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Abstract

The formulation flexibility and the numerical performance of the augmented Lagrangian coordi-
nation method proposed in the part | paper is demonstrated on several example problems. Results
for a number of test problems indicate that the coordination method is effective and robust in find-
ing solutions of the original non-decomposed problem, and does not introduce new local minima
for non-convex problems. The required coordination costs are found to be determined by how the
problem is partitioned and coordinated. These costs do not only depend on the number of quan-
tities that have to be coordinated, but also on their coupling strengths. The formulation flexibility

of the new method provides means to minimize these costs by adapting the problem at hand.
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2.1

Introduction

In Part | [1] of this study, an augmented Lagrangian coordination method is described for mul-
tidisciplinary design optimization (MDO) problem with coupling variables and coupling func-
tions. Two formulation variants are proposed, offering the designer a large degree of freedom in
tailoring the coordination method to the specific requirements of the design problem. Presented
solution algorithms can be shown to converge to Karush-Kuhn-Tucker (KKT) points of the orig-
inal non-decomposed problem. The purpose of this study is to demonstrate the flexibility offered
by the formulation, and to investigate its numerical behavior on a number of test problems. For
details of the coordination method, the reader is referred to Part | [1].

Section 2 demonstrates the flexibility offered by the formulation variants on a geometric program-
ming problem. For this example, Section 3 discusses numerical performance of the coordination
algorithm under different inner loop termination strategies. Numerical performance on the portal
frame problem — a non-convex structural optimization problem with multiple local minima — is
discussed in Section 4. Section 5 presents results on a conceptual level aircraft design problem.
With this example, we investigate the performance of the method when the solutions to the orig-
inal problems are not KKT points, and hence do not satisfy the assumptions for the convergence
proof of the coordination algorithms. Section 6 gives a concluding discussion on the performance
of the coordination method, and suggests possible improvements.

Geometric programming problem:
Formulation flexibility

The first example is a geometric programming problem with 14 variables, 4 inequality constraints,
and 3 equality constraints. This example is used to demonstrate the formulation flexibility offered
by the augmented Lagrangian coordination method.

The all-in-one geometric programming problem is given by:

min - f=F+FR=01427%+7°4,%
153414

subjectto gy = (z52+ zz)zg -1<0

92—(2%+Z£2a 211 1<0
= (4 1+z 5 1<o
g4—(z§+26 212 28 2+ 2071+ (Z1+ 8,77 —3<0 (1)
h = (Z+2,2 +z§ 2_.1-0
h2—(2%1+2%2+2%3+2%4 s°—1=0
= (Z+3+2)5°+ Zf23+29 +72+2%))2°-2=0

0 1 <2z,%,...,214<10

The unique optimal solution to this problem, obtained with Matlab 7.1's SQP dohecon [2]
is (rounded)z* = [5.36602.78794.1147,0.2921,0.3800 3.4117,0.3407,1.2098 0.7400 0.6157,
1.41820.7567,1.93852.3017, with f(z*) = 2.7572.

Decomposed formulation variants

To demonstrate the two formulation variants, the problem is partitioned into three subsystems.
Subsystem 1 has local variables= [z1,2,,73,24, 75, no local objectivef; = 0, and local con-
straintsgs = [g1] andh; = [hy]. Subsystem 2 has local variabbes= [z7,zg, 29, 21|, local objec-
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Figure 1: Example 1: Partition structure

tive f, = F,, and local constraintg, = [g2] andh, = []. Subsystem 3 has; = (25,212,213, 214],

f3 =0, andgs = [gz] andhsz = [hy]. All subsystems are coupled through coupling constraints
0o = [94] andhg = [hz]. Subsystems 1 and 2 are coupled through the coupling objefgtiver,

and subsystems 2 and 3 are linked through coupling variabie[z11], which givesys = [],

Y2 = [z112], Y3 = [z11,3], where the second index refers to the subsystem of computation. The
functional dependence table (FDT) for problem (1) is given in Fig. 1(a), in which the selected
partition is indicated. The problem structure associated with the above partition is depicted in
Fig. 1(b).

Centralized formulation

A centralized formulation is used to demonstrate how the partition can be coordinated in a classic
multi-disciplinary fashion. For the centralized formulation variant, a master problem is intro-
duced to solve for the master copy of shared variaplegz; 4], as well as for the slack variable

Xo introduced by relaxing the coupling inequality constrajnt= [g4]. Since only subsystems 2

and 3 depend on the shared variables, we have for the selection maSices}, S, = [1], and

Sz = [1], which yields the consistency constraints:= zi1 — z112 = 0 andcs = 211 — 2113 =0.

The master problerR, for the centralized formulation is given by:

ZTH?QO %21 B + Vo2 (21— z112) + Wa,(Z11 — Z112)? 4+ Ve 3(211 — 211.3) + WE 3(211 — 211.3)°

+Vg(Ga+X5) +W5(da+3) + Vihz + WZh3
subjectto 01 <z31<10
where 01=(Z+2,9)2,°+(%°+ B0zt + (B1+B2)z4 —3
he=(Z+%+2)5°+ (B +2° +24+4)5° -2 o

where the objective is the sum of the coupling objective (first term), consistency penalties (second
to fifth term), and coupling constraints penalties (sixth to ninth term).

3 Geometric programming problem: Formulation flexibility



SubproblenP; associated with subsystem 1 is given by:
yamin 012757+ Vg(da+5) +W5(Ga+5)° + Vhha +wEh
1,42,43,44
subjectto g1 = (2 +2)z52-1<0
= (Z+2,°+2)z°-1=0 3)
0.1 < 21,22,73,24,75 < 10
where gs=(Z+7,°)z,° +2(Z§2+Z%o)§12+ (2251*‘2%2)221742_3
hs = (Z+%+2)5°+(Z+2%°+25 +41)5° - 2
which includes only the coupling objective (first term), and the coupling constraint penalties
(second to fifth term).

Similarly, subproblen®, associated with subsystem 2 is given by:
min 0.12%2%23 + 2522%1722% + VC72(211 — 21172) + W(Z:’Z(le - 21172)2

27,28,29,210,211,2
+Vg(G4 +X5) +W5(Ga +X5)7 + Vi + wWEhg
subjectto g = (B+2)z2,-1<0 @)
0.1<7,23,29,210,2112 < 10
where i = (Z+2%)2 %+ (% + Zo)zf + (Z1 1+ F)75 -3
he= (Z+%+2)5°+(Z+2%° + a5 +3)5° -2
where besides the coupling objective (first term), a local objective is included (second term) as

well as the consistency penalty bn » (third and fourth term), and the coupling constraint penalty
(fifth to eighth term),

SubproblenP; associated with subsystem 3 is given by:
min Ve3(z11—2113) + Wég(le —2113)?

26,211,3,212,213,214
+Vg(0a +X§) +W5(ga +33)% + Vahs + Wih3
subjectto gz = (Z,3+22)zZ—1<0
hZ:(z%173+z%2+z§3+zf4)zgz—1=0 ©®)
0.1<7%,2113,212,213,214 < 10
where gs = (B+2%2° + (2% + Zo)z,f + (B, + 2z 3
h=(Z+Z+2)2°+(B+2%°+275 +74)2° 2
which only includes a penalty on the consistencygg (first and second term), and the penalties
on the coupling constraints (third to sixth term).

The structure of the centralized formulation is illustrated in Fig. 2. The lines between subprob-
lems indicate coupling through the coupling objective and the penalty terms on the coupling
constraints (dashed lines), and coupling through the penalty terms on the consistency constraints
(solid lines).

Distributed formulation

For the distributed formulation variant, we coordinate coupling between subsystems without the
use of a master problem. Instead, the coupling is coordinated directly between subsystems. If,
for example, subsystem 1 is a system-level design problem, it can be superimposed over the
subsystems 2 and 3. In that case, subsystem 1 may be selected to also include the task of solving
for xp, which was allocated to the master problBsin the centralized formulation. Furthermore,

we can choose to coordinate coupling throaghdirectly between subsystems 2 and 3 by setting

the selection matriceS;3 = Sz» = [1] and defining the neighbors a$; = {}, .42 = {3}, and

A3 = {2}, which yieldscyz = 7112 — z11.3 = 0. Subsystem 3 can be assigned to solve for the
shared variable; 1 in the coupling constraints by settifg =T, =[] andT3 = [1].
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Figure 2: Example 1: Centralized formulation structure

Under these choices, subprobl@&min the distributed formulation is given by:

min 0.1ZZ75 + Vg(0a + X§) + W5 (0a + X§)? + Vnha +wZh3
21,22,23,24,25,X0
subjectto g1 = (z,2+22)z52~1<0
h12(2%+24_2+2g)23__2—1:0 (6)
01 < 21,22,23,24,75 < 10
where 1= (Z+27°)7,°+(%°+ 2%0)211273 +(Zy3+ Z,)2; -3

hs=(Z+Z+B)5°+(B+2%°+24 +813)2° 2

SubproblenP; associated with subsystem 2 is given by:

min 01ZZBZ + 252 )75+ Ve 23(2112 — 2113) +Wa3(211.2 — 211.3)°
77,28,29,210,211,2 ’
+Vg (04 +X3) +W3(0a -+ X§)% + Vhhs + W2hj
subjectto g =(B+2)z7,—1<0 7)

0.1 <77,28,29,210,2112 < 10
where gs=(Z+29)2,°+ (5° + Bo)zi1s+ (Z13+282)74 —3
hs=(Z+Z+8)5°+(B+2°+ ¢ + B13)Z5° — 2

SubproblenPs associated with subsystem 3 is given by:
: _ _ 2
26,211,3':TZ]1|2213,214 Vc,23(211.2 211’3) + WE’ZS(ZHAZ 211’3)
+Vg(9a+X§) +W5(da +X§)? + Vhhz +wzh3
subjectto g3 =(Z,3+727)z5-1<0

hy = (251,3‘*‘2%2“‘2%34‘2%4)252_1:0 (8)
0.1<7,2113,212,213,214 < 10

where g1 = (Z+2,°)%°+ (% + Zo)Zi{a3+ (13 +Z0)zs —3
hs= (B+Z+2)2,°+(Z+2%°+ 74 +F13)%° 2

The structure of the distributed formulation is depicted in Fig. 3. The lines between subproblems
indicate coupling through the coupling objective and coupling constraint penalties (dashed lines),
and coupling through the consistency penalty terms (solid lines).

Other distributed formulations can be defined by choosing different selection malicasd
consistency constraints, offering the designer a large degree of flexibility in setting up a coordi-
nation strategy.

Geometric programming problem: Formulation flexibility
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Figure 3: Example 1: Distributed formulation structure
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Figure 4: Example 1: Partition structure withas coupling variable ané;, as local objective to
subsystem 1

Coupling function versus coupling variable

The augmented Lagrangian coordination method also offers flexibility in deciding whether cou-
pling between two subproblems is coordinated as a coupling function or a (set of) coupling vari-
ables. In the previous two formulations of the geometric programming problem, we sefected
as a coupling function that links subsystems 1 and 2. Instead, we could also opt for adding
to the set of coupling variables= [z7,z;]. By treatingz; as a coupling variable, objectifg

can be treated as an objective function local to subsystem 1. The objective fuRcinow
purely local to subsystem 1 at the expense of coupling thrapghhe problem structure for this
alternative partition is given in Fig. 4. Which choice of partition is preferred typically depends
on the problem at hand.

The above formulation examples show that the proposed augmented Lagrangian coordination
method provides a large degree of freedom in setting up a coordination scheme suited to a spe-
cific problem. The two formulation variants offer freedom in the overall information flows, and
the distinction between coupling functions and coupling variables supplies flexibility in treating
functions and variables either local or as a coordinated quantity.



3 Geometric programming problem:
Numerical performance

In this section, the numerical performance of the solution algorithms of the augmented La-
grangian coordination method is investigated. Both the exact and the inexact solution algorithms
from Ref. [1] are used to solve the partitioned problems of the geometric programming problem
of Section 2.

First, we investigate the performance differences between the two formulation variants (central-
ized and distributed) of Section 2.1. Second, the implications of using either a coupling objective
or a coupling variable are illustrated for the example of Section 2.2. Third, we introduce a third
partition of the geometric programming problem to assess the influence of the amount of interac-
tion between subsystems on numerical performance.

3.1 Experiments setup

For each partitioned problem, two algorithmic parameters are varied to investigate the numerical
performance of the coordination method: the outer loop termination toleianoe the initial

starting pointz®. Four outer loop termination tolerances are seleated102,10°2,104,10°°.

For each decomposed problem, five initial desighsi = 1,...,5, with components selected
randomly between 0 and 5 are used (Table 1). Performance results are then taken as the average
over these five initial designs.

Initial design
21 2 Z3 2 % % 27 % 29 210 211 212 213 214
3.3638 0.4771 0.0868 4.1100 3.0106 0.8515 4.3842 4.6334 1.1358 2.5460 3.8544 4.7385 4.5413 3.2582
4.7900 0.0743 4.0970 1.3161 3.0247 2.6980 0.0645 3.3936 25813 0.3714 1.5696 4.1401 0.7819 3.7701
3.8328 1.4410 3.1057 3.7682 3.2975 3.1170 1.5520 0.3716 2.2910 0.9662 3.1910 4.5878 0.6106 3.3158
3.3306 4.0837 2.8011 3.2982 0.9168 3.4294 3.8954 0.3533 3.5160 1.8980 4.9328 0.5654 3.8133 4.4175
0.6547 4.9274 1.2202 1.0703 3.1827 3.3867 1.5365 0.0597 2.9124 1.3822 2.5144 4.0606 3.6090 1.3608

[SIFNEARNTS e

Table 1: Initial designs for geometric programming problem (1)

Problems are solved with both the exact and inexact method of multipliers solution algorithms
(EM and IM, respectively). For EM, we take the inner loop termination tolerance eqgaido=

0.01e. For IM, we decrease the inner loop termination tolerance from 1 initially@@s0in 10

outer loop steps, after which the inner loop tolerance remains equalie.0The inner loop
termination toleranceX _ for thekth outer loop iteration is given by:

Inner
Elfner = MaX(0.01¢, 107 °9(001)) (©)

Optimization problems are solved with Matlab’'s SQP algorifihmmcon [2] where the toler-
ancesTolX , TolFun , andTolCon are taken equal to.Olei(nkr:er, and gradients are computed

through the built-in finite difference routine &rhincon

For each termination tolerance, we determine the required number of subproblem optimizations
and the final solution error, both taken as the average over the five initial designs. The number
of subproblem optimizations can be seen as a measure for the costs associated with coordinating
the solution of the decomposed problem. The solution error, defined as:

1K
14|

is a measure for the accuracy of the solution. In Eq. (10} f(z*) is the minimum of the orig-
inal objective function, as obtained from the AIO probleifi,= f(zX) is the objective function

(10

7 Geometric programming problem: Numerical performance
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Figure 5: Example 1, Partition 1: Numerical results for centralized (solid lines) and distributed
formulation (dashed lines), and exact (E&f,and inexact (IMx) inner loop solution algorithms

for different termination tolerances

value at the solutioz® obtained at convergence of the coordination algorithithe division by
1+ |f*| is used for appropriate scaling for large as well as small values of the objective function.

Centralized versus distributed formulation

Figure 5 depicts the results for the decomposed problem of Section 2.1 in the centralized formu-
lation (solid lines) and the distributed formulation (dashed lines). The results for the exact inner
loop EM are indicated with circle markers, and star markers are used for the inexact inner loop
IM. A marker on each line is associated with a specific toleraneel0 2, 103, 104, or 10°°
(markers from left to right). Throughout this section, identical axis ranges are used to allow easy
comparison of results.

The results in Figure 5 suggest that the distributed formulation (dashed lines) requires an equal
number or less subproblem optimizations when compared to the centralized formulation (solid
lines). Similar behavior is observed for other test problems indicating that a distributed formula-
tion is at least as efficient as the centralized formulation, and often more efficient. An explanation
for this may be that the number of consistency constraints, to which coordination effort is propor-
tional, is smaller for the distributed formulation. In the distributed formulation of this example,
only 1 consistency constraint is presetys], whereas for the centralized formulation 2 consis-
tency constraintscg andcs) are used.

The figure also shows that the inexact inner loop (IM, stars) requires a lower number of subprob-
lem optimizations than the exact inner loop (EM, circles). Reductions become larger for more
accurate solutions, and can go up to 25-50% for an error of.18s expected, a computational
advantage is gained by solving the first number of inner loop problems to a lower accuracy.

1For the centralized formulation, the componentg'bfassociated with the shared variables are takes as the average
of all local copieyyj, j =1,...,M and the master copy In case of the distributed formulation, the average is taken only
with respect to the local copigsg, j = 1,...,M since no master level copy exists.
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Figure 6: Example 1, Partition 2: Numerical results for centralized (solid lines) and distributed
formulation (dashed lines), and exact (Ed,and inexact (IMx) inner loop solution algorithms
for different termination tolerances

Coupling objective versus coupling variable

Figure 6 depicts the results for Partition 2, as described in Section 2. In this pagitistreated

as a coupling variable arfe is local to subsystem 1. Solid lines correspond to a centralized for-
mulation, and dashed lines are associated with the distributed formulation. Markers correspond
to the termination tolerances= 1072, 103, 104, 10°° (left to right).

A difference between the results for this partition, and Partition 1 (Fig. 5) can clearly be observed.
Partition 1 with the coupling objective requires a factor 2-5 less subproblem optimizations when
compared to Partition 2 with the coupling variable. This difference is observed for both the
centralized and the distributed formulation. An explanation for these differences is the fact that a
coupling objective does not require penalty parameters to be set in the outer loop where a coupling
variable does. A coupling through the objective of Partition 1 can be resolved in a single outer
loop iteration, but the consistency constraintzmmf Partition 2 requires a number of outer loop
iterations to find the optimal values for the penalty parameters. The increased number of outer
loop iterations for Partition 2 is expected to cause the difference in computational costs between
the two partitions.

Three-level partition

To investigate the effect of an increased amount of coupling, a third partition of the geometric
programming problem is introduced. This more strongly coupled partition consists of five sub-
systems coupled through the variabjes [z1,2, 73, 75, 25, 1], objective functionfo = F1 + F,

and constraintgp = [g4] andhg = [h3]. The local variables for each subsystem axe= ||,

X2 = [z4], X3 = [27], Xa = [28,20,710], @ndXs5 = [212,213,214]. Subsystems do not have local ob-
jectives f; = f, = f3 = f4, = fs = 0, and only subsystems 2, 4, and 5 have local constraints:
01 =03 =[], 92 = [01], 94 = [G2], G5 = [g3], h1 = h3 = hs =[], h2 = [hy], hs = [h2]. The prob-

lem structure for Partition 3 is depicted in Figure 7. The selection matrices for the distributed
formulation are as given in Table 2.

The exact (EM) and inexact (IM) coordination algorithms are used to solve this partition in both
the centralized (solid lines) and distributed formulation (dashed lines). Figure 8 shows the results
of the third partition fore = 1072, 1073, 104, or 10-° (markers from left to right).

Geometric programming problem: Numerical performance
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subsystem 1 subsystem 2 subsystem 3 subsystem 4 subsystem 5
M =1{2,3} N=1{1,3,4} M={1,25} M ={2,5} N5={3,4}

$1=[100 S1=[100 Ssu=] Ss1 =]
S;2=[10] S:2=[010 Sp=[10 Ssp=]
Si3=1[01] S3=[001 Sz =] Ss3=[10
S1a= ] $24=[010 Sz=] Ss4=[01]
Si5= ] Ses =] S35=[00] S45=[01]

T.—[1001 T,=[000 T5=[00] Ts=[10 Te=[0T

Table 2: Selection matrices for Partition 3

ﬁ) = F1 + F2
subsystem 1
ho= [/3]
0= [g4]
subsystem 2 /ZI Zx subsystem 3
Z4 z7
g1 h Zs
Z3 Z6
28 29 Z10 212 Z13 214
&2 Zn g3 h
subsystem 4 subsystem 5

Figure 7: Example 1: Partition 3 problem structure
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Figure 8: Example 1, Partition 3: Numerical results for centralized (solid lines) and distributed
formulation (dashed lines), and exact (E&f,and inexact (IMx) inner loop solution algorithms
for different termination tolerances
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Costs for Partition 3 are a factor 2-3 higher than for Partition 1, which only has 2 coupling
guantities that have to be coordinated between 3 subsystems instead of 8 quantities between 5
subsystems for Partition 3. The differences between Partitions 2 and 3 are however much smaller,
even though Partition 2 has only 2 coupling variables instead of 6 for Partition 3. These results
indicate that the required solution costs are not only determined by the number of coordinated
guantities, but also by some sort of “coupling strength”.

Portal frame design optimization

The second example is the portal frame design optimization problem originally introduced by
Sobieski et al. [3], and used by many other researchers in the context of coordination methods
(see, e.g., Refs. [4, 5, 6]). The problem is concerned with finding the cross sectional dimensions
of a three beam portal frame, illustrated in Fig. 9(a), which is subjected to a horizontal force and
a concentrated moment.

| ' M=200KkNm | i |
e A | |

P=50kN i

I T

1
1
i=3 |

(a) lllustration of the portal frame (b) Cross-section A—A details. Index 1

refers to the outer faces of the beam.

Figure 9: Portal frame design problem

Although the portal frame problem has been used extensively, no single study reports all imple-

mentation details necessary for a reproduction of the presented results. For example, variable
bounds are often not reported although they have a large effect on the optimal solution. For the

sake of completeness and reproducibility, our implementation details are included in this section,

and necessary analysis equations are presented in the Appendix.

Original all-in-one problem

The optimization problem in this study aims at finding the 18 cross sectional variabtes (
28,212 78]), 6 for each beare(! = [hil, wi wil diil t! t!l] see Fig. 9(b) for definitions), such
that the horizontal deflection of the loaded node is minimized. Here, the top-right index refers to
one of the three beams. Limits are posed on the total volume of the portal frame (comgiaint
the rotation of the loaded nodgy}), and normal and shear stresses in all beamg). Following

Ref. [6], geometrical constraints on the beam cross sectiprgd) are used to prevent slender
structures that are likely to buckle.

Portal frame design optimization
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Va 0.30n? allowed volume

0, 0.015rad allowed rotation of the loaded node
oy, 2000-10° N/m? allowed normal stress

7, 1160-10° N/m? allowed shear stress

<

Table 3: Maximally allowed values

The all-in-one portal frame design problem is given by:
mzin uz(z)

subjectto gi(z) = \%:) -1<0

02(z) = %2_1§ 0
(i

g3,i,j.k(z):%k—1§0 i=1,23 j=1,2 k=12
U
g4,i,j,k(Z):—%—1§0 i=123 =12 k=12
fi
gs,i,j(Z):%—lSO =123 =12
[i

gG,i,j(Z):—%—lSO i=123 j=1,2

- Rl iy _
g7,i(z[']):W—1S0 =123

_ i _ _
gs,i,j(z[']):;']m—lgo i=1,23 j=1,2

) i) 4[] [ gi] ]
gg7i(z[l]):1_w§o i=1,23

Zmin < Z < Zmax

(11)
where the lower and upper bounds on the variables are 1& cm;,w, < 30 cm, 10 cm
< h < 50cm,and Dcm< d,t;,t; < 5.0 cm. Constraintg; andg, pose limits on the total
volume of the three beams and the rotation of the loaded node. Consgaentslg, limit the
normal stres® in the three beams € 1, 2, 3) for both beam endg & 1,2) at the top and bottom
free surfacesi{= 1,2). Since the normal stress attains its maximum in one of these locations,
constraintsyz andg, effectively assure that the normal stresses are below the allowed &alue
throughout the whole structure. Similarly, constraigésand gg limit the shear stress at the
neutral axis in the three beamis= 1,2, 3) at both endsj(= 1,2), which assures that the shear
stress does not exceed the allowed valpat any other location. Constraigf limits the aspect
ratio of the web of each beam to be smaller than 35, while constgialirhits the aspect ratio of
the flanges to be below 20. Constraggtassures that the area of the web is at least 20% of the
total cross section arda The allowed values of constrairgs to gg are given in Table 3, and the
equations required to determine the constraint values are given in the Appendix.

Problem (11) is non-convex and has multiple local minima. To investigate the local solutions, the
all-in-one problem (11) was solved wifmincon from 1000 different starting points selected
randomly within the variable bounds. Optimizer toleran€eb , TolFun , andTolCon , were

setto 10°°, and gradients were computed by the finite difference routifmioicon . For proper
scaling, the thickness variabl@ t1,t;] are taken in centimeters, and the height/width variables
[h,w1,w,] are in decimeters. Furthermore, the deflectigr(objective functionf) is taken in
centimeters. Note that the analysis equations of the Appendix require S| units (meters).

Two local solutions are obtained: Solution 1 with a deflectio@of= 0.92 cm, beam 2 at the
lower bounds, and beams 1 and 3 optimized for minimal deflection; Solution 2 with a deflection
of 6* = 2.60 cm, beam 3 at its lower bounds, and beams 1 and 2 optimized for minimal deflec-
tion. Solution 1 was found for the majority of the starting points (96%); only a small number
converged to Solution 2 (4%). The mass and maximal deflection constraints are active in all
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Local solution 1:6* = 0.92 cm beam 1 beam 2 beam 3

beam1l beam2 beam?(B
A 3117 280 1162 | 20 20 20

h 500 100 500

w300 100 226 | 0 0 1L 0

w, 300 100 226
d 150 100 136

v 416 100 113 20 -20 -20
tp 4.16 1.00 1.13
-20 0 20 -20 0 20 -20 0 20
Local solution 2:6* = 2.60 cm beam 1 beam 2 beam 3
beam1 beam2 beampB
A 2421 1510 280 20 20 20

h 500 500 100
w, 300 296 100| O 0 0 1
w, 300 296 100

d 125 134 100

tt 312 148 100

t» 312 148 100

-20 -20 -20

-20 0 20 -20 0 20 -20 0 20

Figure 10: Local solution characteristics (beam dimensions in cm and area8)in cm

obtained solutions, together with a number of geometric cross-sectional constraints. The stress
constraints are not active in any of the solutions. The local solutions are depicted in Fig. 10.

A qualitative comparison with existing results for the portal frame example shows that the ob-
served trends in the local minima can also be found in the results reported in literature. The
results of Refs. [5] and [8] have beam 2 small, while beams 1 and 3 are larger, similar to Solution
1. The results given in Refs. [3], [4], and [6] have beam 3 small and beams 1 and 2 larger, similar
to Solution 2.

Partitioning of the problem

The problem is partitioned in a traditional multi-level fashion (see, e.g. Refs. [3, 7]) by defining
three subsystems associated with detailed design of each beam, and a single system-level subsys-
tem concerned with the overall design of the portal frame in terms of the cross sectional areas
and moments of inertigA™, 11, A2l 112 A8 3], Since the analysis to determine the loads and
moments acting on the individual beams depends only on these quantities, the areas and moments
are selected to be the system-level design variables. At the beam subsystems, variable copies of
the member forcef, i = 1,2,3 are introduced to determine the stresses in the beams.

Each of the three beam subsystems designs one of the three beams for their detailed cross-
sectional dimensiongl!, i = 1,2,3. Together with the additionally introduced variables for

the member force#!!, i = 1,2, 3, this gives for the local variablex!! = [2I] fll], i = 1,2 3.

The local constraints for the beam subsystems are the stress and geometrical coggstraints

(g3 (x]), ..., g0 (x1)]. The beam subsystems have no local objectiyes f, = f3 = 0. For

Zll, the original bounds are used, and the bounds for the member forces are taken sudifthat

N(m) < f < 10° N(m), where forces are in Newtons and moments in Newton-meters.

The local variables for the system-level are givenxgy= [A, 111, A2 112 A8 18], and the
objective isfs = f(x4) = 0. The subsystem assures satisfaction of the maximal rotation con-
straintgs = [g2(X4)], and performs the finite element analysis to determine the member forces

f]Lgm(xél), i = 1,2, 3 required at the beam subsystems. The variable bounds are computed from

13 Portal frame design optimization



14

X X2 X3 X4

Z' fl g2 g2 LB g1 401 U1 420 pi21 4031 13

S| g
by
<[ nf
!
e subsystem 4
I . 2= [g1] A 4121 431
891 JON N E
832
S| i S &
892
(11 [2] [3]
a3 hg hg hg
& 1 1 2 2 3 3
o 21 1] 221 2] 251§
| f 83,1 89,1 832~ 892 833~ 893
sl g subsystem 1 subsystem 2 subsystem 3
(a) FDT for partitioned portal frame design problem (b) Hlustration of partition structure

Figure 11: Portal frame: Partition structure

the bounds for the original variables and are set t0.8- 103 m? <A <5.0-102 m?, and
45.10°%m* <1<18.-103m%

The partition has no coupling objectifg = 0, and the mass constraigg = g1 (X1, X2, X3) COU-

ples the three beam subsystems. The mass constraint could also be included in the system-level
problem as a local constraint. Here we treat it as a coupling constraint to add difficulty to the
coordination problem.

18 equality constrainth; = [hlﬁl], hf[Z],hE’]] = 0 are introduced to couple the member force vari-

ablesfl! of each beam subsystem to the valt%ﬁ(m) computed at the system level, where

! = —figp(xa) (12)
6 equality cc_)nstraintlaa1 = [hgl}, hE] , hg’]] =0 are introduced to link the areas and the moments of
inertia Al 11l used at the system-level problem to the values associated with the detailed cross-

section dimensionAE]ean(xi), Ig,]eam(xi), where

hy =

A~ Al
| ] _ Ig(]aarrﬁxi) (13)

where the areAg]eam(xi) and moment of inertiag]ean{xi) of beami are given by Egs. (14)—(15).

These introduced constraints couple the beam subsystems to the system level, and are there-

fore the coupling equality constraints of the probleht(x1,X2,X3,X4) = [hél},h([)z],hgs]] with

hg] (Xi,X4) = [hf[i],hg]]. The partition structure is depicted in Fig. 11.
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group 1 group 2
Algorithm  6*=0.92 ¢6*=2.60

fmincon * 96% 4%
exact EM 100% 0%
inexact IM 100% 0%

*all-in-one formulation

Table 4: Distribution of local solutions for different coordination algorithms

Numerical results

The partitioned problem is decomposed in a distributed formulation that overlaps the partition
structure as depicted in Fig. 11(b). Similar to the all-in-one experiments, the decomposed problem
is solved from 1000 different starting points selected randomly within the variable bounds. Both
an exact (EM) and an inexact (IM) method of multipliers are used to solve the decomposed
problem, both with an outer loop termination tolerance of 30 The remaining algorithmic
settings are chosen as for the geometric programming problem experiments of Section 3.1. Note
that we use an SQP algorithm for solution of the subproblems, which does not guarantee that
globally optimal subproblem solutions are attained.

For scaling|d, t1,ty] are again taken in centimetefis,ws, wy| are in decimeters, and the objective
us in centimeters. Aread are in 102 m?, | in 10~* m*, and forced in 10* N(m). Furthermore,
constraintdp use scaled units instead of Sl units.

Both the exact and the inexact method converge to Solution 1 of the original problem for all
starting points (see Table 4), which shows that no additional local minima are introduced by
decomposing the problem. Solution 2 was not obtained in any of the experiments. For this
example problem, the decomposition-based approach eliminated convergence to a poor local so-
lution, even though all subproblem optimizations are performed with a local optimization tech-
nigue. This may be due to gradually enforcing coupling and consistency constraints through the
augmented Lagrangian penalty function. For this example, the coordination algorithm shows a
preference for the better of the two local solutions. For the general case however, whether and
which solutions are eliminated depends on both the problem, and the initial design and parameter
settings.

The exact algorithm EM required an average of 261 subproblem optimizations to converge, with
a solution error ok = 1.1-10*. The inexact IM required only 200 subproblem optimizations,
and an average error ef= 1.7-10~4. Again, the inexact inner loop reduces computational cost
by terminating the inner loop early in the first 10 iterations.

Note that the solution costs for the portal frame example are about 50% lower than the costs
observed for Partition 3 of the previous example for a similar error. Although the portal frame
partition has a larger number of coupling quantities (25 coupling constraints between 4 subsys-
tems), it requires less solution effort than Partition 3 which has only 9 coupling quantities between
5 subsystems. This confirms our findings discussed for the previous example in Section 3 that
coordination cost are not only determined by the number of coordinated quantities, but also by
some sort of “coupling strength”.

Portal frame design optimization
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Conceptual design of a supersonic business jet

A conceptual supersonic business jet design problem serves as the third example. This example
is taken from Ref. [9], and modified versions have been used to demonstrate the use of other
coordination algorithms (see, e.g., [10]).

Original all-in-one problem

The optimization problem is concerned with maximizing the range of the aircraft while consider-
ing structures, aerodynamics, propulsion, and range subsystems. The four subsystems and their
data dependencies are displayed in Fig. 12. In this figuwayriables (8 in total) are shared by

all subsystemsx variables (23 in total) are local to a single discipline, and the behavior variables
communicated between the subsystems are denotgdiéables (9 in total), and reflect analy-

sis input and output data dependencies. Table 5 gives a brief description of the variables. The
problem has a total of 40 design variables, and 45 design constraints. The reader is referred to
Ref. [9] for a full description of the problem.

Z - variables:
t/C, h, M Arw: Aw, Srcf: Shb ARhl
range L/D aerodynamics e h M A
M > | = 4 S Su AR
X - X! Ahb Lw, Lht wy Orefy Oht ht
A A
SFC ESF w L W, 0
PRGN |
propulsion structures e A A
h M= - Gt Su AR
x5 T . xg: [1] [6], 2 reb S A

Figure 12: Example 3: Data dependencies for business jet problem

Results from the all-in-one implementation of the protdemith IDF (individual discipline feasi-

ble, see Ref. [12]) of the problem indicate that multiple local minima exist. A total of 15 different
solutions was observed after solving the problem 1000 times from different starting point se-
lected randomly within the variable bounds. Only 455 runs were reportetlE8OL) to have
converged to a solution. Optimized range values varied from 1869 to 3850 nautical miles, and the
majority of the converged runs (97%) have a optimal range larger than 3650 nautical miles. 65%
terminated at a range value of 3694 nautical miles. The observed optimal designs show many
similarities in thez andx design variables. The main differences between the solutions arise for
the thickness to chord ratio/c), the wing sweep angle\(y), and the wing thicknesseg](and

[ts]). Optimal values for the behavioral variableare also non-common, except the specific fuel
consumption $FC). Details on the optimal values are given in Table 5.

2NPSOLsolver of Tomlab [11] was used with default settings, and gradients were computed by the built-in finite
difference routine.
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[ z variables optimal] X variables optimal | y variables [ optimal |

t/c  thickness/chord nc Ane  tall sweep 70 L total lift nc
h altitude 60000 ft| L,  wing lift 0.01 %MAC | W, engine weight nc
M Mach number 1.5 Ly tail lift 3.5 %MAC W total weight nc
AR,  wing aspect ratio 25 T  throttle 0.17 ’] wing twist nc
Aw  wing sweep angle nc [t]  9thicknesses nc ESF engine scaling factor nc
Sef  Wing surf. area 800% | [t 9 thicknesses nc D total drag nc
S tail surf. area 149 % A taper ratio 0.1 W fuel weight nc
ARy tail aspect ratio 2.5 L/D lift/drag nc
SFC spec. fuel cons. 1.0

Table 5: Example 3: Variable description and common optimal values
(nc = non-common optimal value)

Of all the obtained solutions, not a single one satisfies the Karush-Kuhn-Tucker (KKT) conditions
for optimality. At every solution, the gradient of the Lagrangian is non-zero, possibly caused by a
discontinuity or non-smoothness in one of the subsystems. Failure to meet the KKT conditions at
solutions may cause difficulties for the coordination method since the convergence proofs assume
that the KKT conditions are satisfied at solutions to the all-in-one problem. For many existing
coordination methods, the use of response surface methods (RSM) has been proposed to avoid the
difficulties associated with non-smoothness of functions (see, e.g., Refs. [6, 10]). Although such
a smoothing approach could also be used for the augmented Lagrangian coordination method, we
are here interested in the performance of the method in conditions that are outside the assump-
tions of the theory. Therefore, we investigate the performance of the coordination method when
directly applied to the non-smooth problem.

Partitioning of the problem

Two partitions of the problem are used: a traditional, multi-disciplinary partition with a central
coordinator that includes the objective, and a distributed partition in which the objective is used
as a coupling variable. In the first partition, the range subsystem is superimposed over the remain-
ing three disciplines, and acts as a central coordinator (Fig. 13). For this choice, the structures,
aerodynamics, and propulsion subsystems are decoupled and can be solved in parallel. The cou-
pling variables are the system variablesand the behavior variablgs The second partition

takes the range equation as a coupling objective, which eliminates the range subproblem from
the partition altogether (see Fig. 14). Due to the coupling objective, the subsystems cannot be
solved in parallel, but have to be solved sequentially. Coupling variables between the remain-
ing subsystems are coordinated directly between the subproblems. Furthermore, three behavioral
variables, required as inputs for the range subsystem, become local to a subsystefD(fer,
aerodynamicsSFCfor propulsion, and for structures). Note that the elimination of the range
subsystem requires the range computation to be performatl atbsystems. For this example,

such an approach does not pose difficulties since the range computation is performed through the
analytical Breguet range equation.

By using the range equation as a coupling objective, one subsystem could be removed, and the
number of coupling quantities was reduced from 31 in the traditional partition to 15 in the new
partition. This reduction in partition complexity is expected to have a substantial effect on the
required coordination costs.

Numerical results

Both partitions are solved with an exact inner loop (EM) and an inexact inner loop (IM). Outer
loop termination tolerances for all experiments are set+010 2, and the remaining algorith-

mic settings are chosen as for the geometric programming problem experiments of Section 3.1.
Five different starting points, distributed randomly within the variable bounds, are used for each

Conceptual design of a supersonic business jet
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range

Xy -

z.t/c, h, M, Ay, Ay, Sres, St ARne ) z: /¢, Arw, Avs Stes Shi AR
y: L, W, 0, ESF, Wy, L/D zh M y: L W, W, 6, Wy
y: W,, ESF, D, SFC
]
aerodynamics propulsion structures
X2! Apy Ly, Ly x3: T xa: [, [6), 4

Figure 13: Example 3: Traditional centralized partition

aerodynamics

X1 Any Ly, Ly, L/D

zZh M Z: t/c, Arw, Aw, Srets St ARw
y: ESF, D range LW, 0

propulsion structures

xy: T, SFC y: W, x50 [1], [&] A Wr

Figure 14: Example 3: Partition with range equation as coupling objective

experiment.

Since the all-in-one problem showed convergence difficulties for some starting points, similar
behavior is expected for the subproblems (and observed in practice). Experiments indicate that
communicating non-converged inaccurate solutions results in convergence difficulties of the co-
ordination algorithm. To avoid difficulties, only converged solutions are passed. Non-converged
subproblem solutions are restarted at a perturbed starting point until a converged solution is ob-
tained. With this approach, the coordination method will not be prematurely terminated by un-
successful subproblem optimizations.

The majority of the experiments for both partitions and coordination strategies (EM and IM)
converged to one of the all-in-one solutions even though these points are not KKT points of the
original problem. For the first partition, two out of five runs for both EM and IM converged

to a non-optimal solution with a range of around 3300 nautical miles. Although non-optimal,
these final designs are consistent and feasible. The non-optimal designs for the first partition
typically have a smaller tail (110-12G)twith a higher aspect ratio{ 5), a larger mach number

(=~ 1.8), and a larger throttlex 0.25). The remaining common design variables obtained with
the coordination algorithm are equal to the optimal values of all-in-one implementation. For the
second partition, all experiments converged to an all-in-one solution.

Table 6 shows the total number of subproblem optimizations required for convergence for both
partitions. As expected, a large difference in solution cost is observed between the two parti-
tions. The traditional partition requires almost five times more subproblem optimizations than
the second partition with the coupling objective. Even if parallelism would be taken into account
(at most a factor 3 could be gained), the reduction in coupling quantities through the use of the
coupling objective is successful in reducing the solutions costs for this example.



optimal  cost
partition 1 exact 60 % 2427
inexact 60% 2342
partition 2 exact 100% 500
inexact 100% 483

Table 6: Example 3 coordination results summary: Percentage of solutions that converged to an
optimal all-in-one solution and average number of subproblem optimizations required for con-
vergence.

When comparing the results from the exact and inexact inner loops, only a small difference
is observed. Terminating the inner loop early for the first 10 iterations appears not to yield a
computational advantage for this example.

The above results show that the coordination method is able to find consistent and feasible solu-
tions for this example that does not satisfy all assumptions of the convergence proof. Furthermore,
the performance of the coordination method is not heavily affected by the non-smoothness of the
problem.

6 Conclusions and discussion

This paper showed that the augmented Lagrangian coordination method is a flexible and effective
coordination method that can be used to solve MDO problems in a traditional centralized fash-
ion, but also in a distributed fashion. The method was demonstrated to provide a large degree of
flexibility in formulating the decomposed problem. Numerical experiments with two non-convex
example problems demonstrated the method’s effectiveness in finding solutions to the original
non-decomposed. Furthermore, the method was found to be robust and provided accurate so-
lutions for the business jet example in which not all assumptions of the convergence proof are
satisfied.

Results indicate that coordination costs depend heavily on the partition of the problem. We
expect that costs can be reduced significantly by (model-based) selection of a “smart” partition
with low coupling strength. Such an approach would require two ingredients: A method for
guantifying coupling strength, and an algorithm to find a partition with minimal coupling strength.
Developments in the fields of coupling strength quantification (see, e.g., Refs. [15, 16, 17, 18])
and model-based partitioning (see, e.g., Refs. [19, 20, 21]) are expected to be of great value in
this context.

A suggestion for enhancement of our method would be to develop an alternative, more efficient
inner loop algorithm. The currently used block coordinate descent (BCD) method operates in a
Gauss-Seidel fashion, and its convergence rate is at best linear. From experiments we observe
that this linear convergence rate limits the efficiency of the coordination method. To illustrate
this observation, consider Figure 15, which depicts the convergence history of the objective for
an experiment of the business jet example. The displayed convergence behavior is typical for all
examples in this paper. The figure shows that the inner loop becomes very slow after a number
of outer loop penalty updates. For this example, only little progress is made in the final 200
subproblem optimizations, where an inner loop can require up to 100 iterations. This behavior
is caused by the increased coupling between the subproblems through the penalty terms, which
becomes larger as penalty weights are increased, and was also observed for other coordination
methods (see Refs. [13, 14]). Possible enhancements for the inner loop could use separable ap-
proximations of the penalty terms, similar to the methods of Refs. [22] and [23], a quadratically

19 Conclusions and discussion
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Figure 15: Example 3: Sample of objective function convergence history for partition 2 and
inexact method of multipliers (vertical lines indicate outer loop penalty parameter updates)

convergent inner loop strategy as used in Ref. [24], or a truncated inner loop similar to the alter-
nating direction algorithm of Ref. [14].
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Appendix:
Analysis equations for portal frame example
Cross-Section Properties

The areaAll and moment of inertial! of beami are given by (indices dropped for brevity of
notation):

A=wit; + (h—t; —t)d + Wty (14)
wy(tg)3 1 d(h—t;—t)3 1 wa(t2)3 1
R (e A = ol
where the centroigl is given by:
wity h—ltl +1 h—t; —to)dh+ le to 2
Vo= (h—3ta) + 5( )dh+ Fw(t2) (16)

wits +d(h—tg —t2) +wotp

The first moment of are@ of the material above the neutral axis for a beam, relevant in computing
the shear stress, is given by:

1 1
Q:W1t1(h—)’c—§t1)+§d(h—yC—t1)2 (17)

The free surface distances andc,, required for determining the maximal bending stress, are
given by:

ci=h-ye C2=Yc (18)
at the faces of flanges 1 (outer) and 2 (inner), respectively.

Unknown displacements and reaction forces

To determine the stresses in the frame, first the forces and moments acting on the individual
beams have to be computed. To this end, we use a finite element analysis that consists of three
plane bending elements, each associated with one | beam of the frame. Each-dn# of a

beam element is subjected to an axial fogea shear forc¥j, and a bending mome;. The

positive directions in each beam are defined as illustrated in Fig. 16.
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Figure 16: Free body diagrams of portal frame beams



The vector of member forcdss given by:f = [N1, V1, M1, N, Vo, MZ]T, and the vector of local
member node displacementss given byu = [ug, V1, 01,Uz,Va, GZ]T, whereuj, vj, and@; are the

axial and perpendicular displacements, and the rotation of bearjy eespectively. The positive
directions of the displacements coincide with the positive directions of the member forces.

First, we consider the boundary conditions of the construction. From the boundary conditions we
know that nodes 1 and 4 are fix@a,v1, 61] = [u4, Vs, 04] = [0,0,0], and the reaction forces at
nodes 2 and 3 are knowfXp, Y2, Z,] = [0,0,0] and[Xs, Y3, Z3] = [50- 10°,0,200- 10°] (see Fig. 16

for the definition of the node numbers). The remaining displacenjent®, 6,] and[us, vs, 63],

and reaction forcepXy, Y1, Z1] and[X4, Ya,Z4] are unknown.

To compute these unknowns, the displacement and force vectors are split up into two parts: a
known part (boundary conditions) and an unknown part (free nodes), suehghat[ul o, ul |

andfass= [f-tl)-cv f;l;egj-r, Whereufree: [Uz,Vz, 92, us, V3, 93}1-, Upc = [Ul,Vl, 61, Ug, Vs, 64} = [0, 0,0,0, 0, O}T,
be = [XZaY27ZZaX3aY3,Z3] = [07 07 0) 50 103707 200 1635]T1 andffree - [X]_,Y]_,Z]_,le, Y47Z4]T-

Under these conventions, the unknowns can be computed by the system of edKiatings=

fass Which is given by:
K Ki2 Ufree foc
= 19
{ K-;[z K22 } [ Ubc ] [ firee (19)
whereK 11, K12, andK 5, are 6x 6 submatrices of the assembled stiffness madeixs

From this system, and becausgg = 0, the free displacements are given by:
Ufree = KIll(be —KioUpe) = Killfbc (20)
The unknown reaction forcdgee = [Xl,Yl,Zl,X4,Y4,Z4]T are given by:

firee = KIzufree + Koolpe = KIzK 1_11fbc (21)

Assembled stiffness matrix

The assembled stiffneggssmatrix is constructed from the local stiffness matrices of each beam.
The local stiffness matrix that relates the member forces to the member displacements (in the local
coordinate system) throudh= K ocau is given by (beam indices dropped for brevity of notation):

B0 o -EA o0 0 ]
0 LEI eEl 0 _1E el
0 6EI @ 0 7éEZI @
Kiocal= | _Ea 'b I(‘) EA L I(‘) (22)
T T
0 _ 1261 _6El 0 12El  _ 6EI
6B 2kl £l 4l
L o T T 0 -T T |

To create the assembled stiffness matrix, first the element stiffness matrices have to be rotated
from the local to the global coordinate system. To this end, a rotation nRtR(a) is used
such thaK = (R)TK|Oca|R, where the matriR = R(«) is given by:

cofa) sin(a) 0 0 o 0
—sin(a) coga) O 0 0 0
R=R(a)= 0 0 0 cogx) sinfx) O )
0 0 0 —sin(a) coga) O
0 0o 0 0 0 1

The rotation angles: for the three beams aredt! = 7/2, al? = 0, andal® = —7/2.

24 Bibliography



To determine the assembled stiffness makiysfor the whole structure, the local nodes are
mapped to the global nodes, and the rotated local stiffness matrices are inserted at the appropriate
places of the assembled stiffness maktixs To this end, a projection matril! for beami can

be defined such that: .

K ass= Z(p[i])TK[i]p[i] (24)
i=
For beams 1, 2, and 3 the projection matrices are given by:

0010 | 0 00 0100
Pm_{l ooo} Pm_{o | oo} F’[3]—{000 |} (25)

with | the 3x 3 identity matrix and a 3x 3 zero matrix.

Computation of Stresses

The nodal force$'! in beami, required for computing the stresses, are given by (indidespped
again):
f= [N17V17 M1, N2, Vo, MZ]T = Kjgcall = KjocalRPUass (26)

The axial stress;, is constant throughout a beam and is given by:
N, —N
Oa= —2 A ! (27)

The bending stresses, j « at endj = 1,2 in the top k = 1) and bottomK = 2) flanges of beam
i, respectively, are given by:

1My oMy 1Mz M2
I Ob12 = — I Obh21 = — I Op22=——

(28)

Op11=

The four normal stresses i at flangesk = 1,2 of beam end$ = 1,2 are given by:
Ojk = OaT Op,jk j=1,2 k=1,2 (29)

The shear stressegat the neutral axis at the beams efids 1,2 are given by:

1) = |jT? j=1,2 (30)



