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In this paper, we derive strategies to enforce dominance in a business-to-consumer market with hetero-
geneous, competing products, while the market segmentation evolves through interaction of demand and
supply. By using evolutionary economic notions, we extend operations management studies on manufac-
turing facing demand diffusion. We arrive at a synthesis of a Forrester delay manufacturing model and a
technology substitution-diffusion model and show that the actual operationalization of product attractive-
ness, reflecting what consumers deem important, as well as the responsiveness of production capacity scaling
greatly determine the market dynamics and asymptotic outcome.
We obtain analytic results on absolute dominance in case of the constant inherent attractiveness of products,
say technical performance, and numerical results on instability and quasi-stability in case of more encom-
passing definitions of attractiveness involving price and service level.
We conclude, in general, that in establishing market dominance, firms should focus on timely entry to capture
first-buyers, high responsiveness and predatory pricing. Scale advantages and resilience through responsive-
ness are essential in obtaining and subsequently retaining the market share when other firms already provide
or are about to enter with technically superior products. We also hint on how to extend our model to study
several other issues on industry dynamics.

Key words : Co-Evolution, Substitution-Diffusion, Manufacturing Strategy, Market Segmentation,
Attractiveness, Responsiveness

1. Introduction
In this paper, we derive strategies for a firm to establish dominance of its product if the market
segmentation develops through co-evolution of demand and supply under competition. Demand
is induced by a substitution-diffusion process reflecting competition of firms for consumers based
on product attractiveness. Supply levels depend on the production capacity, which is scaled in
response to demand signals. Especially during the early stages of the product life-cycle, production
scaling is conservative due to the market uncertainty. Service levels then affect substitution and
thereby demand fluxes, which in turn affect future production targets.
We hereby depart from manufacturing strategy models that assume stationary demand or a micro-
level perspective, and rather jump on the bandwagon of incorporating elements of evolutionary
economics into business strategy models (Gavetti and Levinthal 2004). In this, we follow several
others that have recently enriched manufacturing strategy models with diffusion (Ho et al. 2002,
Kumar and Swaminathan 2003, Sterman et al. 2007).
In spite of its merits of analytical convenience, we drop the stationary demand assumption to do
justice to, in particular, the demand dynamics in early phases of the product life-cycle, which is
in part attributed to social diffusion processes. In the aggregate marketing model of diffusion by
Bass (1969), there is non-linear, self-reinforced development of the market saturation. However,
the Bass model does not feature supply-side factors but accounts for them (implicitly) in param-
eter estimates. Economic analysis has long indicated that supply factors strongly affect diffusion
(Stoneman and Ireland 1983). If supply conditions change endogenously, these factors should be
accounted for explicitly. Many studies have extended the Bass model with factors like price and
advertising (for an overview, see Bass et al. 1994). Jain et al. (1991) introduce a term in the Bass
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model for how much actually is supplied and then study the effect of the service level through
(positive and negative) word-of-mouth on market saturation development.
Recent excursions from operations management into diffusion-driven demand follow Jain et al.
(1991) and (implicitly) interpret the Bass model as a micro-level model in which a monopolistic
supplier can completely stall diffusion. Ho et al. (2002) and Kumar and Swaminathan (2003) derive
a strategy for production and product launch when the production is capacitated. They find that
a ’delayed roll-out’ strategy is preferred to a myopic, reactive strategy if inventory holding costs
are relatively low compared to lost sales costs. The additional stock thus build up is then used to
meet demand during the diffusion peak that would otherwise be lost sales.
We take two notions from evolutionary economics to relax (implicit) assumptions in these supply-
constrained diffusion models. The first extension hinges on the notion that firms face technological
and market uncertainty, especially during the early phases of the product life-cycle. Firms then
do not follow a contrived, let alone optimal and rational production schedule -for which perfect
foresight and instantaneous capacity adjustment is needed (Sterman et al. 2007)-, but rather adjust
production capacity to demand figures gradually. This is due to both organizational inertia, as well
as reluctance to engage in costly production scaling in absence of clear market signals. An obvious
place to look for a responsive production scaling model is the bullwhip effect literature, as this
body has response of a firm to demand pulses at its very core (See Lee et al. 1997, Sterman 1989).
We adopt a model with roots in Forrester (1961) in which the production level P is scaled to the
(desired) production level W with a delay T (c.f. Warburton 2004, Sterman 2000, Helbing et al.
2004, Nagatani and Helbing 2004):

dP

dt
=

W −P

T

The production level P determines how much of the demand actually is fulfilled, how much ends
up as backorder and how much will end up as inventory. This Forrester delay capacity scaling
heuristic reflects the boundedly rational and myopic routines of a firm (Nelson and Winter 1982,
Simon 1955).
The second extension concerns acknowledging the likely presence of competing products, all subject
to the same selective market pressures. In reality, consumers are likely to substitute one product for
another if the product of first choice is not available soon enough, especially in case of consumables.
The postponed product roll-out in Ho et al. (2002) and Kumar and Swaminathan (2003) is likely
to result in a competitor filling the gap in demand, thereby offsetting diffusion of this competing
product. In assuming this, we rely no more on substitutability then do these authors in arguing
for presence of lost sales. This also further bolsters our first extension, as presence of competitors
considerably clouds market projections. So, we abandon the implicit monopoly in these models
for a competitive market model in which multiple firms compete with distinct products. We argue
that, with low entry barriers, economic forces assure supply capacity and thereby an aggregate
saturation dynamics that conforms the Bass diffusion curve.
A model that features endogenous development of market shares (from which we can derive instan-
taneous demand) and multiple, competing heterogeneous technologies is the substitution-diffusion
model (Peterka 1978, Marchetti and Nakicenovic 1979, Fisher and Pry 1971). Peterka’s formula
(4.16) captures the development of the market share of product i driven by substitution of one
technology for or by other technologies purely based on their costs:

dfi

dt
=

1

γ
fi

(

∑

j

cjfj − ci

)

(1)

This is also known as an Eigen (1971) replicator equation. In this equation, fi is the market share of
technology i, and coefficient γ an aggregate diffusion-substitution rate. We see that if the individual



3

costs ci of a technology i exceed (are below) the industry average costs
∑

j cjfj, its market share
declines (increases). If the ci coefficients are time-invariant, this system does have a closed-form
solution (see Peterka 1978, p.25), but upon slight extensions or introducing time-dependence, one
has to resort to numerical solutions. Here, this model is reformulated to revolve around a conceptu-
ally encompassing ’product attractiveness’, such that if a product is more attractive than average,
its market share increases. As such, the Peterka model renders a concentrated market with a single
dominant product, which seems to comply with notions of effects of Schumpeterian competition
(Nelson and Winter 1982). However, both evolutionary economic (e.g. Windrum and Birchenhall
1998) and neoclassical economics-minded operations management (e.g. Xia et al. 2008) models
have shown that stable segmentation is well possible. We will see that factors that consumers deem
important like price and availability play a prominent role in the formation of long-lasting unstable
or quasi-stable segmentations.
In Sterman et al. (2007), we found kindred spirits in introducing evolutionary economic princi-
ples in manufacturing models with diffusion. These authors provide a conceptually rich model on
oligopolistic competition of firms that provide a homogeneous product and divide the share of de-
mand according to a formula weighing availability and price. They resort to simulations and show
that firms scaling aggressively based on demand forecasts are likely to end up with excess capacity.
As a consequence, the aptly called ’get big fast’-strategy, particularly appealing under increasing
returns to scale, need not be optimal if capacity is expensive.

The main contribution of this paper is the synthesis of evolutionary economic principles regard-
ing the behavior of firms and consumers and operations management principles regarding capacity
scaling responsiveness. We add competition on heterogeneous products and manufacturing capabil-
ities to the supply-constrained diffusion models. To the best of our knowledge, we are the first to use
the substitution-diffusion model in an operations management setting. The substitution-diffusion
model is used in studying economic structural change (e.g. Silverberg et al. 1988, Metcalfe 1988),
but the marketing literature and the operations management literature concerned with demand
development is dominated by flavors of the Bass model.
Upon adopting evolutionary economic principles, we have to contend with understanding phe-
nomenons and deriving qualitative manufacturing strategies from that rather than deriving quan-
titative optimal scaling or launching policies as is customary in operations research. However, by
appreciative theorizing, we nonetheless provide strategies to establish dominance. Seemingly in
contrast with Sterman et al. (2007), the analytical and numerical results translate to recommen-
dations on entering early on in the onset phase, aggressive scaling and predatory pricing, either
to compensate for inferior technical performance or to preemptively appropriate market share in
anticipation of entrants.
The structure of the paper is as follows. In section 2, we formulate a concise mathematical model
for the co-evolution of demand generated by substitution-diffusion and supply for which produc-
tion capacity is tuned reactively to meet demand. We investigate the effect of (constant) product
attractiveness on the development of market segmentation over time, thereby controlling for the
responsiveness of firms in adjusting production capacity. In section 3, we study dynamics in some
numerical examples with extended operational definitions for product attractiveness (which is then
no longer constant, but dependent on scale of production or backlogs) and see that both quasi-stable
and unstable segmentations emerge. In section 4, we provide conclusions, insights and strategy
recommendations, and a range of ideas for further research.

2. Model and Basic Dynamics
We model a business-to-consumer market with product replacement. There are M firms, where firm
i produces a distinct product i. The N consumers order a product by comparing the attractiveness
of the M products on offer. We assume universal consumer preferences (no a priori segmentation).
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Firms hence compete on what consumers deem important (performance, price, service). We assume
that there is an intrinsic attractiveness of a product i in the form of a unique technical performance
αi ≥ 0. We take αi to be constant, so we refrain from incorporating product innovation (which is
reasonable in case of consumables). In this section, we investigate the dynamics and asymptotic
outcome if consumers only care about technical performance. In section 3, we study more involved
and (non-constant) ’product attractiveness’ operationalizations accounting for scale-sensitive price
and service level. Despite our evolutionary economic outlook in supplier behavior, we limit supply
market conditions to features reflecting in product attractiveness.
In terms of substitutability (related to patience, importance of availability and costs of switching),
innovation and technological complexity (a single, constant technical performance characteristic)
and properties of the manufacturing system (mass production rather than job shop), the products
we deal with are more like consumables than like durables.
The developments in the industry are driven by two processes. The first process concerns consumers
placing new orders and canceling backorders to order another product. Each period t, a fraction
0 < ρ < 1 of the Xj consumers of product j wears out its unit of product j and a fraction σji

orders a unit of product i, while a fraction σji of the Bj consumers backlogged (those that were
not supplied in previous periods) decides to cancel the outstanding order for product j and instead
order some other product i 6= j. The demand for product i at time t hence becomes:

di =
∑

j

ρXjσji +
∑

j 6=i

Bjσji (2)

We omit the period reference t where confusion is unlikely.
The second process concerns the scaling of production capacity to demand and the final supply of

the products. At the end of a period, the firms produce and supply a quantity si. At the beginning
of the next period, the number of consumers Xi then increases with the number si of units supplied
and decreases with all consumers that disposed their unit last period:

∆Xi = si − ρ
∑

j

Xiσij = si − ρXi (3)

We assume that σii = 1 −
∑

j 6=i
σij . We refer to Xi as the market share of i. We write ∆W = v

for W (t + 1) = W (t) + v(t). Furthermore, also at the beginning of the next period, the number of
backorders Bi increases with the number di − si of orders that have not been met and decreases
with the consumers that impatiently canceled their backorder just to order another product:

∆Bi = (di − si)−
∑

j 6=i

Biσij (4)

We assume that the rate at which backlogged consumers become impatient is higher than the
replacement rate ρ. We take, without loss of generality, the impatience rate to be 1, such that a
fraction (1−σii) of backlogged consumers cancels its order each period.

We assume a make-to-order policy in which, at the end of period t, firm i produces a quantity
si which is ample sa

i at best (so there is no inventory build-up) and cannot exceed the current
capacity ci:

si = min{ci, s
a
i } with sa

i := Bi + di −Bi

∑

j 6=i

σij = Biσii + di =
∑

j

(ρXj + Bj) (5)

All demand and backorders in the current period not being met at this level of supply become
backorders in the next period.
The production capacity ci is adjusted heuristically to the desired production level di + ξiBi with
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a Forrester delay φi. At the beginning of a new period, the production capacity ci is adjusted to
facilitate supply levels that meet demand and backlogs observed last period:

ci(t + 1) = si(t) +
(di(t) + ξiBi(t))− si(t)

φi

(6)

The Forrester delay φi ≥ 1 reflects that production capacity adjustments occur gradually. The
scaling is purely reactive reflecting the need to have clear demand signals in times of market
uncertainty. The higher φ, the slower the capacity adjustments are implemented. The backlog
consideration rate 0 ≤ ξi ≤ 1 governs the response to the existence of backorders. Both φ and ξ
reflect the underlying scaling cost structure as well as managerial prudence in attuning to demand
signals. The level of ξ reflects implicit assumptions about how the firm balances lost sales due
to impatient backorders being canceled, especially during diffusion peaks, and having to install
additional capacity to prevent these lost sales while this might be unused in the future.
Any discrepancy between the current sales level and the actually required production level is fed
forward into the level of production in the next period.
Only when demand drops (very) steeply, the prudent capacity adjustment heuristic (6) does not
downscale production capacity fast enough, causing the ample production constraint to hold.

The switching rate σji plays a pivotal role in the dynamics and is defined as:

σji = ηXi(αi −αj)
+ (7)

With (a)+ = max{a,0}. In the basic model, the unique αi > 0 forms the attractiveness of product i.
We hence assume that all consumers find the same product equally attractive. There is no a priori
segmentation. The normalization constant is η = 1/N . Due to the Xi term, demand for product i
is self-reinforcing by means of word-of-mouth. The (αi − αj)

+ term reflects the fact that the net
flux between product i and j is positively directed toward product i if αi is higher than αj.

Clearly, these two processes interlock whereby demand and supply co-evolve. Since supply si is
constrained by capacity ci, while capacity is scaled to demand di and backorders Bi with a certain
responsiveness 1/φi and backlog consideration ξ, we see that supply follows changes in demand.
Demand di in turn is strongly affected by word-of-mouth of Xi current consumers. On the other
hand, if capacity is insufficient to meet demand, orders are backlogged but these might get lost
due to impatience. The supply service level hence drives product substitution and future demand,
whereby firms compete on product attractiveness as well as supply process characteristics.

2.1. Basic dynamics
Let us elaborate on the basic properties and dynamics of the model. We predominantly focus on
asymptotic segmentation outcomes and we answer the question whether the technically superior
product can be beaten by competitors with technically inferior products by employing different
scaling heuristics.
In the analysis of this model, we use the convenient properties that the system is closed with
respect to the number of consumers (N =

∑

i
{Xi(t) + Bi(t)} for all t) and has defined upper-

and lower-bounds (0≤Xi(t)≤N and 0≤Bi(t)≤N). The proofs are straight-forward. To exclude
trivial cases, we assume that any product i has Xi(ti) + Bi(ti) > 0 upon introduction ti ≥ 0. It is
easy to show that if Xi(t) + Bi(t) = 0, Xi(τ) + Bi(τ) = 0 for all τ > t.
The first lemma tells us that results are well-known for our model under ample supply.

Lemma 1. Under ample supply from period t onward, the system behaves like a Peterka replicator
dynamics system from t + 1 onward.

Proof. If supply is ample from period t onward, there are no backorders from t + 1 onward.
After substituting si = di = ρ

∑

j
Xjσji, algebra reveals equivalence of equations (3) and (1). �
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In such a replicator dynamic system (with non-trivial settings), the dynamics and asymptotic
outcome are known. Shares inevitably converge to a situation in which the most attractive product
is absolutely dominant with market share Xi = N , no matter how small (but non-zero) the difference
in attractiveness values (c.f. Peterka 1978).
However, in early phases of the industry, when there is high market uncertainty, production scaling
is expected to be responsive to clear demand signals, so supply generally is less than ample. What
dynamics and emerging segmentation are we to expect now?

We now provide definitions and a lemma to eventually prove a theorem that this most attractive
product eventually emerges as absolutely dominant. Essentially, supply restricts fundamental de-
velopments driven by the switching rates σ. Although we conceptually regard the switching rate as
the net flux (there might still be consumers going back to a less attractive product, but this is just
less than going the other way), we can and do treat it formally as if consumers only switch from
the less to the more attractive product. As a consequence, the switching rates are non-circularly
oriented, and since we can treat consumers as if they never return to less attractive products, prod-
ucts with high attractiveness ’drain’ products with low attractiveness. Let us provide definitions
to prove this ’draining’ at an aggregate level.
We call a flux of switching consumers a positive influx from (out of) product i into product j if
(ρXi + Bi)σij > 0. We define the influx set Hi(t) of all products that potentially generate demand
for product i at time t as Hi(t) := { j 6= i | Xi > 0 ⇒ σji > 0 } and the outflux set Li(t) of all products
potentially receiving demand of product i at time t as Li(t) := { j 6= i | Xj > 0 ⇒ σij > 0 }. Clearly,
Hi(t) and Li(t) are disjoint and any product j 6= i is in Hi(t) or Li(t). All kinds of properties on
flux orientation and flux set nestings hold.

Lemma 2 (Draining). Under non-trivial scaling heuristics (1 ≤ φj < ∞ and 0 < ξj ≤ 1), the
more attractive products in Li ∪{i} with a non-zero market share drain the less attractive products
in a non-empty Hi.

Proof. Let Xk(0) + Bk(0) > 0 for some k ∈Hi and Xj(0) > 0 for some j ∈Li ∪ {i}. First of all,
note that, if we ignore the influx into set Li∪{i} (let us add superscript r to signal this restriction),
i.e. ignore consumers of product j ∈ Hi switching to a product in Li ∪ {i}, the total number of
consumers in backlog for or using products in Li ∪{i} is constant:

∆r
∑

j∈Li∪{i}

(Xj + Bj) =
∑

j∈Li∪{i}

{sr
j −
∑

k

ρXjσjk +
∑

k∈Li∪{i}

(ρXk + Bk)σkj − sr
j −
∑

k

Bjσjk}

= −
∑

j∈Li∪{i}

∑

k

(ρXj + Bj)σjk +
∑

j

∑

k∈Li∪{i}

(ρXk + Bk)σkj

= 0

In the first step, we simplified the expression and further algebra by using that we can safely enlarge
the set we sum over given that the terms thus added are zero (due to σjk = 0). We see that every
change in number of actual and backlogged consumers in Li ∪{i} is due to an influx from Hi:

∆
∑

j∈Li∪{i}

(Xj + Bj) =
∑

k∈Hi

(ρXk + Bk)
∑

j∈Li∪{i}

σkj ≥ 0 (8)

and, since ∆
∑

j
(Xj + Bj) = 0, ∆

∑

k∈Hi
(Xk + Bk) ≤ 0. As long as

∑

k∈Hi
(Xk + Bk) > 0, this last

inequality is strict. �

Since the most attractive product k has Xk(t) +Bk(t) > 0 at the point in time t of introduction,
we know from the draining lemma that Xk + Bk is increasing from t onward. Clearly, it does not
imply absolute dominance limt→∞ Xk(t) = N . The next theorem however claims exactly that.
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Theorem 1 (Absolute dominance of the most attractive). Under non-trivial scaling
heuristics, the most attractive product eventually dominates absolutely.

Proof. Let αk > maxj 6=k αj . We show that the market segmentation converges to a state with
Xk = N .
Suppose there is some 0 < ε < N and for all t, Xk(t)+Bk(t)≤N −ε. Take ε = N − limt→∞(Xk(t)+
Bk(t)). This limit exists due to (a) boundedness (0≤Xk + Bk ≤N) and (b) applying the draining
lemma 2 to product k, which asserts that ∆(Xk +Bk) is strictly increasing as long as

∑

j∈Hk
(Xj +

Bj) > 0.
The idea is to show that there is a jump in Xk + Bk larger than or equal to δ closer than δ to
N − ε, thereby jumping over the supposed limit. We propose the following constant δ:

δ = (N − ε)
χ

1 + χ
where χ = η ρ ε min

h 6=k
{αk −αh}

We first derive a lower bound for the jump-size ∆Xk +∆Bk =
∑

j 6=k
(ρXj +Bj)σjk. Since we assumed

that (for all t), Xk + Bk ≤N − ε, we know that

∑

j 6=k

Xj + Bj = N − (Xk + Bk)≥N − (N − ε) = ε

Suppose that
∑

j 6=k Xj +Bj = S. Given that ρ < 1, we see that the jump-size
∑

j 6=k(ρXj +Bj)σjk is
minimal if all of these S consumers would be regular consumers, not backorders, i.e. if

∑

j 6=k
Xj = S.

Since
∑

j 6=k
ρXj + Bj ≥ ρS ≥ ρ ε, we then know of the increase in Xk + Bk:

∆Xk + ∆Bk =
∑

j 6=k

(ρXj + Bj)σjk ≥min
h 6=k

σhk

∑

j 6=k

(ρXj + Bj)≥ ηXkρεmin
h 6=k

{αk −αh} = Xkχ

We assumed that Xk + Bk → N − ε. Since Xk + Bk is increasing, eventually sk → ck ≤ sa
k, so we

know ∆Bk = dk − sk → dk − (dk + ξkBk) = −ξkBk. However, since Bk is bounded, we know that
Bk → 0 and Xk →N − ε. So, we can pick a τ such that Xk(τ) > N − ε− δ. We then know (at point
in time τ):

∆Xk + ∆Bk ≥Xkχ > (N − ε− δ)χ = δ(1 + χ)− δχ = δ

We hence see that:

Xk(τ + 1) + Bk(τ + 1) = Xk(τ) + Bk(τ) + ∆Xk(τ) + ∆Bk(τ) > N − ε− δ + δ = N − ε

This violates our assumption that there is some ε > 0 such that Xk + Bk ≤ N − ε for all t. So,
Xk + Bk →N and due to the capacity scaling heuristic Bk → 0 and Xk →N . �

So, if attractiveness purely relates to a constant feature like technical performance, the most
attractive product eventually dominates absolutely. This is regardless of the responsiveness 1/φ or
backlog considerateness ξ, that is, as long as they are not trivial.

2.2. Illustrations
Despite these analytical results, developments are not trivially induced by the attractiveness levels
αj, but still strongly relate to the responsiveness 1/φ of the manufacturers. We study a market in
which, at time t = 0, 98 percent of the consumers possesses a null-product (the alternative of not
having a product) and two products each have a 1 percent market share. The null-product has an
attractiveness of zero, while product 2 (α2 = 0.5) is more attractive than product 1 (α1 = 0.4). We
decided not to introduce separate equations for the null-product, so we interpret backorders for
the null-product as potential adopters that still own the null-product. In the numerical studies in
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the remainder of this paper we simply plot X0 + B0 for the market share of the null-product.
In this setting, we distinguish two phases in the dynamics. During the ’onset’ phase, the fluxes
mainly consist of null-product consumers that order product 1 or 2. We call these consumers
first-buyers, for obvious reasons. The development of the total consumer base (excluding the null-
product) over time thus realized resembles that of the Bass model, qualitatively. During the ’re-
placement’ phase, which starts when X0 + B0 approaches zero, fluxes mainly consist of consumers
that have consumed and now replace their non-null-product.
In figure 1, we plot the development of variables X, B, s and d for each product over time for two
extreme cases. Figure 1a shows the results for equal Forrester responsiveness values. We see that
some first-buyers purchase the inferior product, but upon replacement later, they still switch to
the superior product. Figure 1b shows the results in case the manufacturer of the inferior product
is much more responsive. We see that an extremely large market share is realized for the inferior
product and that the superior product only very gradually gains market share. The low responsive-
ness causes much of the influx to end up as backorders, while both the low responsiveness and low
backlog consideration (ξ = 0.1) cause the production capacity and supply rate s2 to be adjusted
only gradually. Higher responsiveness would result in a faster increase in X2, which would in turn
increase the influx.
Clearly, the technically superior product dominates the market eventually, in both cases. However,
our time scale for simulation (T = 1500) does not need to coincide with the real industry lifespan.
In high-tech, short life-cycle industries, new radical inventions might render the products in the
industry obsolete long before the end of the period we simulate. As a consequence, it might be that
the inferior product is still dominant upon the start of industry demise.

One remarkable feature of the dynamics is what we came to call the demand and sales peak. Note
that the sales peak itself is an inherent feature of the classical Bass model and extensions thereof
with replacement demand (Sterman 2000, p.342). In figure 1, we see that during the onset phase,
in case of a responsive manufacturer, both supply and demand skyrocket and then suddenly drop
sharply. This peak is caused by the reinforced switching of first-buyers. Not surprisingly, the more
the manufacturers take into account backorders (the higher ξ) in setting production level targets,
the higher the peak. The manufacturing strategy should balance serving this peak to prolong the
presence of the inferior product and accepting possible sunk costs for capacity installed that is
unused later.

3. Model extensions
The analytical results obtained so far hinge on the constant nature of product attractiveness. Here,
we show numerically that absolute dominance does not depend on the time of entry.
Now what if consumers also care about other features? As far as these are constant they can
of course be accounted for in attractiveness and the results obtained previously still fully apply.
However, consumers care about price, which is likely to dependent on production scale. Consumers
might also care about the service level, or availability, which is related to backlogs. In this section,
we show that both the dynamics and asymptotic market segmentation -and the mediating effect
of responsiveness- strongly depend on which comprehensive ’attractiveness’ concept applies to an
industry.

3.1. Time of entry
The time of entry also determines the period required to realize a certain market share (and even
dominance), and whether this market share can be realized in the first place. If consumers care
only about technical performance, a technically inferior product needs a head-start in market share
or in time of entry or a more responsive upscaling if it is to gain a large market share temporarily.
We extend the case studied in subsection 2.2, i.e. with α = {0,0.4,0.5}, φ = {0,20,20} and we
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Figure 1 The figures show the development of X, B, s and d over time with the null-product (dotted), product
one (continuous) and product two (dashed) for two different settings of φ. We used α = {0,0.4,0.5} and

ξ = {0,0.1,0.1}
(a) φ = (∞,20,20)
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(b) φ = (∞,2,100)
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postpone the entry of the technically superior product from T2 = 0 to T2 = 10,30,50. Postponing
the entry of the technically inferior product is less interesting.
From the three subfigures in figure 2 for each of these three cases, we conclude that upon entering
increasingly later, less first-buyer influx is received by the later entrant and it takes increasingly
longer before the market growth takes off. Given that both entrants have equal responsiveness,
the slow take-off is caused purely by the late entry. We conclude that it is crucial to be a quick
follower, even for a firm with a technically superior product.
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Figure 2 Figures show the development of the market shares X over time (in the same linetypes as before) for
different times of entry of product 2.

(a) T2 = 10

200 400 600 800 1000 1200 1400
period

2000

4000

6000

8000

10 000

ð cust HXL

(b) T2 = 30

200 400 600 800 1000 1200 1400
period

2000

4000

6000

8000

10 000

ð cust HXL

(c) T2 = 50

200 400 600 800 1000 1200 1400
period

2000

4000

6000

8000

10 000

ð cust HXL

3.2. When price matters
Consumers generally weigh (constant) technical performance of a consumable against the price of
it, e.g. when choosing between the genuine brand and a cheap, low-quality clone.
The price that is charged often depends on costs on the supply side through a markup and these
costs arguably drop with the scale of production. Such scale economies consist of both learning
as well as efficiency gains. Learning and experience cost advantages relate to how many units
R have been produced cumulatively throughout the lifespan, and generally follow a power law
like cf + cvRλ−1 (where 0 < λ ≤ 1) (See e.g. Sterman et al. 2007, Cachon and Harker 2002). We
argue that learning and experience effects dominate in a job shop production environment, while
efficiency and volume gains dominate in a mass production system. In a consumable market, we
object to the long, flat tail and explosion to infinity for R→ 0 and rather look for a more gradual
function with reasonable end-points reflecting the per period volume advantages. We propose the
following equation for the price π as a function of production scale s:

πj = 1 + e−(ε
sj
ρN

) (9)

Arguably, other price curves featuring economies of scale are expected to yield qualitatively similar
insights. After numerical experimentation, we decided to take ε = 4 as this provides a decline of
the curve that is not too steep nor too gradual.
We redefine product attractiveness as α/π and the switching rate (eq. 7) as:

σji = ηXi

(

αi

πi(si)
−

αj

πj(sj)

)+

(10)

We hence assume that if a product is produced on a very small scale (s close to 0), the price is
close to 2, which makes the product only half as attractive as to when that product is produced
on a very large scale (s around ρN) when the price is close to 1.
Figure 3 shows the development of market shares X over time of the null-product and the two newly
introduced products. In both cases, the manufacturer of the technically inferior product (α1 < α2) is
more responsive (φ1 < φ2). We see that, dependent on the actual φ values, the industry eventually
tips to dominance of either product one or product two. Due to the higher responsiveness and the
reinforced switching rates, the lion share of the first-buyers switch to product 1. In some cases, the
production scale s1 renders such a low price that attractiveness of the technically inferior product
exceeds that of the superior product. This reverses the switching flux between the two products
and makes the market tip to dominance of that inferior product. We see this confirmed in figure
3a. However, if we make manufacturer 2 only slightly more responsive by changing φ = {∞,2,12}
into φ = {∞,2,11}, the production of the superior product reaches a scale large enough to invoke
a tip toward absolute dominance of the superior product.
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Exploiting the notion that backorders vanish asymptotically, the critical tipping point in scale,
which also is an unstable equilibrium in market segmentation, can be easily found analytically by
solving αi/πi(s

∗
i ) = αj/πj(s

∗
j) for

∑

k
s∗k → ρN and deriving the shares Xk from that.

Figure 3 Figures with development of market shares X over time (in the same linetypes as before) when also
price determines the attractiveness. Here α = {0,0.4,0.5} and ξ = {0,0.1,0.1}. The market segmentation is

unstable.
(a) φ = {∞,2,12}
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A remarkable feature of the curves in figure 3 is the plateau in the segmentation between, say,
t = 100 and t = 500. Since economies of scale drive down the price, the lower technical performance
is compensated. Once the attractiveness values are about the same, the switching rates are nearly
zero. As this slows down developments, such a plateau in segmentation emerges.

3.3. When availability matters
Purchasing decisions might also depend on some service level, e.g. the immediate availability of a
product. Whenever a consumer has decided to renew its product, the product of first choice might
not be available immediately, making alternatives relatively more attractive.
We define availability by using the relative number of backorders for that product. The idea is that
if there are only few backorders, the probability of being served within a reasonable period of time
or finding a product in the store of choice is high. Other interpretations are well possible.
We define availability γi of product i as:

γi = ζ + (1− ζ)

∑

j 6=i
Bj

∑

j
Bj + 1

(11)

The ζ coefficient determines the extent to which consumers weigh availability against technical
performance. If ζ → 0, then γk < γi means that manufacturer k has relatively more backorders.
Consumers then expect to have to wait longer to get hold of a unit of product k, making the com-
peting product i relatively a more attractive option. If ζ → 1, consumers value products primarily
for their technical performance.

We redefine product attractiveness as αγ and the switching rate (eq. 7) as:

σji = ηXi(αiγi −αjγj)
+ (12)

If ζ is relatively large, the dynamics resembles that of an industry in which consumers mainly care
about performance. If ζ is relatively small, the dynamics become more intricate.
Particularly interesting is the non-trivial case in which the most responsive manufacturer has the
technically inferior product. For figure 4, we took one of a wide range of non-trivial parameters
settings for which a quasi-stable, cyclically developing market segmentation emerges in which both
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firms co-exist. This is explained as follows. Due to positive backlog consideration (0 < ξ ≤ 1) in
equation (6), B = 0 is a global attractor. Any model tends to the zero backorder situation. However,
in the vicinity of that zero backorder situation, the second term in (11) becomes small and ordering
decisions are again based on technical performance. So, the manufacturer of the superior product
receives all the replacement orders. Due to the low responsiveness 1/φ of that manufacturer, the
backlogs for the technically superior product accumulate, making it less attractive. This eventually
renders a switch flux reversal. Both new replacement orders and impatiently switching consumers
now generate demand for the technically inferior product. At first this will of course also render
some backorders. So, the ’corrective’ effect of availability on attractiveness makes the B = 0 point
a local repulsor.
The manufacturer of the inferior product however is more responsive so rids itself of backlogs fast,
while the backlog of the technically superior product is drained. So, the switch flux reversal that
causes draining plus the ordinary Forrester production adjustment causes B to drops to zero again.
We thus see a cyclical process of attraction and repulsion based on the backlogs that explains the
wobbly nature of the market shares curves.
Generally, under a sufficiently more responsive manufacturer of the technically inferior product,

Figure 4 Figure showing development of major variables over time (in the same linetypes as before) when
attractiveness depends on availability. Here ζ = 1/4, α = {0,0.3,0.5}, φ = {∞,5,40} and ξ = {0,0.1,0.1}. The

market segmentation is quasi-stable.
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and sufficient sensitivity of consumers to availability (ζ small enough), the market share of the
inferior product reaches a level at which the instabilities in attractiveness under near-zero backlogs
are absorbed: the repulsion does not catapult the system into another basin of attraction of market
segmentation.
If the difference in responsiveness is relatively small, which ordinarily is in favor of superior

products, dynamics under high sensitivity to availability (ζ is low) turn out to be non-trivial. Each
wave of repulsion causes a shift toward absolute dominance of either the inferior (figure 5b) or
superior product (figure 5a). If consumers care little about technical performance and the difference
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Figure 5 Figures with development of market shares X over time (in the same linetypes as before) when
availability also determines attractiveness. Here φ = {∞,5,20}, ξ = {0,0.1,0.1} and ρ = 0.08. The segmentation is

not quasi-stable.
(a) α = {∞,0.3,0.5}, ζ = 0.25
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is small anyhow, the slightly higher availability of the inferior product renders dominance of that
product. If the sensitivity for availability decreases and difference in performance increases, the
superior product emerges as absolutely dominant.
If for a certain ζ = ζ∗ a non-trivial, quasi-stable market segmentation emerges, then this also is the
case for all ζ < ζ∗. The actual value ζ < ζ∗ determines the sizes of the market segments. Note that
the segment of the less attractive product is necessarily the largest anyhow.

4. Conclusions and Further Research
From the model on co-evolution of demand and supply under competition, we learn that the dynam-
ics and asymptotic outcome of the market segmentation strongly depend on the operationalization
of product attractiveness and the responsiveness of the manufacturing scaling. Firms should attune
their manufacturing strategy to the factors that consumers deem important and the timescale of
the life-cycle.
In section 2.1, we have seen that with constant attractiveness, as with technical performance,
aggressive launches allow for temporary dominance for inferior technology. Not compensating in-
feriority of technology with an early entry and aggressive scaling strategy means a sure and quick
demise. In short life-cycle industries, dominance might last the whole industry lifespan. In long
life-cycle industries, it is likely a superior product will overtake within the lifespan. The firm with
a dominant inferior product should either exploit the financial luxury for cannibalistic succession
or -given the then inevitable demise- devise an exit strategy.
In subsection 3.2, we have seen that if attractiveness correlates positively with production scale,
as -presumably- with price, any non-trivial segmentation is unstable and the market tips to dom-
inance of one of the products. Aggressive entry with predatory pricing yields prolonged presence
(the segmentation plateau in figure 3) or even a favorable market tip, so returns are likely to cover
the deep pockets required for such a practice. In the vicinity of tipping points, only minor inter-
ventions of either one of the competitors are required to leverage the top-heavy behavior of the
market. If consumers care only about price and low-dimensional technical quality, intrinsic market
dynamics tend to slow down at a high-price-high-quality and low-price-low-quality segmentation
as products then have near-equal attractiveness values.
In subsection 3.3, we have seen that if consumers value availability or factors otherwise related
to service levels, the manufacturer of a inferior product can enforce a (quasi-)stable segmentation
relatively soon. Apart from the required head-start or aggressiveness in establishing a large mar-
ket share, the manufacturer should be sufficiently resilient to market shocks upon reaching equal
service levels. Higher responsiveness spans a basin of attraction for the segmentation. This is a
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comfortable competitive position to either fend off head-on attacks or to bring about a shift toward

total dominance.

Regardless of which factors matter most to consumers, timely entry, particularly during the onset

phase, is recommended to capture first-buyer influx and influx from inferior products. Early entry

and aggressive creation of market share is more important than having a superior product in estab-

lishing dominance, especially in the short and medium-long run. So, we do recommend to ’get big

fast’ in most industries. On the other hand, missing the first-buyer influx can best be compensated

by leap-frogging and providing superior products, especially in industries with long life-cycles and

ample opportunity to reap returns on R&D investments.

Our recommendation to enter early and upscale aggressively seems in conflict with the warning

of Sterman et al. (2007) not to get big too fast. In our model, however, the scaling is responsive

rather than anticipative, thereby limiting excess capacity. We do endorse their notion that firms

should strike a balance in responsiveness for first-buyers and sensitivity for backorders in scaling,

especially for inferior products. Indeed, capacity installed to serve the first-buyer peak and not

the regular replacement demand will turn out to be excess capacity. However, ignoring backorders

too much results in losing consumers to competitors. In our case this might even have dispropor-

tional consequences. Managers can best deal with this first-buyer peak demand through contingent

production forces, soothing consumers to prevent them from turning impatient, or -if there is com-

mitment to target market dominance- upscale to levels required in the ’replacement’ phase long

before the demand peak to produce inventory in advance (c.f. Ho et al. 2002).

The root cause of the seemingly conflicting recommendations is that we have heterogeneous prod-

ucts. The best response to either already offering a technically inferior product or anticipating the

entry of a firm with a technically superior product is conquering as large a market share as soon

as possible. Compensation of this sort is not required if products are intrinsically the same.

Finally, we make our point in the segmentation and dominant design discussion. We have seen that

it strongly dependents on what consumers deem important whether the market tips to a domi-

nant product or whether a (quasi-)stable or seemingly stable (plateau) segmentation emerges. The

possible effect of innovation in this is in fact subject in our first proposal for further research.

We plan to shed light on the dynamics in case innovation improves technical performance, either

at firm level or through endogenous entry. Our guess is that the impact of innovation strongly

depends on the actual operationalization of innovation. If innovation is an isolated jump process

improving α, we expect it to merely amplify the qualities described in this paper. If firms are able

to imitate and leapfrog the technology of competitors, we expect firms to engage in waiting games,

to enter during takeoff and thus drive emergence of a certain technology paradigm. We plan to

extend experiments with endogenous entry to study the takeoff findings of Agarwal and Bayus

(2002).

In further research, we also plan to alter the Peterka model to do justice to the fact that entry of

a competing product can in fact increase the market size and the adoption rate of other products

(e.g. Krishnan et al. 2000, Norton and Bass 1987). Currently, the market size is fixed and the

immediate effect of presence of one on the other products is negative.

We also plan on relaxing the universal performance perception of consumers by introducing a priori

preference niches possibly combined with multiple technical product dimensions. We also consider

an extension with positive switching costs or brand loyalty, e.g. by using σji = ηXi(αi −αj − ν)+

as this is expected to facilitate further segmentation.

As far as changes on the supply side of the model is concerned, we want to investigate the effect

of both lumpy and forward looking capacity adjustments. It is furthermore suggested to also have

an overflow inventory to relax the ample supply constraint.



15

References
Agarwal, R., B.L. Bayus. 2002. The market evolution and sales takeoff of product innovations. Management

Sci. 48(8) 1024–1041.

Bass, F. M. 1969. A new product growth model for consumer durables. Management Sci. 15(5) 215 – 227.

Bass, F.M., T.V. Krishnan, D.C. Jain. 1994. Why the bass model fits without decision variables. Marketing
Sci. 13(3) 203 – 223.

Cachon, G.P., P.T. Harker. 2002. Competition and outsourcing with scale economies. Management Sci.
48(10) 1314 – 1333.

Eigen, M. 1971. Selforganization of matter and the evolution of biological macromolecules. Naturwis-
senschaften 58 465 – 523.

Fisher, J.C., R.H. Pry. 1971. A simple substitution model of technological change. Technological Forecasting
and Social Change 3 75–88.

Forrester, J. 1961. Industrial Dynamics. MIT Press and John Wiley & Sons.

Gavetti, G., D.A. Levinthal. 2004. The strategy field from the perspective of management science: Divergent
strands and possible integration. Management Sci. 50(10) 1309 – 1318.
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