
for sale exceeds the utility of the current house 0U  with a certain threshold m∆ , referring to the 
resistance of the individual to move:
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],),(max[),( 0m UcvUcvEU ∆−=  (4.28)

Note that in total, three types of resistance are defined: a resistance to consult a source z∆ , to 
inspect a house b∆ , and to move m∆ , incorporating that individuals might make a distinction 
between different types of actions, and for this reason define a variety of resistances. They 
might, for instance, consider searching to be a less restraining action than moving, so that that 
they will be less resistant to search than to move.
 Recall the principle behind a Decision Tree that the individual will first evaluate all 
actions, to only then execute the action with the highest expected utility. Assume that the 
individual evaluated all actions and that he/she expects to derive the highest utility from 
searching in information-source s . The individual will then actually consult this source looking 
for potentially interesting houses for sale. As a source only provides partial information, the 
individual is never entirely certain whether an advertised house matches a particular housing-
class v , either because the description in the information-source is incomplete or because the 
source is not hundred percent credible. The utility expected to derive from a house for sale 

)(oEU  therefore depends on the belief that it matches one of all possible housing-classes v :

∑ ==
v

vEUvovoEU )())(Pr()(  (4.29)

))(Pr( vov =  represents the class-beliefs, introduced earlier, and )(vEU  is the expected utility 
of housing-class v  as defined in Equation 4.27. Each house for sale of which the expected 
utility exceeds the utility of the current house, incorporating resistance to visit and move b∆  
and m∆ , is added to the list of houses to visit.
 In case the individual would expect to derive the highest utility from doing nothing, he/she 
would search passively. Passive searching is implemented as consulting any other information-
source, be it a passive information-source containing only housing-adds the individual could 
stumble upon by accident. These could, for example, be related to the neighborhood the 
individual is currently living in.
 Note that, while consulting an information-source, the individual gains full knowledge on 
the content of this source. But because the housing-market changes continuously, this knowledge 
is only temporary. The individual updates his/her housing-category-beliefs )](Pr[ sk ; source-
length-beliefs )](Pr[ sl ; and source-renewing-rate-beliefs )](Pr[ s  (relying on Equation 4.18) 
tuning them to what is available on the market, at that moment. Because beliefs are continuously 
updated, individuals may change strategy at any point in time.

Boundedly rational individuals / non-stationary housing-market
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4.4.4 visiting

In the visit-branch of the Decision Tree (action 2), the household will evaluate the expected 
utility of all houses for sale o , stored in his/her list of houses to visit, to then select the best 
one:

)]([maxb oEUEU
o

=  (4.30)

)(oEU  is as defined in Equation 4.29. Assume again that the household evaluated all actions 
and that it expects to derive the maximum utility from visiting a house o . The household will 
then visit this house for inspection gaining full information on the values of all attributes of 
this house. On the basis of the acquired information the household-members will update their 
class-beliefs )Pr(v , and reassess )(oEU . If )(oEU  still exceeds the utility of the current house, 
incorporating resistance to move m∆ , the household will add the visited house to its list of 
houses to potentially move to. When, during one of the next evaluation-rounds, the household 
expects to derive the maximum utility form a house it already visited, it will sell its current 
house, purchase the new one and move.

§ 4.5 Pro-active boundedly rational individuals / non-stationary housing-market

In this scenario, individuals not only react to but also anticipate changes in their own lifestyle 
(e.g. the expected birth of a child) and changes in their environment (e.g. the development of 
a park in a neighboring area or the worsening condition of the roof). Recall that pro-active 
behavior is captured in the concept of expected lifetime-utility (ELU). In the field of economics, 
lifetime-utility is often referred to as multi-period utility (Fama, 1970), or life-cycle-utility 
(Hubbard, 1994), and modeled as the utility an individual expects to derive from consumptions 

tc  over a period T :
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(.)EU  represents the utility function and 10 <<  a subjective discount factor. The idea 
underlying Equation 4.31 is that an individual is able to anticipate the most important variations 
in his/her earnings-capabilities and can, as such, predetermine his/her sequences of consumption 

tc  (Andolfatto and Gervais, 2006). As argued in Chapter 3.5, we claim that, apart from being 
able to anticipate variations in income, an individual is also able to anticipate changes in his/
her life-course and can as such also predetermine his/her preference structure. The shorter the 
lifetime period T , the more accurate this forecast will be. Applied to Equation 4.5, the expected 
lifetime-utility of Equation 4.31 can, in the situation of having to choose between a number of 
houses for sale o , be extended as:
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l , a  and c are weight functions capturing the temporal effects of events on the utilities 

)(,l oEU t , )(,a oEU t , and )(,c oEU t , representing the utilities expected to derive from living in 
the house o , from daily activities, and from the remaining budget. Note that, compared to 
Equation 4.5 utility (U) is now expressed as expected utility (EU). Note also that the temporal 
weights  may differ between the various utility components, reflecting the range of proactive 
behaviors that individuals may exhibit with respect to future events.
 Pro-active individuals not only have a mental representation of the current situation on 
the housing-market, but also of the expected situation at time-periods relevant to the particular 
individual. For each of these periods, the individual constructs and maintains a separate Decision 
Table, as illustrated in Figure 4.15.
 Introducing pro-active behavior has no impact on the action sequence (and thus on the 
Activity Diagram) of the individual. The Decision Tree, on the other hand, changes slightly, 
rewriting expected utility (EU) as expected lifetime utility (ELU), as illustrated in Figure 4.16.
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Figure 4.15: Mental representation of the housing-market by a pro-active boundedly rational 
individual
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Figure 4.16: Decision Tree illustrating the decision of a pro-active boundedly rational individual to 
search, visit, move or stay

§ 4.6 Pro-active boundedly rational individuals / non-stationary interactive   
  housing-market

In this scenario, households that decide to move house are no longer price-takers, but negotiate 
with the real-estate firm selling this house over a price at which to purchase it. This implies an 
extra action in the Activity Diagram, as illustrated in Figure 4.17.
 When the household and the real-estate firm agree upon a final transaction price, the 
household will move, if not, it will cancel the purchase, stay in its current house and, in the 
following decision-round, evaluate again which action to pursue.
 In Chapter 4.6.1, we will illustrate the impact of negotiating on the beliefs of the agents; 
in Chapter 4.6.2, we will illustrate the process of decision-making and choice; in Chapter 4.6.2, 
we will focus on the actual negotiation process; and in Chapter 4.6.3, we will implement the 
price-formation process. From now on, we will refer to a household interested in buying a 
house as buying-agent B , and to the real-estate firm selling the house as selling-agent S .
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Figure 4.17: Activity Diagram of a pro-active boundedly rational individual in an interactive non-
stationary housing-market

4.6.1 Beliefs

In this scenario, agents not only interact with their (physical) environment, but also with other 
agents, having to negotiate over a price at which to purchase a house. For this reason, agents not 
only have a mental representation of their (physical) environment but also of their fellow agents, 
in the form of beliefs. Recall, in this respect, that agents define their price-beliefs on the level of 
housing-categories k . In the context of price-formation, buying-agents have beliefs, regarding 
prices that a selling-agent would consider acceptable for a house belonging to a particular 
housing-category k , referred to as acceptance-beliefs, and prices this agent would consider 
unacceptable, referred to as rejection-beliefs. Similarly, selling-agents hold acceptance- and 
rejection-beliefs regarding potential buying-agents. As in the previous two scenarios, all beliefs 
are stored as extra rows in the action-set in the Decision Table (represented in Figure 4.18), and 
updated each time the individual gets new information.

Search Visit Stay

Move

Negotiate

Update

Pro-active boundedly rational individuals / non-stationary interactive
housing-market
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Figure 4.18: Mental representation of the housing-market and fellow agents by a pro-active boundedly 
rational individual

4.6.2 Decision-making & choice

The ability of individuals to negotiate is captured in the Decision Tree (represented in Figure 
4.19) as yet another branch (action 3). The equations related to the searching, visiting and 
staying branch remain the same as in the previous scenario. In the negotiation-branch of the 
Decision Tree, the individual evaluates the expected lifetime-utility (ELU) of all houses for 
sale, o  stored in the list of houses to negotiate over (i.e. the list previously referred to as the 
list of houses to move to) to then select the best one. At this moment, the household has full 
information on house o , except regarding the final transaction-price c .
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Figure 4.19: Decision Tree illustrating the decision of a pro-active boundedly rational individual to 
search, visit, negotiate or stay

Assume again that the household evaluated all actions and that it expects to derive the maximum 
lifetime-utility from negotiating over a house o . The household (or buying-agent) will then 
contact the real-estate firm (or selling-agent) selling the house and start negotiating trying to 
agree upon a price at which to purchase the house. Each negotiation round the buying-agent 
has to decide whether to accept the price and purchase the house, to reject the price and search 
for another house or to propose a counter-price. The buying-agent will make this decision on 
the basis of beliefs regarding the behavior of the selling-agent and the situation on the housing-
market, trading off utility, urgency and availability. The selling-agent, in turn, has to make the 
same decision. The negotiation stops when both agree upon a price or when one withdraws.
 The goal of a selling-agent is slightly different from the one of a buying-agent; a selling-
agent wants to make profit whereas a buying-agent wants to improve his/her lifestyle. In order to 
make maximum profit, the selling-agent will try and sell houses at the highest transaction-price 
possible. To this effect, the agent can choose to publish houses in an information-source, remove 
published houses from information-sources, or postpone publishing houses (speculation). This 
decision can, as is the case with the decision of the buying-agent, be formalized in a Decision 
Tree as illustrated in Figure 4.20.

Pro-active boundedly rational individuals / non-stationary interactive
housing-market
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Figure 4.20: Decision Tree of a real-estate firm

4.6.3 Negotiation process

The negotiation process is schematized in the Interaction-Sequence-Diagram of Figure 4.21. An 
Interaction-Sequence Diagram is yet another diagram class defined within UML. Interaction-
Sequence Diagrams model how objects interact to complete a given task by showing the 
sequence in which events occur (Gooch, 2000). We will here only explain the process itself, the 
actual price-formation will be dealt with in Chapter 4.6.4.

action 1: publish house in an information-source

action 2: remove house from the information-source

action 3: do nothing

Figure 4.21: Interaction-Sequence-Diagram illustrating the negotiation process

Selling-agent

Step 1 Publish initial demand-price

Sell

Buy

Reject bid

Accept bid

Make counter-bid

Reject bid

Accept bid

Make counter-bid

Step 2

Step 3

Buying-agent
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The negotiation process, or negotiation protocol, is initialized by the selling-agent publishing 

an initial demand-price )(ocS  for a house o  (Step 1 in Figure 4.21). A protocol refers, in the 
context of this research, to a model capturing the behavior of a group of interacting agents, in 
casu, two agents negotiating over a good. Recall that the initial demand-price is based, among 
others, on the beliefs of the selling-agent regarding the behavior of possible buying-agents.

PrS

xS

A

B

(1) (2)

Figure 4.22: Beliefs selling-agent regarding buying-agent

Agents have beliefs both regarding bids that their opponent is willing to immediately accept for 
a given housing-category k , and regarding bids they will immediately reject for this category. 
Figure 4.22, for instance, represents the beliefs of a selling-agent S , regarding a buying-agent 
B , depicted as probability distributions across bid-sizes: curve (1) regarding accepting, and 
curve (2) regarding rejecting. The bigger the distance between the means of both distributions 
(i.e. the more the average acceptance-bid is removed from the average rejecting-bid), the more 
room there is for negotiation.

 On the basis of these beliefs, the selling-agent can then for each bid Sc  determine the 

probabilities that the buying-agent will either accept this bid, denoted by )(Pr A
SS c  (area A in 

Figure 4.22) or that he will reject this bid, denoted by )(Pr R
SS c  (area B in Figure 4.22). The 

value )](Pr)(Pr1[ RA
SSSS cc −−  then gives the probability that the buying-agent will make a 

counter-bid.

 Based on these beliefs, the selling-agent will define the initial demand-price )(ocS  and 
publish it for interested buying-agents to sign up. As illustrated in Step 2 of Figure 4.21, agents 
interested in buying the house now have to decide which action to pursue: accepting this initial 

bid )(ocS , withdrawing from the negotiation, or making a counter-bid )(ocB .

The buying-agent holds beliefs about the selling-agent that are similar in structure to the beliefs 
the selling-agent holds regarding the buying-agent discussed above. Figure 4.23, represents 
the beliefs of a buying-agent B  regarding a selling-agent S , again as probability distributions 
across bid-sizes: curve (1) regarding accepting, and curve (2) regarding rejecting. On the basis 
of these beliefs, the buying-agent can then for each bid Bc  calculate the probability that the 

selling-agent will accept this bid, denoted by )(Pr A
BB c  (area A in Figure 4.23) or that he will 

reject this bid, denoted by )(Pr R
BB c  (area B in Figure 4.23).

Pro-active boundedly rational individuals / non-stationary interactive
housing-market
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 On the basis of these beliefs, the buying-agent will evaluate all possible actions and select 
the one with the highest expected utility. In case the buying-agent decides to withdraw from 
the negotiation, he will inform the selling-agent and leave. In case the buying-agent decides to 
accept the offer, he will purchase the house and leave. In case the buying-agent decides to make 
a counter-bid, he will propose this bid to the selling-agent.

Figure 4.23: Beliefs buying-agent regarding selling-agent

Whether an agent accepts, rejects, or makes a counter-bid; in all cases, he did collect new 
information on his opponent and will, on the basis of this new information, update his beliefs. 
This updating will, in turn, have impact on the future bidding-behavior of the agent. In the 
swarmCity, these beliefs are updated using Bayesian Belief Updating (BBU). The idea behind 
BBU is that events may be interdependent (or interferential) so that new information regarding 
the state of one event can make an individual adjust his beliefs regarding the state of another 
event. The so-called Bayes Rule states that:
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)|Pr( BA  represents the updated belief in A , given evidence B ; and )Pr(A  represents the 
prior belief in A . As implied by the equation, belief updating uses conditional probabilities of 
the form )|Pr( AB  representing the subject’s knowledge of how probabilities of B  depend on 
states of A .
 Applied to the context of the negotiation protocol: assume as new evidence, the fact that 
the buying-agent made a counter-bid 1ccB = . The beliefs of the selling-agent regarding the 
rejection-price of a buying-agent are then updated as:
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)|(Pr 1
RR ccc BBS =  represents the updated belief; and )(Pr RR

BS c  represents the prior belief of the 

selling-agent regarding the rejection-price of a buying-agent. )|(Pr R
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the selling-agent regarding the likelihood that his opponent will make a bid 1ccB = , given that 

his rejection-price is R
Bc . These beliefs are represented in a Conditional Probability Table. Figure 

4.24, for instance, represents such a table, in this case, expressing the beliefs of a buying-agent 
regarding the probability that a selling-agent would make a bid, conditional on his rejection-
price: e.g. the probability that selling-agent would make a bid of category 8, while he has a 
rejection-price of category 5 is 10%.

Figure 4.24: Example of a Conditional Probability Table, expressing the beliefs of a buying-agent 
regarding the probability that a selling-agent would make a bid, conditional on his rejection-price

With each update, the probability distributions, depicted in Figure 4.22 and 4.23, change. In case 
the agent gets more certain regarding his opponent, the distributions will concentrate around 
one value. In case the agent gets less certain regarding his opponent (e.g. because the opponent 
seems to accept or reject prices in a random fashion), the distribution will grow more uniform. 
 Finally, the discrepancy between the beliefs at the start and end of a negotiation could 
be interpreted as a measure for how much knowledge the agent gained about his opponent 
during this negotiation. For example, a buying-agent unfamiliar with the local market might 
have a distorted conception of this market and might therefore accept unreasonable offers. The 
selling-agent may discover this from the bidding behavior of the agent and adjust his price 
accordingly.

4.6.4 Price-formation

Hitherto, we considered the negotiation-process, with a focus on belief updating. Let us now 
consider the actual price-formation process. Here the focus lies on strategic decision-making. 
Assume first the simple case where (1) a selling-agent leaves a house on the market at the initial 
demand-price until it is sold, and (2) neither selling- nor buying-agents make counter-bids. If a 
house is not sold the first time, there might be a chance that another agent will purchase it during 
a second negotiation. In case the house would indeed be sold during the second negotiation, the 

expected utility of selling the house o  at price )(ocS will be:

price-category
rejecting-bid selling-agent

1 2 3 4 5 6 7 8 9 10
1 0% 60% 30% 10% 0% 0% 0% 0% 0% 0%
2 0% 0% 60% 30% 10% 0% 0% 0% 0% 0%
3 0% 0% 0% 60% 30% 10% 0% 0% 0% 0%
4 0% 0% 0% 0% 60% 30% 10% 0% 0% 0%
5 0% 0% 0% 0% 0% 60% 30% 10% 0% 0%
6 0% 0% 0% 0% 0% 0% 60% 30% 10% 0%
7 0% 0% 0% 0% 0% 0% 0% 60% 30% 10%
8 0% 0% 0% 0% 0% 0% 0% 0% 60% 40%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Pro-active boundedly rational individuals / non-stationary interactive
housing-market
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)(Pr A
SS c  represents the probability held by the selling-agent that his price )(ocS  is accepted 

by an interested buying-agent; ),( ss coEU  represents the utility the selling-agent expects from 

selling the house at a price )(ocS ; and dC  represent delay-costs, i.e. costs related to a failed 
negotiation. Note that, in case of a selling-agent, utility is expressed as Expected Utility (EU), 
and not as Expected Lifetime-Utility (ELU) as would be the case with a buying-agent, implying 
that selling-agents do not anticipate (in our model).
 The first term in Equation 4.38 represents the expected utility in case the offer is accepted 
during the first negotiation, and the second term represents the expected utility in case the offer 

is not accepted during the first, but during the second negotiation. )(Pr A
SS c  is derived from the 

distribution depicted in Figure 4.22. The idea underlying parameter dC , finally, is that each 
time a negotiation fails the selling-agent experiences a loss in utility, due to a loss in investment. 
The value of dC  might, among other things, depend on the urgency of selling the house as 
perceived by the agent. For example: the more urgent an agent needs to get rid of the house, the 
higher the loss in case of a failed negotiation.
 The selling-agent however does not a priori know when his bid will be accepted, and thus 
whether he will have to negotiate with more than two interested buying-agents or not. Equation 
4.39 therefore has to be extended for the more general case of I  possible negotiations:
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I  represents the number of negotiations, or the number of agents interested in buying the house. 
In order to calculate the expected lifetime-utility ))(( ocEU SS , the selling-agent will evaluate 

Equation 4.39, for all number of agents, or until it converges (As ∞→I  then 0)(Pr"
, →SSi c ). 

This process is illustrated in Figure 4.25 where each node represents a negotiation with another 
interested buying-agent i . Note that the selling-agent beliefs that he will be able to sell the 
house at the initial demand-price, if not with the first candidate buyer, than with the second (or 
third) one.
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Figure 4.25: Selling-agent defining a bid in the case where an agent can only accept or reject this bid 
(figure based on Tryfos, 1981)

To define the optimal bid )(ocS , the selling-agent will evaluate a series of acceptable 

alternative prices )(, oc Sk , Kk ,...,2,1=  and select the one that maximizes his expected utility 

))(( ocEU SS

))](([max))(( , ocEUocEU SkSkSS =  (4.40)

Note that this case is already quite realistic describing strategic behavior: a selling-agent defining 
his initial bid trades-off a higher bid, but a lower acceptance probability versus a lower bid, but 
a higher acceptance probability. Let us now assume a case where agents also consider making 
counter-bids. This implies adding a third branch in each node of the Decision Tree depicted in 
Figure 4.26. An important difference between both trees is, that in the non-counter-bid scenario, 
each node in the tree (of Figure 4.25) represents a negotiation with another interested buyer, 
whereas in the counter-bid scenario, each node (of the tree in Figure 4.26) represents another 
negotiation-round with the same interested buyer (i.e. indicating that another counter-bid is 
made). A second difference is that in the non-counter-bid scenario, the selling-agent beliefs that 
he will be able to sell the house at the initial demand-price, and as such does not adjust this 
price during the negotiation, (i.e. the price remains the same in all nodes of the Tree of Figure 
4.25), whereas in the counter-bid scenario, the selling-agent does lower his bid with each failed 
negotiation-round, taking into consideration that there might be no more buyers willing to pay 
his demand-price (i.e. the bid decreases with each node in the Tree of Figure 4.26).
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Figure 4.26: Selling-agent defining a bid in the case where an agent can accept, reject, and propose a 
counter-bid

In the non-counter-bid scenario, selling-agents assumed that, in case of a failed negotiation, 
they would always be able to find another buyer willing to pay the same price. As we pointed 
out, this is no longer the case in the counter-bid scenario. To implement this, we introduce the 
concept of shadow utility: in case the opponent withdraws from the negotiation, the agent will 
have to pursue another action. The shadow utility, denoted by "EU , then represents the utility 
the agent expects to derive from this ‘backup-action’. One might interpret shadow utility as a 
measure for the uniqueness of the ongoing negotiation; a low shadow utility implies that the 
agent has no knowledge of alternatives that are as valuable as the one under negotiation. A high 
shadow utility, on the other hand, implies that the current situation is not that unique and thus 
that the agent will not be inclined to propose his best counter-bid. In case of a selling-agent, the 
extended version of Equation 4.40 is:

+−+= ])[(Pr),()(Pr))(( d"RA CEUccoEUcocEU SSSSSSSSS

                        ]))(()][(Pr)(Pr1[ f
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The third term in the equation represents the expected lifetime-utility in case of a counter-

bid. )(Pr A
SS c  refers to the belief of the selling-agent regarding the probability that the buying-

agent will accept the offer )(ocS ; )(Pr R
SS c  that he will reject the offer immediately and 

)](Pr)(Pr1[ RA
SSSS cc −−  that he will make a counter-bid. )(Pr A

SS c  and )(Pr R
SS c  are derived 

from the belief-distributions in Figure 4.23. The parameters dC  and fC  represent losses in 
utility due to loss of time related, respectively to a failed negotiation in case the buying-agent 
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withdraws from the negotiation and related to the costs of an extra negotiation round in case 

the buying-agent proposes a counter-bid. )(1 ocS−  represents a bid one price-class lower than 
the bid currently under evaluation. The assumption is that, during an ongoing negotiation, a 
selling-agent can never raise his price and a buying-agent can never propose a bid lower than 
his previous bid, so that:

)()(1 ococ t
S

t
S ≤+  (4.42)

)()(1 ococ t
B

t
B ≥+

)(oct
S  and )(1 oct

S
+  represent the bids of the selling-agent and )(oct

B  and )(1 oct
B
+  those of the 

buying-agent for a house o , respectively at time t  and 1+t . ))(( 1 ocEU SS −  represents the 
utility expected to derive from a bid one price-class lower than the current bid. To calculate this 
utility, the agent has to evaluate the same equation. Assume, for instance, that the selling-agent 

wants to assess the utility expected to derive from selling a house at a given price )(oct
S . He 

will then evaluate Equation 4.41, starting with the lowest price possible, and incrementally this 

price until he reaches )(oct
S .

 As in the simple case, in order to define the optimal bid )(ocS , the selling-agent will 

evaluate a series of acceptable alternative prices )(, oc Sk , Kk ,...,2,1=  and select the one 
that maximizes his expected utility relying on Equation 4.40. Note finally, that the agent uses 
Equation 4.41 not only for determining an initial demand-price, but also for determining 
counter-bids during the negotiation. Since beliefs, the probabilities in the equation, are updated 
each time a bid from the opponent is received, bids are adapted in each decision-round. Thus, 
belief updating drives the dynamics of the bidding process.

The buying-agent determines his bids based on the same equations where the utilities and 
probabilities are replaced by his perceptions.

Consider as an example the case where a house o  is published for sale at an initial demand-
price of 400. An agent interested in buying this house now has to evaluate whether he should 
make a bid or whether he should continue searching. Assume that the agent will consider 5 
possible counter-bids: }400,350,300,250,200{)( =ocB , that the utility of buying the house 
at the highest bid, 400, is zero: 0)400,( =oEU B , and that the utility of buying the house at 
any other price is defined relative to this maximum price: 50350400)350,( =−=oEU B  so 
that }0,50,100,150,200{),( =BB coEU . The agent has beliefs regarding the probability that 

the selling-agent will accept or reject these counter-bids: }100,90,50,15,5{))((Pr A =ocBB  and 

}0,5,20,60,95{))((Pr R =ocBB . Assume further that the shadow utility "EU  is two price-classes 

lower than the initial demand-price and that the delay-costs dC  and fC  are irrelevant. The 
agent will now evaluate each considered counter-bid using Equation 4.41, beginning with the 
lowest bids first:

Pro-active boundedly rational individuals / non-stationary interactive
housing-market



70 IN SEARCH OF A COMPLEX SYSTEM MODEL

1050100*95.0200*05.0)200( =++=BEU

109105*)6.015.01(100*6.0150*15.0)250( =−−++=BEU
According to Equation 4.40 the agent will then select the bid that maximizes the expected 
utility: 109}0,55,103,109,105max{))(( ==ocEU BB

This is higher than the shadow utility so the agent will propose a counter-bid of 250. The 
selling-agent now has new information on his opponent and will thus have to update his beliefs 
to then go through the same evaluation procedure as the buying-agent.

Note finally, that the negotiation process can be generalized to the situation where agents 
negotiate over a price at which to buy any –heterogeneous- good, apart from housing. Recall 
that in a market trading heterogeneous goods, the true market value of a good is not that clear, 
so that prices are influenced both by the characteristics of the products or services in question 
and by the bargaining skills and power of the buyers and sellers (Harding, et al., 2003). All 
these features are captured in the negotiation protocol and price-formation process described 
here.
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§ 4.8 Summary and suggestions for more complexity

In search of a complex system model, we adopted an approach where we introduce and implement 
behavioral concepts one at a time. We begin with a simple framework and gradually add more 
detail. As each step is an extension of the previous one, this process could be interpreted as 
a growing process. This approach not only renders the final model more transparent to the 
decision-maker using the model, but also allows for a first validation as new variables are added 
incrementally.
 To further increase this transparency, we adopted three decision-formalisms: Decision 
Tables to represent the knowledge of the agents, Activity Diagrams to represent the activity 
sequences of agents, and Decision Trees to represent the decisions processes. Each phase in 
the growing process has a (visible) impact on these formalisms; for example, the moment the 
agent is no longer unboundedly rational, he/she not only has to store information in his/her 
Decision Table regarding which houses are acceptable and which are not, but also regarding 
the probabilities to find, among others, acceptable houses in a particular neighborhood. Or, the 
moment the agent starts to interact with other agents over a price at which to pursue a house, 
he/she has to consider this action as an extra branch in his/her Decision Tree.
 In our model, an agent grows from an unboundedly rational decision-maker into a 
boundedly rational decision-maker, from an agent only interacting with the environment (i.e. 
the housing-market) into an agent interacting with both the environment and other agents, and 
from an agent only reacting to triggers into an agent also anticipating (potential) triggers. All 
these scenarios are based on the assumption that agents behave as utility-maximizers, that is 
agents will choose the alternative that maximizes expected utility, being the alternative that 
would, on average, produce the best outcome if this particular choice were to be made many 
times. A suggestion for a sixth scenario (implying additional complexity) could be to also 
incorporate other types of strategic behavior, assessing alternatives not only on the average 
expected utility but also on the degree of uncertainty, or risk, involved (March, 1994). In such a 
scenario, a distinction should be made between risk-averse and risk-seeking agents. For a risk-
averse agent, riskiness decreases the utility of an alternative. For a risk-seeking agent, riskiness 
increases the utility. Both types of behavior can be captured in the Decision Tree. The utilities, 
stored in the leaves, are then not weighted utilities (as is the case with a utility maximizer), but 
minimum or maximum utilities: to avoid the chance of choosing an alternative that will turn 
out worse than expected, a risk-averse agent will simply select the alternative with the lowest 
utility, on the condition that it improves his/her situation. A risk-seeking agent, on the other 
hand, is willing to take risks and will therefore select the alternative with the maximum utility, 
irrespective of the degree of uncertainty. Decision-strategies could be assigned randomly to 
each agent or could rather be made dependent on the context a decision has to be made in, so 
that an agent will behave differently depending on his situation at that moment in time.
 In swarmCity, behavior is defined on the level of the individual agent. In line with our 
conception of a city as a complex system, we expect global housing-market phenomena to 
emerge out of the local interaction of the modeled households. What we illustrated is that agents 
have an individual life-course, and that their behavior is state-dependent and intentional. In Part 
III, we will describe and analyze the macro-phenomena emerging out of the micro-interaction 
of the agents, driven by individual preferences and contextual constraints and opportunities.

Summary and suggestions for more complexity
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part III: case stUDY & eXperIMents

§ 5 Input

§ 5.1 Introduction

As a case study, the swarmCity framework is implemented to model the location-choice 
behavior of students in Eindhoven, a medium sized city in the Netherlands. Students then take 
over the role of households -renting rather than buying- and landlords take over the role of real-
estate firms -letting out rather than selling. In our case study, students might live together with a 
partner or other students, forming a so-called student-household, consequently having to make 
joint-decisions. As is the case with households and real-estate firms, students and landlords 
entertain a particular lifestyle made explicit through their preferences. Over time, their lifestyle 
may change; either because of changes in their life-course -a student might, for instance, meet a 
partner with whom he/she wants to live together- or because of changes in the living environment 
–cheaper and better housing might, for instance, become available. Both types of change could 
cause a discrepancy between the current place of residence and the preferences of the student, 
so that this student starts to consider moving.
 Students will try to anticipate these changes by continuously evaluating whether it would 
be more beneficial to move or to stay in their current place of residence. As with households, 
this evaluation is based on the cognitive knowledge of the student regarding his/her housing-
market, such as knowledge about the availability of particular residences, the price-level of 
these residences, the location, etc. Given that most students only move a limited number of 
times during their student-career, this knowledge will evidently be rather limited. Students will 
thus have to search to increase this knowledge, either by consulting information-sources such 
as newspapers or Internet sites, or by relying on social networks. Once promising residences 
are found, students will visit some for inspection, to then finally negotiate, in agreement with 
possible partners, with the landlord over a price at which to rent a particular room. A final 
comparison is that students, as do households, typically move within one and the same housing-
market, solving the problem of system closure.
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 For reasons of transparency and understandability, we will adopt the same scenarios 
introduced in the conceptual framework, presenting and analyzing numerical results step by 
step. As argued, this incremental implementation also functions as a kind of validation, each 
time assessing whether the empirical findings we described in Chapter 2 also return in our model 
experiments. For instance, whether students with similar preferences will cluster together in 
similar neighborhoods, or whether students substitute their preferences if their first choice is not 
available on the housing-market. Important here is that these phenomena are not programmed 
into to the student-behavior, but rather that they emerge out of the interactions of students.

§ 5.2 System architecture & design

The swarmCity model is structured around a GIS-database and is implemented relying on 
Object Oriented Modeling.
 Regarding the GIS-database, there are three database-files, one for each geographical 
scale-level: the neighborhood, the plot and the house. In the current version of the model, there 
are no graphical maps linked to each file. In order for swarmCity to function as a true planning 
support system, the inclusion of maps is evidently essential; on the one hand because maps are 
obviously the basic assessment-instrument of planners, and on the other hand, because for most 
municipalities in the Netherlands the data required for swarmCity is already available in the 
form of maps. But, since the main focus of this research lies on how to model complex systems, 
this visual component is not included. Technically, the inclusion of maps would just require 
the addition of an extra model-component, not having any impact on the already implemented 
framework. Such components are indeed available as open-source software. Moreover, GIS-
files can easily be manipulated, either adding or deleting spatial attributes, so that most existing 
plans could easily be imported into swarmCity.
 “Object Oriented Modeling (OOM) involves breaking down a problem into smaller 
components, each of which have certain predictable behaviors and are able to share information 
with each other” (Wood, 2002, pp.7). The two main advantages of this type of modeling are it’s 
inherent simplicity and extendibility. OOM is simple in the sense that objects can be defined 
in such a way that they correspond to real entities, and this independent of scale. OOM is 
extendible in the sense that adding extra objects does not require rewriting the whole model.
 Besides technical reasons, the main reason to rely on Object Oriented Modeling is that 
agents can easily be conceived of and implemented as objects, with that understanding that 
“agents are objects that can say ‘go’ and ‘no’” (Bauer, et al., 2001, pp.2), implying that agents 
are autonomous in the sense that they do not depend on an external invocation to carry out their 
tasks and that they may refuse to follow a given invocation. Chapter 4.1 introduced the Unified 
Modeling Language (UML) as a standard language for specifying, visualizing, constructing, and 
documenting engineering artifacts in Object Oriented Modeling (Bauer, et al., 2001). Figure 5.1 
is a UML class-diagram visualizing the relation among all swarmCity objects.

System architecture & design
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Figure 5.1: UML class-diagram visualizing the relation among all swarmCity objects

Apart from technical reasons and the object-agent similarity, a third important reason to rely 
on OOM is the possibility to work with stand-alone sub-models. Each of these sub-models can 
be calibrated and validated separately, significantly simplifying the implementation process. 
swarmCity consists of three sub-models, a market sub-model, a population sub-model and a 
decision sub-model. The market sub-model generates the initial housing-market from the GIS-
database. The population sub-model both generates the population and the life-course of all 
agents in this population. The decision sub-model, finally, generates the move course of each 
agent in the population.

§ 5.3 Housing-market data

The housing-market covers all student-related housing in Eindhoven, a medium-sized city 
in the Netherlands. As illustrated in Figure 3.2 of Chapter 3, a housing-market consists of 
neighborhoods, and plots. Each plot can contain a building, consisting of one or more housing-
units. In the context of our student-case, we are only interested in buildings that house students. 
Housing-units are further referred to as residences. Specifically, Eindhoven consists of 106 
neighborhoods.

Figure 5.2: Eindhoven consists of 106 neighborhoods
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On the basis of an analysis of the housing-stock of one student-housing provider operating 
in Eindhoven, we defined 1611 student-dwellings, making up for a total of 3258 residences. 
Each neighborhood, dwelling and residence has a set of characteristics, potentially influencing 
the location-choice of the student. Recall that each combination of attribute-values results in 
a housing-class v , or residence-class in the context of our student case study. As Table 5.1 
illustrates, there are 6 attributes, all but one having 3 values, making up 35*2=486 residence-
classes. As it would be unreadable to plot numerical results for each class, they are grouped into 
six so-called residence-categories (see Table 5.2). A seventh category is added representing the 
parental home of the student.

Table 5.1: Housing-market characteristics

Table 5.2: Residence-categories

attribute values

neighborhood relative-location center
university

green
population-type  mono

slightly mixed
mixed

dwelling dwelling-typology student-housing
hospita

apartment
dwelling-size small

medium
large

residence residence-typology 1-room
2-rooms

residence-size small
medium

large

residence-category dwelling-typology residence-typology

1 student-housing 1-room
2 student-housing 2-rooms
3 hospita 1-room
4 hospita 2-rooms
5 apartment 1-room
6 apartment 2-rooms
7 parents -

Housing-market data
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The list of housing-market characteristics included in Table 5.1 is evidently not exhaustive, but 
only includes the most important features on which a student makes a location-choice. In future 
model versions this list could be extended, also including, for instance attributes such as the 
presence of services (e.g. a common meeting-room, a washing machine, etc.), the presence of a 
garden, the physical condition of the residence, etc.
 As outlined in Chapter 3, a housing-market ages potentially triggering a student to consider 
moving. In the presented model, we assume that this aging does not take place. Moreover, we 
assume that only changes in the life-course of a student will potentially trigger this student to 
consider moving. As a result, the number of moves might be slightly underestimated. Apart 
from this, we assume that this simplification has no significant impact on the overall emerging 
student-population behavior.

§ 5.4 Population data

§ 5.4.1 Survey

UNIVERSITY STATISTICS

Each year the University of Technology Eindhoven publishes a report with statistical information 
on the student population that studied at the University that year (Megens, 2006). Relevant to 
this research are, for instance, data regarding gender, marital status, housing-situation, and the 
number of years it takes students, on average, to finish studying. All of these are plotted in 
Tables 5.3 and 5.4. For the record: the total number of students that studied at the University of 
Technology Eindhoven in 2006 was about 7000.

Table 5.3: University statistics regarding gender, marital status and housing-situation

gender marital         status housing situation

male 84% single 99% parents 40%
female 16% married 1% not parents 60%

Table 5.4: University statistics regarding the number of years it takes students, on average, to 
finish their student career

academic year
number of years to finish studying

5 6 7 7+
1995 18% 31% 44% 56%
1996 13% 28% 43% 57%
1997 15% 30% 43% 55%
1998 13% 27% 39% 47%
1999 13% 25% 38% -
2000 14% 19% - -
2001 16% - - -
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SURVEY DATA

In total, three identical surveys were held, respectively in 2003, 2004 and 2005, each time 
approaching around 600 students, randomly selected from the overall student population. Each 
survey consisted of five parts: the first part asked students for personal characteristics, such 
as gender, age, study-program, study-year, budget, time spent per week at the university, etc. 
The second part asked students to rank a number of criteria, such as room-size, rent, technical 
comfort, etc., typically used when selecting a residence, into order of importance. Table 5.5 
illustrates some results of this ranking.

Table 5.5: Selection-criteria that students consider when selecting a residence, ordered 
according to the percentage of students that considers this criterion to be the most important 
selection-criterion

The third part asked students for information on their current residence, such as the reason of 
moving to this residence, dwelling-typology, residence-typology, rent, residence-size, distance 
to the city-center and to the university, how long they where living there, whether they are 
happy living there, whether they would like to move, etc. The fourth part asked students for 
information on their moving history, for instance whether they lived in other residences, how 
long they lived there, why they moved, etc. The fifth and final part was a Conjoint Choice 
Experiment (CCE). CCE’s are a well-established method to measure the preferences and choice-
behavior of consumers (Oppewal and Timmermans, 1992). Practically, those who take part in 
the experiment are requested to evaluate a series of hypothetical choice-alternatives and select 
the alternative they like best. One such series is plotted in Figure 5.3. On the basis of these 
stated choices, CCE then measure the utility an average respondent derives from each attribute 
of the choice-alternative, relying on a multi-nominal logit model.

criterion %

rent 42.49%
residence-size 37.69%

private bathroom equipment 9.91%
private kitchen 4.05%

communal space 2.85%
private terrace 1.50%
dwelling-size 0.60%

distance to sport facilities 0.30%
distance to green 0.30%

distance to university 0.30%

Population data



78 IN SEARCH OF A COMPLEX SYSTEM MODEL

Figure 5.3: Example series of hypothetical choice-options used in the CCE. The respondent not only 
had to indicate his/her preference, but also whether he/she would indeed move to his/her preferred 

alternative

§ 5.4.2 Life-course settings

PARAMETERS

The student-population consists of a sample of all students studying at the University of 
Technology Eindhoven. Regarding their housing-situation, students either live alone, with a 
partner, or with their parents. In case a student lives with a partner, he/she has to agree with 
this partner upon whether, when, and where to move to, having to arrive at a joint-choice. 
Each student has a set of characteristics, depicted in Table 5.6, influencing his/her lifestyle and 
spatial behavior. Note that budget ranges from 1 to 16, with each number referring to a price-
category.

Table 5.6: Student characteristics

Alternative 1 Alternative 2

 Dwelling-typology student-housing apartment
 Residence-size 10 m2 10 m2
 Rent 250-300 250-300
 Services washing machine garden/terrace
 Dwelling-size 0-4 0-4
 Distance to center 20 min. 20 min.
 Population-type mixed mixed
 preference

attribute values

student gender male
female

age 18 to 26
study-year 1 to 7

budget 300 to 700
living with parents no

yes
living with partner no

yes
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The generating of the synthetic baseline student-population is partly based on the University 
statistics, partly on the above survey, and partly on assumptions. Partly, because there is, for 
instance, no statistical data available on the budget the students have at their disposal, neither on 
whether students are living together with a partner. Regarding the survey, the question asking 
students for their monthly budget seemed too open for respondents to know what to include 
and what not. For this reason, the distribution of budgets is, for instance, based on assumptions. 
Iterative Proportional Fitting (IPF) is employed to make the sample data, derived from survey, 
consistent with the statistical data. IPF starts with constructing a frequency cross table of all 
relevant attributes (referred to as multiway table) on the basis of the sample data. The statistical 
data are used to define constraints on the marginal distributions of this table. IPF is then applied 
to find cell proportions that are consistent with the given marginals (Beckman, Baggerly and 
McKay, 1996; Arentze, Hofman, and Timmermans, 2001).
 As with the residence characteristics, student characteristics are aggregated into seven, 
so called, student-profiles (see Table 5.7). Recall that each student has a particular preference-
profile, outlining the spatial preferences of this student. As we will point out later, preference-
profiles are assigned to students depending on their student-profile.

Table 5.7: Student-profiles

TRANSITION PROBABILITIES

One simulated year consists of 52 time-periods. Each of these time-periods, each student 
evaluates his/her current housing-situation, potentially considering moving to a new residence. 
Each student grows older once a year, on his/her birthday, possibly changing one or more of 
his characteristics. Because students have birthdays at different moments in time (and thus 
potentially change life-course at different moments in time), there is a continuous demand for 
new residences. Birthdays are randomly assigned to students, approximating a random agent 
call order.
 The probability that a student changes a particular characteristic are based on the value 
of this characteristic over the last two years, and are predicted three years in the future. The 
reason behind this is that, in the two most complex scenarios, students are able to anticipate 
their life-course three years in the future. Table 5.8 represents a fragment of such a transition 
matrix, specifying the probability that a student who has been living with a partner for the 
last two years, will or will not keep on living with a partner over the next three years. In total 
three transition matrices are defined, a first one specifying the probabilities that a student lives 
together with a partner or not; a second one specifying the probabilities that as student lives 

student-profile study-year living with parents living with partner

1 <=3 yes no
2 <=3 no no
3 <=3 no yes
4 >3 yes no
5 >3 no no
6 >3 no yes
7 stopped - -

Population data
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with his/her parents or not; and a third one specifying the probabilities that a student will keep 
on studying or not. The probabilities of the third matrix are based on University statistics. The 
probabilities of the two first matrices are based on assumptions because of lack of data. All 
transition-matrices are plotted in the Appendix Chapter.

Table 5.8: Example of a transition matrix, specifying the probability that a student who has 
been living with a partner for the last two years, will or will not keep on living with a partner 
over the next three years

In reality, transition probabilities evidently not only depend on the history of the characteristic 
under study, but also on other characteristics of the student. On could imagine in this regard 
that the probability that a student continues studying, stops studying, or finishes his study also 
depends on the gender of the student. Or that the probability that a student starts living together 
with a partner, stops living together, or keeps on living as he/she did so far, also depends on the 
age of the oldest partner. Or that the probability that a student moves away from his/her parents, 
moves back to his/her parents, or keeps on living as he/she did so far, also depends on whether 
the student is currently living together with a partner, his/her gender and the study-year he/she 
is currently in.

Table 5.9: Transition matrix summarizing all possible student-profile transitions

student-profile 1 2 3 4 5 6 7

1 Pr(1,1) Pr(1,2) Pr(1,3) Pr(1,4) Pr(1,5) Pr(1,6) Pr(1,7)
2 Pr(2,1) Pr(2,2) Pr(2,3) Pr(2,4) Pr(2,5) Pr(2,6) Pr(2,7)
3 Pr(3,1) Pr(3,2) Pr(3,3) Pr(3,4) Pr(3,5) Pr(3,6) Pr(3,7)
4 - - - Pr(4,4) Pr(4,5) Pr(4,6) Pr(4,7)
5 - - - Pr(5,4) Pr(5,5) Pr(5,6) Pr(5,7)
6 - - - Pr(6,4) Pr(6,5) Pr(6,6) Pr(6,7)
7 - - - - - - Pr(7,7)

living with partner at time
probability

living with partner at time

t-2 t-1 t t+1 t+2 t+3
yes yes yes 80% yes yes yes
yes yes yes 0% yes yes no
yes yes yes 5% yes no no
yes yes yes 15% no no no

As pointed out earlier, one of the main triggers making students consider moving, is a change 
in preference-profile. As we will point out, preference-profiles are assigned on the level of 
student-profiles, so that students with the same student-profile share the same preference-
profile. A student will thus only change preference-profile as he/she changes student-profile. 
In other words, only changes in student-profile can potentially trigger a student to consider 
moving. As such, changes in student characteristics are only interesting if they lead to a change 
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in student-profile. Table 5.9 therefore aggregates all the attribute transition matrices into on 
student-profile transition matrix. The assumption is that the attributes are not interdependent so 
that, for instance. The probability that a student changes from student-profile 1 to 2 is equal to 
the probability that the student moves away from his parents times the probability that all other 
attributes remain the same.

*)__,__Pr()2,1Pr( noparentswithlivingyesparentswithliving ===

               *)3_,3_Pr( << yearstudyyearstudy

               )__,__Pr( nopartnerwithlivingnopartnerwithliving ==

§ 5.4.3 Preference settings

Each student has a preference regarding all housing-market characteristics. As preferences 
regarding different characteristics are typically interrelated –a student preferring a two-room 
residence will typically also prefer an apartment to living with a hospita- preferences are 
grouped into so-called preference-profiles. In all, ten preference-profiles have been defined 
(see Table 5.10). A student with preference-profile 7, for instance, prefers to live in a 1-room 
apartment close to the center. Preference-profiles are assigned to students on the basis of their 
student-profile, relying on Monte Carlo Simulation. The distribution from which is drawn is 
represented in Table 5.11. This distribution is based on assumptions. 

Table 5.10: The 10 preference-profiles and their preferred housing-market characteristics

preference-profile dwelling-typology residence-typology relative location

1 student-housing 1-room center
2 student-housing 1-room university
3 student-housing 2-rooms -
4 hospita 1-room center
5 hospita 1-room university
6 hospita 2-rooms -
7 apartment 1-room center
8 apartment 1-room university
9 apartment 2-rooms -
10 parents - -

Population data
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Table 5.11: Distribution of the preference-profiles over the different student-profiles, and this 
for a male student

The Conjoint Choice Experiment (CEE), conducted during our surveys, defines the utilities 
that average students derive from each single attribute-value. Since we defined ten preference-
profiles (instead of just one average), we interpreted the results of the CCE to correspond with 
the preference-profile specifications listed in Table 5.10. Table 5.12, for instance, prints the 
utility values for the relative location of a residence. The utility values regarding all other 
housing-market characteristics are plotted in the Appendix Chapter.

Table 5.12: Example of utility values, specifying the utility that a student derives from the 
relative location of a residence, by preference-profile. The column ‘parents’ is added to let 
students evaluate the utility of moving back to the parental home

student-profile
preference-profile

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
2 50% 10% 0% 30% 5% 0% 4% 1% 0% 0%
3 0% 0% 50% 0% 0% 5% 0% 0% 45% 0%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
5 20% 40% 0% 5% 10% 0% 5% 20% 0% 0%
6 0% 0% 30% 0% 0% 2% 0% 0% 68% 0%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Recall that students will only change preference-profile when they change student-profile. For 
this reason, a preference-profile transition matrix has to be composed for each possible change 
in student-profile. Table 5.13, for instance, plots the preference-profile transition matrix for 
a student changing from student-profile 1 to 2. As a student with student-profile 1 lives with 
his/her parents, the current preference-profile has to be 10. The preference-profile transition 
matrices of all other cases are plotted in the Appendix Chapter.

preference-profile
relative-location

center univ. green parents
1 2.2 1.6 1.0 0.1
2 1.6 2.2 1.0 0.1
3 1.6 1.5 1.3 0.1
4 2.2 1.6 1.0 0.1
5 1.6 2.2 1.0 0.1
6 1.6 1.5 1.3 0.1
7 2.2 1.6 1.0 0.1
8 1.6 2.2 1.0 0.1
9 1.6 1.5 1.3 0.1
10 0.1 0.1 0.1 2.2
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Table 5.13: Example of a preference-profile transition matrix, i.e. for students changing from 
student-profile 1 to 2

Recall from Equation 4.2 in Chapter 4.1 that utility is defined as:

aiii aaVaU
hhh

++= )()()(

)(a
hi

 and a  are error terms incorporating that, respectively, a decision-maker hi  exhibits 
distinctive choice-behavior regarding a good a  which is impossible to predict perfectly, and 
that the intrinsic uniqueness of the good a  (in our case a residence) makes it impossible to 
assess all the attributes of this good.
 In our student-case we decided not to rely on error terms to incorporate the idea of 

unpredictability -so that )()( aVaU
hh ii = - but to rather do this on the level of assigning 

preference-profiles: as indicated earlier preference-profiles are assigned to students using 
Monte-Carlo simulation. This counts both for the assignment of the initial profiles, but also in 
case the student changes his/her life-course (i.e. student-profile). As a consequence the choice-
behavior of a student might be predictable once one knows his/her preference-profile, but as 
this profile might change any moment, the overall choice-behavior of the student is no longer 
predictable.
 Regarding the uniqueness of the residences, recall that there are 486 residence-classes, 
and this for a population of about 1000 student-households (as we will clarify in Chapter 5.4.4), 
guaranteeing a considerable variety.

preference-profile at t
preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 - - - - - - - - - -
2 - - - - - - - - - -
3 - - - - - - - - - -
4 - - - - - - - - - -
5 - - - - - - - - - -
6 - - - - - - - - - -
7 - - - - - - - - - -
8 - - - - - - - - - -
9 - - - - - - - - - -
10 50% 10% 0% 30% 5% 0% 3% 2% 0% 0%

Population data



84 IN SEARCH OF A COMPLEX SYSTEM MODEL

§ 5.4.4 Initial settings

All experiments start with an initial population of 1000 student-households, consisting of either 
one or two students. Each simulated year, graduated students leave the simulation. To guarantee 
that the population-size remains approximately constant, 200 new student-households enter the 
simulation each year.
 As the initial population is supposed to represent the actual student population, a 
significant part does not live with their parents. To assign an initial residence to these students, 
all are assumed to have perfect knowledge on what is available on the housing-market. The 
initial housing-market includes all 3258 residences mentioned in Chapter 5.3. All student will 
then, in a random order, sequentially evaluates all residences for rent, choosing the one of 
which they expect to derive the maximum lifestyle-utility, relying on Equation 4.5 of Chapter 
4.2. As a result, the student first choosing a residence will always find something matching his/
her preferences (on the condition that this residence-class is available on the housing-market), 
whereas all other ones might potentially end up in a sub-optimal housing-situation. Newly added 
students, on the contrary, begin as first year students and are as such assumed to –initially- live 
with their parents. These students might have preferences though that do not match this parental 
housing-situation, and will as such consider moving upon entering the simulation.
 A housing-market of 3258 residences for only 1000 student-households is evidently not 
realistic. For this reason we limit the housing-market to those residences the students are living 
in at the beginning of the simulation, plus a supply of empty residences available for rent. The 
composition of this supply (i.e. size and distribution) varies from simulation to simulation, and 
will therefore be described in the next Chapter. The housing-market, without the extra supply, 
consists of 476 residences (i.e. 524 students live with their parents). The distribution of these 
residences according to which preference-profile they match, is plotted in Table 5.14.

Table 5.14: Preference-profile distribution of those residences the student population lives in 
at the beginning of the simulation. The extra supply of new residences available for rent is not 
included

preference-profile matched by residences
1 2 3 4 5 6 7 8 9 11

housing-market 14% 23% 10% 6% 0% 0% 0% 0% 26% 22%

All scenarios and experiments start with the same initial settings, i.e. the same population and 
housing-market. Except when this is explicitly mentioned. Furthermore, all scenarios are defined 
in such a way that each student will, in each simulation, always follow the same life-course, 
and will always have the same preference-settings. The idea is that by only varying a limited 
number of parameters, an eventual change in observed behavior has to be a direct consequence 
of this parameter tweaking.
 Each experiment is run for 25 years. Only the spatial behavior of students that entered 
the simulation after the tenth simulation-year, and left the simulation before the final simulation-
year, is recorded. The first criterion is adopted to avoid initialization effects, the second one to 
exclude incomplete life-courses (and thus disrupted spatial behavior). The population at the 
tenth simulation-year counts around 1070 student-households. Table 5.15 gives some insight 
in the life-courses of these students. Since the main moving-triggers are changes in preference-
profiles, these are listed in Table 5.16.
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Table 5.15: Probability that any student undergoes a particular life-course change

change in life-course %

moving back to parents 2%
moving away from parents 78%

moving together 55%
moving apart 14%

changing to 4th year 34%

change in pref-profile %

to profile 1 21%
to profile 2 14%
to profile 3 20%
to profile 4 11%
to profile 5 4%
to profile 6 3%
to profile 7 3%
to profile 8 7%
to profile 9 17%

Population data

Table 5.16: Probability that any student changes to a particular preference-profile
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§ 5.5 Summary

As a case study, the residential-mobility framework is implemented to model the location-
choice behavior of students in Eindhoven, a medium sized city in the Netherlands. The housing-
market consists of neighborhoods, in turn consisting of dwellings, in turn consisting of (student-) 
residences. Each residence is defined by a set of 6 attributes. Each unique combination of these 
attributes is referred to as a residence-class. In total there are 486 residence-classes. These are 
grouped into 6 residence-categories.
 Students are defined by a set of 6 attributes, grouped into seven student-profiles. Each 
student has a preference regarding all residence-attributes. These preferences, in turn, are 
grouped into 10 preference-profiles. The actual preference-profile of a student depends on 
his/her student-profile, so that each time a student changes student-profile, he/she potentially 
also changes preference-profile. In swarmCity, student-profile-changes (i.e. changes in the life-
course of the student) are defined to be the only trigger making a student consider moving.
 At the start of the simulation there are 1000 student-households, consisting of either one 
or two students. Each student-household either rents a residence or lives with his/her parents. 
At the start of the simulation, the housing-market consists of those residences occupied by the 
initial student population plus a number of unoccupied residences, available for rent. Each 
simulation is run for 25 years, with each year consisting of 52 time-periods. A student grows 
older once a year, potentially changing student-profile (and thus potentially changing preference-
profile), and evaluates his/her dwelling-situation each time-period. Each simulation year there 
are students that graduate and as such leave the simulation, and there are 200 new students 
entering the simulation. Some of these new students plus those students living in a sub-optimal 
housing situation will search among the unoccupied residences available for rent for a residence 
matching their preference-profile.
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§ 6 Output

§ 6.1 Introduction

In this Chapter we will implement the five scenarios defined in the conceptual framework. For 
each scenario, a series of simulations will be run, with each simulation addressing a particular 
model parameter. The purpose of these simulations is twofold: firstly, to assess the emerging 
student-behavior, and secondly to assess the value of the model as a planning decision-support 
tool. The series addressing the student-behavior will be referred to as behavior-simulations, and 
the others as planning-simulations.
 In the behavior-simulations, results are recorded on the level of the whole population, 
illustrating for instance average movement patterns; on the level of the individual student, 
illustrating for instance the degree to which the life-course of this student defines his/her 
moving behavior; and on an in-between level aggregating results according to the preference-
profile (see Table 5.10) a student adopts when he/she changes his/her housing preferences. This 
in-between level is important, because, as we explained earlier, changes in preference-profile 
are, in our model, the only triggers that make students consider moving. For each of these three 
levels, the following behavior-indicators will be plotted:

1) the number of moves per change in preference-profile, being a measure for the exhaustiveness 
and size of supply on the housing-market;

2) the average increase in utility related to the first move after changing preference-profile, 
being a measure for the extent to which the student is able to improve his/her housing-
situation;

3) the percentage of the student-population that succeeds in moving to a residence that matches 
his/her newly adopted preference-profile, illustrating as to whether or not a student had to 
substitute his/her preferences to find a place of residence;

4) the number of time-steps between changing preference-profile and the first move, being 
a measure for the competition on the housing-market: a high number of time-steps, in 
principle, implies a high competition, and the other way round.
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In the planning-simulations, results are aggregated according to the characteristics of the 
housing-market (i.e. according to the residence-categories of Table 5.2). Generally speaking, 
the objective of a planner is to try and accommodate the location-choice behavior of future 
residents with specific planning interventions. A planning support tool should help planners (or 
decision-makers in general) in assessing the success of this accommodating. In the context of 
our simulation model, this is achieved by letting planners observe the reactions of these future 
residents to the planning interventions, allowing them to explore assess the impact of a range 
of housing-market variables. In our student-case, the impact of the following variables can be 
assessed:

1) the resistances to change, z∆ , b∆  and m∆ . A planner can direct these resistances by, for 
instance, providing correct information, subsidies, etc.;

2) the residence-class distribution. A planner can direct this distribution through design, for 
instance, providing more residences from a particular class;

3) the size of the supply of residences for rent. A planner can direct this supply through 
design, for instance, constructing more or less residences.

In order to assess a planning-proposal, the system provides a number of planning-indicators, 
commonly employed in the context of residential mobility:

1) vacancy-rate, operationally defined as the number of unoccupied residences relative to the 
total number of residences;

2) turnover-rate, operationally defined as the number of moves relative to the total number of 
residences;

3) resident-satisfaction, operationally defined as the average utility level of those students that 
just moved to a new residence;

4) advertisement period, operationally defined as the period between advertising a room for 
rent and the moment the room is rented out.

Behavior-indicators are represented in tables. As a new scenario is introduced, the data from 
all previous scenarios are also plotted in order to assess the impact of the change in behavior-
settings. Planning-indicators are represented in graphs, implying that not the exact value, but 
rather the average distribution of these indicators is of interest to assess the different planning 
proposals.

 Each of the following sub-chapter focuses on one single scenario: Chapter 6.2 deals 
with unboundedly rational students in a stationary housing-market; Chapter 6.3 deals with 
unboundedly rational students in a non-stationary housing-market; Chapter 6.4 deals with 
boundedly rational students in a non-stationary housing-market; Chapter 6.5 deals with pro-
active boundedly rational students in a non-stationary housing-market; and Chapter 6.6, finally, 
deals with pro-active boundedly rational students in a non-stationary interactive housing-market. 
Each Chapter starts with specifying the particular housing-market and population settings; 
secondly describes and analyses the behavior-simulations; thirdly describes and analyzes the 
planning-simulations; and finally ends with conclusions measuring the extent to which the 
scenario is realistic (i.e. captures the empirical findings listed in Chapter 2.2).
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A consequence of the stepwise implementation is the high number of Tables and Graphs. In 
order not to loose the overview, these Tables and Graphs are, where possible, positioned on 
the right-hand page. The left-hand page then provides the accompanying analysis. In flipping 
through the report from front to back, focusing on the right-hand pages, one sees, as a matter of 
speaking, the Tables and Graphs becoming more complex. A second way in which we tried to 
structure the abundance of data is by ending each scenario with a conclusion-chapter, in which 
we, firstly summarize the model settings of that scenario, and, secondly, assess these settings 
by comparing the model results with the empirical settings. In only reading these conclusion-
chapters, one gets an impression of how the model step by step grows into a complex system 
model.
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§ 6.2 Unboundedly rational students / stationary housing-market

§ 6.2.1 Parameter settings

HOUSING-MARKET SETTINGS

The market is stationary, implying that when a residence is let out, an exact copy is immediately 
set for rent again and the residence the student used to rent out is removed from the market, as 
such guaranteeing a constant supply. On top of this, the residence-class distribution is composed 
in such a way that all existing classes are available (i.e. is exhaustive). Recall from Table 5.1 
that there are 486 residence-classes. This makes that there are constantly 486 residences (i.e. 
one of each class) available for rent. Since all students, at the beginning of the simulation, 
either live with their parents or in a residence, this supply (i.e. the 486 residences), in fact 
is a surplus directed towards students changing preference-profile or new students entering 
the simulation. Since there are 1000 student-households, this supply is approximately 50% of 
the population-size. In later simulations we will experiment with other percentages and non-
exhaustive distributions.

POPULATION SETTINGS

Let us first apply the three formalisms -Activity Diagram, Decision Table and Decision Tree- 
introduced in Chapter 4.1 to structure the location-choice behavior of agents, to our student-
case. The Activity Diagram remains the same as in Figure 4.6. The Decision Table structures 
the knowledge of the student regarding his/her housing-environment, distinguishing between 
residence-classes that are considered acceptable to move to and those that are not. Recall that, 
in order to make this distinction, a student simply evaluates whether he/she would derive more 
utility from a given residence-class than from his/her current housing-situation. The Decision 
Table in Figure 6.1, for instance, belongs to a student with a preference-profile 2, currently 
living in a one-room apartment in the center of the city.
 The Decision Tree differs slightly from Figure 4.7, in that a student can choose between 
three instead of two actions, namely: moving to a new room, moving back to the parental 
home, or staying where he/she is currently living. In order to limit the number of parameters, 
we initially define the resistance to change ∆  to be zero. In the planning-simulations, we will 
assess the impact of this parameter. We furthermore assume that the rent of all residences is 
zero, and that all students have a uniform budget, so that rent of a residence has no impact on 
the lifestyle-utility of the student, and is as such not a selection-criterion.

Figure 6.1: Decision Table of a student with preference-profile 2
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Figure 6.2: Decision Tree, with resistance to change set to zero; o0 represents the parental home

§ 6.2.2 Behavior-simulations

Though this scenario of unboundedly rational students making decisions in a stationary 
environment is our simplest scenario, it is in fact already rather complex as students that do live 
together have to make joint decisions regarding which action to pursue, as expressed in group 
utility function in Equation 4.4. In our student-case, we assume the interaction-parameter to be 
zero, implying that students living together are not concerned whether all achieve equal utilities 
from relocating. Equation 4.4 then becomes:

∑=
h

hh
i

iih oUoU )()(  (6.1)

)(oU h  represents the utility derived from renting a residence o  by the student-household h  

as a whole, )(oU
hi

 represents the utility derived by each student hi  constituting this student-

household, and 
hi
 represents the relative contribution of student hi  to this utility. 

 To illustrate this complexity, we also included the even simpler scenario where students, 
living together with a partner, do not make joint decisions. Practically, we assumed that, in the 
scenario without joint decision-making, in case of students living together, the male student (or 

the oldest one for that matter) makes the decision, and assigns a weight 0=
hi

 to the decisions 
of all other student-household members. In the scenario with joint decision-making, in case of 

students living together, we assumed that all have an equal say, so that I
hi

/1= , with I  being 
the total number of students living in the same student-household, and thus making decisions 
together.

Important to mention is that in the scenario without joint decision-making only the moving 
behavior of male students is recorded.

Unboundedly rational students / stationary housing-market

U(v ,c1 1)

U0

move

do not move

U0

U(o )0

evaluate residence o1

o2

o3

action 1: consider to
move

action 3: stay

action 2: move back
to parents
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AVERAGE POPULATION RESULTS  (Table 6.1)

In the scenario without joint decision-making, the number of moves per change in preference-
profile is 1.00, implying that each student wanting to change residence, actually finds an 
alternative and moves. This is evident as the student has perfect knowledge regarding the 
housing-market, and as all residence-classes are continuously available for rent. This also 
explains why the number of time-steps between the change in preference-profile and the first 
move is 0.00. The average increase in utility due to changing residence is 21.23%, implying 
that the student improves his/her housing-situation significantly. Again, this is evident, as the 
perfect housing-market guarantees that students will always find a residence perfectly matching 
their preferences.
 In the scenario with joint decision-making, the number of moves per change in 
preference-profile is slightly lower than one (0.95), implying that there are students that do not 
relocate though they did change preference profile. It is indeed possible that in the case of two 
students living together, one of both changes preference-profile, nevertheless staying in the 
current residence. The average increase in utility is slightly higher compared to the scenario 
without joint decision-making, 21.42% versus 21.23%. We will explain this later (see Table 
6.3).
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Table 6.1: Average results on the level of the whole population. In the scenario without joint 
decision-making, only the moving behavior of the male students is recorded

Unboundedly rational students / stationary housing-market

no joint 
decision-
making

joint decision-
making

number of moves per change in 
preference-profile 1.00 0.95

increase in utility related to the first 
move after changing preference-

profile
21.23% 21.42%

number of time-periods between 
changing preference-profile and the 

first move
0.00 0.20
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NUMBER OF MOVES BY PREFERENCE-PROFILE  (Table 6.2)

As was already clear from the average population data, in the scenario with joint decision-
making, the number of moves per change in preference-profile is slightly lower than one. If we 
aggregate this data according to the newly adopted preference-profile, then the students moving 
less than once seem to be those with preference-profiles 3, 6 and 9, moving respectively 0.85, 
0.94 and 0.96 times per change in profile. What these students have in common is that they 
prefer two-room residences, a preference returning mostly among students that do live together 
with a partner. It could be that one of both partners changes preference-profile, but that both 
agree to stay in the current residence.
 Recall that in the case without joint decision-making, only the moving behavior of male 
students is recorded, so that changes in the preference-profile of female students have no impact 
on our plotted data.

INCREASE IN UTILITY BY PREFERENCE-PROFILE  (Table 6.3)

The average increases in utility across preference-profiles seem to correlate between both 
scenarios. Note that, contrary to our intuition, for most preference-profiles the increase in utility 
is higher with than without joint decision-making. An explanation here is that two students, 
living in a sub-optimal housing-situation due to mismatching preference-profiles, will be able 
to improve their housing-situation more than average, the moment they decide to live separate 
again, or the moment their preference-profiles do start to match.
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Table 6.2: Number of moves per change in preference-profile

Table 6.3: Average increase in utility related to the first move after changing preference-
profile

Unboundedly rational students / stationary housing-market

newly adopted 
preference-profile

no joint decision-
making

joint decision-
making

1 1.00 1.00

2 1.00 1.00

3 1.00 0.85

4 1.00 1.00

5 1.00 1.00

6 1.00 0.94

7 1.00 1.00

8 1.00 1.00

9 1.00 0.96

average 1.00 0.95

newly adopted 
preference-profile

no joint decision-
making

joint decision-
making

1 26.66% 26.84%

2 18.35% 18.16%

3 20.50% 20.28%

4 28.84% 28.65%

5 18.88% 21.64%

6 20.39% 17.93%

7 21.77% 23.58%

8 14.81% 16.73%

9 18.18% 18.33%

average 21.23% 21.42%
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PREFERENCE-PROFILE MATCHING NEW RESIDENCE  (Table 6.4)

The Table gives an indication of how perfect the housing-market is. As each student is able to 
find a residence matching his/her preference profile, this housing-market indeed is perfect. The 
same Table also illustrates that –in case of joint decision-making- students living together with 
a partner with another preference-profile, indeed make compromises so that, at least, one of 
both does not end up in a residence belonging to his/her preferred residence-class. This is the 
case for 2% of those students with preference-profile 3, 70% of those with profile 6, and 17% 
of those with profile 9. The extreme difference between these results (2% compared to 70%) is 
due to the fact that students living together with a partner with another preference-profile derive 
an equal utility from residences matching either preference-profile.

NUMBER OF TIME-PERIODS BY PREFERENCE-PROFILE  (Table 6.5)

As the average population data already indicated, the fact that students are unboundedly rational, 
and the fact that the all residence-classes are constantly available guarantees that students 
searching for a particular residence, can directly find it. Except for students adopting profiles 
3 and 9, spending, on average, respectively 0.09 and 0.65 time-periods to find a residence to 
move to. To explain this, consider students living together with a partner. It could be that, while 
living together with this partner, these students change preference-profile (either to profile 3, 6 
or 9), but, as indicated earlier, do not decide to move because of their partner. The moment these 
students no longer live together with this partner, there is no longer anyone to agree with so that 
they will directly move to a residence matching their profile. This explains why the number of 
time-periods between changing preference-profile and the first move is not zero, in spite of a 
perfect housing-market. Table 6.7 plots the life- and move-course of a student going through 
this scenario. We will discuss this Table in Chapter 6.2.3.
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Table 6.4: The distribution of preference-profiles matching the final residence the students 
moved to, without joint decision-making (above the line) and with joint decision-making 
(below the line)

Table 6.5: Number of time-periods between changing preference-profile and the first move

Unboundedly rational students / stationary housing-market

newly adopted 
preference-profile

preference-profile of residence moved to

1 2 3 4 5 6 7 8 9 11

1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 98% 0% 0% 2% 0% 0% 0% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 30% 0% 0% 70% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 17% 0% 0% 0% 0% 0% 83% 0%

newly adopted 
preference-profile

no joint decision-
making

joint decision-
making

1 0.00 0.00

2 0.00 0.00

3 0.00 0.09

4 0.00 0.00

5 0.00 0.00

6 0.00 0.00

7 0.00 0.00

8 0.00 0.00

9 0.00 0.65

average 0.00 0.20
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STUDENT LIFE- AND MOVE-COURSES  (Tables 6.6 and 6.7)

To illustrate the impact of joint decision-making, the Table depicts the life- and move-course of 
a randomly selected student, first in the case where no joint-decision takes place, and secondly 
in the case where it does take place. In both cases, the student moves only once during his 
student-career, namely at period 521, triggered by the decision to live together with another 
student. As the Table indicates, both students have different preference-profiles -9 versus 3- so 
that in the scenario without joint decision-making the (female) partner has to agree with the 
choice of our student, whereas in the scenario with joint decision-making, it is our student that 
gives in.
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Table 6.6: The life- and move-course of student 3459 ( = a move), without joint decision-
making (above the line) and with joint decision-making (below the line) 

Table 6.7: The life- and move-course of student 4312 ( = a move)

Unboundedly rational students / stationary housing-market

period

life-course move-course

study year living with 
parents

living with 
partner pref-profile pref-profile 

partner moved pref-profile 
residence

0 0 true false 10 - false 10
521 0 false true 9 3 true 9
538 1 false true 9 3 false 9
590 2 false true 9 3 false 9
642 3 false true 9 3 false 9
694 4 false true 9 3 false 9
746 5 false true 9 3 false 9
798 6 false true 9 3 false 9
850 7 false true 9 3 false 9
902 finished false true 9 3 false 9
0 0 true false 10 - false 10

521 0 false true 9 3 true 3
538 1 false true 9 3 false 3
590 2 false true 9 3 false 3
642 3 false true 9 3 false 3
694 4 false true 9 3 false 3
746 5 false true 9 3 false 3
798 6 false true 9 3 false 3
850 7 false true 9 3 false 3
902 finished false true 9 3 false 3

period

life-course move-course

study year living with 
parents

living with 
partner pref-profile pref-profile 

partner moved pref-profile 
residence

0 0 true false 10 - false 10
677 0 true false 10 - false 10
695 1 true false 10 - false 10
747 2 true false 10 - false 10
799 3 false true 3 3 true 3
851 4 false true 9 3 false 3
903 5 false true 9 3 false 3
955 6 false true 9 3 false 3
1007 7 false false 9 - true 9
1043 finished false false 9 - false 9
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§ 6.2.3 Planning-simulations

Since students are unboundedly rational, and thus at all times know what is available on the 
housing-market, they do not search. Experimenting with the advertisement-period is thus 
irrelevant in this scenario. For this reason, only the three first planning-indicators -vacancy-rate, 
turnover-rate and satisfaction-rate- are plotted.

RESISTANCE TO CHANGE  (Figures 6.3 and 6.4)

Recall that unboundedly rational students have both a resistance to move to another residence 
m∆ , and a resistance to move back to the parental home 0∆ . In this simulation we assume this 

last resistance to be zero; the resistance to move m∆ , is either zero, medium or high.
 As the left graph in Figure 6.3 illustrates, an increase in resistance results in a decrease 
in number of moves; a number often going well below 1.00, implying that a significant number 
of students give up the idea of moving in spite of experiencing a change in preference-profile. 
For students changing to profiles 2 and 8, the number of moves is even significantly lower than 
1.00, decreasing to 0.47 in case of profile 8.
 As the right graph in Figure 6.4 illustrates, an increase in resistance may delay the 
moment at which students move. For an explanation, let us have a look at the life- and move-
course of student 4312, depicted in Table 6.7. At period 799, this student decides to live together. 
At period 851, he changes preference-profile, so that both partners have a differing profile, 
namely 9 versus 3. As a consequence, and because of the high resistance to change, they cannot 
find a satisfying residence. At period 1007, both students decide to live separate again, as such 
potentially changing preference-profile. Though the student does not change preference-profile, 
he no longer has to agree with a partner, so that he can finally move to a residence matching his 
profile. The time-period between the change in profile and the actual move is 156.
 As the graphs in Figure 6.4 illustrate, increasing the resistance to change results in a 
decreasing turnover-rate, but seems to have hardly any effect on the vacancy- and satisfaction-
rate. The decreasing turnover-rate is self-evident as a higher resistance to change implies that 
students are more reluctant to move. What the turnover-graph also illustrates is that residences of 
category 4 have a significantly lower turnover-rate than those of all other categories –respectively 
3% versus 20%. Looking at the vacancy-graph learns that the vacancy-rate for these types of 
residences is extremely high (up to 90%), implying that there simply is no demand, explaining 
the low turnover-rate.
 The vacancy-graph plots the percentage of the overall housing-market that –on average- 
is available for rent. According to Figure 6.4, there seems to be no clear correlation between 
resistance to change and the vacancy-rate: for some residence-categories, the vacancy-rate 
decreases with an increasing resistance, whereas for others, the opposite is true. This can be 
traced back to the fact that the housing-market is stationary, meaning that the overall number 
of vacancies is kept constant, and, on top of this, is identical over the different simulations. So 
if the vacancy-rate decreases for some residence-categories, it has to increase for other profiles, 
explaining the seemingly irregular behavior of the graph.
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Figure 6.3: The impact of a zeroed (), medium () and high () resistance to change on 
the number of moves per change in preference-profile (left), and the number of time-periods 
between changing preference-profile and the first move (right)

Figure 6.4: The impact of a zeroed (), medium () and high () resistance to change on the 
vacancy-rate (top left), turnover-rate (top right) and satisfaction-rate (bottom)
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The satisfaction-graph plots the lifestyle-utility the students derive from the residence they 
moved to. The actual amount of utility is a direct consequence of the definition of the preference-
profiles, and is as such not relevant. What is relevant is whether the changes in utility correlate 
with the changes in resistance-settings. As the graph illustrates, this does not seem to be the 
case. The explanation is that in a stationary and exhaustive housing-market, students can 
always move to the residence matching their preference-profile, as such all deriving the same, 
maximum lifestyle-utility from their new residence. Only in case of a student living together 
with a partner does this utility vary slightly. These students move only to 2-room residences, 
belonging to categories 2, 4 or 6.
 As Table 6.8 illustrates, the higher the resistance to change, the more selective the 
students seem to be regarding the residence they move to: most students indeed move to 
residences matching either preference-profile 3 or 9. The Table suggests that in absence of 
resistance, residences matching nearly all preference-profiles seem to attract students, whereas 
in case of a high resistance, only residences matching either preference-profile 3 or 9 do. The 
explanation is that only particular life-course changes, i.e. those where a student either changes 
to a preference-profile 3 or 9, generate such a room-stress (i.e. decrease in utility derived from 
the current residence), that a high resistance will not prevent these students from moving.
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Table 6.8: The preference-profile matched by the residence the student moved to; grouped 
according to the preference-profile matched by the residence the student used to live in, and 
this under different resistance to change settings

Unboundedly rational students / stationary housing-market

preference-profile matched by 
the old residence

preference-profile matched by the new residence

1 2 3 4 5 6 7 8 9 10 11

1 no resistance 0% 20% 39% 1% 5% 1% 3% 9% 22% 0% 0%
medium res 0% 20% 39% 1% 5% 1% 3% 9% 22% 0% 0%

high res 0% 0% 51% 0% 6% 1% 0% 12% 31% 0% 0%
2 no resistance 7% 0% 45% 2% 2% 2% 3% 7% 34% 0% 0%

medium res 7% 0% 44% 2% 2% 2% 3% 7% 33% 0% 0%
high res 0% 0% 28% 4% 0% 2% 6% 0% 61% 0% 0%

3 no resistance 9% 12% 0% 3% 3% 0% 2% 9% 62% 0% 0%
medium res 11% 0% 0% 4% 0% 0% 3% 0% 82% 0% 0%

high res 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
4 no resistance 8% 20% 34% 0% 4% 2% 2% 6% 23% 0% 0%

medium res 8% 21% 35% 0% 0% 3% 3% 6% 25% 0% 0%
high res 0% 22% 41% 0% 0% 3% 0% 6% 28% 0% 0%

5 no resistance 3% 14% 43% 5% 0% 0% 0% 8% 27% 0% 0%
medium res 4% 16% 46% 0% 0% 0% 0% 9% 25% 0% 0%

high res 8% 0% 21% 0% 0% 0% 0% 0% 71% 0% 0%
6 no resistance 3% 7% 45% 0% 0% 0% 0% 3% 41% 0% 0%

medium res 11% 0% 68% 0% 0% 0% 0% 5% 16% 0% 0%
high res 36% 0% 27% 0% 0% 0% 9% 0% 27% 0% 0%

7 no resistance 17% 10% 32% 7% 2% 0% 0% 2% 29% 0% 0%
medium res 17% 10% 34% 7% 2% 0% 0% 0% 29% 0% 0%

high res 0% 17% 50% 0% 4% 0% 0% 0% 29% 0% 0%
8 no resistance 3% 13% 44% 0% 3% 3% 0% 0% 36% 0% 0%

medium res 3% 16% 39% 0% 3% 3% 0% 0% 35% 0% 0%
high res 7% 0% 14% 0% 0% 0% 0% 0% 79% 0% 0%

9 no resistance 17% 39% 2% 7% 9% 2% 5% 20% 0% 0% 0%
medium res 21% 49% 2% 10% 12% 0% 7% 0% 0% 0% 0%

high res 63% 0% 8% 30% 0% 0% 0% 0% 0% 0% 0%
10 no resistance 27% 8% 24% 17% 4% 1% 3% 3% 14% 0% 0%

medium res 27% 8% 24% 17% 4% 1% 3% 3% 14% 0% 0%
high res 27% 8% 24% 17% 4% 1% 3% 3% 14% 0% 0%
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RESIDENCE-CLASS DISTRIBUTION  (Figures 6.5 and 6.6)

Two simulations are run, the first with an exhaustive residence-class distribution and the second 
with a non-exhaustive distribution. As Table 6.9 illustrates, the non-exhaustive distribution is 
manipulated in such a way that there are no residences matching either preference-profile 2, 
5 and 7. Taking into account that the housing-market is stationary, this distribution remains 
constant during the simulation.

Table 6.9: Preference-profile distribution in case of an exhaustive and a non-exhaustive 
distribution, over the whole housing-market

As the left graph in Figure 6.5 illustrates, in the scenario of a non-exhaustive residence-class 
distribution, students always move less or an equal amount of times than in the scenario of 
an exhaustive supply. This seems evident as, in our stationary scenario, an exhaustive supply 
implies that the student always finds something matching his/her preferences. In the non-
exhaustive case, this is not guaranteed, so that, for instance, of all the students changing to 
preference-profile 9, only 80% actually moves. Students adopting preference-profile 3 are an 
exception, in that they move more in case of a non-exhaustive distribution. This is due to the 
joint decision-making.
 As the right graph in Figure 6.5 illustrates, some students do not directly find a residence 
matching their preference-profile. The same explanation as in Figure 6.3 holds here.

housing-market
preference-profile matched by residences

1 2 3 4 5 6 7 8 9 11
exhaustive distr. 10% 14% 13% 6% 3% 8% 3% 3% 22% 19%

non-exhaustive distr. 16% 0% 12% 7% 0% 12% 0% 6% 21% 27%
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Figure 6.5: The impact of an exhaustive () and a non-exhaustive () residence-class 
distribution on the number of moves per change in preference-profile (left), and the number of 
time-periods between changing preference-profile and the first move (right)

Figure 6.6: The impact of an exhaustive () and a non-exhaustive () residence-class 
distribution on the vacancy-rate (top left), turnover-rate (top right) and satisfaction-rate 
(bottom)
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As Table 6.10 illustrates, in the non-exhaustive-case, a significant proportion of the student-
population moves to a residence not matching their preference-profile: especially those students 
with a newly adopted preference-profile of 2, 5 or 7, for there are no residences available on the 
housing-market matching these profiles. Of all students changing to preference-profile 2, for 
instance, 100% moves to a residence matching profile 1.

Table 6.10: The distribution of preference-profiles matching the final residence the students 
moved to, in case of a non-exhaustive distribution

As Figure 6.6 illustrates, none of the graphs seem to behave regular. Recall from the resistance 
simulation that, conforming to a stationary housing-market; the vacancy-rate is kept constant, 
explaining the irregular graph-behavior. Regarding the turnover-rate, one would expect that a 
non-exhaustive distribution would result in fewer moves (i.e. more students giving up the idea 
of moving). This assumption seems to hold for categories 1, 2 and 3, but not for categories 4, 5 
and 6 suggesting that students which in the exhaustive-case would have moved to a residence 
matching preference-profiles 2, 5 or 7, now move to a residence belonging to categories 4, 5 or 
6. According to Table 6.10 this indeed seems to be the case for students adopting profile 7, now 
moving all to a residence matching profile 8 (corresponding to a residence of category 5). The 
move-course of student 3872 (depicted in Table 6.11), for instance, seems to confirm this. He 
changes to preference-profile 7 at time-period 615, but moves to a residence matching profile 8, 
indeed because there are no residence matching the profile he changed to.
 Note that the vacancy- and the turnover-graph, in fact, do behave regular, in that if the 
vacancy-rate for a particular category is the highest in case of an exhaustive than in case of a 
non-exhaustive offer, the turnover-rate will be lower in case of an exhaustive than in case of a 
non-exhaustive offer. 

newly adopted 
preference-profile

preference-profile of residence moved to

1 2 3 4 5 6 7 8 9 11

1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 33% 0% 0% 2% 0% 0% 65% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 31% 0% 0% 69% 0%
7 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
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Table 6.11: The life- and move-course of student 3872; in case of a non-exhaustive 
distribution ( = a move)

Table 6.12: The life- and move-course of student 3515; in case of a low and high supply       
( = a move)

Unboundedly rational students / stationary housing-market

period

life-course move-course

study year living with 
parents

living with 
partner pref-profile pref-profile 

partner moved pref-profile 
residence

0 0 true false 10 - false 10
521 0 true false 10 - false 10
563 1 true false 10 - false 10
615 2 false false 7 - true 8
667 3 false false 7 - false 8
719 4 false false 1 - true 1
771 5 false false 1 - false 1
823 6 false false 1 - false 1
875 finished false false 1 - false 1

period

life-course move-course

study year living with 
parents

living with 
partner pref-profile pref-profile 

partner moved pref-profile 
residence

0 0 true false 10 - false 10
521 0 true false 10 - false 10
534 1 true false 10 - false 10
586 2 false false 4 - true 5
638 3 false true 3 9 false 4
690 4 false false 3 - true 9
749 5 false false 3 - true 3
801 6 false false 3 - false 3
853 7 false false 3 - false 3
905 finished false false 3 - false 3
0 0 true false 10 - false 10

521 0 true false 10 - false 10
534 1 true false 10 - false 10
586 2 false false 4 - true 4
638 3 false true 3 9 false 4
690 4 false false 3 - true 3
749 5 false false 3 - false 3
801 6 false false 3 - false 3
853 7 false false 3 - false 3
905 finished false false 3 - false 3
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SUPPLY SIZE  (Figures 6.7 and 6.8)

Two simulations are run: the first one with a low supply of residences available for rent (equal 
to 25% of the population-size after 10 simulation rounds), the second one with a large supply of 
residences available for rent (equal to 50% of the population-size after 10 simulation rounds). 
The high supply, in fact is the same supply as in the initial simulations, implying that the 
residence-class distribution is exhaustive (as illustrated in Table 6.9). The low supply is so low 
that the distribution is no longer exhaustive (i.e. there are less than 486 residences available for 
rent). Recall that at the beginning of a simulation all students either rent a room or live with 
their partners, so that the above supply of residences available for rent in fact is a surplus over 
the already rented out residences.
 Regarding the number of moves, one would expect that a higher supply would result in 
a higher number of moves. This seems to be the case for all students, except those that adopted 
preference-profile 3. The explanation is that some of these students move to a sub-optimal 
residence while being a couple, to then move when they become single again. If the market had 
been exhaustive, they wouldn’t have to move. Student 3515, for instance, illustrates this case.

The graphs in Figure 6.8 are similar to the ones in case of a non-exhaustive residence-category 
distribution (depicted in Figure 6.6). The same mechanisms indeed are at play here: Table 
6.13, for instance, suggests that there are no residences matching preference-profile 4, forcing 
students to substitute preferences, in this case ending up in residences matching profile 6. This 
also explains the high turnover-rate in case of a low supply for residences of category 4 (i.e. 
residences matching profile 6).

Table 6.13: The distribution of preference-profiles matching the final residence the students 
moved to, in case of a low supply

newly adopted 
preference-profile

preference-profile of residence moved to

1 2 3 4 5 6 7 8 9 11

1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 33% 0% 0% 2% 0% 0% 65% 0%
4 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 34% 0% 0% 66% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
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Figure 6.7: The impact of a low () and high () supply on the number of moves per change 
in preference-profile (left), and the number of time-periods between changing preference-
profile and the first move (right)

Figure 6.8: The impact of a low () and high () supply on the vacancy-rate (top left), 
turnover-rate (top right) and satisfaction-rate (bottom)
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§ 6.2.4 Conclusions

Model settings: the housing-market is stationary, implying that the supply of residences 
available for rent remains constant. This supply is furthermore defined in such a way that it is 
exhaustive, i.e. that all residence-classes are available for rent. The student are unboundedly 
rational, implying that they are, at all times, aware of all residences on the housing-market that 
are for rent, and know all details of these residences. As such, they are able to perfectly assess 
the utility they will derive from living in each residence. In case the student lives together with 
a partner, he/she makes joint-decisions with this partner.

Model assessment: the scenario is realistic, firstly, in that students do substitute preferences in 
case of a non-exhaustive residence-category distribution, forcing them to move to a residence 
not matching their preferences; and secondly, in that a student living together with a partner 
with a differing preference-profile will have a lower utility-gain compared to a student living 
together with a partner with an identical preference-profile.
 The scenario is not realistic in that the majority of students move exactly once per 
change in preference-profile (see Figure 6.9), implying that they are always able to find the 
residence best matching their new preferences. The housing-market is thus in equilibrium, in 
contrast with the empirical findings. This is evidently a direct consequence of the housing-
market settings (i.e. stationary and exhaustive).

Figure 6.9: Example of representative life-courses (full line) and move-courses (dotted line) in case of 
unboundedly rational students in a stationary housing-market
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§ 6.3 Unboundedly rational students / non-stationary housing-market

§ 6.3.1 Parameter settings

HOUSING-MARKET SETTINGS

The market is non-stationary, implying that when a residence is let out, it is no longer available 
to other students until those who rent it move out again. In the stationary scenario, this is not 
the case since students in fact move to copies of the residences offered for rent, so that, when 
they move, their former residence simply disappears. The fact that, in a non-stationary market, 
residences temporarily disappear from the market makes that the supply changes continuously. 
As in the previous scenario, the initial supply is exhaustive, implying that all 486 residence-
classes are available for rent at the beginning of each simulation.

POPULATION SETTINGS

The population settings are identical to the previous scenario, implying among others that 
students living together with a partner make joint-decisions; that students have no resistance to 
change; that the rent of all residences is zero, and that all students have a uniform budget.

§ 6.3.2 Behavior-simulations

AVERAGE POPULATION RESULTS  (Table 6.14)

As the Table illustrates, students move significantly more when the market is non-stationary, than 
when it is stationary. They also seem to gain less utility during their first move, and sometimes 
even have to postpone moving (i.e. the number of time-periods is bigger than zero) because they 
do not find an acceptable alternative. These are all direct consequences of switching to a non-
stationary housing-market, a market where residences that are let out, are no longer available to 
other students. The supply thus changes continuously, so that a student might continuously come 
across better alternatives, and as such moves multiple times per change in preference-profile. 
The opposite is also true, a student being unable to find any acceptable residence because all 
are rented out. He/she will then have to stay in his/her current residence postponing moving till 
better residences become available again.
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Table 6.14: Average results on the level of the whole population

no joint 
decision-making

joint decision-
making

non-stationary 
housing-market

number of moves per change in 
preference-profile 1.00 0.95 3.39

increase in utility related to the first 
move after changing preference-

profile
21.23% 21.42% 18.96%

number of time-periods between 
changing preference-profile and the 

first move
0.00 0.20 1.47

Unboundedly rational students / non-stationary housing-market
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NUMBER OF MOVES BY PREFERENCE-PROFILE  (Table 6.16)

As the Table illustrates, all profiles move more in case of a non-stationary market. Students 
with a preference-profile 3, 6 and 9 even move up to 4 or 6 times per change in profile. This is 
evidently not realistic. But neither are our initial assumptions: all residence-classes are available 
for rent, students have no resistance against change, and rent has no impact. The consequence is 
that students move, even if the new residence only slightly improves their housing-situation.
 Looking for differences among the profiles, one would expect a correlation between 
the number of moves and the competition on the housing-market. Competition is defined as 
the demand for residences matching a particular preference-profile, divided by the number of 
residences matching this profile that are offered for rent. In order to calculate the demand for 
residences matching a particular preference-profile, we count, each time-period, the number 
of students matching this profile that consult a source (i.e. that search). We would expect that 
a higher competition would result in a lower number of moves. Judging from Tables 6.15 and 
6.16, this does not seem to be the case: the competition for residences matching preference-
profile 3, for instance, is high (4.12), just as the number of moves of students that adopted this 
profile (4.01). The explanation is evidently that because of the lack of any resistance, students 
are willing to substitute preferences, as such slowly improving their housing-situation. The fact 
that residences are randomly attributed to information-sources even emphasizes this.

Table 6.15: Average competition on the housing-market, per preference-profile

INCREASE IN UTILITY PER PREFERENCE PROFILE  (Table 6.17)

As the Table illustrates, the increase in utility is lower in case of a non-stationary housing-
market. Except for students where the new preference-profile is 2. If we look at Table 6.18, 
plotting the preference-profiles of the residences these students moved to, we see that 100% 
of these students were able to move to a residence matching his/her profile. If we then look at 
Table 6.16 we see that these students only moved 1.83 times per change in preference-profile. 
Both figures suggest that for students changing to preference-profile 2, the non-stationary and 
the stationary situation are quite similar. If we look at students changing to preference-profile 
6, on the other hand, 98% seems to find a matching residence, but they also have to move 3.44 
times to find this residence, explaining the relatively lower increase in utility, 15.97% versus 
17.93%.

residence preference-profile

1 2 3 4 5 6 7 8 9

demand / offer 0.50 0.17 4.12 0.43 0.15 0.05 0.16 0.41 0.78
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Table 6.16: Number of moves per change in preference-profile

Table 6.17: Average increase in utility related to the first move after changing preference-
profile

newly adopted 
preference-profile

no joint decision-
making

joint decision-
making

non-stationary 
housing-market

1 1.00 1.00 2.77
2 1.00 1.00 1.83
3 1.00 0.85 4.01
4 1.00 1.00 2.82
5 1.00 1.00 2.68
6 1.00 0.94 3.44
7 1.00 1.00 3.54
8 1.00 1.00 3.10
9 1.00 0.96 4.13

average 1.00 0.95 3.39

newly adopted 
preference-profile

no joint decision-
making

joint decision-
making

non-stationary 
housing-market

1 26.66% 26.84% 25.31%
2 18.35% 18.16% 18.46%
3 20.50% 20.28% 16.19%
4 28.84% 28.65% 26.33%
5 18.88% 21.64% 20.57%
6 20.39% 17.93% 15.97%
7 21.77% 23.58% 21.94%
8 14.81% 16.73% 15.68%
9 18.18% 18.33% 15.20%

average 21.23% 21.42% 18.96%

Unboundedly rational students / non-stationary housing-market
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PREFERENCE-PROFILE MATCHING NEW RESIDENCE  (Table 6.18)

As the Table illustrates, a significant proportion of the moving student-population moves to 
residences not matching their preference-profile. This illustrates the empirical observation that 
a limited housing-supply forces students to move into alternative, less preferred residences, or 
as Oskamp (1997) phrases it, forcing them to substitute their preferences.

NUMBER OF TIME-PERIODS BY PREFERENCE-PROFILE  (Table 6.19)

As the Table illustrates, a lot of students have to postpone moving because they do not directly 
find a good alternative. Only students, of which the new preference-profile is either 1 or 4, 
seem to move almost immediately. If we look at Table 6.17, these are precisely those students 
of which the increase in utility is the highest, namely around 25%. These postponements imply 
that there is competition on the housing-market: the demand for particular housing-classes 
exceeds the supply, so that students either have to substitute their preferences (what occurs as 
we indicated above), or simply have to wait for new vacancies.
 As with the number of moves, one would expect that the number of time-periods would 
be low in case of a low competition and high in case of a high competition. This does not seem to 
be the case: according to Table 6.19, students adopting profile 3 or 6 both spend a high number 
of time-periods on finding an alternative residence: respectively 2.67 and 3.41. According to 
Table 6.15, the competition for residences matching profile 3 is significantly higher than for 
those of profile 6: respectively 4.12 and 0.05. This is related to joint-decision making (since 
preference-profiles 3 and 6 correspond to students living together with a partner).
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Table 6.18: The distribution of the preference-profiles matching the final residence the 
students moved to

Table 6.19: Number of time-periods between changing preference-profile and the first move

newly adopted 
preference-profile

preference-profile of residence moved to

1 2 3 4 5 6 7 8 9 11

1 77% 20% 2% 0% 0% 0% 0% 0% 0% 1%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 1% 2% 66% 3% 0% 10% 0% 0% 5% 14%
4 0% 0% 0% 58% 10% 18% 0% 0% 0% 14%
5 0% 0% 0% 42% 43% 10% 0% 0% 0% 4%
6 0% 0% 2% 0% 0% 98% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 89% 3% 0% 8%
8 0% 4% 0% 0% 0% 0% 22% 60% 0% 14%
9 1% 2% 12% 0% 0% 3% 0% 0% 77% 5%

newly adopted 
preference-profile

no joint decision-
making

joint decision-
making

non-stationary 
housing-market

1 0.00 0.00 0.08
2 0.00 0.00 0.11
3 0.00 0.09 2.67
4 0.00 0.00 0.02
5 0.00 0.00 1.68
6 0.00 0.00 3.41
7 0.00 0.00 0.30
8 0.00 0.00 0.39
9 0.00 0.65 2.38

average 0.00 0.20 1.47

Unboundedly rational students / non-stationary housing-market
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STUDENT LIFE- AND MOVE-COURSES  (Tables 6.20 and 6.21)

To illustrate the high number of moves, take for instance student 3734, changing preference-
profile twice, but moving 7 times. The first change in preference-profile is at period 653, when 
the student decides to move away from his parents. He does find a residence, but as the table 
illustrates, this residence is not really satisfactory as he moves 3 times without changing profile. 
The second change in preference-profile is at period 757, but does not result in a move. This 
happens only five periods later, at 762, and a second and third time at 820 and 871. So less than 
half of the moves are triggered by a change in profile, all the others by a fluctuating supply.
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Table 6.20: The life- and move-course of student 3734 ( = a move)

Table 6.21: The life- and move-course of student 3501 ( = a move)

period

life-course move-course

study year living with 
parents

living with 
partner pref-profile pref-profile 

partner moved pref-profile 
residence

0 0 true false 10 - false 10
573 0 true false 10 - false 10
601 1 true false 10 - false 10
653 2 false false 1 - true 3
657 2 false false 1 - true 2
664 2 false false 1 - true 2
674 2 false false 1 - true 2
705 3 false false 1 - false 2
757 4 false false 8 - false 2
762 4 false false 8 - true 11
809 5 false false 8 - false 11
820 5 false false 8 - true 11
861 6 false false 8 - false 11
871 6 false false 8 - true 8
913 7 false false 8 - false 8
965 finished false false 8 - false 8

period

life-course move-course

study year living with 
parents

living with 
partner pref-profile pref-profile 

partner moved pref-profile 
residence

0 0 true false 10 - false 10
521 0 true false 10 - false 10
546 1 true false 10 - false 10
598 2 true false 10 - false 10
650 3 false false 1 - true 1
702 4 false false 2 - false 1
754 5 true false 10 - true 10
806 6 true false 10 - false 10
858 finished true false 10 - false 10

Unboundedly rational students / non-stationary housing-market
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§ 6.3.3 Planning-simulations

RESISTANCE TO CHANGE  (Figures 6.10 and 6.11)

Three simulations are run, varying the resistance to move m∆  from zero, to medium, to high. As 
in the previous scenario, the resistance to move back to the parental home 0∆  is zero.
 As the left graph in Figure 6.10 illustrates, the number of moves per change in preference-
profile decreases, as in the stationary scenario, as the resistance to move increases, with this 
difference that this decrease is much more significant, up to 3 times more in the case of students 
with a preference-profiles 4 and 9.
 As the right graph illustrates, increasing the resistance generally results in longer 
postponements, except for students changing to preference-profile 2 and 4. These students 
either move directly, or simply give up the idea of moving in case of a high resistance. The 
moving-course of student 3501 (depicted in Table 6.21) illustrates this: changing to profile 2 at 
period 702, but not moving.

The turnover- and satisfaction-rate graphs behave as expected: the higher the resistance, the 
lower the turnover-rate and the higher the increase in utility (although slightly). Regarding 
the vacancy-rate, there does not seem to be any clear effect such as, for instance, particular 
residence-categories becoming more available as the resistance to change increases.
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Figure 6.10: The impact of a zeroed (), medium () and high () resistance to change on 
the number of moves per change in preference-profile (left), and the number of time-periods 
between changing preference-profile and the first move (right)

Figure 6.11: The impact of a zeroed (), medium () and high () resistance to change on 
the vacancy-rate (top left), turnover-rate (top right) and satisfaction-rate (bottom)
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RESIDENCE-CLASS DISTRIBUTION  (Figures 6.12 and 6.13)

Two simulations are run: the first one with an exhaustive residence-class distribution and the 
second with a non-exhaustive distribution. The initial non-exhaustive distribution is identical 
to the one used in the stationary scenario (depicted in Table 6.9), implying that there are no 
residences matching either preference-profile 2, 5 and 7. The difference with the stationary 
scenario is that the market is no longer stationary, and thus that the distribution will continuously 
change.
 Both graphs seem to confirm earlier findings: a non-exhaustive distribution results in 
fewer moves per change in preference-profile, except for students adopting either profile 6 or 8. 
The reason behind this is that students adopting preference-profiles 2, 5 or 7 (i.e. those profiles 
of which there are no matching residences available in case of a non-exhaustive market) have to 
either give up the idea of moving, or have to move to alternative residences. In case of students 
adopting profile 5, for instance, these alternative residences match preference-profile 6. This 
increases the competition for these type of residences, forcing students adopting profile 6 to 
also give up the idea of moving, or forcing them to (temporarily) rent sub-optimal alternatives 
and thus move more (as the moving-graph illustrates). Regarding the number of time-periods 
(the right graph in Figure 6.12), one would expect that a non-exhaustive distribution would 
result in longer postponements, at least for those profiles for which matching residences do not 
exist. This indeed seems to be the case for profiles 2 and 7. What the graph also illustrates is that 
the non-exhaustive distribution has effect on the moving behavior of all other profiles, indeed 
illustrating the existence of so-called location externalities (see Chapter 2.2.2).

Regarding the graphs in Figure 6.13, let us first compare this simulation with the corresponding 
simulation conducted in the stationary scenario (illustrated in Figure 6.6). As the vacancy-graph 
illustrates, the vacancy-rate is evidently lower than in case of a stationary market, taking into 
account that the market is no longer kept constant so that, as a student leaves his/her parental 
home and moves into a residence, this residence is no longer available to other students until he/
she moves again. Apart from a lower rate, the vacancy-rate seems to be distributed quite similar 
in the stationary and non-stationary scenario. Judging from the turnover-graph, the turnover-
rate is significantly higher in a non-stationary market, sometimes even reaching over 100%, 
implying that some residences are rented out more than once within one simulation year. The 
satisfaction-rate finally seems to be slightly lower than in the stationary case.
 Regarding the difference between the non-exhaustive and the exhaustive distribution 
then, the explanation of Figure 6.12 also holds here, in that students adopting profiles 2, 5 and 
7 look for alternative residences, causing a higher turnover-rate for residences belonging to 
categories 3 and 5 (i.e. residences matching preference-profiles 4, 5 and 6, 7).
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Figure 6.12: The impact of an exhaustive () and a non-exhaustive () residence-class 
distribution on the number of moves per change in preference-profile (left), and the number of 
time-periods between changing preference-profile and the first move (right)

Figure 6.13: The impact of an exhaustive () and a non-exhaustive () residence-class 
distribution on the vacancy-rate (top left), turnover-rate (top right) and satisfaction-rate 
(bottom)
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SUPPLY SIZE  (Figures 6.14 and 6.15)

Two simulations are run: the first one with a low initial supply of residences available for rent 
(equal to 15% of the population-size after 10 simulation rounds), the second one with a large 
initial supply of residences available for rent (equal to 35% of the population-size after 10 
simulation rounds). Important to mention here is that the low supply no longer guarantees that 
all residence-classes are available on the housing-market, implying a non-exhaustive residence-
class distribution (as assessed in the previous simulations). The large supply is the same supply 
as in the previous simulations, implying an initial exhaustive distribution (illustrated in Table 
6.9).
 As the left graph of Figure 6.14 illustrates, a low supply results in a higher number 
of moves than a high supply. The explanation lies in the fact that, because of the low supply, 
students temporarily have to live in sub-optimal residences, only being able to gradually improve 
their housing-situation. As one would expect, in case of a low supply students spend much more 
time on finding an alternative residence, up to 10 times more in case of preference-profile 7.

As the graphs in Figure 6.15 illustrate, an increasing supply results in an increasing vacancy-rate, 
a decreasing turnover-rate, and an increasing satisfaction-rate. Except for residences belonging 
to category 2 that is. This has to do with the high competition for this category of residences. 
As Table 6.15 illustrates, the competition among students with preference-profile 3 (of which 
the preferred residences belong to category to 2) is at a ratio of approximately 4 candidates per 
available residence, explaining the low vacancy-rate.
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Figure 6.14: The impact of a low () and high () supply on the number of moves per 
change in preference-profile (left), and the number of time-periods between changing 
preference-profile and the first move (right)

Figure 6.15: The impact of a low () and high () supply on the vacancy-rate (top left), 
turnover-rate (top right) and satisfaction-rate (bottom)

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9

newly adopted preference-profile

ti
me
-p
er
io
d

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9

newly adopted preference -
profile

n
u
m
b
e
r
 
o
f
 
m
o
v
e
s

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6

residence-category

va
ca
nc
y-
ra
te

0%

40%

80%

120%

160%

200%

1 2 3 4 5 6

residence-category

tu
rn
ov
er
-r
at
e

0

20

40

60

80

100

1 2 3 4 5 6

residence-category

sa
ti
sf
ac
ti
on
-r
at
e

Unboundedly rational students / non-stationary housing-market



126 IN SEARCH OF A COMPLEX SYSTEM MODEL

§ 6.3.4 Conclusions

Model settings: the housing-market turns non-stationary, implying that when a residence is 
let out, it is no longer available to other students until these students move out again. Because 
residences temporarily disappear from the market, the supply continuously changes. In the 
stationary scenario this is not the case, as the supply is artificially kept constant. As in the previous 
scenario, the initial supply is exhaustive. The population-settings are identical to the previous 
scenario, implying that student remain unboundedly rational and make joint decisions.

Model assessment: the scenario is realistic, firstly, in that students do substitute preferences in case 
of a non-exhaustive supply. The difference with the stationary scenario is that this substitution 
is much more severe. Secondly, in that –on average- students have to compete over the same 
residence, so that some do not directly find an alternative residence upon changing preference-
profile, having to postpone moving. The housing-market is thus no longer in equilibrium.
 The scenario is not realistic in that the number of moves per change in profile is too 
high. As pointed out before, this is a direct result of our scenario settings: all residence-classes 
are available for rent, students have no resistance against change, and rents have no impact. 
The consequence is that students move, even if the new residence only slightly improves their 
housing-situation. 

Figure 6.16: Example of a representative life-course (full line) and move-course (dotted line) in case 
of unboundedly rational students in a non-stationary housing-market
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§ 6.4 Boundedly rational students / non-stationary housing-market

§ 6.4.1 Parameter settings

HOUSING-MARKET SETTINGS

The housing-market is identical to that of the previous scenario, in that the initial supply is 
exhaustive (i.e. all 486 residence-classes are available for rent) and that the market is non-
stationary.

POPULATION SETTINGS

Boundedly rational students are rational in the sense that they are utility maximizers, but differ 
from unboundedly rational students in that they are unable to assess all choice-alternatives 
available on the housing-market, either because they are cognitively constrained or because 
they do not have access to all information. Consequently, boundedly rational students base their 
decisions on beliefs regarding what is available on the housing-market, and continuously collect 
information to update these beliefs. In order to illustrate how this process is implemented, let 
us again redraw the three decision-formalisms introduced in Chapter 4.1 -Activity Diagram, 
Decision Table and Decision Tree- to our student-case.

Figure 6.17: Activity Diagram of the student-case, in case of boundedly rational students

As in all previous scenarios, the Activity Diagram proposed in the conceptual framework, and 
depicted in Figure 4.10, is extended with one activity, namely moving back to the parental home 
(see Figure 6.17). Recall further that residences for rent are stored in information-sources, and 
that students can only consider moving to residences that they did visit for inspection, and that 
they can only visit residences for inspection that they did find while consulting information-
sources. What a student will concretely do, is store all information-sources in a list of sources 
to consult, store all potential alternatives found while consulting information-sources in a list 
of residences to inspect, and store all potential alternatives found while inspecting residences 

Boundedly rational students / non-stationary housing-market
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in a list of residences to rent. Each period the student will evaluate all three lists, and perform 
that action corresponding with the list of which he/she expects to derive the highest utility. 
Recall that this process of searching and visiting is not linear so that while some students are 
consulting a source, others might be inspecting a residence. Given this, and given that students 
compete for the same choice-alternatives, it might occur that residences that a student stored in 
his/her lists of residences to inspect or residences to rent out, are in the mean time rented out to 
other students. So each time a student evaluates these lists, he/she first has to check whether the 
listed residences are still available for rent.
 Recall from Chapter 3 that information-sources are managed by real-estate-firms, 
or landlords in our student-case. Practically there are five landlords, each publishing one 
information-source. Upon initialization, the residences for rent are randomly assigned to all 
sources, so that each source (potentially) has a slightly different length and residence-category 
distribution, as Table 6.22 illustrates. The initial number of unoccupied residences available 
for rent (i.e. the surplus of residences defined once the initial population is either assigned 
to a residence or to the parental home) is defined equal to 50% of the overall population. As 
mentioned earlier, we defined an initialization period of ten simulation years during which 
the population growth and composition stabilizes. At the end of this initialization period, the 
number of unoccupied residences available for rent decreased to a number approximately equal 
to 35% of the overall population. This is evidently still too high to be realistic. In the planning-
simulations, a lower percentage will be assessed.

Table 6.22: Initial residence-category distribution for each information-source and for the 
housing-market as a whole

information-source
residence-category

1 2 3 4 5 6
1 18.27% 14.42% 16.35% 17.31% 14.42% 19.23%
2 18.85% 13.93% 17.21% 18.03% 9.84% 22.13%
3 8.24% 12.94% 21.18% 18.82% 18.82% 20.00%
4 8.99% 16.85% 14.61% 20.22% 21.35% 17.98%
5 24.00% 23.00% 18.00% 7.00% 19.00% 9.00%

housing-market 16.20% 16.20% 17.40% 16.20% 16.20% 17.80%

In order to maintain this random residence-category distribution, and to make sure that both this 
distribution as well as the length of all information-sources change continuously, students assign 
the residence they move away from to the landlord they rent their new residence from. For the 
same reason, each time a student leaves the simulation (e.g. because of graduation) he/she 
hands over his/her residence to a random landlord. In later simulations, alternative assignment-
procedures will be explored.
 Recall that a Decision Table structures the knowledge of an agent regarding his/her housing-
market. Recall also that an agent has beliefs both regarding the content of an information-source, 
as regarding missing attribute-values of houses published in these sources. Beliefs regarding 
the content of an information-source consist of category-distribution-beliefs )](Pr[ sk , source-
length-beliefs )](Pr[ sl , and renewing-rate-beliefs )](Pr[ s  (see Chapter 4.4.1). On the basis of 
these beliefs, the agent assesses the probability of finding particular housing-categories in an 
information-source s .



129

All these beliefs are adopted in the student-case. Regarding the initialization of each of these 
beliefs, the point of origin is that, in reality, most students can be said to at least have an 
awareness of what is available on the housing-market, i.e. they are not completely unfamiliar 
with the supply of residences, but on the other hand do not possess the full details either. The 
assumption we make here is therefore that students, upon entering the simulation, know the 
residence-category distribution )](Pr[ sk , source-length )(sl  and renewing-rate )(s  of each 
source. We furthermore assume that they will update this knowledge each time they consult a 
source. These assumptions are indeed realistic given that landlords actively advertise in search 
of new customers.
 Based on Equation 4.16, the probability of finding a new residence (i.e. a residence the 
student did not come across before) belonging to a residence-category k  in an information-
source s  at time t  is equal to the probability of finding this category among the new adds n  in 
this information-source:

)()]]([Pr1[1)(Pr)(Pr snttt ts

sknksk −−=∈=∈  (6.2)

])[()()( sttt ttsslsn
ss

−=  (6.3)

)]([Pr sk
st  represents the probability that a residence found in source s  at the time st , being 

the moment the student consulted this source the last time, belongs to a residence-category k ; 

)(snt  represents the number of new adds in this source at time t ; )(sl
st  and )(s

st  represent 
respectively the source-length and the renewing-rate of source s  at the time st . Note that in 

comparison with Equation 4.16, )(sl
st  and )(s

st  represent exact values (i.e. the values at the 
last consultation) and not beliefs.

Recapitulating, besides beliefs regarding the content of an information-source, students also 
have beliefs regarding missing attribute-values of residences published in these sources. In 
Chapter 4.4.1, a distinction is made between attribute-beliefs )|Pr( kx , class-beliefs )Pr(v  and 
rent-beliefs )](Pr[ kc . Recall from the same Chapter that students know at all times to which 
residence-category a residence belongs (and will thus store the attribute-beliefs conditional on 
the residence-category), but lack information regarding all other residence attributes. In our 
student-case, apart from the rent of a residence, there are four attributes on which housing-adds 
does not provide information: dwelling-size, population-type, relative-location and residence-
size. Important to mention is that the attribute-beliefs are not differentiated according to 
information-sources.

 Regarding the initialization of the attribute-beliefs )|Pr( kx , we again assume that 
students have an idea regarding the values of these attributes but lack the exact knowledge. In this 
case the assumption is that students initially take the situation on the housing-market as a whole 
(depicted in Table 6.23) as a reference, i.e. that the initial probabilities are not differentiated 
according to residence-categories. Regarding the rent-beliefs, the assumptions that the budget 
of all students is uniform, and that the rent of all residences is zeroed is maintained, so that the 
rent of a residence has no impact on location-related decisions.

Boundedly rational students / non-stationary housing-market
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Table 6.23: Initial attribute-beliefs on the overall housing-market, irrespective of residence-
category

Category-distribution-beliefs )](Pr[ sk  and attribute-beliefs )|Pr( kx  can be inserted in the 
Decision Table of Figure 6.1, implying 17 extra rows in the action-set: 5 for the category-
distribution-beliefs (one for each information-source) and 12 for the attribute-beliefs (4 missing-
value attributes times 3 potential values). Action A2 in Figure 6.18, for instance, would hold 
the probability that the population-type of a residence belonging to any residence-category k  
depicted in the columns (with each column representing one category), is mono. Action A15 
would hold the probability that a residence found in information-source 1 would belong to any 
residence-category k .

Figure 6.18: Decision Table of a student with preference-profile 2

Each time a student collects information, either when he/she consults an information-source 
or when he/she inspects a residence, he/she learns about the housing-market, and can update 
his/her beliefs. Recall from Chapter 4.4.1 that belief updating is based on previous experiences 
of the student with the housing-market. Applying Equations 4.17 to 4.19 to the updating of the 
attribute-beliefs:

1
1)|(Pr

)|(Pr 1

+

+
=+

t

tt
it

i W
Wkx

kx  (6.4)
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j W
Wkx

kx                 j∀  ≠  i  (6.5)

relative-location population-type dwelling-size residence-size
center 31.56% mono 21.82% small 22.95% small 32.17%

university 32.07% slightly 36.78% medium 38.42% medium 32.79%
green 36.37% mixed 41.39% large 38.63% large 35.04%
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11 +=+ tt WW  (6.6)

Recall that parameter tW  represents the accumulated past experiences. The initial value of tW  
is set to 1, so that newly gained information has a mayor impact on the existing beliefs of the 
student. The underlying idea is that students only move residence a limited number of times, 
and that the learning period is typically rather short.
 The above belief-updating algorithm is not applied to information-source-beliefs. As 
mentioned earlier, the assumption here is that students take the last observation to be the future 
value. As such, there is no uncertainty involved.

In reality, students not only learn about their environment, but evidently also forget about this 
environment. This is not incorporated in our student-case. We anyway expect the impact of 
forgetting to be rather minimal, as the knowledge of a student regarding the housing-market is 
always incorrect due to the fact that the market is non-stationary, and that the learning period of 
the student is too short to fully learn the market-regularities. Finally, though students might not 
forget what they’ve learned on the level of beliefs, they do ‘forget’ on another level: recall that 
students store acceptable alternatives in lists of residences to visit, and acceptable alternatives 
in lists of residence to move to. Upon each change in preference-profile, students empty these 
lists, assuming that different profiles require different residence-classes after all. As such, they 
do forget (or better disregard), always having to reevaluate all choice-alternatives they come 
across.
 As in the previous scenario, the Decision Tree differs slightly from Figure 4.11, in that 
students can choose an extra action, namely: moving back to the parental home. In order to 
limit the number of parameters, we slightly simplified the conceptual framework: firstly, all 
resistances ∆  are set to zero; secondly, mental effort Θ  is set to zero; thirdly, all rents are set 
to zero and all students have a uniform budget, so that the rent of a residence is not a selection-
criterion, and finally, students do not search passively. In the planning-simulations, we will 
undo some of these simplifications, and assess their impact on the overall moving behavior.

Boundedly rational students / non-stationary housing-market
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Figure 6.19: Decision Tree, with resistance to change and mental effort set to zero; o0 represents the 
parental home

§ 6.4.2 Behavior-simulations

In order to assess the impact of turning our students from unboundedly into boundedly rational 
decision-makers, we will run three parallel simulations, varying the initial knowledge of the 
students (i.e. the initialization of their beliefs) and their ability to learn.

1) Simulation 1, without knowledge: in a first simulation we assume –contrary to what we 
explained earlier- that students have no initial knowledge regarding the residence-category 
and attribute distributions, implying uniform belief distributions:

K
sk 1)](Pr[ =   with K  being the number of residence-categories;

X
kx 1)|Pr( =   with X  being the number of values of attribute x .

In this scenario we furthermore assume that students do not update their beliefs, i.e. that 
they do not learn.
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2) Simulation 2, with knowledge: in a second simulation we assume –in line with what we 
explained earlier- that students do have initial knowledge on their housing-market: i.e. they 
know the residence-category distribution, source-length and renewing-rate of each source 
upon the moment they enter the simulation. Regarding the attribute distribution, they take 
the situation on the housing-market as a whole as a reference (implying that the initial 
probabilities are not differentiated according to residence-categories, as explained earlier). 
As in the previous scenario we assume that students do not learn.

3) Simulation 3: with learning: in a third simulation we assume that students have initial 
knowledge and that they do learn: i.e. they update their attribute-beliefs )|Pr( kx  relying 
on Equation 6.4, and they update all their other beliefs each time they consult a source, by 
considering the observed situation to be the future situation.

Results for each simulation will be plotted in parallel, and will be compared to the results of the 
previous scenario (i.e. unboundedly rational students in a non-stationary market). Furthermore, 
we introduce one extra behavior-indicator, namely the number of residences the student visited 
between changing preference-profile and the first move. This number will give insight into the 
actual search process of the students: e.g. a long time-period between changing profile and 
moving but a low number of visits implies that the student prioritizes searching over visiting.

Boundedly rational students / non-stationary housing-market
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AVERAGE POPULATION RESULTS  (Table 6.24)

As the Table illustrates, unboundedly rational students move significantly more per change in 
preference-profile than boundedly rational students (3.39 versus 0.56 times). This is a direct 
consequence of the introduction of information-sources: since boundedly rational students can 
only consult one source per time period, their search-area is about one fifth (because there are 
five sources) of the search-area of unboundedly rational students. Scanning the whole housing-
market would take these students five time-periods. On top of this, a boundedly rational student 
will only consider to consult a source a second time, when he/she expects to find a sufficient 
number of new adds (see Equation 6.2).
 What the table also illustrates is that boundedly rational students seem to gain more 
utility during their first move than unboundedly rational students. This is a consequence of 
the fact that boundedly rational students always consider the possibility that there are better 
alternatives available, as such searching significantly longer (9.41 versus 1.47 time-periods), 
potentially resulting in better moves. The high number of time-periods can also be traced back 
to the introduction of information-sources.
 So, on the basis of the average population data we can conclude that there is a significant 
difference between the behaviors of unboundedly and boundedly rational students, a clear 
difference between students with and without initial knowledge, but hardly any difference 
between the behavior of students that do or don’t learn. An explanation for this lack of difference 
has to be found in how the information-sources are composed: recall that students, upon leaving 
the simulation, hand over their residence to a random landlord. As a result, the composition 
of the information-sources changes continuously (and thus also the category-distribution, the 
source-length and the source renewing-rate), so that there is nothing for the students to learn 
about these information-sources. If this explanation holds, then belief updating will hardly 
have any effect. In order to verify this, we will run an extra simulation where the content of 
the information-sources is regulated in such a way that particular landlords are specialized in 
particular residence-categories: e.g. only renting out student-housing close to the university 
(i.e. residences of category 1 or 2). This would mean that when a student leaves the simulation, 
he/she has to hand over his/her residence to the landlord specialized in the residence-category 
matching his/her residence. We will conduct such a simulation in Chapter 6.4.3.
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Table 6.24: Average results on the level of the whole population

non-stationary 
housing-market

boundedly 
rational / 
no initial 

knowledge

boundedly 
rational / initial 

knowledge

boundedly 
rational / 
learning

number of moves per change in 
preference-profile 3.39 0.56 0.56 0.56

increase in utility related to the first 
move after changing preference-

profile
18.96% 23.88% 25.01% 24.90%

number of time-periods between 
changing preference-profile and the 

first move
1.47 14.73 9.25 9.41

number of visits between changing 
preference-profile and the first move - 14.39 8.20 8.28

Boundedly rational students / non-stationary housing-market
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NUMBER OF MOVES BY PREFERENCE PROFILE  (Table 6.25)

The observation made on the basis of the average population results that unboundedly rational 
students move significantly more than boundedly rational students seems to hold for all profiles, 
and seems to be independent of whether a student has initial knowledge or not, or whether 
he/she learns or not. In order to explain this phenomenon, let us first have a look at the other 
results.

INCREASE IN UTILITY BY PREFERENCE PROFILE  (Table 6.26)

One would expect unboundedly rational students to have a higher increase in utility than 
boundedly rational students, because they know at all times what is available on the housing-
market, and are as such able to select their preferred alternative. This only seems to hold for 
profile 4. Important to realize in this respect is that Table 6.26 plots the increase in utility 
related to the first move after changing preference-profile. As unboundedly rational students 
move almost always directly after changing profile (see Table 6.24), they often move too fast, 
accepting what is available at that moment in time. Boundedly rational students, on the other 
hand, only have access to a fragment of what is available, but search –depending on their 
settings- over a longer period of time, thus potentially coming across better residences.
 Regarding the impact of initial knowledge: students with knowledge gain more utility 
during their first move. This seems evident as knowledge implies that students know where to 
look for their preferred residence. The impact of learning, on the other hand, is not that clear, in 
that for only 3 out of 7 profiles (i.e. profiles 1, 4 and 7) learning leads to a higher gain in utility. 
This seems to confirm our assumption that the random character of the information-sources 
prevents students from learning.
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Table 6.25: Number of moves per change in preference-profile

Table 6.26: Average increase in utility related to the first move after changing preference-
profile

newly adopted 
preference-profile

non-stationary 
housing-market

boundedly 
rational / no initial 

knowledge

boundedly 
rational / initial 

knowledge

boundedly 
rational / learning

1 2.77 0.83 0.84 0.84
2 1.83 0.37 0.37 0.37
3 4.01 0.53 0.52 0.52
4 2.82 0.89 0.92 0.92
5 2.68 0.54 0.55 0.54
6 3.44 0.47 0.45 0.47
7 3.54 0.65 0.65 0.65
8 3.10 0.31 0.31 0.30
9 4.13 0.40 0.40 0.41

average 3.39 0.56 0.56 0.56

newly adopted 
preference-profile

non-stationary 
housing-market

boundedly 
rational / no initial 

knowledge

boundedly 
rational / initial 

knowledge

boundedly 
rational / learning

1 25.31% 26.87% 27.47% 27.62%
2 18.46% 28.41% 28.50% 28.11%
3 16.19% 21.26% 23.05% 23.03%
4 26.33% 25.79% 26.92% 27.01%
5 20.57% 25.82% 27.23% 26.81%
6 15.97% 21.03% 22.64% 21.84%
7 21.94% 27.58% 26.93% 27.08%
8 15.68% 25.99% 27.19% 26.59%
9 15.20% 21.38% 22.72% 22.52%

average 18.96% 23.88% 25.01% 24.90%

Boundedly rational students / non-stationary housing-market



138 IN SEARCH OF A COMPLEX SYSTEM MODEL

PREFERENCE PROFILE MATCHING NEW RESIDENCE  (Table 6.27)

Comparing Tables 6.18 and 6.27, unboundedly rational households seem to move more to 
residences matching their preference-profile than boundedly rational students. As indicated 
earlier, this is due to the restricted access to information, forcing them to substitute their 
preferences.
 As Table 6.27 illustrates, students without initial knowledge end up less in residences 
matching their preference-profile. This corresponds with our observation that initial knowledge 
implies a higher gain in utility. Exceptions to this are students with profiles 7 and 9. Students 
adopting profile 7, for instance, move slightly more to residences matching their profile without 
initial knowledge (22% versus 17%). This seems to correspond to a higher gain in utility (27.58 
versus 26.93). Which seems logic. A second observation we can make on the basis of Table 6.27 
is that students with initial knowledge seem to move deliberate, i.e. the number of preference-
profiles matching the residences they move to is smaller.
 Regarding the impact of learning finally, one would expect that learning would increase 
the chance of finding a matching residence. Table 6.27 suggests the opposite though. To explain 
this and the previous results, consider the process each student goes through. First, a student 
has to select his/her preferred information-source. In case this student has no initial knowledge, 
he/she does not have any preference regarding any information-source. In case the student 
does have initial knowledge, he/she knows the exact residence-category distribution of each 
source, the moment he/she enters the simulation. But, since the market changes continuously, 
this knowledge is likely to be rapidly outdated. On top of this, each residence-category still 
groups a variety of residence-classes, more or less answering the students’ preferences, so that 
when a student knows the residence-category distribution of a source, he/she is still not certain 
of whether he/she will find an acceptable alternative in this source. The consequence is that in 
case the student has initial knowledge, he/she is either lucky and directly finds an acceptable 
residence in his/her preferred source, or he/she does not directly find an acceptable residence so 
that he/she has to continue searching. The difference with students having no initial knowledge 
is that students that do have initial knowledge may exclude information-sources because, 
according to their knowledge, these sources do not contain any promising residences. Since the 
content of these sources changes continuously (but the beliefs not), these students might miss 
potential candidate residences (i.e. residences matching their preference-profile). The same 
reasoning is applicable to students that learn: because of their initial knowledge, they might 
either be lucky and directly find a candidate residence, or they might exclude sources which 
later turn out to be promising anyway. Because students update their beliefs, this chance of 
exclusion only increases.
 Concluding, one would expect students with more knowledge to make better moves. As 
illustrated, the problem is that this knowledge narrows down the search-field of the students, so 
that they in some cases –against all expectations- make worse moves.
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Table 6.27: The distribution of preference-profiles matching the final residence the students 
moved to

boundedly rational students / no knowledge

newly adopted 
preference-profile

preference-profile of residence moved to

1 2 3 4 5 6 7 8 9 11

1 27% 31% 14% 2% 1% 3% 1% 0% 9% 13%
2 2% 53% 13% 0% 0% 2% 0% 0% 1% 29%
3 8% 10% 30% 6% 3% 5% 1% 4% 17% 15%
4 5% 3% 14% 14% 7% 20% 0% 0% 16% 20%
5 0% 8% 18% 12% 2% 20% 0% 0% 6% 34%
6 7% 3% 10% 0% 0% 55% 0% 3% 10% 10%
7 0% 0% 0% 0% 0% 0% 22% 27% 41% 10%
8 0% 0% 0% 0% 0% 0% 9% 23% 57% 11%
9 5% 11% 14% 7% 2% 8% 4% 3% 35% 12%

boundedly rational students / no learning

newly adopted 
preference-profile

preference-profile of residence moved to

1 2 3 4 5 6 7 8 9 11

1 33% 49% 1% 0% 0% 0% 0% 0% 0% 17%
2 15% 53% 12% 0% 0% 0% 0% 0% 0% 21%
3 0% 0% 62% 0% 0% 5% 0% 0% 32% 1%
4 0% 1% 0% 34% 12% 16% 0% 0% 1% 36%
5 0% 0% 0% 31% 27% 10% 0% 0% 0% 31%
6 0% 0% 0% 0% 0% 79% 0% 0% 21% 0%
7 0% 0% 0% 0% 0% 0% 17% 5% 63% 15%
8 0% 0% 0% 0% 0% 0% 29% 49% 0% 23%
9 0% 0% 16% 0% 0% 4% 0% 0% 80% 0%

boundedly rational students / learning

newly adopted 
preference-profile

preference-profile of residence moved to

1 2 3 4 5 6 7 8 9 11

1 34% 49% 1% 0% 0% 1% 0% 1% 0% 13%
2 9% 44% 11% 0% 0% 1% 0% 0% 0% 35%
3 0% 0% 57% 0% 0% 6% 0% 0% 36% 0%
4 0% 0% 1% 33% 13% 14% 0% 0% 0% 40%
5 0% 2% 0% 38% 10% 14% 0% 0% 0% 36%
6 0% 0% 3% 0% 0% 79% 0% 0% 17% 0%
7 0% 0% 2% 0% 0% 0% 27% 17% 49% 5%
8 0% 0% 9% 0% 0% 6% 15% 41% 3% 26%
9 0% 0% 17% 0% 0% 3% 0% 0% 79% 1%

Boundedly rational students / non-stationary housing-market
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NUMBER OF TIME-PERIODS BY PREFERENCE PROFILE  (Table 6.28)

Judging from the Table, the previous conclusions also seem to hold for the number of time-
periods between changing preference-profile and moving residence: a significant and systematic 
difference between unboundedly rational and boundedly rational students, a clear difference 
between students with and without knowledge, but no clear difference between students that do 
and don’t learn.
 The fact that some students without initial knowledge search less long (i.e. those adopting 
profiles 2 and 6) can be attributed to our assumption that knowledge narrows down the search-
field, so that these students have to search longer in spite of their knowledge.

NUMBER OF VISITS BY PREFERENCE PROFILE  (Table 6.29)

Judging from the Table, the number of visits seems to correlate with the number of time-periods 
between changing preference-profile and moving residence: the longer this period, the more 
visits.
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Table 6.28: Number of time-periods between changing preference-profile and the first move

Table 6.29: Number of visits between changing preference-profile and the first move

newly adopted 
preference-profile

non-stationary 
housing-market

boundedly 
rational / no initial 

knowledge

boundedly 
rational / initial 

knowledge

boundedly 
rational / learning

1 0.08 15.83 11.65 10.76
2 0.11 3.84 4.61 6.32
3 2.67 15.20 8.52 8.70
4 0.02 18.31 8.93 8.03
5 1.68 9.32 8.12 7.08
6 3.41 8.45 10.14 10.45
7 0.30 14.71 7.85 6.54
8 0.39 13.97 3.66 4.41
9 2.38 17.36 11.07 11.88

average 1.47 14.73 9.25 9.41

newly adopted 
preference-profile

non-stationary 
housing-market

boundedly 
rational / no initial 

knowledge

boundedly 
rational / initial 

knowledge

boundedly 
rational / learning

1 - 15.64 10.86 9.98
2 - 2.86 3.63 5.34
3 - 14.90 7.52 7.70
4 - 18.76 7.99 7.05
5 - 8.34 7.14 6.10
6 - 7.45 9.14 9.45
7 - 13.71 6.85 5.54
8 - 12.97 2.66 3.41
9 - 17.09 9.75 10.25

average - 14.39 8.20 8.28

Boundedly rational students / non-stationary housing-market
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STUDENT LIFE- AND MOVE-COURSES  (Tables 6.30 till 6.33)

As will become clear from the following results, the behavior of boundedly rational students is 
indeed more complex than the behavior of unboundedly rational students. A first phenomenon 
illustrating this increase in complexity is that the process of moving residences is not a linear 
process as is the case with unboundedly rational students (first being triggered, secondly assessing 
all residences available for rent, and thirdly selecting the best one, to finally rent it). As the life- 
and move-course of student 3428 illustrates, this process is recursive switching repeatedly from 
consulting information-sources, to inspecting residences, to consulting sources, and so on.
 A second phenomenon suggesting an increase in complexity is that students start searching 
without any apparent trigger (i.e. a change in preference-profile). The earlier mentioned student 
(i.e. student 3428), for instance, starts searching at period 632 without having changed preference-
profile and already having moved two times (respectively at period 554 and 564). Recall in this 
respect that students only consider consulting a source a second time (or third, or fourth for 
that matter), the moment they expect to find a sufficient amount of new advertisements. As a 
consequence, students might be waiting for a period of time, not performing any action. This 
period might be so long, that one starts to believe that the student simply gave up the idea of 
moving (phenomenon 3). Student 3503, for instance, only moves 95 time periods after he/she 
changed from preference-profile 4 to 5, only performing actions for 6 periods.
 A fourth phenomenon is that students miss opportunities, triggered by unrealistic beliefs. 
Student 3427, for instance, visits a residence for inspection at time-period 659 of which he/she 
expects to derive a utility of 46 but moves 6 time-periods later to another residence of which 
he/she only expects to derive a utility of 33. The same thing happens a second time: the student 
visits a very promising residence at 680, but finally moves to a residence with a utility that 
is even lower than the first residence he/she visited. One reason for why students make these 
decisions is that their beliefs regarding what to find on the housing-market do not match the 
actual supply. Another reason might be that the competition is so high that students do not get 
the time to visit a second residence for inspection, without the first one they visited already 
being rented out to someone else.
 A fifth phenomenon is the variation in move-courses: some students, such as student 
3526, first consult all available sources, to only then inspect a first residence; others, such as 
student 3428, also consult all the available sources but always alternate this consulting with 
inspecting a residence; again others, such as student 3457, keep on consulting and inspecting 
for a long period of time, whereas others, such as student 3476, move after just one consultation 
and inspection. Important to mention is that this variety is due to the composition of the market 
at that moment in time, and as such not a deliberate strategy of the student.
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Table 6.30: The complete life- and move-course of student 3428 ( = a move)

period
life-course move-course

pref-profile pref-profile 
partner action pref-profile 

residence
0 10 - - 10

521 1 - searched source 3
522 1 - visited 1
523 1 - searched source 5
524 1 - visited 1
525 1 - searched source 1
526 1 - visited 1
527 1 - searched source 2
528 1 - searched 4
529 1 - visited 11
530 1 - visited 11
531 1 - searched source 3
532 1 - visited 1
533 1 - visited 8
534 1 - searched source 5
535 1 - visited 6
536 1 - visited 9
537 1 - searched source 1
538 1 - searched source 2
539 1 - visited 11
540 1 - searched source 4
541 1 - searched source 3
542 1 - visited 3
543 1 - visited 6
544 1 - searched source 5
545 1 - visited 1
546 1 - searched source 1
547 1 - visited 11
548 1 - visited 5
549 1 - searched source 2
550 1 - visited 1
551 1 - searched source 4
552 1 - visited 11
553 1 - visited 11
554 1 - moved 11
561 1 - searched source 3
562 1 - visited 6
563 1 - visited 5
564 1 - moved 5
632 1 - searched source 5
633 1 - visited 2
634 1 - moved 2
852 1 - - 2

Boundedly rational students / non-stationary housing-market
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Table 6.31: A fragment of the life- and move-course of student 3427 ( = a move)

Table 6.32: The first part of the life- and move-course of student 3526 ( = a move)

period
life-course move-course

pref-profile pref-profile 
partner action utility

- - - - -
658 9 9 searched -
659 9 9 visited 46
660 9 9 searched -
661 9 9 visited 43
662 9 9 visited 34
663 9 9 searched -
664 9 9 visited 33
665 9 9 moved 33
667 9 9 searched -
671 9 9 searched -
675 9 9 searched -
676 9 9 visited 43
679 9 9 searched -
680 9 9 visited 54
683 9 9 searched -
684 9 9 visited 49
685 9 9 moved 49

- - - - -

period
life-course move-course

pref-profile pref-profile 
partner action pref-profile 

residence
0 10 - - 10

567 3 3 searched source 3
568 3 3 searched source 5
569 3 3 searched source 4
570 3 3 searched source 2
571 3 3 searched source 1
572 3 3 visited 9
573 3 3 visited 6
574 3 3 visited 1
575 3 3 moved 1
609 3 3 searched source 3
610 3 3 visited 9
611 3 3 searched source 5
612 3 3 visited 9
613 3 3 searched source 4
614 3 3 visited 3
615 3 3 moved 3

- - - - -
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Table 6.33: The last part of the life- and move-course of student 3503 ( = a move)

period
life-course move-course

pref-profile pref-profile 
partner action pref-profile 

residence
- - - - -

550 4 - 6
681 5 - searched source 3
682 5 - visited 6
683 5 - searched source 5
684 5 - visited 11
774 5 - searched source 3
775 5 - visited 4
776 5 - moved 4
785 9 9 searched source 5
786 9 9 visited 9
787 9 9 searched source 3
788 9 9 visited 9
789 9 9 searched source 1
790 9 9 visited 9
791 9 9 searched source 2
792 9 9 visited 9
793 9 9 searched source 4
794 9 9 visited 9
795 9 9 moved 9
889 9 9 - 9

Boundedly rational students / non-stationary housing-market
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§ 6.4.3 Planning-simulations

As pointed out, due to the random assignment of residences to landlords, the content of all 
sources changes continuously and randomly so that students are unable to learn anything 
about these sources. We therefore proposed to run an extra simulation where the content of 
all information-sources is regulated in such a way that particular landlords are specialized in 
particular residence-categories. Table 6.34 lists such regular sources. Source 1, for instance, 
is specialized in hospita-dwelling-typologies; source 4 in 2-room apartments; and source 5 in 
student housing located close to the university.

Table 6.34: Initial residence-category distribution for each information-source and for the 
housing-market as a whole, in case of regular sources

To assess the impact of these regular sources, we will first rerun all previous scenarios, comparing 
the moving behavior of unboundedly rational students with boundedly rational students, without 
initial knowledge, with initial knowledge, and with learning (i.e. belief updating).
 Besides, we will also run the same planning-simulations as in the previous scenarios, 
varying the resistance to change, the residence-class distribution, and the supply size. For 
each of these simulations we use the regular sources, and define students so that they have 
initial knowledge and that they learn. Since students search, the fourth planning-indicator –
advertisement period- can also be plotted.

REGULAR SOURCES – NUMBER OF MOVES BY PREFERENCE PROFILE  (Table 
6.35)

Comparing Tables 6.25 and 6.35, the introduction of regular sources seems to have no significant 
impact on the number of moves. This seems plausible since both the initial supply (i.e. all 486 
housing-classes v) and the number of sources is identical in both simulations.

REGULAR SOURCES – INCREASE IN UTILITY BY PREFERENCE PROFILE  (Table 
6.36)

Comparing Tables 6.26 and 6.36, the introduction of regular sources seems to have no significant 
impact on the utility gained after the first move.

information-source
residence-category

1 2 3 4 5 6
1 0.00% 0.00% 69.23% 30.77% 0.00% 0.00%
2 20.61% 15.27% 14.50% 16.03% 24.43% 9.16%
3 12.86% 18.57% 10.95% 19.05% 23.33% 15.24%
4 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
5 55.10% 44.90% 0.00% 0.00% 0.00% 0.00%

housing-market 16.80% 18.00% 17.20% 17.20% 14.80% 16.00%
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Table 6.35: Number of moves per change in preference-profile, in case of regular sources

Table 6.36: Average increase in utility related to the first move after changing preference-
profile, in case of regular sources

newly adopted 
preference-profile

non-stationary 
housing-market

boundedly 
rational / no initial 

knowledge

boundedly 
rational / initial 

knowledge

boundedly 
rational / learning

1 2.77 0.75 0.83 0.84
2 1.83 0.36 0.38 0.38
3 4.01 0.51 0.53 0.53
4 2.82 0.84 0.91 0.92
5 2.68 0.53 0.61 0.55
6 3.44 0.40 0.45 0.44
7 3.54 0.62 0.65 0.67
8 3.10 0.32 0.29 0.29
9 4.13 0.43 0.43 0.42

average 3.39 0.54 0.57 0.57

newly adopted 
preference-profile

non-stationary 
housing-market

boundedly 
rational / no initial 

knowledge

boundedly 
rational / initial 

knowledge

boundedly 
rational / learning

1 25.31% 26.11% 27.24% 27.45%
2 18.46% 27.47% 28.24% 28.14%
3 16.19% 21.64% 23.03% 23.15%
4 26.33% 26.22% 27.44% 26.99%
5 20.57% 25.86% 25.62% 26.56%
6 15.97% 20.98% 22.49% 23.28%
7 21.94% 26.92% 27.75% 27.07%
8 15.68% 26.12% 27.71% 28.08%
9 15.20% 21.86% 22.07% 22.11%

average 18.96% 23.92% 24.80% 24.87%

Boundedly rational students / non-stationary housing-market
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REGULAR SOURCES – PREFERENCE PROFILE MATCHING NEW RESIDENCE  (Table 
6.37)

Comparing Tables 6.27 and 6.37, the introduction of regular sources seems to become clear in 
that students with initial knowledge indeed move more to residences matching their preference-
profile than students without initial knowledge, and in that students that do learn indeed move 
more to residences matching their preference-profile than students that do not learn. This confirms 
our assumption that the random character of the non-regular sources prevented students from 
learning. Note also that knowledge makes students more deliberate in their choice of residences 
(as we already pointed out in Table 6.27).
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Table 6.37: The distribution of preference-profiles matching the final residence the students 
moved to, in case of regular sources

boundedly rational students / no knowledge

newly adopted 
preference-profile

preference-profile of residence moved to

1 2 3 4 5 6 7 8 9 11

1 0% 45% 9% 6% 3% 2% 0% 0% 17% 18%
2 0% 45% 3% 1% 1% 2% 0% 0% 26% 21%
3 7% 4% 45% 0% 1% 5% 1% 1% 30% 6%
4 0% 1% 3% 27% 8% 18% 1% 0% 13% 29%
5 0% 0% 0% 22% 8% 6% 0% 0% 16% 47%
6 8% 0% 16% 0% 0% 56% 0% 0% 20% 0%
7 0% 8% 0% 0% 0% 5% 26% 31% 21% 10%
8 0% 16% 5% 0% 0% 5% 16% 30% 27% 0%
9 6% 3% 20% 0% 0% 10% 1% 2% 50% 8%

boundedly rational students / no learning

newly adopted 
preference-profile

preference-profile of residence moved to

1 2 3 4 5 6 7 8 9 11

1 23% 52% 2% 0% 0% 0% 0% 0% 0% 24%
2 14% 48% 14% 0% 0% 0% 0% 0% 0% 25%
3 0% 0% 55% 0% 0% 7% 0% 0% 38% 0%
4 0% 0% 0% 41% 11% 13% 0% 0% 0% 36%
5 0% 0% 0% 30% 32% 7% 0% 0% 0% 30%
6 0% 0% 0% 0% 0% 71% 0% 0% 29% 0%
7 0% 0% 0% 0% 0% 0% 22% 41% 15% 22%
8 0% 0% 0% 0% 0% 0% 30% 55% 0% 15%
9 0% 0% 14% 0% 0% 3% 0% 0% 83% 0%

boundedly rational students / learning

newly adopted 
preference-profile

preference-profile of residence moved to

1 2 3 4 5 6 7 8 9 11

1 32% 47% 1% 0% 0% 0% 0% 0% 0% 20%
2 18% 45% 22% 0% 0% 0% 0% 0% 0% 15%
3 0% 0% 58% 0% 0% 6% 0% 0% 36% 0%
4 0% 0% 0% 39% 12% 10% 0% 0% 0% 39%
5 0% 0% 0% 24% 14% 14% 0% 0% 0% 49%
6 0% 0% 0% 0% 0% 74% 0% 0% 26% 0%
7 0% 2% 2% 0% 0% 0% 29% 21% 21% 24%
8 0% 0% 0% 0% 0% 3% 12% 64% 0% 21%
9 0% 0% 13% 0% 0% 3% 0% 0% 84% 0%

Boundedly rational students / non-stationary housing-market
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REGULAR SOURCES – NUMBER OF TIME-PERIODS BY PREF. PROFILE  (Table 6.38)

Regular sources imply that the features of each information-source (such as category-class-
distribution, source-length, and renewing-rate) remain more or less constant over time. As a 
consequence, the students are at all time able to assess which landlord is most likely to rent 
out residences matching their preferences. For this reason we expect students to faster find 
a residence than in the case of non-regular sources (i.e. the previous simulation). Comparing 
Tables 6.28 and 6.38, this expectation only seems to hold for profiles 2 and 7. For all other 
profiles, students search more in case of regular sources. The reason is that because residences 
are no longer randomly attributed to information-sources, certain sources have a high renewing-
rate, potentially triggering students to search more.

REGULAR SOURCES – NUMBER OF VISITS BY PREFERENCE PROFILE  (Table 6.39)

As with the non-regular sources, the number of visits seem to correlate with the number of time-
periods that is spend on finding a new residence.
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Table 6.38: Number of time-periods between changing preference-profile and the first move, 
in case of regular sources

Table 6.39: Number of visits between changing preference-profile and the first move, in case 
of regular sources

newly adopted 
preference-profile

non-stationary 
housing-market

boundedly 
rational / no initial 

knowledge

boundedly 
rational / initial 

knowledge

boundedly 
rational / learning

1 0.08 29.33 12.65 11.66
2 0.11 15.67 4.83 5.29
3 2.67 27.68 12.99 13.14
4 0.02 21.49 9.32 10.25
5 1.68 13.84 7.30 8.61
6 3.41 16.92 7.46 8.00
7 0.30 18.38 3.46 4.31
8 0.39 11.54 4.79 6.21
9 2.38 31.15 23.50 28.63

average 1.47 25.60 13.88 15.46

newly adopted 
preference-profile

non-stationary 
housing-market

boundedly 
rational / no initial 

knowledge

boundedly 
rational / initial 

knowledge

boundedly 
rational / learning

1 - 34.04 12.06 10.89
2 - 16.48 3.85 4.30
3 - 33.23 11.99 12.14
4 - 25.75 8.37 9.31
5 - 14.94 6.32 7.63
6 - 29.00 6.46 7.00
7 - 25.13 2.46 3.31
8 - 10.54 3.79 5.21
9 - 33.09 22.04 27.73

average - 29.15 12.83 14.54

Boundedly rational students / non-stationary housing-market
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RESISTANCE TO CHANGE  (Figures 6.20 and 6.21)

Recall that boundedly rational students are, in principle, reluctant to change their current housing 
situation, expressed through resistances to perform any action. Recall also that these resistances 
may differ depending on the particular action, resulting in a resistance to search, z∆ ; to visit, 

b∆ ; to move, m∆ ; and to move back to the parental home, 0∆ . As in the previous scenarios, 
this last resistance is considered to be zero. Regarding all other resistances we defined four 
simulations, a first simulation where all are zero; a second one where the resistance to search z∆
, is high and all others are zero; a third one where the resistance to visit b∆ , is high and all others 
are zero; and a fourth one where all resistances are high. The range of possible simulations 
is evidently longer, for instance analyzing the impact of unequal resistances (e.g. a medium 
resistance to search versus a high resistance to move). The aim with our four simulations is to 
simply illustrate the richness of potential behaviors ranging from apathetic to explorative.
 Judging from the left graph in Figure 6.20, two patterns can be distinguished in the 
results: a first pattern to which profiles 1, 2, 3, 4, 6 and 7 belong, and a second pattern to which 
profiles 5, 8 and 9 belong. In the first group, students without any resistance and students with 
a high resistance to visit b∆ , move the most. The others even (almost) don’t move at all. In 
the second group, the difference between the simulations is less significant, in that sometimes 
students with only a high resistance to search z∆ , or sometimes those with an overall resistance 
move the most. Judging from the right graph in Figure 6.20, there do not seem to be clear 
regularities.

Judging from graphs in Figure 6.21, the vacancy-rate is the lowest in the simulations where 
students have no resistance, and where they have a high resistance to visit b∆ . Moreover, 
the turnover-rate is the highest in these two simulations, and the advertisement-period the 
shortest. This seems to correspond to what we concluded from the number-of-moves graph, 
i.e. that in these two simulations, students (almost always) move the most, compared to the 
other simulations. What the satisfaction graph indicates though is that the students in the other 
simulations (i.e. those with a resistance to search z∆ , and those with an overall resistance) make 
better moves (i.e. derive more utility from their new residence).

Concluding, intuitively we would expect that students with an overall resistance would make 
the best moves (i.e. derive more utility from their new residence). This generally seems to be 
the case. But, students with a resistance to search z∆  only, are able to make as good moving-
choices, be it at the cost of a longer search-time, and more cancellations (i.e. more students 
give up the idea of moving). Such students will only start searching the moment they expect to 
find their ideal residence. As a consequence, the vacancy rate is very high, so that when they 
actually start searching, the possibility indeed exists that they will find a residence matching 
their preferences. So, if the objective of a planner would be to increase the satisfaction-rate, 
he/she is best off with facilitating the access to information (i.e. the resistance to search), rather 
than facilitating the actual move.
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Figure 6.20: The impact of a zeroed (), a z∆  (), a b∆  (), and an overall () resistance 
to change on the number of moves per change in preference-profile (left), and the number of 
time-periods between changing preference-profile and the first move (right)

Figure 6.21: The impact of a zeroed (), a z∆  (), a b∆  (), and an overall () resistance to 
change on the vacancy-rate (top left), turnover-rate (top right), satisfaction-rate (bottom left) 
and advertisement-period (bottom right)
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RESIDENCE-CLASS DISTRIBUTION  (Figures 6.22 and 6.23)

Two simulations are run: the first one with an exhaustive residence-class distribution, and the 
second one with a non-exhaustive distribution. The initial exhaustive distribution is identical 
to the one used in the previous simulations (i.e. the one depicted in Table 6.34). The initial 
non-exhaustive distribution is identical to the one used in the stationary scenario (depicted in 
Table 6.9), implying that there are no residences matching either preference-profile 2, 5 and 7. 
The difference with the stationary scenario is that the market is no longer stationary, and that 
residences that become available are always assigned to the same landlord, so that source-
distributions remain regular.
 Judging from the graphs in Figure 6.22 and 6.23, the residence-category distribution 
does not have a clear impact on the location-choice behavior of the students. The reason is that 
the supply of residences in both simulations is too different to point out the actual impact of a 
change in the residence-category distribution: because the choice-alternatives differ, students 
make different preference substitutions, as such ending up in other residences.
 Defining a non-exhaustive distribution in essence implies defining attribute-value-
interdependencies, i.e. the fact that certain attribute-values do not occur implies that other 
combinations always occur. This allows students to actually learn about the housing-market 
(be it unconsciously), e.g. that student housing is either located close to the university or to 
green (as is defined in Table 6.34). Concretely, we expect that the accuracy and the entropy of 
the beliefs regarding the relative location of residences belonging to student-housing residence-
category should decrease with each visit of a residence belonging to this category. This does not 
occur. The explanation is evident; since a student only visits 2,5 to 6 residences per move, and 
since these residences potentially belong to different residence-categories, the student simply 
does not collect enough information to get an updated impression of the housing-market.
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Figure 6.22: The impact of an exhaustive () and a non-exhaustive () residence-class 
distribution on the number of moves per change in preference-profile (left), and the number of 
time-periods between changing preference-profile and the first move (right)

Figure 6.23: The impact of an exhaustive () and a non-exhaustive () residence-class 
distribution on the vacancy-rate (top left), turnover-rate (top right), satisfaction-rate (bottom 
left) and advertisement-period (bottom right)
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SUPPLY SIZE  (Figures 6.24 and 6.25)

Two simulations are run: the first one with a low supply of residences available for rent (equal 
to 15% of the population-size after 10 simulation rounds), the second one with a large supply of 
residences available for rent (equal to 35% of the population-size after 10 simulation rounds). 
Recall from the previous scenario that the high supply implies a non-exhaustive residence-class 
distribution (as assessed in the previous simulation).
 Judging from the left graph in Figure 6.24, students move –on average- more per change 
in preference-profile in case of a high supply. Except for students of profile 2, moving less in 
case of a high supply. The reason is that these students are able to find a better alternative due 
to this high supply. Regarding the time students spend on finding a new residence, the intuition 
would be that as the supply increases, the time-period decreases. Judging from the right graph 
in Figure 6.24, this expectation holds, except for students of profile 1, 3, 4 and 9. These students 
seem to spend more time on finding a residence in case of a high supply. The reason is that a 
high supply triggers the students to continue searching, as the high number of new adds always 
holds the promise of even better alternatives.
 Judging from the vacancy-graph in Figure 6.25, the vacancy-rate is higher in case of a 
high supply. This is evident as only the supply increases, while the demand remains the same. 
The turnover-graph also behaves as expected, in that a low supply results in a higher turnover-
rate. Judging from the satisfaction-graph, the satisfaction-rate is higher in case of a high supply, 
suggesting that more students are able to rent a residence matching their preferences. The 
advertisement-graph finally seems to support all the previous findings.
 Concluding, intuitively we would expect that a high supply would reduce the number of 
time-periods to find an alternative residence. As the graphs illustrate, this is not always the case, 
either because of a non-exhaustive residence-category distribution or because of the continuous 
supply of new adds triggering the students to keep on searching.
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Figure 6.24: The impact of a low () and high () supply on the number of moves per 
change in preference-profile (left), and the number of time-periods between changing 
preference-profile and the first move (right)

Figure 6.25: The impact of a low () and high () supply on the vacancy-rate (top left), 
turnover-rate (top right), satisfaction-rate (bottom left) and advertisement-period (bottom 
right)
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§ 6.4.4 Conclusions

Model settings: the initial housing-market settings are identical to the previous scenario. The 
population-settings differ in that students are now boundedly rational, i.e. they are rational in 
the sense that they are utility maximizers, but differ from unboundedly rational students in that 
they are unable to assess all choice-alternatives on the housing-market, either because they are 
cognitively constrained or because they do not have access to all information.

Model assessment: the scenario is realistic, first and foremost, because their behavior is less 
uniform as in the case of unboundedly rational students, as illustrated by the graphs and figures. 
A second illustration of this more realistic behavior is that boundedly rational students –on 
average- move less than once per change in preference-profile, whereas unboundedly rational 
students –on average- move up to four times. A third illustration is that most students substitute 
preferences in order to find a residence, suggesting that the housing-market is highly competitive. 
A fourth illustration is the relatively long period that it –on average- takes for students to find 
an alternative residence. Where some immediately stumble across an acceptable alternative, 
others only find this alternative after a thorough market study (taking up to 12 time-periods). 
What finally makes the behavior more realistic is the variety in search-behaviors ranging from 
apathetic (e.g. caused by a high a resistance to search), to explorative (e.g. caused by a high 
resistance to visit).
 Apart from that, boundedly rational students do not behave realistic; firstly because they 
do not forget anything they’ve learned so that, over time, their search-horizon decreases, never 
to be opened up again. A second point where their behavior is not realistic is that some students 
move residence just before they change preference-profile, so that their new residences is sub-
optimal, almost from the moment they moved in. Student 3922 (depicted in Table 6.40), for 
instance, moves at period 545, to move again 12 time-periods later, because -in the mean time- 
he/she changed preference-profile. In reality, students anticipate changes, as we will model in 
the next scenario.

Figure 6.26: Example of a representative life-course (full line) and move-course (dotted line) in case 
of boundedly rational students in a non-stationary housing-market



159

Table 6.40: The complete life- and move-course of student 3922 ( = a move)

period

life-course move-course

pref-profile
pref-profile 

partner action
pref-profile 
residence

0 10 - - 10
521 1 - searched source5
522 1 - visited 1
523 1 - searched source 3
524 1 - visited 3
525 1 - visited 6
526 1 - searched source 1
527 1 - visited 5
528 1 - searched source 2
529 1 - searched source 4
530 1 - visited 9
531 1 - searched source 1
532 1 - visited 2
533 1 - searched source 3
534 1 - visited 11
535 1 - searched source 1
536 1 - searched source 2
537 1 - searched source 5
538 1 - searched source 1
541 1 - searched source 1
542 1 - searched source 3
543 1 - visited 11
544 1 - visited 11
545 1 - moved 11
554 9 3 searched source 4
555 9 3 visited 9
556 9 3 moved 9
606 9 3 - 9
658 9 9 - 9
710 1 - - 9

Boundedly rational students / non-stationary housing-market
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§ 6.5 Pro-active boundedly rational students / non-stationary housing-market

§ 6.5.1 Parameter settings

HOUSING-MARKET SETTINGS

The housing-market is identical to the one of the three previous scenarios, in that the initial 
residence-category distribution is exhaustive (i.e. all 486 residence-classes are available for 
rent) and that the market is non-stationary.

POPULATION SETTINGS

Pro-active boundedly rational students not only react to, but also anticipate changes; changes 
in their own life-course (e.g. moving together with another student), but also changes in their 
environment (e.g. the development of new sport-facilities nearby). Recall from Chapter 4.5 that 
pro-active behavior is captured in the concept of expected lifetime-utility (ELU).
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Implementing this conceptualization of expected lifetime utility to our student-case, we introduce 
three constraints: firstly, students only anticipate changes in their own life-course, not in their 
environment; secondly, students only anticipate these changes over a period of three years, 

so that 30 += tT ; thirdly these changes have no temporal effects on the utility, so that 1= . 
Recall from Chapter 4.2 that we are mainly interested in the first utility component of the above 
equation, i.e. the utility a students i  expects to derive from living in a residence o , so that:
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Recall that the utility )(,l oEU t
i  a student i  expects to derive from living in a residence o  at 

time t , depends on his/her preference-profile, and that this preference-profile is related to the 
individual-profile of the student. So in order to assess this residential-utility, the student first 

calculates the probability )(Pr ff i
t =  of changing to any out of the 7 possible student-profiles 

f  at time t . For each of these student-profiles, the student then calculates the probability 

)|Pr( fuui =  of changing to any out of the 10 preference-profiles u . For each of these 

preference-profiles he/she can then calculate the utility )|(l uoEU i  he/she expects to derive 
from living at the residence o .

∑ ∑
= =

===
7

1

10

1

l,l )]]|()|[Pr()([Pr)(
f u

iii
tt

i uoEUfuuffoEU  (6.9)



161

The fact that each student anticipates changes in his/her life-course requires the introduction of 

an extra transition-table, capturing the probabilities )(Pr ff i
t =  of changing to any out of 7 

possible student-profiles. Upon initialization, these probabilities have to be defined over the next 
three time-periods. Once initialized, only the probability at period 3+t  has to be defined. In line 
with Chapter 4.2, the assumption is that students are able to anticipate life-course changes over 
a short period of time (i.e. three years in the student-case), and will behave according to these 
expectations. By means of an example, recall Table 5.8 depicting a fragment of the transition-
table specifying the probability that a student who has been living with a partner for the last two 
years, will or will not keep on living with a partner over the next three. Table 6.41 gives another 
example, depicting a fragment of the transition-table specifying the probability that a student 
who stopped living with his/her parents a year ago, returns to live with his/her parents over one 
of the three coming years. As mentioned in Chapter 5.4.2, all transition-matrices are plotted in 
the Appendix Chapter.

Table 6.41: Example of a transition-table specifying the probability that a student who stopped 
living with his/her parents, moves back to his/her parents over the next three years; t is the 
current time period

Once the student is clear regarding his/her future student-profiles, he/she then calculates the 

probability )Pr( uui =  of changing to any out of the 10 preference-profiles u  on the basis of 
the already defined transition-tables of which one is represented in Table 5.13.
 We are aware of the fact that not all anticipations are that realistic, for instance, a student 
foreseeing two years in advance that he/she will start (or stop for that matter) living together 
with a partner, and, anticipating this idea, already decides to move. The purpose is nevertheless 
just to illustrate the concept of pro-active decision-making, and how it could be integrated with 
other behavioral concepts.
 Apart from the extra transition-tables, everything remains the same as in the previous 
scenario. None of the three formalisms -Activity Diagram, Decision Table and Decision Tree- 
need to be adjusted. Furthermore, we assume that students have initial knowledge on their 
housing-market, that they learn, and that they do not have any resistance to change, 0=∆  and 
their mental effort is zero, 0=Θ . Finally, we assume the information-sources to be regular (as 
in the planning-simulations of the previous scenario).

Pro-active boundedly rational students / non-stationary housing-market

living with parents at time
probability

living with parents at time
t-2 t-1 t t+1 t+2 t+3
yes yes no 85% no no no
yes yes no 10% no no yes
yes yes no 5% no yes yes
yes yes no 0% yes yes yes
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§ 6.5.2 Behavior-simulations

AVERAGE POPULATION RESULTS  (Table 6.42)

Judging from the Table, pro-active boundedly rational students move significantly less per 
change in preference-profile, gain less utility from their first move, and spend less time on 
finding a first residence, compared to reactive boundedly rational students. This is mainly 
due to the way in which these simulation-results are recorded and queried; the number of 
moves per change in preference-profile, for instance, is recorded from the moment the student 
changes preference-profile till he/she changes preference-profile again, or till he/she leaves the 
simulation. Since pro-active students typically move before they actually change preference-
profile, another way of recording is required. The same is true for the number of time-periods 
between changing-profile and the first move. Since the students –as argued- typically move 
before changing preference-profile, what Table 6.42 represents are the number of time-periods 
between a change in preference-profile and a move in anticipation of an expected change in 
preference-profile.
 Concluding, the results in Table 6.42 give no actual insight in the impact of pro-active 
decision-making on the moving behavior of the students. Rather than adjusting our mode 
of recording simulation-results, we propose to directly look at the results on the level of the 
individual student, and assess the impact of pro-active decision-making by analyzing the 
phenomena emerging out of this individual behavior.
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Table 6.42: Average results on the level of the whole population

non-stationary 
housing-market

boundedly 
rational / 
no initial 

knowledge

boundedly 
rational / initial 

knowledge

boundedly 
rational / 
learning

pro-active 
boundedly 
rational / 
learning

number of moves per change in 
preference-profile 3.39 0.54 0.57 0.57 0.29

increase in utility related to the first 
move after changing preference-

profile
18.96% 23.92% 24.80% 24.87% 19.46%

number of time-periods between 
changing preference-profile and the 

first move
1.47 25.60 13.88 15.46 9.71

number of visits between changing 
preference-profile and the first move - 29.15 12.83 14.54 7.47

Pro-active boundedly rational students / non-stationary housing-market
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STUDENT LIFE- AND MOVE-COURSES  (Tables 6.43 till 6.47)

What the following results illustrate is that pro-active decision-making indeed has an impact 
on the spatial behavior of individual students. The clearest illustration of this impact –and 
also the most straightforward one- is that students move before actually changing preference-
profile. Student 3835, for instance, starts searching for an alternative residence at period 543, 
one simulation year before he/she actually changes life-course. 
 A second illustration is the fact that pro-active students compromise on their choice 
of residence. They compromise because they assess choice-alternatives on the basis of four 
potentially differing preference-profiles. In case of student 3887, for instance, these are profiles 
2 and 4, corresponding with a preference, on the one hand, for 1-room student-housing close 
to the university, and, on the other hand, for a 1-room hospita-residences close to the center. 
The result is that students typically end up in a residence not matching any of their expected 
preference-profiles, in case of student 3887, a residence matching profile 5, corresponding with 
a 1-room hospita-residence close to the university.
 A third illustration of the impact of pro-active decision-making and an indirect 
consequence of the above compromising is that students move less: instead of choosing an 
alternative that perfectly matches one preference-profile, they rather move to ‘average’ 
alternatives, i.e. alternatives equally acceptable for all expected preference-profiles.
 A fourth illustration is that not every change in preference-profile necessary triggers a 
student to consider moving. Student 3894, for instance, changes from preference-profile 10 to 
2 the moment he/she enters the simulation and expects to change to profile 3 and 9, but moves 
directly to a residence matching profile 9; ignoring two changes. A similar case is the situation 
where a student expects to change temporarily, returning to his current profile in a few years. 
Such students might, for this reason, not consider moving.
 A fifth illustration is that certain students keep on searching before actually finding an 
acceptable residence. Student 3920, for instance, searches 102 times in 113 time-periods. The 
fact triggering this behavior is an actual change from preference-profile 10 to 1 and an expected 
change to profile 9. Since profiles 1 and 9 are quite different profiles (i.e. a preference for a 
1-room student-house versus a preference for a 2-room apartment), the student cannot find an 
actual residence satisfying both. But, since both profiles are well represented on the housing-
market, and the student is aware of this, he/she will keep on searching.
 Finally, a distinction can be made depending on the level of pro-activeness of a student. 
For instance, in the case of a divorce, the student will only consider moving, the moment he/
she is divorced. Student 3840, for instance, already expects to divorce at period 368, but only 
starts searching 3 simulation-years later. Student 3894, on the other hand, ignores two changes, 
immediately moving to a residence matching the preference-profile he/she only expects to have 
within 3 simulation-years.

Note that by re-defining the  parameters in Equation 6.7, one can manipulate the level of pro-
activeness of a student.
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Table 6.43: A fragment of the life- and move-course of student 3835 ( = a move)

Table 6.44: A fragment of the life- and move-course of student 3887 ( = a move)

period

life-course move-course

pref-profile pref-profile 
partner action pref-profile 

residence
t t+1 t+2 t+3

0 10 10 10 6 - - 10
521 10 10 6 6 - - 10
543 10 6 6 6 - searched source 3
544 10 6 6 6 - visited 6
545 10 6 6 6 - moved 6
595 6 6 6 6 - - 6

period

life-course move-course

pref-profile pref-profile 
partner action pref-profile 

residence
t t+1 t+2 t+3

0 10 4 4 2 - - 10
521 4 4 2 2 - searched source 1
522 4 4 2 2 - visited 11
523 4 4 2 2 - searched source 3
524 4 4 2 2 - visited 5
525 4 4 2 2 - visited 6
526 4 4 2 2 - searched source 2
527 4 4 2 2 - visited 2
528 4 4 2 2 - searched source 5
529 4 4 2 2 - searched source 4
530 4 4 2 2 - visited 9
531 4 4 2 2 - searched source 1
532 4 4 2 2 - searched source 3
533 4 4 2 2 - visited 5
534 4 4 2 2 - moved 5

- - - - - - - -

Pro-active boundedly rational students / non-stationary housing-market
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Table 6.45: A fragment of the life- and move-course of student 3894 ( = a move)

Table 6.46: A fragment of the life- and move-course of student 3840 ( = a move)

period

life-course move-course

pref-profile pref-profile 
partner action pref-profile 

residence
t t+1 t+2 t+3

0 10 2 2 3 - - 10
521 2 2 3 9 - searched source 4
522 2 2 3 9 - searched source 5
523 2 2 3 9 - searched source 2
524 2 2 3 9 - visited 9
525 2 2 3 9 - visited 9

- - - - - - - -

period

life-course move-course

pref-profile pref-profile 
partner action pref-profile 

residence
t t+1 t+2 t+3

- - - - - - - -
586 9 9 3 3 9 - 7
638 9 3 3 5 9 - 7
690 3 3 5 5 9 - 7
742 3 5 5 5 9 - 7
794 5 5 5 5 - searched source 1
795 5 5 5 5 - visited 6
796 5 5 5 5 - moved 6

- - - - - - - -
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Table 6.47: A fragment of the life- and move-course of student 3920 ( = a move)

period

life-course move-course

pref-profile pref-profile 
partner action

pref-profile 
residencet t+1 t+2 t+3

0 10 1 1 9 - - -
521 1 1 9 9 - searched source 4
522 1 1 9 9 - searched source 5
523 1 1 9 9 - searched source 2
524 1 1 9 9 - visited 9
525 1 1 9 9 - visited 11
526 1 1 9 9 - searched source 3
527 1 1 9 9 - visited 6
528 1 1 9 9 - searched source 4
529 1 1 9 9 - searched source 1
530 1 1 9 9 - visited 11
531 1 1 9 9 - searched source 5
532 1 1 9 9 - visited 3
533 1 1 9 9 - searched source 2
534 1 1 9 9 - searched source 4
535 1 1 9 9 - searched source 3
536 1 1 9 9 - searched source 5
537 1 1 9 9 - searched source 1
538 1 1 9 9 - searched source 4
539 1 1 9 9 - searched source 2
540 1 1 9 9 - visited 11
541 1 1 9 9 - searched source 3
… … … … … … … …
616 1 9 9 9 - searched source 3
617 1 9 9 9 - searched source 4
618 1 9 9 9 - searched source 1
619 1 9 9 9 - searched source 4
620 1 9 9 9 - searched source 2
621 9 9 9 9 9 searched source 4
622 9 9 9 9 9 searched source 3
623 9 9 9 9 9 searched source 2
624 9 9 9 9 9 visited 9
625 9 9 9 9 9 searched source 4
626 9 9 9 9 9 visited 3
627 9 9 9 9 9 visited 6
628 9 9 9 9 9 searched source 4
629 9 9 9 9 9 searched source 1
630 9 9 9 9 9 searched source 5
631 9 9 9 9 9 searched source 4
632 9 9 9 9 9 visited 1
633 9 9 9 9 9 moved 1

- - - - - - - -

Pro-active boundedly rational students / non-stationary housing-market
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§ 6.5.3 Planning-simulations

In the planning-simulations of the previous scenarios, we analyzed the behavior of the student-
population under different housing-market settings, e.g. varying either the resistance to change, 
the residence-category distribution, or the supply size. The planning-simulations we will pursue 
here are slightly different, firstly, in that not the behavior of the student-population in reaction to 
a planning-intervention, but the intervention itself is the main focus. Each simulation starts with 
a decision-maker defining an assessment criterion: e.g. the speed at which the newly constructed 
residences will be rented out (i.e. the advertisement period). Once this criterion is defined, 
the decision-maker proposes a number of alternative planning-interventions. Each of these 
interventions is then fed into the model. The decision-maker finally evaluates each alternative 
on the basis of his/her assessment criterion. A second way in which these simulations differ 
from the previous scenarios is that the planning-interventions are not implemented at the start 
of the simulation, but rather dynamically during the simulation.

SUPPLY SIZE  (Figure 6.27)

As a first dynamic simulation, 50 new residences of residence-categories 2 and 4 are added 
to the simulation at time-period 10, and set for rent. To assess the impact of this intervention, 
both the vacancy-rate and the advertisement-period are plotted. As the top graph of Figure 6.27 
illustrates, the vacancy-rate of residences belonging to categories 2 and 4 indeed increases at 
time-period 10 (i.e. the moment new residences are added), to then rapidly decrease in the 
following periods. What the graph also illustrates is that the adding of these extra residences 
goes at the cost of residences belonging to categories 1 and 3: for those the vacancy-rate 
increases. What happens is that prior to the intervention, students wanting to move to either a 2-
room student-house (residence-category 2), or a 2-room hospita-residence (residence-category 
4) were forced to move into 1-room student-housing (category 1) or 1-room hospita-housing 
(category 3). Since the intervention, they no longer have to substitute their preferences.
 As the bottom graph of Figure 6.27 illustrates, the advertisement-period of residences 
belonging to categories 2 and 4 reaches a maximum at period 12. Students are not informed 
about the addition of new residences, they have to learn it. This takes some time, explaining the 
relatively long advertisement-period. Another effect worth noting is that, since the introduction 
of new residences, the advertisement-period of residences belonging to category 1 decreases 
permanently. This is a result of the increased vacancy-rate: students opting for residences of 
category 1 have more choice and thus more chance to faster find an acceptable alternative, 
resulting in a shorter advertisement-period, for those residences that get sold, that is.
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Figure 6.27: The impact of an increase in the supply size at time-period 10 on the vacancy-
rate (top), and the advertisement-period (bottom)
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RESISTANCE TO CHANGE  (Figure 6.28)

As a second dynamic simulation, the resistance to move m∆ , of all students is increased from 
zero to high, at time-period 13. To assess the impact of this intervention, both the vacancy-
rate and the advertisement-period are plotted. As the top graph of Figure 6.28 illustrates, the 
vacancy-rate increases significantly from time-period 13 onwards to reach a new equilibrium 
level around time-period 16, implying that the high resistance to change indeed suppresses the 
willingness of students to move. Residences of category 2 are an exception to this: here the 
vacancy-rate does not reach a new and higher equilibrium-level, but rather decreases again. 
This exceptional behavior is the result of a shortage of residences of category 2, making that 
there will always be students willing to rent such a residence.
 As the bottom graph of Figure 6.28 illustrates, the advertisement-periods of all residences 
seem to converge. This is a consequence of the high vacancy-rate, increasing the probability 
for students to faster find a better choice-alternative. In other words, good residences are sold 
faster, whereas bad residences are not sold at all. As the graph illustrates, the ‘converged’ 
advertisement-period increases slightly over time, pointing at a slight increase in competition. 
The extreme values occurring prior to the intervention do not occur anymore though.
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Figure 6.28: The impact of an increase in resistance to move at time-period 13 on the 
vacancy-rate (top), and the advertisement-period (bottom)
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§ 6.5.4 Conclusions

Model settings: the housing-market settings are identical to the previous scenario, implying that 
the housing-market is non-stationary. The population-settings differ in that students are now 
not only boundedly rational and make joint decisions, but also behave pro-actively, anticipating 
changes in their life-course, three years into the future. On the basis of these anticipations, these 
students then consider whether or not to move.

Model assessment: the scenario of pro-active students is more realistic than that of reactive 
students, first and foremost, because they indeed foresee changes in their life-course and act 
accordingly. As a result these students hardly experience any room-stress, related to under-
consumption of housing (Clark and Huang, 2003). A second phenomenon generated by pro-
active behavior is that students no longer feel the need to react to all changes in their life-
course, ignoring some because they either expect to change again, or because they expect to 
return to their current situation. A third phenomenon is that students seem to prefer ‘average’ or 
‘mainstream’ choice alternatives, i.e. alternatives that are not too much tailored to one stage in 
their life-course, but rather allow for a variety of lifestyles. This phenomenon is similar to the 
‘geographical sorting’ phenomenon described in the empirical findings.
 The scenario is not realistic, in that the rent of all residences is zero, as such not affecting 
choice-behavior. We will address this issue in the next scenario.

Figure 6.29: Example of a representative life-course (full line) and move-course (dotted line) in case 
of pro-active boundedly rational students in a non-stationary housing-market
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§ 6.6 Pro-active boundedly rational students / non-stationary interactive 
 housing-market

§ 6.6.1 Parameter settings

HOUSING-MARKET SETTINGS

The housing-market differs slightly from the previous scenarios: the initial distribution is still 
exhaustive (i.e. all 486 residence-classes are available for rent) and the market is still non-
stationary, but the rent of all residences is no longer set to zero. Rather, rents are assigned to 
residences according to the rent-distribution depicted in Table 6.48. Note that rents are grouped 
into 16, so-called, rent-categories. What the Table also illustrates is that residences belonging 
to residence-categories 1 and 3, on average, have the lowest rents, whereas those belonging to 
category 6, on average, have the highest rents.

Table 6.48: Rent distribution per residence-category ( = average value)

POPULATION SETTINGS

The housing-market is interactive in the sense that it reacts to the behavior of its population: 
landlords negotiate with students over a price at which to rent out a residence. We are aware of 
the fact that, in the context of the Dutch student housing-market, negotiations over rents do not 
really take place, considering that students are typically price-takers. This scenario therefore 
has to be understood as merely an illustration of the proposed conceptual framework. The 
model would only require minor adjustments though to be applicable to a context where price-
negotiations do occur.
 In order to implement the negotiation-protocol, let us again first redraw the three decision-
formalisms introduced in Chapter 4.1 –Activity Diagram, Decision Table and Decision Tree- to 
our student-case.

residence-
category

rent-category

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0% 0% 5% 15% 57% 15% 5% 2% 1% 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 1% 2% 5% 15% 54% 15% 5% 2% 1% 0% 0% 0% 0% 0%
3 0% 0% 5% 15% 57% 15% 5% 2% 1% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 1% 2% 5% 15% 54% 15% 5% 2% 1% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 1% 2% 5% 15% 54% 15% 5% 2% 1% 0% 0% 0%
6 0% 0% 0% 0% 0% 0% 1% 2% 5% 15% 54% 15% 5% 2% 1% 0%
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Figure 6.30: Activity Diagram of the student-case, in case of an interactive housing-market

As in all previous scenarios, the Activity Diagram of Figure 4.18 is extended with one activity, 
namely moving back to the paternal home. As described in the conceptual framework, the 
negotiation-protocol starts with a landlord proposing an initial demand-price for a residence 
published for rent. A student interested in renting out this residence can either accept this initial 
demand-price and move in, or he/she can propose a counter-bid. The landlord can then choose 
to accept this counter-bid and rent the residence; reject the counter-bid and stop the negotiation; 
or in turn propose another counter-bid. This process continues until both opponents either accept 
each other’s bid, or until one of both rejects.
 In line with our assumption that students are boundedly rational, we assume that the 
knowledge of these students regarding the decision-behavior of landlords is limited, implying 
that students not only have beliefs regarding the composition of their physical environment, 
but also regarding the behavior of the landlords governing this environment. The same is 
true for the landlords, basing their decisions on beliefs regarding the behavior of students. In 

particular, both students and landlords have rent-beliefs )](Pr[ kc , acceptance-beliefs )(Pr A c , 

and rejecting-beliefs )(Pr R c . Recall from Chapter 4.6.3 that acceptance- and rejecting-beliefs 
express the probabilities that the opponent will either accept or reject a rent c  for the residence 
under negotiation. All beliefs are defined for all residence-categories k .
 Regarding the initialization of these beliefs, the assumption put forward in the 
two previous scenarios is also adopted here, namely that students (or landlords) have some 
awareness of the situation on the housing-market without knowing all details. Practically, we 
assume that students (and landlords) know, at all times, both the actual rent-distribution and 
the actual acceptance- and rejecting probabilities on the level of the overall housing-market, 
and this for all residence-categories k . Since rent-beliefs are thus an exact representation of 
the actual rent-distribution, they can be defined endogenously. Regarding the acceptance- and 
rejecting-beliefs (cfr. Figures 4.22 and 4.23), the assumption is that, upon initialization, both 
follow the same distribution, be it that the mean-values differ. The further away these mean 
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acceptance- and rejecting-values are from the expected rent of the residence-category, the more 
pessimistic/optimistic the agent is regarding the behavior of his/her opponent. To illustrate this, 
consider the acceptance-beliefs of the student depicted in Figure 6.31. His beliefs are initialized 
in such a way that the mean acceptance-value differs three price-categories from the expected 
rent )(" kc  for a given residence-category k , implying that this student expects having to pay a 
high rent for a residence belonging to this category, and thus can be said to be pessimistic.

Figure 6.31: Acceptance-belief distribution and expected rent )(" kc of a student for a given residence-
category k

In the current version of the model, all landlords thus have identical acceptance- and rejecting-
beliefs, and all students have identical acceptance- and rejecting-beliefs. It is technically possible 
though to, within swarmCity, define unique beliefs per agent, as such guaranteeing a unique 
decision-behavior. This is nevertheless out of the scope of the current research.
 As all other beliefs, rent-, acceptance- and rejecting-beliefs can be inserted into the 
Decision Table of the student, implying 48 extra rows (3 times 16 rent-categories) in the action-
set. Action A20, for instance, holds the probability that any residence-category k  would have a 
rent of category 1.

Figure 6.32: Decision Table of a student with preference-profile 2

Pro-active boundedly rational students / non-stationary interactive
 housing-market
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Each time a bid for a residence is accepted or rejected, both negotiation-partners have new 
information on each other’s behavior, on the basis of which they can then update their beliefs. 
In line with our assumption that students and landlords are at all times aware of the rent-
distribution and acceptance- and rejecting probabilities on the level of the housing-market, 
we assume the belief updating to take place on the level of this housing-market, and this both 
for students and landlords. One could argue that landlords typically posses more knowledge 
regarding the housing-market than students due to their experience, and thus that they update 
their beliefs differently. Such a scenario could be explored in future model-versions.
 Regarding the actual update-heuristic, an important factor is that acceptance- and rejecting-
beliefs are typically interrelated: for instance, when a landlord starts to reject higher bids from 
a student, this landlord will typically also increase the point at which he/she will directly accept 
a bid from this student. In order to illustrate how this interrelation is implemented, assume the 
situation where the opponent (be it a student or a landlord) just agreed upon a rent belonging to 
a rent-category i . The agent will then update his/her acceptance- and rejecting-beliefs APr  and 

RPr  as follows:
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Since the opponent accepted the bid, the agent is certain about this new information and can 

thus update his/her acceptance-beliefs as in Equation 6.10, where tW  represent the accumulated 
past experiences. Regarding the updating of the rejecting-beliefs, recall that acceptance- and 
rejecting-beliefs are in fact identical distributions, of which the means differ a number of rent-
categories vi −=Ψ . The underlying assumption is that this number Ψ , remains constant 
during the simulation, so that when the agent knows the rent-category i  of an accepted bid, 
he/she also knows the price-category v  that the opponent would reject, and can thus update 
his/her rejecting-beliefs, according to Equation 6.11.
 Contrary to what is proposed in the conceptual framework, agents do not update their 
beliefs during the negotiation. As the simulations will illustrate, a negotiation typically takes 
between zero and two negotiation rounds, too few rounds to actually learn something about the 
decision-behavior of one’s opponent. This type of updating could be explored in future model 
versions though.

As in all previous scenarios, the Decision Tree differs slightly from the one proposed in the 
conceptual framework, firstly in that students can choose an extra option, namely moving back 
to the parental home, and secondly in that both the resistances to change ∆  and the mental 
effort Θ  are set to zero.
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Figure 6.33: Decision Tree, with resistance to change and mental effort set to zero; 0o  represents the 
parental home

Recall from Chapter 4.2 that students not only derive utility from living in a residence )(l oU  

but also from daily activities )(a oU , and from the budget that is spent on non-housing 

purchases and expenditures )(c oU . In all scenarios so far, the rents of all residences were 
set to zero, so that the utility derived from the budget spent on non-housing purchases and 
expenditures remained constant. Given that in the current scenario rents are no longer uniform, 

the budget-utility component )(c oU  starts to have an impact on the location-choice behavior 
of the student: e.g. he/she might favor a cheaper residence less answering his/her preferences 
over a very expensive residence perfectly answering his/her preferences. The budget-utility 

component )(c oU  is calculated as follows:

)]]("[log[)(c ocboU −=  (6.12)

∑ ==
c

ccococ ])(Pr[)("  (6.13)

Pro-active boundedly rational students / non-stationary interactive
 housing-market
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b  is the total budget of the student and )(" oc  is the rent he/she expects having to pay for a 
residence o . This expected rent is calculated on the basis of the rent-distribution on the overall 
housing-market, expressed by the probabilities ])(Pr[ coc = . The idea behind Equation 6.12 is 
that the utility increases with the budget left to spend on non-housing purchases and expenditures, 
but with decreasing marginal utility, simulating saturation effects (decreasing marginal utility 
of expenditure). The parameters  and  are introduced to regulate this saturation point.
 Hitherto, we considered the implementation of the negotiation-process. Let us now 
consider the implementation of the actual rent-formation process. Recall from Chapter 4.6.4 
that both students and landlords first evaluate the lifetime-utility expected to derive from 
renting (out) a given residence o  at all possible rent-categories, to then select that category that 
maximizes this utility:

+−+= ])[(Pr),()(Pr))(( d"RA CELUccoELUcocELU

                      ]))(()][(Pr)(Pr1[ f
1

RA CocELUcc −−− −  (6.14)

)(Pr A c  and )(Pr R c  represent the acceptance- and the rejecting-beliefs; "ELU  represents the 
shadow-utility; )(1 oc−  represents the rent-category one category lower than the one currently 
under evaluation; and dC  and fC  represent delay-costs, i.e. costs related to – respectively a 
failed negotiation and an extra negotiation-round. The shadow-utility "ELU  is the lifetime-
utility a student (or landlord) expects to derive in case a negotiation would fail. In case of 
students, this utility is equal to the utility expected to derive from any other action than moving 
to the residence in question:

],,,,max[" 0p"mbz ELUELUELUELUELUELU =  (6.15)

zELU , bELU , "mELU , pELU  and 0ELU  respectively represent the lifetime-utility expected 
to derive from searching; visiting; moving to the second best residence stored in the list of 
residences to rent; moving back to the parental home; and staying in the current residence. 
In case of the landlord, the shadow-utility is equal to the utility he/she expects to derive from 
renting out the residence at the expected market value )(" oc . The delay-costs dC  and fC  are 
different for landlords then for students, since the utility of a landlord is expressed in monetary 
values, whereas the utility of a student is expressed in an abstract value.
 Recall that in order to guarantee that a negotiation-process actually ends (either by 
reaching an agreement or by rejecting a bid), we introduced the constraint that a landlord 
can never raise his/her price, and that a student can never propose a bid lower than his/her 
previous bid. In the following simulations, we added an extra constraint, namely that students 
cannot negotiate more than once over the same residence without either moving or changing 
preference-profile first. Without this constraint, students could keep on negotiating over the 
same residence, given that they only adjust their beliefs to a minor extent. In future simulations 
we could evaluate the impact of releasing this constraint, in combination with, for example, 
more individual belief-updating (rather than belief-updating on the level of the whole housing-
market as is the case now).
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§ 6.6.2 Behavior-simulations

The differentiating of residence-rents (instead of no rent at all) has such a drastic impact on 
the location-choice behavior of the students that it is not relevant to compare the results of 
this scenario with the results of the previous scenarios: not only is there an extra residence-
attribute (i.e. the rent of a residence), but there is also an extra actor (i.e. the landlord) potentially 
influencing the decision-behavior of the students. For this reason, the interactive housing-
market scenario will be presented as a ‘stand-alone’ scenario. Moreover, since the main focus 
of this scenario is the negotiation-process between one student and one landlord, only results 
on the level of individual students are plotted. The impact on the level of the overall population 
is evaluated during the planning-simulations. Finally, in order to truly assess the impact of the 
negotiation process on the location-choice behavior, we introduce three simplifications to the 
original conceptual framework: firstly, students (and landlords) have full knowledge on all 
residence-attributes except on the rent; secondly, students are not pro-active; and thirdly, the 
delay-costs dC  and fC , are set to zero.

INDIVIDUAL LIFE- AND MOVE-COURSES  (Tables 6.49 till 6.54)

The following results give an impression of the variety in negotiation situations in which the 
students engage to rent a residence.

The first and the most straightforward situation, depicted in Table 6.49, is that of a successful 
negotiation. Student 168 negotiates with landlord 5 over residence 686, reaching an agreement 
over a rent of category 11 in the third negotiation round. Both landlord and student adjusted 
their initial bid with three categories.
 The second situation, depicted in Table 6.50, is that of a student having to raise his/
her initial bid to be able to rent a residence of his/her preference. Student 236 starts with two 
successful and short negotiations. At period 1139, he/she changes preference-profile, and is 
hoping to rent a residence of category 1. The four first negotiations over such a residence 
though, seem to fail. Tired of these failures, the student decides, at period 1183, to start with 
a higher initial bid compared to the previous negotiation, i.e. a bid two rent-categories higher 
(rent-category 10 instead of 8). With success, both reach an agreement and the student moves. 
Encouraged by this success, the landlord decides to raise his/her initial demand-price, a raise 
that the student accepts in all succeeding negotiations.
 The third situation, depicted in Table 6.51, is a variant of the previous situation; but 
this time not only the student, but also the landlord has to adjust his/her initial demand-price to 
come to a successful negotiation. Student 210 decides not to rent residence 277 at period 970, 
because he/she considers the rent to be too high. Fourteen time-periods later, the student finds a 
similar residence, but this time with a lower initial demand-price. During these fourteen periods, 
the student learns that his/her previous initial bid was too low, so he/she decides to raise it one 
price-class. The negotiation succeeds and the student moves in. By the next negotiation (i.e. 
at time-period 1012), both adjusted their initial bids again, nevertheless ending up at the same 
final transaction rent. The last two negotiations, finally, are successful, be it that the student 
changed residence category (i.e. category 6 instead of 1).

Pro-active boundedly rational students / non-stationary interactive
 housing-market
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The fourth situation, depicted in Table 6.52, is that of a student trying to undo a raise in rent. 
Initially, student 301 is able to rent a residence belonging to category 1 at a rent of category 11. 
The landlord nevertheless raises his/her rent, a raise that the student accepts. At period 1020 
though, this same student rejects this rent, because of a high shadow-utility (implying that there 
are alternatives available of which the student expects to derive an equal amount of utility). 
The landlord is susceptible to this rejecting, and decides to lower his/her initial demand-price, 
resulting in a final transaction-rent equal to the one the student originally paid.
 The fifth situation, depicted in Table 6.53, is that of a student having to change residence-
category to be able to rent a residence of his/her preference. Student 256 begins with rejecting 
a bid for a residence belonging to category 1. Around 1068, the student changes preference-
profile, and already agrees, after only one negotiation-round, on a rent to pay for a residence 
matching his/her new profile; a rent that is even one rent-category higher than the originally 
rejected bid (evidently for another residence-category).
 The sixth and final situation, depicted in Table 6.54, is that of a student and landlord, 
both rejecting each other’s bids because of high shadow-utilities. Student 293 engages in three 
successful negotiations, until time-period 1326, then the student rejects a bid of landlord 4; a 
bid that he/she in previous negotiations just answered with a counter-bid. The reason behind 
this rejection is that the student expects to find a cheaper alternative for the residence under 
negotiation, and as such is not willing to increase his/her bid. During the following negotiation-
round, it is the landlord that rejects a bid from the student, this time because he/she expects to 
be able to rent out the residence at a higher rent to another student. At 1344, the student is again 
prepared to accept the bid of the landlord. Nineteen time-periods later, the student chooses a 
second time to withdraw from the negotiation, and bid for another residence.



181

Table 6.49: The negotiation-processes of student 168 ( = a finished negotiation)

Table 6.50: The negotiation-processes of student 236 ( = a finished negotiation)

time-period landlord residence residence-
category

rent-category bid
landlord student

101 5 686 1 14 8
101 5 686 1 13 9
101 5 686 1 12 10
101 5 686 1 11 11

time-period landlord residence residence-
category

rent-category bid
landlord student

1016 1 3082 4 15 14
1016 1 3082 4 14 14
1024 1 41 6 15 14
1024 1 41 6 14 14
1139 3 273 1 13 8
1139 3 273 1 12 9
1139 3 273 1 11 10
1139 3 273 1 0 0
1153 2 351 1 13 8
1153 2 351 1 12 9
1153 2 351 1 11 10
1153 2 351 1 0 0
1158 3 529 1 13 8
1158 3 529 1 12 9
1158 3 529 1 11 10
1158 3 529 1 0 0
1167 1 780 1 13 8
1167 1 780 1 12 9
1167 1 780 1 11 10
1167 1 780 1 0 0
1183 3 3382 1 13 10
1183 3 3382 1 12 11
1183 3 3382 1 11 11
1206 3 3273 1 15 11
1206 3 3273 1 14 12
1206 3 3273 1 13 13
1246 2 780 1 15 11
1246 2 780 1 14 12
1246 2 780 1 13 13
1253 3 529 1 15 11
1253 3 529 1 14 12
1253 3 529 1 13 13

Pro-active boundedly rational students / non-stationary interactive
 housing-market
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 Table 6.51: The negotiation-processes of student 210 ( = a finished negotiation)

Table 6.52: The negotiation-processes of student 301 ( = a finished negotiation)

time-period landlord residence residence-
category

rent-category bid
landlord student

970 4 277 1 15 8
970 4 277 1 14 9
970 4 277 1 13 0
984 5 3273 1 14 10
984 5 3273 1 13 11
984 5 3273 1 12 12
995 5 780 1 15 9
995 5 780 1 14 10
995 5 780 1 13 11
995 5 780 1 12 12
1012 1 3271 1 14 10
1012 1 3271 1 13 11
1012 1 3271 1 12 12
1247 1 889 6 15 14
1247 1 889 6 14 14
1256 4 1039 6 15 14
1256 4 1039 6 14 14

time-period landlord residence residence-
category

rent-category bid
landlord student

977 2 1243 1 14 9
977 2 1243 1 13 10
977 2 1243 1 12 11
977 2 1243 1 11 11
986 1 2549 1 15 9
986 1 2549 1 14 10
986 1 2549 1 13 11
986 1 2549 1 12 12
998 3 3273 1 14 10
998 3 3273 1 13 11
998 3 3273 1 12 12
1020 1 273 1 15 8
1020 1 273 1 14 9
1020 1 273 1 13 10
1020 1 273 1 12 0
1049 2 3105 1 13 10
1049 2 3105 1 12 11
1049 2 3105 1 11 11
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Table 6.53: The negotiation-processes of student 256 ( = a finished negotiation)

Table 6.54: The negotiation-processes of student 293 ( = a finished negotiation)

time-period landlord residence residence-
category

rent-category bid
landlord student

971 4 277 1 15 8
971 4 277 1 14 9
971 4 277 1 13 0
1068 4 2991 6 15 14
1068 4 2991 6 14 14
1122 1 1488 2 15 14
1122 1 1488 2 14 14

time-period landlord residence residence-
category

rent-category bid
landlord student

1035 1 674 1 15 12
1035 1 674 1 14 13
1035 1 674 1 13 13
1078 3 3298 4 15 14
1078 3 3298 4 14 14
1096 5 3013 2 15 14
1096 5 3013 2 14 14
1326 4 2549 1 15 11
1326 4 2549 1 14 12
1326 4 2549 1 13 0
1335 4 205 1 15 8
1335 4 205 1 14 9
1335 4 205 1 13 10
1335 4 205 1 12 11
1335 4 205 1 0 0
1344 2 351 1 15 11
1344 2 351 1 14 12
1344 2 351 1 13 13
1363 4 2549 1 15 11
1363 4 2549 1 14 12
1363 4 2549 1 13 0
1403 1 3058 1 15 12
1403 1 3058 1 14 13
1403 1 3058 1 13 13
1443 3 3160 1 15 12
1443 3 3160 1 14 13
1443 3 3160 1 13 13
1467 5 2379 1 15 11
1467 5 2379 1 14 12
1467 5 2379 1 13 13

Pro-active boundedly rational students / non-stationary interactive
 housing-market
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§ 6.6.3 Planning-simulations

Three planning-simulations are run: a first one with a varying supply size; a second one with 
varying initial acceptance- and rejecting-beliefs APr  and RPr ; and a third one with varying 
delay-costs dC .
 For technical reasons, the population-size is reduced from 1000 to 100 student-households, 
and the yearly population-growth is reduced from 200 to 20. The housing-market is adjusted 
accordingly. Furthermore, one simulation-year now only counts 10 time-periods (instead of 
52), and each simulation is only run for 16 years (instead of 25), still only starting recording 
results after 10 years to avoid effects related to the initialization of the model.

SUPPLY SIZE  (Figure 6.34)

Two simulations are run, one with a low supply of residences available for rent (equal to 20% 
of the population-size after 10 simulation rounds), and one with a high supply of residences 
available for rent (equal to 200% of the population-size after 10 simulation rounds). Table 6.55 
illustrates the initial rent-distribution in both simulations on the level of the overall housing-
market (i.e. including both residences that are rented out and that are for rent).

Table 6.55: Initial overall rent distribution in case of a low and high supply

Judging from the graphs in Figure 6.34, a high supply seems to result in a lower rent than a low 
supply (except in case of residences belonging to category 6 where both result in the same rent). 
This seems to be realistic, in that excess in supply indeed leads to a decrease in price.
 A second effect seems to be that in case of a low supply, the average rent-category is 
either 13 or 14 (except for residences belonging to category 1), irrespective of the residence-
category, whereas in case of a high supply, the average rent-category varies more from category 
to category.
 A last effect worth mentioning is that the rent seems to be more stable in case of a high 
than in case of a low supply. This seems plausible given that in case of a low supply, residences 
only turn vacant; the moment the current tenant leaves the simulation or relocates, as such 
only periodically increasing the availability, whereas in case of a high supply, the availability 
remains more or less constant.

supply
rent-category

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
low 0% 0% 1% 5% 34% 11% 22% 4% 4% 1% 13% 2% 1% 0% 1% 0%
high 0% 0% 2% 6% 24% 10% 19% 7% 12% 3% 12% 2% 2% 0% 1% 0%
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Figure 6.34: The impact of a low () and a high () supply on the rent-evolution. Results are 
grouped according to residence-category
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INITIAL BELIEFS  (Figure 6.35)

Five simulations are run: the first simulation – referred to as base-case – serves as benchmark; 
the second simulation – referred to as optimistic landlords - defines the initial acceptance- 
and rejecting-beliefs APr  and RPr , in such a way that landlords expect to be able to rent out 
residences at high rents; the third simulation – referred to as optimistic students – defines the 
initial beliefs in such a way that the students expect to be able to rent residences at low rents; 
the fourth simulation – referred to as pessimistic landlords – defines the initial beliefs in such 
a way that the landlords expect having to rent out residences at low rents; the fifth simulation 
– referred to a pessimistic students – finally defines the initial beliefs in such a way that the 
students expect having to pay high rents. Important to mention is that the supply is low, and that 
only the results of residences belonging to category 1 are plotted in the graphs of Figure 6.35.
 In the case of optimistic landlords, the optimism indeed seems to have a positive effect, 
in that the final transaction-rent, on average, is significantly higher than in the base-case (13,4 
versus 12,3). Optimistic landlords propose high initial demand-prices, to which students reply 
with high counter-bids, resulting in high final transaction-rents. The absence of rejecting students 
confirms that students are willing to pay the high rents.
 In the case of optimistic students, the optimism seems to turn against the students, in 
that the final transaction-rents are not lower but instead higher than in the base-case (13,2 versus 
12,3). This is partly due to the assumed interdependence of the acceptance- and rejecting-beliefs: 
the fact that landlords are not willing to accept their low prices makes student beliefs that the 
rent that this landlord is willing to accept must be significantly higher, turning his/her optimism 
into pessimism. If a bid had been accepted from time to time, as in the base-case, these beliefs 
would have remained optimistic.
 In the case of pessimistic landlords, the pessimism seems to be confirmed so that the 
landlords keep on proposing low initial demand-prices which the students are evidently willing 
to accept. This particular case is not realistic in that landlords might in such a situation take a 
risk and at least try to sporadically raise the initial demand-price.
 In the case of pessimistic students finally, the pessimism seems to be confirmed, also here 
resulting in high transaction-rents. Note that there is hardly any difference with the optimistic-
student-case.
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Figure 6.35: The impact of the initial belief-distribution on the evolution of the initial 
demand-price of both the landlords () and the students (), and on the final transaction  
rent ()
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DELAY-COSTS  (Figure 6.36)

Three simulations are run: in a first simulation – referred to as base-case – all delay-costs dC  
and fC  are zeroed; in a second simulation – referred to as high delay landlords – only the delay-
costs of the landlords which are related to a failed negotiation dC  are high; in a third simulation 
– referred to as high delay students- only the delay-costs of the students which are related to 
a failed negotiation dC  are high. As in the previous simulation, the offer is low, and only the 
results of residences belonging to category 1 are plotted.
 Judging from the graphs in Figure 6.36, the effect of increasing the delay-costs seems 
to correspond to what we would intuitively expect: in the second simulation, high delay-costs 
push the landlords to choose for a low initial demand-price, which students are eager to accept. 
In the third simulation, high delay-costs push the students to choose for a high first counter-bid, 
which is evidently directly accepted by the landlords.
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Figure 6.36: The impact of the delay-costs on the evolution of the initial demand-price of both 
the landlords () and the students (), and on the final transaction rent ()
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§ 6.6.4 Conclusions

Model settings: the housing-market settings differ from the previous scenarios in that the rent 
of residences is no longer set to zero, but is defined by the landlord renting out the residence. 
The population-settings differ in that students negotiate with these landlords over the final rent 
to pay for a residence. For these negotiations both students and landlords rely on their beliefs 
regarding the behavior of their opponent.

Model assessment: the interactive housing-market scenario is more realistic than the previous 
scenarios, firstly because rents are no longer uniform and fixed, but vary among residence 
categories, and secondly because these rents change depending on the overall demand for, and 
supply of these categories. The negotiation-behavior of the students and landlords is realistic, 
firstly in that their expectations influence their bidding behavior, for instance, when a student 
expects to find equally valuable alternatives on the housing-market as the one he/she is currently 
negotiating over, he/she will not be inclined to accept high-bids from the landlord. A second 
illustration of how the negotiation behavior of students and landlords is realistic is that their 
knowledge influences their bidding behavior: a student might for instance experience that a 
landlord is not willing to rent out a residence at a particular rent, so that in the future he/she 
will either no longer consider moving to residences belonging to this category, or he/she will 
increase his/her initial counter-bid.
 The scenario is not realistic; in that all landlords have identical beliefs and all students 
have identical beliefs. In reality, some people are evidently more experienced than others, so 
that there in fact is a wide variety in beliefs. A second point where this scenario is not realistic 
is that all knowledge of all students and landlords is exact: i.e. all agents, at all time, know the 
exact rent-distribution and the exact acceptance- and rejecting-probabilities at the level of the 
housing-market. So, apart from the fact that students and landlords do not know the rent of a 
residence, they are unboundedly rational. As argued throughout this research, this is obviously 
not realistic. A third point where the scenario is not realistic is that students and landlords have 
absolute confidence in their beliefs: i.e. they will not propose a high bid if they belief their 
opponent will not accept this. In this sense, individual actors negotiate completely predictable. 
A fourth point where the scenario could be improved is on the level of the initialization of the 
acceptance- and rejecting-beliefs APr  and RPr . In this scenario, two identical distributions 
are simply moved a number Ψ  of rent-categories apart from each other. This number remains 
constant during the simulation. In reality though, it could be that students are very certain 
regarding which bid to directly reject, but are not that certain regarding which one to accept. 
This would require two different distributions.

These simulations are obviously just a first exploration of the economic processes governing 
the housing-market. Factors such as mortgage rates, waiting lists, housing policies, tenure 
structures etc.; phenomena such as speculation, economic fluctuations, inflation, etc.; alternative 
negotiation protocols such as the ascending-bid auction or the first-price sealed bid-auction 
(Klemperer, 1999), etc. could all be considered in future model versions.
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§ 6.7 Summary

In Chapter 1.3, a complex system is defined as a system able to take on a large number of 
states, with each state being the result of a large number of elements or objects, temporarily 
being in one out of many conditions. In search of a complex system model, we chose to depart 
from a simple system with a limited number of components and conditions to then gradually 
increase this number finally indeed ending up with a complex system model. Basically, six 
scenarios were defined: a first one where students are unboundedly rational and make non-
joint decisions in a stationary housing-market; a second one where students are unboundedly 
rational and make joint decisions in a stationary housing-market; a third one where students are 
unboundedly rational and make joint decisions in a non-stationary housing-market; a fourth one 
where boundedly rational students make joint decisions in a non-stationary housing-market; a 
fifth one where boundedly rational students make pro-active joint decisions in a non-stationary 
housing-market; and a sixth one where boundedly rational students make pro-active joint 
decisions in an interactive non-stationary housing-market.
 Judging from the numerical results of these scenarios, not only the number of components 
and conditions increases with each scenario, but also the phenomena emerging out of each 
scenario. The graphs in Figure 6.37, for instance, show a selection of the life- and move-courses 
of students in all of the above scenarios. In the non-joint decision-making scenario, both courses 
coincide, suggesting a perfect housing-market. In the joint-decision making scenario, the 
move-course seems to lag behind on the life-course, suggesting that some students temporarily 
live in sub-optimal housing-situations. In the non-stationary scenario, students seem to move 
multiple times per change in preference-profile suggesting a competitive housing-market. In 
the boundedly rational scenario, students not only live in sub-optimal housing-situations, but 
also search a long time to find these sub-optimal residences. In the pro-active scenario, the life- 
and move-course seem to almost coincide again, in that students are able to anticipate changes, 
providing them with time to find a residence matching their preferences.
 Concluding, the graphs in Figure 6.37 support the proposition propagated by scholars 
such as Weaver (1948) that in order to model a complex system, not the system as such, but the 
constituting elements and objects should be the main focus. In modeling the micro location-
choice behavior of individual students and landlords, swarmCity adopts this proposition, and is 
indeed able to simulate macro phenomena such as housing-market competition, the emergence 
of mainstream housing-types (i.e. housing-types acceptable for the majority of students 
irrespective of preferences or needs), market-equilibrium prices (e.g. in case of high delay-
costs), continuous price-fluctuations (e.g. in absence of no delay-costs), etc.
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Figure 6.37: Life- (full line) and move-courses (dotted line) of students under different 
scenarios
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§ 7 cOncLUsIOns anD DIscUssIOn

§ 7.1 Introduction

The scope of this research was to develop an urban model supporting decision-makers in 
assessing urban plans. Douglas Lee (1973, 1994), in his two seminal reviews of urban models, 
spells out two judgment-criteria for such models to be considered good models: (1) they should 
advance theory, and (2) they should advance practice. Screening existing models against these 
two criteria, Lee comes to the conclusion that hardly any suffices. Analyzing model-literature 
published since Lee’s reviews, roughly two approaches can be distinguished in how modelers 
try to meet Lee’s judgment-criteria: the first approach stresses the importance of involving 
decision-makers into the modeling process, requiring, according to the advocates of this 
approach, simple models. The second approach, on the other hand, points at the potential of 
models as experimentation tools. The more complicated the form or process one tries to model, 
the advocates of this approach reason, the less simple a model can be. This research positions 
itself firmly within the second approach: developing an urban model that invites decision-
makers to experiment with circulating planning proposals for a given planning context –as such 
advancing practice-, but also to experiment with alternative conceptions of the planning context 
itself –as such advancing theory.
 The starting-point, adopted in this research, for developing such a model is the conception 
–popular within, among others, complexity-theory- of a city as a complex system, a system 
able to take on a large number of states, with each state being the result of a large number 
of elements or objects, temporarily being in one out of many conditions. In order to model 
such a complex system, scholars (e.g. Weaver, 1948) have been pointing out that, rather than 
directly addressing the phenomena of interest (such as, in the context of planning, congestion, 
gentrification, segregation, etc.), the actors causing these phenomena should be the main focus. 
Multi-Agent Systems have been repeatedly put forward as the technique to model complex 
systems, with a Multi-Agent experiment typically running as follows: “situate an initial 
population of autonomous heterogeneous agents in a relevant spatial environment; allow them 
to interact according to simple local rules, and thereby generate –or “grow”- the macroscopic 
regularity from the bottom up” (Epstein, 1999, pp.42). If the generated macroscopic regularity 
resembles the empirical phenomenon of interest, then the modeler has uncovered, at the very 
least, a candidate explanation for the empirical phenomenon (Parker, et al., 2003).



195Conclusions and discussion

§ 7.2 Summary of the swarmCity model

The urban model developed in this research, dubbed swarmCity, relies on agent-based 
concepts to simulate the location-choice behavior of households (implemented in a case study 
as students) interacting with real-estate firms (implemented as landlords) in a given housing-
market. Households may consist of multiple individuals; each one modeled as a unique agent. 
Every agent entertains a particular lifestyle, reflected in the way he/she allocates his/her budget 
to housing, activities (e.g. vacations), and durable goods (e.g. cars). Given a set of alternative 
lifestyles, agents are assumed to choose the lifestyle that will provide them the maximum utility 
given their budget, market imperfections and other constraints. Some of these lifestyle-choices 
(e.g. those related to housing) are typically not individual choices, so that agents, belonging to the 
same household, will have to coordinate their individual preferences, needs and idiosyncrasies 
to arrive at a joint choice. As these preferences and needs might change over time, and as the 
factors contributing to the agent’s lifestyle might also change, agents are assumed to have a 
constantly changing latent demand for alternative housing, which becomes more apparent when 
the discrepancy between needs and preferences and current housing situation becomes more 
dramatic. We assume furthermore that agents will, at least to some extent, try to anticipate the 
moments where this discrepancy becomes untenable, not only behaving reactively, addressing 
current changes, but also proactively, addressing possible future changes. Considering the fact 
that a housing-market is highly non-stationary and that information on available housing is 
limited, we finally assume that agents make housing-related decisions on the basis of beliefs, 
and that they will try to reduce the uncertainty involved in this decision-making by searching 
for information, continuously updating their beliefs.
 Given these assumptions, the relocation-process is modeled as follows: a particular event 
might trigger an agent to become more fully aware of his/her sub-optimal housing situation, 
either currently or in some anticipated future. Triggered, the agent can then choose between a 
series of actions such as, renovating his/her current house, letting out rooms, moving to another 
house, doing nothing, etc. In swarmCity only the two last actions are implemented. In case 
the agent considers moving, he/she first searches in information-sources, collecting potentially 
interesting houses for sale. As information-sources typically only provide partial information, 
the agent will, in a second stage, visit the house for inspection, gaining full information. In a 
third stage, the agent will negotiate with the real-estate firm over a price at which to buy the 
house. This process of searching, visiting and negotiating is not necessarily a sequential process; 
an agent might for instance decide to start searching again in information-sources after already 
having visited a series of houses for inspection. If the negotiation finally turns out successful, 
the agent purchases the house and moves.
 In our attempt to develop a transparent model, the above framework is implemented 
step by step; beginning with a simple scenario of unboundedly rational agents in a stationary 
housing-market, gradually introducing new concepts, to finally end with a scenario where 
agents behave boundedly rational, anticipate changes in their environment, interact with a non-
stationary housing-market, and discuss with their family-members over their current and future 
housing situations. Over the different scenarios, the decision process evolves from a linear 
process where a change in lifestyle either does or does not lead to a move, to a co-evolutionary, 
partly recursive process in which agents explore fragments of the housing-market, collecting 
information, thereby simultaneously updating their beliefs about the housing-market.
 Judging from the simulation results, swarmCity indeed succeeds at generating a range 
of macroscopic regularities, by only specifying behavior at the level of individual agents; 
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regularities that indeed can be traced back to real world phenomena such as: housing-market 
competition forcing households to live in sub-optimal housing situations; the popularity of, 
so-called, ‘mainstream’ housing-types (i.e. housing-types acceptable for the majority of agents 
irrespective of preferences or needs); the emergence of market equilibrium prices, etc. Moreover, 
swarmCity suffices our ambition to develop a model dedicated to experimentation, on the one 
hand, in that a decision-maker can dynamically adjust housing-market settings and instantly 
observe the reactions of the plan-population to these settings, and on the other hand, in that 
he/she can tweak the agent-settings and explore a variety of alternative behavior explanations.

§ 7.3 Discussion: validation

What we never explicitly discussed so far is the issue of validation. For a model to gain 
credibility it needs to go through an extensive process of calibration, verification and validation. 
Calibration –or model alignment- implies fitting the model to a given set of data so that it can 
replicate the real world context in which the data was collected (Oskamp, 1997). Verification 
implies testing the proper functioning of the models’ underlying programming (Berger, et al., 
2001). Validation, finally, implies testing whether the model is general enough so that it can 
be applied to a context other than the one it is developed (and calibrated) for. In other words 
“Verification means building the system right, and validation means building the right system” 
(Parker, et al., 2003, pp.327). The issue now is that this threesome of calibration, verification 
and validation is not applicable to complex system models. To elucidate this issue, let us return 
to the article of Batty and Torrens (2005) ‘Modeling and prediction in a complex world’ referred 
to in our introductory chapter on complex system models. In this article Batty and Torrens 
list two rules that are, in their words, central to the process of developing good models: the 
rule of parsimony and the rule of independence in validation. Complex system models, they 
claim, are in principle not able to meet any of these rules. The rule of parsimony (also known 
as Occam’s Razor) states that one model is better than another one if it can explain the same 
phenomena using a lesser number of intellectual constructs. A difficulty Batty and Torrens 
elaborate on in this respect is that the large number of components and component-conditions, 
inherent to complex systems, results in a virtually infinite number of possible system states, 
turning the comparison of two alternative complex system models (and thus the question as to 
whether one model is more simple than another model) into a sheer impossible task. The rule 
of independence in validation states that a theory, which is induced using one set of data needs 
to be validated against another independent set. The difficulty they point at here is that complex 
system models typically require more data than is available, and as Parker et al. (2003) argue, 
rely on abstract concepts, such as learning and trust, which are often ill-defined or not easily 
measured. In both cases, this goes at the expense of validation.
 So, on the basis of these arguments, one can only conclude, that it is impossible to 
develop good complex system models (i.e. models meeting the rule of parsimony and the rule 
of independence in validation). But, let us postpone drawing conclusions for now, to first look at 
the objective of developing models that do meet these rules: “a traditional model gets the present 
right in order to predict the future” (Batty and Torrens, 2005, pp.758). Good models thus aim at 
predicting. Complex system models, in contrast, can, because of their virtually infinite number 
of possible outcomes- never claim any definite prediction. The purpose of developing complex 
system models thus has to be sought elsewhere. Epstein (1999), in this respect, comes up with 
the proposal to employ complex system models to conduct, what he refers to as “laboratory 
science”. Rather than making predictions regarding the direction in which particular phenomena 
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might evolve, the purpose is to try and understand the principles governing these phenomena: 
“One can do perfectly legitimate ‘laboratory’ science with computers, sweeping the parameter 
space of one’s model, and conducting extensive sensitivity analysis, and claiming substantial 
understanding of relationships between model inputs and model outputs, just as in any other 
empirical science for which general laws are not yet in hand” (pp.51). Within the four walls of 
the lab, complex system models could help tracing the ramifications and boundary conditions 
of theories and hypotheses, running plausibility checks on the empirical expectations that 
flow from theories, and systematically testing alternative explanations. Parker, et al. (2003) 
summarize the benefits of what they refer to as ’explanatory models’ as follows: ”they allow 
modelers to: (1) demonstrate that a set of rules can lead to the outcome of interest—test theory; 
(2) explore other possible causes that could lead to the same outcome—formally exploring 
the robustness of the proposed causal explanations; and (3) discover outcomes not originally 
anticipated” (pp.326). Benefits that, to Oskamp (1999), can even be more enlightening than 
uncertain forecasts.
 Adopting ’understanding’ as the purpose of complex system models would imply that 
the criterion for such models to be labeled ’good’ would in the first place be ’transparency’: in 
order to (substantially) understand the relationship between input and output, one needs to be 
able to continuously trace back cause and effect, and link both to actual data and observations, 
or to intuition or present knowledge. This last requirement is particularly important to guarantee 
that the generated patterns and behaviors are not just the result of system artifacts, but indeed 
correspond to real life phenomena. In search of this transparency, Epstein talks of reality as ”a 
massively parallel spatially distributed computational device with agents as processing nodes”, 
all paying tribute to the laboratory-science-motto ”If you didn’t grow it, you didn’t explain its 
emergence” (pp.43). With this in mind, we can add a second criterion characterizing a good 
complex system model, namely: the more macro-regularities a set of micro-specifications can 
generate, the better the model.
 But, as both Epstein and Batty and Torrens argue, the employment of complex system 
models as instruments to conduct laboratory science does not rule out the need for some degree 
of numerical validation. Epstein, for instance, points at the situation where two or more sets 
of micro-specifications generate identical macroscopic regularities. In such situations, the 
only way to clarify which one is the most tenable explanation is through empirical research. 
According to Batty and Torrens though, the situation pointed at by Epstein is not that big an 
issue given that in general, there most likely is some agreement on the main elements that 
condition such a macroscopic regularity. What is often not that clear though, they claim, is 
how these elements relate and operate, to the extent that slight differences in these relations 
and operations can generate very different outcomes. Also here, they argue, only more data and 
observations can provide us a way out. All this brings Batty and Torrens to the, in their words, 
’tentative suggestion’ that ”all models – traditional or complex – should mix calibration with 
exploration” (pp.758).
 Let us, in the remaining part of this conclusion and discussion chapter, illustrate how 
swarmCity did indeed adopt this suggestion of mixing calibration with exploration; first on 
the level of model input, and secondly on the level of model output. Regarding the model 
input, a distinction can be made between model parameters for which data and observations are 
available, and those for which they are not, either in principle or because of financial and temporal 
constraints. For those parameters for which sufficient data and observations are available, 
calibration is obviously possible. In swarmCity, for instance, the initial model population is 
calibrated to an actual population-sample and existing statistical data, relying on the Iterative 
Proportional Fitting Technique. Regarding parameters for which data and observations are 
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not available, swarmCity relies on experimentation, carrying out sensitivity analyses. Such 
analyses help determining the extent to which generated macroscopic regularities depend on 
the micro-specifications of the agent behavior (Simon, 1979). In swarmCity, sensitivity tests 
are, for instance, run to frame abstract concepts like beliefs, learning, anticipative behavior, etc. 
Concerning beliefs, for instance, three tests were conducted, firstly measuring the impact of 
initial belief settings, secondly measuring the impact of belief updating, and thirdly measuring 
the impact of available information. To conduct proper laboratory science, Epstein proposes to 
extend these sensitivity tests to ’a systematic sweeping of the parameter space’, systematically 
varying all parameters across model runs. As Batty and Torrens, in this respect, rightly point 
out, this systematic sweeping is not validation, but rather a way to check the plausibility of 
the model outcomes, to test the robustness of the model structures; indeed more in line with 
the concept of verification as taken from Berger, et al. (2001). A final remark regarding the 
model input: Batty and Torrens focus not so much on model parameters, but rather on model 
assumptions, distinguishing between those assumptions that are made explicit and those that 
remain implicit. In a good (traditional) model, they argue, all explicit assumptions must be 
testable. As is probably clear by now, this is not possible in case of complex system models. 
Such models, Batty and Torrens claim, are however constructed in the full knowledge of this 
impossibility; an impossibility which only becomes problematic when assumptions are not laid 
bare but remain hidden.
 After considering the validation of the model input, let us now consider how swarmCity 
validates model output. As Berger et al. (2001) in this respect suggest: validation of model 
output can take place on two levels: on the level of the model structure, measuring how well the 
software model represents the actual model, and on the level of the actual outcome, measuring 
how well the model outcome resembles the target system. A number of techniques have been put 
forward to perform both types of validation. The first and most obvious technique is to compare 
the model output (i.e. both structure and outcome) against empirical data and observations; 
at least those parts of the model outcome for which data are available. Note that data and 
observations are not limited to commonly available databases and reports only, but could also 
be specifically collected for the research in question, either prior to the whole model-building-
process, for instance, to support the construction of the conceptual framework, or, as pointed 
out earlier, once the implementation-phase is completed, to asses, for instance, situations where 
two or more sets of micro-specifications generate identical macroscopic regularities. A second 
technique is qualitative reasoning. Huigen (2004), for instance, claims that the introduction of 
ever more integrative and complex models will necessarily cause a shift towards accreditation 
and expert knowledge validation, instead of statistical validation. Berger et al. (2001) speak in 
this respect of relying on common-pool resource theory to identify prototypical outcomes that 
can then be compared to model outcomes. A third technique is to rely on intuition. A difficulty 
here is that because of the large number of system-components and –conditions, complex 
systems (and thus complex system models) not always behave as intuitively expected. The 
high degree of non-linearity make that minor changes in initial settings (of which the modeler 
might not even be aware) could generate surprisingly different outcomes. In order to further 
explore results at odds with theory (and intuition) the modeler will have to rely on empirical 
data (whether commonly available or specifically collected). A fourth validation technique is 
counter-modeling: developing alternative conceptual frameworks and models, but relying on 
the same sets of data, to resolve the same research question. Similar model outcomes would 
then suggest that the underlying assumptions are correct, whereas diverging outcomes would 
require further (empirical) research.
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Before we illustrate how these output-validation techniques are adopted in swarmCity, let us 
reiterate the purpose of developing complex system models: to gain a substantial understanding 
of the relationship between behavioral micro-specifications and emerging macroscopic 
regularities, and to gain convincing evidence that this relationship bears clear resemblance 
to actual data and observations. Given this purpose, the listed validation techniques are not 
employed to test whether our model could reproduce a given reality, but rather whether it 
could reproduce some of the regularities structuring this reality. Returning to the techniques, 
the swarmCity research relies heavily on existing empirical research: the numerical results 
of each scenario, for instance, are always screened for phenomena recurring in empirical 
research on residential mobility. What concerns qualitative reasoning and intuition, both are 
employed as the main techniques to analyze and test the numerical results. In case this analysis 
exposes counter-intuitive results, extra experiments are run, for instance in the case of learning. 
The technique of counter-modeling, finally, is adopted, be it indirectly, by implementing 
the conceptual framework in an incremental fashion, only increasing the number of system-
components and behavioral concepts step by step, starting with the relatively simple scenario 
of unboundedly rational students in a stationary housing-market, to end with the relatively 
complex scenario of pro-active boundedly rational students in a non-stationary interactive 
housing-market. Each time a new scenario is validated, the previous one undergoes an extra 
validation round. A second positive aspect of this stepwise implementation is that it increases 
transparency, in that the impact of new components and concepts can be assessed one by one, 
making it easier to apply the above validation techniques. To increase the transparency even 
more, the number of formalisms employed to structure the conceptual framework is limited to 
three: an Activity Diagram, a Decision Table and a Decision Tree. These formalisms recur in 
each scenario, rendering the assumptions -relevant to that scenario- explicit. On the basis of 
these arguments, it is warranted to say that swarmCity is a good complex system model: firstly, 
it indeed is transparent, and secondly, it indeed generates a range of macroscopic regularities.
 Concluding the issues of calibration, verification and validation, simulation models 
obviously are only one out of many instruments at the disposal of a decision-maker involved 
in urban planning or design. Think for instance of surveys, knowledge databases, visualization 
software, etc. Where complex system models, in particular, could contribute is by generating 
new insights in urban phenomena, and in engendering debate, not only between decision-makers, 
but also between the decision-maker and the model itself. As such realizing what Negroponte 
(1970) prophetically proclaimed forty years ago as the true use of computers: to become a 
partner in the design process, rather than remaining idiot slaves, fast drawers that don’t need 
feeding. An important point here is that the final decision in this debate always remains with 
the decision-maker, since the model (at least in our case) makes no claims. Timmermans (1993) 
speaks in this respect of, so called, relative certainties, arguing that the issue is not so much to 
predict with absolute certainty what the impact of a particular intervention might be, but rather 
to predict the probability that one makes the correct decision on the basis of the information 
at hand. Since models invite to experiment, the more alternatives one explores, the higher this 
probability, at least theoretically, becomes.

Conclusions and discussion
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§ 7.4 Possible directions of future research

A first direction of future research is related to the implementation of the conceptual framework. 
As we indicated throughout Chapter 6, we simplified the conceptual framework in order to be 
able to assess the impact of all (behavioral) assumptions: firstly, we replaced households by 
students. Since students rent rather than purchase houses, the price negotiations (as modeled 
in Chapter 6.6) are evidently not that realistic. Secondly, the environment does not change, 
as such not triggering households to consider moving. Thirdly, searching requires no mental 
effort. Fourthly, households do not search passively. Fifthly, joint decision-making is modeled 
as an additive type utility function so that housing decisions are not always beneficial for all 
household members (Zhang, Timmermans and Bogers, 2004). Etc. A first subject of future 
research would be to eliminate these simplifications.
 A second direction of future research is related to the conceptual framework itself. In order 
to frame our research, we adopted a number of constraints. Firstly, we only considered residential 
mobility, referring to short-distance moves generally not linked to a change in job (Dieleman 
and Mulder, 2002). To be complete, we should also consider migration, referring to long-
distance moves mostly related to a change in job. This would require modeling the job-market. 
Secondly, not all the triggers and constraints listed in Chapter 2.2 are addressed; for instance, 
households may also purchase a second (or third) house as a form of investment, or households 
may postpone selling because of speculation, etc. Thirdly, in swarmCity, beliefs regarding 
housing-characteristics are considered to be independent, whereas in reality dependencies do 
exist so that information regarding one characteristic also tells the agent something about other 
characteristics. Fourthly, learning is limited to cognitive learning, the framework does not allow 
for structural learning. In other words, individuals cannot change the structure of their beliefs 
(for instance adding housing attributes they at hitherto were unaware of), try out alternative 
search methods, etc. Fifthly, location choices are considered to be non-hierarchical choices, 
i.e. an agent will consider all housing choices relevant to him/her at once, whereas in reality 
these choices are indeed hierarchical with an agent, for instance, first choosing a particular 
neighborhood, to only then start searching for actual houses for sale. Etc. Additional research 
could release these constraints.
 A third and last direction of future research is related to the objective of swarmCity. 
Recall that swarmCity is in fact one component of the MASQUE planning support system, 
and that, within this system; the objective of swarmCity is to provide decision-makers with 
an instrument to assess urban plans. Given this objective, the following model extensions 
are indispensable: firstly, incorporating a graphical GIS-based model component, visualizing 
the model outcome not only through graphs and tables, but also trough dynamically updated 
maps. Secondly, including extra indicators: in the current model-version, indicators are mainly 
relevant to decision-makers involved in planning. A suggestion could be to also include more 
economically oriented indicators, geared towards, for instance, developers. Thirdly, extending 
the number of modeled actors, not only involving students or households, but also retailers, 
firms, etc. Needless to say, that this number of extensions and improvements is endless.
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appenDIX

A.  STUDENT-PROFILE TRANSITION MATRICES

Table 1: Student-profile transition matrix, specifying the probability that a student will or will 
not live together with a partner, and this for the three coming years. This probability is only 
defined dependent on whether or not the student did live together with a partner over the last 
two years

living with partner at time
probability

living with partner at time

t-2 t-1 t t+1 t+2 t+3
yes yes yes 80% yes yes yes
yes yes yes 0% yes yes no
yes yes yes 5% yes no no
yes yes yes 15% no no no
no yes yes 90% yes yes yes
no yes yes 0% yes yes no
no yes yes 5% yes no no
no yes yes 5% no no no
no no yes 99% yes yes yes
no no yes 0% yes yes no
no no yes 0% yes no no
no no yes 1% no no no
no no no 40% no no no
no no no 30% no no yes
no no no 20% no yes yes
no no no 10% yes yes yes
yes no no 50% no no no
yes no no 30% no no yes
yes no no 15% no yes yes
yes no no 5% yes yes yes
yes yes no 70% no no no
yes yes no 25% no no yes
yes yes no 5% no yes yes
yes yes no 0% yes yes yes
yes no yes 100% yes yes yes
yes no yes 0% yes yes no
yes no yes 0% yes no no
yes no yes 0% no no no
no yes no 100% no no no
no yes no 0% no no yes
no yes no 0% no yes yes
no yes no 0% yes yes yes
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Table 2: Student-profile transition matrix, specifying the probability that a student will or will 
not live together with his/her parents, and this for the three coming years. This probability is 
only defined dependent on whether or not the student did live together with his/her parents 
over the last two years

Appendix A

living with parents at time
probability

living with parents at time

t-2 t-1 t t+1 t+2 t+3
yes yes yes 50% yes yes yes
yes yes yes 20% yes yes no
yes yes yes 20% yes no no
yes yes yes 10% no no no
yes yes no 85% no no no
yes yes no 10% no no yes
yes yes no 5% no yes yes
yes yes no 0% yes yes yes
yes no no 70% no no no
yes no no 15% no no yes
yes no no 10% no yes yes
yes no no 5% yes yes yes
yes no yes 100% yes yes yes
yes no yes 0% yes yes no
yes no yes 0% yes no no
yes no yes 0% no no no
no no no 90% no no no
no no no 5% no no yes
no no no 5% no yes yes
no no no 0% yes yes yes
no no yes 95% yes yes yes
no no yes 5% yes yes no
no no yes 0% yes no no
no no yes 0% no no no
no yes yes 90% yes yes yes
no yes yes 10% yes yes no
no yes yes 0% yes no no
no yes yes 0% no no no
no yes no 100% no no no
no yes no 0% no no yes
no yes no 0% no yes yes
no yes no 0% yes yes yes



212 IN SEARCH OF A COMPLEX SYSTEM MODEL

Table 3: Student-profile transition matrix, specifying the probability that a student will 
continue, stop or finish studying, and this for the three coming years. This probability is only 
defined dependent the study-year the student is currently in

study-year at 
time probability

study-year at time

t t+1 t+2 t+3
0 100% 1 2 3
0 0% 1 2 stop
0 0% 1 stop stop
0 0% stop stop stop
0 0% 1 2 finish
0 0% 1 finish finish
0 0% finish finish finish
1 80% 2 3 4
1 0% 2 3 stop
1 0% 2 stop stop
1 20% stop stop stop
1 0% 2 3 finish
1 0% 2 finish finish
1 0% finish finish finish
2 90% 3 4 5
2 0% 3 4 stop
2 0% 3 stop stop
2 10% stop stop stop
2 0% 3 4 finish
2 0% 3 finish finish
2 0% finish finish finish
3 85% 4 5 6
3 0% 4 5 stop
3 0% 4 stop stop
3 10% stop stop stop
3 5% 4 5 finish
3 0% 4 finish finish
3 0% finish finish finish
4 50% 5 6 7
4 0% 5 6 stop
4 0% 5 stop stop
4 5% stop stop stop
4 40% 5 6 finish
4 5% 5 finish finish
4 0% finish finish finish
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Table 3: continued

Appendix A

5 0% 6 7 7
5 0% 6 7 stop
5 0% 6 stop stop
5 0% stop stop stop
5 55% 6 7 finish
5 40% 6 finish finish
5 5% finish finish finish
6 0% 7 7 7
6 0% 7 7 stop
6 0% 7 stop stop
6 0% stop stop stop
6 0% 7 7 finish
6 60% 7 finish finish
6 40% finish finish finish
7 0% 7 7 7
7 0% 7 7 stop
7 0% 7 stop stop
7 0% stop stop stop
7 0% 7 7 finish
7 0% 7 finish finish
7 100% finish finish finish
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B.  ATTRIBUTE UTILITY VALUES

Table 4: The utility values that a student derives from the relative-location of a residence, by 
preference-profile

preference-profile
relative-location

center univ. green parents
1 2.2 1.6 1.0 0.1
2 1.6 2.2 1.0 0.1
3 1.6 1.5 1.3 0.1
4 2.2 1.6 1.0 0.1
5 1.6 2.2 1.0 0.1
6 1.6 1.5 1.3 0.1
7 2.2 1.6 1.0 0.1
8 1.6 2.2 1.0 0.1
9 1.6 1.5 1.3 0.1
10 0.1 0.1 0.1 2.2

Table 5: The utility values that a student derives from the population-type of a residence, by 
preference-profile

preference-profile
population-type

mono slightly mixed parents
1 0.8 1.2 1.6 0.1
2 1.6 1.2 0.8 0.1
3 0.8 1.2 1.6 0.1
4 0.8 1.2 1.6 0.1
5 1.6 1.2 0.8 0.1
6 0.8 1.2 1.6 0.1
7 0.8 1.2 1.6 0.1
8 1.6 1.2 0.8 0.1
9 0.8 1.2 1.6 0.1
10 0.1 0.1 0.1 1.2
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Table 6: The utility values that a student derives from the dwelling- and residence-typology of 
a residence, by preference-profile

Table 7: The utility values that a student derives from the dwelling-size of a residence, by 
preference-profile

preference-profile
dwelling- & residence-typology

student-housing hospita apartment parents
1-room 2-rooms 1-room 2-rooms 1-room 2-rooms

1 2.2 1.8 0.7 0.9 0.6 0.8 0.1
2 2.2 1.8 0.7 0.9 0.6 0.8 0.1
3 0.6 4.0 0.6 1.2 0.6 1.4 0.1
4 0.7 0.9 2.2 1.8 0.4 0.6 0.1
5 0.7 0.9 2.2 1.8 0.4 0.6 0.1
6 0.6 1.2 0.6 4.0 0.6 1.4 0.1
7 0.7 0.9 0.4 0.6 2.2 1.8 0.1
8 0.7 0.9 0.4 0.6 2.2 1.8 0.1
9 0.6 1.4 0.6 1.2 0.6 4.0 0.1
10 0.1 0.1 0.1 0.1 0.1 0.1 2.2

preference-profile
dwelling-size

small medium large parents
1 1.6 1.6 1.6 0.1
2 1.6 1.6 1.6 0.1
3 1.6 1.6 1.6 0.1
4 2.0 1.6 0.8 0.1
5 2.0 1.6 0.8 0.1
6 2.2 1.4 0.8 0.1
7 2.0 1.6 1.2 0.1
8 2.0 1.6 1.2 0.1
9 2.0 1.6 1.2 0.1
10 0.1 0.1 0.1 2.0

Appendix B
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Table 8: The utility values that a student derives from the residence-size of a residence, by 
preference-profile

preference-profile
residence-size

small medium large parents
1 1.0 1.9 2.2 0.1
2 1.0 1.9 2.2 0.1
3 0.0 1.3 2.2 0.1
4 1.0 1.9 2.2 0.1
5 1.0 1.9 2.2 0.1
6 0.0 1.3 2.2 0.1
7 0.8 1.9 2.2 0.1
8 0.8 1.9 2.2 0.1
9 0.0 1.3 2.2 0.1
10 0.1 0.1 0.1 2.2
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C.  PREFERENCE-PROFILE TRANSITION MATRICES

Table 9: Preference-profile transition matrix for students changing from student-profile 1 to 1

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Table 10: Preference-profile transition matrix for students changing from student-profile 1 to 2

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
10 50% 10% 0% 30% 5% 0% 3% 2% 0% 0%

Appendix C
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Table 11: Preference-profile transition matrix for students changing from student-profile 1 to 3

Table 12: Preference-profile transition matrix for students changing from student-profile 1 to 4

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
10 0% 0% 55% 0% 0% 10% 0% 0% 35% 0%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
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Table 13: Preference-profile transition matrix for students changing from student-profile 1 to 5

Table 14: Preference-profile transition matrix for students changing from student-profile 1 to 6

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
10 10% 50% 0% 5% 10% 0% 5% 20% 0% 0%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
10 0% 0% 50% 0% 0% 5% 0% 0% 45% 0%
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Table 15: Preference-profile transition matrix for students changing from student-profile 1 to 7

Table 16: Preference-profile transition matrix for students changing from student-profile 2 to 1

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 17: Preference-profile transition matrix for students changing from student-profile 2 to 2

Table 18: Preference-profile transition matrix for students changing from student-profile 2 to 3

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 80% 0% 0% 0% 0% 0% 20% 0%
2 0% 0% 80% 0% 0% 0% 0% 0% 20% 0%
3 0% 0% 95% 0% 0% 0% 0% 0% 5% 0%
4 0% 0% 40% 0% 0% 20% 0% 0% 40% 0%
5 0% 0% 40% 0% 0% 20% 0% 0% 40% 0%
6 0% 0% 5% 0% 0% 90% 0% 0% 5% 0%
7 0% 0% 20% 0% 0% 0% 0% 0% 80% 0%
8 0% 0% 20% 0% 0% 0% 0% 0% 80% 0%
9 0% 0% 5% 0% 0% 0% 0% 0% 95% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 19: Preference-profile transition matrix for students changing from student-profile 2 to 4

Table 20: Preference-profile transition matrix for students changing from student-profile 2 to 5

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 50% 40% 0% 0% 0% 0% 0% 10% 0% 0%
2 0% 70% 0% 0% 0% 0% 0% 30% 0% 0%
3 0% 0% 70% 0% 0% 0% 0% 0% 30% 0%
4 0% 20% 0% 30% 30% 0% 0% 20% 0% 0%
5 0% 20% 0% 0% 70% 0% 0% 10% 0% 0%
6 0% 0% 20% 0% 0% 70% 0% 0% 10% 0%
7 0% 5% 0% 0% 0% 0% 50% 45% 0% 0%
8 0% 5% 0% 0% 0% 0% 0% 90% 5% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 21: Preference-profile transition matrix for students changing from student-profile 2 to 6

Table 22: Preference-profile transition matrix for students changing from student-profile 2 to 7

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 80% 0% 0% 0% 0% 0% 20% 0%
2 0% 0% 80% 0% 0% 0% 0% 0% 20% 0%
3 0% 0% 90% 0% 0% 0% 0% 0% 10% 0%
4 0% 0% 30% 0% 0% 30% 0% 0% 40% 0%
5 0% 0% 30% 0% 0% 30% 0% 0% 40% 0%
6 0% 0% 20% 0% 0% 40% 0% 0% 40% 0%
7 0% 0% 20% 0% 0% 0% 0% 0% 80% 0%
8 0% 0% 20% 0% 0% 0% 0% 0% 80% 0%
9 0% 0% 10% 0% 0% 0% 0% 0% 90% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
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Table 23: Preference-profile transition matrix for students changing from student-profile 3 to 1

Table 24: Preference-profile transition matrix for students changing from student-profile 3 to 2

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 80% 20% 0% 0% 0% 0% 0% 0% 0% 0%
2 20% 80% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 80% 20% 0% 0% 0% 0% 0%
5 0% 0% 0% 20% 80% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 80% 20% 0% 0%
8 0% 0% 0% 0% 0% 0% 20% 80% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 25: Preference-profile transition matrix for students changing from student-profile 3 to 3

Table 26: Preference-profile transition matrix for students changing from student-profile 3 to 4

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 27: Preference-profile transition matrix for students changing from student-profile 3 to 5

Table 28: Preference-profile transition matrix for students changing from student-profile 3 to 6

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 30% 70% 0% 0% 0% 0% 0% 0% 0% 0%
2 5% 95% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 90% 0% 0% 0% 0% 0% 10% 0%
4 0% 20% 0% 30% 30% 0% 0% 20% 0% 0%
5 0% 20% 0% 0% 60% 0% 0% 20% 0% 0%
6 0% 0% 20% 0% 0% 60% 0% 0% 20% 0%
7 0% 0% 0% 0% 0% 0% 30% 70% 0% 0%
8 0% 0% 0% 0% 0% 0% 5% 95% 0% 0%
9 0% 0% 10% 0% 0% 0% 0% 0% 90% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 80% 0% 10% 0% 0% 0% 0% 0% 10% 0%
2 0% 80% 10% 0% 0% 0% 0% 0% 10% 0%
3 0% 0% 90% 0% 0% 0% 0% 0% 10% 0%
4 0% 0% 5% 80% 0% 10% 0% 0% 5% 0%
5 0% 0% 5% 0% 80% 10% 0% 0% 5% 0%
6 0% 0% 5% 0% 0% 90% 0% 0% 5% 0%
7 0% 0% 10% 0% 0% 0% 80% 0% 10% 0%
8 0% 0% 10% 0% 0% 0% 0% 80% 10% 0%
9 0% 0% 5% 0% 0% 0% 0% 0% 95% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 29: Preference-profile transition matrix for students changing from student-profile 3 to 7

Table 30: Preference-profile transition matrix for students changing from student-profile 4 to 4

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
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Table 31: Preference-profile transition matrix for students changing from student-profile 4 to 5

Table 32: Preference-profile transition matrix for students changing from student-profile 4 to 6

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
10 10% 40% 0% 0% 10% 0% 10% 30% 0% 0%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
10 0% 0% 40% 0% 0% 10% 0% 0% 50% 0%
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Table 33: Preference-profile transition matrix for students changing from student-profile 4 to 7

Table 34: Preference-profile transition matrix for students changing from student-profile 5 to 4

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 35: Preference-profile transition matrix for students changing from student-profile 5 to 5

Table 36: Preference-profile transition matrix for students changing from student-profile 5 to 6

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 95% 0% 0% 0% 0% 0% 5% 0%
2 0% 0% 95% 0% 0% 0% 0% 0% 5% 0%
3 0% 0% 95% 0% 0% 0% 0% 0% 5% 0%
4 0% 0% 0% 0% 0% 90% 0% 0% 10% 0%
5 0% 0% 0% 0% 0% 90% 0% 0% 10% 0%
6 0% 0% 0% 0% 0% 90% 0% 0% 10% 0%
7 0% 0% 5% 0% 0% 0% 0% 0% 95% 0%
8 0% 0% 5% 0% 0% 0% 0% 0% 95% 0%
9 0% 0% 5% 0% 0% 0% 0% 0% 95% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 37: Preference-profile transition matrix for students changing from student-profile 5 to 7

Table 38: Preference-profile transition matrix for students changing from student-profile 6 to 4

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 39: Preference-profile transition matrix for students changing from student-profile 6 to 5

Table 40: Preference-profile transition matrix for students changing from student-profile 6 to 6

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 70% 30% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 90% 0% 0% 0% 0% 0% 10% 0% 0%
3 0% 80% 15% 0% 0% 0% 0% 5% 0% 0%
4 0% 0% 0% 90% 5% 5% 0% 0% 0% 0%
5 0% 20% 0% 10% 50% 5% 0% 15% 0% 0%
6 0% 20% 0% 0% 55% 15% 0% 10% 0% 0%
7 0% 0% 0% 0% 0% 0% 70% 30% 0% 0%
8 0% 0% 10% 0% 0% 0% 0% 90% 0% 0%
9 0% 5% 0% 0% 0% 0% 0% 80% 15% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
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Table 41: Preference-profile transition matrix for students changing from student-profile 6 to 7

Table 42: Preference-profile transition matrix for students changing from student-profile 7 to 7

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
5 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
7 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

preference-
profile at time t

preference-profile at t+1

1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
2 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
5 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
6 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
7 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
8 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
10 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
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saMenvattInG

(DUtcH sUMMarY)
Een stedenbouwkundig plan wordt zelden bewoond zoals het bedacht is. Bewoners, of het 
nu huishoudens, managers of winkeliers zijn, hebben immers elk hun eigen verlangens, 
verwachtingen en levenspatronen, die zelden samen te vatten zijn in algemene ontwerprichtlijnen. 
Deze verscheidenheid maakt het dan ook erg moeilijk voor stedenbouwkudingen en planners 
om ontwerpbeslissingen te onderbouwen. Tenzij er in die verscheidenheid wetmatigheden 
onderscheiden kunnen worden natuurlijk. En dit is nu juist wat empirisch onderzoek aantoont: 
huishoudens zouden bijvoorbeeld meestal verhuizen binnen de grenzen van hun huidige 
woningmarkt, gevestigde bedrijven zouden minder verhuizen dan starters, enz. Op basis van 
deze wetmatigheden kunnen computermodellen ontwikkeld worden, die bijvoorbeeld het 
vestigingsgedrag van bepaalde actoren in een afgelijnd plangebied simuleren. Een dergelijk 
model zou het mogelijk maken voor stedenbouwkundigen en planners om hun ingrepen, in silico, 
te evalueren en zo nodig af te stemmen op de verlangens, verwachtingen en levenspatronen van 
toekomstige bewoners.
 Het grote aantal actoren dat typisch in een plangebied vertoeft, en de variatie aan verlangens, 
verwachtingen en levenspatronen van deze actoren geeft dit plangebied de eigenschappen 
van een complex systeem, een systeem dat door de grote hoeveelheid en verscheidenheid aan 
onderdelen, onmogelijk uitputtend beschreven en dus voorspeld kan worden. Een dergelijk 
complex systeem vraagt dan ook om een aangepast model, een model waar de nadruk niet ligt op 
het modelleren van het systeem als geheel (want dat is onmogelijk aangezien het quasi oneindige 
aantal mogelijke toestanden waarin het systeem zich kan bevinden), maar waar de nadruk ligt 
op het modelleren van de onderdelen van het systeem, in ons geval, de actoren in een gegeven 
plangebied. Het idee is dat door enkel de wetmatigheden (die empirisch vastgelegd zijn) in het 
gedrag van deze actoren te modelleren, de ruimtelijke fenomenen waar stedenbouwkundigen 
en planners typisch in geïnteresseerd zijn (vb. segregatie, gentrificatie, congestie, enz.) door het 
model zelf, van onderuit, gegenereerd worden.
 Het doel van dit onderzoek is om een dergelijk complex systeem model te ontwikkelen. 
Om het onderzoek enigszins af te lijnen is ervoor gekozen om het type actoren te beperken tot 
huishoudens: een complex systeem model dus dat het verhuisgedrag van huishoudens simuleert. 
Dit model kreeg de naam ‘swarmCity’. Op basis van dit model kunnen stedenbouwkundigen en 
planners ruimtelijke ingrepen testen doordat ze de reacties van de bewoners van het plangebied 
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(i.e. de huishoudens) op hun ingrepen kunnen observeren en op basis van deze reacties hun 
ingrepen al dan niet kunnen bijsturen.
 Het rapport van dit onderzoek is opgebouwd als volgt: Deel 1 bespreekt enerzijds de stand 
van zaken in het empirisch onderzoek naar het verhuisgedrag van huishoudens en evalueert 
anderzijds in hoeverre bestaande planningsmodellen complex systeem modellen zijn. Deel twee 
ontwikkelt en implementeert een conceptueel raamwerk rond de empirische bevindingen, en 
vertaalt dit raamwerk naar een consistent complex systeem model. Deel drie past dit raamwerk 
toe in een specifieke context, namelijk deze van studenten aan de Technische Universiteit 
Eindhoven, en toont aan met een aantal experimenten dat het model in staat is om de empirisch 
aangetoonde wetmatigheden van onderuit te genereren. Het laatste hoofdstuk sluit af met een 
discussie over de moeilijkheid om een dergelijk complex systeem model te valideren.

Stand van zaken

Empirisch onderzoek naar het verhuisgedrag van huishoudens heeft herhaaldelijk aangetoond 
dat verhuizen een complex proces is dat niet om één maar om een reeks van beslissingen 
vraagt, namelijk de beslissing om te overwegen te verhuizen, de beslissing om actief te zoeken 
en uiteindelijk de keuze van een plek en een woning. Het uitgangspunt achter dit ‘drie-traps 
principe’ is dat huishoudens altijd een ideale woning en woonomgeving in gedachte hebben. 
Meestal komt deze ideale situatie overeen met de huidige woning van het huishouden. 
Verlangens, verwachtingen en levensverwachtingen veranderen echter, net zoals de woning en 
de woonomgeving, zodat het zou kunnen dat, op een bepaald ogenblik de ideale en de huidige 
woonomgeving niet langer overeenkomen. Om deze scheefgegroeide situatie te verhelpen 
moet het huishouden actie ondernemen: het zou kunnen renoveren, een deel van de woning 
onderverhuren, of het zou kunnen verhuizen. In het laatste geval heeft het huishouden de 
eerste van de bovenvermelde reeks van beslissingen doorlopen, namelijk de overweging om te 
verhuizen. Het huishouden moet dan op zoek gaan naar een alternatieve verblijfplaats.
 Zoeken veronderstelt opnieuw niet één maar een reeks van beslissingen: wat wordt er 
gezocht, waar, hoe, hoe lang, welke selectiecriteria worden er gehanteerd, enz. Omwille van dit 
grote aantal beslissingen, maar ook omwille van de tijdsdruk en gebrek aan ervaring, hanteert 
praktisch elk huishouden een eigen persoonlijke zoekstrategie die varieert van het oppervlakkig 
verkennen tot het grondig uitpluizen van de woningmarkt. Onafhankelijk van persoonlijke 
strategieën kan er op twee manieren gezocht worden: door uitwisseling met de omgeving (vb. 
door rond te rijden of een makelaar te bezoeken, enz.) en door uitwisseling met media (vb. 
kranten, Internet, sociale netwerken, enz.). Eens het huishouden een aantal kandidaat woningen 
verzameld heeft, komt er een ogenblik waarop het één woning zal uitkiezen en zal verhuizen.
 Kiezen veronderstelt evalueren en selecteren. Elk huishouden hanteert hiervoor een 
aantal criteria. Deze kunnen verschillend zijn voor alle individuen in het huishouden. Er zal 
dan ook onderhandeld moeten worden. Op het ogenblik dat het huishouden kiest, kent het 
niet alle mogelijke gevolgen van deze keuze. Beslissingen worden dus gemaakt op basis van 
overtuigingen (beliefs) en houden dus altijd een hoeveelheid risico in.
 Meestal verloopt dit drie-staps proces niet lineair. Factoren zoals tijdsdruk, een klein 
woningaanbod, een beperkt budget, discriminatie, enz. zorgen ervoor dat een huishouden zijn 
verwachtingen moet bijsturen en dus in een woning terecht komt die niet overeenkomt met de 
ideale woning. Soms kan het zelfs zijn dat het huishouden de gedachte om te verhuizen uitstelt 
of zelf afstelt.
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 Het verhuisgedrag van één huishouden heeft natuurlijk invloed op het verhuisgedrag 
van andere huishoudens. Samengeteld kunnen al deze individuele invloeden uitgroeien tot 
fenomenen die herkenbaar zijn op niveau van het plangebied. Het zijn deze fenomenen, of 
macroscopische regelmatigheden, die we met ons model (van onderuit) willen genereren. Een 
voorbeeld van een dergelijk fenomeen, vastgesteld door empirisch onderzoek, is bijvoorbeeld 
de woningladder: huishoudens verhuizen blijkbaar in overeenstemming met hun gezinssituatie. 
Zo huren jonge huishoudens vooral, om na een aantal jaren van samenwonen iets te kopen 
en, als de financiën het toelaten, uiteindelijk naar een grotere woning te verhuizen. Sommige 
huishoudens doorlopen natuurlijk niet elke sport van deze ladder, of vallen zelfs (tijdelijk) 
terug, bijvoorbeeld in het geval van een scheiding. Een tweede fenomeen is ‘geographical 
sorting’ waarbij huishoudens met gelijkaardige eigenschappen elkaars aanwezigheid opzoeken 
(al dan niet vrijwillig). Een derde fenomeen is het ontstaan van deel-markten binnen de 
woningmarkt. Het feit dat elke woning praktisch uniek is en dat de meeste huishoudens weinig 
ervaring hebben in het kopen van woningen, zorgt voor het ontstaan van deel-markten met erg 
verschillende prijzen en zelfs bouwregels. Hierdoor wordt het erg moeilijk om de feitelijke 
waarde van woningen vast te stellen. Een laatste fenomeen, dat samenhangt met het vorige, is 
het feit dat de woningmarkt voortdurend in onevenwicht is, i.e. dat vraag en aanbod nooit op 
elkaar afgestemd zijn.

Herinner de opzet van dit onderzoek, namelijk het ontwikkelen van een complex systeem 
model gericht op het simuleren van het verhuisgedrag van huishoudens. In overeenstemming 
met de filosofie van complex systeem modellen betekent dit het modelleren van het drie-staps 
principe op niveau van individuele huishoudens om zo de opgesomde regelmatigheden te 
kunnen genereren. Voordat we uitleggen hoe we dit aangepakt hebben, bespreken we hier kort 
hoe bestaande planningsmodellen complex gedrag, zoals verhuisgedrag, modelleren.
 Eigen aan om het even welk model is dat het de werkelijkheid simpeler voorstelt om 
zo iets over die werkelijkheid te kunnen leren. Bij de meeste planningsmodellen is dit proces 
van versimpelen echter zo radicaal dat deze enkel in erg specifieke settings bruikbaar zijn. 
Bij ruimtelijke interactiemodellen, bijvoorbeeld, wordt verhuizen herleid tot het kiezen van 
een locatie op basis van de afstand tot de werkplek. Van het drie-staps principe is hier geen 
sprake. Recentelijk worden meer complexe modellen ontwikkeld waarbij het modelleren van 
individueel gedrag centraal staat. Binnen deze trend vormt multi-agent technologie de laatste 
ontwikkeling. Multi-agent systemen zijn in feite artificiële gemeenschappen van zogenaamde 
‘agents’. Elke agent denkt en handelt autonoom, gaat interacties aan met zijn/haar fysieke 
omgeving, onderhandelt met andere agents, leert over zijn/haar omgeving, enz. In principe 
lijken multi-agent systemen dus ideaal om complex systeem modellen te ontwikkelen. Een 
evaluatie van modellen die van deze agent technologie gebruik maken leert echter dat deze 
modellen nog altijd erg grove simplificaties doorvoeren en dus niet de mogelijkheden van agent 
systemen benutten. Een reden hiervoor is de moeilijkheid om dergelijke –erg complexe- agent 
systemen te valideren. We komen hierop terug in het afsluitende hoofdstuk. Maar nu lichten we 
toe hoe swarmCity gebruik maakt van het agent potentieel om zo een complex systeem model 
te ontwikkelen.
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Principes

Het modelleren van het verhuisgedrag van huishoudens veronderstelt twee type actoren: 
huishoudens die mogelijk op zoek zijn naar een woning, en makelaarskantoren die woningen 
te koop aanbieden. Een huishouden bestaat typisch uit meerdere individuen, elk gemodelleerd 
als één agent. Elk individu, of agent dus, wordt gekenmerkt door een aantal eigenschappen, 
zoals leeftijd, geslacht, beroep, enz. Ook een woning wordt gekenmerkt door een aantal 
eigenschappen, zoals aantal slaapkamers, de aanwezigheid van een tuin, prijsklasse, relatieve 
locatie, enz. Elk individu onderhoudt een bepaalde levensstijl die bepaalt hoe hij/zij zijn/haar 
aandacht (en budget) verdeelt tussen het kiezen en inrichten van de woning, het deelnemen 
aan activiteiten (vb. reizen, sporten, enz.), of het aankopen van luxe artikelen (vb. auto’s). We 
veronderstellen dat huishoudens hun levensstijl altijd willen verbeteren (of ten minste in stand 
willen houden). Levensstijlen kunnen echter veranderen, bijvoorbeeld omdat de gezinssituatie 
verandert, of omdat de woonomgeving verandert, enz. We veronderstellen daarom ook dat elk 
huishouden altijd onbewust op zoek is naar een alternatieve woning. Een zoektocht die meer 
expliciet wordt naarmate de huidige woning minder aan de huidige levensstijl beantwoordt. In 
swarmCity zijn op basis van de eigenschappen en woonvoorkeuren van individuen een aantal 
individu- en woonvoorkeur-profielen gedefinieerd. Telkens als een individu van individu-profiel 
verandert, bestaat de kans dat hij/zij ook van woonvoorkeur-profiel verandert. Enkel indien een 
individu van woonvoorkeur-profiel verandert, zal hij/zij overwegen om te verhuizen. De kansen 
dat deze profielveranderingen plaatsvinden zijn vastgelegd in transitietabellen, opgesteld op 
basis van statistische informatie, steekproeven en veronderstellingen.
 We veronderstellen bovendien dat individuen niet enkel reageren op veranderingen op het 
moment dat deze plaatsgrijpen, maar dat ze sommige van deze veranderingen ook anticiperen, 
dat ze dus pro-actief handelen. Wat in feite gebeurt, is dat elk individu voortdurend zijn/haar 
huidige en toekomstige situatie evalueert en op basis daarvan beslist of het beter zou zijn om te 
verhuizen of om niets te doen. Deze evaluatie is gebaseerd op het nut dat het individu verwacht 
van beide acties. We veronderstellen hier dat individuen niet alle gevolgen van hun beslissingen 
kunnen inschatten en dat ze maar een beperkte kennis van de woningmarkt hebben. Dit wil 
zeggen dat individuen keuzes maken op basis van overtuigingen (beliefs) in plaats van op basis 
van volledige kennis. Individuen hebben bijvoorbeeld overtuigingen over de aanwezigheid 
van bepaalde woningtypes, het prijsniveau van deze woningtypes, enz. Omdat de meeste 
individuen niet veel verhuiservaring hebben, zullen deze overtuigingen niet overeenkomen met 
de werkelijke situatie. Om al te foutieve overtuigingen te vermijden zullen individuen daarom 
op zoek gaan naar informatie om zo hun kennis bij te werken. Concreet zoeken zij in lijsten 
die woningen te koop aanbieden. Deze zogenaamde informatielijsten verwijzen bijvoorbeeld 
naar kranten, Internet sites, maar ook naar sociale netwerken. Het probleem is echter dat deze 
informatielijsten dikwijls niet voldoende informatie bieden om te kunnen besluiten een woning 
al dan niet aan te kopen. Het huishouden zal een woning, gevonden in een of andere lijst, 
daarom altijd eerst bezoeken en inspecteren vooraleer tot een mogelijke koop over te gaan. 
Als de woning na inspectie nog altijd interessant blijkt, zal het huishouden onderhandelen met 
de eigenaar van de woning (hier vertegenwoordigt door een makelaarskantoor) over de prijs 
waartegen de woning verkocht zal worden. Als de onderhandeling succesvol verloopt, verhuist 
het huishouden.
 Zoals blijkt uit deze beschrijving is het proces van het overwegen te verhuizen, zoeken, 
bezoeken en onderhandelen inderdaad geen lineair maar eerder een recursief proces waarbij 
individuen delen van de woningmarkt uitkammen op zoek naar alternatieven, informatie 
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verzamelen op verschillende niveaus van detail en op basis van deze informatie hun overtuigingen 
bijwerken waardoor hun kennis over de woningmarkt juister wordt.
 Herinner dat swarmCity als doel heeft om planningsingrepen te testen en te bevragen. 
Als swarmCity in deze opzet wil slagen, moet het in de eerste plaats een transparant model zijn, 
zodat de gebruiker elke veronderstelling die we in het conceptueel raamwerk gemaakt hebben, 
daadwerkelijk kan terugvinden. Om deze transparantie te waarborgen is er voor gekozen om elk 
gedragsconcept (behavioral concept) zoals levenstijl, anticipatie, overtuigingen (beliefs), enz. 
te vertalen naar één gedragsregel, namelijk nutsmaximalisatie: een huishouden zal altijd kiezen 
voor dat alternatief dat zijn/haar verwacht nut maximaliseert. Een tweede techniek ingevoerd 
om transparantie te garanderen is het stapsgewijs implementeren van het conceptueel raamwerk. 
Door de gedragsconcepten slechts één voor één te implementeren is het ook makkelijker de 
impact van elk concept te meten en het realiteitsgehalte van de gemaakte veronderstellingen 
te plaatsen. Een derde techniek is het werken met een (beperkt) aantal formalismen om de 
gemaakte veronderstellingen te expliciteren: namelijk beslistabellen, activiteiten diagrammen, 
en beslisbomen. Beslistabellen zijn ingezet om de cognitieve voorstelling van individuen van 
hun omgeving weer te geven, activiteiten diagrammen zijn ingezet om de opeenvolging van 
te ondernemen acties, geschetst in het conceptueel raamwerk, te structureren, en beslisbomen, 
ten slotte, zijn ingezet om het beslissingsproces te structureren waarbij een individu bepaalt 
welke actie het zal uitvoeren. Met elke nieuwe implementatiestap worden de formalismen meer 
complex en mogelijk ook meer realistisch.

Toepassing

Het conceptueel raamwerk is verder vertaald naar een specifiek type huishoudens, namelijk 
studenten aan de Technische Universiteit Eindhoven. Het kopen van een woning is daarom 
vervangen door het huren van een woning (of kamer), en trouwen is bijvoorbeeld vervangen 
door samenwonen. Niet alle gedragsconcepten, opgesomd in het raamwerk, zijn toepasbaar 
op studenten: denk bijvoorbeeld aan het onderhandelen over een prijs. Maar aangezien deze 
toepassing enkel dient om het principe van complex systeem modellen te illustreren is het 
raamwerk toch volledig geïmplementeerd. Herinner dat deze implementatie stapsgewijs gebeurt. 
Elke stap is opgevat als een ‘scenario’. In totaal zijn vijf scenario’s ontwikkeld. We zullen deze 
nu één voor één kort toelichten.
 In een eerste scenario hebben de studenten volledige kennis van hun omgeving en is het 
aanbod op de woningmarkt constant. Volgens de resultaten is dit scenario realistisch omdat 
studenten inderdaad hun woonvoorkeuren aanpassen als hun ideale woning niet beschikbaar 
is, en omdat studenten die samenwonen het inderdaad op een akkoord moeten gooien en 
daardoor niet altijd in de voor hun meest ideale woning terecht komen. Het scenario is niet 
realistisch omdat het merendeel van de studenten exact één keer verhuist telkens als ze van 
woonvoorkeuren veranderen. Het aanbod beantwoordt, met andere woorden, perfect aan de 
vraag. De woningmarkt lijkt dus in evenwicht en dit is in tegenstelling tot de realiteit.
 In een tweede scenario hebben studenten nog altijd volledige kennis van hun omgeving, 
maar is het aanbod op de woningmarkt niet langer constant. Volgens de resultaten is dit scenario 
realistisch omdat studenten nog altijd hun voorkeuren moeten aanpassen, zij het nu in een veel 
hogere graad dan in het vorige scenario, waardoor ze soms zelf het idee van verhuizen opgeven. 
Daarnaast is het scenario realistisch omdat studenten nu concurrenten zijn, aangezien woningen 
immers tijdelijk van de woningmarkt kunnen verdwijnen. Dit zorgt er opnieuw voor dat studenten 
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het moment dat ze verhuizen moeten uitstellen of zelfs afstellen. De woningmarkt is dus niet 
langer in evenwicht. Het scenario is niet realistisch omdat het aantal verhuisbewegingen te 
hoog is (bijna vier per verandering in woonvoorkeur).
 In een derde scenario hebben studenten nog maar een beperkte kennis van de woningmarkt. 
Volgens de resultaten is dit scenario realistisch omdat het verhuisgedrag van studenten minder 
eenduidig wordt. Doordat studenten elk eigen overtuigingen hebben over de woningmarkt wordt 
het zoekgedrag erg persoonlijk. Een tweede reden is dat studenten met een beperkte kennis 
minder verhuizen dan studenten met een volledige kennis. Een derde reden is dat de meeste 
studenten hun woonvoorkeuren aanpassen wat duidt op een erg competitieve woningmarkt. 
Een vierde reden is dat de periode tussen de overtuiging om te verhuizen en het uiteindelijke 
verhuizen erg lang is, wat erop wijst dat studenten een erg grondige marktstudie verrichten. 
Een laatste reden, ten slotte, is de variatie in zoekstrategieën, gaande van apathisch rondkijken 
tot systematisch uitkammen. Dit scenario is niet realistisch, omdat studenten leren over hun 
omgeving, maar niets vergeten, en ten tweede omdat studenten soms verhuizen juist voordat 
hun woonvoorkeuren opnieuw veranderen, i.e. ze anticiperen niet.
 In een vierde scenario blijven de studenten een beperkte kennis hebben over de 
woningmarkt, maar anticiperen daarenboven ook. Volgens de resultaten is dit scenario 
realistisch omdat de studenten inderdaad anticiperen op veranderingen in hun levensloop en 
daardoor minder (al dan niet tijdelijk) in woningen moeten verblijven die niet met hun levenstijl 
overeenkomen. Een tweede reden is dat niet elke verandering in woonvoorkeuren leidt tot een 
verhuisbeweging, omdat de studenten bijvoorbeeld verwachten om opnieuw van woonvoorkeur 
te veranderen. Een derde reden is dat studenten standaardwoningen blijken te verkiezen boven 
atypisch vormgegeven woningen toegemeten op één bepaalde woonvoorkeur. Het scenario is 
niet realistisch omdat, in alle scenario’s tot nu toe, de huurprijs van de woning geen invloed 
heeft op het keuzegedrag van de student.
 In het vijfde en laatste scenario onderhandelen studenten met de verhuurder van de woning 
over de te betalen huurprijs. Volgens de resultaten is dit scenario realistisch omdat de huurprijs 
van de woning afhankelijk blijkt van de vraag naar dergelijke woningen. Een tweede reden is 
dat het onderhandelingsgedrag van de student afhankelijk blijkt van zijn/haar verwachtingen 
aangaande de markt. Hetzelfde geldt voor de kennis van de studenten van de woningmarkt. Het 
scenario is niet realistisch omdat de verwachtingen van huurders en verhuurders identiek zijn, 
omdat verondersteld is dat huurders en verhuurders leren bij elke transactie ongeacht of beiden 
hieraan deelnemen of niet, enz.

Conclusies en discussie

Een evaluatie van bestaande planningsmodellen leert dat deze modellen bezwaarlijk complex 
systeem modellen genoemd kunnen worden omdat zij te hoge simplificaties doorvoeren. 
Eén van de redenen hiervoor is de moeilijkheid om complex systeem modellen te valideren. 
Klassieke validatie stoelt op twee regels: de regel van Ockhams scheermes en de regel van de 
onafhankelijke validatie. De eerste regel zegt dat als twee modellen éénzelfde resultaat bereiken, 
het meest eenvoudige model het beste is. Het probleem bij complex systeem modellen is echter 
dat de onmogelijkheid om een systeem volledig te beschrijven het ook onmogelijk maakt om 
twee modellen te vergelijken. De tweede regel zegt dat een model dat ontwikkeld is op basis van 
één bepaalde dataset altijd gecontroleerd moet worden op basis van een andere onafhankelijke 
dataset. Dit is opnieuw erg moeilijk in het geval van complex systeem modellen omdat, omwille 
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van de grote hoeveelheid attributen en de aanwezigheid van abstracte begrippen, zoals leren, 
nooit voldoende data verzameld kan worden.
 Als we nagaan waarom deze regels opgesteld zijn dan komen we uit bij het idee om modellen 
in te zetten als instrumenten om te voorspellen. Omdat dit bij definitie onmogelijk is in het geval 
van complex systeem modellen (i.e. deze modellen kunnen onmogelijk uitputtend beschreven 
worden, laat staan dat er voorspellingen mee gemaakt kunnen worden) kan ook de noodzaak 
om aan beide regels te voldoen in vraag gesteld worden. In dit onderzoek stellen we dan ook 
voor om modellen niet zozeer te gebruiken om te voorspellen maar om mee te experimenteren, 
bijvoorbeeld om alternatieve planvoorstellen uit te proberen, of zelfs om heersende opvattingen 
over ruimtelijke concepten te bevragen. Deze nieuwe functie van modellen vraagt om nieuwe 
validatie-regels, die wij ingevuld hebben als het streven naar transparantie en het streven naar 
modellen die een maximum aan regelmatigheden kunnen genereren en die kunnen linken 
aan werkelijke fenomenen. Op basis van de besproken modelresultaten menen we aan beide 
regels te voldoen, en hebben we, met andere woorden, een werkelijk complex systeem model 
ontwikkeld, bruikbaar voor stedenbouwkundigen en planners.
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