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Chapter 1

Introduction

In the late nineteenth century the frenchman Pierre Curie discovered the fact that
the magnetic field exhibited by a ferromagnetic material decreases when its temper-
ature is raised, and recovers its magnetic field when cooled again. This phenomena
is of great importance in modern day computer harddisk technology. Because of
continual demand for higher capacities and speed it is necessary that the small
magnetic elements in a harddisk (that represent the information) can be switched
faster and more efficiently. This can be achieved by heating the magnetic element,
such that the field needed to switch the element is much lower than before. This
allows for much faster switching and reduces the chance that nearby elements are
affected as well. Because of the small size of the elements, the heating must be very
local and precise. In order to accomplish this feat, a laser can be used. This laser
induced demagnetization will be the main focus of this report.

The macroscopic experiment that lies at the basis is schematically depicted by:

Figure 1.1: Laser induced demagnetization.

A short laser pulse hits the material and excites the electrons to higher energy
states. After a certain time these hot electrons have reached an internal equilibrium
again. This thermalization process happens relatively fast. Now these thermalized
electrons are no longer in equilibrium with the lattice. As a result they will start
to interact and achieve a new equilibrium state. This however occurs with a much
higher timescale τe of about 1ps. During this time the magnetization of the sample,
which can be measured by using a MOKE-setup (Magneto-Optical Kerr Effect),
will also change. The timescale τm that belongs to this demagnetization process
is generally believed to be higher than τe. What we intend to show is that it is
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possible for the demagnetization to go faster than the electron-lattice equilibration.
Furthermore we will investigate the possibility of magnetic switching by applying
an external field. In the next chapter we will present a model that is capable of
simulating this experiment.
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Chapter 2

The model

To be able to model the experiment described in the previous chapter it is first
necessary to understand exactly what systems and interactions are involved. They
will be explained separately in the next sections. After that we will look at some
basic simulations in order to check if the model we derived is indeed valid. It is
important to realize that it will be a deterministic model that is entirely based upon
looking at what happens to ”the average atom”.

2.1 Subsystems

2.1.1 Electrons

The electrons are treated as a Fermi sea of spin-less particles. We define this sub-
system by its quantum mechanical distribution of electronic states. In terms of
the model this means we take a certain energy range around the Fermi-level and
divide it into a number of cells (see figure 2.1 below). For a detailed mathemati-
cal analysis of such a discrete system of electrons we refer the reader to appendix B.

- 2 , 0 - 1 , 5 - 1 , 0 - 0 , 5 0 , 0 0 , 5 1 , 0 1 , 5 2 , 0
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

n(E
)

E  -  E F  ( e V ) E F

Figure 2.1: Representation of the electronic system.
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Each cell with energy Ei is assigned a number ni between 0 and 1 representing the
relative occupation of states which are within the energy range of that cell. The
total number of electrons Ni in a certain cell is then given by:

Ni = niDe∆E (2.1)

where De is the density of states which is assumed constant for all energy levels,
and ∆E the energy width of a cell. The total energy Ee (per atom) of the electrons
is:

Ee =
∑

NiEi (2.2)

In equilibrium at temperature Te the occupation of these electronic states is de-
scribed by the Fermi-Dirac distribution:

ni =
1

e
Ei

kBTe + 1
(2.3)

The Fermi level is taken to be 0 so Ei can be negative. From equation 2.3 we can
derive an expression for the electron temperature Te. If we take the derivative with
respect to Ei we get:

∂ni
∂Ei

= − 1

(e
Ei

kBTe + 1)2

1
kBTe

e
Ei

kBTe (2.4)

which means ∂ni

∂Ei

∣∣∣
0

= 1
4kBTe

. This gives us:

Te ≡
1

4kB ∂ni

∂Ei

∣∣∣
0

(2.5)

Of course this temperature only has a meaning when the electron system is in equi-
librium. In a non-equilibrium situation we have to specify all the ni to completely
describe the state of the system.

A last and useful parameter is the electronic heat capacity ce which is defined
as the derivative of the total electron energy Ee with respect to the temperature
Te. In the continuous case an expression for ce can be derived but we will not show
it here. The result is:

ce ≡
∂Ee
∂Te

=
1
3
π2kBTe (2.6)

2.1.2 Lattice

The lattice consists of a system of coupled harmonic oscillators, obeying Bose-
Einstein statistics.We assume a number of Dp oscillators per atom with an energy
spacing (also called phonon energy) of Ep (see figure 2.2 below).
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Figure 2.2: Energy levels of an harmonic oscillator.

In equilibrium the average number of phonons np per oscillator is given by:

np =
1

e
Ep

kBTl − 1
(2.7)

where Tl is the temperature of the lattice.

The total number of phonons per atom Np is then:

Np = npDp (2.8)

Equation 2.7 relates np to Tl so this means only one of these two is necessary to
define the state of the lattice. We usually take the one that is easiest to use in a
certain situation. Another important parameter is the heat capacity cl (per atom).
It relates the temperature Tl to the total energy (per atom) El that is stored in the
lattice:

El = clTl (2.9)

For simplicity we assume cl is constant.

A last thing to mention is that the lattice is considered to continuously remain in
equilibrium, i.e. we assume infinitely fast phonon-phonon interactions.

2.1.3 Spin-system

The spin of the electrons is treated in the simplest way possible where an electron
can be either in the spin-up (+ 1

2 ) or spin-down state (− 1
2 ). All spins are chosen

to be aligned in the same direction. We assume an number of Dm effective spins
per atom, and we keep track of the average spin s. We call the energy difference
between the spin-up and spin-down state Em (see figure 2.3).

We use the Weiss model for magnetism so Em is considered to be dependent on s:

Em(s) ≡ Eσ↑ − Eσ↓ = −2sEm0 (2.10)
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Figure 2.3: Representation of the spin-system.

where Em0 is defined as the difference in energy at s = − 1
2 . We would also like

to introduce a temperature definition. To this end we assume that the spin-system
follows Boltzmann statistics in the following way.

The number of spins in a particular state can be calculated from the average spin
s as follows:

nσ↑ = Dm(
1
2

+ s)

nσ↓ = Dm(
1
2
− s)

In equilibrium these two numbers will be related by:

nσ↑
nσ↓

= e
− Em

kBTm (2.11)

where Tm is the spin temperature. If we rewrite the above expression we get:

Tm ≡ −
Em

kB ln
1
2+s
1
2−s

(2.12)

At Tm = 0 we take s = − 1
2 , so all electrons will be in the spin-down position. This

is consistent with equation 2.11, since then the ratio will be zero. Plotted below in
figure 2.4 is the spin temperature Tm versus the average spin s.

A nice thing about the Weiss model is that it predicts a critical point. If we combine
equation 2.10 and 2.12 we see after taking the limit s→ 0:

Tc ≡ lim
s→0

Tm =
2Em0

kB
lim
s→0

s

ln
1
2+s
1
2−s

=
2Em0

kB
· 1

4
=
Em0

2kB
(2.13)

where Tc is the so called Curie-temperature. So that means there is a finite tem-
perature that corresponds to zero average spin. For Ni, which is commonly used in
these experiments, Tc has a value of 620K. Equation 2.13 also shows that specifying
Tc determines Em0.
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Figure 2.4: Temperature versus magnetization curve.

2.2 Interactions

2.2.1 Boltzmann-equations

The dynamics in our model are mostly described by so called Boltzmann equations.
These rate equations count the probabilities of transitions of electrons from one level
to another as a result of a particular interaction. Consider for example a transition
from the energy level Ei to Ei′ and vice versa (see figure 2.5 below).

E i

E i ’

n i

n i ’

~ n i ( 1  -  n i ’ ) ~ n i ’ ( 1  -  n i )

Figure 2.5: Example of a transition between two energy levels.

The general Boltzmann equation describing this process looks like:
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dni
dt

= −dni
′

dt
= −K · [n+ni(1− ni′)− n−ni′(1− ni)] (2.14)

where K is an interaction constant usually consisting of several factors. There are
two terms in equation 2.14, the first representing transitions from i to i′ and the
second the other way around. Each term contains a factor n±, the probability of
occurrence of the interaction responsible for the transition, and the combination
ni(1 − ni′) or ni′(1 − ni), which is the probability of finding an electron within
the energy range of Ei (represented by ni) times that of having a free space at Ei′
(represented by 1− ni′) or the other way around in the second case.

2.2.2 Electron-electron scattering

The electron system is internally equilibrated by electron-electron scattering. This
process can be viewed at in the following way (see figure 2.6 below).

E i

E l

E j

E k

n i

n k

n l

n j

~ n i ( 1  -  n k )

~ n j ( 1  -  n l )

Figure 2.6: Representation of electron-electron scattering.

Two electrons collide with each other and redistribute their total energy. The rate
of occurrence of this event is also described by a Boltzmann equation. We use the
notations defined in section 2.1.1. If the starting energies are Ei and Ej and the
energies after the collision are Ek and El then the rate of change is:

dn

dt
= PeeD

2
e(∆E)2ninj(1− nk)(1− nl) (2.15)

where Pee is an interaction constant and Ei, Ej , Ek, El are such that the total energy
is conserved. It is of course also required that the total number of electrons remains
the same, meaning:

dni
dt

=
dnj
dt

= −dnk
dt

= −dnl
dt

(2.16)
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where this is all equal to −dndt from equation 2.15.

Because equation 2.15 contains four different indices (i,j,k and l) which are re-
lated through the conservation of energy, the calculation of this scattering process
involves a three dimensional summation. In the execution of the model this is a very
time consuming step, so in most of our simulations we will just assume infinitely
fast thermalization.

2.2.3 Laser excitation

At the start of the experiment a laser pulse hits the material and instantly interacts
with the electrons. What happens is that some electrons will absorb a photon and
thus go to a higher energy state and this will initiate the demagnetization process.
In the model this is implemented in the following way. We assume a constant pho-
ton energy Ephoton, so an electron can jump from a state with energy E to one with
E+Ephoton. If we look back at the representation of the electron system, this event
will most likely happen when there are a lot of electrons with energy E and only
very few with energy E + Ephoton (see figure 2.7 below).

- 2 , 0 - 1 , 5 - 1 , 0 - 0 , 5 0 , 0 0 , 5 1 , 0 1 , 5 2 , 0
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

E p h o t o n

Figure 2.7: Representation of photon absorption by the electrons.

Therefore we take:

∆ni = −∆ni′ = Plni(1− ni′) (2.17)

where i′ > i is such that Ei′ = Ei +Ephoton, and Pl < 1 is a constant that depends
on the laser intensity.

As explained earlier, we will not use electron-electron scattering in most of the
simulations because it requires a lot of computer time. This means the approach
for the laser excitation described here cannot be used because it would put the
electron distribution out of equilibrium. Instead we will just model the excitation
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as a simple increase of the electron temperature. This won’t have any major effect
on the demagnetization process, which is what we are interested in.

2.2.4 Electron-phonon scattering

Electron-phonon scattering is the mechanism that equilibrates the electron and lat-
tice systems to each other. An electron with energy Ei interacts with the lattice,
and either emits or absorbs a phonon with energy Ep (as defined in section 2.1.2).
So the resulting electron will have an energy of Ei + Ep or Ei − Ep. We use the
general approach of section 2.2.1 by looking at the exchange of electrons between
two different energy levels.

Take i′ > i such that Ei′ = Ei + Ep, then a phonon absorption corresponds to
an electron going from energy Ei to Ei′ , and a phonon emission to the other way
around. The rate of occurrence of these two events is described by the following
equation:

dni
dt

= −dni
′

dt
= −PepDeDp · [npni(1− ni′)− (1 + np)ni′(1− ni)] (2.18)

where Pep is an interaction constant. The 1+np term is from phonon emission (it is
always possible to emit a phonon) and the np term from phonon absorption (there
has to be a phonon first to be able to absorb one). The extra energy per unit of
time dEii′

dt that is put into the electron system due to this interaction is:

dEii′

dt
= −De∆E

dni
dt

(i′ − i)∆E = −De∆E
dni
dt
Ep (2.19)

where we used equation 2.1 for the total amount of electrons in a cell.

Equation 2.18 describes completely the changes to the electrons by giving the rate
of change of ni for each cell. However, similar to the laser excitation, when we don’t
include electron-electron scattering as an interaction we have to use a different way.
In that case we use the change in energy from equation 2.19 combined with expres-
sion 2.6 for the electronic heat capacity ce to calculate the change in the electron
temperature Te:

dTe
dt

=
1
ce

dEe
dt

=
∑ 1

ce

dEii′

dt
= −De∆E

Ep
ce

∑ dni
dt

(2.20)

We are also interested in what happens to the lattice. Energy is conserved so that
means the temperature of the lattice Tl will change a little. Using the same approach
as for the electrons we find:

dTl
dt

=
1
cl

dEl
dt

=
∑
− 1
cl

dEii′

dt
= De∆E

Ep
cl

∑ dni
dt

(2.21)

2.2.5 Electron-phonon scattering with spin-flip

Electron-phonon scattering with spin-flip is the interaction that links the other two
systems to the spin-system. This mechanism is very similar to the electron-phonon
interaction, except that now there is also a small probability α that a phonon
absorption/emission is accompanied by a spin-flip of the electron. The resulting
electron energy will then be Ei ± Ep ± Em, depending on whether it reflects the
absorption/emission of a phonon and on the original spin state of the electron.

We use the same approach of looking at the exchange of electrons between the
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two energy levels Ei and Ei′ , where we take the energy difference Ei′ − Ei to be
Ep ± Em. This covers all the four possible events.

The rate of occurrence of these events is described (similarly to equation 2.18)
by:

dni
dt

= −dni
′

dt
= −αPepDeDp·[np(

1
2
±s)ni(1−ni′)−(1+np)(

1
2
∓s)ni′(1−ni)] (2.22)

where the factors ( 1
2 ± s) represent the probability of a transition from the spin-up

to the spin-down state or vice versa. Notice that equation 2.18 will now get an
extra factor (1−α) in front of it, because we have to make the distinction between
spin-flip and non spin-flip events.

Now we also need a way to calculate the changes to the average spin as a result
of this interaction. As defined earlier there are a number of Dm spins per atom,
so that means each spin-flip changes the average spin by ± 1

Dm
(depending on the

original spin state). Using again equation 2.1 we get as a result:

ds

dt
=
∑

De∆E
dni
dt

±1
Dm

(2.23)

2.2.6 Heat diffusion through lattice

The laser pulse that initiates the experiment causes an amount of excess energy in
the system. A way to release this energy is through the lattice. We consider the
lattice connected to an external heat bath, which is represented by a similar lattice
system (with infinite heat capacity in our case). The interaction between them is
described by a simple equation:

d(T1 − T2)
dt

= − 1
τ12

(T1 − T2) (2.24)

where τ12 is a time constant. Energy considerations and the use of equation 2.9 for
the energy of the lattice give:

c1T1 + c2T2 = constant

c1
dT1

dt
= −c2

dT2

dt
≡ ∆E12

dt
d(T1 − T2)

dt
= (1 +

c1
c2

)
dT1

dt
= − 1

τ12
(T1 − T2)

∆E12

dt
= −c1

1
1 + c1

c2

T1 − T2

τ12
= − T1 − T2

τ12( 1
c1

+ 1
c2

)
(2.25)

where ∆E12 is the energy difference between the two lattices. This last equation
allows us to calculate the changes in the two temperatures T1 and T2 easily.
There is one remark about this derivation. The heat capacities c1 and c2 are defined
per atom, so if the sizes of the two lattices were different we would have to take
that into consideration.

2.2.7 External magnetic field

An interesting addition to the model would be to have an external magnetic field.
Surprisingly enough it turns out to be very simple to implement this feature. Since
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an external field will affect the spin system there is only one equation that has to be
changed. That is equation 2.10 for the energy difference Em(s) between the spin-up
and spin-down state:

Em(s) = −2Em0(s+ sex) (2.26)

where sex is the contribution from the external magnetic field.
We can relate sex to the external magnetic field Hex as follows. The change in
energy ∆Em(s) due to the external field is equal to 2gµBHex, where µB is the
magnetic moment of a single electron (Bohr magneton) and g ≈ 2. Combining this
with equation 2.26 we find that 2gµBHex = −2Em0sex. This results in:

Hex = −Em0

gµB
sex = −2kBTc

gµB
sex ≈ 922sex (2.27)

Sofar all the equations for the spin system are symmetric in the spin-up and spin-
down state. We chose the spin-down state to have the lowest energy, but that was
just a matter of convenience. By introducing an sex 6= 0 this symmetry is broken
and the spins will have a preferred direction. This allows for some interesting
simulations that will be discussed in section 3.3.

2.3 Validation

2.3.1 Electron thermalization

A first thing that would be interesting to check is whether the electron system
behaves like we want it to. Equations 2.15 and 2.16 should describe the internal
thermalization towards the equilibrium state given by the Fermi-Dirac distribution
2.3.

If we start out with Te = 0 the electronic states look like this:
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Figure 2.8: Distribution of electronic states at zero temperature.
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If we now disturb this equilibrium by using a laser excitation for instance, it will
change instantaneously:
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Figure 2.9: Distribution of electronic states right after a laser excitation.

The following graphs show how over a certain time it gradually changes into a
smooth Fermi-Dirac distribution with a temperature Te > 0.
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This demonstrates that the equations we used are indeed a good way to describe
the dynamics of the electron system.
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2.3.2 Temperature equilibrium

When there are several subsystems that can interact with each other eventually they
will reach some kind of equilibrium state. In that situation you would expect them
to all have the same temperature. The following graphs show that this behavior is
indeed what our model predicts.
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 E l e c t r o n s
 L a t t i c e

Figure 2.10: Electron-lattice temperature equilibrium.

This graph shows the equilibration of the lattice and the electrons. At t = 0 the
temperature of the two subsystems are set to different values (200K and 400K in
this case). The system then evolves according to the electron-phonon scattering
equations described in subsection 2.2.4. After a while they reach an equilibrium
state and both temperatures are equal to each other (Te = Tl ≈ 255K in this
example). The final temperature depends of course upon the specific parameter
values of De, cl etc. The other two graphs below are simulations of a similar
experiment, but now for different systems.
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Figure 2.11: Electron-lattice-spin temperature equilibrium.
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Figure 2.12: Lattice lattice temperature equilibrium.
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Chapter 3

Results

Now that we have a flexible and working model capable of simulating the experiment
described in chapter 1, it is interesting to see how the system behaves as a function
of certain parameters. These will be discussed in the next sections.

3.1 α-dependence

The first and most interesting parameter to check is the spin-flip probability α. It
was defined as the relative number of electron-phonon scattering events that are
accompanied by a spin-flip. It can be expected that the response of the spin sys-
tem depends a lot on this parameter. In the literature it is often claimed that a
phonon based mechanism, such as we have proposed in the model, is necessarily
slower than the electron-phonon equilibration. We want to see if there are possible
values for α that allow for a demagnetization that goes faster than this equilibration.

The sort of simulation that we will be using for this is the following. We have
the tree subsystems electrons, lattice and spins. We let the electrons start out at
a temperature of 400K while the other two systems have an initial temperature
of 300K. We then let the systems evolve according to the equations described in
subsections 2.2.4 and 2.2.5. It should be noted that we assume infinitely fast elec-
tron thermalization, so we have to use the alternative equation 2.20 to describe the
changes to the electron system. Plotted below are the results from these simulations.
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As we can see for different values of α the spin dynamics change completely. In the
graph with α = 0.01 the spin temperature curve displays an exponential growth
that is slower than the e-p equilibration process. For α ≥ 0.05 the response of the
spin temperature is faster, showing a double exponential behavior. As it turns out
these values for α are not unrealistic for Ni (see Kicken1). This demonstrates that
the demagnetization can indeed be faster than electron-phonon equilibration with
a phonon mediated spin-flip mechanism.

3.2 Verification of τe

In this section we ignore the spin system for a moment and only look at the equi-
libration of the electrons and the lattice. In the model this corresponds to setting
α equal to zero. An expression for the timescale τe of this process can be derived
(see Koopmans2). In first approximation the result is:

τe =
~πkBTe

6DeDpEpλ2
ep

(3.1)

where λep is a constant independent of the rest. By varying the model parameters
De, Dp and Ep we will show that our model agrees with equation 3.1.

A typical graph of this experiment is shown in fig 3.1.

1H.H.J.E. Kicken. Report, Ultrafast magnetization dynamics in ferromagnetic materials, Eind-
hoven University of Technology, The Netherlands, 2005.

2Prof. Dr. B. Koopmans, Comparison of Ultrafast demagnetization, Gilbert damping and e-p
relaxation, Eindhoven University of Technology, Netherlands, 2005.
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Figure 3.1: Electron-phonon relaxation example.

The electron temperature curve can be fitted with an exponential decay yielding an
estimate for the relaxation time τe. By repeating the simulation for different values
of De, Dp and Ep while using the same fitting procedure we obtain the following
three graphs of τe.
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In all graphs we have plotted the 1
x -fit (displayed as the red line) to illustrate the

behavior of the curve. It can be seen that this fit corresponds nicely to the data
in all three cases. We conclude that in a first approximation the timescale τe does
indeed vary with the inverse of De, Dp and Ep.

3.3 Magnetic switching

The addition of an external magnetic field in combination with the possibility of
heat diffusion through the lattice makes it possible to simulate magnetic switching
experiments. To illustrate this we first consider a simulation similar to the one
described in section 3.1, except that we now increase the laser power to speed up
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the demagnetization process. Effectively this means the electron temperature Te is
instantaneously raised to 850K instead of 400K. The result is displayed in figure
3.2 below.

Figure 3.2: Example of a demagnetization experiment with high laser power.

Instead of the spin temperature Tm we show the behavior of the average spin s by
the green line (the scale is displayed on the right side). The reason for this is that
there is no definition of Tm for temperatures above the Curie-temperature Tc. It
can be seen that the response of the spin-system is very fast (we took α = 0.3) but
s never exceeds the zero-line. This is because when s approaches zero the energy
difference between the spin-up and spin-down state also goes to zero. That means
there will very likely be just as many spin-flips in one direction as in the other and
it becomes increasingly more difficult to increase the average spin further. After
a while, when the electrons and the lattice temperature have stabilized, the spin-
system can release its excess energy again and equilibrate with the rest.
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If we now apply a small external field by setting sex = 0.0001 in equation 2.26 we
get a completely different graph, shown in figure 3.3 below.

Figure 3.3: High laser power and a small magnetic field.

In the start the graphs look alike, but at around 5000fs the real difference is clearly
visible. The average spin now goes through zero and grows back into the other di-
rection. This can be understood by recognizing that Em(s) changes sign when |s|
becomes smaller than sex. At that point the spin-up state will have a lower energy
than the spin-down state, which means the roles are reversed and the spin-system
can only reach equilibrium again by growing back in the positive direction. This
shows that by using a laser excitation and applying a small external field we can
enforce the magnetization to switch sign.

For this magnetic switching to occur it is necessary that the spin-system reaches a
high enough temperature, otherwise s will not exceed −sex. Figure 3.4 shows what
happens when the laser power is slightly decreased. The average spin grows back
in the original direction and no magnetic switching occurs.
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Figure 3.4: Slightly lower laser power and a small magnetic field.

To speed up the remagnetization process we can use cooling by an external heat
bath (see figure 3.5). The temperature of the heat bath is fixed at 400K, the start-
ing temperature of the lattice and spins.

Figure 3.5: Magnetic switching with strong cooling enabled at 5000fs.

At t = 5000fs the lattice starts to cool down very quickly as a result of the heat
diffusion. The electrons and the spin-system follow this behavior. As can be seen,
the remagnetization occurs much more rapidly now.
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Chapter 4

Conclusions

In this report we have derived a microscopic model for the ultra fast demagnetiza-
tion that occurs after heating a ferromagnetic material with a short laser pulse. We
assumed phonon-mediated spin-flip scattering to be the main cause for the demag-
netization. We defined a spin-flip probability α for every electron-phonon scattering
event. In contradiction to claims in literature, it was shown that phonon-mediated
demagnetization can be faster than electron-phonon equilibration. Furthermore we
have investigated the possibility of magnetic switching by heating the spin-system
above the Curie temperature and applying an external magnetic field.
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Appendix A

Code Example

What follows in this section is an example of the code used to simulate one of the
experiments described in this report. The model has been programmed in a highly
object-oriented fashion such that only a very limited amount of knowledge about
the internal structure of the underlying objects is needed to be able to use the pro-
gram. Everything was made in C++ with Borland’s CBuilder 6, therefor it is also
needed to be able to run it.

The one important file that contains all the information about what type of simu-
lation you are running and what are the parameter values is Unit1.cpp:

//---------------------------------------------------------------------------
#include <vcl.h>
#pragma hdrstop
#include "Model.h"
#include "SimpleElectrons.h"
#include "WeissSystem.h"
//---------------------------------------------------------------------------

#pragma argsused

int main(int argc, char* argv[])
{
TModel* Model1=new TModel;
Model1->TimeStep = 1.0;
Model1->NumberOfSteps = 10000;

First we create the Model-object called Model1, which takes care of the execution
and the output of a simulation. It has two important properties TimeStep and
NumberOfSteps that can be changed. What follows next is a list of subsystems
and interactions that we put into the model. It is perhaps useful to know that
all subsystem and interaction objects are descendants from their respective base
objects TSubSystem and TInteraction.

TSimpleElectronSystem* ElecSys = new TSimpleElectronSystem;
Model1->SubSystemList->Add(ElecSys);
ElecSys->NumberOfCells = 2000;
ElecSys->DensityOf = 2.0;
ElecSys->EnergyWidth = 0.0005;
ElecSys->Temperature = 300.0;
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Here we create an electron system named ElecSys and add it to the list of subsystems
of the Model-object. At the same time we set several of its properties.

TSimpleLaserExcitation* LaserInteraction = new TSimpleLaserExcitation;
LaserInteraction->Parent = Model1;
LaserInteraction->ElecSys1 = ElecSys;
LaserInteraction->TimeDelay = 10;
LaserInteraction->LaserTemperatureIncrease = 250.0;

This is an example of how interactions are incorporated in the model. We assign
Model1 to its Parent property, which automatically adds the interaction to the
list of interactions in the Model-object as well as making sure that the interaction
object knows what Model-object specifically it is being added to. We then tell it
what subsystems it should work on. In this case, because it is a laser interaction
that only works on one electron system, we set the property ElecSys1 to be the
electron system ElecSys that we created earlier on.

TPhononSystem* PhononSys = new TPhononSystem;
Model1->SubSystemList->Add(PhononSys);
PhononSys->HeatCapacity = 4.31E-5;
PhononSys->PhononEnergy = 0.026;
PhononSys->DensityOf = 1.0;
PhononSys->Temperature = 300.0;

TPhononSystem* PhononSys2 = new TPhononSystem;
Model1->SubSystemList->Add(PhononSys2);
PhononSys2->Infinite = True;
PhononSys2->Temperature = 300.0;

The property Infinite is used if you want subsystems that are of infinite size. In
this case it means the heat capacity of the phonon system is infinite.

TWeissSpinSystem* SpinSys = new TWeissSpinSystem;
Model1->SubSystemList->Add(SpinSys);
SpinSys->CurieTemperature = 620.0;
SpinSys->SpinFlipProbability = 0.1;
SpinSys->ExternalField = 0.0001;
SpinSys->DensityOf = 0.08;
SpinSys->Temperature = 300.0;

TSimpleElectronPhononSpinInteraction* Interaction =
new TSimpleElectronPhononSpinInteraction;

Interaction->Parent = Model1;
Interaction->ElecSys1 = ElecSys;
Interaction->PhononSys1 = PhononSys;
Interaction->SpinSys1 = SpinSys;

This interaction works on multiple subsystems at the same time, so it needs to
know all of them to function properly. Note that we used PhononSys here and not
PhononSys2, which means we are including the lattice with finite heat capacity.

TPhononPhononInteraction* Interaction2 = new TPhononPhononInteraction;
Interaction2->Parent = Model1;
Interaction2->TimeDelay = 5000;
Interaction2->TimeScale = 1000.0;
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Interaction2->PhononSys1 = PhononSys;
Interaction2->PhononSys2 = PhononSys2;

Model1->Execute();

We start the simulation by calling the Execute function of the Model-object.

delete Model1;
return 0;

}
//---------------------------------------------------------------------------

After the program is done running, several output files will be saved to the Output
directory in the folder where the original program files were placed.
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Appendix B

A system of electrons with
discrete energy levels

B.1 Assumptions and definitions

We consider a (large) number N of electrons which can occupy a discrete set of
quantum states. To keep things simple we assume the energy levels of the states
are evenly spaced with distance 1, and each distinct energy gives room to the same
finite amount of states M . To keep all the relevant quantities finite the energy
levels run from −L to L, but our main interest lies in the limit of L→∞. At zero
temperature we assume that all states up to energy 0 are completely filled and all
the others empty. In essence this means that (for our own convenience) we take the
Fermi level to be at zero energy. Note that this implies that N is equal to half of
the total number of available states (2L+ 1)∗M . We don’t really care about which
exact states are occupied, only the amount of states that are occupied at a certain
energy is important. And so we define the numbers ni as the relative amount of
occupation at the energy i, which is the number of occupied states divided by M ,
where i ∈ Z and 0 ≤ ni ≤ 1. If we plot these numbers ni at zero temperature we
get the distribution D0 (where we took L = 10) like in figure B.1.
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Figure B.1: The distribution of states at zero temperature.
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B.2 Energy

For a distribution of the ni we define an energy in the following way. To the
distribution at the absolute zero D0 (see figure B.1) we assign an energy of zero.
For all other distributions we take the energy to be the amount of additional energy
that is in the system relative to D0, again divided by the number of states M at
each energy. In terms of the ni this means:

E =
L∑
i=1

ini −
−1∑
i=−L

i(1− ni) (B.1)

Notice that the term with n0 is absent since those electrons have zero energy (Fermi
level). As an example, the distribution in figure B.2:
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Figure B.2: Example of a distribution with non zero energy.

has an energy of E = 0.4 + 2 ∗ 0.3− (−1) ∗ (1− 0.6)− (−2) ∗ (1− 0.7) = 2.

B.3 Electron scattering

The principal process that is responsible for the evolution of the ni is the scattering
of two electrons. This process is depicted in figure B.3 below.

An electron of energy i collides with an electron of energy j. A certain amount of
energy is transferred between them in the collision and the first electron goes to a
free state of energy k and the second to one of energy l. The total amount of energy
is of course conserved and so it has to hold that:

i+ j = k + l (B.2)

We assume that the relative rate r(i, j, k, l) at which this process occurs, that is the
number of scattering events of the type above that occur each second divided by
M , satisfies the following simple relation:

r(i, j, k, l) =
1
L2
ninj(1− nk)(1− nl) (B.3)
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Figure B.3: Graphical representation of the scattering of two electrons.

where i, j, k, l satisfy B.2. The intuition behind this equation is that in order to have
many scattering events there need to be a lot of electrons at energies i, j and a lot of
free states for them to go to at k, l. The factor 1

L2 is there to account for the scaling.

The reverse process, in which two electrons of energies k, l collide and go to a states
of energy i, j, occurs with the rate r(k, l, i, j) = 1

L2nknl(1 − ni)(1 − nj). The net
rate of change R(i) := ∂ni

∂t of the relative occupation at energy i can be acquired
by summing the two rates above (with appropriate sign) over all possible j, k, l:

R(i) =
1
L2

∑
j,k,l

i+j=k+l

[r(k, l, i, j)− r(i, j, k, l)] (B.4)

B.4 Equilibrium

B.4.1 General solution

The distributions of the ni which are in equilibrium are those that do not change
over time, which means:

R(i) =
1
L2

∑
j,k,l

i+j=k+l

[r(k, l, i, j)− r(i, j, k, l)] = 0, ∀i (B.5)

Let us try to find a solution for which each term in this sum is equal to zero. We
have:

ninj(1− nk)(1− nl) = nknl(1− ni)(1− nj)
ni

(1− ni)
nj

(1− nj)
=

nk
(1− nk)

nl
(1− nl)

If we rename βi := ni

(1−ni)
this last equation becomes βiβj = βkβl. Now we fill

in the values i = 0 and k = 1. The constraint on the numbers i, j, k, l says that
0 + j = 1 + l which means j = l + 1.
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β0βj = β1βl

βl+1

βl
=
β1

β0

This last equation has to hold for all l. If we define b := β1
β0

we arrive at the general
solution for the βi:

βi = c ∗ bi (B.6)

By definition we want the value of β0 = 1, since that means n0 = 1
2 which will be

consistent with our constraint on the number of electrons. This corresponds to the
value c = 1 and βi = bi. The general solution D(a) for the ni now easily follows:

ni =
βi

1 + βi
=

bi

1 + bi
=

1
( 1
b )i + 1

=
1

ai + 1
(B.7)

where a := 1
b . An example of this distribution is shown in figure B.4.
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Figure B.4: Plot of the equilibrium distribution for a = 2.

Noting that for D(a) it holds that n−i = 1
1

ai +1
= ai

1+ai = 1 − ni we see that the

distribution also satisfies the constraint on the number of electrons in the sense
that exactly one half of the states are occupied. In the limit L → ∞ we have

lim
L→∞

(
1

2L

L∑
i=−L

ni

)
= 1

2 .

B.4.2 Entropy

To prove that this is the only possible solution we will use the notion of entropy.
We define the entropy Si of state i to be:

Si := −{ni lnni + (1− ni) ln(1− ni)} (B.8)
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This is similar to the information entropy of a simple Bernoulli random variable
with probability p = ni. The total entropy S of the system is now just the sum

of Si over all i, i.e. S =
L∑

i=−L
Si which is a function of all the ni. Hence for any

distribution of the ni which do not change over time the same will hold for S. The
time derivative of S will therefore be equal to zero.

Let us compute the time derivative of Si:

dSi
dt

=
∂Si
∂ni

∂ni
∂t

= −
{
ni ·

1
ni

+ lnni + (1− ni) ·
1

(1− ni)
· −1− ln(1− ni)

}
∂ni
∂t

= − ln
ni

(1− ni)
· ∂ni
∂t

= − lnβi ·
∂ni
∂t

(B.9)

Now suppose that there are i, j, k, l, with i + j = k + l, such that r(i, j, k, l) −
r(k, l, i, j) 6= 0. We define r := r(i, j, k, l) − r(k, l, i, j) and assume that r > 0,
otherwise we can just switch the roles of i, k and j, l. That means that there is a
net flow of electrons from i to k and from j to l due to this interaction. In terms of
the β variables the assumption r > 0 can be written as:

βiβj > βkβl (B.10)

Let us now look at the net rate of change in entropy of these four states. We have:

r =
∂nk
∂t

=
∂nl
∂t

= −∂ni
∂t

= −∂nj
∂t

d(Si + Sj + Sk + Sl)
dt

= r(lnβi + lnβj − lnβk − lnβl) = r ln
βiβj
βkβl

(B.11)

where we have used equation B.9 for the time derivative of the state entropy.
Now from equation B.10 we know βiβj

βkβl
> 1 and also r > 0 so we conclude

d(Si+Sj+Sk+Sl)
dt > 0. For each i, j, k, l like above we see that the total entropy only

increases in time. But that implies dS
dt > 0 which is in contradiction with the fact

that the ni did not change over time. And hence there cannot exist such i, j, k, l
which satisfy our assumption. Notice that if we had assumed r < 0 the fraction
βiβj

βkβl
inside the logarithm would be smaller than 1 and we would have come to the

same conclusion.

We have shown that any equilibrium distribution necessarily satisfies r(i, j, k, l) −
r(k, l, i, j) = 0 for all i, j, k, l such that i+j = k+l. This means that the equilibrium
distribution from equation B.7, which we derived based on this assumption, is
unique. All other distributions have an entropy S(t) which strictly increases in
time.

B.4.3 Stability

We have derived a solution, have shown that it is the only possible solution, but we
have yet to show that it is also a stable solution. To prove this we require the notion
of a Lyapunov function. This is a function V (x) : Rn → R with the following
two properties:

• V (x) ≥ 0 with equality if and only if x = 0
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• dV (x(t))
dt ≤ 0 with equality if and only if x = 0

where x ∈ Rn is a function of the time t ∈ R. The Lyapunov second theorem
on stability says that if we can find such a function V then the system is asymp-
totically stable with the equilibrium being x = 0.

In our case the vector x is the distribution of the ni and hence lives in the space
R2L+1. Now the question is what should we take for V (x). After some thought
we see that the second property of V is very similar to what we have just proven
for the entropy function S(x), namely dS(x(t))

dt ≥ 0 with equality if and only if
x = x∗ := D(a). So let us define V (x) as:

V (x) := S(x∗)− S(x+ x∗) (B.12)

then we have dV (x(t))
dt = −dS(x(t)+x∗)

dt ≤ 0 with equality if and only if x + x∗ = x∗

which means x = 0, and the second requirement of a Lyapunov function is met.

To prove the first requirement we will use the method of Lagrange multipliers to
derive x∗ as the distribution that maximizes the entropy S(x) under the constraints
of particle and energy conservation. These constraints are:

• 1
2L+1

∑
i

xi = 1
2 to preserve the number of electrons

•
L∑
i=1

ixi −
−1∑
i=−L

(1− xi) =
∑
i

ixi + 1
2L(L+ 1) = E to conserve energy

The Lagrangian function G is:

G(x, α, β) = S(x) + α

(∑
i

xi −
1
2

(2L+ 1)

)
+ β

(∑
i

ixi +
1
2
L(L+ 1)− E

)

Let us compute the partial derivative of G with respect to xi:

∂G

∂xi
=
∂Si
∂xi

+ α+ βi = − ln
(

xi
1− xi

)
+ α+ βi = 0

where the derivative ∂Si

∂xi
was previously computed in equation B.9. Solving for xi

we get:

xi =
eα+βi

1 + eα+βi
=

1
e−αe−βi + 1

The particle constraint determines the value of α, which is zero. This can be seen
by noting that for α = 0 it holds that x−i = 1 − xi thus satisfying the constraint,
and that by increasing/decreasing α all of the xi will increase/decrease as well.

The value of β is now completely determined by the energy constraint. If we rename
a := e−β then we end up exactly at our equilibrium distribution x∗i = 1

1+ai . Hence
x∗ is not only a distribution with maximum entropy, but also the only possible
distribution with this property.
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We have now shown that S(x) ≤ S(x∗), or similarly 0 ≤ S(x∗)− S(x+ x∗) = V (x)
for any distribution x under the given constraints, with equality if and only if x = 0.
This is precisely the first requirement of a Lyapunov function.

With both requirements satisfied for V (x), the theorem now tells us that x∗ is an
asymptotically stable solution. This means that any distribution that starts close
enough to x∗ will converge in time to x∗.

B.4.4 Additional properties

We will now look at some additional properties of the equilibrium distribution in
the limit of L → ∞. Because we’re interested in the distributions which have a
finite energy there is a restriction on the number a. We require that lim

i→+∞
ni = 0

and lim
i→−∞

ni = 1. It’s not hard to see that this means a > 1.

We try to compute the energy E(a) of the distribution D(a):

E(a) =
∞∑
i=1

i
1

ai + 1
−

1∑
i=−∞

i
1

a−i + 1
= 2

∞∑
i=1

i

ai + 1
(B.13)

which, since a > 1, can be bounded from above by:

E(a) ≤ 2
∞∑
i=1

i

ai
= 2a ∗ − ∂

∂a

a

a− 1
=

2a
(a− 1)2

In the limit a → ∞ we see that E(a) has to go to zero. The distribution that
corresponds with it is:

lim
a→∞

1
ai + 1

=


1

1+1 = 1
2 if i = 0

1
1
∞+1

= 1
0+1 = 1 if i < 0

1
∞+1 = 1

∞ = 0 if i > 0

which is exactly the distribution D0 at zero temperature with zero energy. Similarly
the limit a → 1 yields the constant distribution ni = 1

2 which has infinite energy
(and temperature). The parameter a is completely determined by the temperature.
If we rewrite a = e

1
T we end up with the familiar Fermi-Dirac distribution:

ni =
1

e
i
T + 1

(B.14)
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