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Inventory Control with Partial Batch Ordering

Osman Alp∗ Woonghee Tim Huh† Tarkan Tan‡

July 4, 2009

Abstract

In an infinite-horizon, periodic-review, single-item production/inventory system
with random demand and back-ordering, we study the feature of batch ordering, where
a separate fixed cost is associated for each batch ordered. Contrary to majority of the
literature on this topic, we do not restrict the order quantities to be integer multiples
of the batch size and instead allow the possibility of partial batches, in which case the
fixed cost for ordering the batch is still fully charged. We build a model that particu-
larly takes the batch ordering cost structure into account. We introduce an alternative
cost accounting scheme to analyze the problem, and we discuss several properties of the
optimal solution. Based on the analysis of a single-period problem and a multi-period
lower-bound problem, we study two heuristic policies for the original partial batch or-
dering problem, both of which perform very well computationally for a wide range of
problem parameters. Finally, we compare the performance of the optimal policy to the
performance of the best full-batch-size ordering policy to quantify the value of partial
ordering flexibility.

1. Introduction and Related Literature

In most production environments, multiple units of items are procured, processed, manufac-

tured or shipped together in batches. The batch ordering nature often arises from capacitated

facilities, such as industrial ovens, containers, trucks and ships, that are utilized to produce

or supply the item. In other cases, it is due to economic or technological requirements at the

powerful supplier or the manufacturer, manifested through case pack sizes, minimum order

quantities, etc.
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In a batch ordering environment, system costs are heavily influenced by the number

of batches used for ordering. A separate fixed cost is charged for ordering (or producing,

shipping, etc) each batch, as well as a variable cost for each unit ordered. While this kind

of a cost structure is easy to describe and frequently observed in practice, it does not lend

itself to straightforward analytical tractability. As a result, the treatment of batch ordering

in the academic literature has been somewhat simplified. Typical approaches for modeling

the procurement cost are either (i) to ignore the batch cost altogether by considering only

the linear cost, (ii) to include a single fixed cost for ordering, i.e., to assume an infinite batch

size, (iii) to cap the total order quantity, or (iv) to impose additional requirement such as

full batch sizes (also referred to as “full truck loads” or “full containers”). The first three

variants have been analyzed well. When the ordering cost is linear, the base-stock policy is

optimal. When the fixed cost of ordering is associated with each period, the optimal policy is

an (s, S) policy (Scarf, 1960; Veinott, 1966). When the capacity is imposed on the ordering

quantity in each period without explicit modeling of the fixed cost, the modified base-stock

policy is optimal (Federgruen and Zipkin, 2000).

In the literature, the phrase “batch ordering” typically refers to the problem with the

full batch size ordering restriction. This problem is introduced by Veinott (1965), who

assumes stochastic demand and requires that orders must be multiples of the full batch

size. In a single-stage setting, he shows the optimality of a threshold-type policy, where

the order quantity in each period is the smallest multiple of the full batch size that will

bring the inventory level above a certain level. Iwaniec (1979) identifies a set of conditions

under which full batch size ordering policy is optimal.1 Later, Zheng and Chen (1992)

develop an algorithm to compute the optimal parameters within the class of the full batch

ordering policy. With the full-batch restriction, the optimality of the threshold-type policy

extends to multi-echelon systems as shown by Chen (2000). Related to this, in a single-stage

problem with at most one full batch in each period, Gallego and Toktay (2004) show that a

straightforward modification of the above threshold-type policy remains optimal.

In an environment where the fixed cost of ordering a batch is dominant, ordering full

batches is reasonable and commonly used. However, when this fixed cost is moderate,

rounding up or down the order quantity to a multiple of the full batch size may not provide

an optimal trade-off between service level, inventory holding cost and the batch ordering

1Her conditions are mildly reminiscent of the K-convexity of Scarf (1960) that is used to prove the
optimality of (s, S) policies with the single fixed cost for ordering (the case of (ii) above).
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cost. By allowing the flexibility of a partial batch, the overall cost can be reduced, and

we expect that such a saving to be high when the full batch size is large. In this paper,

we consider an infinite-horizon, periodic-review, single-item inventory system with random

demand and batch ordering, where a separate fixed cost is associated for each batch ordered.

We do not restrict the order quantities to be integer multiples of the batch size and allow

the possibility of partial batches, in which case the fixed cost for ordering the batch is still

fully charged.

The partial batch ordering flexibility, a key feature of this paper, has received relatively

little attention in the literature. To our knowledge, there is no paper that analyzes the

optimal policies with partial batch ordering and stochastic demand in a single-stage or se-

rial system. While a single-stage problem with partial batch ordering is already a difficult

problem that has not been analyzed, we are aware of only two papers, Cachon (2001) and

Tanrikulu et al. (2009), that contain this feature as a part of a more complex multi-item

joint-replenishment context where heuristic methods are proposed and evaluated.

Our main contributions can be summarized as follows. (1) We build a model that partic-

ularly takes the batch ordering cost structure into account and allows partial batch ordering.

Even though a multi-item version of this problem has been studied by Cachon (2001) and

Tanrikulu et al. (2009), we focus on a simpler yet still challenging problem in order to derive

analytic results and develop intuition. (2) To facilitate our analysis, we introduce a novel

alternative cost accounting scheme. Here, instead of charging the per-batch cost to every

batch ordered, we impose an appropriate penalty cost for any batch that is less than full.

While this scheme is equivalent to the original cost structure, it allows develop several prop-

erties of the optimal solution. (3) We characterize the optimal solution for the single-period

problem. We also study a relaxed version of the multi-period problem and describe how

to find an optimal solution for the relaxed problem, which provides a lower bound on the

optimal cost of our problem. (4) We examine two policies that can be used to solve the

problem in a heuristic manner. These policies are designed for the partial-ordering case,

based on our analysis of the single-period problem and the lower bound mentioned above,

and they perform very well in a wide range of problem parameters. We compare them to

the case of full-batch-ordering policy to quantify the value of partial-ordering flexibility. (5)

Finally, we build managerial insights for the inventory systems with batch ordering costs.

We mention several other papers that are related to this paper. Chao and Zhou (2009)
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consider the multi-echelon full-batch ordering problem with minimum setup time (time be-

tween consecutive orders). Both Lippman (1969) and Alp et al. (2003) consider a general

version of our problem under deterministic demand settings and show some optimality prop-

erties.

The rest of the paper is organized as follows. We present our model and an alternative

cost accounting scheme in Section 2. We analyze the problem, show optimality results, and

propose heuristic policies in Section 3. The performance of these policies is reported and

managerial insights are presented in Section 4. We conclude the paper in Section 5.

2. Model

2.1 Description

In this section, we describe the details of our model, and then present a dynamic program-

ming formulation. Demand is stochastic and unmet demand is assumed to be fully back-

logged. The relevant costs in our environment are inventory holding costs, backorder costs

and fixed costs of batch ordering, all of which are exogenously determined and non-negative.

We ignore unit ordering costs without loss of generality in the long run. We assume full

availability of the ordered quantities, and that the lead times can be neglected. The batch

size is assumed to be fixed. In contrast to most existing models on batch ordering, we do

not restrict the order quantities to be integer multiples of the batch size, and we allow the

possibility of fractional number of batches. However, the batch ordering cost is a function of

the number of batches, regardless of whether all the batches are full or not. Note that this

function is neither convex nor concave in the number of units ordered.

Let t ∈ {1, 2, . . .} index the time periods in a forward manner. The following sequence of

events takes place in each period t. (1) At the beginning of the period, the manager observes

the current inventory level denoted by xt. Positive xt corresponds to excess inventory, and

negative xt corresponds to outstanding backlog. (2) The manager then orders qt ≥ 0 units

based on the beginning inventory level xt, and incurs the ordering cost of c̃(qt) given by

c̃(q) = K · dq/Qe

where K ≥ 0 represents the ordering cost per batch, Q > 0 denotes the fixed batch size,

and d·e is the smallest integer greater than or equal to the argument inside (thus, dq/Qe
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denotes the number of batches required to order q units). Note that c̃(q) is a right-continuous

step function where the increments are identical and equally spaced. Since we assume that

order replenishment is instantaneous, these qt units arrive immediately. It is convenient to

denote the after-ordering inventory level by yt, i.e., yt = xt + qt. Clearly, yt ≥ xt. (3)

Then, demand Dt is realized. We assume that the sequence of demands (D1, D2, . . .) are

independent and identically distributed, and we denote the common distribution by D. For

simplicity of exposition, we assume that demands are discrete with integer supports, but

our model and analysis can easily be generalized to the case of the continuous demand.

An appropriate linear overage or underage cost is charged, where the per-unit per-period

overage and underage costs are denoted by h and b, respectively. (4) The excess demand,

if any, is backlogged, and therefore the beginning inventory level in the next period is given

by xt+1 = yt −Dt.

The expected overage and underage cost in each period t depends only on yt, and can be

written as L(yt), where

L(y) = ED

[
h · [y −D]+ + b · [D − y]+

]
. (1)

Note that L is a convex function. The expected cost incurred in period t can be written as

C̃t(xt, yt) = c̃(yt − xt) + L(yt) .

The objective is to minimize the long-run average cost, i.e., lim supT→∞
∑T

t=1 C̃t(xt, yt)/T .

Let C̃∗ denote the optimal long-run average cost.

2.2 Equivalent Alternate Cost Formulation

We introduce an alternative cost accounting scheme that would be easier to work with in

our analysis. Since every unit procured is eventually sold, the long-run average number of

ordered units is E[D]. Thus, the long-run average ordering cost would have been E[D] ·K/Q

if each order is an integer multiple of the batch quantity Q. However, in general, the average

ordering cost would be higher, due to the fact that the batch cost K cannot be divided

among Q units if the order quantity is less than the batch size Q. Thus, based on this

observation, we take E[D] ·K/Q as a baseline of the batch ordering cost, and we introduce

an alternative but equivalent cost structure. Define

c(q) = K · (dq/Qe − q/Q) . (2)
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If q is a multiple of Q, then the above expression is zero. Otherwise, we interpret c(q) as the

cost of ordering a less-than-full batch. Let

Ct(xt, yt) = c(yt − xt) + L(yt) . (3)

Then, minimizing the long-run average cost in terms of Ct is equivalent to minimizing the

long-run average of the original cost C̃t (up to an additive constant), i.e.,

lim sup
T→∞

1

T

T∑
t=1

C̃t(xt, yt)− E[D] ·K
Q

= lim sup
T→∞

1

T

T∑
t=1

Ct(xt, yt) .

Therefore, for the remainder of this paper, we adopt the objective of minimizing the right-

hand-side expression of the above equation. We let C∗ denote the optimal long-run average

cost in terms of the Ct. Clearly, C∗ = C̃∗ − E[D] ·K/Q.

One of the common approaches to specify and solve inventory problems is to use dynamic

programming. The finite-horizon T -period problem can be formulated as follows:

ft(xt) = min
yt≥xt

c(yt − xt) + L(yt) + EDt [ft+1(yt −Dt)] for t = 1, . . . , T , and

fT+1(xT+1) = v · xT+1 ,

where v is the per-unit salvage value. Under mild technical conditions, the average of the

T -period cost converges to the long-run average cost as T → ∞. Dynamic programming

is a commonly-used tool in the inventory theory literature, and its analysis typically takes

advantage of special structures that are preserved through dynamic programming recursions,

such as convexity or its generalizations (see, for example, Chen, 2000; and Gallego and

Toktay, 2004). However, convexity does not hold in our problem since the ordering cost

function c(·) is not convex, and thus the optimal solution for the dynamic program is likely

to be quite complex in general.

3. Analysis

Since the optimal policy for the multiple-period dynamic programming formulation is difficult

to analyze, we first focus on the single-period problem, for which we show that the optimality

of a threshold-type policy (Section 3.1). Then, in a multiple-period setting, we consider

a variant of the original problem, and show how we compute the optimal solution for this
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problem (Section 3.2). This problem provides a lower bound on the optimal cost. Inspired by

the optimal policies for these related problems, we propose heuristic policies for the original

problem and present conditions under which these policies are indeed optimal (Section 3.3).

The performance of these policies is reported later in Section 4.

3.1 The Single-Period Problem and the Myopic Policy

We consider the ordering problem in the last period t = T . For the sake of simplicity, we

assume no salvage value, i.e., v = 0. (Otherwise, the salvage value can be incorporated

by modifying the L function.) Then, the last-period problem, which we refer to as the

single-period problem, can be written as:

min
yT≥xT

c(yT − xT ) + L(yT ) , (4)

where xT is the starting inventory level in the last period. We let yT (xT ) denote any inventory

policy for the above problem, y∗T (xT ) being the optimal one; this notation makes it explicit

that the action yT depends on the current state xT .

Since the batch size is Q, the modular arithmetic based on Q plays an important role in

our analysis. For any integer z, we define

[z] = z mod Q

such that [z] ∈ {0, 1, . . . , Q − 1} i.e., z = [z] + kQ for some integer k. Mathematically, [·]
defines a set of equivalence classes.

Recall that L given in (1) is a convex function, satisfying L(y) → ∞ as y → ∞ or

y → −∞. Let θ∗ be the minimizer of L. (If L has multiple minimizers, then fix θ∗ at the

largest minimizer, to avoid ambiguity in the definition.) We note that θ∗ is an integer due

to our integer demand assumption. Also, for each equivalent class [z], let θ[z] be the largest

member of this class not exceeding θ∗, i.e.,

θ[z] = max{w | w ≤ θ∗, [w] = [z]} .

Clearly, θ∗ −Q < θ[z] ≤ θ∗ for any z. It is useful to define the following sets of size Q:

SL = {θ∗ −Q + 1, θ∗ −Q + 2, . . . , θ∗} and

SR = {θ∗, θ∗ + 1, . . . , θ∗ + Q− 1} .
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Note that the set {θ[z] | 0 ≤ z < Q} is the same as SL. Also, define Y to be a set of Q

consecutive integers that correspond to the Q smallest values of the convex function L, i.e.,

|Y| = Q, and

L(y′) ≤ L(y′′) for any y′ ∈ Y and y′′ /∈ Y .

Note that Y ⊂ SL ∪ SR. For any integer z, let y[z] be the unique member y of Y such that

[y] = [z].

We establish basic properties of the optimal policy for the single-period problem.

Proposition 1. For the single-period problem,

(a) For any xT ≥ θ∗, it is optimal not to order, i.e., y∗T (xT ) = xT .

(b) For any xT < θ∗, y∗T (xT ) ∈ {θ[xT ], θ[xT ] + 1, . . . , θ[xT ] + Q}.

(c) For any pair of x′T , x′′T < θ∗ satisfying [x′T ] = [x′′T ], y∗T (x′T ) = y∗T (x′′T ).

Proof. Part (a) follows from the fact that c(·) is a nonnegative function and that L(θ∗) ≤
L(xT ) ≤ L(y) for any θ∗ ≤ xT ≤ y.

For part (b), C(xT , yT ) is bounded below as follows:

c(yT (xT )− xT ) + L(yT (xT )) ≥ L(yT (xT )) ≥ L(θ[xT ]) ,

where the first inequality follows from the nonnegativity of c, and the second inequality

follows from the convexity of L(·) and the fact that yT (xT ) < θ[xT ] ≤ θ∗. Thus, selecting

θ[xT ] as the after-ordering inventory level would be at least as good as selecting yT (xT ).

Similarly, if yT (xT ) > θ[xT ] + Q, then a similar argument shows

c(yT (xT )− xT ) + L(yT (xT )) ≥ L(yT (xT )) ≥ L(θ[xT ] + Q) .

Thus, selecting θ[xT ] + Q would also be at least as good as selecting yT (xT ), completing the

proof of part (b).

Finally, part (c) follows from the fact that c(y−x′T ) = c(y−x′′T ) whenever x′T , x′′T < y.

Proposition 1 gives a partial characterization of the optimal policy – that it is optimal not

to order if the beginning inventory level exceeds θ∗, and otherwise the after-ordering inventory
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level must belong to a subset of SL ∪ SR = {θ∗ − Q + 1, θ∗ − Q + 2, . . . , θ∗ + Q − 1}.
Furthermore, parts (a) and (c) imply that it suffices to specify the optimal policy within a

subset of the state space for the dynamic programming formulation, namely the set SL =

{θ∗ − Q + 1, . . . , θ∗}. (If xT ≥ θ∗, then it is optimal not to order; if xT ≤ θ∗ − Q, then the

order-up-to level is the same as that of x′T where x′T ∈ SL and [xT ] = [x′T ].) Furthermore, for

any xT ∈ SL, part (b) shows that it is adequate to consider a restricted action space given

by yT (xT ) ≤ Q + xT , i.e., ordering at most one batch.

Based on the above discussion, the single-period problem of (4) can be written as follows:

For any xT ∈ SL,

min
xT≤yT≤xT +Q

L(yT ) + ψ(yT ) (5)

where

ψ(yT ) =

{
(K/Q) · (xT + Q− yT ) if yT > xT ,
0 if yT = xT .

While L(yT ) is convex, ψ(yT ) is concave in yT . Thus, the objective function in (5) is neither

convex or concave. Despite this property, it turns out that the above problem can easily be

solved. Note that expression (5) depends on yT only through L(yT ) and (K/Q) · yT . It is

useful to define

θ̃ = arg min
y≥0

L(y)− (K/Q) · y . (6)

This minimization problem given in (6) is a convex function minimization problem. We note

that while θ̃ is bounded below by θ∗ (i.e., θ∗ ≤ θ̃), it may or may not belong to the set Y or

SR.

If the optimal solution to (5) is at a boundary xT or xT + Q then it belongs to Y and is

given by y[xT ] since xT belongs to SL and Y is the set of consecutive integers corresponding

to the Q smallest values of L, the optimal boundary solution belongs to Y and is given by

y[xT ].

Therefore, the optimal solution to (5) for given xT ∈ SL is either the boundary solution

y[xT ] or an interior solution θ̃. Proposition 1 below shows which of these two solutions is

indeed optimal, and that this decision depends on whether the value of y[xT ] ∈ Y exceeds

thresholds or not. Before we state this proposition, we define θ as follows:

θ =

{
min{θ : L(θ) ≤ L(θ̃) + K

Q
· (θ + Q− θ̃)} if θ̃ ≤ maxY ,

−∞ if θ̃ > maxY .
(7)
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It can be verified easily that the quantity θ is well-defined (the inequality in the above

minimum operator is satisfied, for example, if θ = θ̃). We note that θ is bounded above by

θ̃ (i.e., θ ≤ θ̃), and it may or may not belong to the set Y .

Lemma 1. For the single-period problem, the following policy is optimal for any xT ∈ SL =

{θ∗ −Q + 1, . . . , θ∗}:

yT (xT ) =

{
y[xT ] for θ ≤ y[xT ] ≤ θ̃

θ̃ for y[xT ] < θ or y[xT ] > θ̃ .

Proof. For any xT ∈ SL, we choose the optimal policy by comparing the cost associated

with y[xT ] and θ̃. Let Cost(y|[xT ]) denote the expected cost associated with the decision of

ordering up to y. Then,

Cost(y[xT ]|[xT ]) = L(y[xT ]) .

From the definition of θ̃, it follows that θ̃ ≥ θ∗. Thus, the following cases are exhaustive.

• Case θ̃ > maxY . The definition of Y implies L(y[xT ]) ≤ L(θ̃). Thus, yT (xT ) = y[xT ] for

any value of y[xT ], which corresponds to the first case of yT (xT ) since y[xT ] ≤ maxY < θ̃.

• Case θ̃ ∈ Y and y[xT ] > θ̃. In this case, xT < θ∗ and y[xT ] > θ̃ ≥ θ∗. From the definition

of θ̃,

L(θ̃)− K

Q
θ̃ ≤ L(y[xT ])− K

Q
y[xT ]

L(θ̃) +
K

Q
(y[xT ] − θ̃) ≤ L(y[xT ])

where the last inequality implies Cost(θ̃|[xT ]) ≤ Cost(y[xT ]|[xT ]).

• Case θ̃ ∈ Y and θ ≤ y[xT ] ≤ θ̃. Due to the definition of θ, we have

L(θ) ≤ L(θ̃) +
K

Q
(θ + Q− θ̃) (8)

For θ ≤ y[xT ] ≤ θ∗, we have

L(y[xT ])− K

Q
(y[xT ] + Q− θ̃) ≤ L(θ)− K

Q
(θ + Q− θ̃)
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since L(y[xT ]) is a decreasing function and K
Q

(y[xT ] + Q − θ̃) is an increasing function

in the given range of y[xT ]. Combining the last inequality with (8), we have

L(y[xT ]) ≤ L(θ̃) +
K

Q
(y[xT ] + Q− θ̃).

For θ∗ < y[xT ] ≤ θ̃, we have

L(y[xT ]) ≤ L(θ̃) +
K

Q
(y[xT ] + Q− θ̃)

since L(y[xT ]) and K
Q

(y[xT ] + Q− θ̃) are both increasing functions in the given range of

y[xT ]. Hence Cost(y[xT ]|[xT ]) ≤ Cost(θ̃|[xT ]).

• Case y[xT ] < θ. Due to the definition of θ,

L(y[xT ]) > L(θ̃) +
K

Q
(y[xT ] + Q− θ̃)

which implies that y[xT ] = θ̃.

Combining the above cases, we complete the proof.

Proposition 1 shows that the optimal policy on SL can be characterized by two thresholds

θ and θ̃, where the value of θ belongs to the set Y but θ̃ may not. If y[xT ] falls in the interval

[θ, θ̃], it is optimal to order up to y[xT ], in which case, there is no partial batch. Otherwise,

if y[xT ] ∈ Y \ [θ, θ̃], then it is optimal to order up to θ̃, in which case the batch is partial.

Thus, the optimal policy has a nice threshold structure characterized by two parameters.

We are now ready to state the optimal policy for any value of xT .

Theorem 1. For the single-period problem, the following policy is optimal:

yT (xT ) =





xT if xT > θ∗

y[xT ] if xT ≤ θ∗, and y[xT ] ∈ [θ, θ̃]

θ̃ if xT ≤ θ∗ and y[xT ] /∈ [θ, θ̃].

Proof. If xT > θ∗, then L(xT ) ≤ L(y) for any y ≥ xT . Thus, it is optimal not to order.

Note that Lemma 1 has shown the required result if xT ∈ SL. For xT ≤ θ∗−Q, the optimal

decision at xT is the same as the optimal decision at xT + Q (by Proposition 1(c)). Thus,

the result of Lemma 1 easily generalizes to any xT ≤ θ∗−Q, and we complete the proof.
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We discuss the properties of the solution given in Theorem 1. The first case (xT > θ∗)

corresponds to the case where there is too much inventory initially, and thus no additional

units are ordered. In the remaining two cases, the after-ordering inventory level is either the

full-batch solution, y[xT ], or a “partial batch” solution, θ̃ (which may coincide with the full

batch solution, y[xT ]). If y[xT ] ≥ θ̃ + 1 then changing the after ordering inventory level from

y[xT ] to θ̃ costs K
Q

. However, if θ̃ = y[xT ] + 1 then changing the after ordering inventory level

from y[xT ] to θ̃ costs K
Q

(Q− 1) which is larger than K
Q

for Q > 2, thus, in this case, it is not

attractive to increase the inventory level, and the after-ordering inventory level remains at

y[xT ]. This explains the asymmetry of the optimal action around θ̃.

The following result is a corollary of Theorem 1, and shows structural relations between

θ, θ̃, and K. In particular, when K is sufficiently small, then it is optimal to order up to θ̃,

which itself converges to θ∗. This is the basic base-stock policy, which is optimal when there

is no batch constraint. However, as K becomes arbitrarily large, it is not optimal to order

a partial batch, and the optimal policy is order-up-to y[xT ] for any xT . This is exactly the

interval-based modified base-stock policy for the batch-ordering problem with full batches

only.

Corollary 1. θ̃ is non-decreasing and θ is non-increasing in K. Furthermore, there exist

nonnegative numbers K and K such that, for the single-period problem with starting inven-

tory level xT , the order-up-to-θ̃ policy is optimal if K ≤ K and the order-up-to-y[xT ] policy

is optimal if K ≥ K.

Proof. For this proof, we use the notation θK and θ̃K to denote their dependency on K

explicitly. From its definition in (6), θ̃K can easily be shown to be non-decreasing in K.

Now we prove that θK is non-increasing in K. If θ̃K > maxY then θK = −∞ from (7).

It remains to prove that θK is non-increasing in K if θ̃K ∈ Y in the interval [minY , θ̃K ]. For

any K ≥ 0, define

lK(z) = L(θ̃K) +
K

Q
· (z + Q− θ̃K) ,

which is a linear function of z. Let K1 and K2 be real numbers such that K1 ≤ K2 and

θ̃K1 , θ̃K2 ∈ Y . By the earlier result, θ̃K1 ≤ θ̃K2 . We claim that

lK1(z) ≤ lK2(z) for any z ∈ [minY , θ̃K2 ] .
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From the definition of θK1
and θK2

given in (7), the above claim implies that if both θK1
and

θK2
belong to Y , then θK1

≥ θK2
, as required.

To prove the claim, let ∆ = θ̃K2 − θ̃K1 ≥ 0. Note that

lK1(θ̃K2)−K1 = L(θ̃K1) +
K1

Q
· (θ̃K2 + Q− θ̃K1)−K1

= L(θ̃K1) +
K1

Q
· (θ̃K2 − θ̃K1)

≤ L(θ̃K2)

= lK2(θ̃K2)−K2 , (9)

where the inequality follows from the convexity of L and the definition of θ̃K1 by (6). There-

fore, for any z satisfying minY ≤ z ≤ θ̃K2 ≤ maxY ,

lK2(z)− lK1(z) =

[
lK2(θ̃K2)−

K2

Q
· (θ̃K2 − z)

]
−

[
lK1(θ̃K2)−

K1

Q
· (θ̃K2 − z)

]

=
[
lK2(θ̃K2)− lK1(θ̃K2)

]
− (K2 −K1) · θ̃K2 − z

Q

≥ [K2 −K1]− (K2 −K1) · θ̃K2 − z

Q
≥ 0 ,

where the first inequality follows from (9) and the second inequality follows the fact that

both θ̃K2 and z belong to the interval [minY , maxY ] where |Y| = Q. Thus, we complete the

proof of the claim.

Now, from the definitions of θ̃K and θK in (6) and (7), it is easy to see that both of

these quantities converge to θ∗ as K ↓ 0. Thus, for sufficiently small K, we obtain that θ̃

becomes θ∗ and the set [θ, θ̃] becomes to a singleton set {θ∗}; then, the optimal policy given

in Theorem 1 becomes

yT (xT ) =

{
xT if xT > θ∗

θ∗ if xT ≤ θ∗ ,

which is the order-up-to-θ∗ policy. Now, for sufficiently large K, it follows that θ̃K exceeds

maxY , in which case, θK = −∞ and the optimal policy in Theorem 1 becomes

yT (xT ) =

{
xT if xT > θ∗

y[xT ] if xT ≤ θ∗ ,

which is the order-up-to-y[xT ] policy.
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3.2 Relaxed Problem and the Reduced MDP Approach

The multiple-period problem is difficult to analyze because of the lack of convex structures

in the ordering cost. In this section we introduce a relaxation of the original problem that is

relatively straightforward to analyze and solve. This relaxation provides a lower bound on

the cost for the original problem. Furthermore, it motivates the development of a heuristic

policy introduced in Section 3.3 (this policy performs very well as presented in Section 4).

For this relaxation, we no longer impose the constraint yt ≥ xt, and allow the possibility

that inventory can be scrapped. The cost of scrapping inventory is also given by the same

c function defined in (2) and (3), even for the negative q values. For example, if q ∈
(−(n + 1)Q,−nQ) for some nonnegative integer n, then

c(q) = K · (dq/Qe − q/Q) = K · (−n− q/Q) = K · (|q| − nQ)/Q .

We refer to this problem as the multiple-period relaxed problem. The following lemma par-

tially characterizes the optimal policy.

Lemma 2. For the multiple-period relaxed problem, there exists an optimal policy such that

yt(xt) ∈ Y for any starting inventory level xt and period t.

Proof. Suppose that yt(xt) is any given policy for starting inventory level xt in period t.

We define a new policy ŷt(xt) such that ŷt(xt) ∈ Y and [ŷt(xt)] = [yt(xt)], i.e., ŷt(xt) and

yt(xt) differ by a multiple of Q. For any sample path of demand realization, let {yt} and

{ŷt} denote the after-ordering inventory levels under the original policy and under the new

policy, respectively. Then, for each t ≥ 1, we obtain L(ŷt) ≤ L(yt) since ŷt ∈ Y , and also

obtain c(ŷt − x̂t) = c(yt − xt), where xt and x̂t denote the before-ordering inventory levels

under the original policy and under the new policy, respectively. Thus, for any T ≥ 1,

T∑
t=1

Ct(x̂t, ŷt) =
T∑

t=1

c(ŷt − x̂t) + L(ŷt) ≤
T∑

t=1

c(yt − xt) + L(yt) =
T∑

t=1

Ct(xt, yt) .

Thus, we conclude that the new policy is optimal.

Lemma 2 shows that, for the reduced problem, the optimal action yt(xt) in any period t

can be restricted to the set Y for any starting inventory level xt. Furthermore, since increasing

or decreasing inventory by multiples of Q is “costless”, the optimal actions associated with
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two starting inventory levels are the same, provided that these starting inventory levels

differ by a multiple of Q, i.e., yt(xt) = yt(x̂t) if [xt] = [x̂t]. (This is an obvious extension

of Proposition 1(c) to the relaxed problem.) Thus, the optimal action depends on xt only

through the modular arithmetic class to which it belongs, i.e., [xt].

Therefore, we can define a reduced Markov Decision Process (MDP) with the state space

indexed by Y (corresponding to the inventory level before ordering) and the action space Y
(corresponding to the inventory level after ordering). This MDP has Q states, and there are

Q possible actions available at each state. We now specify the components of this MDP in

detail. The cost function associated with ordering from xt to yt ∈ Y is given by

Ct([xt], yt) = c([yt]− [xt]) + L(yt) where c([yt]− [xt]) = (K/Q) · ([xt]− [yt]) .

For the transition probability, we define p[i] = P{D ≡ [i]}, which is the probability that the

demand belongs to the set {i+kQ | k = 0, 1, 2, . . .}. Clearly, p[0]+p[1]+· · ·+p[Q−1] = 1. Then,

the probability that the next state is [xt+1] given the current state-action pair of ([xt], yt) is

p[yt−xt+1]. We refer to this reduced MDP as M.

Let Ĉ be the steady-state cost of M, and let ŷ([x]) denote the optimal action for the

state [x] in M. (The optimal action is independent of t since we consider the long-run

average-cost criterion.)

Theorem 2. For the relaxed problem, the optimal policy is given by yt(xt) = ŷ([xt]), and

the long-run average cost is Ĉ. Furthermore,

Ĉ ≤ C∗ = C̃∗ − E[D] ·K/Q .

Proof. From Lemma 2 and the construction of M, solving the reduced problem is equivalent

to solving M. Furthermore, Ĉ is a lower bound for the optimal cost C∗ since the relaxed

problem does not have the yt ≥ xt constraint in each period.

Section 3.3 includes a discussion identifying conditions under which the lower bound

stated by Theorem 2, Ĉ, is tight. In the numerical experiments that we conduct in Section

4, we have observed that the average and the maximum gap between the optimal solution

and the lower bound are 0.01% and 1.13%, respectively. We conclude this section with the

following observation.
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Proposition 2. Suppose that p[i] = 1/Q holds for each i ∈ {0, 1, . . . , Q − 1}. Then, the

optimal policy of M is myopic, i.e., ŷ([x]) = yT (x̃) where yT (·) is the optimal myopic solution

given in Theorem 1 and x̃ is the unique element in SL such that [x] = [x̃].

Proof. Since p[0] = p[1] = · · · = p[Q−1], the probability distribution of the equivalent class to

which the ending inventory position belongs is independent of the ordering decision. Thus,

the optimal action of M in each period is to minimize the cost of the current period. For

this effect, the inventory policy is first to order up to the interval SL using full batches only,

and then order up to the quantity specified by Theorem 1.

3.3 The Multiple-Period Problem and Heuristic Policies

Since the original multiple-period problem presented in Section 2.2 is difficult to analyze, we

have considered the single-period problem and the relaxed version of the original problem

in Section 3.1 and Section 3.2, respectively. We now return to the original problem. We

first establish the bounds on the optimal ordering policy, and propose two types of heuristic

methods based on our earlier discussion.

The following proposition establishes the upper and lower bounds on the optimal action

y∗(x), analogous to Proposition 1.

Proposition 3. There exists an optimal policy y∗(x) for the original multiple-period problem

satisfying the following properties:

(a) For any x ≥ θ∗, y∗(x) = x.

(b) For any x < θ∗, y∗(x) ∈ {θ[x], θ[x] + 1, . . . , θ[x] + Q}.

(c) For any pair of x′, x′′ < θ∗ satisfying [x′] = [x′′], y∗(x′) = y∗(x′′).

Proof. (a) We show that there exists an optimal policy such that, for any sample path of

demand, yt = xt whenever xt ≥ θ∗. Suppose that {(x′t, y′t)|t = 1, 2, . . .} denote a sequence

of before-ordering and after-ordering inventory levels in a system by any policy. We define

an alternate policy such that the sequence of inventory levels in a system managed by this

policy, denoted by {(x′′t , y′′t )|t = 1, 2, . . .}, satisfies

y′′t =

{
x′′t if x′′t ≥ θ∗

min{y′t, y[y′t]} if x′′t < θ∗.
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Then, an inductive argument shows the following results for each t ≥ 1: (i) y′′t ≤ y′t; (ii) if

x′′t ≥ θ∗, then θ∗ ≤ y′′t ≤ y′t; (iii) if x′′t < θ∗, then [y′′t ] = [y′t] and either y′′t = y′t or y′′t ∈ Y .

Therefore, we can easily establish

L(y′′t ) ≤ L(y′t) for each t ≥ 1 . (10)

Furthermore, it can be shown that

T∑
t=1

c(y′′t − [x′′t ]) ≤
T∑

t=1

c(y′t − [x′t]) for any T ≥ 1. (11)

It follows that
∑T

t=1 Ct([x
′′
t ], y

′′
t ) ≤

∑T
t=1 Ct([x

′
t], y

′
t) holds for any T ≥ 1. Therefore, we

conclude that the alternate policy is also optimal.

(b) The existence of the optimal policy with the property y∗(x) ≤ θ[x]+Q whenever x < θ∗

follows directly from the construction given in part (a). Now, suppose that {(x′t, y′t)|t =

1, 2, . . .} denote a sequence of before-ordering and after-ordering inventory levels in a system

by an optimal policy such that y′t = x′t if x′t ≥ θ∗. Suppose, by way of contradiction, that

the property y′t ≤ θ[x′t] +Q whenever x′t < θ∗ does not hold. Then, we construct an alternate

policy such that

y′′t =





x′′t if x′′t ≥ θ∗

θ[x′′t ] if x′′t < θ∗ and y′t ≤ θ[x′′t ]

min{y′t, θ[x′′t ] + Q} if x′′t < θ∗ and y′t > θ[x′′t ] .

In this alternate policy, one does not order if the current inventory is at least θ∗. Suppose

x′′t < θ∗. If y′t ≤ θ[x′′t ], then the full-batch solution of the alternate system, θ[x′′t ] is closer to

θ∗ than the solution of the original system. Otherwise, we order up to the smaller of y′t and

θ[x′′t ] + Q. This ensures L(y′′t ) ≤ L(y′t). If y′′t 6= θ[y′t], the c(·) cost of the alternate system is

zero; if y′′t = θ[y′t], then it can be argued that the cost of not ordering full batches, c(y′′t − [x′′t ]),

in the alternate system in the current period, can be accounted by the cost of not ordering

full batches by the original system in the current or previous periods. Thus, it can be shown

that both (10) and (11) hold, and we conclude that the alternate policy is also optimal.

(c) This result follows from part (b) and the fact that, for any pair of x′, x′′ < θ∗ satisfying

[x′] = [x′′], Ct([x
′], y) = Ct([x

′′], y) holds for any y ≥ max{x′, x′′}.

We now propose two types of policies that are based on our discussion in Sections 3.1

and 3.2. Under these policies, the inventory level after ordering belongs to Y , an interval of
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length Q. They differ regarding which element of Q is chosen as a function of the starting

inventory level in each period.

Interval-Based Policy. This policy is motivated by the analysis of the single-period

problem in Section 3.1. It is characterized by two parameters θL and θU , both of which

belong to Y . We denote this policy by IB(θL, θU), and specify as follows:

yt(xt) =





xt if xt > θ∗,
y[xt] if xt ≤ θ∗ and y[xt] ∈ [θL, θU ],
θU if xt ≤ θ∗ and y[xt] /∈ [θL, θU ].

We interpret this policy as a generalization of the base-stock policy. If the initial inventory

exceeds θ∗, then we do not order. Otherwise, we consider θU as a target order-up-to level. If

the partial batch to reach θU is at least of size θU−θL, then we order-up-to θU ; otherwise, we

do not want to incur the batch cost K for a small number of units. We refer to this policy

as the IB policy. Note that the IB policy is a base-stock policy if θL = θU .

The optimal choice of (θL, θU) can be attained by solving a two-dimensional optimization

problem. A special example of the IB policy is the Myopic Policy, which is optimal for the

single period problem in Section 3.1. In the Myopic Policy, we set θL = θ and θU = θ̃.

The IB policy is equivalent to the single-product version of the (Q,S) policy in Cachon

(2001). In his paper, the motivation of this heuristic policy is to impose a minimum load

percentage in each batch order. In our paper, the motivation of this policy comes from the

fact that it is optimal for the myopic problem. Note that we reach the same policy structure

using a different approach, which strengthens the attractiveness of this class of policy.

Reduced MDP-Based Policy. This policy is motivated by the relaxed MDP problem

of Section 3.2, which provides a lower bound Ĉ. It is possible that the order-up-to level

specified by the relaxed problem may not be attainable. In this case, we take the optimal

policy of the relaxed problem as a target base-stock level for the original problem. We refer

to this policy as the RMB policy, which is specified as follows:

yt(xt) = max{ŷ([xt]), xt} .

To implement this policy, we first need to solve the relaxed MDP problem, which has Q states,

each with Q possible actions. We now state the following theorem that relates heuristic

policies with the optimal policy.
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Theorem 3. Suppose that D ≥ Q holds with probability 1. Then, the following statements

hold.

(a) The RMB policy is optimal.

(b) If p[i] = 1/Q holds for each i ∈ {0, 1, . . . , Q − 1}, then the solution to the myopic

problem is optimal.

Proof. For part (a), we assume that x1 ≤ minY . This assumption is without loss of gener-

ality since E[D] > 0. Then, since demand Dt is at least Q units in each period, it follows

from an induction argument that, under the RMB policy, both xt ≤ minY and yt ∈ Y hold

for each period t ≥ 1. Thus, the after ordering inventory level of the RMB policy is

yt(xt) = max{ŷ([xt]), xt} = ŷ([xt]) .

Therefore, the long-run average cost under the RMB policy is the same as the lower bound

Ĉ given in Theorem 2. We conclude that the RMB policy is optimal.

Part (b) follows directly from part (a) and Proposition 2.

4. Numerical Study

The purpose of this section is twofold. We first test in Section 4.1 the performance of

the proposed heuristics for the partial batch ordering problem. Then, in Section 4.2 we

investigate the full batch size ordering policies that are frequently adapted in practice and

studied in the literature. In particular, we compare the optimal full batch ordering policy

with the optimal partial batch ordering policy and build managerial insights as to when it

is safer to operate with full batch sizes and when not.

In our numerical experiments, we consider all possible combinations of the following

problem parameters: Gamma demand distribution with a mean of 25 units per period, with

Coeff. of variation (CV ) ∈ {0.2, 0.5, 1.0, 1.5}
h = 1

b ∈ {2, 5, 10, 50}
K ∈ {2, 5, 10, 50, 100, 200}
Q ∈ {5, 10, 25, 50, 100, 200} ,
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resulting in 4× 4× 6× 6 = 576 problem instances. We evaluate the performance of various

heuristic policies and report it using the relative error with respect to the optimal policy,

which we obtain by solving a dynamic program. We denote the relative cost by ∆, where a

subscript is used to denote the type of a heuristic policy.

4.1 Performance of the Heuristics

We first analyze the performance of IB policy (IBP). Recall that IBP has two parameters,

one is an order-up-to point, and the other is a threshold for switching from order-up-to to

full batch ordering. We have searched for the parameter space to find the best values for

the parameters. In our computation, the minimum, average, and maximum values of the

relative error, ∆IBP , over all cases are

min{∆IBP} = 0.000% ,

average{∆IBP} = 0.001% , and

max{∆IBP} = 0.253% .

Furthermore, IBP gives the optimal solution in 571 of the total 576 problem instances.

If the optimal policy has the same two-parameter structure mentioned above, then IBP

always gives the optimal policy. While this is true in many of the cases, the optimal policy

does not always have a simple structure. As an example, the optimal policy with CV = 0.2,

b = 10, K = 100, and Q = 100 exhibits three order-up-to points as shown is Figure 1.

0

1 0

2 0

3 0

4 0

5 0

6 0
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Figure 1: An Optimal Policy with Three Order-Up-To Points. CV = 0.2, b = 10, K = 100,
and Q = 100
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While IBP performs extremely well in general, the computational time to search for

the best parameters may increase discouragingly fast in Q if an exhaustive search of the

two-dimensional space is conducted (as in our experiment). However, the second heuristic

method we study, RMB policy (RMBP) requires negligible amount of computational time,

and gives extremely good results. The minimum, average, and maximum values of ∆RMBP

are

min{∆RMBP} = 0.000% ,

average{∆RMBP} = 0.001% , and

max{∆RMBP} = 0.194% .

Unlike IBP, RMBP may detect optimal policies with multiple order-up-to points. The prob-

lem instances that RMBP failed to find the optimal solution are given in Table 1. As can

be observed from this table, these problem instances (10 in total out of 576 instances) have

large batch sizes and large fixed costs.

Table 1: Problem instances that RMBP fails to find the optimal solution

b 50 50 50 5 50 50 50 10 10 10
Q 50 100 200 50 50 100 200 50 100 200
K 100 100 100 50 50 50 50 50 50 50

∆RMBP (in%) 0.006 0.027 0.027 0.047 0.050 0.062 0.062 0.083 0.194 0.194

In all problem instances where demand has a CV higher than 0.2, both IBP and RMBP

found the optimal solution. In all of these instances, the optimal policy has at most one

order-up-to point (an optimal policy without an order-up-to point corresponds to the policy

of ordering multiples of full batches only, which can be detected by both policies). We observe

that as the CV decreases, the total system cost becomes more sensitive to the order-up-to

points, and hence the number of distinct order-up-to points tend to increase in the optimal

policy. Therefore, a “fine tuning” on the order-up-levels becomes essential if the demand is

more predictable. On the other hand, when the demand is less predictable due to higher

variability, such an action is unnecessary and the system prefers to operate with at most

one order-up-to point. (This result is consistent with the general intuition from Proposition

2 – since the uniform distribution over Q equivalence classes signifies the least predictable

demand.) To validate this, we have considered four additional lower CV values and found

the optimal solution of all 4 × 6 × 6 = 144 problem instances for each CV. It turns out
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that there are 24, 33, 35, and 54 problem instances with more than one order-up-to point

when the CV of demand is 0.15, 0.10, 0.05, and 0.01, respectively. (In particular, there is a

case with five different order-up-to points when CV is 0.01, which is the maximum that we

obtained in our numerical tests.)

While both IBP and RMBP give close-to-optimal solutions, the policy parameters are

found by solving non-trivial mathematical expressions – either searching over a two-dimensional

space or solving an MDP formulation. Thus, we have tested the myopic policy (MP), which

is a special member of IBP. This policy could be a preferred alternative in practice as it

requires resolution of much simpler mathematical expressions. In what follows, we test the

performance of the myopic policy.

We first note that the value of CV has a significant effect on the performance of MP.

The minimum, average, and maximum ∆MP values for different CV values over all problem

instances is summarized in Table 2.

Table 2: Performance of MP for different CV values

CV min{∆MP} Average{∆MP} max{∆MP}
0.2 0% 3.34% 58.03%
0.5 0% 1.55% 20.21%
1.0 0% 0.64% 12.48%
1.5 0% 0.41% 11.44%

In Table 3, we present ∆MP values for some particular problem instances averaged over

all b values. Myopic policy performs very well for lower values of K. We might expect this

since the myopic policy is optimal for the special case of our problem with K = 0. But as K

increases up to some moderate values, ∆MP also increases. Nevertheless, under considerably

large K values, the optimal policy tends to behave like a full batch ordering policy, which

is easier to be detected by the myopic policy due to high penalty of partial batch ordering,

and hence ∆MP starts to decrease. The myopic policy also performs in a similar manner for

different batch sizes. For small and very large batch sizes, MP performs very well, because

for small Q values, the penalty of partial batch ordering is high, and for considerably high

Q values, the problem approaches to an uncapacitated problem.
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Table 3: Average ∆MP Values (in %) for CV = 0.2

K
Q 2 5 10 50 100 200

5 0 0 0 0 0 0
10 0 0 0 0 0 0
25 0.01 0.07 0.09 0.12 0 0
50 0 0.07 0.72 2.11 0.02 0
100 0 0 0.05 23.25 4.45 0.12
200 0 0 0 23.41 46.84 18.71

4.2 Full Batch Ordering Policy

In this section, we test the performance of the full batch ordering (FBO) policy. We study

this policy since many of the papers addressing batch ordering in the literature optimizes

within this class of policy. The best possible FBO policy is considered here by a rather

straightforward adaption of the dynamic programming model that we presented in Section

2.2.

Table 4: ∆FBO Values (in %) Averaged Over All b and CV Values

Q
K 5 10 25 50 100 200 Overall

2 0.1 2.16 15.76 37.62 56.62 67.95 30.03
5 0 0.73 8.79 32.25 51.41 62.82 26.00
10 0 0 4.44 26.28 45.09 56.33 22.02
50 0 0 0.54 1.02 13.99 25.23 6.80
100 0 0 0 0.11 4.56 15.26 3.32
200 0 0 0 0 0.15 8.36 1.42

Overall 0.02 0.48 4.92 16.21 28.64 39.33 14.93

Table 4 shows that FBO coincides with the optimal policy when Q is low and K is high,

as expected. For the other extreme of high Q and low K, the additional cost incurred by

imposing FBO policy is as high as 67.95%. This means that adapting FBO – as is done

often in practice – is not rational for relatively small fixed costs or relatively high full batch

sizes.

The performance of FBO with respect to CV and b is more complicated. First of all,

rather interestingly, we observe that FBO performs much better as CV increases, as shown in

Table 5. This is because the optimal policy tends to order in full batches for high CV values;
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Table 5: ∆FBO Values (in %) Averaged Over All K and Q Values

CV
b 1 2 3 4 Overall

2 87.08 35.64 17.81 12.66 38.3
5 82.04 32.21 12.9 6.96 33.53
10 78.35 28.53 10.03 4.6 30.38
50 66.7 21.85 6.43 2.4 24.35

Overall 78.54 29.56 11.79 6.66 31.64

Table 6: Batch Utilization (in %) of the Optimal Policy Averaged Over All K and Q values

CV
b 0.2 0.5 1.0 1.5 Overall

2 78.9 82.12 88.79 91.88 85.42
5 78.04 80.85 88.8 92.59 85.07
10 77.68 80.3 88.95 92.86 84.95
50 77.41 79.82 88.89 93.2 84.83

Overall 78.01 80.78 88.85 92.63 85.07

in comparison, the optimal policy consists of multiple order-up-to points for low CV values,

which is not possible to mimic using the FBO policy. To verify this, we have measured the

batch utilization values (average batch size occupied by an order relative to the full batch

size), and reported them in Table 6.

Finally, in practice, full batch ordering policy is favored when the backorder costs are

relatively high (Tanrikulu et al., 2009). The performance of FBO in Table 5 displays a trend

of improvement with respect to b. This may be explained by the fact that the inventory-

related cost (holding and backorder cost) increases in b, resulting in a smaller proportion

of the batch-related cost in the total cost. However, the interaction among the problem

parameters are intricate, and several problem instances do not demonstrate this monotonicity

with respect to b, and the above intuition is not necessarily correct.2

Moreover, rather surprisingly, even the best full batch ordering policy performs quite

poorly under low demand variability. This can be explained by the fact that, with full

batch ordering, low demand uncertainty is more likely to result in more predictable overage

or underage; the single-period expected cost is smoother when demand is more uncertain.

2In our computation, we have found the following examples without this monotonicity property:
(Q,K, CV ) triplets of (100, 50, 0.2), (100, 50, 0.5) and (200, 100, 0.2).
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In particular, the average batch utilization in the optimal policy is as low as 78% when

CV=0.2, compared to 93% when CV=1.5. The average penalty of adapting a full batch

ordering policy is as high as 79% when CV=0.2, which is only a lower bound considering

that the full batch ordering policy could be adapted in a suboptimal way in practice.

5. Conclusions

In this paper, we pose the partial batch ordering problem in an inventory system. We build an

infinite horizon dynamic programming model to find the optimal solution. Characterizing

the solution of this problem is difficult because even for more restricted versions of this

problem, total expected cost functions are not convex and the optimal ordering policies do

not have an easily identifiable simple structure. After reformulating the cost structure of the

problem, we identify a “relaxed” problem that can be easily solved and yields a lower bound

for the optimal cost. We also characterize the optimal ordering policy for the single period

version of the original problem. Both of these results aid us to identify two sets heuristic

algorithms for the original problem. Our numerical results indicate that both heuristics

perform extremely well.

Finally, we investigate the full batch size ordering policies that are frequently adapted in

practice and studied in the literature, by comparing the best full batch ordering policy with

the optimal partial batch ordering policy. We show that restricting ordering quantities to

full batch sizes does not always perform well, especially when the cost per batch is high or

the batch size is big. This restriction increases, on average, 31.64% of total cost in our exper-

iments, and the optimal partial-batch policy exhibits, on average, only 85.07% of utilization.

The performance of the full batch ordering policy deterioates as the demand variability de-

creases; in comparison, as the backorder cost increases, its performance improves, usually

but not always.

This research can be extended in several ways. It may be the case that there are several

different options for the possible batch sizes, such as different truck capacities. Different

batch options might also involve different fixed costs. The alternative cost accounting scheme

that we proposed in this paper can also be extended to more general settings, such as multiple

items, multiple stages, Markov modulated demand case, etc. A similar accounting scheme

could also be applied to other problem environments where there is a fixed cost of utilizing
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capacitated facilities, such as the stochastic lot sizing problem. Note that the classical

capacitated inventory problem with fixed costs is a special case of our problem where there

is only one batch. The optimal policy of this problem has not yet been fully characterized in

the literature (see for example, Shaoxiang and Lambrecht, 1996; and Gallego and Scheller-

Wolf, 2000). The ideas presented in our paper could be a basis for the analysis of that

problem.
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