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Summary

Many industrial chemical processes are complex, multi-phase and large scale
in nature. These processes are characterized by various nonlinear physio-
chemical effects and fluid flows. Such processes often show coexistence of
fast and slow dynamics during their time evolutions. The increasing demand
for a flexible operation of a complex process, a pressing need to improve the
product quality, an increasing energy cost and tightening environmental reg-
ulations make it rewarding to automate a large scale manufacturing process.
Mathematical tools used for process modeling, simulation and control are
useful to meet these challenges. Towards this purpose, development of pro-
cess models, either from the first principles (conservation laws) i.e. the rigor-
ous models or the input-output data based models constitute an important
step. Both types of models have their own advantages and pitfalls. Rigorous
process models can approximate the process behavior reasonably well. The
ability to extrapolate the rigorous process models and the physical interpre-
tation of their states make them more attractive for the automation purpose
over the input-output data based identified models. Therefore, the use of rig-
orous process models and rigorous model based predictive control (R-MPC)
for the purpose of online control and optimization of a process is very promis-
ing. However, due to several limitations e.g. slow computation speed and
the high modeling efforts, it becomes difficult to employ the rigorous models
in practise. This thesis work aims to develop a methodology which will result
in smaller, less complex and computationally efficient process models from
the rigorous process models which can be used in real time for online control
and dynamic optimization of the industrial processes. Such methodology is
commonly referred to as a methodology of Model (order) Reduction. Model
order reduction aims at removing the model redundancy from the rigorous
process models.

The model order reduction methods that are investigated in this thesis,
are applied to two benchmark examples, an industrial glass manufacturing
process and a tubular reactor. The complex, nonlinear, multi-phase fluid flow
that is observed in a glass manufacturing process offers multiple challenges to
any model reduction technique. Often, the rigorous first principle models of
these benchmark examples are implemented in a discretized form of partial
differential equations and their solutions are computed using the Computa-
tional Fluid Dynamics (CFD) numerical tools. Although these models are
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reliable representations of the underlying process, computation of their dy-
namic solutions require a significant computation efforts in the form of CPU
power and simulation time.

The glass manufacturing process involves a large furnace whose walls
wear out due to the high process temperature and aggressive nature of the
molten glass. It is shown here that the wearing of a glass furnace walls result
in change of flow patterns of the molten glass inside the furnace. Therefore
it is also desired from the reduced order model to approximate the process
behavior under the influence of changes in the process parameters. In this
thesis the problem of change in flow patterns as result of changes in the
geometric parameter is treated as a bifurcation phenomenon. Such bifurca-
tions exhibited by the full order model are detected using a novel framework
of reduced order models and hybrid detection mechanisms. The reduced
order models are obtained using the methods explained in the subsequent
paragraphs.

The model reduction techniques investigated in this thesis are based on
the concept of Proper Orthogonal Decompositions (POD) of the process
measurements or the simulation data. The POD method of model reduction
involves spectral decomposition of system solutions and results into arranging
the spatio-temporal data in an order of increasing importance. The spectral
decomposition results into spatial and temporal patterns. Spatial patterns
are often known as POD basis while the temporal patterns are known as the
POD modal coefficients. Dominant spatio-temporal patterns are then chosen
to construct the most relevant lower dimensional subspace. The subsequent
step involves a Galerkin projection of the governing equations of a full order
first principle model on the resulting lower dimensional subspace.

This thesis can be viewed as a contribution towards developing the data-
based nonlinear model reduction technique for large scale processes. The
major contribution of this thesis is presented in the form of two novel identi-
fication based approaches to model order reduction. The methods proposed
here are based on the state information of a full order model and result into
linear and nonlinear reduced order models. Similar to the POD method
explained in the previous paragraph, the first step of the proposed iden-
tification based methods involve spectral decomposition. The second step
is different and does not involve the Galerkin projection of the equation
residuals. Instead, the second step involves identification of reduced order
models to approximate the evolution of POD modal coefficients. Towards
this purpose, two different methods are presented. The first method involves
identification of locally valid linear models to represent the dynamic behavior
of the modal coefficients. Global behavior is then represented by ‘blending’
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the local models. The second method involves direct identification of the
nonlinear models to represent dynamic evolution of the model coefficients.

In the first proposed model reduction method, the POD modal coeffi-
cients, are treated as outputs of an unknown reduced order model that is to
be identified. Using the tools from the field of system identification, a black-
box reduced order model is then identified as a linear map between the plant
inputs and the modal coefficients. Using this method, multiple local reduced
LTI models corresponding to various working points of the process are iden-
tified. The working points cover the nonlinear operation range of the process
which describes the global process behavior. These reduced LTI models are
then blended into a single Reduced Order-Linear Parameter Varying (RO-
LPV) model. The weighted blending is based on nonlinear splines whose
coefficients are estimated using the state information of the full order model.
Along with the process nonlinearity, the nonlinearity arising due to the wear
of the furnace wall is also approximated using the RO-LPV modeling frame-
work.

The second model reduction method that is proposed in this thesis allows
approximation of a full order nonlinear model by various (linear or nonlinear)
model structures. It is observed in this thesis, that, for certain class of full
order models, the POD modal coefficients can be viewed as the states of
the reduced order model. This knowledge is further used to approximate
the dynamic behavior of the POD modal coefficients. In particular, reduced
order nonlinear models in the form of tensorial (multi-variable polynomial)
systems are identified. In the view of these nonlinear tensorial models, the
stability and dissipativity of these models is investigated.

During the identification of the reduced order models, the physical in-
terpretation of the states of the full order rigorous model is preserved. Due
to the smaller dimension and the reduced complexity, the reduced order
models are computationally very efficient. The smaller computation time
allows them to be used for online control and optimization of the process
plant. The possibility of inferring reduced order models from the state in-
formation of a full order model alone i.e. the possibility to infer the reduced
order models in the absence of access to the governing equations of a full
order model (as observed for many commercial software packages) make the
methods presented here attractive. The resulting reduced order models need
further system theoretic analysis in order to estimate the model quality with
respect to their usage in an online controller setting.
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Samenvatting

Processen in de chemische industrie zijn doorgaans complex, multi-fase en
grootschalig. Dergelijke processen worden gekarakteriseerd door diverse niet-
lineariteiten in fysische en chemische verschijnselen, en door stromingen van
vloeistoffen of gassen. In de tijd-evolutie van deze processen zijn doorgaans
zowel snelle als trage dynamische fenomenen te onderkennen. De complexi-
teit van deze processen wordt verder beinvloed door de moeilijkheid om
‘in-situ’ metingen aan het proces uit te kunnen voeren. Door de toenemende
vraag naar een flexibele bedrijfsvoering van dergelijke complexe processen,
de noodzaak om kwaliteitsverbetering van produkten te realiseren, en door
de toenemende vraag naar duurzaamheid en verminderd energiegebruik, is
het noodzakelijk om produktie-processen tot in hoge mate te automatiseren.
Om deze uitdaging aan te gaan zijn mathematische modellen noodzakelijk
voor het beschrijven, simuleren en besturen van processen, De ontwikkeling
van rigoreuze mathematische modellen op grond van elementaire fysische be-
grippen of de ontwikkeling van empirische modellen op grond van waargeno-
men data vormen hierbij een belangrijke stap. Beide types modellen hebben
voor- en nadelen. Rigoreuze modellen geven doorgaans goede benaderingen
van proces gedrag. De fysisch relevante interpretatie van variabelen in deze
modellen zijn doorgaans zeer bruikbaar voor automatische besturingen. Het
gebruik van rigoreuze procesmodellen is met name van belang bij toepassin-
gen in model-voorspellende regelingen (MPC) waar proces optimalisatie en
on-line procesbesturingen een rol spelen. De complexiteit en rekenintensiteit
van rigoreuze modellen vormt daarentegen een serieuze belemmering voor
on-line toepassingen.

Het is de doelstelling van dit onderzoek om methodologieen te ontwik-
kelen voor de constructie van vereenvoudigde, minder rekenintensieve mo-
dellen die toepasbaar zijn als substitutiemodellen voor on-line toepassingen
van optimalisatie en automatische besturingen in de proces industrie. Dit
proefschrift heeft tot doel om dergelijke methodologieen voor model reductie
te ontwikkelen en te valideren. Model reductie heeft daarmee tot doel om
redundantie uit bestaande modellen te verwijderen, waardoor vereenvoudig-
de modellen worden gecreeerd die relevant zijn voor proces optimalisatie en
automatische procesbesturingen.

De model reductie technieken die in dit proefschrift worden ontwikkeld
worden toegepast op een tweetal voorbeelden: een industriele oven voor glas-
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productie en een buis-reactor voor een chemische applicatie. De complexe,
niet-lineaire en multi-fase vloeistofstromingen die in een glasoven plaatsvin-
den maken de glasoven bij uitstek geschikt voor het toepassen van model
reductie technieken. Deze processen worden doorgaans numeriek geimple-
menteerd als gediscretiseerde partiele differentiaal vergelijkingen en gesimu-
leerd door geavanceerde CFD (“computational fluid dynmaics”) technieken.
Ofschoon deze simulatiemodellen nauwkeurig zijn, vereisen de berekening
van sinmulatietrajecten een substantiele hoeveelheid rekentijd.

Het glasoven proces dat in dit proefschrift is beschreven betreft en gro-
te oven waarvan de wanden door corrosie en hoge proces temperaturen aan
verandering onderhevig zijn. De verandering van geometrie in de oven ver-
oorzaakt op haar beurt een verandering van het stromingsprofiel van gesmol-
ten glas in de oven. Modelreductie technieken dienen derhalve in staat te
zijn deze veranderingen van procesdynamika te kunnen beschrijven. In dit
proefschrift worden deze parametergevoeligheden gemodelleerd als bifurca-
tieverschijnselen. Doel van dit onderzoek is o.m. om dergelijke bifurcaties
zo nauwkeurig mogelijk in gereduceerde modellen te representeren.

In dit proefschrift staat de POD (“proper orthogonal decomposition”)
techniek centraal voor de constructievan gereduceerde modellen. Deze tech-
niek is gebaseerd op een spectraaldecompositie van de procesvariabelen waar-
in een scheiding wordt aangebracht van spatiele en temporele variabelen. De
spatiele patronen (de POD basis functies) en de temporele patronen (POD
modale coefficienten) worden empirisch bepaald uit gemeten of gesimuleer-
de data. De dominante spatiele-temporele patronen zijn vervolgens de basis
voor de constructie van het gereduceerde model. Het gereduceerde model
komt daarbij tot stand door een Galrkin projectie uit te voeren op de resi-
dueen van het rigoreuze proces model.

Dit proefschrift vormt een bijdrage voor het uitvoeren van data-gebaseerde
model reductie voor grootschalige processen. De belangrijkste contributies
in dit werk zijn een tweetal nieuwe identificatie-gebaseerde technieken voor
het bepalen van gereduceerde modellen. Deze technieken zijn gebaseerd op
informatie over de toestand van het volle orde model en resulteren lineaire
of niet-lineaire gereduceerde modellen. Vergelijkbaar met de POD techniek
wordt als eerste een spectraal decompositie uitgevoerd op gemeten of gesimu-
leerde data. In een tweede stap wordt een identificatie technieken toegepast
om te komen tot een beschrijving van de tijd-evolutie van de POD moda-
le coefficienten. Voor dit laatste worden in dit proefschrift twee technieken
voorgesteld en vergeleken. In de eerste identificatie methode worden diverse
lokaal relevante lineaire modellen samengevoegd door een ‘blending’ techniek
tot een globaal relevant model. In de tweede identificatie methode wordt een
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niet-lineair model direkt geïdentificeerd.
In de eerste model reductie procedure worden de POD modale coefficien-

ten beschouwd als uitgangen van een vooralsnog onbekend model dat geïden-
tificeerd dient te worden. Via ‘black-box’ identificatie technieken wordt een
lineair model bapaald dat de proces ingangen relateert aan de POD modale
coefficienten. Deze lineaire modellen worden geidentificeerd in iverse werk-
punten van het proces. De werkpunten worden representatief verondersteld
over de dynamische bandbreedte van het proces. Via een ‘blending’ techniek
worden de lokale modellen vervolgens samengevoegd tot één enkel geredu-
ceerd lineair parameter afhankelijk (RO-LTV) model. De blending techniek
maakt gebruik van splines waarvan coefficienten geschat worden op grond
van toestandsinformatie van het volle orde model.

In de tweede model redcutie procedure wordt het volle orde model di-
rekt benaderd door diverse lineaire of niet-lineaire gereduceerde modellen.
Hierbij worden de POD modale coefficienten geinterpreteerd als toestanden
van gereduceerde modellen waarvan de tijd-afhankelijke dynamica wordt be-
schreven door lage orde niet lineaire model structuren. In het bijzonder zijn
identificatie-technieken uitgewerkt voor nieut lineiare tensor-modellen. de
stabiliteit en dissipativiteit van deze modellen is verder onderzocht.

Bij de identificatie van gereduceerde modellen blijft de fysische interpre-
tatie van de toestand van het rigoreuze model behouden. De diverse geredu-
ceerde modellen zijn aanzienlijk sneller in rekentijd dan de volle orde model-
len. Deze versnelling in rekentijd maakt deze modellen geschikt voor on-line
toepassingen en voor verdere proces optimalisatie. De mogelijkheid om ge-
reduceerde modellen te identificeren maakt de in dit proefschrift beschreven
technieken aantrekkelijk voor toepassingen waar een comleet mathematische
model van het proces niet, of slechts ten dele voorhanden is. Voor de geiden-
ficeerde lage orde modellen is verdere analyse noodzakelijk om de kwaliteit
van de modellen te kwantificeren voor on-line regel doeleinden.
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Introduction

1.1 General introduction
1.2 Thesis objectives and

problem formulation

1.3 Overview and organization

This thesis presents novel ways to solve the problem of model order reduction
for large scale systems as they occur in real life applications. The methods
proposed here have been applied to an industrial glass manufacturing pro-
cess. The glass manufacturing process is characterized by multidimensional,
nonlinear, multi-phase reactive fluid flows. Such a process is typically mod-
eled by Computational Fluid Dynamics tools. Depending on the required
accuracy, this results into very large order process models. The model re-
duction techniques presented here are aimed at providing control oriented
models for such large scale processes that can be used online for model
based control and optimization purposes. The methods proposed in this
thesis constitute the combination of tools available from literature like spec-
tral decomposition, parameter estimation, and modeling and identification.
Spectral decomposition techniques are used to separate spatial and tem-
poral patterns. Temporal patterns are approximated by using a modeling
framework of linear parameter varying systems and of nonlinear forms. The
thesis has three major contributions; First- Hybrid detection mechanisms
based on reduced order models to detect the discontinuous process behavior
as result of continuous parameter variations. Second- A linear parameter
varying reduced order modeling framework. Third- a reduced order nonlin-
ear modeling framework involving tensorial decompositions. The methods
that are proposed here formulate the model reduction problem as an iden-
tification problem. The outcome of the methods proposed here has reduced
the number of equations with a factor of at least 100 while, an increase
in computation speed is established by a factor of more than 1000 times.
The possibility of approximating the nonlinear effects by the reduced order
models has greatly enhanced the usability of these methods. Faster compu-
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tation of the resulting reduced order models allow them to be used for online
purpose of control and optimization.

1.1 General introduction

It is human psyche to observe, to study and to influence the nature around
him. The ability to think and to act rationally has made human being
the most powerful species on this planet. The inquisitive human nature has
transformed him from the stone age to the digital age of present time. It took
ages to invent the sharp tools and the use of metals, but their availability
greatly transformed the compatibility of early humans. Similarly, the inven-
tion of wheel increased human efficiency by many times. Now, we are at the
stage in human history where we almost double our efficiency every year in
the form of computation speed. The continuous pursuit towards betterment,
excellence and innovation are some of the reasons behind this transforma-
tion. The zeal towards the improvement of human life is also reflected in
the form of infinite number of man-made machines, instruments, processes
etc. Towards the similar aim, in the last century, mathematical modeling
of our physical surrounding and the human invented machines has emerged
as the important tool for understanding and therefore influencing them in
some desired way. In the present time, mathematical modeling accompa-
nied by the vast computational power forms an integral part of research and
development in almost every scientific pursuit. Together with Control and
Optimization, mathematical modeling constitute a wise attempt in order to
influence the man-made processes. Next subsections elaborates more on the
need for mathematical modeling and control of physical processes.

1.1.1 Modeling

Modeling of dynamical features of a process is an important step to un-
derstand the process in a better way. Usually modeling involves the task
to discover and express the relation between measurable and quantifiable
process variables and external effects. Modeling of a process or a physical
device is necessary to condense the knowledge, to understand, to predict and
to control it in a desired way. Modeling of physical phenomena has a very
long standing tradition. It has helped mankind to understand the relation
between cause and effect for a large variety of physical (natural and man
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made) systems. Usually the intension is to express different physical effects
in the form of mathematical equations. This art of expressing the behavior
of a system in terms of mathematical expression is referred to as modeling.
The contribution of many legendary personalities like Pythagoras, Newton,
Euler, Gauss, Einstein etc. has made this field an interesting and motivating
one to explore new ideas.

Similar to other physical phenomena, chemical processes are often modeled
in order to understand the relations among different variables. This un-
derstanding is then used to design the process operation, its equipment in
some optimal way. There are different possible ways to model a process.
Usually most of the chemical unit operations are modeled as lumped sys-
tems. A lumped system assumes that the raw material that is undergoing
certain changes is perfectly mixed and there is no spatial variation inside the
process equipement. This assumption simplifies the modeling considerably.
In fact, the only variable that remains independent is time. Mathematical
models of such lumped processes are based on laws of conservation and they
are described by Ordinary Differential Equations (ODEs) or by Differential
Algebraic Equations (DAEs). Dynamics of many chemical processes can be
approximately described by equations of DAE or ODE form. Such type of
process modeling is usually referred to as the First Principle or the Mecha-
nistic or the Rigorous Process Modeling. In such models, the physical effects
are often expressed by nonlinear relations. Solutions of such lumped non-
linear first principle models are obtained at each time instant by applying a
combination of different numerical integration schemes and these solutions
are commonly referred to as the ‘states’ of a model. As the first principle
models are derived from the laws of physics, their states have a physical
interpretation. Depending on the type of a nonlinear model, the numeri-
cal scheme and the efficiency of involved hardware and software structures,
the simulation time of such a model can vary a lot. With advancements in
computer efficiency, many commercial software packages can easily simulate
rigorous process models quite efficiently.

As an alternative to the class of lumped parameter systems, we mention here
the class of Distributed Parameter Systems (DPS) or simply Distributed Pro-
cesses. The term distributed refers to the distribution in space. Therefore
such process models have at least two (often space and time) or more in-
dependent variables. Although, most of the processes belong to this class,
only the processes whose dynamic behavior can not be effectively modeled
as ‘lumped in space’ systems are usually modeled as DPS. Modeling tech-
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niques for DPS need rigorous mathematical treatments and result into model
equations of the form which are commonly referred to as Partial Differential
Equations (PDEs).

The common approach to numerically solve spatio-temporal systems amounts
to using a discretization of the spatial configuration space by means of finite
element or finite volume methods. With appropriate choices of discretization
(mesh) densities, this approach leads to approximating the original partial
differential equations by a finite, but usually large set of implicit or explicit
PDEs. A popular spatial discretization technique is the Galerkin or Petrov-
Galerkin projection method, where the original infinite dimensional system
is projected on a finite dimensional space spanned by some orthonormal basis
functions. After projection, the resultant system is represented by ordinary
differential equations and in this thesis such a model obtained from spatial
discretization is referred as a full order model. Full order model is then
simulated by different numerical integration schemes, see Antoulas (2005a),
Lapidus and Pinder (1982).

The work that is presented in this thesis is applied to industrial glass man-
ufacturing process which belongs to the class of DPS involving nonlinear
reaction kinetics and fluid flows. It is typical to use the tools from Com-
putational Fluid Dynamics (CFD) to solve such a DPS. Therefore, such full
order models are also referred to as CFD models. Depending upon the re-
quired accuracy and the dimension of the spatial configuration space, these
spatial discretizations may lead to large mesh sizes, and consequently large
number of ODEs. For a glass manufacturing process simulation model, spa-
tial discretization for a sufficient accuracy of solutions may easily lead to
about 106 to 108 equations, which needs to be solved at every time step.
A dynamic simulation of such a model therefore need tremendous compu-
tational efforts in the form of CPU power and simulation time. In spite of
the advancement in computation power over the years, it is still impossi-
ble for a normal configured PC to meet the above mentioned computational
requirements in real time.

1.1.2 Process control and optimization

As explained in section 1.1.1, modeling of a physical process can be useful
for analyzing its dynamic performance. Moreover, modeling of physical pro-
cesses can also be used to predict its behavior and to control in some desired
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way. The field of engineering which studies the aspects of control of chemical
processes is usually referred to as process control. The role of a controller in
a process plant is to drive a process towards a desired goal in a stable and
optimal way. In the last few decades process control has made many advance-
ments in controlling chemical processes. Especially model based predictive
control (MPC) has proved its usability in many applications. A model based
controller allows to meet the constraints which are necessary for operation of
many chemical processes. Often, the MPC is accompanied by an optimizer
which provides an optimum set point or a desirable or optimal trajectory of
the process. Based on such a set point and measurements from the plant,
MPC predicts an optimal future control input at each time instance. Such
an optimal process input trajectory drives the plant towards the desired set
point in presence of the disturbances. Both, the optimizer and MPC involve
some sort of optimization problem which rely on evaluation of the process
model at each time instance. If the given process model is complex and dif-
ficult to evaluate in real time, then it is different to use MPC as a controller
for the plant. Therefore, the bottleneck in achieving a desired performance
of a model based process controller lies in the quality and computational
speed of the process model.

1.1.3 Modeling and model reduction for control

It is explained in section 1.1.2 that the rigorous process models can be useful
for the purpose of control of chemical processes in a real time. Unfortunately
the modeling of a physical process from conservation laws is a time consum-
ing, expensive and laborious process. Sometimes, even with the availability
of a reliable first principle model for a DPS, due to its forbidding computa-
tional efforts, it is hardly possible to use such models for the model based
control purposes. To overcome this problem, the control community has
developed some system identification tools which are based on plant input
and output data. Such data need to be obtained by exciting the plant in
some smart way so as to excite the dynamics from a control viewpoint. Al-
though such models are good for model based control, the identification test
performed on the plant can be very expensive. The states of such a model
do not have any physical interpretation. Moreover the validity range of
such a model is limited to the window of the excitation signals used during
the identification step. Therefore, the solution to the problem of obtaining
reliable models for the purpose of model based control lies in inferring com-
putationally efficient models from the first principle models. As the required
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computational efforts for dynamic simulations are proportional to the sys-
tem order (number of states), reduction in computational efforts amounts
to reduction in system order. This step is usually known as model order
reduction (MOR). For a DPS, computationally efficient approximate or re-
duced order models obtained by simplification of first principle model can be
very promising for model based controller and optimizer design. Some model
reduction work in similar directions is presented in Gay and Ray (1995), An-
toulas (2005b), Hoo and Zheng (2002), Marquardt (1990), Antoulas (2005a),
or Shvartsman and Kevrekidis (1998).

Among many different model order reduction techniques, the method of
Proper Orthogonal Decomposition (POD) (or the Karhunen-Loève method)
is widely used for deriving lower dimensional approximations of first princi-
ple models. The POD method searches for the dominant subspace in which
the dynamics of the full order model evolve. Such a space is spanned by
orthonormal POD basis functions. Using Galerkin type of projections of full
order model equations, a reduced order model can be inferred. The method
of POD and Galerkin projection is discussed in chapter 3.

1.2 Thesis objectives and problem formulation

In this section we present the thesis objectives that led to the present re-
search. The thesis objectives are formulated as the research problems. The
overall objective can be briefly formulated in generic terms as "To develop
the methodologies to infer low dimensional, computationally efficient, accu-
rate models for large scale complex processes. Such reduced order models
should be significantly less complex than the full order models". As the
terms ‘complex’, ‘fast’, ‘accurate’, ‘low’ and ‘large’ are relative, in following
paragraphs the thesis objectives are explained in more detail by quantifying
these relative terms. The notion of complexity is divided in terms of - system
order, computation speed, ease in modeling and implementation. Some of
these objectives are inherently contradictory to each other, e.g. order and
accuracy of reduced order model. The research work presented in this thesis
aims to meet these objectives simultaneously by finding appropriate trade-
offs among the various objectives. Consider an original (full order) dynamic
process model represented byM ∈M where M is a certain model class. This
thesis aims at identifying an approximate model Mr in the same class, i.e.
Mr ∈M with some properties. These properties are itemized as follows:
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• Reduction in model complexity.

Given a model class M, the complexity of a model M ∈ M, is the
real number c(M) where c : M → R is the “complexity” function.
Reduction in complexity implies c(Mr) ≤ c(M) where Mr is a less
complex approximate model. Typical examples include when M is the
class of LTI systems with finite dimensional state vector. In that case,
c (M) = n (M), i.e. the state dimension of one (and hence all) min-
imal state representations of M . For the model class of Distributed
Parameter Systems (DPS), i.e. M is DPS, the complexity is a combi-
nation of many factors like system order, computation time, type of
nonlinear source or sink term etc. Therefore in that case, complexity
is a vector such that c : M → Rq, where q is the number of factors
that influence the complexity. It the becomes imperative to compare
the ith complexity factor in c(M)of original model, i.e. ci(M) and an
approximate model ci(Mr) in the same model class M.

All following objectives can be seen as the form of complexity reduc-
tion.

• Reduction in model order.

Similar to the LTI systems, the model order is also one of the fac-
tors that influences the complexity of processes modeled as DPS, i.e.
ci(M) = n(M). Therefore, one of the objectives of this thesis is to
reduce the system order, i.e. n (Mr) < n (M).

Explanation: It is the primary aim of this thesis to develop model re-
duction techniques which can be used to approximate the large scale
process models, especially to solve problems involving fluid flows and
reactions. Such processes are usually categorized under the class of
Distributed Processes or Distributed Parameter Systems and modeled
by using Computational Fluid Dynamic (CFD) tools. CFD tools em-
ploy Finite Element or Finite Volume techniques to transform the DPS
into (non)-linear discrete time state evolutions for which the complex-
ity is again the state dimension. Therefore, ci(M) = n(M). Where,
M ∈ M, M is a class of Ordinary Difference Equation (ODE) models
formed as an outcome of Finite Element implementation of the DPS
model. Such an FE implementation results in a high order process
model. By large we mean models approximately of order 106 − 108.
Due to such a large state dimension, applicability of most of the model
approximation (reduction) techniques is very limited for such a pro-
cess. Therefore, the aim of this thesis is to investigate a methodology
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which is not only applicable to academic examples, but can be used
to deduce reduced order approximate models for real life applications.
The application considered in this thesis is a glass manufacturing pro-
cess whose process models fit the above mentioned description of full
order process models.

• Maintaining the model accuracy.

Model accuracy is defined in terms of a distance measure d : M×M→
R, measuring the (approximation) mismatch d(M,Mr) between the
two models M and Mr in the same model class M as defined in the
introduction of this section, with a property. Then the problem of
model approximation with maintaining the accuracy amounts to

Mr = arg min
Mr∈M;c(Mr)<c(M)

d(M,Mr)

That is, the aim is to find an approximate model with less complexity,
which can minimize the mismatch d.

Explanation: It is desired that for the model class of DPS the trajec-
tories of the approximate model Mr should not deviate substantially
from the trajectories of the original model M .

• Improved computational efficiency.

For the DPS, belonging to the model class M the computational effi-
ciency can be expressed in terms of simulation time that is required by
an original model and an approximate model for a given configuration
of solver and numerical scheme, such that for a simulation horizon T
of the real process, the full order model needs time Tf and the approx-
imate model Mr needs time Tr. The computational efficiency then
implies that Tr < Tf and Tr << T . Moreover if the fastest time con-
stant of the process is Td then computational efficiency also implies
that Tr < Td. Here the reduction in complexity is viewed as the re-
duction in simulation time, i.e. ci(M) = T (M), where T (M) is the
simulation time of a model M in a class M, in a specified simulation
scenario.

Explanation: Galerkin type of projection techniques in combination
with Proper Orthogonal Decomposition as a model approximation tech-
nique, results into a low order but dense system model such that
the original sparse structure of the full order model is lost. Loss of
the sparse structure, in spite of the smaller dimension of the reduced
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model, leads to significant computational cost and then the reduced
order model can not be used for the purpose of real time process con-
trol and optimization. It is an objective of this thesis to develop an
approximate model for systems belonging to DPS, which can be used
to compute the system trajectories in real time (few seconds). Such
an objective demands that the simulation time needs to be in order of
1000 times shorter than the time needed for a full order CFD model,
simulated over the same simulation horizon.

• To develop approximate process models which are optimal in some
sense.

Explanation: The optimality is explained such that for given process
conditions, the solutions of the reduced order models reside in a space
spanned by basis functions which are optimal in some sense.

• To develop a model approximation technique which can approximate
bifurcation behavior nearby critical parameter values as exhibited by
the original process model and to detect its occurrence.

Consider an original parameterized model M(θ) ∈M with θ a param-
eter, belonging to a parameter space Θ. Hence a model M : Θ → M
is a function defined on a parameter set Θ. Suppose that the model
has a qualitative property P1 ∈ P for θ ∈ Θ1 and P2 ∈ P for θ ∈ Θ2,
where Θ1 ⊆ Θ and Θ2 ⊆ Θ define a partition of Θ. We call θ∗ ∈ Θ a
bifurcation value, if θ∗ lies on the boundary ∂Θ1 ∩ ∂Θ2 where, ∂Θi is
boundary of Θi ⊆ Θ. Property sets P1 and P2 are disjoint sets. Typi-
cally P1 and P2 denote different stability properties of fixed point/limit
cycles/regions or orbits in phase plane ofM(θ). A bifurcation is defined
as a discontinuous (from one set to another) change in the property P
as result of a continuous change in θ. The aim is to find an approxi-
mate, less complex, parameterized model Mr : Θ → M of complexity
c(Mr(θ)) < c(M(θ)), such that if θ∗ is bifurcation of M(θ) then θ∗ is
a bifurcation of Mr(θ).

Explanation: Many chemical processes show discontinuous dependence
(form of bifurcations) on process parameters. It becomes difficult to
approximate the behavior of a process with parametric uncertainty by
using an approximate model. The application that is presented here,
results in bifurcation type of a behavior as result of the changes in ge-
ometry of the plant equipment. It is one of the objectives of this thesis
to develop a model approximation technique which can approximate
the bifurcation type of a process behavior.
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• To infer an approximate model in the absence of an explicit mathe-
matical expression of the model.

Explanation: It is an objective of this thesis to investigate a data based
model approximation technique which is able to infer an approximate
model in the absence of governing mathematical equations. E.g. for
many commercial software packages, it is possible to get access to the
states of a full order model, but the access to the governing equations
is not possible. In such case one can not employ projection based or
physical insight based model approximation techniques.

• Model approximation with preservation of the qualitative system prop-
erties.

Explanation: It is desired for the approximate model to preserve the
invariant properties of the original model, with respect to stability, ro-
bustness, conservation of physical quantities, physical constraints, dis-
sipativity, system gains, controllability, observability, achievable per-
formance etc.

• Development of model approximation technique as an alternative to
the physical insight based model approximation techniques.

Explanation: Some of the model approximation techniques which do
not require projection of equations includes physical insight based
methods like wave theory, compartmental methods, approximate in-
ertial manifolds, etc. It is imperative to have a good understanding of
the underlying process for such model approximation techniques and
therefore they are not very generic and they are difficult to implement
as an algorithmic routine. It is one of the objectives of this thesis to
develop a data based model reduction technique which will not need
projection of equation residuals as usually explored in the method of
Proper Orthogonal Decomposition. Data based technologies are often
referred to as the generic technologies due to wide applicability of these
methods to different processes irrespective of the underlying physics.

• To develop model approximation techniques with minimum implemen-
tation efforts.

Explanation: Most of the nonlinear model approximation techniques
need significant programming efforts and theoretical understanding of
the mathematics behind the technology. Especially for very large scale
systems, these efforts can be laborious and expensive. This is unde-
sirable and can hinder the applicability of even a good model approx-
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imation technique on real life applications. It is therefore an intention
of this thesis to develop a method, which can be easily applied with
minimum efforts for various applications modeled as systems which are
distributed in space. It is desired that the proposed model approxima-
tion technique, in its algorithmic form, should be easily distributed as
a tool-box or as a programming routine.

Apart from the objectives mentioned above there are several other objectives
which are somewhat difficult to quantify but are interesting e.g. maintaining
the physical interpretation of the states, maintaining the interpretation of
physical relations among process variables, inventing structures of the ap-
proximate model which are suitable for system theoretic analysis of notions
like stability, convexity, controller design, closed loop performance etc. Of-
ten, the objectives are related, e.g. it is seen that accuracy and simulation
time of the reduced order models are functions of the order of the reduced
model which again is a function of the input excitation signal and the in-
tensity of physical effects which are manifested in the full order models as
non-linear functions.

1.3 Overview and organization

The main contributions of this thesis are briefly explained at the beginning
of this chapter. The details of the proposed model reduction ideas and the
results of their implementation on the benchmark examples are explained in
subsequent chapters. The overview and the organization of the thesis in the
form of major contents of each chapter is presented in this section.

In Chapter 2 some examples of large scale processes which occur in chemical
process industry are presented. Specifically, the benchmark examples de-
picting a one dimensional tubular reactor and a glass manufacturing process
are presented. Both the benchmarks are examples of Distributed Parameter
Systems (DPS) which need to be solved by using combination of different nu-
merical tools for spatial discretization and integration. The full order model
of the tubular reactor, contrary to the glass manufacturing process, is easy to
understand, easy to model and easy to simulate. Only the mass and energy
balance of the tubular reactor are modeled. Due to its less complex nature,
the tubular reactor is easier to validate the performance of model reduction
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techniques.

The prime interest of this thesis is to develop model reduction techniques,
especially suitable for large scale process like glass manufacturing. The CFD
model of the glass manufacturing process depicting the reality is very com-
plex and is often of order approximately in the range of 106−108. Therefore
it becomes difficult to test the effectiveness of a model reduction technique
due to the large efforts that are involved with a real life model of a glass
furnace. To overcome these difficulties, a 2 dimensional model (very small
third dimension) of a glass furnace is developed. This model is used as a
replacement of the 3D model throughout this thesis. The 2D model offers
most of the features of a 3D model, but it is relatively easier to work and to
implement the new technologies. Although the efforts required for the 2D
model are small in comparison to a 3D model, they are still significant when
compared to the efforts that are required for the tubular reactor.

Chapter 3 presents modeling tools and an extensive literature survey on the
theory applicable to the problem of model reduction. One of the contribu-
tions in this chapter amounts to reformulating and re-interpreting the MOR
problem as an identification problem. Specifically, chapter 3 presents the
tools which are often used in subsequent chapters while proposing a new idea.
Tools from system identification theory like subspace state space method and
the tools from projection and model reduction theory like Proper Orthogonal
Decomposition are presented. The main contribution of this thesis is to solve
the problem of reduced order modeling by formulating it as an identification
problem. Some earlier work on relation between model order reduction and
system identification is also presented in this chapter. Based on the avail-
able literature and the aims of this thesis, possible research directions from
literature overview is presented at the end of this chapter.

Chapter 4 addresses the problem of model reduction from the perspective
of parameter uncertainty. Model approximation (reduction) is an important
step towards the construction of model based controllers. However, model
reduction methods hardly take model uncertainties and parameter varia-
tions into account. As such, reduced order models are not well equipped
when uncertain system parameters vary in time. It is shown in this chapter,
that the performance of reduced order models inferred from Galerkin pro-
jections and proper orthogonal decompositions can deteriorate considerably
when system parameters vary over bifurcation points. Motivated by these
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observations, detection mechanisms based on reduced order models obtained
by the proper orthogonal decompositions is proposed. Using the reduced or-
der models, the mechanisms allow to characterize the influence of parameter
variations around a bifurcation value. The ideas are applied on the example
of a tubular reactor. In particular, this chapter discusses the difficulties in
approximating the transition from extinction to the ignited state in a tubular
reactor.

In Chapter 5 we apply a combination of the method of spectral decompo-
sitions and system identification to identify a low dimensional model of a
benchmark example representing an Industrial Glass Manufacturing Process
(IGMP). The proposed model reduction method does not need the access
to the governing equations and relies only on the state information of the
full order model. In particular, we infer a reduced model by identifying the
linear map from process inputs to the POD modal coefficients by a subspace
state-space identification method. Reduced models obtained from such a
method are not well equipped to capture the process behavior with time
varying uncertain process parameters. For this reason a hybrid detection
mechanism, which has been introduced in Chapter 4 is used to approxi-
mate the glass manufacturing process (benchmark CFD model) exhibiting
non-smooth geometric parameter dependence (corrosion and wear) by using
lower dimensional models. Given the state or the output information this
mechanism detects the process parameter operation regime and suggests a
computationally faster, lower dimensional model as an approximate for the
real process.

In Chapter 6 a novel procedure for obtaining low dimensional models for
large scale fluid flow systems is proposed. The approach is based on the
combination of methods of spectral decomposition, black box system iden-
tification techniques and nonlinear spline based blending of the local black
box models to create a reduced order linear parameter varying model. The
proposed method is of empirical nature and gives computationally very effi-
cient low order process models for large scale processes, which are modeled
by computational fluid dynamic tools. Similar to the method proposed in
chapter 5, the method proposed here does not need the usual Galerkin type
of projection of equation residuals to obtain the reduced order model and
the method is of generic nature. The efficiency of the proposed approach
is illustrated on a benchmark problem of an industrial glass manufacturing
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process where the process non-linearity and non-linearity arising due to the
corrosion of refractory materials is approximated using a linear parameter
varying model. The results show good performance of the proposed model
reduction framework.

In Chapter 7, another novel procedure for obtaining low order linear and low
order non-linear models of large scale systems is proposed. The approach is
based on the combination of the methods of spectral decomposition of sys-
tem solutions, and non-linear system identification techniques. There, the
model reduction problem for non-linear processes is formulated as a param-
eter estimation problem. The first step of this model reduction technique
is similar to the one proposed in other chapters and involves separation of
spatial and temporal patterns. The second step of the model reduction pro-
cedure explores the observation made in the third chapter that the POD
modal coefficients can be viewed as the states of the reduced order model
that is to be identified. In the second step, with the knowledge of the states
of a reduced model (POD modal coefficients) and process inputs, different
model structures are proposed to relate the input and the states of reduced
model. In particular, a tensorial (multi-variable polynomial) representation
of the vector field of the system is proposed in order to describe the linear
and non-linear evolutions. This generalizes the usual LTI setting in a nice
manner to a different model class of nonlinear systems. An ordinary least
squares method is then used to efficiently estimate the model parameters.
The simplicity of the proposed method gives computationally very efficient
linear and non-linear low order process models for large scale processes. Dur-
ing the whole procedure the physical interpretation of the states is preserved.
The method is of generic nature. The efficiency of the identification method
is illustrated on large scale benchmark examples of an industrial tubular re-
actor and a glass manufacturing process. Chapter 7 also presents a sufficient
condition for the Lyapunov stability of the tensorial system at a fixed point.
The tools from the Linear Matrix Inequalities (LMI) and the semi-definite
programming are used to establish these conditions. Moreover, Chapter 7
also presents a sufficient condition for the dissipativity of the tensorial sys-
tems for a quadratic supply function.

Chapter 8 concludes this thesis by emphasizing the major conclusions and
the insights obtained in this thesis. Along with the major contributions, the
chapter will provide few research recommendations for the future. The rec-
ommendations are based on experiences in model reduction that have been
gained during the research work that is presented in this thesis.
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2

Benchmark Applications

2.1 Introduction
2.2 Tubular reactor

2.3 Glass manufacturing process

2.1 Introduction

This chapter presents examples of large scale processes in the field of chem-
ical process industry. The benchmark examples depict a one dimensional
tubular reactor and a glass manufacturing furnace. Both the benchmarks
are examples of Distributed Parameter Systems (DPS), with time and space
as independent variables that need to be solved by using the Computational
Fluid Dynamics (CFD) simulation tools. The full order model of the tubu-
lar reactor, in comparison to the glass manufacturing process, is easy to
understand, easy to model and easy to simulate. Only the mass and energy
balance of the tubular reactor are modeled. Due to its less complex nature,
it is easier to test the model reduction technique on the tubular reactor.

The prime interest of this thesis is to develop model reduction techniques,
especially suitable for large scale processes like glass manufacturing. A CFD
model of a glass manufacturing process depicting a 3-dimensional real pro-
cess is highly complex and often it is approximately of order 106 − 108.
Therefore it becomes difficult to evaluate the performance of a model reduc-
tion techniques due to the large efforts that are involved in obtaining a good
quality data from the 3 dimensional models. To overcome these difficulties,
a 2-dimensional model (actually a 3D model of very small width) of a glass
furnace is developed and it is used as a replacement of a 3D model though-
out this thesis. The 2D model offers similar complexity that of a 3D model
is relatively easier to model, to simulate, to extract and to process the data.
Although the efforts required for a 2D model are smaller in comparison to
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the 3D model, they are still significantly larger when compared to the efforts
that are needed for the tubular reactor.

2.2 Tubular reactor

2.2.1 Introduction to tubular reactor

Tubular reactors are widely used in the chemical process industry for carrying
out various reactions and they contribute significantly to the continuous
production. The raw material enters through one end and the product leaves
via the other end of the reactor. Due to the absence of any moving part
they are often preferred in the chemical process industry. Highly exothermic
reactions, e.g. polymerization reactions, are often carried out in such a
reactor so that they can be effectively cooled. Effective cooling is possible
due to a large ratio of surface to the volume of a tubular reactor. To overcome
the disadvantages of smaller volumes, tubular reactors sometimes appear in
bundels of many tubes placed next to each other with a common inlet and
outlet port. Sometimes they also appear in the form of coils.

Due to the large value of the ratio of surface to the volume, the length of
the tubular reactor is more important for deciding its dynamic behavior.
This distinguishes them from other unit reactors like batch and continu-
ous stirred tank reactors (CSTR), where the dynamics are assumed to be
lumped (perfectly mixed) without any significant spatial variation of the dy-
namic behavior. Therefore, the dynamics of a tubular reactor are function
of space and time, that is, the concentration and the temperature of its con-
tent is different at each location. Such a reactor is therefore modeled by
using Partial Differential Equations. In the past, when computing power
was limited, the dynamic solution (concentration, temperature, etc.) of the
governing partial differential equations was computed by approximating the
space as a lumped variable or by dividing the tubular reactor into a chain
of a few CSTRs. This eliminated the need of computing over the complete
length of the reactor. With advancement in computing power and numeri-
cal techniques, in order not to loose the spatially varying information, the
continuous space is approximated by dividing it in a large number of small
volumes, usually referred to as ‘spatial discretization’. Numerical schemes of
Finite Element or Finite Volume type are often used to perform such a spa-
tial discretization. The resulting model of the tubular reactor, therefore can
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consists of large number of Ordinary Differential Equations (ODEs) whose
temporal solution is computed using several types of numerical integration
schemes.

Depending on the initial conditions, boundary conditions, underlying reac-
tion kinetics (usually nonlinear) and values of the process parameters, dy-
namic behavior of the tubular reactor is difficult to understand and needs big
efforts to properly study it. Nevertheless, it has been used as a benchmark
for many different purposes and there are many tools to characterize the
dynamics of the tubular reactor. In this thesis, the tubular reactor is used
as a benchmark example to investigate the performance of the reduced order
modeling techniques developed in this thesis. For numerical computation
purpose, the tubular reactor model is discretized using the method of lines
and integrated using ODE suite from Matlab.

In Chapter 4 the benchmark example of the tubular reactor is used to study
the bifurcations, while in Chapter 7 it is used to study the performance of
proposed nonlinear model reduction technique. The generic appearance of a
tubular reactor is shown in Figure 2.1.

2.2.2 Modeling of a tubular reactor

The dynamical model of a tubular reactor is of the form (2.1).

∂T

∂t
=

1
Peh

∂2T

∂z2
− 1
Le

∂T

∂z
+ νCeγ(1− 1

T ) + µ(Twall − T ) (2.1a)

∂C

∂t
=

1
Pem

∂2C

∂z2
− ∂C

∂z
−DaCe

γ(1− 1
T ) (2.1b)

which are subject to the mixed boundary conditions

left side:

{
∂T
∂z = Peh(T − Ti)
∂C
∂z = Pem(C − Ci)

right side:

{
∂T
∂z = 0
∂C
∂z = 0

The model represents a reactor with both diffusion and convection phenom-
ena and a nonlinear heat generation term. The model is governed by coupled
partial differential equations. The system of equations can be classified as
non-self adjoint, parabolic PDEs. Many tubular reactor models that oc-
cur in literature can be adequately represented by this dimensionless model.
The model explains material and energy balances in the reactor. The model
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Figure 2.1: Tubular reactor

with its parameter values are taken from Zheng and Hoo (2002), which has
been originally taken from Gay (1989). First order reaction kinetics of the
reaction A → B are assumed here. T (z, t) and C(z, t) are dimensionless
temperature and concentration state variables, respectively, which are func-
tions of time t and position z. Here, t ∈ R+ is the temporal independent
variable and z ∈ Ω := [0, 1] is the spatial independent variable. Inputs to
the model are u(t) = (Twall(t)) which are the wall temperature influenced
by a heating/cooling jacket divided into three parts. The disturbances are
(Ti(t), Ci(t)), i.e. inflow temperature and the inflow concentration, respec-
tively. Initial conditions at time instant t = 0 are set to T0(z) = Tss and
C0(z) = Css, where Tss, Css are steady states profiles. The physical param-
eters of the system are given in the table below.

Peclet number (energy) Peh 5
Peclet number (mass) Pem 5
Lewis number Le 1.0
Damkohler number Da 0.875
Adiabatic temperature rise B 10.0
Activation energy γ 20.0
Heat of reaction ν 0.8375
Heat transfer coefficient µ 13.0

2.3 Glass manufacturing process

The discussion that follows in this section is applicable to the glass man-
ufacturing process. In subsequent subsections, the process, its operation,
characteristics, modeling, control and challenges offered by the process for
the model reduction are discussed. The general description is followed by
the description of a specific glass furnace model that is developed during
this thesis. The model is referred to as 2D glass furnace model and it is
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extensively used to validate the results of the model reduction techniques
that are developed during this thesis.

2.3.1 Introduction

Figure 2.2: Glass Manufacturing Furnace, a 2D view

Figure 2.3: Glass Manufacturing Furnace, a 3D view

Glass manufacturing is one of the oldest technologies known to the mankind.
There are some references to the glass production which go back to 1000 BC
in some old civilizations. The process that is used in practise now-a-days
differs a lot from the process that was commonly used to be in the past. Ad-
vancement in equipment design, furnace material, instrumentation and novel
process design makes the industrial glass manufacturing process (IGMP) as
one of the advanced process industry. Various types of high end glasses like
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Figure 2.4: Distribution of grid cells in 3D tank

float glass, LCD glass, Solar glass etc. has redefined the age old operation of
glass manufacturing. This is accompanied by the increased process manufac-
turing demand, increased process complexity, interacting process variables,
varying raw material properties, nonlinear multi-phase reactions, novel prod-
uct types, need of flexible process operations, demand for improved product
quality, tightening environmental regulations, increasing energy costs that
make IGMP very challenging from point of process modeling and control.

IGMP is usually carried out in large furnace. Figure 2.2 shows a schematic of
the process along the furnace length. The raw material is fed in the form of a
batch blanket. Depending on the glass type, the batch material may contain
different minerals (mostly silica based) or it may content recycled glass, or a
combination of both. High-end glasses like optical, solar and LCD glass need
precise knowledge of the content of the raw material and sometimes known
artificial chemicals are preferred over the minerals as the raw material. The
raw material enters from the inlet (on the left side) which is usually referred
to as a dog house, in the form of a batch blanket to float on the molten glass.
The batch material melts from the top side by the heat supplied by burners.
The hot glass that is already present in the tank melts the glass blanket from
the bottom. After circulating through the glass furnace for many (nearly 8-
40) hours, glass passes through the throat, circulates for some more time in
the refiner section and then finally leaves via the outlet commonly referred
to as the feeder or the working end.

Based on the type of a glass product, type of the furnace and the desired
process characteristics, the process operation varies a lot. But often, there
are roughly three regimes - melting, fining and refining. All these zones are
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shown in the Figure 2.2. A 3-dimensional view of the furnace sometimes
resembles a swimming pool filled with the molten glass. Figure 2.3 shows
a typical glass furnace without a combustion chamber, whereas the division
of geometry of a 3D furnace model into number of small grids is shown in
Figure 2.4.

• Melting

Melting of the raw material predominantly takes place in the melting
zone. Melting is a highly nonlinear process and involves multi-phase
reactions. That is, during the transition from solid to the liquid phase,
many gases are released and at the same time, depending on the type
of raw material, various chemical reactions take place simultaneously.
Glass temperature varies between 1100− 1650 0C in the melting zone.
Spatially varying heat distribution from the top combustion chamber
induces a gradient in glass temperature in different parts of the furnace.
This temperature gradient leads to a strong natural convection in the
furnace. The convective currents (flow patterns) characterize the pro-
cess operation. In an average glass manufacturing process, glass make
4-5 circulation loops in the melting zone and then enters into the fining
zone. The length of the melting zone is determined by the hot spot
location.

• Fining

Melting is followed by the fining process, which is necessary to remove
the high concentration of the dissolved gases from the molten glass.
Sometimes, fining agents are added which help to remove the gases
from the molten glass. Fining zone is mostly necessary for the high
purity glass. Depending on the type of the furnace, glass may make
couple of loops in the fining zone.

• Refining

Fining is followed by the refining process, which is necessary to dissolve
and to distribute the remaining undissolved gases during the fining
process. The glass coming out of the refiner has a low concentration
of the dissolved gases. The molten glass is cooled to an appropriate
temperature for glass forming by letting it go through a feeder. The
glass is then dosed into the equipment that form the glass in different
shapes.
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2.3.2 Process characteristics

• Large scale, complex process.

Glass manufacturing is one of the largest, energy intensive, industrial
chemical processes. The process is characterized by complex, multi-
phase reactive fluid flow. A large number of interdependent variables
like temperature, velocity, pressure, thermal conductivity, etc. make
the process difficult to understand. Moreover, the presence of three
dimensional flow patterns carries the effects from one operation zone
in the furnace to the other.

• Presence of multiple physical effects.

Increased demand for better quality, flexible operation, varied glass
types and demanding economic constraints have resulted into inclu-
sion of various physical effects into the glass manufacturing process.
Apart from melting, fining and refining many other physical effects
like bubbling, boosting, stirring, bottom wall heating/cooling etc. are
also present in the furnace. For a constant heat supply, bubbling and
electrical boosting are often used to influence the flow patterns inside
the furnace.

• Presence of dynamics with different time scales.

The process exhibit dynamics in the range of few minutes to days.
The effects of change in heat input are observed in half to two hours,
whereas the effects of change in pull-rate (feed amount) need many
hours to days to see its effect. The residence time of the glass in the
furnace is kept larger than the largest time constant of the process.
Usually the time constant of the changes in pull-rate is the largest for
a glass furnace. The furnace dynamics are characterized by the resi-
dence time of the glass. Residence time of an average furnace is around
40-60 hours. A residence time analysis also helps to compare the per-
formance of different furnaces. The intensity of the observed effects
and the time constants associated with various inputs/disturbances is
different in each region of the furnace. Usually the dynamics of exter-
nally supplied heat changes has the largest influence in the top layers
of the molten glass. The dynamics in the fining zone are the most
critical and they show intermediate behavior in comparison to the be-
havior in melting and the refining section. In comparison to other
unit operations in chemical process industry, the dynamic behavior of
a glass manufacturing process can be viewed as a series combination
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of ideal plug flow reactor (PFR) and a continuous stirrer tank reac-
tors (CSTR). The effect of the furnace input/distrubances is not just
limited to the residence time of glass or the flow pattern in the tank,
but it also influences the life of furnace material. The effect on the
furnace material is prominent if the pressure inside the furnace fluctu-
ates a lot. The variation of pressure inside the furnace results into the
switching between condensation and evaporation of metal oxide vapors
which further induces the corrosion of the furnace walls. Due to the
difficult process operation, it is desired to operate the furnace as sta-
ble as possible. Stability implies that the furnace is operated around
some steady state working point without any significant changes in the
operating conditions.

• Limited measurement information.

Corrosive nature of the glass at higher temperatures make it difficult
to access any process information by placing sensors inside the furnace.
The measurements are therefore limited to a few thermocouple placed
in the bottom wall of the furnace. Apart form the temperature sensors,
there are few level sensors to measure the glass depth.

• Operating conditions.

The process is operated at around 1400 − 16500C. The top layer is
hotter than the lower layers. Temperature keeps on decreasing along
the length of the furnace. Depending on the type of furnace usually
the production capacity varies between 50-200 tons/day. Similarly, the
average residence time varies from 40-60 hours.

• Quality criteria.

Usually the concentration of undissolved gas in the molten glass, trans-
parency of the product glass, its strength, breaking index, porosity,
color, chemical inertness etc. serve as the quality criteria.

• Control variables.

In order to run the process smoothly, the control variables of inter-
est are temperature distributions, flow patterns in the tank, depth of
molten glass, concentration of the dissolved gases, pressure in the tank,
NOx and CO2 formation in the exhaust, quality of the product glass
etc. Many of these variables are related to each other, e.g. quality of
glass is a function of flow pattern, which is a function of temperature
distribution, which is again a function of heat distribution.
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• Manipulated variables.

In order to bound the variations of control variables in a certain range,
manipulated variables like external heat supply, bubbling, stirring,
boosting etc. are used. The values of the manipulated variables are
determined by either the logic used in a control system, or they are
based on the experience of the plant operators.

• Disturbances.

Usually the batch (raw material) amount, batch compositions, batch
melting rate, outside environmental conditions, aging/corroding fur-
nace and the refractory walls, depleting insulation layers are the major
disturbances to the process operation.

• Optimization variables.

Optimization variables are total product throughput, minimization of
the fuel consumption, minimization of the product loss, minimization
of NOx quantity in the exhaust, maximization of lifespan of a furnace
etc.

2.3.3 Process modeling and open questions

Process modeling and simulation

Similar to many other processes involving fluid flows, the transport of phys-
ical quantities in a glass furnace is modeled with reasonable accuracy by a
set of Navier-Stokes equations of the form

∂ (ρφ)
∂t

+ div (φρυ) = div (Γ gradφ) + qφ (2.2)

where ρ is the mass density, υ is the velocity, div is the divergence operator,
Γ is the diffusion coefficient, qφ is source/sink term. When φ = 1 we have
continuity equation, for φ = υ we have momentum equation and for φ = H,
i.e. enthalpy, we have energy balance equation. The source/sink term is the
major contributor to the process non-linearity. It is the term which repre-
sents the contribution of physical effects like bubbling, boosting, reactions,
melting, combustion etc. Various mathematical models of the physical ef-
fects are presented in Krause and Loch (2002) and in the user manual of
glass process modeling software GTM-X. See, TNO (2008) for more details.
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The physical contact with external environment at various surfaces of the
furnace are approximated by appropriate boundary conditions of type Drich-
let, Neumann, Robin etc. Usually the initial condition for such models are
taken close to the steady state operating conditions of the glass furnace.

Simulation of a glass manufacturing process usually is performed by using
the Computational Fluid Dynamics (CFD) tools which involves discretiza-
tion of the spatial geometry in Navier-Stoke’s equation in (2.2). It is common
to employ the finite element or the finite volume discretization of the spatial
domain. Such spatial discretization for a model depicting a real furnace can
easily lead to a few hundred or million grid cells. During a simulation run,
solution of all time dependent variables is evaluated at each grid cell. Often,
the spatial geometry is divided into few blocks to facilitate the computations.
Each block may then consists of many discrete grid elements/volumes. Com-
bination of several numerical schemes are used to obtain reliable simulation
results. Simulation of residence time of glass in the furnace is performed by
simulating the flow patterns of large number of particles fed into the furnace
via inlet.

Some more details about mathematical modeling of glass manufacturing pro-
cess can be found in Patankar (1980), Post (1988), Krause and Loch (2002),
Huisman (2005) and in TNO (2008). Control and optimization oriented
modeling of the glass process is provided in Carvalho et al. (1997) and Backx
(2002).

Open modeling questions

Mathematical modeling of a glass manufacturing process has greatly evolved
over the years. With advancement in computer simulation techniques, such
models are increasingly finding their place as an important tool to under-
stand, to analyze, to predict and to control the glass manufacturing process.
Nevertheless, there are still many open questions in modeling of glass man-
ufacturing process. Few open question in modeling are listed below.

• There is a need to develop rigorous mathematical models that represent
physical effects like corrosion, reaction kinetics at micro level, melting
of the batch blanket, radiation effects for the clear (low absorption)
glass types, etc. Availability of these models and their simulations can
significantly improve the performance of glass manufacturing process.
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• Rigorous mathematical models have to be adjusted with respect to
the actual furnace behavior. This makes mathematical modeling and
parameter tuning for the existing furnaces an expensive process.

• The simulation techniques used for simulating the glass furnace models
need to become efficient especially to compute the transient (dynamic)
behavior of glass. further advances in developing the mathematical
models and the numerical schemes to evaluate the dynamic changes in
the residence time of glass as function of different process variables can
be very rewarding.

• The existing mathematical models and the numerical schemes are com-
putationally very inefficient and there is lot of scope for further im-
provement.

• The models which can explain the uncertainties in the plant and in the
process operation are still unavailable.

• The mathematical models of the process that are currently available
are not suitable to analyze the system theoretic notions like control-
lability, observability, stability, robustness etc. Therefore it becomes
difficult to extend the concepts from system and control theory to a
glass manufacturing process.

2.3.4 Control of glass furnace

In the first chapter of this thesis, the advantages and need for advanced
model based control of chemical processes is explained. Similar to any other
large scale chemical process, advanced control of glass manufacturing pro-
cess offers many intensives in term of improved performance, flexible process
operation, better process understanding, longer lifespan of the furnace equip-
ment and improved economic gain. The next subsection presents the scope
and challenges for the development of advanced controllers for the glass man-
ufacturing process. A model based controller using either a black-box type
of a model or a rigorous first principle model can drastically improve the
performance of a furnace. Currently there are more than 5000 furnaces all
over the world and they consume approximately 50× 109[m3/year] of natu-
ral gas. Even a small fraction of this if saved using modern process control,
it would translate into a big financial gain and a reduced process emission.
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Scope for model based process control

• To automate the overall glass manufacturing process and make wiser
decisions while manipulating the process variables.

• To minimize the effects of uncertainties and disturbances during the
process operation.

• To stabilize the operation for a given disturbance in the form of changes
in working point (load, color,batch amount etc.)

• To minimize the emission of the polluting exhaust gases.

• Approximately 50% energy usage in a glass manufacturing process is
for melting of raw glass. Improved performance in melting can save a
substantial amount of energy.

• Reproducibility of the results, stability of process operation and flexible
control of the process.

• Anticipate, understand and nullify the effect of disturbances, effect of
interaction among time varying variable and effect of operator inter-
ference.

• Novel glass types like solar glass, LCD glass and other engineering
application glasses need good understanding of the process with very
tight control of dynamic variables. Due to the increased interaction
among variables such processes need complete automation and can no
longer be easily controlled only with ‘past experience’.

• To make decisions in terms of solution to mathematical problems of
plant’s economic objectives, control objectives, objectives with respect
to emissions etc.

Challenges for model based process control of glass furnaces

Although the last subsection has described the advantages of advanced model
based predictive control (MPC) of glass manufacturing process, there are still
many challenges to its complete automation.

• The complex, nonlinear nature and interaction among the time vary-
ing variables of glass melting makes it difficult to control by model

29



based controllers based on linear black-box type of models. Rigorous
first principle models too cannot be used in MPC due to their large
state dimension and involved complexity. Such models need significant
computation time to simulate, which makes them unapplicable to be
used in MPC.

• Identification of data driven models that can be used in MPC need
expensive identification tests which are not easily permitted in the glass
industry due to the inherent economic losses during the identification
tests.

2.3.5 Model reduction

As explained in the introductory chapter of this thesis, model order reduc-
tion can be very useful for inferring lower dimensional mathematical models
for glass manufacturing process. Model order reduction can be seen as a
solution to the problem of having reliable, but computationally slow first
principle models on one hand, and, not very reliable (beyond the identifi-
cation domain) but computationally fast black-box models identified from
the plant input-output data. Model order reductions aims at reducing the
complexity (order, computation time, etc.) of full order first principle mod-
els which happen to be Computational Fluid Dynamic (CFD) models for
glass. This part of the chapter discusses glass manufacturing in perspective
of model order reduction.

Scope for model reduction

• Reliable reduced order models can be used for the process analysis,
design, control and optimization purposes for glass manufacturing pro-
cess.

• The advantages of having a Rigorous Model based Predictive Controller
(R-MPC) can be realized only through the availability of reduced order
models for a glass manufacturing process.

• Reduced order, computationally efficient models obtained from the first
principle models can be used as a replacement of an original process if
they are reliable and accurate enough. This will eliminate the need of
having an expensive identification test in the plant in order to identify
a good black-box model.
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• Unlike the black-box identified models which are obtained from plant
tests, depending upon the model reduction method used, the states
of the reduced order model may have a physical interpretation and
therefore they can have better acceptance among users of the reduced
order models.

Challenges for model reduction

Although, the reduced order models can be of great use for online control
and optimization purpose of glass manufacturing process, there are many
problems in inferring the reduced order models from full order first principle
CFD models. Some of them are listed below.

• Unlike other chemical processes, glass manufacturing is characterized
by its complex nature, very large state dimension of the full order
models (105− 108 states), interaction among several physical variables
and a combination of many physical effects.

• Applicability of physical insight based model reduction techniques like
time scale based separation, compartmental methods or approximate
inertial manifolds is limited due to the complex process nature and
large state dimension of the full order process model.

• Projection based model reduction techniques can lead to a dense struc-
ture of the reduced order models and might not offer any specific ad-
vantage in term of computational gain over the full order CFD model.

• Multidimensional geometry, non-Cartesian grids, model uncertainty
and limited sensor information can further pose challenges to construct
an effective reduced order model.

• For the extension of the notions from system theory like stability, ro-
bustness, optimality, controllability, observability, controller design,
etc. need suitable structure of a model and therefore reduced order
modeling need to consider these issues while inferring an approximate
model for the glass manufacturing process.

31



Current status of model reduction

Although there are many references in the literature about control of glass
furnace by using black-box type of identified models, the idea of inferring a
reduced order model of a glass manufacturing process from the CFD models
for the purpose of controller design is relatively new. Some early work in
this direction include work from Astrid (2004) and Huisman (2005). Astrid
(2004) has proposed a model reduction technique involving proper orthog-
onal decomposition and Galerkin type of projections of full order model
equations. The proposed technique is tried on industrial model of a glass
feeder. Moreover, it proposes a novel way, a technique of ‘Missing Point Esti-
mation’ (MPE) to infer computationally efficient reduced order models from
full order CFD model. In the work of Huisman (2005), he proposes a reduced
order modeling technique based on the tools like spectral decompositions and
system identification.

There are some drawbacks of both the approaches. Unlike feeder, a glass fur-
nace is more complex and it has melting, fining and refining of glass which
makes furnace operation a highly nonlinear process. Application of tech-
nique like Missing Point Estimation (see, Astrid et al. (2008) and Astrid
(2004)) which is based on the principles of interpolation for reconstruction
of the missing data might not be very promising to infer reduced order com-
putationally efficient models of a glass furnace. Applicability of MPE will
be limited due to relatively complex nature of furnace which is characterized
by a large spatial variation of the physical variables inside the glass furnace.
Moreover the reduced models inferred by classical POD (see, chapter 3) or
by MPE do not have a structure that is suitable for an easy extension of the
notions from system theory mentioned in previous subsection.

The method proposed by Huisman (2005) results in Linear Time Invariant
(LTI) model structure of reduced order models. Unfortunately, for a high
quality glass (with two circulation loops) the glass furnace shows highly
nonlinear behavior and a linear model, in general, is not sufficient. One
needs a richer model structure to accommodate the complex nonlinearities.
Not withstanding to the drawbacks, the result shown in the PhD thesis of
Huisman (2005) and Astrid (2004) are encouraging and have paved the way
to further investigate model reduction for glass furnaces from the perspective
of controller design.
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Contribution of this thesis

Continuing the work on the ideas proposed in Huisman (2005) and Astrid
(2004), this thesis has proposed some new approaches towards inferring a
low order, less complex, approximate model of a glass melting furnace. The
main contribution is already mentioned in the beginning of the first chapter
and in the thesis overview discussed in the section 1.3. To approximate the
nonlinearities in the glass furnace, this thesis has proposed two different re-
duced order model structures. The first reduced order model structure is of
Linear Parameter Varying (LPV) type and is suited to approximate the pro-
cess nonlinearities. It’s closeness to the LTI model structure inherits many
advantages offered by LTI model structure. With the same LPV reduced
order modeling structure, the nonlinear effect due to the uncertainties in the
furnace in the form of corrosion of a furnace wall is approximated. The sec-
ond reduced order model structure is of tensorial (multi-variable polynomial)
form. Such a structure allows process nonlinearities and at the same time it
is much more amenable to extend the notions from system theory that have
been developed for LTI models. More information about the thesis overview
can be found in section 1.3.

2.3.6 2D Glass furnace model
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Figure 2.5: Dimensions of 2D furnace model

This thesis aims at developing reduced order models specifically for a glass
manufacturing process. To invent, to develop and to validate any model re-
duction technique needs large number of simulation experiments in order to
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collect a representative data from a full order model. Full order CFD models
of glass furnace are approximately of order 105 − 108. Such a high order
and inclusion of nonlinear source/sink terms make these models computa-
tionally very slow and it often needs many days of simulation to estimate
the steady state solution of such a model. Dynamic (transient) simulation
of such a model also takes considerably more time. Such a large simulation
time can hinder the progress of developing model reduction techniques which
are suitable for applications like glass manufacturing process. To overcome
this problem of simulation time associated with a full order model , a 2
dimensional (small third dimension) model of glass furnace is developed.

The 2D glass furnace mimics the vertical cross section along the length of
3D glass furnace and has only 2 grid cells in z-direction (width). In total, the
2D furnace geometry was divided into approximately 6000 grid cells. The 2D
model needs much smaller simulation time in comparison to the full order
model. Similar to a 3D model, the simulation time of such a model is func-
tion of convergence threshold of various parameters, physical effects that are
modeled, combination of numerical integration schemes, overall distribution
of grid cells, real time simulation horizon, etc. For steady state simulations
with the same settings of numerical parameters, the 2D model needs half an
hour on normal configured PC. The CFD software that is used to build and
simulate glass furnace model is GTM-X, which is developed by TNO. See,
TNO (2008) for further details.

The PC configuration that is used for the research presented in this thesis
is; Manufacturer - Aragorn, Pentium 4 CPU, dual core converted to a single
core, 3.2gHz, 3 GB of RAM and Microsoft Windows XP professional version
2002, service pack 3.

A 2D view of a typical furnace is shown in Figure 2.2. Bottom wall has sensor
S1 to S9. Although, the research results about model reduction presented
here are based on the simulations, the sensor positions S1 to S9 depicts real
life sensor positions and they are useful while comparing the outcome of spe-
cific model reduction strategies that are explained in subsequent chapters.
The figure also shows different stages (melting, fining, refining) during man-
ufacturing of glass. The details of these operations are already discussed in
the introductory section of a glass manufacturing process. The dimensions
of the 2D tank are shown in Figure 2.5, while the temperature distribution in
the 2D tank is shown in Figure 2.7. Figure 2.7 shows that the temperature
is highest in the top layer due to the heating from flames. The temperature
in the lower part and along the length of the furnace keeps on decreasing.
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The throat height in Figure 2.5 is equal to 0.3[m]. It has big influence on
the overall dynamic behavior of the furnace and it is discussed in next sub-
section. The average residence time of glass in the 2D furnace is similar to
that of a 3D furnace and it is around 40-60 hours. The plot in Figure 2.6
is a simulated residence time plot. The residence time is evaluated by an-
alyzing how long the trace particles fed through the inlet stays in the glass
furnace. The number of particles considered were 10000 and the average
residence time is of practical interest. The minimum residence time among
these particles characterize the poorest quality of glass. As it is difficult to
observe the path of all the particles in the tank, usually the flow path of
the particle corresponding to the minimum and maximum residence time is
analyzed. Figure 2.8 shows the particle path of a random particle in the fur-
nace, which characterizes the average flow pattern of the molten glass in the
tank. The figure confirms that glass enters from the left end, mixes for some
time in the melting zone as shown by few circulation loops and then enters
into the fining zone. Again it makes few rotations there and then finally
leaves through the throat zone and enters into the refining zone. Sometimes
to get rid of all the remaining bubbles and to homogenize the glass, it is
preferred that the glass make few loops in the refining zone as well. Finally
glass leaves via the outlet situated at the top right corner of the furnace.

The physical effects that are modeled in the simulation of 2D glass furnace are
- flow, energy, melting of raw material (batch), and a bubbler. The heating
is provided only from the top surface and the heat input profile of the 2D
furnace model was kept similar to an average 3D model and schematically
it was close to the one shown in Figure 2.2. In most of the real life cases,
the hot spot location, its heat intensity and the distribution of heat are
used to adjust the first loop (melting) while bubbler is used more to induce
local mixing in a cold glass at the bottom and to get rid of the smaller gas
bubbles formed as result of reactions. In the 2D furnace model, due to its
small width, the bubbler was playing a major role by inducing mixing in
the furnace while the hot spot location, its heat intensity and distribution of
heat were not very effective in controlling the flow pattern and mixing in the
furnace. The time varying variables that are calculated are - temperature,
velocity in three directions, pressure, viscosity, density, thermal conductivity,
energy, force, specific heat and batch concentration.
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Figure 2.6: Residence time distribution in 2D tank

Figure 2.7: Temperature distribution in 2D glass furnace model

Step response of the 2D furnace model

Figure 2.9 shows the step response of the 2D model in different regions of
the furnace. The step response characterizes the overall dynamic behavior
of the glass in different regions of 2D furnace. The input signal chosen for
the excitation is the feed rate of raw glass, which is also equal to the product
removal rate called as pull-rate in the glass industry. The step amplitude was
equal to 1% of the nominal value of 3.5 tons/day. The convergence threshold
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Figure 2.8: Particle Trace: Flow pattern of a random particle in the furnace

Figure 2.9: Step response of 2D furnace: Temp. change as result of step
change in feed rate. Right, zoomed version.

of the solutions during the simulation was 10−5.

The outputs that are analyzed are the temperatures at few sensor locations
which are shown in figure 2.2. The figure also shows the location of sensors
with respect to the bottom left corner of the tank. It is clear from Figure
2.9 that for a 2D furnace model the glass behave differently in each region.
Most of the regions show relatively slow response due to the large ratio of
tank capacity (≈ 4 ton) to the feed rate (≈ 3.5 ton/day). The characteristic
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properties like rise time, settling time are different in each region. The
melting and the refining region shows opposite behavior because raw material
is added in the melting region whereas glass as a finished product is taken
away from the refiner. The fining zone shows a mixed behavior as this region
has first influence of melting section and later after long time, it has influence
of refining section (a colder region), due to the back-flow of glass from the
refining zone. Therefore the glass behavior in fining zone is the most difficult
to be approximated by a linear model. For high quality glass, fining zone is
necessary. The response of changes in the pull-rate is more evident and fast
in the throat region as compared to other regions. Glass behaves linearly in
the throat region. The average time constant (63% of steady state value)
is 4-5 hours for the 2D tank. This analysis of the dynamics of 2D tank
was useful in designing proper excitation signals during the identification of
reduced order models in subsequent chapters.

Software architecture

The overall software architecture that is used to simulate the 2D CFD model
of a glass furnace and the steps involved in processing of its data are shown
in Figure1 2.10. The software architecture can also be used for the 3D CFD
model. The glass furnace simulation software that is used to build a full order
model is GTM-X and it is a CFD based software tool from TNO (2008). The
software has different parts for different purposes. A Batch file is used to
generate the furnace geometry by using a user interface X-GUI. Along with
the generated geometry (grid) file a default model description file called case
file is generated, which is later needs to be modified by the user. It is the
case file where the initial conditions, the boundary conditions, the model
constants, the numerical schemes and their parameters, the heating profile,
types of governing models etc. are mentioned. Using the simulation kernel
GTM-X, the full order CFD model that is defined in a case file is simulated
for the geometry generated by the grid file. The results can be viewed again
in X-GUI. This full order GTM-X model gives access to the complete state
information but it is not possible to access the governing equations that are
coded in the software.

The second part of the software is developed separately in order to automate
the extraction and subsequent processing of the data from GTM-X. The

1The figure and some part of the software is provided by R. Romijn and L. Ozkan as
part of the research collaboration, PROMATCH
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automated part performs writing the case files, running them through GTM-
X kernel, creation of the geometry, extraction of the generated data, its
processing and carrying out data based model reduction techniques which
are explained in subsequent chapters. This part of the software was built in
software environment of matlab.

These software tools were also used to automate and simulate the effect of
corrosion of the throat wall in the 2D model. The effect of wearing of throat
wall in the form of corrosion is explained in next subsection.

GTM-X

case file grid file

X-GUI

batch file

visualization
file

read
visualization

file

determine
geometrical

change

write new
batch file

control
of

the loop

MATLAB

software environment / code

text files (ascii)

functional parts

graphical
representa-

tion,
basis

function
computation

Figure 2.10: Software Architecture

Corrosion of throat wall

In this thesis, apart from approximating the process non-linearity in the
reduced order modeling framework, the effect of very slow geometric changes
that take place in real 3D furnace in the form of throat or dam wall corrosion
are also studied. The corrosion of the throat wall is shown in Figure 2.2.
Corrosion or wearing of different parts of the furnace walls occurs over the
years due to the aggressive nature of the glass at high temperatures and due
to the emission of corrosive gases. The effect of corrosion on the furnace
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Figure 2.11: Occurrence of back-flow

Figure 2.12: Temperature in the throat region, h1 = 0.2

Figure 2.13: Temperature in the throat region, h2 = 0.3

dynamics is more prominent near the throat region. In the throat region,
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the corrosion results into back-flow of molten glass from the refining zone
to the fining zone. Such back-flow behavior causes uncertain changes in the
temperature distribution in the furnace which ultimately can lead to the
economic losses. For the 2D furnace we observe this bifurcation behavior i.e
the occurrence of back-flow somewhere between throat heights of 0.2m (h1)
and 0.3m (h2). Figure 2.11 shows that corrosion of throat wall results into
completely different velocity pattern in the throat section of the furnace.

The effect of back-flow can also be verified by viewing Figure 2.12 and Figure
2.13, where the temperature (in Kelvin) plots corresponding to the two cases
of h1 and h2 is shown. Plot shows that temperature in the melting and fining
zone decreases as result of mixing of the cold glass from the refiner section.
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3

Tools from Theory

3.1 System Identification
3.2 Model reduction and POD
3.3 Model reduction as an

identification problem:
Literature overview

3.4 Applicability of methods:
Comments on literature
review

This chapter presents various mathematical tools and system theory concepts
from the literature that are relevant for the purpose of this thesis. Some of
the presented tools are often used in subsequent chapters. These involve
tools from system identification theory and tools from projection and model
reduction theory like Proper Orthogonal Decomposition (POD). We include
a number of methods where the model reduction problem is represented as
an identification problem. Some past methods presented in the literature
with similar aim are also briefly presented in this chapter. Based on the
available model reduction methods/techniques from the literature and on the
thesis objectives discussed in section 1.2, applicability of different methods
is compared and discussed in section 3.4.

3.1 System Identification

System Identification is a well known research field developed by the system
and control community in order to identify the controller oriented models
from plant input-output data. Classical identification techniques include
parametric methods where different structures of Linear Time Invariant
(LTI) models are proposed. The parameters of these models are estimated
using some parameter estimation techniques of Ordinary Least Square (OLS)
type. Many well known model structures like Auto-Regressive (ARX), Out-
put Error (OE), Box-Jenkins (BJ) etc. have been treated in this setting.
We refer to the literature in standard references including Ljung (1999) and
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many others. The overall system identification approach aims at identifying
the best model from a given model class, where "best" means the model
that optimally explains a given data set. Typically, data is generated by
exciting the dynamics of the system whose model needs to be identified.
Based on the input and output data, the model parameters are estimated
in a specific model class in order to predict the dynamic behavior of the
process. There are few non-iterative identification techniques like subspace
state space methods. Such methods takes memory effects or the states of
a dynamical system into account which are subsequently modeled as the
connection between process inputs and outputs. As this method is often
used in model reduction techniques that are proposed in this thesis, they are
explained in more details in the next subsection.

There are many nonlinear identification techniques as well. Nonlinear iden-
tification techniques are usually tailored as per the type of a process and
its underlying nonlinearity. Some examples of nonlinear identification tech-
niques are nonlinear auto-regressive, Wiener-Hammerstein configurations,
black-box methods (see, e.g. Sjoberg and et. al. (1995)), neural networks,
fuzzy logic, support vector machine models (see, Goethals et al. (2005)), grey
box models as explained, for instance in Romijn et al. (2008) and many oth-
ers. A good overview of many nonlinear identification methods in the form
of a bibliography is compiled in Giannakis and Serpedin (2001). Lately, the
grey-box modeling approaches has drawn lot of attention in the identification
community.

System identification techniques that result in LTI models are well suited
for analyzing the system properties like stability, convexity, system invariant
properties and closed loop performance. Whereas nonlinear models are not
very well suited for such a purpose. This has paved a way for identifica-
tion of Linear Parameter Varying (LPV) systems. Identified LPV models
approximates the non-linear behavior on one hand and on the other hand
they offer the possibility to extend the notions from classical LTI systems
theory as well. Later in this thesis a model reduction framework involving
LPV systems is proposed.

3.1.1 Subspace state-space identification techniques

Subspace state space identification techniques have their origin and inter-
pretation in terms of geometry, system theory and linear algebra. The tech-
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niques results into model structure in the form of state space matrices. As
modern control theory uses a state space description of the system, subspace
methods became one of the most favored identification technique. From ob-
served input-output data, the subspace identification methods aim to iden-
tify the dominant subspace in which the system dynamics evolve. There is
some similarity between the subspace identification method and the POD
reduction schemes involving Galerkin projections. POD is primarily used
for systems which are distributed in space, and it employs spatio-temporal
decompositions of the system solutions. Whereas, the subspace identifica-
tion is applicable to the systems which are lumped in space and employs a
decomposition of the Hankel matrix, which characterizes the temporal evolu-
tions only. The subspace identification method is based on the input-output
data, whereas the POD method exploits the availability of state information
from the full order model. In our recent work, Wattamwar et al. (2009b) we
have proposed a novel method of model reduction which exploits similarity
and differences between POD and subspace identification methods. Some
standard references about the overview of the system identification methods
include Overschee and Moor (1996), Qin (2006),etc. This method has been
applied to many MIMO LTI systems. Advantages of subspace methods over
prediction error methods are compared in Favoreel et al. (2000) for many
industrial applications.

A general linear discrete time-invariant state space system obtained by sub-
space identification techniques is given by (3.1)

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k) (3.1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rnu is the input vector,
y(k) ∈ Rny is the output vector. The subspace identification problem
amounts to estimating state space matrices A,B,C,D from observed input-
output data. Although for the research work presented in this chapter we
have used standard N4SID algorithms which are available in various com-
mercial software packages, for the sake of completeness of the presentation
we explain this identification method here briefly. Like any other identifica-
tion technique, the quality of the identified models obtained from subspace
identification techniques depend on the input-output data. Usually the in-
put signal is designed such that it excites system dynamics covering a desired
frequency range. Pseudo Random Binary Signals (PRBS) or sum of multi-
sine signals are often used to excite the underlying process. We elaborate
the details of choice for the identification signal in section 5.2. In subspace

45



identification methods the postulated model (3.1) is used to formulate a ‘s’
step ahead prediction as in (3.2),

ys(k) = Osx(k) + Tsus(k), for k = 1, . . . ,K − s (3.2)

where,

Ts =



D 0 0 0
CB D 0 0
CAB CB D 0
. . . .

CAi−2B CAi−3B . . . D


∈ Rsny×snu (3.3)

is a lower block triangular Toeplitz matrix, and

Os = col
(
C,CA,CA2, . . . , CAs−1

)
(3.4)

is the observability matrix such that Os ∈ R(sny)×n, where, s ≥ n. In this
chapter, the operator col stands for the column stacking operator, i.e.

col(a, b) =

(
a

b

)
, (3.5)

and
us(k) = col (u(k) u(k + 1) . . . u(k + s− 1)) ∈ Rsnu , (3.6)

ys(k) = col (y(k) y(k + 1) . . . y(k + s− 1)) ∈ Rsny (3.7)

are stacked input and output column vectors. In matrix form, for k =
0, 1, ...,K − s these equations are given by eq. (3.8)

Y0,s,K−s = OsX0,K−s + TsU0,s,K−s, (3.8)

where, X0,K−s is the state matrix, Y0,s,K−s and U0,s,K−s are the output and
input Hankel matrices defined by

U0,s,K−s = [us(0), . . . , us(K − s)] ∈ R(snu)×(K−s−1) (3.9)

Y0,s,K−s = [ys(0), . . . , ys(K − s)] ∈ R(sny)×(K−s−1) (3.10)

X0,K−s = [x(0), . . . , x(K − s)] ∈ Rn×(K−s−1) (3.11)

The identification of (A,B,C,D) in (3.1), is carried out in two steps. The
first step always performs the (weighted) projection of the row space of the
above mentioned Hankel matrices. From this projection the observability
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matrixOs and/or an estimateX0,K−s can be retrieved, see e.g. Favoreel et al.
(2000). In the second step, the system matrices A,B,C,D are determined.
In some more detail, the first step of all subspace methods can be briefly
described as follows: Find OsX0,K−s of (3.8) by the orthogonal projection
of the row space of Y0,s,K−s onto U⊥0,s,K−s, where

U⊥0,s,K−s = Ik − UT0,s,K−s(U0,s,K−sU
T
0,s,K−s)

−1U0,s,K−s (3.12)

is an annihilator of U0,s,K−s in the sense, that

U0,s,K−sU
⊥
0,s,K−s = 0. (3.13)

This leads to
Y0,s,K−sU

⊥
0,s,K−s = OsX0,K−sU

⊥
0,s,K−s. (3.14)

Eq. (3.14) shows that each column of Y0,s,K−sU
⊥
0,s,K−s is a linear combination

of the columns of Os, i.e. the column space of Y0,s,K−sU
⊥
0,s,K−s is contained

in the column space of Os. In the second step we have 2 possible approaches.
With the Singular Value Decomposition (SVD), following set of equations
can be obtained:

Y0,s,K−sU
⊥
0,s,K−s = (U1 U2)

(
S1 0
0 0

)(
V T

1

V T
2

)
(3.15)

rank(Y0,s,K−sU
⊥
0,s,K−s) = n, i.e. the number of non-zero singular values

(3.16)
Os = U1S

1/2
1 (3.17)

X0,K−sU
⊥
0,s,K−s = S

1/2
1 V T

1 (3.18)

Left singular vectors [U1 U2] contain the information about the observability
matrix Os, i.e. (3.17) while the right singular vectors [V1 V2] contain the
information about the states X0,K−s, i.e. (3.18). Algorithms like N4SID
and CVA uses estimate of states, while MOESP, IV-4SID uses the extended
observability matrix. State space matrices A and C can be determined from
observability matrix Os as in (3.4). First ny rows of Os gives C,

C = Os(1 : ny, :) (3.19)

Os(1 : (s− 1)ny, :)A = Os(ny + 1 : sny, :) (3.20)

while by solving the overdetermined (if s > n) equation (3.20), A is de-
termined. Note that all the state space matrices in subspace identification
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algorithms are determined upto a similarity transformation. Once A and C
are determined, B, D and initial conditions x(0) can be determined from
input-output data by writing it as

y(k) = CAkx(0) +

(
k−1∑
τ=0

u(τ)T ⊗ CAk−τ−1

)
vec(B) +

(
u(k)T ⊗ Iny

)
vec(D).

(3.21)
Here, ⊗ is the Kronecker product and Iny ∈ Rny is the identity matrix. vec
operator stacks columns of a matrix over each other, i.e. if B = [B1 B2] ∈
Rn×2, then

vec(B) =

(
B1
B2

)
∈ R2n×1

Equation (3.21) can be written as

y(k) = ψ(k)ϑ, (3.22)

where,

ψ = [CAk
(
k−1∑
τ=0

u(τ)T ⊗ CAk−τ−1

) (
u(k)T ⊗ Iny

)
] and (3.23)

ϑ = col (x(0), vec(B), vec(D)) (3.24)

and (3.23) consists product of C,A and inputs u. The unknown parameter
vector ϑ is usually estimated by using Least Square Estimation Techniques
which solves following optimization problem,

min
ϑ

1
K

K−1∑
k=0

||y(k)− ψ(k)ϑ||22 (3.25)

Considering the complete dataset, (3.25) can be written in matrix form as,

min
ϑ

1
K
||YK −ΨKϑ||22 (3.26)

Here, YK = [(y(0), . . . , y(k − 1)] and ΨK = [ψ(0), . . . , ψ(k − 1)]. The esti-
mated solution ϑ̂ of the optimization problem in (3.26) is given by,

ϑ̂ =
(

1
K

ΨT
KΨK

)−1 1
K

ΨT
KYK (3.27)

For further details of the subspace identification technique, interested readers
are referred to Overschee and Moor (1996) and Favoreel et al. (2000). The
complete procedure is repeated in the form of an algorithm as follows:
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Algorithmic procedure

• Assume the model structure (3.1) and collect the data u(k) and y(k).

• Choose n > 0; set n ≤ s < K. Construct the stacked vectors (3.6),
(3.7) and Hankel matrices (3.9),(3.10) and (3.11).

• Construct the annihilator (3.12) and get (3.14).

• Get Os as in (3.17) by performing SVD as in (3.15).

• Estimate state space matrices A and C from (3.20) and (3.19) respec-
tively.

• Estimate B, D and x(0) by solving (3.26) whose solution is (3.27).

3.2 Model reduction and POD

As explained in the introductory chapter of this thesis, for some large scale
applications, model reduction is necessary for the design of model based con-
trollers. Model reduction can be viewed as a mathematical solution to the
dilemma in which on one hand, great details of a process are necessary to
understand its dynamic features. While, on the other hand, simpler and
computationally efficient models are needed to perform model based opti-
mizations and control system designs. Model reduction therefore involves
the crucial trade off between the information that is kept and the informa-
tion that is thrown away which is irrelevant for the optimization and control
purpose. A good model reduction technique therefore tries to keep the neces-
sary information and throws away the unnecessary. This can also be viewed
as the retention of the most relevant system memory.

There are different model reduction techniques. Some of them are based
on physical insight of the process like compartmental methods, time scale
separation methods, traveling waves, flatness based methods, approximate
inertial manifolds etc. Such methods, based on the process insight sepa-
rate the relevant from irrelevant information and suggests to throw away
the irrelevante part. There are some other algorithmic methods which do
not need any special process insight and can be applied to different type
of systems without much extra efforts. Many model reduction techniques
suitable for LTI systems like gramian based balancing and truncation, Han-
kel norm approximation can be categorized under such techniques. Such
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methods are based on estimation of dominant subspace in which the system
dynamics evolve. Most of them involves, some form of Eigenvalue Decom-
position techniques to estimate the dominant subspace that is spanned by
the eigenvectors. Such techniques are motivated by the fact that for a lin-
ear system, the amount of the energy that is supplied can be recovered if
there are no losses. The reduced order models are then inferred by projec-
tion of the full order model onto the dominant subspace. This thesis has
investigated model reduction techniques to infer reduced order models for
the class of systems described by partial differential equations and generally
referred to as the Distributed Parameter Systems (DPS). Classical solution
techniques amounts to approximating the infinite dimensional system by a
finite dimensional one by projecting it on some Hilbert space spanned by
finite number of orthonormal basis functions. This is a form of model order
reduction, from infinite order to the a finite one. Within this context, the
next subsection describes the projection of a generic infinite dimensional sys-
tem. This is followed by the explanation of method of the model reduction
by the Proper Orthogonal Decomposition (POD).

The difference between the POD and any other projection technique lies in
the estimation of the projection space. POD based model reduction tech-
niques has many desirable features. The POD method allows nonlinearities
in the system and it is suitable for model reduction of spatio-temporal sys-
tems. It is data based method, therefore it is empirical in nature. It is
physically natural in the sense that it searches for the coherent patterns in
the system. Moreover, the method of POD is optimal in the sense that it
projects the solution of full order model on a subspace which is optimal with
respect to some cost function characterizing the projection residue. How-
ever, it has few drawbacks as well. As the method is data dependent, the
reduced order models obtained from POD are highly dependent to the input
excitation signal. Moreover they are system representation dependent and
there are no clear error bounds. Another drawback of the projection based
POD method is that the possibly original sparse structure of a DPS is lost
during the projection of DPS on the reduced space. While doing so, the re-
sulting reduced order model has a dense structure which needs a significant
computation time. Therefore for some applications, the advantage of having
a reduced order model by the method of POD does not lead to any remark-
able gain in simulation time and the very purpose of having a reduced order
model is lost. Nevertheless, many recent developments (see section 3.2.3) in
the POD method makes it attractive from computational purpose as well.
The methods that are proposed in this thesis in subsequent chapters are also
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directed towards the similar purpose. The POD method as explained in next
subsection is often used in this thesis while proposing a new model reduction
framework.

3.2.1 Model reduction by projection

In this section, discretization of infinite dimensional Partial Differential Equa-
tions (PDE) using Galerkin projection is presented. Discretization is treated
as a form of model reduction, from infinite dimensional to the finite dimen-
sional. The discretized PDE result into a model in Ordinary Differential
Equation (ODE) form. In this thesis the discretized version of original dis-
tributed parameter system is referred to as a full order model. The approach
that is presented in this subsection is used to propose the model reduction
using the POD method in the next subsection.

Consider a system which is governed by a partial differential equation of the
generic form

∂T

∂t
= A(T ) + B(u) + F(T, u). (3.28)

where the solution T : Ω × R → R is a function of a spatial configuration
variable z ∈ Ω and time t ∈ R. We assume that for all time instants t ∈ R,
T (·, t) belongs to some Hilbert space H of functions defined on Ω. Here
A : H → H and B : U → H are linear operators where U denotes some input
space of functions u : R→ Rm. For a model equation based on conservation
laws, A typically represents convection and diffusion phenomena while B
is an input operator that represents external influences. F is a non-linear
operator depending on T and the input u. Suppose that {ψj}∞j=1 with ψj ∈
H is an orthonormal basis of H in the sense that

〈ψi, ψj〉 = δij . (3.29)

Here, δ is the Kronecker delta and 〈·, ·〉 denotes the inner product in the
Hilbert space H. A solution T of eq. (3.28) then admits a representation

T (z, t) =
∞∑
j=1

αj(t)ψj(z), z ∈ Ω (3.30)

where, for any t ∈ R,

αj(t) = 〈T (z, t), ψj(z)〉 for j = 1, . . . ,∞ (3.31)
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are the modal coefficients, associated with the basis. Numerical computa-
tion of a solution T invariably requires a spatial discretization of Ω and the
approximation of the infinite sum in eq.(3.30) by a finite one. Specifically,
for n > 0, the truncated expression

Tn(z) =
n∑
j=1

αjψj(z), z ∈ Ω (3.32)

is used as approximation of T where the approximation order n is decided
based on some accuracy threshold and the basis functions ψj , j = 1, . . . , n
are usually taken as indicator functions on a complete partitioning Ωj of
Ω. For the purpose of inferring a finite dimensional model for eq. (3.28),
let Hn be the n dimensional subspace of H that is spanned by the first n
orthonormal basis functions ψ1, . . . , ψn. Define the canonical projection and
injection operators

Pn : H → Hn (3.33)
In : Hn → H (3.34)

The projection operator Pn then maps the solution T of (3.30) to a finite
dimensional space Hn according to Tn = Pn T , which is represented by
eq. (3.32). The injection operator In embeds an element Tn ∈ Hn into the
infinite dimensional space according to T = In Tn. Note that Pn In is the
identity operator on Hn.

A finite dimensional model will be obtained from (3.30) by approximating T
in (3.30) by InTn and using projection and injection operations as follows:

Pn
∂InTn
∂t

= PnA(InTn) + PnB(u) + PnF(InTn, u). (3.35)

Recall that A, B and ∂
∂t are linear operators. Define An = PnAIn, Bn =

PnB and define Fn : Hn × U → Hn by setting Fn(Tn, u) := PnF(InTn, u).
Since Pn projects on a finite Hilbert space, eq. (3.35) becomes an ordinary
differential equation as follows:

d Tn
dt

= An(Tn) + Bn(u) + Fn(Tn, u). (3.36)

Eq. (3.36) is a finite dimensional model which can be equivalently repre-
sented in terms of the basis functions ψ1, . . . , ψn by performing a so called
Galerkin projection:

〈ψj ,
∂T

∂t
〉 = 〈ψj ,A(T ) + B(u) + F(T, u)〉 for j = 1, . . . , n. (3.37)
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Due to the linearity of the inner product, eq. (3.37) reduces to

∂〈ψj , T 〉
∂t

= 〈ψj ,A(T )〉+〈ψj ,B(u)〉+〈ψj ,F(T, u)〉 for j = 1, . . . , n.. (3.38)

Substitute in the latter expression the expansion eq. (3.32) for T and use the
assumption (3.29) to infer that

dαj
dt

= An,j(α) + Bn,j(u) + Fn,j(α, u), j = 1, . . . , r

where

An,j(α) = 〈ψj ,
n∑
i=1

αiA(ψi)〉

Bn,j(u) = 〈ψj ,B(u)〉

Fn,j(α, u) = 〈ψj ,F(
n∑
i=1

αiψi, u)〉

and where we stacked the coefficients α1, . . . , αn in a vector α = col(α1, . . . αn).
In vector notation, (3.37) is therefore approximated by the ordinary differ-
ential equation

d

dt
α = An(α) + Bn(u) + Fn(α, u). (3.39)

with the obvious definitions for An, Bn and Fn. Eq. (3.39) is the full order
finite dimensional model as an approximation of the infinite dimensional
system (3.28). The number n constitute the number of ODEs, i.e., the order
of the full scale model. Note that the states of the finite dimensional model
in eq. (3.39) are the time-varying modal coefficients in the finite expansion
in eq. (3.31). Therefore, eq. (3.39) and eq. (3.36) are equivalent expressions.
Any solution α of eq. (3.39) defines an approximate solution to the original
model though the expansion (3.32).

3.2.2 Low order models by POD

One of the most promising and successful techniques for an efficient reduction
of large-scale nonlinear systems in fluid dynamics is the method of Proper
Orthogonal Decompositions (POD), also known as the Karhunen-Loève de-
composition. The method was independently introduced by Karhunen (1946)
(also see Karhunen and Kari (1947)), Loève (1978) (see also, Loève (1945)),
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Pougachev (1953), and Obukhov (1954). The method is often applied to large
scale data to study the statistical properties. See Lorenze (1956), Lumley
(1967) and Holmes et al. (1996) for use of the POD method for PDE based
fluid flow models. Kunisch and Volkwein (2002) provide the Galerkin POD
method for general equations in fluid dynamics. The work from Sirovich
(1987) is about turbulence and coherent patterns. Error analysis for non-
linear dynamical systems in finite dimensions were carried out in Rathinam
and Petzold (2002). Some work related to the POD method from control
perspective is provided in Shvartsman and Kevrekidis (1998), Afanasiev and
Hinze (2001), Ly and Tran (2001), Tang et al. (1999). Work related to con-
trol of fluid flows using the reduced POD models is presented in Ravindran
and Ito (1998) and Ravindran (2000). Relation between the POD method
and balancing is provided in Lall et al. (1999), Willcox and Peraire (2002).

The problem of model order reduction using the method of POD amounts
to finding approximate solutions T of the infinite dimensional representa-
tion (3.28). In practice, this problem usually amounts to first approximating
T by a high, but finite n-dimensional, system like the one we derived in
eq. (3.39). Then, as a second step, solutions to the high order finite dimen-
sional system are approximated by a low order model of dimension r < n.
This practice is most common when reduced order models are inferred from
finite element or finite volume implementations of infinite dimensional sys-
tems.

The POD method is based on the observation that in many processes involv-
ing fluid flows, flow characteristics reveal coherent structures or patterns.
This has led to the idea that the solutions Tn may be approximated by Tr
by expanding Tr in a small number (r) of dominant coherent structures ϕj ,
called modes. The functions ϕj are inferred in an empirical manner from
the measurements or from the simulation data. As we are interested in com-
plete state information, we have opted to consider the simulation data from
a full scale model as in eq.(3.36). From the simulation data the POD basis
functions are obtained as follows.

Let us redefine the solution of the reduced order model Tr as an approxima-
tion to the solution Tn of the full scale model (3.36), where r < n. Similar
to the finite expansion (3.32), Tr is assumed to be represented by

Tr(z, t) =
r∑
j=1

ϕTj (z)aj(t), z ∈ Ω, (3.40)
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where aj are the modal coefficients and the functions ϕj , j = 1, . . . , r define
a, possibly different, set of the orthonormal functions in Hn. The derivation
of these functions by using the method of model order reduction is elaborated
in subsequent paragraphs.

Given an ensemble Tn(·) of K measurements Tk
n(·), k = 1, . . . ,K of simula-

tion data of a full scale model, with each measurement defined on the spatial
domain Ω, the POD method amounts to assuming that each observation
Tk
n belongs to the Hilbert space Hn of functions defined on Ω. With the

inner product defined on Hn, and a collection {ϕj}nj=1 such that ϕj ∈ Hn
is an orthonormal basis of Hn if the inner product 〈ϕi , ϕj〉 = δij , and if
any element, say Tk

r ∈ Hn, admits the representation as in eq. (3.40). The
approximate solution causes an error ‖Tn −Tr‖ in the norm of the Hilbert
space. We will call {ϕj}nj=1 a POD basis of Hn whenever it is an orthonor-
mal basis of Hn for which the total approximation error over the complete
ensemble, i.e when

er =
K∑
k=1

‖Tk
n −Tk

r‖ (3.41)

is minimal for all truncation levels r. This is an empirical basis in the sense
that every POD basis depends on the data ensemble. Using variational
calculus, the solution to this optimization problem amounts to finding the
normalized eigenfunctions ϕj ∈ Hn of a positive semi-definite operator R :
Hn → Hn which is defined by

〈ξ1, Rξ2〉 :=
1
K

K∑
k=1

〈ξ1,Tk
n〉 · 〈ξ2,Tk

n〉 (3.42)

with ξ1, ξ2 ∈ Hn. Here, R is a well defined and positive semi-definite matrix.
A POD basis is obtained from the normalized eigenvectors of R in the sense
that the POD basis functions satisfy Rϕj = λjϕj for j = 1, . . . , n where the
non-negative eigenvalues are ordered according to λ1 ≥ · · · ≥ λn ≥ 0 and
where the eigenfunctions ϕj are normalized in the sense that 〈ϕi, ϕj〉 = δij .
See e.g. Astrid (2004).

The modal coefficients aj in eq. (3.40) are referred to as POD modal coeffi-
cients and satisfy

aj(t) = 〈ϕj , Tn(·, t)〉 for j = 1, . . . , r, t ∈ R. (3.43)

Subsequently, as explained in section 3.2.1, a Galerkin projection is used to
deduce a reduced order model from the full scale model (3.36) by projecting

55



the model residual on the span of dominant r POD basis functions:

d 〈ϕj , Tn〉
dt

= 〈ϕj ,An(Tn) + Bn(u) + Fn(Tn, u)〉 for j = 1, . . . , r. (3.44)

Substitution of the expansion eq. (3.40) gives that the jth POD modal coef-
ficient aj satisfies the ordinary differential equation

d aj
dt

= Ar,j(a) + Br,j(u) + Fr,j(a, u) for j = 1, . . . , r. (3.45)

where we stacked the coefficients a1, . . . , ar in the vector a. In vector form,
eq. (3.45) reads

d

dt
a = Ar(a) + Br(u) + Fr(a, u). (3.46)

Eq. (3.46) is a reduced order model (ROM). Note that, the POD modal coef-
ficient vector a turns out to be the states of the ROM. This is an important
observation and rarely in literature the POD modal coefficients have been
interpreted in a similar way. In chapter 7 this knowledge that POD modal
coefficients can be viewed as the states of a reduced order model is further
employed to identify reduced order models of different nonlinear forms.

As result of the eigenvalue decomposition of the correlation matrix R in
(3.42), the POD basis functions and the modal coefficients are arranged as
per the order of the maximum gain directions in R. Therefore the reduced
r dimensional model exhibits the most dominant system dynamics, in the
sense that the jth evolution equation (3.45) is more relevant than the j + 1st

evolution equation. Once the POD modal coefficients are known, the recon-
structed solution Tr can be obtained through the expansion eq. (3.40).

The optimization problem to obtain the POD basis from the eigenvalue
decomposition of R from eq. (3.42) can also be equivalently solved for
the ensemble Tn as a singular value decomposition (SVD) problem. Pre-
cisely, a singular value decomposition Tsnap = UΣV > of the snapshot matrix
Tsnap =

[
T1
n · · · TK

n

]
defines the jth POD basis function ϕj in the jth col-

umn of the unitary matrix U consisting of the left singular vectors of Tsnap.
From the property of the SVD these basis functions are ordered according
to their importance, i.e. the first POD basis corresponds to the direction
of maximum energy. Usually a tolerance criterion based on the amount of
energy captured in the reduced model is used to decide about the approx-
imation order r of the reduced model. The criterion is usually called the
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projection energy and is given by

Ptol =
∑r

k=1 λk∑n
k=1 λk

(3.47)

where λk is the kth eigenvalue of the correlation operator R defined in
eq. (3.42) (or σk = λ

1/2
k is the kth singular value of Tsnap) and r is the

desired order of the ROM of eq. (3.45).

3.2.3 Recent developments in model reduction

Some recent work in the field of model order reduction includes- Belzen and
Weiland (2008), where a theoretical framework is proposed for the decompo-
sition of multidimensional data objects. Markovinovic (2009) has proposed
an iterative method for the development of reduced order models. In his
work the author recommends a new procedure to reduce the computation
time of full scale models by using a smart guess of initial conditions after
a certain simulation horizon. For an application in automobile catalytic
converters, Nauta (2008) has proposed model reduction techniques for the
kinetic networks of reactions in which wave propagations occur.

Although the lower dimensional models obtained by POD and Galerkin type
of projection techniques are smaller in dimension, the reduced order mod-
els are dense and they are not necessarily better in computational perfor-
mance. This is possibly due to the loss of sparsity in the original model struc-
ture. Therefore often there is no big advantage of having lower dimensional
model, see, e.g. Astrid et al. (2008), Agudelo (2009a), Bos (2006), Huis-
man (2005), Romijn et al. (2008) and Linhart and Skogestad (2009) and the
references therein. The first step of the POD method that is explained in
section 3.2.2 involves spectral decomposition which is similar to the Princi-
ple Component Analysis (PCA) method used for the analysis of large data
sets. Journée et al. (2008) has proposed some new results to infer sparse prin-
cipal components or in other words, orthonormal POD basis. Extension of
this notion of sparse principal component can be very interesting, especially
to infer computationally efficient reduced order models.

Towards the purpose of identifying a computationally efficient reduced order
model, many novel methods have been proposed in the last few years. Astrid
et al. (2008) proposed a new algorithm called ‘Missing Point Estimation’
(MPE) which suggests to compute a Galerkin projection over an optimally
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restricted subset of the spatial domain. MPE takes its inspiration from
‘Gappy POD’, see Wilcox (2006). Linhart and Skogestad (2009) have com-
pared the effect of different numerical parameters in model reduction setting
for a distillation column. Romijn et al. (2008) proposed a grey-box type of
model reduction strategy to solve the problem of high computation cost as-
sociated with the evaluation of non-linear terms in a full scale model. There,
they reduced the linear part by the POD method and approximated the
non-linearity in a reduced dimensional space by using a small neural net
as a black-box model. Bos (2006) suggested to approximate the non-linear
process model by using a blend of linear models based on some weighting
function. The resultant pseudo Linear Parameter Varying (pLPV) model
is computationally efficient as it does not involve expensive evaluation of
non-linear terms.

3.3 Model reduction as an identification problem:
Literature overview

This section elaborates on a few model reduction techniques which provided
solutions to the problem of model reduction by formulating it as an identifica-
tion problem, i.e. problem involving some form of parameter estimation. The
techniques reviewed here involve either replacement of the full order model
or replacement of the computationally expensive non-linear parts alone, by
some parameterized model structure. The resulting model structure there-
fore involved different model forms, e.g. LTI, polynomial, (q)LPV, grey-box
etc.

3.3.1 Identification of Kernel using Singular Functions

Like many input-output data based system identification techniques, this
technique explores the mapping between the input space to the output
space. This identification technique proposes a Singular Value Decompo-
sition (SVD) of an integral equation kernel to approximate the input-output
behavior of the system. The technique was first proposed by Gay (1989),
(see also Gay and Ray (1995)).

Similar to any other identification techniques (see, Ljung (1999)) this iden-
tification method starts with collection of the input and output data u(ζ, t)
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and y(z, t) respectively. Here, t is the temporal variable, and z ⊂ Rd and
ζ ⊂ Rd is the spatial variable that assume values in domain Ω. The method
proposes that a distributed parameter system (DPS) can be represented as
a mapping from the inputs u(z, t) to the outputs y(z, t). This mapping can
be expressed in a Fredholm integral equation of the first kind containing a
square-integrable kernel, which may or may not be symmetric (see, Gay and
Ray (1995)). That is, the model is represented by

y(z, t) =
∫ ∞

0

∫
Ω
k(z, ζ, t− τ)u(ζ, τ)dζdτ (3.48)

and k : Ω× Ω× R→ R, is the Kernel function. The discussion that follows
assumes a single-input-single-output system, i.e. u(z, t) ∈ R, y(z, t) ∈ R, for
all z, ζ ∈ Ω, t ≥ 0. Extension to the multi-variable case is straightforward.

Following Gay (1989), and Gay and Ray (1995), the Laplace transform of
the above with respect to time yields a transform of the DPS, where s is the
Laplace variable,

Y (z, s) =
∫

Ω
K(z, ζ, s)U(ζ, s)dζ. (3.49)

Here Y (z, s) = L (y(z, t)) is the Laplace transform of y(z, t), K(z, ζ, s) =
L (k(z, ζ, t)) is the Laplace transform of k(z, ζ, t) and U(ζ, s) = L (u(ζ, t)) is
the Laplace transform of u(ζ, t).

To approximate the input-output data, suitable functions rj(z) and qj(z)
are selected as the basis functions

U(ζ, s) =
m∑
j=1

rj(ζ)ãj(s), (3.50)

Y (z, s) =
p∑
j=1

qj(z)b̃j(s), (3.51)

wherem <∞ is the number of actuators, p <∞ is the number of the sensors
and ãj and b̃j are the coefficients which, for a given input-output data and
for a chosen basis function rj(ζ) and qj(z) can be computed from (3.50) and
(3.51) respectively. It will be shown subsequently that the kernel k(z, ζ, t)
can be expressed in terms of these coefficients ãj and b̃j .

The kernel in (3.49) can be decomposed using Singular Value Decomposition
as,

K(z, ζ, s) =
∞∑
i=1

ωi(z, s)σi(s)υi(ζ, s), (3.52)
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where ωi(z, s) is left singular vector, υi(ζ, s) is the complex conjugate of the
right singular vector, and σi(s) is the ith singular value. For all practical
purposes a finite approximation of (3.52) can be represented as,

K(z, ζ, s) =
m∑
i=1

ωi(z, s)σi(s)υi(ζ, s). (3.53)

The right and left singular vectors in (3.53) can be approximated using a
finite set of functions rj(z) for j = 1, . . . ,m and qk(z) for k = 1, . . . , p such
that,

υi(ζ, s) =
m∑
l=1

rl(ζ)υli(s), (3.54)

ωi(z, s) =
p∑

k=1

qk(z)ωki(s). (3.55)

where υli(s) and ωki(s) are input (right) and output (left) basis function
coefficients respectively.

To get an expression as a map from the input to the output space in terms
of the finite decompositions that is presented above, substitute (3.54), (3.55)
in (3.53) to get,

K(z, ζ, s) =
m∑
i=1

p∑
k=1

qk(z)ωki(s)σi(s)
m∑
l=1

rl(ζ)υli(s). (3.56)

To get a relation between input and output in terms of expansion, substitute
(3.56),(3.51) and (3.50) in (3.49), which after some rearrangement gives,

p∑
j=1

qj(z)b̃j(s) =
p∑

k=1

qk(z)
m∑
i=1

ωki(s)σi(s)×

m∑
l=1

υli(s)
∫

Ω
rl(ζ)

m∑
j=1

rj(ζ)ãj(s)dζ (3.57)

Using the output trial basis function qh for h = 1, . . . , p in the Galerkin
procedure produces the following system of linear algebraic equations:∫

Ω
qh(z)

p∑
j=1

qj(z)b̃j(s) =
∫

Ω
qh(z)

p∑
k=1

qk(z)
m∑
i=1

ωki(s)σi(s)×

m∑
l=1

υli(s)
∫

Ω
rl(ζ)

m∑
j=1

rj(ζ)ãj(s)dζdz(3.58)
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The above equation can be represented in matrix form as

QWΣV Rã(s) = Qb̃(s) or equivalently, (3.59)

KU = Y, with SVD(K) = WΣV (3.60)

where, Q =
∫

Ω q(ζ)qT (ζ)dζ, R =
∫

Ω r(ζ)rT (ζ)dζ, Σ = diag{σi(s)}, W = ωki
for k = 1, . . . , p, V = υli for l = 1, . . . ,m. The kernel is then given by

K(s) = WΣV R = B(s)Ã−1(s) (3.61)

where Ã(s) and B(s) are input and output coefficients, respectively, that
come from the Laplace transform of the data presented in (3.50) and (3.51).
The input-output data normally contain values that result from small pertur-
bations in the inputs set about the nominal point. These deviations can be
interpolated by well behaved functions such as B-splines to give the output,
B̃(s), and input Ã(s) coefficient matrices, respectively. For further details,
readers can refer to Gay and Ray (1995).

Remark 3.3.1 The method presented here is similar to other system iden-
tification methods (see, Ljung (1999)) aimed at identifying a map between
system inputs and outputs for a lumped system. The unique advantage of
the presented method is its applicability to a process which is viewed as a
distributed parameter system. Due to its simplicity and finite approximation
of kernel, the dynamic models obtained by such an identification method can
be used for the control purposes. Unfortunately the method presented here
do not present a way to estimate the physically interpretable states of a dis-
tributed system and therefore the method do not offer any physical insight
of the underlying process. Moreover, the method is not suitable for highly
nonlinear processes as it exploits the linear relation between the input and
the outputs.

3.3.2 Reduced order Grey-Box modeling

Grey-Box modeling in context of model reduction using POD for Distributed
Parameter Systems (DPS) was initially proposed in Romijn et al. (2008) and
in Özkan et al. (2007). It extends the notion of grey-box modeling as in-
vestigated for lumped systems in Psichogios and Ungar (1992) and later in
Thompson and Kramer (2000). The grey-box modeling method for non-
linear processes proposes to separate the linear and non-linear part of a
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dynamical system, such that the linear part is derived from the First Princi-
ple Modeling techniques while the non-linear part is approximated by using
a black box. The black box model in Psichogios and Ungar (1992) is used
to approximate unknown relations which determine certain model variables,
where as in Thompson and Kramer (2000), the black-box model is used in
parallel structure to approximate the model prediction error. Application of
grey-box modeling approach in model reduction can be useful, as it avoids
expensive evaluation of non-linear functions by replacing these functions by
static mappings that allow faster evaluations. Overall grey box reduced or-
der modeling technique amounts to approximating the linear part of a full
order model by a low order linear model obtained by some classical pro-
jection technique (see Antoulas (2005a)) and to approximate the nonlinear
function (or uncertain/un-modeled component) by a simpler function in re-
duced space. The proposed technique results into computationally efficient
models which generally preserves the original sparse model structure. The
overall methodology is briefly explained below.

Consider a DPS of the form (3.28), which, as explained in subsection 3.2.1,
after some type of spatial discretization can be converted to an ODE system
of the form (3.39). Like many other model reduction techniques, grey-box
model order reduction starts from the ODE system of the form (3.39). After
any chosen method of projection, the full order model (3.39) is converted
to (3.46). The grey-box modeling approach proposes to replace the compu-
tationally expensive part Fr(a, u) by using some empirical function of the
form ε (ã, u, θ∗) such that (3.46) will take a form,

d

dt
ã = Ãr(ã) + B̃r(u) + ε (ã, u, θ∗) . (3.62)

Here, ã are the states of the reduced grey box model, Ãr and B̃r are state
space matrices corresponding to Ar and Br respectively, as explained in
section 3.2.2. ε : Hn×U×Θ→ Hn defines a parametrization of the empirical
part. An optimal parameter θ∗ ∈ Θ is identified, such that certain criterion
function J : θ∗ → R is minimized. The criterion can either minimize the
approximation error ||Fr(a, u)−ε (ã, u, θ∗) || or minimize an error on the state
trajectory predictions ||a−ã||. The computational advantage comes from the
fact that the evaluation of the nonlinear function Fr involves the prediction
of the state trajectory of full scale model i.e. Rn whereas evaluation of the
empirical function ε requires prediction of the state trajectory in the reduced
space, i.e. Rr.

Remark 3.3.2 The grey-box reduced order modeling approach presented
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here is different than the approach used in Nauta (2008) and in Agudelo
(2009b), where positive polynomials are used to approximate the nonlinear
functions and state constraints simultaneously in reduced space. This has
guaranteed that the concentrations of the species do not drop below zero.
There, the nonlinear function is approximated by a polynomial function in
an open loop fashion whereas here in grey-box method, the nonlinear part
is approximated by a black-box model in a feedback fashion.

Remark 3.3.3 The number of states and the computational load reduces
significantly with the grey-box reduced order model structure, but the result-
ing model structure is difficult for analysis of stability, optimality, convexity
and closed loop performance.

3.3.3 PCA based Subspace Identification techniques

Principal Component Analysis (PCA) is central to the study of multivariate
data. Although PCA is one of the earliest multivariate techniques, it con-
tinues to be the subject of much research, ranging from new model-based
approaches to black-box modeling approaches, e.g. in neural networks. It
is extremely versatile, with applications in many disciplines. With advance-
ment in sensor and data acquisition technology, large datasets are available
and it is becoming more and more important to process data so that it can
be properly analyzed. As PCA is one of the widely used modeling tech-
nique, many books and articles explain it vividly. Some recent references
include Jolliffe (2002), Jakson (2003), Stone (2004), Esbensen and Geladi
(2009). Many commercial software packages like Matlab, Mathematica, etc.
have build-in rigorous routines to perform Principal Component Analysis.
Although there are many variants of PCA based models, methods involv-
ing PCA for subspace identification are rare. As both, PCA and subspace
state-space identification techniques (see, 3.1.1) involve Singular Value De-
composition (SVD) of the input-output data matrices to find the dominant
subspaces in which the original system dynamics evolve, it makes sense to
investigate the PCA-type of subspace identification techniques. Some recent
work in this direction is proposed by Wang and Qin (2002), Ku et al. (1995),
Li and Qin (2001). This work results in identification techniques for LTI
models in or without the presence of input/output noise. The same tech-
nique is presented here and later its pros and cons are discussed. For the
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case of illustration we consider the deterministic case alone, given by

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k) (3.63)

Consider a general state-space model structure of the form (3.63) with the di-
mensions of input u(k) ∈ Rl, output y(k) ∈ Rm and state variable x(k) ∈ Rn.
The method imposes assumptions that the system in (3.63) is asymptotically
stable, i.e. the eigenvalues of A are strictly inside the unit circle and the sys-
tem (A, C) is observable. As in section 3.1.1, define input and output Hankel
matrices Yf and Uf as,

Yf = [yf (k) yf (k + 1) . . . yf (k +N − 1)] ∈ Rmf×N , for k = 1, . . . , N − f
(3.64)

Uf = [uf (k) uf (k + 1) . . . uf (k +N − 1)] ∈ Rmf×N , for k = 1, . . . , N − f
(3.65)

where,

yf (k) =


y(k)

y(k + 1)
...

y(k + f − 1)

 ∈ Rmf , for k = 1, . . . , N − f (3.66)

uf (k) =


u(k)

u(k + 1)
...

u(k + f − 1)

 ∈ Rlf , for k = 1, . . . , N − f (3.67)

are stacked input and output variables such that the included lags f > n.
The system order n is determined by Akaike information criterion (AIC)
as given in Akaike (1974), Akaike (1997) and used in Larimore (1990) for
subspace model identification. Iterating eq. (3.63) we obtain

yf (k) = Ofx(k) + Tfuf (k) (3.68)

and in matrix form,
Yf = OfX + TfUf , (3.69)

where, Of ∈ Rmf×n is the extended observability matrix and Tf ∈ Rmf×lf is
block-triangular Toeplitz matrix, similar to the one expressed in (3.4), (3.3),
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respectively. In order to use PCA for identification, define a stacked variable
zf and Zf as,

zf =
[
yf (k)
uf (k)

]
∈ Rlf+mf (3.70)

Zf =
[
Yf
Uf

]
∈ R(lf+mf)×N . (3.71)

Rewrite (3.68) as
[I| − Tf ] zf (k) = Ofx(k), (3.72)

where, | separates the two parts of the matrix. In matrix form,

[I| − Tf ]Zf (k) = OfX(k). (3.73)

As this technique of subspace identification is derived from PCA, we use the
data matrix Zf . Classical PCA method involves collection of data (Zf ), its
processing (to remove the mean), scaling to avoid the numerical problems
and construction of the co-relation matrix as in (3.42). The SVD of the
data matrix Zf results into the separation of the principal (important) and
non-principal components. PCA is similar to the POD method (see, 3.2.2 for
POD) up to the separation of dominant and non-dominant directions. Both
the methods rely on spectral decomposition in the form of eigenvalue decom-
position or the singular value decomposition. After the spectral decomposi-
tion, next step in POD involves Galerkin projection of equation residuals to
infer the reduced order dynamic models, whereas classical PCA do not lead
to any dynamic model. Although, recently some variants of PCA (see, Ku
et al. (1995)) proposes certain dynamic modeling features. Classical PCA
decomposes data matrix Z>f into,

Z>f = TP> + Z̃>f = TP> + T̃ P̃> (3.74)

where T is a score matrix, P is the loading matrix which consists of principal
components as the column vectors, and Z̃>f is the residual matrix whose norm
is minimized during the decomposition. T̃ and P̃> are the score and loading
matrices corresponding to Z̃f . If we compare this decomposition to the SVD,
then scores are equivalent to singular values and loading matrix consists of
the left singular vectors. That is, if SVD of Zf is given by,

Zf = UΣV > = U1Σ1V
>

1 + U2Σ2V
>

2 . (3.75)

Where, singular values in Σ2 are equal to zero, P = U1, P̃ = U2, T1 = Σ1V
>

1

and T2 = 0. The next step in the procedure is to estimate the extended
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observability matrix Of and Ts. Towards that purpose, define the orthogonal
complement of full column rank Of as O⊥f such that O⊥f Of = 0. The
assumption that f > n guarantees the existence of O⊥f . Multiply (3.73)
with O⊥f which will give,

O⊥f [I| − Tf ]Zf = 0 (3.76)

(3.76) shows that the elements of Zf are linearly related, i.e. Zf has zero
singular values. It means that in (3.75), we have T̃ = 0 as the residual scores.
As,

rankZf = rankYf + rankUf = n+ lf, (3.77)

we have number of zero singular values of Zf = dim P̃ is,

dim P̃ = dim (image spaceZf )− rankZf = (mf + lf)− (n+ lf) = mf − n.
(3.78)

Using this knowledge and the decomposition,

Zf =
[
Yf
Uf

]
= PT T + P̃ T̃ T , (3.79)

along with (3.76) we have,[
O⊥f

−T Tf O⊥f

]
= P̃M =

[
P̃y
P̃u

]
M. (3.80)

Where, M ∈ R(mf−n)×(mf−n) is a non-singular matrix and usually is an
identity matrix of proper dimensions. The explanation behind (3.80) is given
in Wang and Qin (2002) and follows the logic that dominant system dynamics
evolve in the space spanned by column space of Of which implies that the
residual dynamic evolve in the space spanned by it’s orthogonal complement
O⊥f . (3.80) can be splitted as,

O⊥f = P̃yM (3.81)

T Tf O⊥f = P̃uM (3.82)

With M = I, (3.81) can be written as,

Of = P̃⊥y . (3.83)

Once Of is estimated from (3.83), system matrices A,B,C,D can be ob-
tained as mentioned in the last two steps of subspace identification algorithm
from section 3.1.1. Moreover one can obtain B,D by further rearrangement
of (3.82), as given in Wang and Qin (2002).
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Remark 3.3.4 From the above discussion it is clear that both; the PCA
method and other subspace identification techniques as mentioned in section
3.1.1 aim to estimate the dominant subspace where system dynamics evolves.
Therefore this method can be viewed as an approach to identify reduced order
models, however in practice, it is difficult to use this method to infer reduced
order data-driven models. This is due to the end result of this method, which
is an LTI model, which might not be adequate for most of the large scale
chemical processes. Moreover, the states of the identified model by this
identification technique do not have any physical meaning, and therefore
do not provide insight into the physics behind the process. For the case of
POD, which unlike PCA involves Galerkin projection of equation residuals
(see, 3.2.2), a straight forward extension of the same theory as presented
here is not possible.

3.3.4 POD based reduced model identification

POD based identification approach to solve the problem of model order re-
duction for DPS involves two steps. As explained in section 3.2.2, the first
step involves separation of spatial and temporal patterns using the SVD of
snapshot matrix. The way to infer important spatial patterns i.e. the eigen-
vectors of spatial correlation operator is presented in (3.42). The method
to obtain an expression for POD modal coefficients which can be viewed as
dominant temporal evolution patterns, is expressed in eqs. (3.43). The sec-
ond step of POD based identification involves LTI model identification by
proposing some model structure and fitting the model parameters to the tem-
poral patterns obtained in the first step. In the second step Huisman (2005)
proposes to treat the POD modal coefficients obtained in (3.43) as an output
of some unknown black-box model and then to use classical LTI model iden-
tification technique e.g. subspace identification technique (see, section 3.1.1)
to identify the reduced order LTI model of the form (3.1). Whereas Bos
(2006) has extended the approach presented by Huisman (2005) for nonlin-
ear systems. There, to approximate the temporal evolution of POD modal
coefficients, Bos (2006) proposed quasi-Linear Parameter Varying (qLPV)
modeling framework. The qLPV framework, due to its increased parame-
terizations, is better suited to the non-linear systems. However the qLPV
method is somewhat complicated and it is validated only on academic/small
scale examples.

Due to the drawbacks of both the methods, i.e. the method presented by
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Huisman (2005) lacked proper framework to deduce the non-linear reduced
order models whereas effectiveness of the qLPV modeling approach for a
large scale, complex system is uncertain. In order to overcome the above
mentioned drawbacks, two new approaches have been proposed in this thesis.
While discussing the new approaches, these techniques are also in greater
details.

3.4 Applicability of methods: Comments on litera-
ture review

This chapter has elaborated on some of the tools from the theory that are
used to propose few new model reduction frameworks in subsequent chap-
ters. Along with the necessary tools from the theory, few methods which
have proposed the model reduction problem similar to an identification prob-
lem involving some kind of parameter estimation are also briefly explained.
Each method has been motivated by a certain type of system and is tai-
lored towards finding a reduced order model for a specific class of system.
Therefore each method has its own advantages and pitfalls which are already
mentioned in respective subsections. Some of the techniques presented here,
meet the few objectives that are mentioned in section 1.2. For example, for
very large scale-multidimensional systems, classical POD model reduction
technique alone is not able to present computationally efficient, low order
models which can be used for the control purpose. This has been concluded
as well in the work of Astrid (2004), Nauta (2008), Romijn et al. (2008), Huis-
man (2005) and many others. For the objectives mentioned in 1.2, hardly
any specific approach presented in the literature is suitable. Either most
of the methods are not suitable for large scale real life nonlinear processes
(e.g. see, Butkovskiy (1969), Butkovskiy (1982), Hoo and Zheng (2001)), or
they do not preserve the physical interpretation of the states (e.g. see, Gay
(1989),Wang and Qin (2002)), or they need access to the governing equation
for projecting them onto lower space using Galerkin projections (e.g. see,
Astrid et al. (2008), Holmes et al. (1996) and many other), or the identified
reduced model is not easy for analytical treatment for studying stability, con-
vexity, optimality etc. (e.g. see Romijn et al. (2008),Bos (2006)). Among
the different approaches presented here, the work of Huisman (2005) satisfies
most of the objectives outlined in section 1.2. The work presented there does
not need access to the governing system equations and need information of
the states of full order model only. The method presented there is based
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on a two step approach involving a spectral decomposition and subsequent
system identification. Unfortunately, for many real life processes, identifica-
tion of LTI reduced order models is not sufficient and it becomes imperative
to identify reduced order nonlinear models. This thesis tries to address this
problem of inferring reduced order nonlinear models. Moreover the question
of parameter sensitivity in context of model reduction for lage scale nonlinear
systems, which has been rarely explored in the literature is also addressed
in this thesis.
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4

Detection of Bifurcations in Tubular
Reactor using Reduced Order Models

4.1 Introduction
4.2 Occurrence of multiple

solutions in tubular reactor
4.3 Methodology: Detection

of bifurcations using
reduced order models

4.4 Discussion of simulation
results

4.5 Conclusions and ideas for
future research

In this chapter a novel methodology to detect the bifurcating dynamics of
a tubular reactor is presented. The bifurcation behavior exhibited by the
full order process model as result of the parameter variations is approxi-
mated by using the detection mechanisms. The detection mechanisms are
based on reduced order models obtained by the method of Proper Orthogo-
nal Decompositions. The parameter variation was chosen so as to exhibit a
discontinuous dependence of the dynamical responses as function of the pa-
rameter (the Damkohler number). A critical value of the Damkohler number
causes changes in the steady state response of the system. In an on-line fash-
ion the algorithm allows to detect the process operation regime, viz- before
or after the critical bifurcation value. An investigation of the corresponding
wave patterns in the reactor shows the difficulty to capture the transition
from a lower to a higher steady state in the reduced model. Depending
on the possibility of access to the model equations, two types of detection
mechanism; a static and a dynamic one, are presented.

The results presented in this chapter are based on the paper, see Wattamwar
and Weiland (2008).
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4.1 Introduction

Many large scale chemical processes are modeled by using the first principles.
These models can be computationally demanding in the sense that due to
their large state space dimension they might need significant computation
time. Such large computation time may hinder the use of first principle mod-
els for the purpose of plant control and optimization. Model reduction to
infer computationally efficient process models is therefore an important step
towards realizing this goal. The method of Proper Orthogonal Decomposi-
tion (POD) is useful to infer the reduced order models. The POD method
is explained in chapter 3. Sometimes, for specific combination of process
parameters, the lage scale chemical processes exhibit a discontinuous change
in the dynamic behavior as result of a continuous change in the process pa-
rameter. The process behavior is further characterized such that at certain
critical value of the process parameter, the underlying process may show
existence of multiple solutions. The situation with simultaneous existence of
the two solutions is usually known as bifurcations of system solutions.

Bifurcations constitute an important part of the dynamic behavior of a sys-
tem. Understanding of bifurcation behavior is necessary especially for the
large scale chemical processes characterized by the exothermic reaction ki-
netics. Any inappropriate operation (e.g. failure of reaction cooling) of such
sensitive processes can easily lead to runaway of process reactions. Runaway
reactions are never desired and they can pose serious threats to the plant
operation. Therefore, for large scale processes with exothermic reactions, it
is imperative to analyse the possibility of existence of multiple solutions.

Although, the first principle models can predict the occurrence of bifurca-
tions, the large computation time associated with their dynamic simulations
do not allow them to be used in an online fashion. Therefore, along with
the faster computation of system solutions while approximating the dynamic
behavior of full order process model, the ability to detect and to predict the
occurrence of the bifurcations is also desired form the reduced order mod-
els. This issue of detection of bifurcations using the reduced order models is
addressed in this chapter. The methods that are presented here may have
some similarities with respect to the approach of multi-model fault detection.
See, e.g. Berec (1998), Bhagwat et al. (2003a), Bhagwat et al. (2003b), Jo-
hansen and Foss (1999), Isermann (1984), Himmelblau (1978), Charbonnaud
(2001). But with respect to model reduction to detect the bifurcations using
the POD reduced order models, the presented mechanism is rarely explored
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in the literature.

In this chapter the discontinuous process behavior as result of a continuous
parameter variation in a tubular reactor is presented. The method of Proper
Orthogonal Decomposition accompanied with Galerkin projection of equa-
tion residuals is used to infer the reduced order models. The performance
of the reduced order models under such discontinuous process behavior is
investigated. The use of POD techniques for obtaining the low complexity
models for highly complex dynamic operating conditions of processes is mo-
tivated by a number of arguments. Firstly, the method results in reduced
order models that are highly accurate and of very low complexity. Secondly,
unlike many other methods of model approximation the POD technique cap-
tures relevant dynamics of the system in a small number of basis functions
by explicitly using observed time series or simulated responses of the sys-
tem. As such, the method is data dependent. Moreover, the separation of
spatial and temporal dynamics in the reduced order models allows a perfect
basis for control system design. However, the method of POD is not very
well suitable for approximating the extreme process behavior exhibited in
the form of bifurcations.

The work presented here is motivated by the fact that similar to the method
of POD, many other model reduction techniques do not take model uncer-
tainty or the effect of time-varying model parameters into account while
deriving the reduced order models. The validity of the reduced order models
is then limited if the model is largely uncertain or if parameter variations
lead to discontinuities in the process behavior. Indeed, if system exhibit
significant dynamical changes due to the small parameter variations then
this usually lead to a large mismatch between the system and its approx-
imation. Such type of discontinuous dependence on system parameters is
not at all uncommon in chemical engineering. Process parameters can show
bifurcation or trifurcation phenomena of various types. For example, a jump
from an extinction to an ignited state is the effect of a bifurcation value
of a well defined system parameter. Such effects are widely reported for
many chemical processes. See, for example, some early work in Amundson
(1970), Aris (1969), Hlavácek and Hoffmann (1970) that provide an analyt-
ical treatment to bifurcation phenomena. See also Jensen and Ray (1982)
where the occurrence of multiple solutions for many chemical processes is
reported. Recently Bizon et al. (2007) studied the performance of reduced
model of a tubular reactor. There, the tubular reactor is modeled as a chain
of continuous stirred tank reactors (CSTR). The performance of the reduced
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order model was studied as effect of inclusion of samples from a steady and
an oscillatory regime.

This chapter tries to answer the question on how to define reduced order
models for the nonlinear systems that have uncertain time-varying parame-
ters that exhibit strong discontinuities in dynamic responses. This question
is of evident interest for questions on model validation. However, our prime
motivation amounts to detecting, monitoring and controlling the parameters
that cause abrupt changes in the system dynamics. For systems that exhibit
bifurcation phenomenon, we propose a hybrid model structure so as to allow
a classification of system parameters around their bifurcation values.

Specifically, in this chapter we consider a model of a tubular reactor where
the Damkohler number is viewed as the uncertain parameter that varies close
to one of its bifurcation values. The bifurcation phenomena is studied for
full order and for reduced order models. Changes of the Damkohler number
correspond to the transition of the reactor from a lower (extinction) to higher
(ignited) states. The detection mechanisms that are proposed here employ
the reduced order models obtained from the POD method. The mechanism
processes the plant outputs and predicts the region of process operation
(below or above the critical bifurcation parameter value).

This chapter is organized by giving some background knowledge about the
existence of multiple steady state solutions in a tubular reactor in section
4.2. The benchmark example of the tubular reactor is already explained
in section 2.2.2. Section 4.3 proposes the detection mechanism which is
based on reduced order models, while section 4.4 presents the results of
investigation of bifurcations in context of model order reduction. Section
4.5 concludes the chapter.

4.2 Occurrence of multiple solutions in tubular re-
actor

In this section we will discuss the occurrence of multiple steady states for
the tubular reactor. The details of the tubular reactor model are presented
in section 2.2.2. Many tubular reactor models that occur in the literature
can be adequately represented by the dimensionless model presented there.
The spatial domain of 1 dimensional reactor is discretized in 301 grid points.
Considering only the mass and energy balance, the full order model has the
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state dimension 602. Temperatures and concentrations are the variable of
interest. The spatial gridding into 301 grid points is the result of a contin-
ued refinement of discretizations until the numerical solutions do not change
further in accuracy. This is usually referred to as a converged Galerkin pro-
jection of an infinite dimensional system. Due to extremities in the process
behavior as effect of changes of the Damkohler number around the critical
point, numerical integrators can easily fail to integrate the system solutions
if the grid is too coarse.

In many earlier works, the dynamic analysis of tubular reactor models was
performed by a lumping the spatial coordinates and yielding a model struc-
ture that is similar to a continuous stirred tank reactor (CSTR) model. In
a CSTR, multiple steady states and oscillating solutions are observed when
process parameters or process inputs such as inlet temperatures are changed.
For a CSTR, the equilibrium between the heat generation and the heat re-
moval defines the steady state at which the process is operating. For a CSTR,
a “lower steady state” (extinction) is observed when the reaction kinetics are
limiting, i.e. when the heat generation effects (due to the exothermic reac-
tion) are slower than the heat removal effects. Whereas, an “upper steady
state” (ignition) is the opposite situation, which implies that the heat ex-
change is limiting (i.e. a limited cooling). Based on the process operating
conditions and the parameter values, the reactor often shows a tendency to
jump either to an upper or to a lower steady state.

Similar effects occur in a tubular reactor where due to the large axial di-
mension, the transportation effects play a major role along with the reaction
and heat effects. Parameters in (2.1), like Damkohler number (Da), Peclet
numbers (Peh, Pem for heat and mass respectively.), Lewis number (Le) etc.
determines the effect of contribution of the transportation and the reaction
effects in overall dynamic behavior of a tubular reactor. Damkohler number
is the ratio of residence time to reaction time. Fast reactions have smaller re-
action time and therefore large Damkohler numbers. For large Da values we
have almost complete conversion of the reacting species in the given tubular
reactor. The Peclet number is the ratio of a flow advection to a flow diffu-
sion. It is defined in a similar way for mass and heat transfer. The Peclet
numbers approach to infinity for the plug flow reactors. Whereas for tubular
reactors, the Peclet numbers are larger than one. The Lewis number (Le) is
the ratio of a physical transport thermal time constant to a physical trans-
port material time constant. For a tubular reactor the Lewis number is equal
to one. For a fixed bed reactor, the Le > 1. For a tubular reactor, when
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the bifurcation effect is studied for the changes in the Damkohler number,
then the analysis of one more dimensionless number; Adiabatic temperature
rise becomes important. The relation for a adiabatic temperature rise with
other numbers is expressed as γ = B ×Da. Adiabatic temperature rise is the
ratio of the heat of reaction and the average heat capacity of the reactants
and the products. For a highly exothermic reaction, the adiabatic number
is significantly larger than relatively low exothermic or the endothermic re-
actions. It is perhaps the most important parameter which determines the
existence of multiple steady states. Highly exothermic reactions show in-
creased chances of existence of multiple steady or periodic solutions. Often
in practise, the parameter values other than the Damkholer number and the
Peclet number can hardly influenced by the control action, the bifurcation
phenomena are usually studied in the Peclet-Da parameter space. For vari-
ous values of the adiabatic temperature rise B, different parameter sets can
be obtained which may cause bifurcations of the solution set. Although bi-
furcations can occur for adiabatic or non-adiabatic situation, in this chapter
we are assuming the adiabatic case which creates a ‘hot-spot’ at the (right)
reactor end. As the reaction rate is exponentially related to the negative
inverse of the reaction temperature, the hot-spot at the reactor end causes a
higher reaction rate at that location. This effect persists at the reactor end
and at a certain temperature and concentration, it causes a jump from the
lower to the higher steady state. This higher steady state will be limited up
to the adiabatic temperature rise (B) and will consume all the possible reac-
tant, that is the concentration of the reactants will drop to zero. Due to the
presence of the diffusion term in the tubular reactor model, the transition
effect from the lower to the higher steady state will lead to the transition
at a point just before the reactor end, and so on. And we see that within
a short time (with respect to the residence time of the reactants) the total
reactor jumps from the lower to the higher steady state. The transition or
the bifurcation effect is observed for different combinations of the process pa-
rameters. The critical Damkohler value for which this jump of steady states
occurs is denoted by Da∗. Lower steady state solutions are observed for
Damkohler values Da < Da∗ and higher steady state solutions are observed
for Da > Da∗. More than sixteen different types of bifurcation structure
have been reported in Jensen and Ray (1982). Most of the literature on bi-
furcations in tubular reactors is devoted to finding conditions for existence of
unique solutions, and to find the bounds for the parameter which guarantee
the uniqueness of the solutions. Hlavácek and Hoffmann (1970) derived the
bound B < 4 on the adiabatic temperature rise that guarantees the unique-
ness of solutions. Stability analysis of other chemical processes exhibiting

76



multiple solutions has received major attention as well, see e.g. Jensen and
Ray (1982), Shvartsman and Kevrekidis (1998), Hahn et al. (2004). Eigen-
value analysis of a linearized form of the full order nonlinear model around a
steady state operating point is one of the easy yet effective ways of the sta-
bility analysis. Based on the eigenvalue analysis, predominantly, two types
of bifurcations are reported. When the real eigenvalues cross the imaginary
axis in a complex plane the resulting bifurcation is known as saddle node.
Therefore, the Saddle node type of bifurcation characterize the stability of
the steady state solutions. Whereas, when a pair of complex eigenvalues
with an imaginary part cross the imaginary axis, the resulting bifurcation
is called as the Hopf bifurcation. The Hopf bifurcation characterize bifurca-
tion of periodic solutions. In some cases, the tools like Lyaponov functional,
Poincare maps, phase diagram etc. are employed to study the stability of
nonlinear systems.

4.3 Methodology: Detection of bifurcations using
reduced order models

In this section the overall methodology to detect the bifurcations in a tubular
reactor using the reduced order models is presented. The presented method-
ology uses full scale first principle model (2.1) of the tubular reactor as a
replacement of a real life process. The method of POD with Galerkin pro-
jection of model equations is used to infer the reduced order models. Detec-
tion mechanisms- dynamic and static are presented to detect the operation
regime (below or above the critical value) of the process. To make the chap-
ter consistent with the theme, in this section the method of POD, bifurcation
analysis of a system and the detection mecshanisms are presented in separate
subsections. Although the POD method is already explained in chapter 3,
for the sake of continuity it is discussed again briefly and the discussion is
directed towards analyzing the influence of parameter variations in overall
POD method.

4.3.1 Bifurcations in dynamical systems

Consider a dynamical model of the form

Σ(θ) : Ṫn,θ = f
(
Tn,θ, u, θ

)
(4.1)
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where, T kn,θ ∈ Rn is a solution of the model Σ(θ), k = 0, . . . ,K is the
temporal variable, u(k) ∈ U is the process input vector and θ ∈ Θ is the
vector of process parameters. For the given system model of the form (4.1),
suppose that the model has a qualitative property P1 ∈ P for θ ∈ Θ1 and
P2 ∈ P for θ ∈ Θ2, where Θ1 ⊆ Θ and Θ2 ⊆ Θ define a partition of Θ.
We call θ∗ ∈ Θ a bifurcation value, if θ∗ lies on the boundary ∂Θ1 ∩ ∂Θ2

where, ∂Θi is boundary of Θi ∈ Θ. Property sets P1 and P2 are disjoint sets.
Typically P1 and P2 denotes different stability properties of fixed point/limit
cycles/regions or orbits in a phase plane of Σ(θ). Bifurcation is defined
as a discontinuous (from one set to another) change in the property P as
result of continuous change in θ. For Linear systems, bifurcations are often
characterized by the behavior of eigenvalues of the Jacobian matrix obtained
by the linearization of underlying nonlinear system. For nonlinear systems,
often the discontinuous changes cannot be computed. Therefore, for the
practical reasons, we define bifurcation as a large change in system solutions
at the bifurcating parameter value (θ∗), for a small change in the system
parameter θ. Bifurcation of the nonlinear system (4.1) is defined as

∂T

∂θ
|θ∗ �

∂T

∂θ
|θ; ∀θ ∈ Θ, and θ 6= θ∗ (4.2)

Condition in (4.2) implies that the bifurcation is the critical point θ∗ in the
parameter space where the changes in the system solutions are significantly
larger than at any other values of the process parameter.

4.3.2 Problem formulation

The problem of detection of bifurcations (that is, the detection of process
operation regime) using the reduced order model for a parametric process
model Σ(θ) of the form (4.1), amounts to finding an approximate process
model Σ̃(θ) of the form,

Σ̃(θ) : ˙̃Tr,θ = fr
(
T̃r,θ, u, θ

)
(4.3)

such that the approximation minimizes some cost function

J :=
K∑
k=1

‖T kn,θ − T̃ kr,θ| (4.4)

in some norm. Here, T̃ kr,θ ∈ Rr is a solution of the reduced order model Σ̃(θ),
and fr is the reduced nonlinear map. The parameter θ(k) ∈ Θ = Θ1 ∪ Θ2,
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such that Θ1 is the domain of parameter variation before the bifurcation,
i.e. θ(k) ≤ θ∗ for k = 1, . . . ,K as the number of time samples, with θ∗

as the critical bifurcation value of the parameter lying on the boundary of
Θ1 and Θ2. Θ2 is the domain of parameter variation after the bifurcation
point, that is θ(k) ≥ θ∗ for k = 1, . . . ,K. This implies that if the full order
process model exhibits parameter sensitivity and the bifurcation as per the
definition in (4.2), then this parameter sensitive behavior is also expected to
be approximated by the reduced order model.

4.3.3 Model reduction for parameter sensitive processes

Towards the solution of the problem 4.3.2, we briefly define model reduction
for parameter sensitive process from the point of bifurcations of solutions of
dynamical system. The model reduction method that is used in this chapter
is Proper Orthogonal Decomposition (POD), which is already explained rig-
orously in chapter 3. The method is briefly revised here and is formulated
so as to accommodate the effect of parameter variations.

The method of POD involves projection of trajectories of full order process
model on some lower dimensional space inferred in some optimal way. The
solution of the full and the reduced order process models are related by some
projection operator Φ such that,

T̃r,θ = ΦθTn,θ (4.5)

The projection operator projects the solution of full order process model onto
a lower dimensional subspace spanned by some orthonormal basis functions.
The method of POD suggests to find the orthonormal basis by the Singular
Value Decompositions (SVD) of the ensemble of the trajectories of the full
order model known as the snapshot matrix. The snapshot matrix can be
represented as

Tsnap,θ =
[
T 1
n,θ, . . . , T

K
n,θ

]
(4.6)

SVD of Tsnap,θ in matrix notations results in,

Tsnap,θ = UθSθV
>
θ (4.7)

where,

Uθ =
[
ϕ1,θ, . . . , ϕn,θ

]
, i.e. matrix with left singular vectors,

Sθ = diag
[
σ1,θ, . . . , σn,θ

]
, i.e. diagonal matrix with singular values,

V >θ =
[
υ>1,θ, . . . , υ

>
K,θ

]
i.e. matrix with right singular vectors. (4.8)
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ϕi,θ(z) for i = 1, . . . , n are the POD basis (spatial components), σi,θ for
i = 1, . . . , n are the singular values and υi,θ, for i = 1, . . . ,K are the temporal
basis functions (right singular vectors), z ∈ Rn is the spatial coordinate. The
solution T kn,θ of (4.1)can be represented in terms of finite spectral expansion
as,

T kn,θ =
n∑
i=1

ai,θϕi,θ(z). (4.9)

where ai,θ are the corresponding modal coefficients satisfying the condition,

ai,θ(k) = 〈Tn,θ(z, k), ϕi,θ(z)〉, for i = 1, . . . , n. (4.10)

Due to the property of the SVD, the singular values are arranged in a de-
creasing order. The approximation order r of a reduced order model can be
decided by analysing the singular value decay, i.e. the truncation (approxi-
mation) order is decided such that 99% of the projection energy is captured
using the criterion,

Ptol =
∑r

k=1 σk∑n
k=1 σk

. (4.11)

Therefore, the approximate solutions can be presented as,

T̃ kr,θ =
r∑
i=1

ai,θϕi,θ(z). (4.12)

A projection operator Φθ is constructed such that Φθ =
[
ϕ1,θ, . . . , ϕr,θ

]
.

Once the projection operator is constructed, the full order model is projected
on the lower space using the projection operator to infer Σ̃θ. The discussion
up-to here is valid for a fixed value of the process parameter and the sub-
script θ shows the dependence of model reduction procedure on a constant
value of process parameter. For a parameter sensitive process (without the
bifurcation effect) in which the system solution changes continuously for the
changes in the parameter value, the dynamics corresponding to the parame-
ter variation that are exhibited by the full order model can be approximated
by the reduced order model by storing the trajectories corresponding to the
parameter variations in the snapshot matrix. In this approach of capturing
the dynamics of process parameter in a reduced model, the parameter vec-
tor is treated similar to a process input. The snapshot matrix can then be
represented as,

Tsnap,θ =
[
T 1
n,θ1

, . . . , TKn,θ1 , . . . , T
1
n,θh

, . . . , TKn,θh

]
∈ Rn×(K∗h). (4.13)
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Here θi ∈ Θ is a finite set, Θ =
[
θ1, . . . , θh

]
. Note that this formulation

of parameter variations allows to consider variation of θ among few discrete
values. In case θ is a function of time, i.e. θ(k) with i = 1, . . . ,K then
in order to approximate the dynamics due to the parameter variations in
a reduced model, the parameter θ needs a similar attention like an process
input.

Based on the SVD of the snapshot matrix (4.13), the approximation order
l, as decided by the energy norm (4.11) for a parameter varying case can
be different than r, that is, for the situation characterized by a fixed value
of the parameter. Model reduction makes sense only if l � n, i.e. if the
singular values of the snapshot matrix (4.13) are dropping at significantly
fast rate.

For the processes exhibiting bifurcation type of a behavior as explained in
section 4.3.1, i.e. when θ varies over the critical bifurcation value θ∗, then the
drop in singular values of (4.13) could be very slow. Nonlinear processes can
exhibit different types of bifurcation behavior. Here, with respect to model
reduction we classify the bifurcation as a ‘mild’ or a ‘strong’ bifurcation. For
a parameter variation over a critical bifurcation value, a mild bifurcation
is characterized by l � n and then the above mentioned model reduction
strategy is still valid. For a parameter sensitive process, a strong bifurcation
is characterized by l ≈ n. That is, the approximation of bifurcation using
reduced order models obtained by the POD method might not be possible.
In other words, it might be possible to infer the lower dimensional subspace
for each regime θ ∈ Θ1 and θ ∈ Θ2 separately, but it might not be possible to
find a lower dimensional subspace for θ ∈ Θ = Θ1 ∪Θ2. The reason for not
being able to approximate the transition dynamics at θ∗ is possibly due to
the existence of non-correlated patterns in the process dynamics at θ∗. And
as the method of POD is based on the existence of correlated patterns, the
transition from one domain (Θ1) to another (Θ2) might not be effectively
approximated by the method of POD.

Towards this problem of approximation of full order model exhibiting the
bifurcation behavior and the detection of the process operation regime (i.e.
if θ ≤ θ∗ or θ ≥ θ∗) using the POD models is explained in subsequent
sections.
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4.3.4 Detection Mechanisms

In this subsection, the method to detect the bifurcations exhibited by a non-
linear process (here, a full order model) is presented. In case of uncertainty
of the process operation regime (i.e. the bifurcating parameter is smaller or
large than the critical value) the mechanism which is based on the reduced
order models obtained by the method of POD detects the process opera-
tion regime. Depending on the availability of the equations of the full order
model for the Galerkin projection on the space spanned by the POD basis,
two types of detection mechanism are presented here; a static and a dynamic.
The idea behind the detection mechanism comes from the observation that
there is a partition in state space due to the presence of bifurcations in sys-
tem solutions at the bifurcation value θ∗ of the parameter θ. In other words,
it is possible to find the correlated patterns for the parameter variation for
different values of bifurcating parameter (either in Θ1 or Θ2) other than the
critical one.

The mechanism proposes to identify the reduced order model corresponding
to each domain of process parameter variation, separately. That is, if the
process parameter θ varies in a space Θ and if θ∗ is the bifurcation value then
the parameter space is partitioned in two; Θ1 and Θ2, such that Θ1∪Θ2 = Θ
and Θ1∩Θ2 = θ∗. Moreover, θ ∈ Θ1 or θ ∈ Θ2 and θ 6= θ∗. Using the proce-
dure explained in section 4.3.3, the two state spaces corresponding to the two
parameter variation domains Θ1 and Θ2 are used to construct the snapshot
matrices Tsnap,Θ1 and Tsnap,Θ2 . Subsequently using the SVD, the spatial
basis ϕi,Θ1 , ϕj,Θ2 for i = 1, . . . , r1 and j = 1, . . . , r2 corresponding to the
two domains are estimated. r1 and r2 are the order of the two corresponding
reduced order models. The modal coefficients corresponding to the two parts
will be ai,Θ1 and aj,Θ2 . Similarly the two reduced order models Σ̃Θ1 and Σ̃Θ2

of the form (4.3) can be obtained after the Galerkin projection.

Based on the availability of the equations of the full order model to de-
duce the reduced order models, the two types of detection mechanisms are
explained in following sections.

Remark 4.3.1 In case of mild case of bifurcation which is explained in last
few paragraphs of section 4.3.3, there is no need of partition of the state space
corresponding to the two parameter variation spaces. Partition is necessary
only for the case of strong bifurcation when transition from one operation
domain to another results into completely different process dynamics.
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Remark 4.3.2 For the case of existence of multiple solutions (tri-furcations,
etc.), similar idea of separation of parameter space can be exploited.

Static Detection Mechanism

The static detection mechanism is useful when the governing equations of
full order model are not available and only the process (output) measure-
ments are available. This special case is often observed for commercial soft-
wares (simulators) which do not give access to the model equations but
they do provide the state information of full order model. For such situ-
ations, as explained in earlier sections, the two snapshot matrices Tsnap,Θ1

and Tsnap,Θ2 corresponding to the two sides of partition of parameter space
are constructed. In stead of process trajectories, the snapshot matrices may
consist of the process measurements. If measurements at sufficiently many
locations are available then the snapshot matrices will consists of all the un-
derlying correlated patterns i.e. the POD basis functions. As explained in
the previous section, a subsequent SVD of the snapshot matrices will give
ϕi,Θ1 , and ϕj,Θ2 for i = 1, . . . , r1 and j = 1, . . . , r2. r1 and r2 will serve
as the number of correlated patterns for the two operation domains. The
two projection operators ΦΘ1 and ΦΘ2 consisting of the correlated patterns
ϕi,Θ1 , and ϕj,Θ2 are constructed. If the snapshot matrix consists of the sys-
tem trajectories then the inferred projection operators are ΦΘi ∈ Rri×n for
i = 1, 2. If the snapshot matrix consist of the measurements (outputs) then
the projection operators are ΦΘi ∈ Rri×m for i = 1, 2. m is the number of
outputs. It should be noted that the,

rank
[
ΦΘ1

]
= r1, and rank

[
ΦΘ2

]
= r2

Now, with underlying assumption that the state space can be partitioned in
two parts, and the process measurements reflects major (relevant) process
dynamics corresponding to the process inputs and the dynamics correspond-
ing to the parameter variations (belonging to either of the partitioned side),
then the static detection mechanism amounts to finding the rank of a matrix
as follows: If y(k) ∈ R1×m is the process measurement vector then,

if, rank
[

ΦΘ1

y(k)

]
> r1 then, θ ∈ Θ2 ⊂ Θ

else, θ ∈ Θ1 ⊂ Θ (4.14)
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Based on the output information alone, the static mechanism in (4.14) can
detect the operation regime (i.e. before of after the bifurcation) of the pro-
cess. The static detection mechanism is valid only for the input profile which
is similar to the one that is used for construction of the snapshot matrices.
For any other type of input profile (different frequency content or the one
which excites the other process dynamics), the procedure of estimation of
ΦΘi needs to be repeated. In other words, the proposed method is not pos-
sible to extrapolate and the method cannot be used to predict the temporal
evolution of process outputs. It can detect the operation regime of the pro-
cess alone. The static detection mechanism have similarity to the Principle
Component Analysis (PCA) based multi model fault detection mechanism.
See, e.g. Esbensen and Geladi (2009), Wang and Qin (2002) and references
therein for PCA method. Although, multi-model approach is widely reported
in fault detection literature, the approach is not often applied to the detection
of bifurcations using reduced order models. Moreover, bifurcations can be
viewed as the special type of faults in a system. Some references to the fault
detection based on multi-model approach is presented in the introductory
section of this chapter.

Another static detection mechanism is proposed here which is suitable for
the situation when the state information of the full order model is available
however the access to the governing model equations is not possible. This
static detection mechanism is based on the residue between the snapshot ma-
trix and its reconstruction. Similar to usual situation, the snapshot matrices
considered in this second type of static mechanism consists of solution tra-
jectories. If ΦΘ1 and ΦΘ2 are computed for the snapshot matrices Tsnap,Θ1

and Tsnap,Θ2 and if y(k) is the process measurement then the second static
mechanism is as follows:(

1− Φ>Θ1
ΦΘ1

)
∗ T (k) > ε then, θ ∈ Θ2 ⊂ Θ

else, θ ∈ Θ1 ⊂ Θ (4.15)

where, ε is some predefined error criterion by the user. The second type
of static detection mechanism is also able to predict the operation regime
of the process alone (i.e. if Θ1 or Θ2). And due to the unavailability of a
dynamic model, neither of the static detection mechanism is able to predict
the dynamic behavior (future response) of the process.

It becomes clear from the discussion presented in this section that both static
detection mechanisms exploit the fact that the dynamic behavior correspond-
ing to the two operation domain of the process parameters is uncorrelated
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and therefore it can be used to detect the occurrence of the bifurcations
exhibited by the process.

To over-come the pitfalls of static detection mechanism i.e. inability to pre-
dict the process behavior, in next chapter another method for the detection
of bifurcation using the reduced order models is presented. The method is
suitable for the situation when the access to the governing full order model
equations is not possible, however the state information of the full order
model is available. The method proposed there can predict and detect the
occurrence of bifurcations and due to the construction of the dynamic re-
duced order model, the method can also predict the dynamic behavior of the
underlying process.

In case of the availability of the full order model equation, one can deduce
the reduced order models corresponding to the two parameter spaces (Θ1

and Θ2). The mechanism which allows such detection is explained in next
subsection.

Dynamic detection Mechanism

The word ‘dynamic’ suggests that this mechanism is useful in predicting
both; the dynamic process behavior and the occurrence of bifurcations. This
mechanism is also based on the partition of the parameter space. Based
on the two parameter spaces Θ1 and Θ2, two reduced order models Σ̃Θ1

and Σ̃Θ1 are obtained as per the procedure explained in earlier subsections.
From the knowledge of process inputs and outputs, the dynamic detection
mechanism amounts to computation of the residue error between the plant
and reduced order model outputs. Residue value implies the domain of
parameter operation. That is if,

||yΣ̃Θ1
(k)− y(k)|| > ε then, θ ∈ Θ2 ⊂ Θ

else, θ ∈ Θ1 ⊂ Θ (4.16)

where, ε is some predefined error criterion by the user, yΣ̃Θ1
(k) ∈ Rm is the

output of the reduced order model Σ̃Θ1 and y(k) is the plant output. Pic-
torially, the mechanism can be depicted as in Figure 4.1. Figure shows that
depending on the output residue information between the plant and reduced
model output, the detection mechanism suggests the operation regime of the
process.
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Remark 4.3.3 In practice, to compensate the effect of noise and distur-
bances, the reduced order model need to be replaced by the reduced order
observers. The results presented here are based on the simulations alone and
the effect of real life disturbances is not modeled here. In this thesis we have
not addressed the issue of designing of the reduced observers.

4.4 Discussion of simulation results

Figure 4.1: Dynamic error detection mechanism.

Figure 4.2: Behavior of tubular reactor before and after bifurcation.
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This section presents the simulation results on benchmark example of the
tubular reactor explained in chapter 2. First, the simulation results of full
order model with respect to bifurcation behavior are discussed and then the
performance of detection mechanism employing the reduced order models
obtained from POD with Galerkin projection techniques are discussed.

4.4.1 Bifurcations exhibited by full order model

The PDEs governing the tubular reactor model in (2.1) were discretized by
the numerical technique of method of lines, so as to represent the model as
a finite number of differential equations constituting the full order model.
The spatial component was discretized into 301 grid points. As there are
two variables of interest, viz-temperatures and concentrations, the full order
model has state dimension n = 602. The wall temperature of the reactor
served as the process inputs and they were kept at constant values (=1)
during the simulations. The initial conditions were also kept at unity. The
full order model is in dimensionless form, therefore all the variables of interest
are varied in between 0 to 1. For a constant input profile, the full order model
was simulated for different values of bifurcation parameter under study, i.e.
for different values of Damkohler numbers (Da). The parameter variation
range was Da < Da∗ and Da > Da∗, i.e. below and above the bifurcation
value Da∗. Figure 4.2 shows the dynamic response of the full order tubular
reactor around the bifurcation point. Left side plots corresponds to the
parameter values less than the critical bifurcation value, i.e. Da < Da∗ and
right side plots corresponds to Da > Da∗, i.e. parameter value larger than the
bifurcation value. Upper plots show the temperature and lower plots show
the concentrations in the reactor. As all the variables are dimensionless, the
reactor length varies from 0 to 1. The axis with simulation time is with
respect to the residence time, i.e. simulation horizon of 100 shows that the
full order model is simulated for a horizon of 100 times that of the residence
time of the reactants.

The simulation results are shown in Figure 4.2. For the simulation condi-
tions mentioned in previous paragraph and for the other parameter values
given in table 2.2.2, the bifurcation parameter range (Da− < Da∗ < Da+)
is (0.00320 < Da∗ < 0.00325). This implies that for a certain Da∗ in the
specified parameter window, there exist multiple steady states. The simu-
lations were carried for the adiabatic conditions, i.e. adiabatic reactor with
µ = 0 and adiabatic temperature rise B = 10. For Damkohler number
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Da ≤ Da− = 0.00320 the full order model shows lower steady state which is
characterized by a slow reaction and comparatively lower temperature rise.
As the simulation conditions are adiabatic (no cooling), we see the location
of the hot-spot at the reactor end (top left plot in figure 4.2). The reaction
(exothermic) keeps on increasing the temperature of the content in the reac-
tor and therefore the right end of the reactor becomes a hot spot. For some
value of Da+ > 0.00320, the reactor jumps from the lower to higher steady
state. In Jensen and Ray (1982), three steady states are reported for these
parameter values. However, it is difficult to observe the middle steady state
by the dynamic simulations. Similar to a CSTR, the middle steady state
is usually said to be unstable. Numerical techniques suggested by Doedel
et al. (1997), shows that the middle steady state solutions can also be found
out. Sometimes, operating around the middle state could be optimal from
the economic point of view but it should be avoided as operating around
middle steady state can easily lead to run away of the reaction which is not
a desirable situation from point of safety of the process.

4.4.2 Model reduction

As explained in earlier subsections the approximation of bifurcations exhib-
ited by the full order tubular reactor model using a single reduced order
model alone is not possible. If the bifurcation window is characterized by
three values of Da as mentioned in last paragraph, i.e. Da− < Da∗ < Da+

then as per the discussion presented in the methodology section, the param-
eter space can be divided into Θ1 representing a subset of Da values such
that Da ≤ Da−. The other subset Θ2 is represented by Da ≥ Da+. The bi-
furcation window Da− < Da∗ < Da+ characterizes the transition from one
parameter set to another. This implies that the parameter variation domain
characterizing different values of Da can be categorized in three parts; Θ1,
Θ2 and the bifurcation window. However, for the purpose of validation of the
detection mechanisms, only the two subsets, i.e. Θ1 and Θ2 are considered
here. The transition window, due to its very small size (0.00320 to 0.00325)
is ignored. Model reduction is carried out using the method of POD with
Galerkin projection of equations of full order model. The model reduction
procedure is repeated to infer the two reduced order models corresponding
to these two parameter space. In subsequent sections the result of two detec-
tion mechanisms based on the reduced order model will be discussed. The
difficulty in approximation of the bifurcation behavior of full order model
during the transition (bifurcation window) is discussed separately in another
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subsection.

Detection of process operation regime for Da ≤ Da− and Da > Da+

The parameter sets corresponding to Da ≤ Da− and Da > Da+ gives the
lower and the higher steady state respectively. The dynamic behavior of full
order model corresponding to these sets do not exhibit any discontinuous
behavior and therefore it can be lumped in either of these two sets. The
procedure of obtaining the reduced order models for the two parameter sets
is same. The snapshots matrices corresponding to different values of Da
belonging to either of the two parameter sets is constructed. Subsequent step
of SVD of these snapshots matrices gave the dominant POD basis functions
ϕi,Θ1 and ϕi,Θ2 . The projection operators ΦΘ1 and ΦΘ2 are constructed using
the POD basis functions. Galerkin projection of the full order process model
on the space spanned by these projection operators produced two reduced
order models Σ̃1 and Σ̃2, each corresponding to either of the parameter set.

The two detection mechanisms; static and dynamic are used to predict the
operation window of Da, i.e. smaller or larger than the bifurcation point
(if Da ≤ Da− or Da ≥ Da+). The full order model of the tubular reactor
served as the replacement of the actual process.

Figure 4.3 shows the result of application of static detection mechanism that
is explained in subsection 4.3.4, in equation (4.15). As this is a simulation
based research work, in stead of error in reconstruction of an individual out-
put signal or a single trajectory, the results are shown for the reconstruction
of all spatial signals over the complete simulation horizon (i.e. the snapshot
matrix). That is, the figure shows the error in reconstruction of the snapshot
matrix obtained for a certain fixed value of Da. The process is distributed in
space and time, therefore, to characterize the total error the residue in (4.15)
is normed over the space and the simulation horizon. The left side plot shows
the error incurred in reconstruction of the temperature snapshots whereas
the right side plot shows it for the reconstruction of snapshots of the species
concentration. The snapshots corresponding to each parameter regime, i.e.
Da ≤ Da− and Da ≥ Da+ are constructed. After SVD, the operators ΦΘ1

and ΦΘ2 were constructed. The validation step involved reconstruction of
snapshot matrix corresponding to different values of Da. And the error in
(4.15) is computed for each case which is plotted in the Figure 4.3. It be-
comes clear from the plots that the reconstruction error is relatively small for
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reconstruction of the snapshot matrix using the projection operator inferred
from the SVD of the same snapshot matrix. That is, during validation for
different values of Da ≤ Da−, when a snapshot matrix is reconstructed using
the projection and the injection (for reconstructions) operators ΦΘ1 and Φ>Θ1

then the errors are smaller (blue crosses). But if the same snapshot matrix is
reconstructed using the operator ΦΘ2 and Φ>Θ2

then the reconstruction error
is comparatively bigger. Same holds true for the other validation situation
when Da ≥ Da+ and the error is computed using the operators ΦΘ1 and
Φ>Θ1

. Therefore, given the knowledge of process output signal or the trajec-
tory, it is possible to detect the process operation regime (i.e. corresponding
to before or after a bifurcation point) using the static detection mechanism.
The injection operators which gives minimum reconstruction error charac-
terizes the operation regime of the process. Similar explanation holds for
the concentrations. It is explained in the methodology section, that this
method is not based on the reduced order models in the form of equations,
therefore the method is of static nature. That is, only the process operation
regime is detected and the process response (outputs) is not predicted. The
dynamic detection mechanism overcomes this pitfall and it is discussed in
next paragraph.

Understanding the working of dynamic detection mechanism is relatively
easier. The full order tubular reactor model served as the plant. The re-
duced order models were obtained using the method of POD with Galerkin
projection. As the mechanism is based on the output residue between the
plant and the reduced order models, it suffices to show that at any time
instant, the process behavior can be approximated by either of the reduced
order model. Figure 4.4 confirms the same thing. The plots in Figure 4.4
show temperatures and concentrations in the middle of the reactor for the
full order model (blue line), and for the two reduced order models. The first
reduced order model was obtained for the parameter domain Da ≤ Da−

and it is represented by the red line (RM-Da-minus) whereas the second re-
duced order model is obtained for the parameter space Da ≥ Da+ and it
is represented by the green line (RM-Da-plus). The maximum value of the
temperature that the reactant can observe for the adiabatic case is (Initial
condition + Adiabatic temperature rise (B)). The adiabatic temperature
rise B = 10, and initial condition equal to one, therefore the final tempera-
ture in the reactor after crossing the bifurcation point is equal to 11. When
the temperature in the reactor reaches its maximum value (adiabatic rise),
the reactants are completely consumed and the concentration of the species
drop to zero. The lower plateau of the dynamic behavior of the full order
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Figure 4.3: Results of static error detection mechanism.

Figure 4.4: Comparison of full scale and two reduced models of tubular
reactor

Figure 4.5: Wave pattern in the reactor

model is approximated by the first reduced order model, i.e. corresponding
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to the domain Da ≤ Da−. The higher plateau of the dynamic behavior
(i.e. ignition state which occurs after the bifurcation point) is approximated
by the reduced order model corresponding to parameter variation domain
Da ≥ Da+. The transition from lower plateau to the higher one is charac-
terized by a special spatio-temporal effect, which is discussed in more detail
in next subsection.

Model reduction for Da > Da+ and for Da ≤ Da−, i.e the bifurcation
window

The bifurcation window for the full order process model around the critical
bifurcation point Da∗ is Da > Da− and Da ≤ Da+ is equal to 0.00320 <
Da∗ < 0.00325. In this parameter range, the full order process model shows
the transition from the lower to the higher steady state. Due to the adiabatic
nature (no cooling) of the reactor, for the mentioned bifurcation window
of the Damkohler number, the temperature at the (right side) reactor end
increases significantly. This increase in temperature further increases the
reaction rate. This positive loop continues such that at a certain value of
temperature and concentration for the mentioned bifurcation window of the
Damkohler number, the temperature at the end jumps from the lower to
the higher plateau. In comparison to the residence time of the reactants
in the reactor, this transition is relatively much faster. As explained in
earlier paragraph, the higher plateau (steady state) is determined by the
value of the adiabatic temperature rise of the reactor. The higher steady
state is the limiting case and the temperature can not be increased there
beyond 11 (value of adiabatic temperature rise + initial condition). The
concentration drops to zero at this spatial location. The limiting situation
implies that the temperature at the reactor end can not be increased further
(due to unavailability of the reactants anymore). This results into repetition
of same effect at the spatial location which is on the left side of the reactor
end, and subsequently the solution at that location also shows transition
from the lower to the higher plateau. In a similar way every next spatial
location in the tubular reactor starts exhibiting the similar effect. In this
way, the diffusion in the reactor carries the transition behavior from the right
end of the reactor to the left end in a very short span of time. The word
short is referred with respect to the residence time of the reactants in the
reactor. This spatio-temporal effect of transition in the reactor appears in
the form of wave, or sometimes referred to as the ‘traveling wave’.
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The occurrence of the traveling waves in a chemical unit operations is not
uncommon. For example, fixed bed reactors, distillation columns, settling
tanks and many other unit operations in chemical process industry show this
phenomena. A good account on the information of traveling waves in differ-
ent chemical unit operations is presented in Marquardt (1990). Model reduc-
tion using the method of POD for the processes exhibiting the phenomenon
of traveling waves is relatively complex spatio-temporal effect. The usual
method of collection of process snapshots and its spectral decomposition to
separate the spatial and temporal patterns can still be performed. However,
the resulting snapshot matrix is then a triangular matrix with almost full
rank. That is, the decay of the singular values for such a snapshot matrix
storing the trajectories corresponding to the wave and effect is different than
that is observed for any other dynamic process not exhibiting the wave effect.
The decay of singular values for a process with a wave effect is very slow and
it implies that almost no model reduction is possible. The common notion of
truncation of model order to the point where the projection energy content
(see, (4.11)) of the reduced model is 99% of the excitation signal does not
hold anymore. And therefore, model approximation using a reduced order is
not possible anymore. The method of POD is based on correlation of spatial
patterns, whereas the wave effect signifies correlation in time. This insight
can be useful in inferring a reduced order model by approximating the wave
effect using a single temporal pattern. This idea is not further exploited in
this thesis. Rather, a similar idea is nicely explored in Nauta (2008). Figure
4.5 shows the wave pattern of temperature and concentration in the reactor
during the transition from lower to the higher plateau. The plots in the
figure shows that the wave begins at the right end of the reactor from where
the product leaves. The wave then travels toward the left end. The plots
show that the time instance at which the transition occurs at each location
is different and it appears in the form of wave.

4.5 Conclusions and ideas for future research

The work presented in this chapter is motivated by the problem of detec-
tion of bifurcations caused by parameters variations in tubular reactor as
a benchmark example of large scale processes. The complexity and com-
putation time associated with the full order process model of such a large
scale process is the main hurdle for its use in on-line fashion. This chapter
provides a practically feasible method as a solution towards this problem. A
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novel methodology is presented in this chapter to detect the occurrence of
bifurcation and the operation regime of the process. The parameter varia-
tion is chosen so as to exhibit a discontinuous dependence of the dynamical
responses as function of the parameter (the Damkohler number in the re-
action). A critical value of the Damkohler number causes changes in the
steady state response of the system. Towards the purpose of detection of
parameter regime and occurrence of the bifurcations, two types of detec-
tion mechanism; a static and a dynamic are presented in this chapter. The
static detection mechanism is based on span of dominant spatial patterns
alone and it is useful in detection of bifurcations in the absence of the model
equations. The dynamic detection mechanism is based on the output infor-
mation of the reduced order models obtained by the method of POD with
Galerkin projection of equations. The dynamic detection mechanism can be
used in an online fashion for the detection of bifurcation occurrence. An
investigation into the model approximation using the method of POD for
the bifurcation window around the critical parameter value shows the occur-
rence of the wave pattern in the tubular reactor. The problems associated
with model reduction using the method of POD for the process exhibiting
the phenomenon of wave is also discussed in this chapter. Due to practical
feasible the proposed mechanism should be applicable to other large scale
processes. In next chapter we validate the usability of the approach that
is presented here on benchmark example of industrial glass manufacturing
process.

The wave pattern in the tubular reactor is a temporal effect. Therefore,
the possibility of investigating a method based on temporal patterns (right
singular vectors) to infer the reduced model can be pursued as the future
work. Moreover, for the detection of bifurcations in real life situations, de-
veloping a reduced order hybrid observer is more promising. The reduced
order observer, are better placed to compensate the effect of process noise
and disturbances.
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5

Detection of Bifurcation of Flow Patterns in
Glass Furnace using Reduced Order Models

5.1 Introduction
5.2 Methodology: Model

reduction and detection
of bifurcations

5.3 Discussion of simulation
results

5.4 Conclusions

In this chapter we apply a combination of the method of spectral decom-
position and system identification to identify a low dimensional model of a
benchmark example representing an Industrial Glass Manufacturing Process
(IGMP). The proposed model reduction method does not need the access
to the governing equations and relies only on the state information of the
full order model. In particular, we infer a reduced model by identifying a
linear map from process inputs to the POD modal coefficients by a subspace
state-space identification method. Reduced models obtained from such a
method are not well equipped to capture the process behavior with time
varying uncertain process parameters. For this reason a hybrid detection
mechanism, which has been introduced in chapter four is used to approxi-
mate the glass manufacturing process (benchmark CFD model) exhibiting
non-smooth geometric parameter dependence (corrosion and wear) by using
lower dimensional models. Given the state or the output information the
mechanisms detect the process parameter operation regime and suggests a
computationally faster, lower dimensional model as an approximate for the
real process.

The work presented here is based on a paper, see Wattamwar et al. (2008).
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5.1 Introduction

This chapter presents the model reduction framework to infer reduced order
process models for the 2D glass furnace model exhibiting discontinuous pro-
cess behavior as result of continuous geometric parameter variations. The
problem of model reduction for system exhibiting bifurcations is already dis-
cussed in Chapter 4. It is shown there that the reduced model obtained by
POD techniques are not well equipped for the processes (tubular reactor) ex-
hibiting non-smooth dependence on process parameters i.e. bifurcation type
of a behavior. The problem becomes worse when the physical boundaries of
the process domain become uncertain. It is shown in this chapter how the
POD basis becomes obsolete when the throat wall of the glass manufactur-
ing furnace (a geometric parameter) wears out over time. See, section 3.2.2
for information on POD method. To address this issue of model reduction
for processes exhibiting bifurcations, in this chapter a reduced order model-
ing framework is proposed. The model reduction technique presented here is
similar to the one proposed in Huisman (2005) and it involves two steps. The
first step is based on Proper Orthogonal Decomposition (POD) as explained
in section 3.2.2 and it involves spectral decomposition of the solutions of the
full order model to separate the spatial and temporal patterns. The domi-
nant patterns are then selected to infer the lower dimensional subspace. The
second step is different when compared to the usual POD method involving
the Galerkin projection of equations. The second step involves approxima-
tion of the dominant temporal patterns using the tools from the field of
system identification. See section 3.1 for more details about these identifica-
tion tools. In particular, the subspace state space method of identification
is used. It results into LTI models in state space form. The main contribu-
tion of this chapter is the modification of this data based model reduction
method to accommodate the detection of bifurcations of flow patterns in the
glass furnace using the detection mechanisms that are proposed in Chap-
ter 4. Based on the state or output residue information between the plant
(full order glass furnace model) and the reduced model, the model reduc-
tion framework detects the process operation regime (i.e. before or after the
bifurcation point) and approximates its behavior using the reduced order
models.

The model reduction framework that is proposed here is useful especially
when it is difficult to get an access to the governing model equations, in
absence of which it is impossible to project the full order process model
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onto a lower dimensional subspace spanned by the POD basis. That is, in
the absence of modal equations, no model reduction is possible using the
classical method of POD with Galerkin projection. Therefore the method
that is presented here serves as an alternative to infer the low order process
models from the state information of full order process model. The model
reduction technique presented here searches for the linear operation regime
and results into LTI reduced order models. Due to the linear nature of such
models, they are computationally very efficient (more than 1000 times faster)
when compared to the full order CFD models used for simulating the glass
manufacturing process.

The details about glass manufacturing process, its modeling and wearing of
throat wall are explained in section 2.3.6. The wearing out of a throat wall
in glass furnace causes initiation of back-flow i.e inversion of the flow direc-
tion. This back-flow causes changes of critical process variable (Temperature,
Pressure, Velocity...). Occurrence of back-flow is similar to bifurcation or
trifurcation happening in many chemical processes exhibiting discontinuous
dependence on process parameter. The unit operations in chemical industry
which often exhibit the bifurcation behavior are mentioned in Chapter 4.

This chapter is organized in few sections. The overall model reduction frame-
work employing reduced order models, the detection mechanism and the
tools from theory is explained in section 5.2. The simulation results are
presented in section 5.3 which is followed by the conclusions in section 5.4.

5.2 Methodology: Model reduction and detection
of bifurcations

In this section we explain the methodology for identifying smaller dimen-
sional, computationally faster models which can approximate the original
full order non-linear process model showing non-smooth geometric param-
eter dependence. Furthermore this section will explain how to detect the
operation regime of the geometric parameter (i.e. below or above bifurcation
value) from the obtained reduced model and some process measurements.

This chapter will use the notion of bifurcation, and the concept of detection
mechanism to detect the bifurcations from Chapter 4. To avoid the repetition
they are not explained in greater details in this chapter. The new contribu-
tion from this chapter is the method of inferring the low order models , and
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the implementation of the proposed methodology on benchmark example of
glass furnace. The method of model reduction that is presented in Chapter 4
is based on the availability of the model equations and it involves projection
of model equations on a lower dimensional subspace spanned by the POD
basis functions. Whereas, the method of model approximation (reduction)
that is presented here is different. It relies on the availability the information
of the states of the full order model and therefore does not need the govern-
ing equations of the full order model. The method is proposed by Huisman
(2005) and it is adapted here for the model reduction of parameter sensitive
process and for the detection of bifurcations of flow patterns in 2D glas fur-
nace. The method involves identification of a linear map between process
inputs and the modal coefficients that are obtained during the spectral de-
compositions of the system solutions. For the ease of reading, the overall
methodology is presented here in the form of an algorithm. Moreover, the
problem formulation that is already presented in Chapter 4 is repeated here
for the sake of completeness of the methodology.

5.2.1 Problem formulation

The problem of detection of bifurcations (that is, the detection of process
operation regime) for a parametric process model Σ(θ) of the form;

Σ(θ) : Ṫn,θ = f
(
Tn,θ, u, θ

)
(5.1)

amounts to finding an approximate process model Σ̃(θ) of the form;

Σ̃(θ) : ˙̃Tr,θ = fr
(
T̃r,θ, u, θ

)
(5.2)

such that the approximation minimizes some cost function

J :=
K∑
k=1

‖T kn,θ − T̃ kr,θ| (5.3)

in some norm. Here, T kn,θ ∈ Rn is a solution of the model Σ(θ), u(k) ⊂ U ∈ Rl

is the vector of process inputs, T̃ kr,θ ∈ Rn is a solution of the reduced order
model Σ̃(θ), and fr is the reduced nonlinear map. The parameter θ(k) ∈
Θ = Θ1 ∪Θ2, such that Θ1 is the domain of parameter variation before the
bifurcation, i.e. θ(k) ≤ θ∗ for k = 1, . . . ,K as the number of time samples,
with θ∗ as the critical bifurcation value of the parameter on the domain
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boundary ∂Θi for i = 1, 2. Θ2 is the domain of parameter variation after the
bifurcation point, that is θ(k) ≥ θ∗ for k = 1, . . . ,K. This implies that if the
full order process model exhibits parameter sensitivity and the bifurcation
as per the definition in (4.2) then this parameter sensitive behavior is also
expected to be approximated by the reduced order model.

Solution to the problem mentioned earlier can be found by using spectral
decompositions as the method of inferring lower dimensional subspace, the
method of subspace state-space identification (SID) as explained in section
3.1.1 to approximate the evolution of temporal patterns and the Dynamic
Detection Mechanism (DDM) explained in Chapter 4 to accommodate the
parameter variation over the bifurcation point. This is explained in subse-
quent paragraphs as an algorithm. It is assumed here that the full order
model is available as a reliable process simulator and the modeling efforts
required for the development of the full order model is not discussed here.

5.2.2 Algorithmic procedure

The algorithmic procedure involve two major parts. The first part results
into LTI reduced order models and it is explained in the first three steps
while the second part involved detection of bifurcations and it is explained
in the fourth step.

Step 1: Data collection and processing

Excite the full order process model by the excitation (identification) signal
u(k). Construct the snapshot matrix Tsnap,θ,

Tsnap,Θj =
[
T 1
n,θ1,j

, . . . , TKn,θ1,j
, . . . , T 1

n,θh,j
, . . . , TKn,θh,j

]
∈ Rn×(K∗h). (5.4)

Here θi,j ∈ Θj is a finite set, with i = 1, . . . , h and h is the number of
discrete parameter values in a parameter set, j is the number of parameter
sets separated by the bifurcation points, i.e. Θj =

[
θ1,j , . . . , θh,j

]
. Here, j =

[1, 2]. That is, when j = 1 represents the situation before the bifurcation and
j = 2 is the situation after the bifurcation. Therefore the complete parameter
variation domain is given by Θ = Θ1 ∪Θ2, with θ∗ as the bifurcation value.
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Step 2: Spectral decompositions

UΘj =
[
ϕ1,Θj , . . . , ϕn,Θj

]
, i.e. matrix with left singular vectors,

SΘj = diag
[
σ1,Θj , . . . , σn,Θj

]
, i.e. diagonal matrix with singular values,

V >Θj
=
[
υ>1,Θj

, . . . , υ>K,Θj

]
i.e. matrix with right singular vectors. (5.5)

ϕi,Θj (z) for i = 1, . . . , n are the orthonormal basis (spatial components),
σi,Θj for i = 1, . . . , n are the singular values and υi,Θj for i = 1, . . . ,K are
the temporal basis functions (right singular vectors), z ∈ Rn is the spatial
coordinate, with j = 1, 2. The solution T kn,Θj

of (5.1)can be represented in
terms of finite spectral expansion as,

T kn,Θj
=

n∑
i=1

ai,Θjϕi,Θj (z). (5.6)

where ai,Θj are the corresponding modal coefficients satisfying the condition,

ai,Θj (k) = 〈Tn,Θj (z, k), ϕi,Θj (z)〉, for i = 1, . . . , n. (5.7)

Due to the property of the SVD, the singular values are arranged in a de-
creasing order. The approximation order r of a reduced order model can be
decided by analyzing at the singular value decay, i.e. the truncation (approx-
imation) order is decided such that 99% of the projection energy is captured
using the criterion,

Ptol =
∑r

k=1 σk,Θj∑n
k=1 σk,Θj

. (5.8)

Therefore, the solution of the approximate (reduced order model) can be
presented as,

T̃ kr,Θj
=

r∑
i=1

ai,Θjϕi,Θj (z). (5.9)

Step 3: Identification of reduced model

This step involves identification of a LTI reduced model between plant inputs
and the modal coefficients, i.e. u(k)→ aΘj (k), with aΘj (k) = col(a1,Θj , . . . , ar,Θj )
as the vector of modal coefficients and col is the column operator stacking
the entries over each other. Here, r is the number of modal coefficients
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whose temporal evolutions are approximated using the reduced order mod-
els. This necessitate a multi-input-multi-output (MIMO) black-box identifi-
cation method to infer the reduced order models. Moreover, it implies that
the modal coefficients aΘj (k) are treated as the outputs of the black-box
reduced order LTI model that we aim to identify. The black-box identifica-
tion method that is chosen to identify this reduced map is a subspace state
space identification method. The details about this method can be found
in chapter 3. The choice of any other black-box identification method is
avoided here as subspace identification method performs better in this spe-
cial case of treating the POD modal coefficients as the outputs of a black-box
model. The reason behind the better performance of the subspace method
over the other black-box identification methods lies in the similarity between
the functioning of subspace method and the way the modal coefficients are
inferred. Both; the way to obtain the modal coefficients and the subspace
method involve singular value decomposition. As the modal coefficients are
already arranged as per their order of importance, the subspace method be-
comes the natural choice. This identification step results into black-box LTI
models in state space form as,

Σ̃(Θj)

{
xΘj (k + 1) = AΘjxΘj (k) +BΘju(k)
âΘj (k) = CΘjxΘj (k)

where, x ∈ Ro is the state space dimension of the black-box reduced or-
der model and j = 1, 2 i.e. two sides of the partition of parameter space.
These states have no physical interpretation. AΘj ,BΘj and CΘj are the state
space parameters of the identified low dimensional model. âΘj (k) ∈ Rr are
the identified modal coefficients obtained by simulating the dynamic model
Σ̃(Θj). The reconstructed states T̂r,Θj of the full order model are given by,

T̂r,Θj (k) = Φ>Θj
âΘj (k) ∈ Rn, (5.10)

where, Φ>Θj
∈ Rn×r is the injection operator constructed from the projection

operator ΦΘj =
[
ϕ>1,Θj

, . . . , ϕ>r,Θj

]
constructed from the orthonormal basis

functions ϕi,Θj , where i = 1, . . . , r and j = 1, 2, obtained during the spec-
tral decomposition in second step. The identified outputs (having physical
interpretation) of the process are given by,

ŷr,Θj (k) = CT T̂r,Θj (k) (5.11)

where, CT ∈ Rm×n is the output matrix.
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Step 4: Detection of bifurcations

The detection mechanisms are already explained in Chapter 4. To maintain
the continuity, they are briefly explained here once again.

The parameter variation domain Θ is divided into two sets, Θ1 as the do-
main in which parameter θ varies before the bifurcation point θ∗ and Θ2

as the domain in which parameter θ varies after the bifurcation point θ∗.
Using the first three steps two reduced order black-box models Σ̃Θ1 and Σ̃Θ2

corresponding to the two parameter variation domains Θ1 and Θ2 are identi-
fied. The dynamic behavior of the process is approximated by using either of
these reduced order models after comparing the state or the output residue
between the reduced order models and the process. If y(k) is the process
output and ŷΘj (k) for j = 1 or 2, is the output of either of the model, then
the residual with respect to the first reduced model is given by,

ε1(k) = ||yθ(k)− ŷΘ1(k)||22, (5.12)

and with respect to the second reduced order model is given by,

ε2(k) = ||yθ(k)− ŷΘ2(k)||22. (5.13)

The dynamic detection mechanism compares these two residuals and detects
the occurrence of the bifurcation, i.e. it detects the operation regime of the
parameter. That is, if,

ε1(k) > ε2(k) then, θ ∈ Θ2 ⊂ Θ, i.e. θ ≥ θ∗,
else, θ ∈ Θ1 ⊂ Θ, i.e. θ < θ∗ (5.14)

5.3 Discussion of simulation results

In this section the results of the application of the proposed detection frame-
work employing the reduced order models is presented. The model reduction
framework that is proposed in this chapter is motivated by the industrial ap-
plication of glass manufacturing process. The glass manufacturing process
details are explained in section 2.3.6. The methodology was implemented in
order to detect the bifurcations of flow patterns that occur in glass furnace
using less complex, computationally efficient reduced order models. The
bifurcation of flow patterns in the glass furnace appears as result of the cor-
rosion of the furnace throat wall which is shown in Figure 2.2. The effect of
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wearing of the throat wall in the form of corrosion results into back-flow of
the glass from the refining section to the fining zone via the throat area. The
occurrence of the back-flow is shown in the Figure 2.11. The model reduction
and detection framework proposed in this chapter allows to approximate this
problem of corrosion resulting into back-flow as a bifurcation problem. The
furnace throat height is treated as the bifurcation parameter. For the 2D
model of the furnace that is presented in chapter 2, the bifurcation window is
observed for the values h1 = 0.2[m] and h2 = 0.3[m], where hi is the throat
gap. Increased gap at the throat area from h1 to h2 due to the corrosion
results into the bifurcation of flow patterns.

Simulation experiments were performed on the 2D glass furnace model for
two different throat heights for a time horizon of 60 hr. The full order process
model is simulated using the Computational Fluid dynamics (CFD) tools
coded in software platform GTM-X designed by TNO, see TNO (2008). The
software serves as a simulator, which means that the inputs can be designed
and the CFD model can be simulated with the desired numerical parameter
settings, but the access to the full order model equation is not available to
the user. As the methodology that is proposed in this chapter is based on
the state information of a full order model, the low order models can be still
developed to detect the bifurcations of flow patterns.

The data comprising of the full order state information was extracted and
imported in MATLAB environment for performing the spectral decompo-
sition of temperatures in the furnace followed by the identification of the
low order models. In real life glass furnace, temperature is one of the few
important process variables that can be reliably measured. Therefore the re-
sults of the proposed methodology are validated on the process temperature
alone. From step 1 to step 3 as mentioned in the methodology section are
repeated for the two situations, viz. before the bifurcation (h1) and after the
bifurcation(h2). Two linear models Σ̃Θ1 and Σ̃Θ2 are identified correspond-
ing to h1 and h2. The identified models are linear in nature and therefore
they are comparatively much faster (> 1000 times) in computation of dy-
namic solutions when compared to the computation time of the full order
CFD models. Due to the big mismatch in computation time of the full and
the reduced order models, the computational advantages of the identified
models over the full order CFD models is not compared in further detail.
The lower dimensional linear models were identified between a single input,
which is glass pull rate or the production rate and three outputs which are
first three modal coefficients ai,Θj (k) corresponding to the dominant spatial
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patterns ϕi,Θj (z) with i = 1, 2, 3 for the number of modal coefficients and
j = 1, 2 for the two partitions of the parameter space. Figure 5.1 shows the
process input profile (left) and the temporal evolution of the mean temper-
ature in the glass furnace for the two different CFD models, corresponding
to the two situations - before and after corrosion. The identification signal
was made of steps in positive and negative directions and sampling rate was
chosen equal to 8 min. The average temperature plot of the CFD models

Figure 5.1: Left: Process input, Right: Average temp. profile

Figure 5.2: Comparison between first velocity basis function. Left: h = 0.2,
Right: h = 0.3

for the two situations (h1 and h2) is shown on right hand side plot in Figure
5.1. The response of each furnace (corresponding to the geometry h1 and
h2) to the changes in feed rate is different and it depends on many factors
like furnace capacity, heat content of the molten glass, external heat supply
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and many other process variables. Plot shows that even for 1% step around
the working point, the process shows nonlinear behavior, as observed by the
different gain in positive and negative directions. The plot also shows that
the full order CFD model exhibit a similar dynamic behavior for the two
situations with relatively small difference. However, the plot shown in Fig-
ure 5.1 represent the average (over the complete spatial domain) response
of the full order model and it does not show the local influence (in throat
region) of the corrosion. Therefore the plot should be used to understand
the extent of nonlinearity alone. The difference between the two situation
is observed predominantly near the throat section in the furnace, see Figure
2.11 in subsection 2.3.6.

The local influence of the back-flow is also observed in the 1st dominant spa-
tial basis obtained for the velocity variables, and it is shown in Figure 5.2.
The spatial basis functions for velocity were obtained by spectral decomposi-
tion of the snapshot matrix consisting of x (varying between 0 to 40 [m]) and
y (varying between 0 to 1[m]) directional component of velocity. Due to the
small width, the basis functions for the velocity component in z-direction is
not plotted in the figure, rather in z-direction, the magnitude of the velocity
in corresponding grid location is plotted. The first spatial basis represents
the most dominant spatial pattern in a process. From Figure 5.2 it is visually
observable that around x = 29 [m] the two plots on either side differs. This
region is the throat region. This observation confirms that the orthonormal
basis functions obtained by the spectral decomposition is able to depict the
effect of strong bifurcations exhibited by a process. Moreover, it also im-
plies that the basis functions obtained after spectral decomposition become
obsolete for parameter sensitive processes like glass furnace. That is, the
spatial basis functions obtained for the simulation data corresponding to the
throat height h1 will not be able to represent the behavior corresponding to
h2. This necessitates use of the methodology of separation of state space at
bifurcation point into two parts.

As in reality one can measure the temperatures reliably at a few sensor
locations placed at the bottom of the furnace, the performance of the iden-
tified reduced order model is compared with the full order CFD model at
the selected sensor locations. Identification of the reduced models for the
velocity variable is not presented in this chapter. Following are the sensor
locations where the performance of the reduced order models are compared.
The sensor locations can be viewed in the Figure 2.2.

S6 at x = 25m, i.e. 3m left of the throat entrance
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Figure 5.3: (a) Temperature at S6. (b) Temperature at S7
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Figure 5.4: (a) Temperature at S8. (b) Temperature at S9

S7 at x = 28m, i.e. at the throat entrance
S8 at x = 29m, i.e. at the middle of the throat
S9 at x = 30m, i.e. right end of the throat
Figure 5.3 compares the performance of the CFD and the identified reduced
model at (S6) & at (S7), while Figure 5.4 shows the same at sensor (S8) &
at (S9).

Both the identified low dimensional models show a good approximation of
the true process (CFD models). They capture the process dynamics rea-
sonably well. Due to the distributed nature of the process we see different
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performance quality of the identified models at each sensor locations. At S6
the identified model is faster than the real process. The poor performance of
the identified models at S6 is partly attributed to the spatial location of S6
which is strongly influenced by the hot molten glass coming from the upper
side of the finning region and the cold glass from the throat region. This
makes it difficult to approximate the process behavior at S6 using the linear
reduced order models.

The detection mechanism that is presented in the methodology part relies
on the output residue between the full order and the low order models at
any time instant. This implies that it suffices to show that at any time
instant, either of the low order models (corresponding to h1 or h2) should
approximate the full order model. That is, at any time instant it should
be possible to fulfill the residual criterion mentioned in (5.14). As the plots
in Figure 5.3 and 5.4 satisfy this requirement, it is clear that the detection
mechanism based on the computationally efficient low dimensional models
can be used to detect the occurrence of the bifurcations (process operation
regime) in the flow pattern observed in 2D glass furnace.

5.4 Conclusions

We conclude this chapter with the remark that for a slow parameter varia-
tion, it is possible to use the hybrid type of detection mechanism to detect
the bifurcations. The detection mechanism employs the low dimensional
models obtained using the method of spectral decomposition of process so-
lutions and subsequent identification of a linear map as an approximation
of the dynamic evolution of the associated modal coefficients. The proposed
framework serves two purposes. First, it explains the methodology to in-
fer lower dimensional process models using the combinations of the spectral
decompositions and the subspace identification techniques. The resultant
reduced order models are significantly faster in computation than the full
order CFD models. Second, by using the hybrid detection mechanism it
is possible to detect the process operation regime (before or after the bi-
furcation point) as result of the uncertain value of bifurcating parameter
(throat height). The proposed framework is tried on a benchmark example
of large scale industrial application, i.e. a glass manufacturing process. The
bifurcations of flow patterns in 2D glass furnace model is detected using the
detection mechanism. The results show that it is possible to approximate
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the behavior of a large scale process exhibiting extreme parameter sensitivity
by using computationally efficient reduced order modeling framework.

The bifurcation in flow patterns in glass furnace as shown in this chapter is
function of spatial position. Therefore, the time instance of the occurrence
of back-flow is different at different locations in the throat region. This has
motivated to consider the corrosion occurring in glass furnace as a continuous
phenomena and propose a reduced order modeling framework which will be
valid over the complete domain of variations of uncertain parameter. This is
achieved by using a framework of Reduced Order - Linear Parameter Varying
(RO-LPV) model. This RO-LPV modeling framework is explained in greater
details in chapter 6.
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6

Identification of Low Order Linear
Parameter Varying Models

6.1 Introduction
6.2 Linear Parameter

Varying (LPV) models
6.3 Reduced order LPV

modeling framework

6.4 Discussion of simulation
results: 2D Glass furnace

6.5 Conclusions

In this chapter a novel procedure for obtaining low dimensional models of
large scale, non-linear fluid flow systems is proposed. The approach is based
on the combination of methods of spectral decomposition, black box system
identification techniques and nonlinear spline based blending of the local
black box models to create a reduced order linear parameter varying model.
The proposed method is of empirical nature and gives computationally very
efficient low order process models for large scale processes which are modeled
by computational fluid dynamic tools. The method proposed here do not
need the access to the governing model equations and rely alone on the state
information of the full order model. The data dependence of the proposed
method make it applicable for other processes. The efficiency of the proposed
approach is illustrated on a benchmark problem of an industrial glass man-
ufacturing process where the process non-linearity and non-linearity arising
due to the corrosion of refractory materials is approximated using a linear
parameter varying model. The results show good performance of the pro-
posed method.
The results presented here are based on the conference paper Wattamwar
et al. (2009a) and the journal paper Wattamwar et al. (2009c).
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6.1 Introduction

It is explained in Chapter 5 that the singular value decomposition of the
solutions of the full order model equations along with the tools from the
area of system identification can be used to identify computationally effi-
cient reduced order LTI models. Although the model reduction technique
proposed there is able to approximate the linear dynamics, the method is
not suitable to approximate the nonlinear behavior that is inherent to many
processes. Here, nonlinear behavior is referred to any continuous mapping
from the plant inputs to the plant outputs which cannot be expressed by a
linear relation. For many chemical processes, it is possible to approximate
their dynamic behavior by a linear model in a certain operation window.
For such processes, it is also possible to approximate the dynamics of full
order model by a reduced order LTI model. Nevertheless, for chemical pro-
cesses it is also common to see the nonlinear behavior. Nonlinear process
behavior can be an outcome of changes in working/operating point or due
to the changes in the scheduling variables of a plant. For such processes it
is not sufficient to approximate the process dynamics by a linear model and
one need a richer model structure. In context of model order reduction, it
is worth investigating a nonlinear model reduction technique based on sim-
ilar ideas that are presented in chapter 5. Such a nonlinear reduced order
modeling technique should be able to approximate the nonlinear behavior of
the process and should inherit the advantages of the LTI model reduction
technique presented in Chapter 5.

To meet the above mentioned requirement by a model reduction technique,
in this chapter we present a novel reduced order modeling technique which
is able to approximate the nonlinear behavior of a plant. The first part of
the technique proposed here is similar to the one explained in Chapter 5 and
it results into reduced order LTI models. Therefore, the model reduction
method proposed in this chapter also inherit all the benefits of the model
reduction technique presented in Chapter 5, e.g. ease of application, simple
model structure, possibility of inferring reduced order models in absence of
the model equations, applicability of the theory developed for liner system,
etc. The contribution of this chapter is to modify the same technique to
approximate the process nonlinearity. This is done by proposing a Linear
Parameter Varying (LPV) framework that blends different reduced order LTI
models corresponding to various process working points into one Reduced
Order Linear Parameter Varying (RO-LPV) model. The blending of local
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models is performed using weighted splines. The details of this method are
explained in subsequent sections. The simplicity of the proposed approach
makes it easy to interpret, easy to implement and applicable to very large
scale processes in absence of access to the governing equations. The overall
problem of identifying a nonlinear model is formulated in terms of parameter
estimation in Ordinary Least Square (OLS) sense. The technique proposed
here needs information of states of full order model and its inputs.

There are many possible ways to identify LPV models but due to the involved
complexity and processing of large amount of simulation data associated
with large scale process models, very few LPV identification techniques can
really be used effectively. Although the RO-LPV model structure is convex
combination of multiple local models, the nonlinear spline that are used for
blending the local models make the overall RO-LPV model structure non-
convex.

The effectiveness of the proposed model reduction framework is validated on
glass manufacturing benchmark example explained in section 2.3.6. Two dif-
ferent types of nonlinear effects are approximated by using RO-LPV frame-
work. First, the problem of corrosion or wearing of throat wall of glass
furnace that is explained in Chapter 5 is revisited. Here, the complete do-
main of parameter (throat height in glass furnace) variation is considered.
It is also shown here that such phenomena of corrosion is a type of nonlin-
ear effect. The proposed RO-LPV structure covers larger domain of process
operation and is richer in model structure than the hybrid model structure
that is presented in chapter 5. Along with the nonlinearity arising due to
the wearing of furnace wall, the inherent process nonlinearity arising from
changes in the operating point (production rate) is considered as another
example of nonlinear behavior. The chapter is organized as follows.

Some of the mathematical tools that are used here are explained in chapter
3. In section 6.2, a generic LPV model identification method is proposed. To
solve the above mentioned problem of model order reduction for nonlinear
processes under parametric variation, a framework employing POD, local
identified (reduced) models and their blending by using two different types
of splines is explained in section 6.3. This proposed RO-LPV modeling
framework is the main contribution of this chapter. Results of the proposed
method on the benchmark example of glass furnace are presented in the
section 6.4, which is followed by conclusions in 6.5 that can be drawn form
this chapter.
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6.2 Linear Parameter Varying (LPV) models

For many processes in chemical process industry, it is necessary to operate
at various working points (scheduling variable). Such processes often show
smooth, non-chaotic and non-linear behavior as a function of certain schedul-
ing parameters. Often an approximation in the form of Linear Parameter
Varying (LPV) systems is sufficient to describe such systems, where the sys-
tem canonical variables are modeled as nonlinear functions of the scheduling
parameters. It is desired that the identified LPV model is able to represent
the non-linear process behavior at and during the transition between the
operating regimes. A recent overview of LPV modeling techniques is given
in Casella and Lovera (2008).

Two common approaches are often used to model LPV systems. The first
approach is of a global nature, which treats scheduling parameters similar
to an input or to a disturbance, i.e. as a continuous function of time that
needs to satisfy conditions of persistency of excitation, e.g. see Verdult and
Verhagen (2005), Wingerden and Verhagen (2008) for LPV modeling using
subspace state space identification technique. The second approach is of a
local nature and relies on interpolation/convex combination of system invari-
ance properties like poles of a system, Hankel Singular Values (see Lovera
and Mercere (2008)) or canonical coefficients. In the second approach to-
wards LPV modeling, it is always assumed that the given system is a convex
polytope whose vertices correspond to the local linear model obtained for a
constant value of the scheduling variable. The second approach is similar to
the local Jacobian linearization. The models identified by the local approach
are interpolated to depict the continuous dependence on the scheduling pa-
rameter. It is necessary in the second approach that the order of the local
identified model is the same. In practice, it is difficult to satisfy this con-
dition of having the same order of identified models for varying values of
scheduling parameter. This problem also arises during the identification of
reduced order (RO)LPV models as proposed in this chapter, where the opti-
mal number of POD modal coefficients and therefore the order of subspace
identified models could be different. The method proposed here allows dif-
ferent order of the local LTI models to blend into one LPV model. Recently
LPV modeling techniques using orthonormal basis functions is explained in
Tóth (2008).

Another variant of merging the local models is superposition of the local
identified models. This is based on a weighted combination of outputs and
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leads to the concatenation of the local state space models. As a result, the
state space of the LPV model will be a combination of the state space of
the local models. Various methods like e.g. Gain scheduling (see Rugh and
Shamma (2000)) and spline based interpolation are among the typical forms
of such LPV identification. A recent paper (see Zhu and Xu (2008)) discusses
the practical aspects of LPV identification methods. It is shown there that
for a smooth and non-chaotic non-linear process, a LPV approximation can
be useful from control point of view. The method of LPV model identification
is described in detail in the following paragraphs.

Throughout, we take the variable h as a scheduling parameter, and assume
h ∈ Θ ⊂ R+ . Further, let H ⊂ Θ be a finite set H = {hj} for j = 1, . . . ,M
with M > 0, discrete values. Subscript h and hj shows the implicit pa-
rameter dependence while explicit dependence on the parameter is shown in
brackets as (h) or (hj). As this method is based on matching input-output
behavior, for the purpose of illustration we present it in the form of transfer
functions.

For a given set of local linear time-invariant (LTI) parameterized models
Ghj

(q), j = 1, . . . ,M , the jth input-output relation can be represented as:

yhj
(k) = Ghj

(q)u(k) :=
∞∑
l=0

Gl,hj
u(k − l) for j = 1, . . . ,M. (6.1)

Here Ghj
(s) ∈ Rny×nu(s), Gl,hj

∈ Rny×nu , nu and ny are number of inputs
and outputs respectively, M is the number of local LTI models which on
weighted blending gives LPV model. In other words, if we interpret M
models as M vertices of a polytope in which the original nonlinear system
dynamics evolve, then the LPV model describes the original nonlinear system
behavior in the polytopic region defined by the convex combination of the
identified local LTI models as follows:

ylpv,h(k) =
M∑
j=1

αj(h)yhj
(k), or equivalently (6.2)

ylpv,h(k) =
M∑
j=1

αj(h)Ghj
(q)u(k), or equivalently, (6.3)

Glpv,h(s) =
M∑
j=1

αj(h)Ghj
(s) ∀h ⊂ Θ. (6.4)
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Equation (6.4) also defines Glpv,h(t)(s), as long as h(t) ∈ Θ.
Here αj are the weights such that αj : Θ→ R, which are used for the convex
combination of the local LTI models which need to be determined. Interest-
ing results about LPV modeling using various types of nonlinear orthogonal
splines are presented in (Zhu and Xu (2008)) and references therein.

By convex combination we mean,

M∑
j=1

αj(h) = 1 and αj(h) ≥ 0, ∀h ∈ Θ (6.5)

A general spline structure can now be presented as

αj(h) =
kn∑
i=1

θjiϕ
j
i (h) (6.6)

where θji ∈ R are the spline coefficients and ϕji (h) are the basis functions,
and h ∈ Θ ⊂ R+ is the scheduling parameter. The scheduling parameter
can be a working point/operating point of the process. In-stead of spline in
(6.3), other type of scheduling function, for instance, radial basis function
as used in Verdult (2002) or membership functions from fuzzy modeling as
explained in Babuska (1998) can be used.

In this chapter we present two types of splines viz. cubic and trigonometric.
They have different properties. The cubic spline is of the form,

αj(h) = βj1 + βj2h+
kn∑
i=2

βji+1|h− bi|
3. (6.7)

bi ∈ Rkn are spline knots which are distributed in kn different (disjoint)
elements, over an interval [hmin, hmax] such that hmin ∈ Θ and hmax ∈ Θ,
and hmin < hmax.
βji are the spline coefficients corresponding to each knot.
Here we define unknown spline coefficients as a parameter vector as,

θj = col(βj1, . . . , β
j
kn

) = col(θji , . . . , θ
j
kn

). (6.8)

Note that there can be various possible spline structures other than the cubic
spline as shown in equation (6.7). The knots distribution can be of various
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types as well. The simplest knot distribution is an equidistant covering the
whole domain of scheduling parameters, as in eq. (6.7). However the spline
in eq. (6.7) does not guarantee the following condition of consistency:

Definition 6.2.1 GivenH = {h1, . . . , hM} ⊂ Θ ⊂ R+, and modelsGhj
; for j =

1, . . . ,M . Then the LPV model Glpv,h defined in (6.4) is consistent with the
set {Ghj

}j=1,...,M if Glpv,hj
= Ghj

for all j = 1, . . . ,M .

Observe, in view of (6.6), consistency of LPV model with respect to the local
models is obtained if and only if

αj(hi) =

{
1, if i = j

0, if i 6= j
(6.9)

Desired condition in eq. (6.9) means when h = hj , then blended LPV model
has 100% contribution from jth model and no contribution from other mod-
els. This property is desirable as it gives an idea about the performance
quality of LPV model. In this chapter we propose another spline structure
which guarantee the condition in (6.9), i.e. αj(hi) = 0

αj(h) = βj cos(h− hj)
M∏
i=1

(h− hi) (6.10)

The spline structure in eq.(6.10) preserves the second condition in (6.9) alone,
whereas the condition αj(hi) = 1 is not guaranteed in this spline either. But
this second spline is easier to adopt and to interpret.
If all the necessary info to identify a LPV model viz. yplant, yhj

, hj , Ghj
(q)

and u(k) is available then the problem of LPV identification can be trans-
formed into a problem of estimation of spline coefficients βji , see eq. (6.8).
The quality of an identified LPV model will then be decided by the accuracy
of estimation of spline parameters, θji . For this purpose we define the output
error of the LPV model as follows:

eh(k) = yplant(k)− ylpv,h(k) = yplant(k)−
M∑
j=1

αj(h)yjh(k), (6.11)

or equivalently,

eh(k) = yplant(k)−
M∑
j=1

kn∑
i=1

[ϕji (h) yjh(k)] θji . (6.12)
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It is desired to minimize the error in (6.12) by formulating an optimization
problem as

θ̂ := arg min
θ

K∑
k=1

||eh(k)||22 (6.13)

As the error model (6.12) is linear in the spline parameters θji , we can attain
a solution of the optimization problem (6.13) in least square sense as:

θ̂ = [ΦTΦ]−1ΦTY (6.14)

where, Y = col (y(1), . . . , y(N)) and

Φ=

 ϕ
1
1(h) y(1) · · · ϕ1

i (h) y(1) · · · ϕji (h) y(1)
...

...
ϕ1

1(h) y(K) · · · ϕ1
i (h) y(K) · · · ϕji (h) y(K)

 (6.15)

θ̂ is the estimated value of θ. From (6.15) it is clear that the splines are
dependent on the process data. This suggests that it is necessary to have
plant data sufficiently rich to capture the plant dynamics corresponding to
the complete space in which parameters vary. This can be achieved only
when the plant data contains the information of transition from one working
point to another, i.e.there should be an excitation signal during the transition
as well.

There are some technical aspects, e.g it is assumed that identified models
are stable and inputs are persistently exciting. As RO-LPV model is linear
combination of local ROM, stability of local identified ROM ensures stability
of RO-LPV model. The second condition of persistency of excitation ensures
that the rank of the matrix Φ is equal to the dimension of the vector θ. This
guarantees that ΦTΦ is not rank deficient. Moreover if the outputs of each
local model that is used for blending is not sufficiently different then at least
the knot distribution in splines should be different in order to guarantee that
ΦTΦ has full rank.

Eq. (6.3) of LPV model can be written in usual state space form as in
eq. (6.16). The spline weight can be included either in the matrix B or
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in C but not in both.

xlpv(k + 1) = Alpv xlpv(k) +Blpv u(k)
ylpv,h(k) = Clpv,h xlpv(k)

(6.16)

Where,

Alpv =


A1

A2

.
AM

 , Blpv =


B1

B2

.
BM


Clpv,h = [α1(h)C1 α2(h)C2, . . . , αM (h)CM ] and xlpv = col

(
x1 x2 . . . xM

)T
(6.17)

6.3 Reduced order LPV modeling framework

For the methodology presented in this section we assume that the knowledge
of the scheduling parameter is available. The overall strategy is presented at
the end of this section as an algorithm. The problem can be formulated as
follows:

For a given parameterized process Σ with parameter h ∈ Θ ⊂ R+, such that

Σ : Th(z, k + 1) = f (Th(z, k), u(k), h) , (6.18)

identify, for a varying parameter h(k) and input u a reduced order (RO)
LPV model Σ̂ of the form (3.1), such that the norm of the error between the
solution of the original full order (CFD) model and the reduced identified
model given by,

min
K∑
k=0

||Th(z, k)− T̂h(z, k)||22 (6.19)

is minimal when ranging over all values of h ∈ Θ. Here,
k : is time instance, z : is spatial position, h : is the value of the scheduling
parameter,
Th(z, k) : is temperature, which is a solution at time k and position z of the
real process i.e. CFD model (Σ),
T̂h(z, k) : is temperature, which is a solution at time k and position z of the
LPV model in reduced space (Σ̂).
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The error minimization criterion of (6.19) means that we are interested in
finding an approximate model such that under parameter variations h(k),
the solution of the RO-LPV model approximately matches the large scale
process model. For a very slow parameter variation, there are many possible
ways to formulate the LPV problem, e.g. see Casella and Lovera (2008).

In this section we present a method to obtain a solution to the problem
in equation (6.19) by using POD (see, 3.2.2) to infer a reduced dimensional
space, system identification technique (see, 3.1.1) to approximate the tempo-
ral evolution (POD modal coefficients) and framework to blend local RO-LTI
models into an RO-LPV model as described in section 6.2. The complete
methodology is explained below in further detail.

For the input sequence {u(k)}Kk=1, the full order (CFD) simulation model is
excited. The snapshots of the solution, e.g. temperature snapshots Tsnap ∈
Rn×K are collected. From this snapshot sequence an optimal POD basis φi
and corresponding modal coefficients ai for i = 1, . . . , r, with r as order of
reduced model, are determined by setting R = TsnapTsnap

T , in eq. (3.42).

The length of the snapshot matrix i.e. number of snapshots K, is decided
based on the settling time of the process, which is residence time in the case
of glass manufacturing. The duration of the experiment should be planned
so that it should be larger than the settling time of the process.

After computing the POD basis vectors φi, which represent the spatial pat-
terns, and modal coefficients ai(k), which characterize the temporal evo-
lution, on the basis of data (u(k), ai(k)) , i = 1, . . . , r we proceed to the
system identification by applying the subspace state space identification al-
gorithms. By doing so, state space matrices A,B,C,D are identified as a
map between the process inputs u and dominant POD modal coefficients
a(k) = col (a1(k), . . . ar(k)) corresponding to the dominant spatial patterns
ϕ1, . . . , ϕr, see e.g. Huisman (2005). While identifying a black-box reduced
order LTI models we are treating the dominant POD modal coefficients as if
they are the outputs of certain unknown system. We reconstruct the states
of the full order model by projecting back the identified model on the space
spanned by dominant POD basis functions [ϕi]ri=1. In this way a local RO-
LTI model is obtained for each constant value of the scheduling parameter,
hj for j = 1, . . . , ne, with hmin ≤ h1 < h2 < . . . < hne ≤ hmax and ne is the
number of experiments or dynamic simulation run of full order CFD model.
Now we proceed to construct a RO-LPV model.
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Out of these ne local reduced models also referred to as SID models, M
models were chosen to construct the LPV model (M ≤ ne), see section 6.2.
The M values of parameter hj should be chosen such that the process shows
non-linear behavior as result of transition from one value of scheduling vari-
able to the other. The data set corresponding to ne − M experiments is
considered as transition data between M values of scheduling variable. Note
that this approach is similar to the gain scheduling i.e. there are few working
points (ne). More about gain scheduling can be found in Rugh and Shamma
(2000). This approach is different than the approach used by Verdult and
Verhagen (2005).

As the full scale model is not able to change the physical boundary dynam-
ically, to emulate corrosion, the model proposed here uses RO-LTI models
corresponding to discrete values of hj to identify RO-LPV model, whereas
the data corresponding to hj , j 6= M is used as data corresponding to transi-
tion from one working point to another. Nevertheless, the method is generic
any can be used for identification of RO-LPV model of any process.

In subsequent subsections design of excitation inputs and overall method is
explained as an algorithm.

6.3.1 Input design

The input signal that is used for the excitation during the identification step
decides the dynamics that are excited and these dynamics are reflected in
snapshot matrix which subsequently determines the POD basis. Therefore
while designing the input signal for large scale dynamical systems from model
reduction perspective, care must be taken. There are different ways that are
used in the actual practise to design the input signal. But the overall goal
is to excite both - fast and slow dynamics. For this reason we have used
two types of input signals. First type is multi-step input signal in positive
and negative direction (increase and decrease), and it is further imposed by
PRBS (Pseudo Random Binary Signal). PRBS with fast switching excites
the dynamics corresponding to high frequencies while different step ampli-
tude excites the non-linearities and slow dynamics. The second input type,
that is presented here, is the PRBS at one nominal value of the input. The
average switching time of such an input is equal to the average time con-
stant of the distributed system. The minimum switching time of such an
input is usually equal to 1/5th of the minimum time constant of the process.

119



In section 6.4, the input signals are discussed in more detail. The overall
methodology can be explained in four steps algorithm in subsequent para-
graphs. Step 1 to 3 are repeated M times, which corresponds to the number
of discrete values taken by the scheduling parameter. Step 4 which involves
blending of the local reduced models is performed once only.

6.3.2 Algorithmic procedure

The first three steps of the algorithmic procedure that is explained here
are similar to the procedure explained in Chapter 5 and they result into
identification of reduced order LTI models. The step is different and it is
directed towards inferring a RO-LPV model.

Step 1: Data collection

Collect the data T (z, k, hj) and store it into a snapshot matrix T jsnap from the
measurements or from the simulation of full order model for a given value
of scheduling parameter h, such that, z ∈ Z ⊂ Rd : spatial coordinate,
k = 1, . . . ,K, time instant, hj ∈ H = {h1, . . . , hM} : scheduling parameter.
The process is repeated forM discrete values of hj i.e., j = 1, . . . ,M . Use the
data corresponding to the experiments hi for i = 1, . . . , ne i 6= j, and j =
1, . . . ,M as the transition data during the identification of spline parameters.

T jsnap =


T (z1, k1, hj) ... T (z1, kK , hj)
. .

. .

T (zn, k1, hj) ... T (zn, kK , hj)

 ∈ Rn×K , for j = 1, . . . ,M.

Step 2: Spectral decomposition

Spectral decomposition of the snapshot matrix obtained in step 1 or the
eigenvalue decomposition of the covariance matrix R = T jsnapT

j
snap

T
, as ex-

plained in section 3.2.2 gives spatial and temporal patterns arranged in order
of importance. Readers can refer to section 3.2.2 for more details of spectral
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decomposition. Thus,

T jhj
(z; k) =

n∑
i=1

ai,hj
φi,hj

(z)

with, ai,hj
(k): =

〈
T jhj

(z, k), φi,hj
(z)
〉
, z ∈ Z, hj ∈ H, j = 1, . . . ,M

Here, ai,hj
(k) are the modal coefficients and φi,hj

(z) are the spatial basis.
Both, the modal coefficients and the spatial basis are parameter dependent.
Out of n patterns, only first r patterns corresponding to the maximum energy
are used to infer the reduced order model. This step is repeated M times.

Step 3: Identification of local RO-LTI models

Third step involves identification of a model between system inputs and
first r modal coefficients obtained in step 2, i.e. u → col(a1,hj

, . . . , ar,hj
)

; j = 1, . . . ,M . By using the subspace state space algorithms explained in
the section 3.1.1, we get linear reduced order model for a specific value hj of
scheduling parameter. Although the model is obtained from the data which
is dependent on the scheduling parameter; the model structure does not have
an explicit scheduling parameter dependent term. The model structure as
result of identification is of the following form.

x̂hj
(k + 1) = Ahj

x̂hj
(k) +Bhj

u(k)

âhj
(k) = Chj

x̂hj
(k) (6.20)

Here, Ahj
, Bhj

, Chj
are the state space matrices corresponding to a specific

value of parameter hj ∈ H and x̂hj
(k) are the states of identified reduced

order local model.

The identified modal coefficients âhj
, after an outer product with spatial

bases φi,hj
(z) gives the reconstructed states T̂ jz,hj

(k) ∈ Rn of full order model.

T̂ jz,hj
(k) =

r∑
i=1

âi,hj
(k)φTi,hj

(z) ; j = 1, . . . ,M. (6.21)

The LPV modeling framework is based on weighted blend of outputs ŷhj
,

ŷhj
(k) = CT T̂hj

(z, k) or

ŷhj
(k) = Ghj

(q)u(k) (6.22)
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Step 4: Identification of RO-LPV model

As mentioned in the section 6.2, the RO-LPV model is the weighted blend
of M local ROM. The weights are in the form of splines whose coefficients
are obtained from minimization of the output error between the plant (full
order model) and RO-LPV model. The output of RO-LPV model can be
represented as

ŷlpv,h =
M∑
j=1

αj(h) ŷhj
(k) i.e (6.23)

ŷlpv,h =
M∑
j=1

αj(h) [Ghj
(q)u(k)] (6.24)

where, Ghj
(q) is the local reduced order identified model in transfer function

form and αj(h) are the spline weights. As mentioned in last step and from
(6.22), it is clear that to get a RO-LPV model as a blend of local models
in state space form, spline weights must be introduced in state space matrix
Clpv,h and not in Blpv of equation (6.17).

6.4 Discussion of simulation results: 2D Glass fur-
nace

A 2D benchmark CFD model to illustrate the method of the previous sec-
tion, for a glass manufacturing process is considered as a replacement of the
real Industrial Glass Manufacturing Process. More details of the process
can be found in section 2.3.6. The proposed RO-LPV approach is used to
approximate the non-linear effect as result of changes in nominal through-
put (pull-rate) of the process and the non-linear effects arising due to the
corrosion of the furnace wall (geometric parameter variation).

6.4.1 Non-linearity due to the corrosion

For the identification of RO-LPV model we use corrosion level as the work-
ing point or scheduling variable. By ‘corrosion level’ we mean the gap at
the throat region as shown in the Figure 2.2. The space of interest for
this scheduling variable covers the interesting range from no-back flow to
back flow of glass from refiner to the melter zone. Due to the difficulty of

122



Figure 6.1: Identification Input Signals: Left plot belongs to the corrosion
experiments while the right plot belongs to the experiments of excitation of
process non-linearity due to the changes in the production-rate.
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(b) Corrosion, zoomed

Figure 6.2: Effect of corrosion on the temperature in the furnace

modeling corrosion as a continuous phenomenon in CFD software, we divide
the (corrosion) parameter space into eight discrete elements. For this reason,
simulation experiments were performed for eight different throat heights (i.e.
ne = 8) of the 2D glass furnace model, equally distributed from 0.2 [m] to
0.27 [m], i.e. hj ∈ H = {0.20, 0.21, . . . , 0.27}. The first experiment cor-
responding to the throat gap of h1 = 0.20 [m] was initiated with a steady
state solution as an initial condition. The second experiment starts with the
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(converged) solution of first experiment as its initial condition. Similarly all
subsequent experiments have converged solution of the previous experiment
as an initial condition. The data set corresponding to these eight experi-
ments was concatenated to resemble the continuity in the corrosion. The
boundary conditions were fixed and they are different for each region of the
2D furnace. The goal of the present work is to present the results of the
proposed model reduction techniques, therefore the details about the first
principle modeling of the glass is not explained.

Each simulation experiment was aimed at identifying a good local reduced
order model (corresponding to constant throat height). The input identifi-
cation signal chosen was pull-rate/production rate and it is shown in Figure
6.1, left hand side plot. The identification input signal consisted in multiple
step in both positive and negative direction and each step was imposed by a
high frequency PRBS signal. The steps were supposed to excite the slower
dynamics whereas the PRBS signal was supposed to excite the faster dynam-
ics. The full order process model does not contain any explicit disturbances.

The time horizon of each experiment was sixty hours with a sampling interval
of eight minutes. The 2D glass furnace shows average residence time of
30-40 hours. Therefore the experiment horizon of 60 hours is sufficient.
Care should be taken, as large data might be difficult to handel during
the construction of RO-LPV which needs concatenation of the data sets
corresponding to all experiments.

The effect of corrosion is shown in Figure 6.2 by concatenating the data-
sets corresponding to the eight experiments. The figures show change in
temperature with respect to the steady state solution of the nominal case
(h = 0.20 [m]) at four sensor locations as shown in Figure 2.2. The Figure
on the right hand side is the zoomed version of the figure on the left. The
throat region shows the biggest effect of the corrosion. The glass mixes at the
hot spot location with the glass coming from the melting zone, and therefore
do not influence temperature in the melting zone. During the back-flow, the
cold glass from the refining zone mixes with the hot glass in melting zone and
it leads to the temperature drop, as seen in the figures. Most of the variables
like temperature, pressure, velocity are coupled to each-other. Therefore the
temperature changes that result from the back-flow (or corrosion) can have a
bigger impact than one can anticipate. At the current status of this research,
we have not yet investigated the effect of corrosion on variables other than
temperature in the RO-LPV modeling framework.
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The data was extracted from the CFD environment and imported in the
MATLAB for processing and for carrying out POD, subspace identification,
spline parameter identification and finally for LPV model blending. The
identified models are very fast in simulation (> 1000 times faster than the
CFD simulations). The detailed analysis of the computational performance
of the identified model and the original CFD model is not presented here.
The lower dimensional models were identified as a map from single input
(production/pull rate) and outputs which were the first few (r) POD modal
coefficients corresponding to the dominant singular values. The order of
each reduced order model was different and usually it was less than ten, i.e.
(r < 10). The three local models (M = 3) corresponding to throat height
h = 0.20 [m], h = 0.23 [m] and h = 0.27 [m] were used to construct an LPV
model and then the spline parameters corresponding to each local model
were identified as mentioned in section 6.2. The identified LPV model was
then validated for a throat height h = 0.22 [m] i.e. corresponding to the
situation without back flow and h = 0.26 [m], the situation with back-flow.

Figure 6.3: LPV approximation 1: Performance of RO-LPV model in re-
producing the temperature dynamics under the corrosion effect. Upper
plots: Melting zone, Lower plots: Fining zone.Left hand side plots:‘No back-
flow’(h=0.22m).Right hand side plots: ‘With back-flow’(h=0.26m).
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Figure 6.4: LPV approximation 2: Performance of RO-LPV model
in reproducing the temperature dynamics under the corrosion effect.
Upper plots:Fining zone zone, Lower plots:Refining zone.Left:‘No back-
flow’(h=0.22m).Right: ‘With back-flow’ (h =0.26m).

Figure 6.3 shows the validation results for the melting and the fining zones.

Figure 6.5: Splines: Left: Corrosion experiments, Right: Expe. of pull-rate
change
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Figure 6.4 results for the throat and for the refining zone are shown for the
cases of ‘No back-flow’ (left side plots) and ‘With back-flow’. Plots are shown
for the original plant (CFD), local reduced SID models corresponding to the
validation throat height and the global RO-LPV model covering complete
domain of the scheduling parameter. The local ROM should work better
than the RO-LPV model as a local ROM is identified on the basis of a data
set corresponding to a specific throat height, where as the the RO-LPV model
is of global nature (i.e. approximated over complete domain of corrosion).
The performance of the RO-LPV model is very good except for the refining
section in the case of ‘With back-flow’. See figure 6.4.

The performance of LPV model in the refining section is poor because the
back-flow has instantaneous and largest effect in the throat and fining zones,
while refining zone shows a delayed effect of the back-flow. The performance
of the LPV model can be further improved by using a longer simulation hori-
zon and by removal of the dynamics due to the corrosion in the identification
of local SID/reduced model.

The spline in equation which define the contribution of each ROM for the
construction of the RO-LPV model is shown in Figure 6.5, left side plot.
The plot shows spline weights obtained from the data corresponding to the
simulation experiments carried to study corrosion effect. The plot on the
right side corresponds to non-linearity due to throughput and it is explained
in next section. Continuing the discussion of the plot on the left, the cubic
spline were obtained by using the method as explained in the section 6.2, see
eq. (6.7). Along with the splines the normalized value of varying parameter
(throat gap) corresponding to each experiment is also shown in the plot.
For any experiment, the throat gap is fixed. Therefore the plot shows two
things - spline as a map, α : time → R and normalized throat gap as a
map, h : time → R+. As corrosion is irreversible process, the throat gap
is increasing with every experiment. The eight constant values of throat
gap corresponding to eight experiments is concatenated to show corrosion
as a continuous effect. This means that when the throat gap is smaller
(case of no-back flow) the RO-LPV model will be dominated by the first
ROM which corresponds to h = 0.20 [m]. For the case when back-flow is
mild i.e. upto h = 0.23 [m] the contribution of the second spline is more,
as compared to it’s (spline 2) contribution for any other value of h . As
expected, the second spline shows a behavior which is an average of the two
other splines. With increasing value of the throat gap, i.e. increased intensity
of the back-flow we get more contribution of the third ROM (corresponding
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to h = 0.27 [m]) in the RO-LPV model. Summarizing the discussion, for
increasing corrosion effect (i.e.increasing throat gap), contribution of spline
1 decreases, contribution of spline 2 increases first and then decreases while
spline 3 contribution to RO-LPV model keeps on increasing. The cubic
splines used here do not impose either of the condition of consistency, as
formulated in eq. (6.9). In the next subsection we will discuss the use of
trigonometric spline as formulated in eq. (6.10) which partially obeys the
condition of consistency.

From this discussion it becomes clear that the proposed model reduction
methodology is useful in dealing with large scale complex problems.

6.4.2 Process non-linearity

For most of the chemical processes it is possible to find an operation range of
the process inputs such that a linear model can be used to approximate the
non-linear process behavior. The accuracy of such a linear model is limited
and depends on the operation range of process inputs and disturbances.
For the industrial glass manufacturing process it is very difficult to find
the process operation range in which linear models are sufficiently accurate.
Within the range of 1% of process input variation around the steady state
value, the process can be reasonably approximated by using local reduced
order linear models. Multiple reduced order models are then obtained for
various operating points of the process inputs. As mentioned in section
6.3, local reduced order models are then blended to form RO-LPV model.

The simulation experiments involved the identification of local linear
models at eight nominal operating points of pull-rate/production rate, which
is considered as working-point/scheduling variable for the construction of
RO-LPV model. These eight local models have been blended to construct
RO-LPV model. The eight values of the working points were hj ∈ H =
{2.5, 2.7, 3.0, 3.1, 3.15, 3.2, 3.3, 3.5}, in tons/day. The time horizon of each
experiment was 120 hours. The identification signal was Pseudo Random
Binary Signal (PRBS) with average switching time equal to the ‘average
time constant’ of the process (2D model) which is approximately equal to 4
hours. IGMP is a distributed process and it shows different transient and
steady state behavior in each region of the manufacturing furnace. Therefore
the average of time constants in each region is considered. The minimum
switching time of the input signal was 8 min, which is approximately equal
to 1/5th of the fastest process time constant. The amplitude of the PRBS
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Figure 6.6: Performance of RO-LPV to the identification signal

Figure 6.7: Performance of RO-LPV to the identification signal, zoomed
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Figure 6.8: Performance of RO-LPV to the validation signal

Figure 6.9: Performance of RO-LPV to the validation signal, zoomed
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was 1% of the nominal value.

The order of the reduced order model was decided based on the best possible
fit to the first five POD modal coefficients. The best fit resulted into different
order of the reduced models. The order of all the reduced models was less
than 10. As the non-linear effects start emerging in lower modal coefficients,
it becomes difficult to fit a linear model to more than five modal coefficients.
The three local RO models (M = 3) corresponding to pull rate 2.5, 3.0 and
3.5 were used to construct the RO-LPV model. The data corresponding to
the other values of pull-rate was used as transition data. Figure 6.6 shows the
fit of the RO-LPV model to the full scale CFD model for the identification
signal. Figure 6.7 shows the enlarged version of figure 6.6. Output 2 alone
is used to construct the RO-LPV model as it shows the largest sensitivity to
the process input.

Unlike the last sub-section (6.4.1), the splines used to get RO-LPV model
are not cubic, but they are trigonometric (cosine), see eq. (6.10). The op-
timized spline functions are shown in the right hand side of the Figure 6.5.
The plot shows splines as a map, i.e.α : h → R, with h as a scaled working
point, i.e.pull-rate. Each spline shows the contribution (weight) of the corre-
sponding local model in the construction of the RO-LPV model. The splines
satisfy one of the conditions of consistency as mentioned in eq. (6.9). When
the value of the working point (pull-rate) is equal to either of the local ROM
which is used to form the RO-LPV model, then the contribution of the other
two splines as per the condition of consistency in eq. (6.9) is forced to zero.

The RO-LPV model was validated by using step input signals with 3% am-
plitude changes from their nominal value as the step size. The validation
results are shown in Figure 6.8. Figure 6.9 shows the important dynamics of
Figure 6.8 in enlarged form. Four plots are shown in that figure where each
plot corresponds to a different region in the glass manufacturing furnace, see
Figure 2.2. It is clear from Figure 6.8, that the performance of the RO-LPV
model varies in different regions. In all the regions the RO-LPV model shows
good fit but it fails to match the final steady state gain. This is because of
the involved error at different stages of the identification of the RO-LPV
model. The largest contribution of this discrepancy is due to the quality
of the identified local reduced order LTI models used to identify RO-LPV.
Indeed, most of the local RO models could approximate < 80% of the pro-
jection energy which is not sufficient. Usually the RO model performance is
good if it captures approximately 99% of the projection energy. This turned
out to be impossible by linear model approximation. However, for the size
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and involved complexity, the results seem to be promising.

6.5 Conclusions

This chapter has presented a data based practical approach to solve the prob-
lem of model reduction for large scale nonlinear processes. Due to the large
order and involved process complexity, the model reduction strategy pro-
posed in this chapter involved multi pronged strategy incorporating spectral
decomposition, subspace state space LTI model identification and linear pa-
rameter varying modeling framework. The practical aspects of such a model
reduction procedure are also explained which can be useful while applying
this procedure to other large scale processes. The method proposed here
can be considered as an alternative to classical Galerkin type of projections
to infer reduced order models. To validate the effectiveness of the proposed
method, it is implemented on industrial glass manufacturing as a benchmark
example. In case of glass manufacturing, the proposed RO-LPV model ap-
proximates the process nonlinearity as result of transition between operation
regimes and nonlinearity arising out of geometric parameter variations. The
results presented here are very encouraging and data based nature make it
of generic nature.

Due to the data based nature of the method it is applicable for other large
scale energy intensive processes in chemical industry, e.g. cement, oil, steel,
paper, fertilizers etc. to obtain reduced order models which can be used for
real-time control and optimization purposes. The LPV model identification
technique explained in this chapter, in stead of reduced order models, can
also be used to identify black-box LPV models from the input-output data
of actual plant. In the proposed method, nonlinear splines capture the pro-
cess nonlinearity that arise during a transition between the working points.
In stead of nonlinear splines, if linear splines are used then the resulting
RO-LPV model will be convex. Convex nature of a RO-LPV model allows
extension of the notions from the LTI system theory.

From the discussion presented in section 6.4, it is clear that for a complex
chemical process like glass manufacturing, it is difficult to find a linear op-
eration range of the process. For such cases, in stead of identifying a local
LTI reduced model, it is more rewarding to have a non-linear reduced order
model. In next chapter this issue of identification of non-linear reduced order
model using spectral decomposition will be addressed.
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7

Identification of Low Order Non-linear
Models

7.1 Introduction
7.2 Methodology for reduced

order modeling
7.3 Comparison:

Identification and
projection methods

7.4 Experiment design

7.5 Discussion of simulation
results

7.6 Stability test for
Tensorial systems

7.7 Dissipativity of Tensorial
systems

7.8 Conclusions

In this chapter a novel procedure for obtaining low order linear and non-
linear models of large scale non-linear fluid flow systems is proposed. The
approach is based on the combination of the methods of spectral decom-
positions, and non-linear system identification techniques. Here, the model
reduction problem for non-linear processes is formulated as a parameter es-
timation problem. The first step of this model reduction technique is similar
to the one proposed in other chapters and involves separation of spatial and
temporal patterns. In the second step, a model structure of tensorial (multi-
variable polynomial) expansions is selected to describe linear or non-linear
time evolutions of modal coefficients. The proposed model reduction strat-
egy explores the observation made in the Chapter 3, that, for a certain class
of PDE the modal coefficients obtained by the spectral decomposition can be
viewed as the states of the reduced order model. With the knowledge of the
POD modal coefficients and the process inputs, different model structures
are proposed to relate the input and the states (i.e the modal coefficients).
In particular, a tensorial representation of the vector field of the system is
proposed. This generalizes the usual LTI setting in a nice manner to a dif-
ferent model class of nonlinear systems. An ordinary least squares method
is then used to efficiently estimate the model parameters. The simplicity
of the proposed method gives computationally very efficient linear and non-
linear low order process models for large scale processes. During the whole
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procedure the physical interpretation of the states is preserved. The (state)
data based nature of the method make it generic. The efficiency of the
identification method is illustrated on large scale benchmark examples of an
industrial tubular reactor and the 2D glass furnace model. The chapter also
presents the comparison between the identification and the projection based
approaches. Moreover, for the implementation purpose, guidelines about the
experiment design are also presented in this chapter.

To evaluate the Lyapunov stability of the proposed tensorial systems at a
fixed point, sufficient conditions are presented. Tools from the Linear Matrix
Inequalities (LMI) and the semi-definite programming are used to establish
these conditions. Moreover, this chapter also characterize the dissipativity
of the tensorial systems for a quadratic supply function.

Some of the results from this chapter are presented at a conference, see
Wattamwar et al. (2009b) for further detail.

7.1 Introduction

In last few chapters a few different ways to approximate the large scale
systems using reduced order modeling framework employing the tools from
spectral decomposition theory and from system identification theory are pre-
sented. It is shown in Chapter 6 that the process non-linearity as result
of changes in the process operating conditions may be approximated us-
ing a Reduced Order-Linear Parameter Varying (RO-LPV) framework. The
RO-LPV modeling framework has its own advantages and drawbacks. The
advantages of the method are its practically applicable procedure and sim-
ple model structure that is suitable for system theoretic analysis. One of
the drawback of that method is its inability to make an apriory estimation
about the involved error. This was due to the overall nature of the method
which was based on combinations of many tools which induced some approx-
imation error at every stage. Moreover, the RO-LPV method is suitable to
approximate the process nonlinearity arising from the transitions of working
point.

It is also shown in Chapter 6 that sometimes for large scale nonlinear pro-
cesses, it is almost impossible to find a linear range of process operation to
identify a local (corresponding to a constant value of the scheduling param-
eter) LTI reduced model. It is therefore rewarding to identify a local model
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that can approximate the process non-linearity. Moreover, it is also desired
that the reduced order nonlinear model should have a structure which is easy
for analysis and for the extension of the concepts from linear system theory
like stability, disspativity, observability etc. In literature, many nonlinear
identification techniques have ben proposed so far. For example, Wiener-
Hammerstein configurations, black-box methods (see, e.g. Sjoberg and et.
al. (1995)), neural networks, fuzzy logic, support vector machine models (see,
Goethals et al. (2005)), grey box models as explained, for instance in Romijn
et al. (2008) and many others. A good overview of many nonlinear identifi-
cation methods in the form of a bibliography is compiled in Giannakis and
Serpedin (2001). Most of these nonlinear identification methods do not pro-
pose a model structure that is suitable for extending the system theoretic
properties of LTI systems.

In this chapter a non-linear reduced order modeling technique that meets the
above mentioned desired properties and the objectives mentioned in section
1.2 is proposed. The proposed technique involves two steps. The first step
is similar to the method proposed by Huisman (2005) and Wattamwar et al.
(2008), which is discussed in detail in Chapter 5 and 6 and it involves spatio-
temporal decomposition of dynamic process variables by using the POD
method or the spectral decomposition of system solutions. The second step
is different from the method that is proposed in last few chapters. The
difference lies in the fact that the method presented in last few chapters
treats POD modal coefficients as outputs of a reduced order (black-box)
model that needs to be identified, whereas in the approach presented in this
chapter treats the modal coefficients as the states of a reduced model that
needs to be identified. The reason and mathematical framework behind this
idea is already explained in section 3.2.2 and further elaborated in section
7.2. The observation made in section 3.2.2 that the POD modal coefficients
can be viewed as the states of a reduced order model that is to be identified,
has motivated to formulate the model reduction problem as a parameter
estimation problem. As the states of the model to be identified are known,
one can use different model structures to approximate the state evolutions.
Among many possible different model structures, LTI and tensorial (multi-
variable polynomial) type of model structures are selected. Tensorial models
appear as a natural choice due to their origin in Taylor series expansion of a
nonlinear function. Simulation results of the reduced LTI and the tensorial
type of models are presented in this chapter. It is also shown here that the
tensorial type of reduced order models due to increased parameterizations,
approximate the dynamics of full order model better than the linear reduced
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model. Further, it is explained in this chapter that both the approaches;
viz- the identification of reduced order black box model and the classical
approach of inferring reduced order models from Galerkin projection of full
order model equations are related. The method that is proposed here is
similar in its motivation and the reduced order model structure to the work
of Perret et al. (2006). There, they have proposed a method to identify
a polynomial model for POD based low order model. But the work that
is presented there lacks rigorous mathematical formulation and does not
present a reasoning for treating the POD modal coefficients as the states of
a reduced order model. Moreover the approach presented there was aimed
at autonomous systems.

Meeting the objectives mentioned in the first chapter of this thesis, the
method proposed in this chapter do not need access to the governing PDEs
that are formulated as ODEs in CFD softwares and rely only on the states
information of the full order CFD model. The method proposed in this chap-
ter therefore avoids the laborious programming efforts which are required in
model reduction techniques based on Galerkin Projections. Similar to the
other model reduction techniques presented in last few chapters, the identifi-
cation based approach presented here can be very useful in practice, since it
allows to use the available full-scale first principle based non-linear process
model in the form of commercial software as an replacement of the original
plant. The reduced nonlinear identified models are computationally very
efficient, they may be used for analysis of process dynamics and also for
the purpose of design of the process controller and optimizer. Therefore the
proposed method minimizes the dependence on the expensive testing of the
plant required for the controller design.

This chapter is organized as follows. The proposed model reduction method
is based on spectral decomposition step of POD that is explained in sec-
tion 3.2.2. The overall methodology is explained in section 7.2. The two
approaches- identification of reduced model as proposed in this chapter and
the method of POD with Galerkin projection of model equations are com-
pared in section 7.3. The practical guidelines related to the implementation
are explained in section 7.4. The proposed methods are validated on two
large scale benchmark examples; viz- the tubular reactor and the 2D glass
furnace model. The benchmarks are already explained in section 2.2.2 and
2.3.6, respectively. The validation results of the proposed method on the
benchmark examples are presented in section 7.5. To characterize the stabil-
ity of the tensorial models, Lyapunov test using the LMI tools is proposed in
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section 7.6. The dissipativity of the tensorial models for a quadratic supply
function is explained in section 7.7. The last section presents the conclusions.

7.2 Methodology for reduced order modeling

The main contribution of this chapter, a new model reduction method, is
explained in this section. The proposed method is a combination of tools
from system identification and the usage of proper orthogonal decomposi-
tions to separate spatial and temporal patterns or signals. Moreover, the
relation between the two different approaches, identification and projection
is elaborated here. In the first subsection, a brief connection is made to the
POD method explained in section 3.2.2 and later the model reduction tech-
niques to obtain LTI and nonlinear models in polynomial form are derived
in subsequent subsections.

7.2.1 Identification of reduced order LTI models

Assume that only data from the full-scale model (3.36) is available but not
the equations (3.36) itself. This situation is relevant when the full-scale
(3.36) is an implementation of a finite element model whose equations are not
available for making Galerkin-type of projections. To infer low-order models,
in this subsection an identification algorithm is proposed. The proposed
technique estimates a functional relation between the inputs (u, d) of the
system (3.36) and the POD modal coefficients a as they appear in (3.46).
The identification is carried out under the assumption that a model order
r and a POD basis of orthonormal functions ϕj , j = 1, . . . , r, defined on
the spatial configuration space Ω has been decided upon or, otherwise, has
been computed from simulated data Tk

n, k = 1, . . . ,K. The orthonormal
functions can be computed by defining a correlation operator as in (3.42)
and its subsequent eigenvalue decomposition. The orthonormal basis can
also be computed from SVD of the ensemble Tn

The POD method with Galerkin projection of model equations transforms
the full order nonlinear model from (3.36) to (3.46). For linear systems,
the nonlinear term Fr in eq. (3.46) vanishes in which case eq. (3.46) be-
comes a linear dynamical system that, after a suitable discretization over
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time,assumes the form

a(k + 1) = Ada(k) +Bdu(k). (7.1)

Here, a(k) and u(k) are shorthand for a(tk) and u(tk) with tk ∈ R the
kth time-sample and the jth coefficient of a(k) actually satisfies aj(k) =
〈ϕj , Tn(tk)〉, with j = 1, . . . , r. With data (a(k), u(k)) given on a sampled
time axis, the system matrices Ad and Bd can be inferred from an identi-
fication algorithm for linear system identification. Ordinary Least Square
(OLS) parameter estimation technique can be used to estimate Ad and Bd.
This is possible due to the linear in parameter nature of the (7.1). The ob-
servation that POD modal coefficients are the states of the reduced order
model in (3.46) is the key to infer reduced order LTI model. OLS is used in
next subsection as well and discussed in more detail. From this discussion,
it is clear that, it is possible to infer a LTI reduced order models from the
knowledge of states and inputs of full order model. Conceptually, the LTI
reduced order model inferred here and in Chapter 6 are similar. Both the
methods try to estimate the space in which the system dynamics can be ap-
proximated by a linear mappings. Once the state space matrices Ad and Bd
are estimated, the reconstructed states of full order model can be obtained
by outer product,

T̂r(z, k) =
r∑
j=1

ϕTj (z)âj(k), z ∈ Ω, (7.2)

where, â(k) ∈ Rr are the estimated POD modal coefficients and T̂r(z, k) ∈
Rn are the reconstructed states (approximate solution) of the full order
model.

If the governing equations eq. (3.46) are nonlinear, the above strategy may
be less successful for systems in which strong nonlinearities affect the behav-
ior. The literature on input-output based identification methods describes
many methods to approximate the non-linearities in (3.46). Some examples
of nonlinear identification techniques are nonlinear auto-regressive, Wiener-
Hammerstein configurations, black-box methods (see, e.g. Sjoberg and et.
al. (1995)), neural networks, fuzzy logic, support vector machine models (see,
Goethals et al. (2005)), grey box models as explained, for instance in Romijn
et al. (2008) and many others. A good overview of many nonlinear identifi-
cation methods in the form of a bibliography is compiled in Giannakis and
Serpedin (2001).
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Apart from the input data u(k), the POD basis allows to use the coefficients
aj(k), for j = 1, . . . , r to be available for model identification purposes.
The observation made earlier that the modal coefficients can be viewed as
the states of the reduced order model (3.46) that is aimed to identify can
be useful again. Once a good quality model is identified for the mapping
u 7→ a, the approximate solution T̂r of the full scale model are obtained from
eq. (7.2). A novel procedure for identification of the nonlinear map u 7→ a
is explained in subsequent sections.

7.2.2 Identification of non-linear Tensorial models

It is well known that Taylor series expansions of a nonlinear function allow
accurate approximations of a non-linear smooth function nearby an arbitrary
point. It is therefore remarkable that the identification of terms in the Tay-
lor series expansions of the mappings Ar, Br and Fr in (3.46) are not often
considered in classical input-output identification methods. Evidently, this
is mostly due to the lack of access of information about the state variable
a. However, as explained earlier, in the case of model order reduction for
the model (3.36), the sampled states a(k) are accessible for identification.
Taylor series expansions of the mappings Ar, Br and Fr in (3.46) results in
tensorial or multi-variable polynomial system equations which allow a more
tractable analytical treatment of the model than many other approxima-
tions of the process non-linearities. Some interesting extensions of notions
from linear system theory to scalar valued polynomial systems can be found
in Ebenbauer et al. (2005).

Taylor and tensor series expansions

For a scalar valued and p times continuously differentiable function f : R→
R the pth order Taylor series approximation of the nonlinear flow ẋ = f(x)
in a point x∗ ∈ R is given by

ξ̇ = f(x∗) + f (1)(x∗)ξ +
1
2
f (2)(x∗)ξ2 + · · ·+ 1

p!
f (p)(x∗)ξp. (7.3)

Here, ξ = x− x∗ and f (p) denotes the pth derivative of f .

For vector valued functions one need a slightly more rigorous treatment.
Suppose that f : X → Y is an p times continuously differentiable function
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with X and Y (finite dimensional) normed vector spaces. Let x∗ ∈ X be a
fixed point in the interior of X and denote by L(X,Y ) the set of all linear
mappings from X to Y . The mapping f is said to be Fréchet differentiable
at x∗ if there exists a linear operator A ∈ L(X,Y ) with the property that

lim
‖ξ‖→0

‖f(x∗ + ξ)− f(x∗)−Aξ‖
‖ξ‖

= 0.

Here, ξ ∈ X and the norm ‖ξ‖ is the norm in the vector space X. It is
well known that, whenever A exists, it is uniquely defined. The unique
linear operator A that satisfies this limit, is denoted f (1)(x∗) and is called
the Fréchet derivative of f at x∗. Clearly, A = f (1)(x∗) admits a matrix
representation aij with 1 ≤ i ≤ dim(Y ) and 1 ≤ j ≤ dim(X) which is
given by the partial derivatives aij = ∂fi

∂xj
(x∗). This coincides with the usual

Jacobian of f at x∗. If f is Fréchet differentiable at each point in X then for
each x∗ ∈ X the derivative f (1)(x∗) is a linear operator. In that case, the
mapping f (1) : X → L(X,Y ) is called the Fréchet derivative of f .

In a similar fashion, the second Fréchet derivative of f at x∗ is defined
as the Fréchet derivative of f (1) : X → L(X,Y ) at the point x∗ ∈ X.
Specifically, let L(X,Y ) become a normed space with the operator norm
‖A‖ := sup06=x∈X

‖Ax‖
‖x‖ . Then f is said to be twice Fréchet differentiable at

x∗ if there exists a linear operator B ∈ L(X,L(X,Y )) such that

lim
‖ξ‖→0

‖f (1)(x∗ + ξ)− f (1)(x∗)−B(ξ)‖
‖ξ‖

= 0.

Here, the norm in the numerator is the operator norm of L(X,Y ), the norm
in the denominator is the norm in X and B(ξ) ∈ L(X,Y ). With some
abuse of notation, B will be identified with the bilinear function B : X ×
X → Y in the sense that the element [B(ξ)](ζ) in Y will mean the same
thing as B(ξ, zeta). The unique bilinear operator B : X × X → Y is the
second Fréchet derivative of f at x∗ and will be denoted by f (2)(x∗). Hence,
f (2)(x∗) = [f (1)](1)(x∗) = B. To simplify notation, let us denote by T2 the
set of bilinear functions B : X ×X → Y . That is, B is a linear function in
each of its arguments. If the mapping f (1) is Fréchet differentiable at each
point x∗ ∈ X then the second Fréchet derivative f (2) becomes a mapping
f (2) : X → T2.

Continuing this way, the pth Fréchet derivative of f : X → Y is recursively
defined as the Fréchet derivative of f (p−1) and, whenever it exists at each
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point x∗ ∈ X, becomes a mapping f (p) : X → Tp where Tp denotes the set
of all multi-linear functions C : X × · · · ×X → Y . That is, Tp is the set of
vector-valued functions that are linear in each of its p arguments. Tp will be
referred to as the set of pth order tensors on X1.

Similar to (7.3), if f : Rn → Rn is a mapping that is p times Fréchet
differentiable, then the multi-variable nonlinear system ẋ = f(x) admits the
pth order tensor expansion

ξ̇ = f(x∗) + [f (1)(x∗)](ξ) +
1
2

[f (2)(x∗)] (ξ, ξ) + · · ·+ 1
p!

[f (p)(x∗)](ξ, . . . , ξ︸ ︷︷ ︸
p times

)

in the point x∗ ∈ Rn, where ξ = x− x∗. Likewise, tensor expansions can be
inferred for nonlinear systems of the form ẋ = f(x, u) with f : Rn+m → Rn.

Least squares identification of tensor expansions

Recall that the Kronecker product of two vectors a, b ∈ Rn is the vector
a⊗ b = col(a1b, . . . , anb) in Rn2 and that the Kronecker product of multiple
vectors is distributive, i.e., a⊗ (b⊗ c) = (a⊗ b)⊗ c. The following result is
basic but crucial.

Lemma 7.2.1 Let f : X → Y be p times Fréchet differentiable. Then
f (p) (x∗) is a tensor in Tp that admits the representation

[f (p)(x∗)](x1, · · · , xp) = A(x1 ⊗ x2 ⊗ · · · ⊗ xp) (7.4)

where A is a linear operator in L(Xp, Y ) and where x1 ⊗ · · · ⊗ xp is the
Kronecker product of x1, . . . , xp ∈ X.

Proof: The result is trivial for p = 1 as f (1)(x∗) ∈ L(X,Y ). For p = 2,
consider the tensor B = f (2)(x∗) ∈ T2. Then B(x, y) is linear with respect
to x and linear with respect to y. Define z := x⊗ y. Then

[f (2) (x∗)](x, y) =


n∑
k=1

n∑
j=1

∂2f1(x∗)
∂xk∂yj

xkyj

...
n∑
k=1

n∑
j=1

∂2fn(x∗)
∂xk∂yj

xkyj

 (7.5)

1Strictly speaking, the set of pth order (covariant) tensors is the set of multi-linear
functionals C : X1 × · · · × Xp → R defined on p vector spaces X1, . . . , Xp, but we will
adhere to the present terminology here.
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which shows that f (2)(x∗) is a linear function of z. In a recursive fashion,
one proves that the tensor [f (p)(x∗)](x1, . . . , xp) can be written as a linear
function of z = x1 ⊗ · · · ⊗ xp.

Now consider the nonlinear model of eq. (3.46) and let f : Rr+m → Rr be
defined by

f(a, u) := Ar(a) + Br(u) + Fr(a, u)

An pth order tensor expansion of eq. (3.46) in a stationary point (a∗, u∗) for
which f(a∗, u∗) = 0 then reads

ẋ = [f (1)(a∗, u∗)] ( xv ) + · · ·+ [f (p)(a∗, u∗)] (( xv ) , · · · , ( xv ))

where,

x := a− a∗, and
v = u− u∗ (7.6)

Using Lemma 7.2.1, a second order tensor expansion assumes the more ex-
plicit form

ẋ(t) = Ax(t) +Bu(t) +A1(x(t)⊗ x(t))
+B1(v(t)⊗ v(t)) +Q(x(t)⊗ v(t))

y(t) = Ix(t) (7.7)

where, A, B, A1, B1 and Q are matrices in Rr×r, Rr×m, Rr×r2 , Rr×m2 and
Rr×rm, respectively.

In a similar fashion, a discrete time second order tensor approximation of
the system (3.46) can be written as:

x(k + 1) =Ax(k) +Bv(k) +A1(x(k)⊗ x(k))
+B1(v(k)⊗ v(t)) +Q(x(k)⊗ v(k))

y(k) = Ix(k) (7.8)

(with different matrices A, B, A1, B1 and Q). For the problem of identifica-
tion of the model (3.46) it is assumed that a suitable sampling time has been
decided upon and we will focus on the identification of the second order ten-
sor approximation (7.8). Note that the tensor expansion in the right-hand
side of (7.8) is non-linear in the states and the inputs but it is linear in all
the system parameters. If N consecutive samples of the states x and inputs
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u are known, this allows us to identify the matrices A, B, A1, B1 and Q in
an optimal manner by minimizing the criterion

J(A,B,A1, B1, Q) :=
N∑
k=1

‖e(k)‖2

where e(k) := x(k+1)−Ax(k)−Bv(k)−A1(x(k)⊗x(k))−B1(v(k)⊗v(t))−
Q(x(k)⊗ v(k)) is the prediction error at time k. In particular, if we define

ξk := col(x(k), v(k), x(k)⊗ x(k), x(k)⊗ v(k), v(k)⊗ v(k))

then e(k) = x(k + 1)−Θξk where

Θ =
(
A B A1 B1 Q

)
and the problem to minimize J(Θ) over all parameters Θ becomes an ordi-
nary least squares estimation problem. Note that Θ ∈ Rr×(r+m+r2+m2+rm).
In matrix notation, let

E =
[
e(1) · · · e(N)

]
, X =

[
x(2) · · · x(N + 1)

]
,

Ξ =
[
ξ1 · · · ξN

]
Then

E = X −ΘΞ (7.9)

and the optimization problem amounts to finding Θ such that ‖E‖2 = 〈E,E〉
is minimal. The optimal solution to this problem is given by

Θ∗ = X Ξ> (Ξ Ξ>)−1 (7.10)

Here, the system parameter matrix Θ may become rank deficient due to the
involved Kronecker product. Nevertheless, there are some simple ways to
estimate the parameters for rank deficient problem. Here, only the standard
routines for the computation of the pseudo-inverse are used.

Once the system parameters (state space matrices) are estimated from (7.10),
the POD modal coefficients can be estimated after adjusting the offset in
(7.6), from (7.8). The approximate solution of the full order model can be
obtained as in (7.2).

Remark 7.2.1 The above analysis focuses on least squares estimates of
second order tensor expansions. Generalization to higher order tensor ex-
pansions is straightforward and left to the reader.
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Remark 7.2.2 Large scale parameter varying systems can basically be iden-
tified in the same manner as described. If knowledge of the variation of time-
varying parameters is available, the uncertain parameter can be treated as
a process input and the above method applies to this setting.

Remark 7.2.3 The above least squares estimation method may lead to an
unstable system. To overcome the drawback of possible instability, one might
try different orders, or to impose stability during the identification of the
model by using a regularization method. However, regularization methods
often lead to the loss of performance of the identified models. Typically
for linear subspace identification techniques, regularization is imposed by
forcing the eigenvalues of the identified model to lie in the unit circle, e.g.
see Gestel et al. (2000). In this chapter the problem of imposing the sta-
bility in the identification process is not solved. The research in tensorial
systems is still relatively new and imposing the stability in the identification
procedure involving tensors, will need considerable amount of further efforts.
Nevertheless, characterization of the stability of such a tensorial system is
performed in later part of this chapter.

7.2.3 Algorithmic procedure

In this subsection, we explain the overall procedure to identify low order
models in algorithmic form. It is assumed that the full order model is avail-
able for simulations.

• Excite the full order model after designing the experiment as per the
guidelines presented in section 7.4.

• Collect the snapshots to construct the snapshot matrix Tsnap.

• Perform singular value decomposition of the snapshot matrix Tsnap or
eigenvalue decomposition of the correlation matrix R as in (3.42). Use
the criterion in (3.47) to decide the order of the reduced model.

• Collect the dominant patterns in the form of POD spatial basis func-
tions and the modal coefficients.

• Fix a model structure of the form (7.1) or of nonlinear form as in (7.8).

• Estimate the model parameters using the least square estimation tech-
nique as explained in section 7.2.2.
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7.3 Comparison: Identification and projection meth-
ods

In this subsection we compare the model reduction techniques obtained by
the two different approaches. That is, we compare the identification meth-
ods that are proposed in this thesis with the method of POD using Galerkin
projection of equations. In particular, the similarities and the differences
between the two methods are compared here.

Similarity

• Both the techniques are motivated by a common goal of removing the
redundancy from the first principle models used for fluid flow systems.

• The first step of both the methods is same and it involves the spectral
decomposition of the system solutions to infer the dominant spatial
and temporal patterns.

• As showed in the subsection 7.2.1, both the methods have similar model
structures for discrete LTI systems.

Differences

• The second step is different for the two methods. The second step of
the identification methods that are proposed here exploits the fact that
the POD modal coefficients can be viewed as the states of a reduced
order model (see subsection 7.2.1). Subsequently, the method involves
estimation of the parameters of a proposed (linear/nonlinear) model
structure. Therefore, the identification based method does not need
access to the governing equations. Whereas, the second step of POD
with Galerkin projection method involves projection of the governing
equations on the lower dimensional subspace spanned by the dominant
POD spatial basis functions.

• Reduced order modeling by POD with Galerkin projection is explained
in section 3.2. The procedure involve model reduction of a full or-
der finite dimensional ODE model to a reduced order model (3.39).
Whereas, the identification based model reduction method proposes
model structure of LTI form as in (7.1), or of nonlinear form as in
(7.8).
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• Nonlinear terms in the reduced order model obtained by the method
of POD with Galerkin projection is similar to the full order model and
therefore such a reduced order model is more accurate. Whereas, the
nonlinear terms in the identification based approach is approximated
by a Taylor series tensorial expansion whose accuracy depends on the
truncation level.

• In the method of POD with Galerkin projection, due to the evaluation
of nonlinear terms in a full dimensional space, the method does not
offer substantial gain in computational speed over a full order model.
Whereas, in identification based approach, the evaluation of nonlinear
terms is performed in a reduced space. Therefore, the identification
based model reduction method offers distinct advantage in terms of
computation speed.

7.4 Experiment design

In this section, practical aspects with respect to the design of experiments for
inferring optimal reduced order models for a large scale distributed process
are explained. The identification signal used to excite a full order model
and the details about the construction of a snapshot matrix are discussed in
more detail. The concepts and the reasoning from the field of classical system
identification (see, e.g. Ljung (1999)) is used to design the experiments for
inferring a good reduced order model.

7.4.1 Input design

The input signal that is used for the excitation during the identification step
determines the dynamics that are excited and these dynamics are reflected
in the snapshot matrix which is subsequently used to infer the POD basis
functions. In other words, an identification signal determines the quality
of a reduced model. For the same reason, POD based methods are often
classified as empirical methods of model reduction. Thus, while designing
an identification signal for the identification of reduced order models of large
scale dynamical systems, care must be taken. There are different ways that
are used in actual practice to design an identification signal. The overall
goal is to excite the dynamics that are relevant for the purpose of controller
design.
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The input identification signal that is used in this paper is a Pseudo Ran-
dom Binary Signal (PRBS) around its nominal operating value. PRBS aims
at exciting the dynamics of underlying system corresponding to certain fre-
quency range. Based on the physical insight of the process, the PRBS is a
binary signal with switching between the sign is adjusted such that the aver-
age switching time of the signal is equivalent to the average time constant of
the process. PRBS satisfies the condition of persistency of excitation while
identifying an LTI system. Especially in Subspace state space LTI model
identification techniques, it is necessary to fulfill certain mathematical con-
ditions. For these identification techniques, readers are referred to the work
presented by, Overschee and Moor (1996), Qin (2006).

Often, it is of interest to approximate the steady state behavior along with
some relevant dynamics of the process. This translates into discarding the
very fast dynamics during the model reduction step. Large scale industrial
applications are characterized by wide distribution of dynamics. Sometimes
each spatial region can show different time constants as well. Therefore, while
designing an identification signal, the distributed nature and the presence of
wide range of dynamics (very fast to very slow) of the process has to be
considered.

To address the distributed nature of the process, in this paper, the average
switching time of such an identification signal is chosen equal to the average
(of different spatial regions) time constant of the distributed process. The
minimum switching time of such an input is usually less than the smallest
time constant (fastest dynamics) of the process. In section 7.5, the input
signals with respect to the specific process time constant are discussed in
more detail for each benchmark example.

7.4.2 Design of a snapshot matrix

As explained in the section 3.2.2, the POD basis functions are obtained
from a Singular Value Decomposition (SVD) of a snapshot matrix or by an
eigenvalue decomposition of a correlation matrix. The choice of an input
identification signal explained in 7.4.1 decides the richness of the dynamics
contained in the snapshot matrix. From SVD of the snapshot matrix, these
dynamics are reflected in terms of the POD spatial basis functions (spatial
patterns) and the modal coefficients (temporal patterns).

The duration of an experiment should be based on the settling time of that
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process, which can be residence time for some applications in the process
industry. The duration should be planned such that it is longer than the
settling time of the process. The Simulation horizon much longer than the
settling time is not desirable either, as this will lead to problems while data
processing. If the contribution of the steady states in the snapshot matrix
is more, then the reduced order model will not be able to approximate the
transient (dynamic) behavior of the process, whereas the steady state ap-
proximation may be satisfactory.

The sampling time should be chosen such that it is smaller than the fastest
dynamics. It is common to have a sampling time equal to 1/5th to 1/10th

of the smallest time constant of the process. Again, for a given simulation
horizon, an increased sampling rate may lead to the problems associated
with data processing.

The effect of an initial condition on a reduced order model is minimized
by considering the steady state solution as an initial condition during the
simulation of a full order model. Further, before SVD of the snapshot matrix,
the non-zero initial condition is subtracted from the solution trajectories.

Often it is helpful to numerically condition the snapshot matrix. This is
performed by scaling it with respect to the maximum value of the system
solution, considered over the complete spatio-temporal domain.

7.5 Discussion of simulation results

The simulation results that are presented here are based on the CPU with
configuration - Intel Core 2 CPU, T7200 @ 2.00 GHz, 2.00 GB of RAM,
Microsoft Windows XP operating system.

The discussion hereafter presented often use the term ‘order’ in different con-
text. An order of a full (rigorous) scale model and a reduced identified model
is their state space dimensions. The order of a reduced model is same as the
number of POD modal coefficients whose time evolution is approximated
using the identified model. The order of a tensor is the number of unfolding
that are necessary to represent it as a matrix. Therefore, a Hessian matrix
is a tensor of first order.
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7.5.1 Tubular reactor

Figure 7.1: Identification: Model fit to the Modal coefficients (MC) of the
Tubular reactor. Red-Lin: Reduced Order Linear Model, Red-poly: Reduced
Order Polynomial Model, Full M: Full Order Non-linear Model, nr.: Number.

Figure 7.2: Identification: Model fit to the Modal coefficients (MC) of the
Tubular reactor, zoomed.
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Figure 7.3: Identification: Model fit to the real outputs of the Tubular
reactor.

Figure 7.4: Identification: Model fit to the real outputs of the Tubular
reactor, zoomed.
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Figure 7.5: Validation: Model fit to the real outputs of the Tubular reactor.

The spatial discretization of the 1-dimensional tubular reactor has been car-
ried out with 100 grid cells. Since there are two states variables, temperature
T and concentration C, the full scale model is of order n = 200. All variables
in the equation (2.1) are represented in dimensionless form. The reaction ki-
netics is of first order. The full order model has been simulated on a time
horizon that corresponds to 50 times the residence time of the reactants in the
reactor. The reaction was sampled for 20000 time samples. The time sam-
ples have been collected in a snapshot matrix and the POD basis functions
have been computed. The results presented here belong to the multi-variable
case which means that the temperature and concentration state variables are
stacked over each other in the snapshot matrix before computing the POD
basis and the modal coefficients. This ensures the coupling of the two state
variables. We identified a linear model and a nonlinear first order tensor
expansion model of the form (7.8) that maps inputs to modal coefficients.

Obviously, the quality of the identified model depends on the quality of
the data. Therefore the data should be generated by input signals which
excite the full scale model in the frequency range which is of the interest
from a control point of view. The full model was excited with a Pseudo
Random Binary Signal (PRBS) on Ti. The average switching time of such
an identification signal should be equivalent to the process time constant.
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However, as all the variables are dimensionless, the time constant of the
tubular reactor is small with respect to time constant of a real-life tubular
reactor. Therefore, the average switching of PRBS signal is adjusted to 1/20
of the total simulation horizon. The initial condition is the steady state
profile of temperature and concentration. In real life situations, transition
in working point excites the process nonlinearity. Such transitions are often
implemented in the form of step inputs. Therefore, the validation signal
that is considered here is a step input on Ti. The physical parameters of
the full scale model are very close to an unstable operating condition. This
is evidenced when the full order model is perturbed by 3% change of its
nominal value. For the same reason, the amplitude of the input signal used
for the validation is limited to 2% of the nominal value.

The fit of a reduced linear and a tensor model to the first 4 modal coefficients,
is shown in Figure 7.1 and 7.2. The blue line represents the reduced linear
model (Red-lin), the dash green line is reduced tensor model (Red-poly) and
the dash-dot green line is the full order model (Full M). The reduced tensor
model can fit 12 modal coefficients without becoming unstable. However, 8
modal coefficients are sufficient as they corresponds to > 99% of the projec-
tion energy as specified by the criterion in (3.47). Estimating the parameters
of a polynomial model does not take much computation time. But the com-
putation time for evaluating the solutions of resulting reduced model can
become significant if the state space dimension of a polynomial model is in-
creased a lot. For this reason we fit the tensor expansion model to only 8
modal coefficients. The plot shows that the linear reduced model does not
fit as good as the reduced tensor model. Although evolution of modal coef-
ficients can be conceptually understood as the temporal dynamics, they can
not be physically interpreted. Therefore the units are omitted in mentioned
figures.

The performance of the identified models in predicting the dynamic evolution
of the process outputs are shown in Figure 7.3 and 7.4. The validation
of the identified model is performed by using the step input signal. The
results of validation are shown in Figure 7.5. The results presented here
are based on the software simulation alone and we assume that both; the
temperatures and the concentrations can be measured at any location in the
reactor. In all the figures the top plots show temperature and the lower
plots show concentration in the reactor. Sensors 2nd and 7th are located at
10% of the reactor length from the left entrance while the sensors 5th and
11th are located at 20% from the reactor end i.e. the end on the right hand
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side in Figure 2.1. Each identification plot shows the response of the three
models- viz. the linear, the tensorial and the full order model. Although both
reduced order models show good performance, the reduced order tensorial
model approximates the full scale model better than the linear model. The
validation plots confirm the same conclusion. The reduced tensor model is
also able to approximate the oscillations quite satisfactorily.

As explained in the previous paragraph, depending on the number of modal
coefficients fitted by the tensorial model, the computation time of the reduced
order tensorial model can vary. For the tubular reactor, when 8 modal
coefficients are fitted, the simulation time is approximately 30% that of the
full order model. Although, the gain in saving the computation time by the
reduced order tensorial model is satisfactory (70% only) over the full order
tubular reactor model, it is shown in the next subsection that for the glass
manufacturing process, the reduced order tensorial model is computationally
very efficient and the associated computational efforts are fraction of the
computational efforts needed for the full scale model. The difference of gain
in savings of computational effort for the two benchmarks can be explained
from the fact that the redundancy in modeling of full order tubular reactor
is less when compared to a glass furnace model. Therefore, tubular reactor
offers lesser opportunity to invent a computationally efficient reduced order
model as compared to the glass furnace. Redundancy in a model can come
from unnecessary (large) model dimension of its state space, or unnecessary
inclusion of the physical effects, or too small convergence threshold during
the computation of the solutions, etc.

7.5.2 Glass manufacturing process

In this paper a 2D benchmark CFD model of the original process is con-
sidered as a full scale model. The full scale CFD model has 3000 grid cells
(spatial discretization). It has many variables like temperature, velocity, con-
centration, pressure, etc. in each grid cell. Although most of the variables
are coupled, for the results presented here we have considered temperature
alone as the variable of interest, and we have not used the multi-variable
approach that is used in the earlier example of a tubular reactor. Therefore
the order of the full scale model is 3000. From the method explained in
section 7.2, a reduced linear and a tensorial model is identified. The state
space dimension of the linear model is 10 whereas the state space dimension
of the tensorial model is 6. The tensorial model is of the form (7.8), i.e.
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Figure 7.6: Identification: Model fit to the modal coefficients of the glass
furnace. CFD: Full order CFD model, Poly-D: Reduced order discrete poly-
nomial model, Lin-par: Reduced order discrete LTI model

only the first order tensors are considered here. The identification of a linear
model involves fitting the modal coefficients to the linear model obtained by
considering the Jacobian terms alone. An order larger than 6 results in an
unstable reduced order polynomial model. The notion of stability is used in
the sense of divergence of the numerical simulations. For the linear model
as well, there is not much improvement in its performance for the approx-
imation order larger than 10. This means that for a linear reduced model,
it is not possible to improve its performance merely by increasing the order,
and there is need for a non-linear reduced order model. The six POD modal
coefficients corresponds approximately to 70% of the total projection energy.
This is not sufficient. For a good performance of the reduced order model,
it is desired to capture approximately 99% of the total projection energy.
But due to the stability limitation we can not satisfy this requirement. As
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Figure 7.7: Identification: Model fit to the modal coefficients of the glass
furnace, zoomed.

Figure 7.8: Identification: Model fit to the process outputs of the glass
furnace.
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Figure 7.9: Identification: Model fit to the process outputs of the glass
furnace, zoomed.

Figure 7.10: Validation: Model fit to the process outputs of the glass furnace.
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reduced order tensorial model can approximate the evolution of 6 modal co-
efficients alone, its performance is expected to be limited as well. Had the
tensorial reduced order model approximated the evolution of more number of
POD modal coefficients, without becoming unstable, its performance would
have been improved.

The input considered for the identification purpose is pull-rate(feed rate) in
terms of tons/day, which varies 1% around the nominal value in the form
of Pseudo Random Binary Signal (PRBS). The identification experiments
are planned as per the discussion presented in section 7.4. The average
switching time of the PRBS was adjusted to 4 hours which is equal to the
average time constant of the 2D CFD glass process model. The simulation
horizon is 370 hours and sampling time is 16 mins, therefore we have 1390
snapshots. Due to slow computation speed of 2D CFD model (although it
is much faster when compared to the 3D model), necessary data processing
efforts and associated system memory problems, we limited the simulation
horizon of the experiments to 370 hours only.

Figure 7.6 and 7.7 shows the dynamic evolutions of the first four modal
coefficients as computed by the full order and the reduced linear and nonlin-
ear (tensorial) models. It shows that the tensorial model approximates the
dynamic response of the full order CFD model better than the linear one.
This shows that even for 1% perturbation, glass exhibits nonlinear behavior.
Figure 7.8 and 7.9 shows the identification result in reproducing the plant
outputs. Plot shows the result for four outputs which are temperatures at
the bottom of refractory material in four main zones of a glass furnace- viz.
Melting, Fining, Throat and Refining section. This mimics the real life situ-
ation. The readers can refer to Figure 2.2 for sensor locations. S1 to S9 are
the sensors in the figure. In each plot, the green line shows the outputs of
CFD model, the dashed blue line (Poly-D) shows the results of discrete form
of the identified reduced order tensorial model and the dotted red line are
the simulation results of the linear model. The identification plot shows that
both models approximate the overall trend very well, but the linear model
fails to approximate the PRBS dynamics when compared to the tensorial
model.

Figure 7.10 shows the performance of the identified models on the validation
signal, which is a step input on the raw-material feed rate. Often, the con-
troller input is in the form of step signals, therefore the step signal is used for
the validation purpose. Plot shows that both models follows the trend very
well, but both models failed to approximate the steady state gain in some
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zone. The reduced order tensorial model performed better in three zones
whereas the reduced order linear model did well only in two zones. This is
possibly due to the two reasons. First, this is a distributed system and the
identification signal is designed by considering the average time constant of
the complete glass furnace and it was not designed to approximate the four
sensor locations alone. The second reason for the mismatch of the final gain
is that these reduced order models could not capture > 70% of the projec-
tion energy. One can expect smaller offset if the approximation order of the
reduced model is higher. Unfortunately, due to the stability problem associ-
ated with the identification of tensorial models, the approximation order can
not be increased above 6th for the tensorial reduced model. Nevertheless, for
the size and involved complexity in the glass manufacturing process, even
the current results seems to be very interesting.

7.6 Stability test for Tensorial systems

In section 7.2.2, we discussed that higher order approximations of state evo-
lutions result in systems of the form,

ẋ = A1x+A2 (x⊗ x) + . . .+AN (x⊗ . . .⊗ x); x (0) = x0 (7.11)

where x ∈ D ⊂ Rn. For the first order case (n =1), this simplifies to an
ordinary homogenous polynomial equation as,

ẋ = a1x+ a2x
2 + . . .+ aNx

N . (7.12)

In this section we verify the stability of the fixed points of the autonomous
system in (7.11). First, we will focus on the quadratic case, i.e. n = 2.
Also make the observation that (7.11) defines multiple fixed points x∗ as the
equation

0 = A1x+A2 (x⊗ x) + . . .+AN (x⊗ . . .⊗ x); (7.13)

generally has multiple solutions. In fact, depending on the dimension of x,
the system (7.11) may have limit cycles, chaotic behavior, etc.

The notion of stability of polynomial systems is addressed here using Lya-
punov stability criterion and is verified numerically based on the tools from
Linear Matrix Inequalities (LMI) and semi definite programming.

Definition 7.6.1 Let x∗ = 0 be a fixed point of (7.11). Call x∗ Lyapunov
stable, if ∀ε > 0, ∃ δ > 0 such that whenever x0 satisfies ||x0−x∗|| < δ then
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||x(t;x0)|| < ε,∀ t ≥ 0. Here, x(t;x0) is a solution of (7.11). This implies
that for a fixed point x∗, if system trajectories start within a circle of radius
δ > 0 of the initial condition x0 then they stay within the circle of radius
ε > 0, for all time t ≥ 0.

It is well known that x∗ is Lyapunov stable if there exists a non-negative
function V : D → R continuous in an open set D ⊂ Rn that contains x∗

such that V is decreasing along trajectories x(t;x0) of (7.11) for all x0 ∈ D.
Lyapunov function is usually interpreted in terms of energy of a system which
is a positive function of the state of the system and is decreasing over time.
A quadratic form of Lyapunov function can be expressed as,

V (x) = x>Xx; where, X = X> > 0. (7.14)

then the condition, d
dtV (x) ≤ 0 implies

d

dt
V (x(t)) =

dV

dx
(x(t))ẋ(t) =

[
∇V (x(t))

]>
ẋ(t) ≤ 0; ∀t ≥ 0, (7.15)

or equivalently,

V̇ (x) = ẋ>Xx+ x>Xẋ ≤ 0, ∀t ≥ 0. (7.16)

Theorem 7.6.1 If there exists X = X> that satisfies the Linear Matrix
Inequalities,

X > 0[
A>1 X +XA1 XA2

A>2 X 0

]
≤ 0. (7.17)

then the origin x∗ = 0 is a fixed point of the quadratic system

ẋ = A1x+A2(x⊗ x) (7.18)

is a stable fixed point of the quadratic system .

Proof: Suppose (7.17) holds. Claim is that V (x) = x>Xx is the
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Lyapunov function. Indeed, X > 0 implies V ≥ 0 and

d

dt
V (x(t)) = ẋ>Xx+ x>Xẋ,

=
[
(x⊗ x)>A>2 + x>A>1

]
Xx+ x>X [A1x+A2(x⊗ x)]

= x>[A>1 X +XA1]x+ [x⊗ x]>A>2 Xx+ x>XA2(x⊗ x)

=
[

x
x⊗ x

]> [
A>1 X +XA1 XA2

A>2 X 0

] [
x

x⊗ x

]
≤ 0, ∀x, (7.19)

Lyapunov stability condition in (7.15) is therefore implied by X > 0 and,[
A>1 X +XA1 XA2

A>2 X 0

]
≤ 0.

More generally, for the system (7.11) we have,

Theorem 7.6.2 If there exists X = X> that satisfies the Linear Matrix
Inequalities,

X > 0
A>1 X +XA1 XA2 · · · XAN

A>2 X 0 · · · 0
...

...
...

...
A>NX 0 · · · 0

 ≤ 0. (7.20)

then the origin x∗ = 0 is a stable fixed point of the quadratic system (7.11).

Proof: The proof follows the same line of reasoning as the proof of
theorem 7.6.1. Indeed (7.19) now generalizes to,

d

dt
V (x(t)) =


x

x⊗ x
...

x⊗ . . .⊗ x


> 

A>1 X +XA1 XA2 · · · XAN
A>2 X 0 · · · 0

...
...

...
...

A>NX 0 · · · 0




x
x⊗ x

...
x⊗ . . .⊗ x

 ≤ 0.

For the discrete form of (7.11) following theorem are useful.
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Theorem 7.6.3 If there exists X = X> that satisfies the Linear Matrix
Inequalities,

X > 0[
A>1 XA1 −X A>1 XA2

A>2 XA1 A>2 XA2

]
≤ 0. (7.21)

then the origin x∗ = 0 is the stable fixed point of the quadratic system

x(k + 1) = A1x(k) +A2 (x(k)⊗ x(k)) ; x (0) = x0 (7.22)

and n=2.

Proof: The proof is similar to the proof of 7.6.1 and is obtained by
substituting (7.22) in the discrete version of (7.15), where we need that
V (x) ≥ 0 and

V (x(k + 1))− V (x(k)) ≤ 0. (7.23)

Substituting (7.22) in (7.23) gives,

V (x(k + 1))− V (x(k)) =
[
A1x+A2(x⊗ x)

]>
X
[
A1x+A2(x⊗ x)

]
− x>Xx ≤ 0,

=
[

x
x⊗ x

]> [
A>1 XA1 −X A>1 XA2

A>2 XA1 A>2 XA2

] [
x

x⊗ x

]
≤ 0,

Theorem 7.6.4 If there exists X = X> that satisfies the Linear Matrix
Inequalities,

X > 0
A>1 XA1 −X A>1 XA2 · · · A>1 XAN
A>2 XA1 A>2 XA2 · · · A>2 XAN

...
...

...
...

A>NXA1 A>NXA2 · · · A>NXAN

 ≤ 0. (7.24)

then the origin x∗ = 0 is a stable fixed point of the general nonlinear system

x(k+ 1) = A1x(k) +A2 (x(k)⊗ x(k)) + . . .+AN (x(k)⊗ . . .⊗x(k)); (7.25)

Proof: The proof is similar to the proof of 7.6.3 and is obtained by
substituting (7.25) with n terms in discrete version of (7.15).
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Remark 7.6.1 The stability results provide sufficient condition only. IF
N = 1, the conditions are necessary as well.

Remark 7.6.2 All the proofs from 7.6.1 to 7.6.4 rely on the existence of
quadratic Lyapunov functions. Conditions for other type of Lyapunov func-
tions will be different.

Remark 7.6.3 The Lyapunov stability proofs are valid for the stability of
the fixed point x∗ = 0 only. There is no claim on general stability of the
systems (7.11) or (7.25), or claims on stability of other fixed points.

Remark 7.6.4 The Lyapunov stability condition in theorem 7.6.2 for the
continuous tensorial system in (7.11) or the equivalent condition in 7.6.1 for
n = 2, are not strictly definite, i.e. the corresponding Lyapunov function
is not strictly decreasing, it is rather non increasing function. Such a non
decreasing function do not guarantee the asymptotic stability of (7.11). An-
other implication of such a semi-definite condition is the numerical problems
that might arise to find a X = X> > 0. Moreover, for such a semi-definite
inequality, strong duality does not hold (Staler’s constraint qualification does
not hold). It might be possible to transfer such a semi-definite problem into
a definite one by using any other Lyapunov function, as suggested in the
work of Parrilo (2000) (chapter 7).

Remark 7.6.5 If x∗ 6= 0 is a fixed point of a system of form

ẋ = A0 +A1x+A2(x⊗ x) + . . .+AN (x⊗ . . .⊗ x) (7.26)

then one can easily construct matrices B1, . . . , BN such that with the state
transformation x := x− x∗ we have that (7.26) is equivalent to

ẋ = B1x+B2x⊗ x+ . . .+BN (x⊗ . . .⊗ x) (7.27)

where B0 = 0, and where x∗ = 0 is a fixed point. A sufficient LMI test to
infer stability of x∗ in (7.26) can now be performed for the system (7.27) by
using the result, of Theorem 7.6.2. Indeed,

V (x) :=x>Xx

=(x− x∗)>X(x− x∗)

=x>Xx− x∗>Xx− x>Xx∗ + x∗
>
Xx∗

is a Lyapunov function for the origin of (7.27) if and only if

V (x) := (x− x∗)>X(x− x∗)

is a Lyapunov function in a neighborhood of x∗ for (7.26).
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7.7 Dissipativity of Tensorial systems

Dissipativity is a system property that generalizes the notion of stability
for systems with inputs. Physical interpretation of dissipativity is that the
amount of the energy released by a system never exceeds the sum of energy
that is stored in the system and that has been supplied to it externally. The
part of energy that is not available for direct use is dissipated in the form
of heat, friction, increased internal energy or entropy. Study of Dissipativity
of LTI system allows analysis of stability, stabilization, robustness and for
control design. Mathematical framework for dissipativity can be expressed
in the form of Linear Matrix Inequalities.

Based on the notion of Lyapunov stability as expressed in section 7.6, first
the conditions for the dissipativity of LTI systems are established in this
section. This is then extended to the tensorial system introduced in section
7.2.2 and further investigated for stability at a fixed point in section 7.6. The
tools from Linear Matrix Inequalities (LMIs) are used here again. The LMI
conditions are expressed in terms of the positive real matrix X = X> > 0
which can be computed using tools from semi definite programming.

Consider a nonlinear system Σ of the form

Σ :

{
ẋ = f(x, u)
y = g(x, u)

(7.28)

with x(t) ∈ Rn are states, u(t) ∈ U are inputs and y(t) ∈ Y are the outputs.
Suppose that S(u, y) is a supply rate, i.e. S : U × Y → R indicates with
S(u(t), y(t)), is the amount of power delivered to the system at time instant
t.

Dissipativity of Σ with respect to the supply function S(u, y) is defined as
follows:

Definition 7.7.1 A system Σ in (7.30) is dissipative with respect to the
supply rate S(u, y) if ∃ V : Rn → R, such that,

V (x(t0)) +

te∫
t0

S(u(τ), y(τ))dτ ≥ V (x(te)); (7.29)

holds for all t0 ≤ te and for all trajectories (u(t), y(t), x(t)) that satisfy (7.28).
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Now suppose that (7.28) is a LTI system of the form,

Σ :

{
ẋ = Ax+Bu

y = Cx+Du
(7.30)

and S(u, y) is a supply function in quadratic form, i.e.

S(u, y) =
[
u
y

]> [
Q S
S> R

] [
u
y

]
(7.31)

then we have the following characterization.

Theorem 7.7.1 The LTI system Σ of the form (7.30) is dissipative with
resect to the quadratic supply S as in (7.31), if and only if there exists
X = X> that satisfies the Linear Matrix Inequality

F(X) :=
[
A B
I 0

]> [ 0 X
X 0

] [
A B
I 0

]
−
[

0 I
C D

]> [
Q S
S> R

] [
0 I
C D

]
≤ 0

(7.32)

Proof: Assume that the storage function in definition 7.7.1 is the
quadratic formulation V (x) = x>Xx.

The proof of the theorem holds only for the storage functions of the quadratic
forms, i.e. V (x) = x>Xx. The LMI condition in Theorem 7.7.1 is worked
out here. Note that the dissipation inequality (7.29) can be written as

lim
te↓t0

V (x(te))− V (x(t0))
te − t0

≤ lim
te↓t0

te∫
t0

S(u(τ), y(τ))dτ ; ∀x, u, y ∀t0 ≤ te

(7.33)
Using notions from calculus, for a small time window (7.33) can be equiva-
lently written in a continuous form as,[

∇V (x)
]>
f(x, u) ≤ S(u, y); ∀x, u, y, (7.34)

For LTI system in (7.30) and quadratic supply in (7.31), this is equivalent
to:

2
[
Xx
]> [

Ax+Bu
]
≤
[
u
y

]> [
Q S
S> R

] [
u
y

]
∀x, u (7.35)

Which, in fact, (7.35) implies condition (7.32). Hence a dynamical system in
(7.28) is dissipative with respect to S(u, y) if and only if (7.34) holds. The
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dissipativity condition of theorem 7.35 is based on the the lecture note, see
Scherer and Weiland (2009). Due to the linearity of state space matrices, the
results from theorem 7.7.1 can be extended to the tensorial system introduced
in the section 7.2.2 which is presented here again. Thus, consider the system

Σ :

{
ẋ = A1x+A2(x⊗ x) +B1u+B2(u⊗ u) + L(x⊗ u); x(0) = x0.

y = C1x+ C2(x⊗ x) +D1u+D2(u⊗ u) +M(x⊗ u);
(7.36)

Suppose, again S(u, y) is a quadratic supply function as in (7.31),

Theorem 7.7.2 For a tensorial system of the form (7.36), suppose that
there exists X = X> such that

F(X) ≤ 0, (7.37)

with F(X) defined as the affine function,


A>1 I
A>2 0
B>1 0
B>2 0
L> 0


[

0 X
X 0

] [
A1 A2 B1 B2 L
I 0 0 0 0

]

−


0 C>1
0 C>2
I D>1
0 D>2
0 M>


[
Q S
S> R

] [
0 0 I 0 0
C1 C2 D1 D2 M

]
(7.38)

then (7.36) is dissipative with respect to S.

Proof: It suffices to prove that, V (x) = x>Xx is a storage function
that satisfies (7.34).

Similar to the theorem 7.7.1 the proof of theorem 7.7.2 is valid for the
quadratic storage function alone. The LMI condition in theorem 7.7.2 is
obtained in a similar way to the LTI case explained in the last paragraph.
The quadratic supply function in (7.31) is modified to accommodate the

165



dynamics of tensorial system of the form (7.36) as,

S(u, y) =


x

x⊗ x
u

u⊗ u
x⊗ u


> 

0 C>1
0 C>2
I D>1
0 D>2
0 M>


[
Q S
S> R

] [
0 0 I 0 0
C1 C2 D1 D2 M

]
x

x⊗ x
u

u⊗ u
x⊗ u


(7.39)

The dissipativity condition in (7.34) for the tensorial system in (7.36) is given
by replacing the dynamics of LTI system in (7.35) by the tensorial system
and it is given by,

⇒
[
∇V (x)

]>
f(x, u)− S(u, y)

=2
[
Xx
]>
A1x+A2(x⊗ x) +B1u+B2(u⊗ u) + L(x⊗ u)

−
[
u
y

]> [
Q S
S> R

] [
u
y

]

=


x

x⊗ x
u

u⊗ u
x⊗ u


> 

A>1 I
A>2 0
B>1 0
B>2 0
L> 0


[

0 X
X 0

] [
A1 A2 B1 B2 L
I 0 0 0 0

]
x

x⊗ x
u

u⊗ u
x⊗ u



−


x

x⊗ x
u

u⊗ u
x⊗ u


> 

0 C>1
0 C>2
I D>1
0 D>2
0 M>


[
Q S
S> R

] [
0 0 I 0 0
C1 C2 D1 D2 M

]
x

x⊗ x
u

u⊗ u
x⊗ u



=


x

x⊗ x
u

u⊗ u
x⊗ u


>

F(X)


x

x⊗ x
u

u⊗ u
x⊗ u


≤0 (7.40)

Condition in (7.40) implies condition in Theorem (7.7.2).

Remark 7.7.1 The definition of dissipativity in 7.7.1 also holds for non-
linear systems. A quadratic storage function is V (x) is found for the given
supply function under the condition (7.38).
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Remark 7.7.2 The LMI conditions presented here are for quadratic supply
functions. For other supply functions the LMI conditions wil be different.

Remark 7.7.3 The LMI conditions presented in this section has assumed
quadratic storage function. For other form of storage function, e.g. V (x) =[

x
x⊗ x

] [
X
] [ x
x⊗ x

]
the LMI conditions need to be reformulated.

7.8 Conclusions

In this chapter we have proposed a new model reduction method and demon-
strated its application on two large scale industrial processes. The proposed
method is promising and is well suited for the identification of large scale
processes where complexity reduction by using physical insights alone is not
possible. The proposed method is rigorously formulated and it shows the
relation between two seemingly different approaches of model reduction, viz.
identification type of approach as proposed in this chapter and an approach
involving Galerkin type of projection of model equations. The dependence
of the method on the state information of full order model alone makes it
applicable to other large scale processes. The proposed technique eliminates
the expensive and laborious programming efforts that are required for the
model order reduction techniques based on Galerkin projections. Due to the
fast computations, the inferred reduced order models can be used as a sub-
stitute to the expensive identification tests that are carried out in a plant.
The proposed method has few pitfalls. The dependence of the presented
approach on the (state) data makes the identified reduced models difficult
to extrapolate beyond the identification domain. As explained in the section
7.2, the obtained reduced order models can lead to numerically diverging
solutions. This problem can be partly avoided by using fewer parameters
in the tensorial model. Towards this purpose, methods to detect the Lya-
punov stability of continuous and discrete tensorial systems at a fixed point
is presented. Tools from theory of Linear Matrix Inequalities (LMI) and
semi-definite programming are used to formulate a sufficient conditions to
detect the Lyapunov stability. Along with the stability analysis, dissipativ-
ity of the tensorial systems for a quadratic supply function and a storage
function is also presented. The linearity of system parameters in the ten-
sorial model allows extension of classical stability and dissipativity theory
from linear systems to tensorial systems. Similar to the stability and dissipa-
tivity analysis, extension of other notions like observability, controllability,
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robustness, etc. from LTI system theory to the tensorial systems should be
pursued in future.
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8

Conclusions and Recommendations for
Future Research

8.1 Contributions 8.2 Scope for Future Research

In this chapter we present the concluding remarks based on the research
presented in this thesis. Along with the conclusions, some research directions
for the future are also presented.

8.1 Contributions

The main contributions of this thesis are listed here and they are discussed
in greater detail in the subsequent subsections.

• Presentation of a model reduction problem as an identification prob-
lem.

• A novel data based method to infer a reduced order nonlinear model
is presented.

• Methods to characterize the stability and dissipativity of nonlinear
systems beloning to the class of tensorial (multi-variable polynomial)
systems is presented.

• A novel data based method to identify reduced order - linear parameter
varying (RO-LPV) models is presented.

• A novel method to detect bifurcations in large scale applications using
reduced order models is presented.
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• An investigation of the proposed model reduction methods on a large
scale benchmark example of an industrial glass manufacturing process
is presented.

8.1.1 Identification of reduced order nonlinear models

This thesis has presented a novel data based method for the identification
of reduced order nonlinear models. The model reduction problem for non-
linear processes is formulated as a parameter estimation problem. Based on
the state information, the first step of the proposed model reduction tech-
nique involve a separation of spatial and temporal patterns. In the second
step, a model structure of tensorial (multi-variable polynomial) expansions
is selected to describe linear or non-linear time evolutions of modal coef-
ficients. The proposed model reduction strategy explores the observation
made in section 3.2 and further explored in Chapter 7, that the POD modal
coefficients can be viewed as the states of a reduced order model that needs
to be identified. With the knowledge of the POD modal coefficients from
the spectral decomposition of the system solutions and with the knowledge
of process inputs, different model structures are proposed in Chapter 7 to
relate the input and the states (i.e the modal coefficients). In particular,
a tensorial (multi-variable polynomial) representation of the vector field of
the system is proposed. This generalizes the usual LTI setting in a nice
manner to a different model class of nonlinear systems. An ordinary least
squares method is then used to efficiently estimate the model parameters.
The simplicity of the proposed method gives computationally very efficient
linear and non-linear low order process models for large scale processes.

The proposed method is promising and is well suited for the identification
of very large scale processes where complexity reduction by using physical
insights alone is not possible. The proposed method does not need access
to the governing model equations and the state information of the full order
model and the process input data is enough to infer reduced order nonlinear
models. The proposed method is rigorously formulated and it shows the rela-
tion between two seemingly different approaches of model reduction based on
identification as presented in this thesis and the classical POD approach in-
volving Galerkin projections of model equations. In fact, for a linear discrete
time system, one can estimate the system parameters (state space matrices)
of the reduced model consistently. The method is of generic nature and can
be easily applied to infer reduced order linear and non-linear models from
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large scale process models which are often used in process industry. The
proposed technique, in principle, is independent of the model equations, and
allows to circumvent the expensive and laborious efforts required in classical
Galerkin type of equation based model order reduction. Due to the high
computational efficiency, the inferred reduced order models can be used as a
substitute to the expensive identification tests that are carried out in a plant
in order to identify a control relevant black box model.

The proposed model reduction technique has some drawbacks, e.g. the re-
sultant tensorial reduced order model can become unstable. Moreover, when
compared to the POD implementation of model equation, the reduced ten-
sorial models offer limited possibility of extrapolation.

8.1.2 Characterization of stability and dissipativity of Ten-
sorial systems

In Chapter 7 a method to identify reduced order non linear models belonging
to the class of tensorial (multi-variable polynomial) expansions is presented.
In general, it is very difficult to identify a system belonging to the general
class of nonlinear systems from input-output data alone. But in the model
reduction framework presented in Chapter 7, the states (POD modal coeffi-
cients) are known, which makes it possible to identify a model structure in
the form of tensorial systems. The identified model parameters fit very well
to the data, but sometimes, simulations of identified tensorial models may
lead to a non converging solution. It was therefore of interest to investigate
the stability of tensorial systems. As the model parameters of a tensorial
system appear linearly in the model equations, it becomes easy to extend
the notions from LTI system theory to tensorial systems. Using the tools
from Linear Matrix Inequalities, sufficient conditions for Lyapunov stability
of a fixed point of continuous and discrete tensorial systems are formulated.
Along with the conditions for Lyapunov stability, a sufficient condition to
guarantee the dissipativity of a tensorial system for a quadratic external sup-
ply function is also presented. These results show that tensorial systems are
an important class of nonlinear systems with a special feature of ‘linear in
parameter’.
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8.1.3 Identification of reduced order linear parameter vary-
ing models

In this thesis one more novel procedure for obtaining low dimensional mod-
els of large scale, non-linear, fluid flow systems is proposed. The proposed
method formulates the model reduction problem as a parameter estimation
problem. The approach is based on the combination of methods of proper
orthogonal decomposition, black box system identification techniques and
nonlinear spline based blending of the LTI black box models to create a
reduced order linear parameter varying (RO-LPV) model. Spectral decom-
positions of system solutions is used to infer dominant temporal patterns.
The dominant patterns that are obtained as result of spectral decompositions
are then treated as the outputs of an unknown LTI model that is to be iden-
tified. A model structure of the LTI state space form is subsequently fitted
to these dominant temporal patterns using subspace state space identifica-
tion techniques. This process is repeated for various values of the scheduling
variable to infer local reduced order models corresponding to each value of
scheduling variable. The last step of the proposed model reduction frame-
work involved a weighted blending of the local reduced order LTI models into
a reduced order LPV model. The weighted blending is carried out using two
different types of splines - orthogonal and trigonometric. The parameters of
the spline are estimated by minimizing the output residue between the full
order and the RO-LPV model.

The RO-LPV modeling method along with the two spline types, is explained
with more detail in Chapter 6. The proposed method does not need the usual
Galerkin type projection of equation residuals to obtain the reduced order
model and the method is of generic nature. Only the information of the
states of the full order model and the process inputs is sufficient to infer
reduced order models and therefore the proposed approach can work in the
absence of access to the governing equations. The proposed method is of
empirical nature and gives computationally very efficient low order process
models for large scale processes which are modeled using Computational
Fluid Dynamic (CFD) tools. The efficiency of the proposed approach is
illustrated on a benchmark problem of an industrial glass manufacturing
process where the process non-linearity and non-linearity arising due to the
corrosion of refractory materials is approximated using the proposed reduced
order linear parameter varying model. The practical aspects of the method
are also discussed in Chapter 6.
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The proposed RO-LPV modeling technique is intuitional and it is close to
the real life situation when changes in the scheduling variables excite the
process nonlinearities. The proposed RO-LPV identification technique can
also be used to identify not only reduced order LPV models but also for
identifying LPV models from input-output data obtained by excitation of
actual plant.

The ‘linear in system parameters’ structure of the proposed RO-LPV model
offers similar advantages as those of an LTI system in terms of extension
of notions of LTI system theory like analysis of stability, dissipativity, ro-
bustness, observer design, controller design, etc. Although not presented in
this thesis, the analysis of Lyapunov stability of RO-LPV model obtained
by linear combination of LTI models at a fixed point could be on the same
line of deriving the Lyapunov stability conditions for tensorial systems which
is presented in Chapter 7. However, RO-LPV model obtained by nonlinear
splines that are used in this thesis, the similar analysis will need extra efforts.

8.1.4 Detection of bifurcations in large scale processes using
reduced order models

This thesis has proposed a hybrid detection framework, which, based on
state or output residue between plant (full order model) and the reduced
order model, can detect the occurrences of bifurcations. The proposed mech-
anism suggests an optimal reduced order model to approximate the process
exhibiting bifurcations using reduced order models.

Historically, bifurcations are viewed as a discontinuous change in system so-
lutions for a continuous change in system parameters. Large scale processes
often show significant sensitivity of the process solutions to a small, continu-
ous changes in process parameters. Such a behavior is difficult to characterize
as a bifurcation in terms of changes in eigen-values of linearizations. Usually
bifurcation effects are studied for changes in physical parameters of a govern-
ing model equation. It is shown in this thesis that similar to the changes in
physical process parameters, changes in the geometric parameter of a process
equipment in the form of a physical boundary can also lead to bifurcations.
It is difficult to detect the bifurcations in real time in large scale applications
using the rigorous process models due to the large state dimensions and slow
computations associated with the rigorous process models. To overcome this
problem, in this thesis, we developed a strategy to detect the bifurcations
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exhibited by a full order model using the combination of detection mecha-
nism based on reduced order models. Chapter 4 and 5 have presented the
details of this method.

Moreover, it is shown in this thesis that the reduced order model obtained
by using spectral decompositions of system solutions and subsequent projec-
tions of model equations on the space spanned by dominant patterns becomes
obsolete as result of bifurcations of the system solutions. Therefore, to ap-
proximate the behavior of a large scale system exhibiting bifurcations, a
framework employing combination of reduced order models and a hybrid de-
tection mechanism is proposed in this thesis. In the proposed framework, the
reduced models can be inferred by any suitable model reduction technique.
For example, reduced models can be obtained by using Galerkin projection
of equation residuals on the dominant subspace, as shown in Chapter 4 or by
using an identification based approach that is proposed in Chapter 5. Two
types of hybrid detection mechanisms are proposed here - a static and a dy-
namic one. The hybrid detection mechanisms, based on the state or output
residue information between the plant (full order model) and the reduced
order model, detects the operation regime of the process and suggests an
optimal reduced order model.

In particular, the results of the overall framework involving reduced order
models and the detection mechanism are presented on the benchmark exam-
ples of a tubular reactor and an industrial glass manufacturing process. The
benchmark applications are explained in Chapter 2. The benchmark exam-
ples serve as full order models which are modeled using tools from Compu-
tational Fluid Dynamics (CFD). The bifurcation effect as result of changes
in the Damkohler number for a tubular reactor is presented in Chapter 4.
It is shown that the reduced order models along with either of the detec-
tion mechanism can approximate the bifurcations exhibited by the full order
model. An investigation of the corresponding wave patterns in the reactor
shows the difficulty to capture the transition from lower to higher state in
the reduced model.

In Chapter 5, the applicability of the proposed detection mechanisms is
demonstrated on an industrial glass manufacturing process. The effect of
corrosion of the throat wall in a glass furnace results into a bifurcation type
of behavior. This behavior was approximated using the framework employing
reduced order models and the dynamic detection mechanism. The proposed
framework was able to detect the occurrence of bifurcations in the flow pat-
terns in the 2D model of a glass furnace. The model reduction method, that
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is presented, employed LTI reduced order models. The LTI reduced order
models are obtained by a two step mechanism involving spectral decomposi-
tion of system solution and subsequent approximation of temporal patterns
using the tools from system identification area.

8.1.5 Application of developed model reduction techniques
on large scale benchmarks

This thesis has presented a few novel model reduction techniques. As men-
tioned in the objectives of this thesis in Chapter 1, the techniques that are
investigated here are motivated by their applicability on large scale indus-
trial examples. Towards this goal, two benchmark examples of industrial
chemical processes are considered in this thesis. The benchmark examples
are presented in Chapter 2. Although every real life application has unique
features, the processes that are considered in this thesis have in common
that they belong to the class of distributed parameter systems and are mod-
eled using Computational Fluid Dynamic (CFD) tools. The two benchmark
examples that are considered here is a 1D tubular reactor and an industrial
glass manufacturing process.

Due to its small system order, for the tubular reactor, it is easy to verify
the applicability of a developed model reduction techniques. The tubular
reactor is used as a benchmark to study the bifurcation effect in Chapter 4
and in Chapter 7 to study the applicability of the reduced order model in
the form of a tensorial system.

The benchmark example of glass manufacturing is more complex than the
tubular reactor. The geometry considered here depicts a 2D slice (i.e. small
width) taken along the length of 3D industrial glass furnace. In Chapter 5,
this 2D benchmark of glass furnace is used to develop a data based mech-
anism to detect the bifurcations of flow patterns in a glass furnace using
reduced order models. In particular, the effect of changes in the geometry of
the furnace wall is studied in more detail. In Chapter 6 the benchmark glass
furnace 2D model is used to develop a (state) data based Reduced Order-
Linear Parameter Varying (RO-LPV) framework. The nonlinear effect due
to corrosion of the throat wall, and process nonlinearity as result of changes
in working point, are approximated using a RO-LPV model. In Chapter 7,
the process is used to study the applicability of a reduced order modeling
technique which resulted into a model structure in the form of a tensorial
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system.

It is observed in this thesis that it is difficult to find the linear range of
process operation of a glass furnace. The difficulty arises due to the complex
nature of the process, which involved various physical effects. Therefore, it
is better to identify a nonlinear reduced order model of glass furnace than a
linear one.

8.1.6 General conclusions

This thesis aimed to address the objectives mentioned in the first Chapter.
In the following we summarize the conclusions with respect to the thesis
objectives.

• Reduction in model complexity.

This thesis has addressed the complexity of process models in Chapters
4, 5, 6 and in Chapter 7.

• Reduction in model order.

The methods proposed in this thesis resulted in large reduction of
system dimension, from 3000 to 10 state variables for a 2D benchmark
example of a glass furnace.

• Maintaining the model accuracy.

The model reduction techniques that are presented here with increas-
ing accuracy are - Model reduction technique resulting into reduced
order LTI model (Chapter 5), model reduction technique resulting into
RO-LPV model (Chapter 6), model reduction technique resulting into
tensorial models (Chapter 7).

• Approximation of process nonlinearities.

The approximate models; RO-LPV and reduced order tensorial mod-
els that are investigated in this thesis can approximate the process
nonlinearity in a certain nonlinear range of process operation.

• Improved computational efficiency.

As all the model reduction techniques that are proposed here are linear
in parameters and have a small system order, they all are computa-
tionally more efficient (>1000 times) than the full order CFD model.
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• To develop approximate process models which are optimal in some
sense.

The model reduction techniques proposed here are based on spectral
decompositions of the system solutions which gives spatial and tempo-
ral patterns which are optimal in representing the system solutions.

• To develop a model approximation technique which can approximates
bifurcation behavior nearby critical parameter values as exhibited by
the original process model and to detect its occurrence.

The techniques proposed in Chapter 4 and 5 addressed the issue of
detection of bifurcations using reduced order models for large scale
processes.

• To infer an approximate model in the absence of an explicit mathe-
matical expressions of the model.

The techniques presented in this thesis are able to infer reduced or-
der models in the absence of access to the governing equation and the
techniques can be viewed as an alternate to the model reduction tech-
niques which are based on the physical insight or as an alternative to
projection based approach.

• To develop model approximation techniques with minimum implemen-
tation efforts.

One of the major advantage of the model reduction techniques pro-
posed in this thesis is that they are (state) data based and need very
small programming efforts in comparison to the other model reduction
techniques tailored for large scale processes. This translate into less
programming efforts and ultimately into an economically less expensive
method to apply.

8.2 Scope for Future Research

Based on the research that is carried out during this thesis, a few open
research questions and recommendations for the future research are presented
in this section. The recommendations are briefly presented here which are
explained in more detail in subsequent subsections.
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• Further investigation into system theoretic properties of tensorial sys-
tems, especially its identification on the line of subspace identification
techniques.

• Investigation of the model quality of the different model structures that
are proposed in the thesis.

• Synthesis of observer and controller for each type of reduced order
model using tools from LMI and semi-definite programming.

• Investigation of identification of reduced order models from the spec-
tral decomposition using High-Order Singular Value Decomposition
(HO-SVD) and subsequent system parameter estimation leading to
nonlinear tensorial models that are proposed in this thesis.

• Application of proposed techniques on 3D model of glass manufacturing
process.

• Investigation of the applicability of the model reduction techniques pro-
posed here on systems which are modeled using Differential Algebraic
Equations (DAEs).

8.2.1 Investigation into Tensorial systems

Based on the proposed model reduction method that is presented in Chapter
7, it will be rewarding to further investigate the tensorial system. Tensorial
systems allow approximation of process nonlinearity and at the same time
their structure is better suited for analytical treatment, i.e. for studying the
system theoretic properties and for extension of the notions from the theory
of LTI systems. It is of immediate interest to design an observer and a model
based controller for such a system. For many real life chemical processes,
this can be highly rewarding. The ’linear in parameter’ feature of such a
system will be exploited in synthesizing an observer and a controller.

On the lines of subspace identification techniques, the identification of ten-
sorial system need to be investigated. As the underlying systems are often
stable, it is worth to investigate the possibility of imposing the stability in
tensorial system using some regularization tricks.

Application of the model reduction technique resulting into a tensorial struc-
ture should be tried on 3D glass model and systems of DAE model form.
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8.2.2 Investigation of bifurcations in Large scale system

Based on the results presented in Chapter four, it would be worth to investi-
gate the problem of model reduction by using POD for parameter sensitive
processes. To be precise, bifurcation phenomena should be investigated for
2D and 3D model of a tubular reactor. The mathematical formulation of the
hybrid detection mechanism using the notions and concepts from Hybrid
Systems Theory and will further improve the usability of the proposed de-
tection mechanisms. It is also interesting to design a reduced order observer
which can guarantee the convergence of the states under parametric uncer-
tainties. As the processes starts oscillating near bifurcating points, from
economic point of view, it might be interesting to operate the process close
to bifurcating value, provided the process safety is guaranteed.

8.2.3 Reduced order modeling for 3D glass furnace

While presenting the results in this thesis, the benchmark examples that
are considered are tubular reactor and a 2D model of industrial glass man-
ufacturing process. It is shown in this thesis that there are different model
reduction techniques that can approximate the nonlinear behavior of a 2D
model of industrial glass furnace. Extension of these ideas to a 3D model of
glass furnace might be easy and can be useful from the point of designing an
observer, controller and a dynamic optimizer. A 3D glass furnace model has
different flow patterns than a 2D glass furnace model. This might demand
changes in the reduced modeling technique that are presented in this thesis.
The problem that might arise for a 3D furnace model is its large system
order. Data storage, data processing and spectral decomposition can be a
difficult task for glass furnace models approximately of order 105 − 108.

In Chapter 7, it is shown for the benchmark example of tubular reactor that
considering interactions among different dynamic variables (i.e. a multi-
variable case) gives a better reduced order tensorial model. This could be
attributed to the coupled dynamics of temperature and concentration in a
tubular reactor. During the spectral decomposition for a multi-variable data
set, the estimated dominant eigenvectors corresponds to the maximum en-
ergy with respect to all the variables. This idea can be useful for developing
reduced order tensorial models for a 3D glass manufacturing or to any other
process, where various correlated variables like pressure, temperature, veloc-
ity, thermal conductivity, concentration etc. interacts dynamically.
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Availability of reliable reduced order, computationally efficient reduced order
models for glass process can be useful for synthesis of model based controller
and for dynamic optimization purposes.

8.2.4 Investigate model reduction techniques using HO-SVD
and Tensorial systems

High Order - Singular Value Decomposition or HO-SVD (see, Belzen and
Weiland (2008)) is a spectral decomposition method suited specifically to a
process belonging to a higher (2 or 3) Dimensional geometry. The idea is
based on inferring correlated patterns in all spatial directions. As most of the
physical geometries in real life are 3D objects, it makes sense to consider HO-
SVD for inferring dominant spectral directions. This idea can also be useful
for inferring correlated patterns of multi-variable process. Application of
model reduction framework from Chapter 7, to the dominant temporal pat-
terns obtained from such a HO-SVD can be interesting from model reduction
point of view. Early results in this directions are very encouraging.

8.2.5 Investigation of the model quality

State data-based methods that are proposed in this thesis resulted into re-
duced models belonging to different class of systems. These models are not
thoroughly investigated for preservation of the invariant properties of orig-
inal model, with respect to stability, robustness, conservation of physical
quantities, physical constraints, dissipativity, controllability, observability,
achievable closed loop performance etc. Assessment of these properties for
the reduced order models that are inferred in this thesis will improve their
usability.

8.2.6 Observer and controller design

Often, the full order process models are not an exact representation of the
underlying process and therefore the inferred reduced order models also de-
viate from the actual process behavior. In practice, the discrepancy between
a black-box identified model and the plant is compensated by using an ob-
server. Similarly, the discrepancy between reduced order process models and
the plant could be compensated by designing the reduced (order) observers.
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In future the design of a reduced observed and its closed loop performance
should be investigated in further detail.

8.2.7 Some other research topics

• To impose orthogonality during the identification of POD modal coeffi-
cients in system identification approach that is proposed in this thesis.

• To investigate the methods for inferring sparse spatial POD basis,
which can lead to sparse reduced order models.

• To further investigate the similarity and difference between model re-
duction by projection and by identification as proposed in this thesis.

• To characterize the parameter sensitivity of a reduced model using
POD basis function.
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Notations

Abbreviations

CSTR Continuously Stirred Tank Reactor
CFD Computational Fluid Dynamics
DAE Differential Algebraic Equations
DDM Dynamic Detection Mechanism
DPS Distributed Parameter Systems
FEM Finite Element Methods
FVM Finite Volume Methods
IGMP Industrial Glas Manufacturing Process
LMI Linear Matrix Inequalities
LPV Linear Parameter Varying Methods
LTI Linear Time Invariant systems
MPC Model based Predictive Control
MPE Missing Point Estimation
MRT Model Reduction Technique
ODE Ordinary Differential Equations
OLSE Ordinary Least Square Estimation
PCA Principal Component Analyis
PDE Partial Differential Equations
PFR Plug Flow Reactor
POD Proper Orthogonal Decompositions
R-MPC Rigorous Model based Predictive Control
RO-LPV Reduced Order - Linear Parameter Varying systems
ROM Reduced Order Models
SID System Identification
SDM Static Detection Mechanism
SVD Singular Value Decompositions
TR Tubular Reactor
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Latin Symbols

A,B,C,D State space matrices
K Number of temporal Samples
M a system model
P system property
S Matrix of singular values
T Temperature
U Left singular vectors
V Right singular vectors
H Enthalpy content
∆H Heat of reaction
T̂ Estimated solution of a full order model
T̃ Truncated solution of a full order model
Tk Solution at kth instance in an ensemble
> Transpose
Tsnap Snapshot matrix
a Modal Coefficient
ã Estimated modal coefficients
h Throat height
i Sample number
j Sample number
k Sample number
l Number of inputs
m Number of outputs
n State space dimensions
nu Number of inputs
ny Number of outputs
r State space dimension of reduced model
s Number of Shifts
t time instance
u Vector of Inputs
x State vector
y Vector of outputs
z Spatial variable
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Functions and Operators

arg the argument of a function
col operator stacking the elements
grad gradient operator
div divergence operator
dim dimension, i.e. the length of a vector
max the maximum of
min the minimum of
rank rank of a matrix
span the set of all linear combination
Os Observability matrix
Ts Toeplitz matrix
X matrix stacking the state trajectories
Y matrix stacking the output trajectories
R correlation operator
P projection operator
I injection operator
F nonlinear function
J Jacobian operator
〈·, ·〉 inner product
|| · || norm
∇ the del operator

Greek Symbols

ρ mass density
λ eigenvalue
σ singular value
φ orthonormal POD basis
ψ orthonormal basis
θ system paramter
β spline parameters
α spline weights
υ velocity
qφ source/sink term
≥ greater than or equal to
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≤ less than or equal to
Ω spatial domain
∞ infinity
ξ states in term of deviations around a point
⊗ Kronecker product
Γ diffusion coefficient
⊥ orthogonal compliment
τ time delay
θ̂ estimated parameters
δ Kronecker delta
→ mapping
ε residue or error
Ξ output error matrix
Π product
∃ there exists
≈ approximately equal to
∗ critical value
Σ a system model
Φ operator spanned by POD basis
Ψ operator spanned by orthonormal basis
ϑ vector of system parameters
ζ spatial variable

Sets and set operators

∀ for all
∈ an element of
⊂ subset of
⊆ subset to equal
∪ union of two sets
∩ intersection of two sets
Θ set of system paramters
H infinite dimensional Hilbert space
Hn finite dimensional Hilbert space
M set of model class
R the set of real numbers
R+ the set of all positive real numbers
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T time domain
U set of admissible input signals
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